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Abstract

This thesis develops theoretical and computational methods for the robustness analysis
of uncertain systems. The considered systems are linearized and depend rationally
on random parameters with an associated probability distribution. The uncertainty is
tackled by applying a polynomial chaos expansion (PCE), a series expansion for random
variables similar to the well-known Fourier series for periodic time signals. We consider
the linear perturbations around a system’s operating point, i.e., reference trajectory,
both from a probabilistic and worst-case point of view.

A chief contribution is the polynomial chaos series expansion of uncertain linear sys-
tems in linear fractional representation (LFR). This leads to significant computational
benefits when analyzing the probabilistic perturbations around a system’s reference
trajectory. The series expansion of uncertain interconnections in LFR further deliv-
ers important theoretical insights. For instance, it is shown that the PCE of rational
parameter-dependent linear systems in LFR is equivalent to applying Gaussian quadra-
ture for numerical integration.

We further approximate the worst-case performance of uncertain linear systems with
respect to quadratic performance metrics. This is achieved by approximately solving the
underlying parametric Riccati differential equation after applying a polynomial chaos
series expansion.

The utility of the proposed probabilistic robustness analysis is demonstrated on the
example of an industry-sized autolanding system for an Airbus A330 aircraft. Mean and
standard deviation of the stochastic perturbations are quantified efficiently by applying
a PCE to a linearization of the system along the nominal approach trajectory. Random
uncertainty in the aerodynamic coefficients and mass parameters are considered, as well
as atmospheric turbulence and static wind shear. The approximate worst-case analysis is
compared with Monte Carlo simulations of the complete nonlinear model. The methods
proposed throughout the thesis rapidly provide analysis results in good agreement with

the Monte Carlo benchmark, at reduced computational cost.
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Notation

parametric uncertainty vector

uncertain matrix generated by a linear fractional transformation
projected A matrix

image space of uncertain parameter vector §

lower linear fractional transformation w.r.t. nominal matrix M
and uncertain matrix A

upper linear fractional transformation

linear system

Hamiltonian matrix

quadratic performance function

Jacobi matrix w.r.t. L-dimensional orthogonal polynomial basis
space of square-integrable random variables

space of square-integrable time signals

nominal matrix generated by a linear fractional transformation
set of natural numbers including zero

probability density function of ¢

means that the symmetric matrix R is negative definite

field of real numbers

set of n-by-m real matrices

standard deviation

time

time horizon

system input

system state
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cf.
e.g.

i.e.

means that the symmetric matrix X is positive semidefinite
system output
orthogonal polynomial basis functions indexed by a € Ny

vector of polynomial basis functions

mathematical expectation
variance operator

Kronecker product
compare (confer)

for example (ezempli gratia)

that is (id est)
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It has turned out that it is in principle
impossible to know, to measure the
position and velocity of a piece of

matter with arbitrary accuracy.

WERNER KARL HEISENBERG

Chapter 1

Introduction

1.1 Background

Uncertainty

This thesis deals with uncertainty in control systems engineering. But what is “uncer-
tainty”? At the heart of every model-based control design lies a mathematical descrip-
tion of the system. The term uncertainty coins the difference between the mathematical
model and the real physical system [77, 95]. Uncertainty arises within dynamic systems

due to a variety of reasons [74, 84].

e Historically, the presence of uncertainty was already recognized in the work of
Bode and Nyquist during the advance of telecommunication technology, requiring
the use of feedback control. It was realized that equalizers are necessary to com-
pensate for varying phase and attenuation characteristics of transmission lines,
e.g., due to unknown length of the line or varying characteristics attributed to

daily temperature changes [17].

e As a modern example from aircraft control, certain parameters are often only
known with limited accuracy, such as aerodynamic stability derivatives or air
data values. Modeling assumptions may inject further errors, and generally the

flow of signals and information to the autopilot may be imprecise [45].

Within this thesis, we consider mathematical approaches to systematically account

for uncertainty. Such efforts may be distinguished by the representation or class of
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uncertainties considered. Within the classical worst-case paradigm, deterministic set-
bounded uncertainty is considered. Another viewpoint is a probabilistic interpretation
of the uncertainty. Regardless, throughout various fields of the scientific literature, un-
certainty is typically divided into different types. For instance, the mathematical field of
uncertainty quantification considers the two classes aleatoric and epistemic uncertainty,
see [77]. The Latin word alea, meaning a die, refers to inherently random phenomena,
random in the sense of rolling a dice. The Greek meaning for knowledge, Emwtornun,
indicates uncertainty attributed to the absence of knowledge. Epistemic uncertainty
may be divided further into parametric and non-parametric (model form) uncertainty,

as is common within robust control theory.

History of Robust Control

Robust control designates the mathematical effort of explicitly considering uncertainty
within controller design. This includes dedicated analysis methods. It should be men-
tioned that it is not necessarily required to use robust control in order to obtain a
robust controller. This was one of the insights of the robust flight control challenge [45].
However, especially in aerospace applications, where uncertainties may be large and
the consequences of failure catastrophic, acknowledging the presence of uncertainty is
inevitable. To that end, robust control may be viewed as a systematic approach to
explicitly account for uncertainty present in the system dynamics.

Reviews of the historical developments and milestones generally distinguish two
paradigms: stochastic linear quadratic gaussian (LQG) and H, worst-case optimal
control [64, 56]. The stochastic viewpoint was superseded by the worst-case formalism.
Recently, there has been a shift in attention back to a probabilistic point of view [20, 10].

According to [33], around 1950-1960, the United States and the Soviet Union were
in a race to space and massively conducting research within guidance, navigation, and
control of space vehicles. Driven by the engineering applications of the time, LQG
control marked the first major success of optimal control theory. Essential characteristics
of the considered systems were linear dynamics disturbed by Gaussian white noise.
Since the nature of space vehicles is essentially ballistic, the LQG paradigm turned out
to be very effective. Sufficiently accurate mathematical models could be derived. The

theoretical achievements by Wiener, Hopf, and Kalman spurred the development of the
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well-known Kalman filter within the Apollo program, as well as the establishment of
state-space methods.

However, the enthusiasm regarding this era of optimal control was dented in the
1970s as engineers struggled to apply LQG control to further industrial problems. Ac-
cording to [64], LQG controllers surprisingly failed within military aircraft (F-8C Cru-
sader) and submarine (Trident) applications. It was shockingly realized that LQG
control lacked robustness guarantees [22]. The optimal control methods of that time
were sensitive to uncertainty. Roughly, robustness problems could arise due to the
mathematical objective function not properly reflecting the actual optimization prob-
lem intertwining uncertainty and feedback control [33, 74, 83]. Rohrs’ counterexample
showed that adaptive control also suffered from arbitrarily small robustness [61]. The
stage was set for the revolutionary starting point of robust control theory.

The driving motivation of the early 1980s was then to make optimal control theory
work in practice. In essence, robustness guarantees were developed for all considered
uncertainties, including the worst-case. A major milestone was the representation of
uncertainty within the Ho, paradigm introduced by Zames [94]. Subsequently, the
field of robust control flourished. The structured singular value p was introduced in
1982 [23, 63]. Matlab’s Robust Control Toolbox [65, 4] was published in 1988, enabling
students and engineers alike to apply robust and optimal control techniques within
various fields of engineering. Hence, the road was paved for successful applications
within aerospace (helicopter control [58], VSTOL [38] and aeroservoelastic [82] aircraft,
missiles [75]), robotics [66], wind turbines [54], and even economics [34]. The theory has
generalized to encompass linear parameter-varying [72], finite horizon time-varying [78§],

periodic [89], and also nonlinear (via integral quadratic constraints [48]) systems.

1.2 Motivation

Probabilistic Robustness Analysis

Following the modern robust control period, the stochastic paradigm has regained inter-
est over the last decades [62, 20, 5, 10]. The reasons for this development are manifold.
Firstly, accounting for the worst-case uncertainty may be overly conservative. Safe-

guarding against a worst-case that rarely or never occurs is not always the optimal
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approach [74, 79]. This brings us to our second point: essentially, classical worst-case
analysis neglects an entire “dimension” of the problem. Probabilistic information de-
scribing the distribution of the uncertainty within the considered uncertainty set is not
considered. Thirdly, specifications of system performance have matured. More often
than not, they are given in terms of reliability and associated acceptable risk probabil-
ities. In civil engineering for example, the probable expected lifetime of a building is of
interest for owners and insurance companies [47]. Also in the context of automatic land-
ing systems for aircraft, performance requirements are specified in terms of probability
levels [9].

As noted earlier, uncertainty may be studied from different points of view and clas-
sified by their mathematical representation. It is argued that the probabilistic view is
a more natural representation of uncertainty, closer to the real world problems encoun-
tered in practice. The idea is to blend model-based predictions with statistical methods,
enabling engineers to concentrate on interesting scenarios in a meaningful way, i.e., that
are relevant both physically and statistically [77]. This further allows the incorporation
of data into the analysis via Bayesian methods.

However, we do not argue with computational reasons here. Note that the intro-
duction of probabilities does not simplify the problem of robustness analysis. On the
contrary, it requires accurate evaluation of a potentially high-dimensional probability
integral. For this, computational efficiency is a challenge due to the well-known curse
of dimensionality. Rather, it is argued that the problem of robustness analysis is hard
regardless from which point of view (e.g., the computation of p is also NP-hard [16]).
Therefore, in an industrial context, probabilistic robustness analysis methods can only
complement existing methods for Verification and Validation (V&V). There is still value
in searching for the worst-case, e.g., via optimization, in order to gain another perspec-

tive on the problem.

Polynomial Chaos

It is safe to say that Monte Carlo sampling is the established approach within probabilis-
tic robustness analysis against uncertain system parameters. While generally simple to
implement, Monte Carlo estimators are known to converge rather slowly. This means

that the standard deviation of the approximation error decreases only asymptotically
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proportional to N=Y/2 N being the sample size. Theoretically, polynomial chaos ex-
pansions (PCEs) promise superior — exponential — convergence rates. This holds true
especially for smooth parameter-dependencies, a property of Fourier series known as
spectral convergence. Being founded on the theory of Fourier, PCEs also offer an in-
tuitive analogy in the sense of generalizing the well-known expansion for periodic time
signals of finite energy to random variables of bounded variance.

Recently, following the first applications within systems and control [37, 53], PCEs
have received a significant amount of attention within the probabilistic robust control
community, e.g., for stochastic linear quadratic regulation [29, 85], linear parameter
varying [8], or model predictive [55] control. Generally, the approach is also applicable
to nonlinear models and arbitrary non-Gaussian uncertainties [43]. See e.g. [41] for a

review of PCE applications within systems and control.

Finite Horizon Robustness

The current state of the art methods for V&V of complex dynamic systems are mostly
based on extensive simulation, e.g., within Monte Carlo analysis [91] or nonlinear worst-
case optimization [40]. A strength of these methods is their general applicability and
ease of use since they treat the system as a black-box. However, this comes at the price
of computational efficiency, i.e., the computation time may be very large especially
when evaluation of high-fidelity simulation models is costly or in case of rare events.
Unfortunately, there is no guarantee of actually finding the global worst-case.

This thesis advances a less time-consuming, complementary approach: analysis
methods based on linearization. For uncertain linear time-invariant (LTI) systems,
guaranteed stability and performance certificates can be computed efficiently with soft-
ware such as Matlab’s Robust Control Toolbox. These LTI analysis methods are based
on linearizing the nonlinear system around a steady-state operating point. However, a
large class of engineering applications involves the tracking of a predefined trajectory
as a primary incentive. Examples are aircraft [13, 39|, space launch vehicles [15], and
robotic manipulators [52]. Such systems are more accurately approximated by lineariz-
ing the nonlinear dynamics with respect to a reference trajectory defined over a finite
time horizon. This yields a finite horizon linear time-varying (LTV) system. Within

this thesis, probabilistic robustness analysis methods are developed for such systems.
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Regarding the difference between classical LTI approximations and nonlinear simula-
tions, the work can also be motivated by closing the gap between these two analysis

paradigms.

1.3 Research Highlights

This thesis develops theoretical and computational methods to analyze the robustness
of uncertain linear systems. After introducing the problem formulation underlying the
theory of classical robust control (Chapter 2) and polynomial chaos expansions (Chap-

ter 3), the contributions are of both theoretical and practical nature:

1. Computational Efficient Robustness Analysis of Uncertain LTV Sys-
tems in Linear Fractional Representation. One of the primary research
questions addressed within this thesis is what happens if we apply a polynomial
chaos expansion to a linear fractional transformation (LFT)? See also the picture
on the title page. This was the driving idea behind our first work [25]. The first
part of Chapter 4 shows that this leads to significant computational benefits when
analyzing the stochastic perturbations from a system’s reference trajectory due to

uncertain model parameters.

2. Equivalence of LFT Series Expansion and Gaussian Quadrature. The
second part of Chapter 4 is based on an observation made by the author: the
eigenvalues of LFT expanded uncertain linear system matrices are realizations
of the actual system. This observation can be generalized: it is proven in Sec-
tion 4.5.2 that the “stochastic modes” of an LFT expanded system are given by
certain realizations of the original system — the Gauss quadrature nodes. One
of the main theoretical takeaways is that application of a polynomial chaos se-
ries expansion to an uncertain linear system with rational parameter-dependence,
in linear fractional representation, is equivalent to numerical integration by an

approach known as Gaussian quadrature.

3. Polynomial Chaos Approximation of the Worst-Case Quadratic Perfor-
mance of Uncertain LTV Systems. Chapter 5 provides a practical approach

to the worst-case analysis of uncertain finite horizon LTV systems with respect to
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quadratic performance metrics. The idea is founded on approximately solving the
governing parametric Riccati differential equation by applying a polynomial chaos
series expansion. The effectiveness of the approach is illustrated by means of an
exemplary worst-case performance analysis of a space launcher during atmospheric

ascent.

4. Industrial-Grade Autoland Application Example. Finally, the probabilistic
robustness analysis methods proposed in this thesis are demonstrated on the ex-
ample of an industry-sized automatic landing system in Chapter 6. The analyzed
aircraft model represents an Airbus A330 during final approach and landing. Prob-
abilistic and worst-case perturbations around the nominal reference trajectory are
efficiently assessed with respect to uncertainty in the aerodynamic coefficients and

mass parameters, atmospheric turbulence, and static wind shear.

1.4 Related Work

In addition to the literature already reviewed throughout this chapter, we briefly point
to some existing approaches explicitly related to the contributions of this thesis in the
following. The most related work to the polynomial chaos series expansion of a LFT
system is [59]. Therein, a transformation is also applied to the linear system before em-
ploying a polynomial chaos series expansion. For the transformation proposed in [59],
Lyapunov equations need to be solved at the Gauss quadrature points in order to nu-
merically compute the expansion of the transformed linear system. Both [59] and our
approach preserve stability of the uncertain linear system. Other related approaches
explicitly consider the truncation error of the expansion, see for instance [50, 86]. Con-
vergence guarantees of the expansion applied to Lipschitz differential equations are
developed in [2, 3]. Dedicated approaches to overcome an accuracy degradation over
time of the series expansion in its original form have also been proposed [32].

There exists a plethora of alternative approaches to approximate the worst-case
quadratic performance of uncertain LTV systems. Several algorithms are rooted to
bounding the uncertainty within the framework of integral quadratic constraints (IQCs),
see for instance [12, 19, 71]. The method in [12] relies on nonlinear optimization whereas

[71] iterates between solving a Riccati differential equation and a gridded differential
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linear matrix inequality. The aforementioned approaches typically consider the uncer-
tainty as deterministic and yield an upper bound to the true worst-case performance,
which may encompass some conservatism.

Robustness analysis along predefined trajectories is required within various engineer-
ing applications, such as robotics [52], space launchers [15], missiles [19], or aircraft [39)].
The specific autolanding system considered in Chapter 6 is also analyzed in [14] via IQC

techniques.
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Chapter 2

Classical Robustness

This chapter lays the theoretical foundation for the robustness analysis problem consid-
ered throughout this thesis. A key aspect is that the analysis of uncertain linear systems
with respect to quadratic performance metrics boils down to solving a Riccati equation.
The linear fractional transformation is introduced as an important tool within robust

control theory.

2.1 Uncertain Dynamic Systems

2.1.1 Nonlinear Systems

The objective of this thesis is to analyze the effect of parametric uncertainty 4 on
dynamic systems. Throughout this chapter, we assume the dominant point of view in
robust control theory: § € D C R™ is an unknown parameter vector bounded within

a prescribed compact set D [74]. Consider the following uncertain nonlinear system:
(2.1)

It is common in engineering to represent physical systems by such nonlinear state-
space models. Therein, the initial condition z(0) = xp may or may not be uncertain,
i.e., additionally depend on §. z(t,d) € R™ is the state, u(t) € R™ the input, and

y(t,9) € R™ the output. The uncertain parameters d are assumed to be time-invariant.
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Note that Equation (2.1) may be interpreted as a set of systems, parametrized by §.
Assume the performance of the system (2.1) is measured by some metric. The main
challenge is then to check if the specifications hold for all § € D and find the worst-case
performance. For general nonlinear systems (2.1), this is a high-dimensional, non-
convex optimization problem. It is a hard problem to solve. Currently, there only exist
approximate solution techniques. For example, Monte Carlo simulation [91] or global
optimization [40] are often applied. However, for linear systems derived by linearization
of Equation (2.1) and specific, e.g., quadratic, performance metrics, the optimization
problem is convex, and to put it in the words of [18], “with only a bit of exaggeration,
[...] if you formulate a practical problem as a convex optimization problem, then you
have solved the original problem”. Uncertain but linear systems are the theme of the

remainder of this chapter, and a central theme throughout this thesis.

2.1.2 Linear Systems

Linear systems, in contrast to nonlinear systems, are well understood. Consider, for
example, one of the most fundamental aspects within the theory of differential equa-
tions: existence of a solution. A linear system is always bounded over a compact time
interval, whereas nonlinear systems may exhibit the phenomenon of finite escape time.
Justifiably, a control systems engineer will not want an implemented controller to grow
unbounded over a bounded time interval. Therefore, controllers are often developed
as linear systems. The following paragraphs introduce the classes of linear differential
equation systems considered in the scope of this thesis. Linear systems theory can be

found in any textbook on control, e.g., [33], [74], or [95].

Nominal LTT Systems

Consider a nominal, i.e., certain, linear time-invariant (LTI) system G

&= Ax + Bu
(2.2)
y = Cx + Du.

Here, A, B, C, and D are (bounded) real matrices, independent of time, and of appro-

priate dimension. Such linear state-space models are straightforward to obtain from a
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nominal nonlinear system [i.e., (2.1) for a specific value of § € D] by linearizing around
a stationary operating point!. Given an initial condition x(0) = xy and a specific input

u(t), the LTT system response is known to be

t
z(t) = ey + / A7) Bu(r) dr. (2.3)
0

k
Therein, the matrix exponential is et := Yoo (/Xl) . The output may then be ob-

tained simply by y(t) = Cxz(t) + Du(t). The system G is said to be stable, i.e., A is

asymptotically stable, if and only if all eigenvalues of A have a strictly negative real
part.
In the following, the state-space matrices A, B, C, and D are extended to depend

on time ¢ and/or on uncertain parameters 0.

Nominal LTV Systems

Let A(t), B(t), C(t), and D(t) be piecewise-continuous (bounded) functions mapping
from [0,7] to a real matrix of appropriate dimension. Such time-varying state-space
matrices are readily obtained by linearizing a nonlinear model around a reference tra-
jectory with a finite time horizon T' < co. This yields the definition of a nominal linear

time-varying (LTV) system G

(2.4)

Since LTI systems are just a special case of LTV systems, we overload the notation
for G. Throughout, the precise meaning will be clear from the context.
Uncertain LTT Systems

Consider the nominal time-invariant case (2.2). Extend the state-space matrices to

depend on uncertain parameters 9§, e.g., A : D — R"*"= We obtain an uncertain

! Actually, the variables z, u, and y in Equation (2.2) denote different quantities compared to the
variables in (2.1). Equation (2.2) represents deviations from the stationary operating point. It is
common within control systems engineering to proceed with the same notation for both deviation and
absolute variables.
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LTT system

(2.5)

Note that, while nominal LTI systems are readily derived by linearizing a nominal non-
linear system around a single operating point, for uncertain parameter-dependent sys-
tems (2.5), the operating point is generally parameter-dependent as well. This difficulty

is inherited by uncertain LTV systems introduced subsequently.

Uncertain LTV Systems

In Equation (2.4), additionally to the dependence on time, extend the functions A, B,
C, and D by an argument 0. This yields mappings from [0,7] x D to a real matrix of

appropriate dimension. We obtain an uncertain LTV system

(2.6)

All of the linear systems introduced above can be seen as special cases of the gen-
eral system (2.6). The following sections are concerned with measuring the worst-case
performance of such systems.

Section 2.2 considers nominal performance. Robust performance under parametric
uncertainty d is considered in Section 2.3. Assuming the system is time-varying on a
finite horizon or time-invariant on an infinite horizon does not significantly alter the
structure of the underlying optimal control problem [33]. Therefore, we start each
section with the finite horizon time-varying case. The LTI case then follows as a special

case.

2.2 Nominal Performance

There are many ways of characterizing the performance of linear dynamic systems. We
concentrate here on quadratic performance indices. Important instances of quadratic

performance are, e.g., Hoo constraints, strict passivity, and sector bounds [67]. It is
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well known that the worst-case performance of linear systems with quadratic cost func-
tionals can be posed as an optimal control problem involving the solution of a Riccati
equation [33]. Riccati equations are at the core of countless quintessential problems
within control systems engineering, e.g., yielding necessary analysis and synthesis con-
ditions [95], within applied mathematics as solutions to variational problems [1], and
beyond [34]. Note that also other equivalent performance analysis frameworks exist,
for example based on linear matrix inequalities (LMIs) which can be quite general and
flexible. However, LMIs are out of the scope of this thesis, and the reader is referred to

the literature for details ([68] is recommended).

Finite Horizon Case

Denote by L£3[0,7] the Hilbert space of all signals, e.g., f(t), with bounded norm

£l 2of0.m) = {fOT ) f(t) dt}l/2 < 00. Consider the quadratic cost J : £3]0, 7] — R

u(t)] [ST(t) R()

u(t)

T
W1[Q@ S(t)

x(t)] dt. 2.7)

The performance J is parametrized by piecewise-continuous (bounded) matrix functions
Q=QT:[0,T] = R%*ne G :[0,T] s R%*"u and R = RT : [0,T] s R™*™, If we
interpret u(t) as an external disturbance and y(¢) as a generic error signal, note that
worst-case quadratic performance analysis of nominal LTV systems with z(0) = 0 can

be formulated as the following optimization problem [71]:

max  J(u)
u€L2[0,T] (28)

subject to  Equation (2.4), z(0) =0, and [[ull 2,077 = 1.

As a specific instance of (2.8), consider the finite-horizon Ls-to-Euclidean gain of G
defined in [71] by

T
6 caom = sup { 1
b lullcao

u € L£o0,T]\ 0, z(0) = 0}. (2.9)
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Assuming D(T) = 0 for well-posedness, the finite-horizon Ls-to-Euclidean gain is

bounded by [|Glz,z,0,71 < 7, for some « > 0, if and only if
J(u) <0 Yu € £2]0,T]. (2.10)

Therein, J(u) is parametrized by Q(t) = 0 Vt € [0,T), Q(T) = CT(T)C(T), S(t) = 0,
and R(t) = —v2I,,. Other system gains can be defined similarly to (2.9), depending on
the chosen system norms, such as the finite-horizon induced Lo-gain?. See [33, 71] for
further information and [69] for a generalization to non-zero initial conditions.

The optimal control problem (2.8) is inherently related to the considered worst-case
gain due to Equation (2.10). The following theorem states an equivalence between
bounded quadratic performance and existence of the solution to a Riccati differential
equation (RDE).

Theorem 2.1 (LTV Bounded Real Lemma [71]). Let the quadratic cost (2.7) be spec-
ified by given Q(t), S(t), and R(t); with R(t) < 0 ¥Vt € [0,T]. Then the following

statements are equivalent:
1. 3e > 0 such that J(u) < —6Hu||%2[0 7 Jor all u € L2[0,T] and x(0) = 0.
2. The solution X (t) of the Riccati differential equation

— X=AT) X+ X A()+Q(t)— [X B(t)+S(t)| R (t) [XBt)+5(1)] "
X(T) = Q(T)

(2.11)

exists on [0,T7].

This theorem characterizes quadratic performance of a nominal LTV system (2.4) in a
manner that gives a necessary condition for the quadratic performance function J to
be strictly negative for all square-integrable trajectories of the system. Note that for
T — oo and time-invariant coefficients, if X (¢) exists it converges towards the steady-
state solution of the RDE, which is the stabilizing solution of the associated algebraic
Riccati equation, see [1] or [33]. The time-invariant infinite horizon case is addressed in

the following section.

2For stable LTT systems on an infinite horizon, the induced £2-gain is equivalent to the Hoo-norm.
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Infinite Horizon Case

In this section, we briefly state quadratic performance analysis conditions for nominal
LTI systems over an infinite time horizon. The presented results are well-known within
the robust control literature and can be found in, e.g., [33] or [95].

Abbreviate £3]0,00) simply by L. Consider the quadratic cost J : Lo — R

parametrized by time-invariant matrices Q@ = Q7 € R X" § ¢ R™X"u  and
(t)

R = RT € Rrwxnu, .
Y A B0
Iu) = /0 [u(t)] u(t)

The following theorem gives analysis conditions for bounded quadratic performance of

Q S

dt. (2.12)
ST R

nominal LTT systems (2.2) over an infinite time horizon with z(0) = 0.

Theorem 2.2 (LTI Bounded Real Lemma). Let the quadratic cost (2.12) be given,
including Q, S, and R < 0. Assume that A is asymptotically stable. The following

statements are equivalent:
1. 3e > 0 such that J(u) < —ellul|Z, for all u € Ly and z(0) = 0.

2. There exists a positive semi-definite solution X »= 0 to the algebraic Riccati equa-
tion
0=ATX + XA+Q— (XB+S) R} (XB+9)T (2.13)

such that A — BR™Y(BTX + ST is asymptotically stable.

3. The Hamiltonian matriz

A— BR1sT —BR BT
H = (2.14)
—(Q - SR'ST) —(A—-BR'ST)T

has no eigenvalue on the imaginary axis.

Associated with every algebraic Riccati equation (ARE) is a Hamiltonian matrix, see
e.g. [95]. The Hamiltonian is a system matrix for the Hamiltonian dynamics associated
with the underlying linear-quadratic optimal control problem [cf. Equation (2.8)]. Note
that checking if the stabilizing solution to the ARE (2.13) exists constitutes merely

one view of the LTI quadratic performance analysis problem. The analysis condition
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involving the Hamiltonian is displayed in Theorem 2.2 for later reference. In practice, the
spectrum of the Hamiltonian is often analyzed and at the core of many algorithms [95].

A prominent example of quadratic performance characterized by Theorem 2.2 is the
Hoo-norm. Set Q = CTC, S = CTD, and R = DD — ~4?I < 0 for some v > 0. The
Hoo performance of nominal LTI systems (2.2) can then be bounded by |G|l < 7 if

and only if a corresponding item of Theorem 2.2 holds.

2.3 Robust Performance

It is straightforward to generalize the nominal performance analysis conditions intro-
duced in Section 2.2 to robust performance under parametric uncertainty § € D. All
involved functions are simply extended by an additional argument §, similar to the
step from nominal LTV systems to uncertain LTV systems in Section 2.1.2. The
quadratic performance analysis conditions are generalized analogously: in essence, exis-
tence of a parameter-dependent solution to the considered Riccati equation is required
for all 6 € D.

Finite Horizon Case

First, consider the finite horizon time-varying case. The quadratic cost (2.7) is general-
ized to yield the generic mapping J : £2[0,7] x D — R

7 at,8)] [Q(t,6)  S(t6

Jwd) = @ 8)Qrspar oy [0 GOS0

0 | u(t) ST(t,0) R(t,0)

[x(t’ 5)] dt. (2.15)

u(t)

Herein, @, S, and R are extended by an additional argument § to map from [0,7] x D
to a real matrix of appropriate dimension, e.g., @ = QT : [0, 7] x D ++ R™*"=_ In the
interest of better readability, define the RDE coefficient matrix E(t,6) by

Q- SR1ST AT — SR1BT
A—-BR'ST —BR!BT

(2.16)

Therein, all involved matrix functions have the same arguments in general. This allows

to factorize RDEs of the form (2.11) as in the following robust version of Theorem 2.1.
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Theorem 2.3 (LTV Robust Bounded Real Lemma). Let the generic quadratic
cost (2.15) be specified by Q(t,0), S(t,0), and R(t,0); with R(t,0) < 0 for
all (t,0) € [0,T] x D. Then the following statements are equivalent:

1. 3e > 0 such that J(u,d) < _ﬁHUH%Q[o,T} for allu € L£5[0,T], § € D, and z(0) = 0.

2. The solution X(t,d) of the parameter-dependent Riccati differential equation

_X(1,0) = E(t, )
X(t,5) X(t,5) (2.17)

exists for all (t,0) € [0,T] x D.

We omit the proof since it merely extends the proof of Theorem 2.1 conducted in [71]
to hold for all § € D. In short, Theorem 2.3 characterizes the quadratic performance
of uncertain LTV systems (2.6). It is highlighted that nominal quadratic performance
according to Theorem 2.1 is straightforward to check by numerical integration of the
RDE (2.11). However, certifying robust quadratic performance is computationally more
challenging, since existence of the solution X (¢, ) needs to be checked for all values of ¢.

The situation is similar in the infinite horizon case.

Infinite Horizon Case

For completeness, we briefly present the infinite horizon time-invariant case below. Sim-
ilar to the previous section, the quadratic cost (2.12) is extended to the generic mapping
J : L9 x D — R with time-invariant matrices Q(0), S(6), and R(4). The parameter-

dependent Hamiltonian matrix H(J) is given by

H H
"o u | Hiz |
Ha1 | Hoo

A— BR67T \ _BR BT
—~(@Q~SR'ST) | ~(A— BR™'ST)T

(2.18)

where the dependency on ¢§ is omitted for brevity. This allows to write AREs of
form (2.13) in their factorized version, as within the following robust analog of The-

orem 2.2.
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Theorem 2.4 (LTI Robust Bounded Real Lemma). Let A(6) be asymptotically stable
and the generic quadratic cost J(u,d) be given, including Q(9), S(6), and R(5) < 0, for

all 0 € D. The following statements are equivalent:
1. 3e > 0 such that J(u,8) < —ellul|Z, for allu € Ly, § € D, and x(0) = 0.
2. For all 6 € D, there exists an X () = 0 satisfying the parameter-dependent alge-

T
= [X(é)] H(5) [I’“‘ ] (2.19)

_Inx

braic Riccati equation

such that H11(9) + H12(8) X (8) is asymptotically stable.

3. The Hamiltonian matriz (2.18) has no eigenvalue on the imaginary axis for
all € D.

As noted in the previous section, certifying robust quadratic performance is a hard
problem. Existence of the solution to a parameter-dependent Riccati equation needs to
be checked for all § € D. Therefore, practical approaches focus on approximations, i.e.,
lower and upper bounds of the worst-case robust performance.

A large body of results within robust control exists after “pulling out the uncer-

tainty” by applying a linear fractional transformation:

e In the infinite horizon case, if performance is measured by the H..-norm, this then

boils down to a structured singular value computation, see e.g. [95].

e In the finite horizon case, analysis conditions involving the solution of an ex-
tended RDE can be derived by bounding the uncertainty with integral quadratic

constraints, see e.g. [71] or [11].
The linear fractional transformation will also prove to be instrumental within Chapter 4
of this thesis. It is defined in the following.
2.4 Linear Fractional Transformation

This section introduces an important matrix function: the linear fractional transfor-

mation (LFT). Several relevant control problems can be expressed in the language of
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LFTs and a variety of optimization problems are solved using the LFT framework, see
for example [33].

To set the scene, consider for instance the uncertain LTV system (2.6). If the state-

space matrices A, B, C, and D depend rationally on 4, it is known that the general

system (2.6) can always be written in linear fractional representation® (LFR)
(2.20)

where A depends linearly on §. The underlying transformation is defined more formally
below. The presented material is based mainly on Chapter 10 in [95], to which the

reader is referred for a more detailed exposition.

Definition 2.1. Let M be a partitioned matriz

v [ My | Mo c Ra+ny)x(natnu) (2.21)

Moy | Mas

Then the upper LET with respect to A € R"™*"A 4s defined as the matriz function
Fu(M, ) : Rraxna o Ry XMu

fu(M, A) = Moy + leA(I — MllA)_lMlz, (2.22)

provided (I — M11A) is invertible.
For parametric uncertainty, as considered throughout this thesis, note that A is always

a diagonal matrix depending affinely on

811m, 0
A(6) = . (2.23)
0 8y L,

Therein, each §; is possibly repeated with multiplicity m;, where na = 1%, m; denotes

3Tt is common to abbreviate the LFT representation of an uncertain model by the short term LFR.
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A Y «— —— u
N
v w
v w
Y «— M lfe—— u A
Figure 2.1: Upper LFT Figure 2.2: Lower LF'T

the order of the LE'T. The upper LFT is depicted in Figure 2.1. Evidently, it represents

vl |Mu Mo
Yy Moy Mo
It is straightforward to verify that 7, (M, A) is the transformation (2.22) obtained after
closing the upper A-loop in Figure 2.1, i.e., y = F, (M, A)u. The lower LFT is defined

the set of equations

u

[w] , w = Av. (2.24)

in a similar fashion according to Figure 2.2.

Definition 2.2. Denote by

€ Rmw+na)x(nutna) (2.25)

N N
N— 11 | Ni2
Noq | Noo

a suitably partitioned matriz. The lower LFT with respect to A is the mapping
Fi(N,A) := Nij + NigA(I — NoygA) "INy, (2.26)

provided the inverse (I — NogA)™! exists.

The equations governing the lower LF'T are

N1 NV
Yot et = A (2.27)
v No1 Noo| |w
It is again easy to verify that closing the lower A-loop, see Figure 2.2, yields
y=Fi(N,A)u.
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It is insightful to interpret an LFT, e.g., F;(IV, A), as a nominal part Ni; (obtained
by setting A = 0) and a perturbation term. The matrices N2, No1, and Nag shape
the perturbation, i.e., how A affects the nominal mapping Nyi; [95]. Intuitively, if N
is considered as a proper transfer function matrix, a LFT represents the closed-loop
transfer matrix from w to y, see Figure 2.2. Therein, N symbolizes the plant and A the
model uncertainty or controller.
Finally, note that constructing LFTs of minimal order is known to be a problem,
see for instance [35] or [57]. However, practical toolboxes are available, such as [36] or
Matlab’s Robust Control Toolbox.



The mark of a mature, psychologically
healthy mind is indeed the ability to
live with uncertainty and ambiguity,

but only as much as there really is.

JULIAN BAGGINI

Chapter 3

Polynomial Chaos Theory

3.1 Uncertainty Quantification

Consider again the uncertain nonlinear system (2.1) with parameter vector ¢ introduced
in the beginning of Chapter 2. In the mathematical field of uncertainty quantification,
the parameters are assumed to be distributed with respect to some known probability
density function (pdf). This may result, for instance, from the application of a system
identification method or from the incorporation of observed data via Bayesian meth-
ods. Thus, the entries of the parameter vector §; in Chapter 2 are now replaced by
independent random variables for ¢ = 1,...,ns5. This renders § a real random vector.
Uncertainty quantification then views the system’s response surface as a stochastic pro-
cess: a mapping y : [0,00) x D such that for each point in time y(t, -) is a random vector.

This is illustrated in Figure 3.1, for the case of a scalar-valued § and a scalar output y.

pdf i)

|
f(z,u,d)
(x,u,d)

f

0 ult)

z
Y

I
Q

Figure 3.1: Uncertainty Quantification of a Stochastic Process

22
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Roughly, the chief question is as follows. Given an input probability distribution for

the random vector 9§, what is the distribution of the output y over time? This problem
is referred to as propagating the uncertainty (i.e., uncertainty propagation) see [77].

Conceptually one of the simplest approximate solutions to this problem is given

by the method of Monte Carlo (MC) [43]. Therein, the probability law and statistics

of y(t,-) are inferred from random samples of §. For example, the mathematical ex-

pectation E[y(t, -)] can be estimated with N independent identically distributed (i.i.d.)

samples 6 by
N

Bly(t, )] = 5 D (t00). (3.1

i=1
Simplicity is both strength and weakness of the MC approach. On the one hand, the
system (2.1) is treated as a black-box and solely needs to be evaluated for N realizations
of §. Thus, the original solver of the deterministic problem, for instance, a numerical
integrator based on a Runge-Kutta scheme, can be used as is and does not have to
be altered. On the other hand, the convergence rate of MC estimators can be rather
slow. Specifically, the estimator (3.1) has an estimation error with standard deviation

decreasing asymptotically proportional to N~1/2

. Several sampling strategies have been
proposed to partly increase the convergence rate, see [43] or [77].

Within this chapter, we introduce an approach promising superior, exponential,
convergence of the mean-square error: the polynomial chaos series expansion. This is a
generalized Fourier series for random variables of finite variance. It is mathematically
analogous to the Fourier series for periodic time signals of finite energy. The exponential
convergence rate of the mean-square approximation error is a central characteristic for
expansions of this type. This is known as spectral convergence. Instead of projecting on
a harmonic basis, the polynomial chaos expansion approximates functions within a suit-
able orthogonal polynomial basis of the random parameters. As such, “the canvas” [49]
of polynomial chaos is woven substantially out of orthogonal polynomial theory. There-
fore, the following section concentrates on building a fundamental understanding of
orthogonal polynomials. Subsequently, Section 3.3 formally introduces the polynomial
chaos series expansion. The remainder is dedicated to actually computing the expansion
coefficients in practice. Two classes of methods are distinguished: intrusive Galerkin

projection (Section 3.4) and non-intrusive approaches (Section 3.5).
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3.2 Orthogonal Polynomials

This section gives an introduction to orthogonal polynomials. The presented material

is based mainly on Chapter 8 in [77]. See also [31] for further information.

3.2.1 Preliminaries

Orthogonal polynomials are fundamentally anchored within practical algorithms for
numerical integration based on quadrature rules, see Section 3.5. They also form an im-
portant building block of function approximation theory. The most important use-case
of orthogonal polynomials in the scope of this thesis is that they provide an orthogo-
nal basis for the Hilbert function space consisting of all random variables with finite
variance. This is stated more clearly in the following.

In the interest of clarity, throughout Section 3.2, it is assumed ng = 1,i.e.,§ € D C R
is a scalar. We generalize to the multivariate case ns > 1 in Section 3.3.2. Here,
we consider 0 as a R-valued random variable with probability density p(d). Recall
that a random variable is nothing else than a measurable function with an associated
probability density function [43, 77]. Note that a generic mapping f(9) is also a random
variable whose probability density can be written in terms of p and f. We consider

throughout the Hilbert space of all square-integrable random variables f (i.e., mappings)

Lf) = {f :D—R ‘ f measurable and ||f||L127 < oo}. (3.2)

Therein, for any f,g € Lf) the inner product is defined by

)iz = [ £3)o(@)p(6) a5 = Bsal (3.3)

If (f, g)L% = 0 it is said that f is orthogonal to g. For f = g, the induced norm of f is
given by
1fllez = \/(fs ez (3.4)

We henceforth write (-, -) Lz = (-,-) for notational convenience. In order to highlight
the connection with orthogonality, the expectation is abbreviated by (-) = E[-] when

appropriate.
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For a € Ny, let 14 : D — R be a real polynomial

Ya(0) =14+ c10+ ...+ cod® (3.5)

with scalar coefficients ¢y, ...,cq € R (it is assumed ¢y = 1). The polynomial degree of

1o is . Now the stage is set for introducing orthogonal decompositions of Lf,.

Definition 3.1. Let p(d) be a probability density function on D. The set
{tha | « € No} C L (3.6)
is referred to as the orthogonal polynomials with respect to p(9) if

(ha, ) =0 <= a#B Va,B e Ny. (3.7)

If in addition, HwaHLg =1 for all « € Ny, the 1, are called the orthonormal polynomials

0 if
Warths) =g = 40 TP e gen, (3.8)
1 ifa=0

where dop denotes the Kronecker delta.

We will mostly consider sets of orthogonal polynomials that form a basis! of L?,.
Examples of such orthogonal polynomials are given below, taken from [77]. Throughout
this thesis, Greek letters (a, f3,...) are used to index within an orthogonal polynomial

basis.

Example 3.1. The Hermite polynomials He, are the orthogonal polynomials with re-

spect to the standard Gaussian distribution p(8) = (2r)~Y/2e75/2 on R:

(Hea, Heg) — / Hea(a)Heg(a)\/;e—ﬂ/? 45 = ld, . (3.9)
o T

The first few Hermite polynomials are displayed in Figure 3.2.

1A set of orthogonal polynomials forms a complete orthogonal basis of Lf, under mild additional
assumptions [24], e.g., that D is a compact set.
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Example 3.2. The Legendre polynomials Le, are the orthogonal polynomials with re-
spect to the uniform distribution on [—1,1]:
! 2

(Lea, Leg) = /_lLea((S)Leﬁ(é) =52

Sus- (3.10)

The Legendre polynomials are displayed in Figure 3.3.
30 x ‘
20 |
10

N\ ]

Figure 3.2: Hermite Polynomials

Figure 3.3: Legendre Polynomials

The respective orthogonal polynomials can be constructed for arbitrary continuous
distributions of 4, see [24]. In practice, a numerically stable way of constructing them is,
for instance, via their three-term recurrence relations. This vital property is introduced

in the subsequent section.

3.2.2 Recurrence Relations

An important property of orthogonal polynomials also within numerical algorithms is

that they can be constructed recursively?:

Ya+1(6) = (0 — aa)¥a(d) — batha—1(5)
Yo(6) =1

Y-1(9)

2Strictly speaking, the recursion (3.11) holds for the monic orthogonal polynomials 1. Monic poly-

nomials are polynomials (3.5) with ¢, = 1. The generalization to any system of orthogonal polynomials
is minor and not relevant for the purposes of this thesis.

(3.11)

0
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where a, and b, are real scalar coefficients, see [77]. For example, the Hermite and

Legendre polynomials are given by the recurrence relations

Heo+1(0) = dHey (6) — aHeq—1(9),

2a + 1 a (3.12)
] dLeq(0) — aiLea_lw).

Lea+1(5> =

Given the recursion coefficients of orthogonal polynomials, their roots, i.e., é such that
Ya(6) = 0, can be readily computed. This is particularly important for numerical

integration by Gaussian quadrature, see Section 3.5.

3.2.3 Roots

In this section, it is shown that the roots of orthogonal polynomials are the distinct
eigenvalues of a certain matrix. This will play an important role within the proof of our
main theoretical results in Chapter 4, Section 4.5.

Consider the vector

U (8) = [¢o(6), ¥1(6),...,r-1(0)]" € R (3.13)

concatenating vertically the polynomial basis functions 1, up until « = L — 1. Then

the first L recurrence relations (3.11) can be stated in matrix-vector form
§U(8) = Tr¥(8) + ¢ (9)[0, ...,0,1]" (3.14)

where J7, is the tridiagonal Jacobi matrix

ag 1
b1 aq 1
Jr, = by . e . (3.15)

br—1 ar—1]|
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Equation (3.14) implies that the roots of the orthogonal polynomial ¢,(0) are the eigen-
values of Jr, with corresponding eigenvectors W(¢). It is known further that the eigen-
values of 77, are all real and distinct, i.e., the roots of ¢ 1,(0) are simple, see the following

result.

Lemma 3.1. For every a € Ny, the orthogonal polynomial 1 (5) has precisely o distinct
real roots 6V, ..., 6(®) € D.

Proof. The proof can be found, e.g., in [31] or [77]. For a = 0, by convention 1y = 1,
see Equation (3.5). For o > 1, note that

(Ya) = Eftha] = /D b(6)p(6) d5 = 0 (3.16)

since (Yo, 1) = (Yo, %0) = 0 due to orthogonality of the basis (3.7). Therefore, 1),
changes sign at least once in D and has at least one real root 6(1) € D. For @ > 1, we
show in the following by contradiction that there must exist another distinct
root 63 € D of 1,. Assume 1, has only k = 1 < « root. Since {¥s | B € No}
forms a basis for Lz, the degree k polynomial Hle(é — 5(i)) can be represented exactly
by the basis polynomials 13, 8 =0, ..., k:

k k

[16=6D) =" cavu(s) (3.17)

i=1 B=0

with scalar coefficients cg € R. Therefore, due to orthogonality

k k k
(o, [J(6 = 09)) = (e, > catis) = > ea(ta, ) = 0. (3.18)
i=1 B=0 B=0

This is a contradiction since the integrand of
k k

(e, ] J(6 = 6)) / Ya(8) TJ(6 = 6%)p(8)ds (3.19)
=1

=1

has a constant sign if 1, vanishes only at (1) for k£ = 1. This procedure can be repeated

for k =2,...,a — 1 to show that 1, has « distinct real roots in D. O
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3.2.4 Function Approximation

As mentioned in Section 3.1, polynomial chaos series expansions promise superior con-
vergence compared to Monte Carlo based methods. Essentially, this is attributed to
applying orthogonal polynomials for function approximation, which is the theme of the

present section. To set the stage, consider the following well-known result.

Theorem 3.1 (Weierstrass [77, 87]). Let D C R be a compact set, f : D — R a

continuous function, and € > 0. Then there exists a polynomial g such that
sup |£(8) — g(0)] < e (3.20)
6eD

The Weierstrass approximation theorem states that for a given uniform error bound e,
there exists a suitable polynomial approximating the function f. Therein, f is solely
required to be continuous and have a compact domain. However the, degree of the
polynomial may be high and the rate of convergence is not quantified. If, in addition,
information on the smoothness of f is given and the approximation error is measured in
mean-square with respect to the Lf,—norm7 there exists a stronger result. This is widely
known as spectral convergence. In order to elaborate, we first need to introduce the
orthogonal projection within the Hilbert space Lg as follows.

For a € Ny, let 9, be the orthogonal polynomials with respect to a pdf p(d). Denote
by P4 the space of all real polynomials of maximum degree d € Ny. Then the orthogonal

projection of any f € Lg onto Py is defined by

(fs%a)
3.21
Z (Tal?, (3.21)

In fact, it can be shown that Il f is the optimal approximation of f yielding the minimal

mean-square error
[I;f = in | f — , 3.22
d arg ;IGHEIZH g”Lg ( )

see [77]. As a consequence of the orthogonal projection (3.21), the approximation error

is of course orthogonal to the projection subspace

(f =Taf,h) =0 Vh € Py (3.23)
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It is highlighted that function approximation as above is completely analogous to the
orthogonal projection of a point in the Euclidean space R3 onto a two-dimensional
subspace, i.e., a plane.

Spectral convergence is referred to as the property that the quality of function ap-
proximation by orthogonal polynomials improves exponentially as the regularity (i.e.,
smoothness) of f increases [77]. This is at the core of the convergence behavior of or-
thogonal series expansions such as the original Fourier series. Note that Equation (3.21)
already has the character of such a series expansion. In order to define the notion of
spectral convergence in the next theorem, there is one tool remaining to be introduced
for characterizing the smoothness of f: Sobolev spaces. Extending the definition of LIQ,,

the Sobolev space is the function space

of )
. . . . k 3jf 6jg .
equipped with inner product (f,g) HE = > i=0lgsT> 557) rz and induced norm

(Kl HE = D gk~ Thus the Sobolev space comprises all functions in L2 that are
differentiable up to order k, where the respective (weak) derivatives are also in LZZ). We
are now able to state the spectral convergence property of function approximation by
Legendre polynomials. For simplicity, we limit the exposition to the orthogonal poly-
nomials with respect to the uniform distribution. The result can be generalized to the
multivariate case ng > 1 and to the family of all classical orthogonal polynomials with

respect to the beta, gamma, and Gaussian distribution, see [2] or [77].

Theorem 3.2 (Spectral convergence of Legendre polynomial expansions [77]). For all

fe H],f, there exists a constant Cr > 0 such that

(fs ¥a)
(¥2)

Va

d
TERVIPE TEDY < Cod ™| |1 - (3.25)
a=0

L3

Thus, the smoother the function f, the better the convergence rate of the orthogonal
expansion Il;f in mean square. However, discontinuities and poor regularity may result
in convergence issues. A classic example is Gibbs’ Phenomenon [77]. Luckily, the solu-

tions of the classes of (linear and Riccati) differential equations considered in the scope
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of this thesis exhibit certain smoothness and monotonicity properties with respect to the
initial data and coefficients. This provides optimism for applying orthogonal polynomial
expansions throughout this thesis. Employing orthogonal polynomials for uncertainty
quantification of stochastic processes is known as polynomial chaos expansion. The idea

is formally introduced in the following section.

3.3 Polynomial Chaos Series Expansion

This section introduces a Fourier series for random variables. The presented material

is mainly based on Chapter 11 in [77]. See also [43] for further details.

3.3.1 Wiener Polynomial Chaos

It was originally the observation of Norbert Wiener® [90] that any static, i.e., time-

invariant, random variable f € L]% can be developed as a generalized Fourier series

f(é) = Z foz¢a(5)' (3.26)
a=0

Therein, the f, are deterministic expansion coefficients and v, are the orthogonal poly-
nomials with respect to the probability density function of §. It is still assumed ng = 1.
The f, are often referred to as stochastic modes of f and are determined by standard
Hilbert space orthogonal projection, see Equation (3.21)

_ (fiva) _ JpF(0)¥a(0)p(d)ds

Jo = i) = [y B20p(0)d5 (8.27)

In practice, the infinite sum (3.26) needs to be truncated. This means that f is

approximated by a finite series expansion

d
F8) = fatba(0) (3.28)
a=0

3To be precise, Wiener considered only normal distributed random variables §. This corresponds
to orthogonally decomposing Lf, by the Hermite polynomials. The expansion series was generalized to
orthogonal polynomials of the Askey scheme in [92].
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with maximum polynomial degree d < co. As a consequence of the orthogonal projec-

tion, the truncation error is known to be orthogonal to the subspace span{yg, 11, ..., ¥4}
of LIQ,

d
(f =D fatbar ¥3) = fatba, ¥8) =D falthasthg) =0 VB =0,...d. (3.29)

a=0 a>d a>d

Apart from orthogonality (3.29), the approximation error is known to converge to zero

in the mean-square sense, i.e.,

d

Jim £ - ;)fQ%HL% = 0. (3.30)

This was first established by Cameron and Martin [21]. In addition, according to the
spectral convergence theorem (Theorem 3.2) the truncation error is even known to
converge exponentially in the Lg-norm. The convergence rate accelerates with increasing
smoothness, i.e., stochastic regularity, of f. See also the comments after Theorem 3.2.
Another appealing property of polynomial chaos expansions (PCEs) is that the
moments can be extracted directly in terms of the expansion coefficients. For instance,

the expectation is given simply by the zeroth expansion coefficient

d d d
Ef] #E[ Y fatha] = O fata,t0) = Y _ falta,v0) = fo. (3.31)
a=0 a=0 a=0

Similarly, the variance is given by a weighted sum of the squared expansion coefficients

d d d
VI =E[(f —EfDY ~E[(Y_ fatba — f0)°] = Y. fafslWa,vs) = D f2(02).
a=0 a,f=1 a=1
(3.32)

3.3.2 Generalized Polynomial Chaos

We now generalize to the multivariate case ns > 1. Assume § is a R™-valued random
vector. Thus, the components §; are ¢ = 1,...,ns independent random variables. The

joint probability density function of ¢ is p(d) = [[:%; pi(d;). Then the corresponding
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multivariate orthogonal polynomials can be obtained simply by taking products of the
individual univariate orthogonal polynomials. In order to elaborate, for ¢ = 1,...,ns and
a; € Ng, denote by 14, (0;) the univariate orthogonal basis polynomials with respect to

pi(0;). The associated multivariate orthogonal basis polynomials are then given by
ns
ba(0) = [[¥ai(6), i €Ng i=1,..,ns. (3.33)
i=1

Therein, o = a1 X ... X oy, denotes a ng-dimensional multi-index o € Ng‘s. This multi-
index notation is standard within the literature, see e.g. [3].

Realistic applications require an approximation within a finite-dimensional polyno-
mial basis. For instance, the space of polynomials with maximum total polynomial

degree less than or equal to d is represented by

ns ns
span{va(0) = [[ vl | lol=3 <a}. (3.31)

i=1 =1
This truncation scheme is referred to as total polynomial degree truncation. A finite
series expansion as in (3.28) with respect to a multivariate orthogonal polynomial basis
is referred to as a generalized polynomial chaos expansion. Selecting a truncation scheme

with maximum total polynomial degree d, it can be verified that the generalized PCE

F8)~ Y fatbald) (3.35)

o] <d
has a number of expansion coefficients given by

(n5 + d)‘

see [77]. Thus the number of expansion terms increases combinatorially with ns and d.

Note that several other truncation schemes are used in practice, see e.g. [46]. For
instance, for i = 1,...,ng, the polynomial basis can also be truncated such that it has
an equal maximum polynomial degree d in each uncertain parameter ;. This implies
L = (d+ 1)™ terms. The polynomial degree may also be refined individually within

certain components §; of the vector 9.
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Expansions of Stochastic Processes

Apart from using the standard multi-index notation, the properties of generalized PCEs
remain essentially the same as in the univariate case considered in the previous section.
We state these properties here for a stochastic process y(¢,0) as introduced in the

beginning of this chapter (Section 3.1). For such a random mapping

= 3 pat)a(6) (3.37)

a>0

the expansion coefficients are still given by the projection relation

Yo = <y(t7'>v'¢a> _ ny t 5 wa< )p(é) do
T (e ta) Jp 02(8)p(6) do

(3.38)

For a finite expansion truncated by a maximum total polynomial degree d, the mean

field is approximated by

Ely(t

> ya<t>wa(6)] = yo(t). (3.39)

el <d

Similarly, the covariance can be extracted by

C(t,t)

E[(u(t.) ~ Bly(t.)]) (u(¢'.) ~ Ely('. ) |

T
~E (|§<_:dya(t)% ><5Z|<:dyﬂ J¥s — yo(t )) ] (3.40)
= Z Yo () ( ¢aa¢ﬁ Zya ya ¢a>‘

«a,B>0, a>0,
o], |BI<d o <d

The variance can be deduced from Equation (3.40) as

T
Viy(t, )] = B[ (y(t, )~ Ely(t,)]) (st ) ~Ely(t,)]) | = D val®ua(®)T (@2). (3.41)
o<
Besides the projection relations (3.27), (3.38), we have not yet indicated how to

actually compute the series expansion in practice. Specifically for the case of stochastic
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processes y(t,d) considered within this monograph (see Section 3.1), the only question
remaining is how to compute the expansion coefficients of the solution. This is the
theme of the following two sections.

Two approaches are generally distinguished: intrusive (Section 3.4) and non-intrusive
(Section 3.5) methods. Non-intrusive methods consider the model (2.1) as a black-box
and approximate the projection integrals numerically using realizations of d. For exam-
ple, deterministic Gaussian quadrature, Monte Carlo (MC) sampling, or quasi-MC sam-
pling may be applied. Intrusive methods, on the other hand, build a generally coupled
system of equations of increased dimension for the expansion coefficients. In particular,
the Galerkin approach introduced in the following section projects the original model
equations on the considered orthogonal polynomial basis. Intrusive methods preserve
the formal mathematical structure of the considered random mapping [e.g. f(d) or (2.1)].
This means that, for instance, the series expansion of a random parameter-dependent
Riccati differential equation (RDE) remains a RDE, albeit generally a coupled system
of RDEs.

3.4 Galerkin Projection

We start this section with an introductory example. The general method is outlined in
Section 3.4.2.

3.4.1 Introductory Example

Consider the following uncertain linear time-invariant system
x(t,0) = A(d)x(t, ) (3.42)

with A : D+ R™*"_ Applying Galerkin projection based PCE to (3.42) and ordinary

differential equations in general consists of the following steps:

1. Insert the series expansion for the input uncertainty ¢ and the model output, i.e.,
x(t,9) in (3.42).

2. Multiply the model equation by each .
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3. Compute the projection integral (-, 1,).

4. Solve the Galerkin projected system of equations for the expansion coefficients.

Here v, are the orthogonal polynomials with respect to the pdf of §. A key point when
applying PCEs for uncertainty quantification is that the model output is projected on

the same polynomial basis as the input uncertainty d, i.e., in case of the system (3.42)

x(t) 5) = Z xa(t)¢a(5)' (343)

a>0

Therein, the coefficients z, : [0,00) + R"* are defined by the standard projection

relation, evaluated component-wise

1
(¥32)

Inserting (3.43) into (3.42) and projecting onto each v, yields

<¢a7 > iﬂ(t)¢5> = <1/)m > Amﬂ(t)¢ﬂ>
B=0 B8>0

Tia(t) = (xi(t, ), 1) fori=1,..,5n,. (3.44)

Ea(t)(W2) =D (Padihg)zp(t) (3.45)
5>0
oy L "
Ea(t) = W g}(%ﬁlwm 5(t).

Also here the projection integrals are evaluated component-wise. Thus, the expansion
coefficients z, () are governed by a deterministic, coupled system (3.45) of linear differ-
ential equations. Of course, practical applications demand a finite series expansion. For
instance, if the PCE is truncated at a maximum total polynomial degree d, the sums
in (3.45) have L = % terms, see Equation (3.36). The coupled system (3.45) can

then be written in matrix-vector form
X(t) = AX(t) (3.46)

where X : [0,00) — R"L concatenates vertically the expansion coefficients x,(t).
A e ROLx(Ml) is 5 block matrix where the (a,S)th block is given by
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Aop = @@/}oﬂ‘wﬁf Herein, o, € Ny are used as scalar indices. Switching be-
tween multi-index notation o € Nj° and scalar indices is straightforward by ordering
the polynomial basis, e.g., lexicographically, see [77]. In any case, Greek letters («, 3, ...)
are used to index within the polynomial basis, whereas Latin characters (7, j, ...) index
spatially into matrices and vectors, see for example Equation (3.44).

The exemplary projection of the system (3.42) unveils a recurring feature of Galerkin
projection: the governing system of equations for the stochastic modes (3.45) or (3.46)
has a similar mathematical structure as the original system (3.42). However, the expan-
sion coeflicients are generally coupled together by a system of enhanced dimension, i.e.,
increased by the factor L. This implies that in general, the existing numerical solver
for the original problem may need to be adapted to account for the coupled problem.
This is in contrast to the methods considered in the subsequent section. Non-intrusive
approaches calculate the stochastic modes by using realizations of the original system.
Thus, the existing numerical solver can be reused and the governing system equations

remain unaltered [77].

Example 3.3. The truncated polynomial chaos expansion with total degree d <5 for

0 1
A(6) = (3.47)
—1.8+51 —1.4+52

and uncertain initial condition x(0,6) = [0.75 + 83,0]T is plotted in Figure 3.4. All
ns = 3 parameters are distributed uniformly, i.e., 61 ~ U(0,1.6), o2 ~ U(0,1.2), and
d3 ~ U(0,0.5). Thus the respective orthogonal polynomials are the Legendre polyno-
mials. Mean and standard deviation of the PCE approximation are plotted for the first
coordinate x1(t,d) of the state vector. The approximation agrees well and converges

rapidly to the exact quantities obtained by high-order numerical integration (indicated

in red). The first few stochastic modes of the expansion are also plotted.

3.4.2 General Approach

Applying Galerkin projection to random ordinary differential equations with uncertain
initial conditions, coefficients, etc., is essentially analogous to the example given above,

see [43] for detailed applications. The general idea is given in [77] as follows. Denote the
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PCE mean E[z;(¢,-)]
PCE standard deviation /V[zy(¢,-)]
Exact mean E[z1(¢,-)]

Exact standard deviation /V[xi(t, )]
PCE stochastic modes

Figure 3.4: Galerkin Projection Example

model relationship between input uncertainty 6 and output solution y by some formal
equation
F(y;0) = 0. (3.48)

This may be an ordinary differential equation, i.e., the setting considered in Figure 3.1;
generally even a (set of) algebraic or partial differential equation(s). Instead of solving
the Equation (3.48) for all 6 € D — which may be computationally impossible in
practice — the Galerkin method, also known as Ritz-Galerkin approach, searches for

“weak” solutions, determined by inner products
(o, F(y;0)) =0 VYa=0,..,L—1. (3.49)

This weak interpretation is more appealing both in theory and practice than the original
hard problem (3.48). Generally, the softer requirement that (3.49) must hold within a
finite-dimensional subspace is at the core of countless numerical algorithms.

It is highlighted that the cornerstone within polynomial chaos theory lies in apply-
ing the same orthogonal polynomial basis for the expansion of the output solution as
for the input uncertainty. This is argued in [43] to be attributed to the fact that, for

instance, if the solution y is distributed normally, the Hermite polynomials constitute
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the optimal basis since any arbitrarily normal distributed y ~ N (u, 02) can be repre-
sented exactly by the standard normal distribution § ~ N(0,1): y = u + 00, i.e., a
first-order series expansion. This can be generalized to the assertion that the optimal
orthogonal polynomial basis is of course given by the probability law of the solution we
seek to quantify. However, apart perhaps from linear systems excited by Gaussian white
noise, this setting is actually seldom encountered in practice. In realistic applications,
especially in case of complex model-based predictions, one does not know a-priori the
distribution of the solution y. The hope is, since one knows the optimal polynomial
basis for the input uncertainty ¢, the same expansion basis will work well for the model
output y. The spectral convergence theorem (Theorem 3.2) makes this leap of faith

small for smooth problems.

3.5 Numerical integration

Galerkin projection is referred to as an intrusive approach since the governing sys-
tem equations are “intruded”, i.e., projected on a finite-dimensional basis, to form a
deterministic system of coupled equations for the expansion coefficients. In contrast,
“non-intrusive” methods rely on realizations to approximate the expansion coefficients
defined by the projection integrals (3.38). Therefore, the original simulation code or
numerical solver can be used as-is, i.e., it is treated as a black-box. All that is re-
quired is to be able to solve for the model output given a realization of §. In essence,
non-intrusive methods can be thought of as using realizations of § within a numerical
integration scheme.

Note that intrusive (Galerkin projection) and non-intrusive methods may also be
distinguished by the order in which the original formal problem solver and numerical
integration, i.e., evaluation of the projection integrals, are applied. In practice the
two approaches yield different approximations. For instance, Galerkin projection of
an uncertain differential equation is generally not equivalent to solving for all § and

projecting afterwards (see Section 4.5.5).
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3.5.1 Gaussian Quadrature

One possibility from the field of numerical integration is to apply a deterministic quadra-
ture rule in order to approximate the projection integrals (3.38). Quadrature means

numerical approximation of an integral by a finite sum, i.e.,
N .
Bl = [ FOme)as~ 3 uif ), (350)
i=1

A quadrature rule determines its nodes (9 € D and scalar weights w; € Rfori =1,..., N
solely based on the probability density p(d) and independent of the integrand f(d),
see [77].

For instance, the method of Gaussian quadrature approximates the expansion coef-
ficients (3.38) by

N
Yol (W2) = (Yt ), o) = 3 wi (k6O i (60)). (3.51)
=1

Therein, ) are prescribed realizations of § € D. These are given together with the
associated weights in the following definition, taken from [77].

Definition 3.2. Let)n, N € N, be the Nth orthogonal polynomial with respect to p(d).
The N-point Gauss quadrature rule is then determined by nodes (also known as Gauss

points) given by the roots of wn. The associated weights are

§— W
w; = / T 2= p)ds (3.52)
» Al 5050
J#i

The roots of orthogonal polynomials are investigated in Section 3.2.3. We highlight
here that the N-point Gauss quadrature rule exactly integrates polynomials of degree
2N — 1. For instance, the normalization constants (2) required by the projection rela-
tion (3.51) can be determined exactly by Gaussian quadrature of order N > (a+1)/2.
It is noted further that the N-point Gauss quadrature rule is optimal for polynomial
integrands in the sense that there exists no other quadrature formula with N nodes and

higher order of accuracy. The reader is referred to [77] for details.
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3.5.2 Monte Carlo Methods

In contrast to deterministic quadrature, where the nodes are fixed by the probability
density p(d), random sampling-based methods, i.e., Monte Carlo, and pseudo-random
methods, i.e., quasi-Monte Carlo, may also be employed. These methods randomly
generate samples distributed according to p(d) in order to numerically approximate the

projection integrals

N
Bal0)(02) = {y(t, ), ) z%Z 2(5D) (353

For instance, a classical Monte Carlo estimator of the expectation is obtained for o = 0

(since 9o = 1), i.e., the weights in Equation (3.50) are set to w; = 1/N.



There are no answers, only cross references.

NORBERT WIENER

Chapter 4

LFT Projection

This chapter presents a chief theoretical and practical contribution of this thesis. The
problem setting is illustrated in Figure 4.1 — what happens when we apply the poly-
nomial chaos series expansion introduced in Chapter 3 to an uncertain system in linear

fractional representation? The answer to this question is two-fold.

M

U ——> — Y

Figure 4.1: Generalized Fourier Series Expansion of a LFT

First of all, the Galerkin projection of LFTs (see Section 4.3) leads to significant
computational benefits compared to the conventional Galerkin approach (Section 4.2).
It is illustrated by means of an example in Section 4.4 that employing a LFT substan-
tially relieves the Galerkin projection of work.

Ultimately, applying LFT Galerkin projection leads to a “cross reference”. It is
shown in Section 4.5 that — ironically — intrusive Galerkin projection of uncertain
systems in linear fractional representation is equivalent to the non-intrusive approach:

simply applying Gaussian quadrature.

42
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4.1 Kronecker Product Notation

In order to clearly and concisely present the arguments throughout this chapter, we
briefly introduce the notation for Kronecker products in this section. Given two matrices
A € R™™ and B € RP*Y, the Kronecker product of A and B is

anB alnB
A@B=| : .. i | eR™M (4.1)

am1B ... amnB
Some of its main properties are
1. AR1l=A=1® A
2. (A9 B)®C=A® (B C)
3. (A+B)@C=(A®C)+(B® ()
4. (A® B)(C ® D) = (AC) ® (BD)
5. (A B '=A"1e B!,

Now let the two matrices A € R™*"™ and B € R™*™ be square. Denote by A;, v; the
i = 1,...,n eigenvalues and eigenvectors of A such that Av; = A\;v;. Similarly, let p; and
w; denote the j = 1,...,m eigenvalues and eigenvectors of B (i.e., Bw; = pjw;). Then

the following property adds to our list.

6. The eigenvalues of A® B are the nm numbers \;u; fori =1,...,nand j =1,...,m.

The corresponding eigenvectors are v; ® w;.

4.2 Galerkin Projection based PCE of Linear Systems

Within this section, we focus on the conventional approach of Galerkin projection based
polynomial chaos applied to uncertain linear systems, see for instance [29] or [73]. In
the following, we consider the general case of uncertain LTV systems. The application

to uncertain LTT systems follows simply as a special case.
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Recall that applying Galerkin projection based PCE according to Section 3.4 roughly
breaks down to inserting the series expansion for all random quantities and computing
the scalar product with respect to the basis functions ¢,(d). For an uncertain LTV
system (2.6) the random variables! are x(t,) and y(¢,d). These are to be approximated

by truncated series expansions

L-1 L—1
2(t,0) ~ Y wa(®)Pald),  y(t,0) x> yalt)ta(d) (4.2)
a=0 a=0

with respect to a suitable orthogonal polynomial basis of § and some finite L < oc.
Therein, the deterministic expansion coefficients are formally defined by the usual pro-

jection relations

1 1
$o¢(t) = @@3@7 ')7 Q;Z)o)v ya(t) = @(y(t’ ')v ¢a>' (43)
Now denote by
W(0) == [1o(d),....1r-1(8)]" € R (4.4)

the vector concatenating vertically the polynomial basis functions ), for a =0, ..., L—1.
The projection relations (4.3) may then be summarized conveniently Voo = 0,..., L — 1

using Kronecker product notation:
(4.5)

Herein, the capital vectors X (t) € R"! Y (t) € R™! concatenate the expansion co-
efficients (4.3) of the lower-case vectors z(t,6), y(t,6). Note that (P¥T) is simply a
diagonal matrix with E[2] on the main diagonal.

The series expansion (4.2) may be written as

2(t,0) = [I,, @ U (0)] X (t),  y(t.0) = I, ® VT (6)]Y(2). (4.6)

!Strictly speaking x(t,0) and y(t,0) are stochastic processes. Also § is a random vector and its
expansion § = Zg;é datha(9) is inserted as well. Often, the expansion of § is exact for a first-order
series expansion, e.g., with respect to the classical orthogonal polynomials. It is therefore omitted from
the main text for brevity.
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Galerkin projection is then applied as follows. Insert the series expansion (4.6) into the

LTV system dynamics (2.6) to obtain

(1, @ UT(6)] X (1) = A(t,6) [In, ® TT(8)] X (t) + B(t, )u(t)

4.7
(I, @ OT(8)]Y (t) = C(t,0)[In, ® VT (6)] X (t) + D(t,d)u(t). it

Project Equation (4.7) onto each 1, for a = 0,...,L — 1 using Kronecker product
notation, i.e., ((-) ® ¥), yielding

+
W
£

®

<<( I, @ VX)) @ U) = ((AlL,, ® ¥T]X) @ ¥ 43)

(11, © 97]¥) © ) = {(Cl1,, & ¥7]X) & W

4
)
£

S

where we have omitted function arguments in the interest of clarity. Using properties
1, 2, and 4 of the Kronecker product together with ¥ = W - 1, Equation (4.8) can be
simplified to

(I, @9 @ W)X (1)
(I, ® 0T @ U)Y (t) = (C(t,") @ (PIT) X (t) + (D(t, ) ® V)u(t).

I
=
®

=
&
-
o
+

X
®

=

(4.9)

Since ¥ @ ¥ = WU we can multiply Equation (4.9) from the left by (I @ (¥¥T))~!

X(t) = (In, ® (WUT)) A, ) @ (WUT)) X () + (I, @ (W) (B(t,) @ ) u(t
= A(1) =:B(1)

Y(t) = (I, ® (WUT)) O, ) @ (V7)) X (1) + (I, ® (PTT)) "(D(t,-) ® T)u(t).
:?:’(t) —D(t)

(4.10)

This is a deterministic (i.e., certain) LTV system of dimension increased by a factor
of L, ie.,, A(t) € RO=Lx(mzl) Bty ¢ RO=Lxnu ) ¢ ROwbx(Mal) and
D(t) € R(wL)*nu  Therein, the expansion coefficients are generally coupled together,
e.g., A(t) is a full matrix. A possibly uncertain initial condition may be projected

according to Equation (4.5):

X(0) = (In, ® (W¥7)) " Hz(0, ) @ ¥). (4.11)
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Note that the Galerkin projected system (4.10) only approximates the exact expan-
sion coefficients formally defined by (4.3), (4.5) starting from the projection of the initial
condition (4.11). In general, there will be an error — due to truncation — between the
exact coefficients (4.5) and the finite-dimensional approximation given by the Galerkin
projected system (4.10).

In contrast, the required projection integrals in Equation (4.10) are assumed to be
computable exactly, for instance, by Gaussian quadrature. Based on the dependency
on 0, this can be a challenge. See for example [43] for a detailed exposition of how
to tackle common nonlinearities. As a rough illustration, consider a system matrix
A(t,9) depending on products of independent random variables, with total polynomial
degree d. In order to evaluate the projection integrals (A(t,) ® (VWT)) exactly, it
is necessary to compute a multiplication tensor [43, 25] of order d + 2. Generally,
this multiplication tensor has L4*+2 entries, such that storage and computation quickly
becomes computationally expensive [77].

If, however, the uncertain LTV system can be written as a linear fractional transfor-
mation — which is always possible for rational parameter-dependencies on § — Galerkin
projection can be applied to the system in linear fractional representation, see Figure 4.1.
Throughout the thesis, we refer to this approach as LFT Galerkin projection. LFT
Galerkin projection may offer substantial computational benefits. The idea, originally

published in [25], is presented in the subsequent section.

4.3 LFT Galerkin Projection

Assume the uncertain LTV system (2.6) can be written as a linear fractional transfor-

mation (see Section 2.4). The deterministic nominal part is

x(t,0) Ap(t) Buy(t) Buyl(t) x(t, o
v(t,8)| = | Co(t) Dyw(t) Dyu(t)| [w(t,0) (4.12)
y(t,9) Cy (t) Dy (t) Dy, (t) u(t)
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and the isolated uncertainty enters via the affine mapping

81 Lm, 0
w(t,8) = A@B)(t,8),  A®) = € Rnaxna, (4.13)
0 Sns T

In order to determine the expansion coefficients, the idea is now to apply Galerkin
projection to the uncertain system in linear fractional representation, as indicated in
Figure 4.1.

The procedure is analogous to the derivation presented in the previous section. In
addition to the expansion (4.6) of x(t,0) and y(t,¢), the PCE is also applied to w(t, )
and v(t,d) within the LFT model (4.12), (4.13):

w(t,8) = [Iny @ VT (0)|W (), v(t,6) = [, @ VT (5)]V(¢). (4.14)

Similar to Equation (4.5), the expansion coefficients of w(t,0) and v(¢,d) are concate-

nated in capital vectors W (t), V (t) € Rnal
W (t) = (Iny @ (WUT)) " w(t,) @), V(t) = (Iny @ (WUT)) o(t,-) @ ¥). (4.15)

Inserting the series expansion for x, y, w, and v into Equation (4.12) and projecting
with ((-) ® ¥) yields

(In, © W)X (1) Au(t)  Bu(t)  But) | | (In, ® ¥T)X(1)
(s e ¥ Wt |@0) = ({ | Cult) Dult) Dunlt)| | (g @ WHIW ()| p00).
(In, ® )Y (1) Cy(t)  Dyu(t) Dyu(t) u(t)

Using the properties of the Kronecker product, it is straightforward to show Equa-
tion (4.16) can be simplified to

Xt |Au®)eIp B,t)®Ip Bu(t)®e | | X(t)
Co(t) @I, Dyy(t) @I, Dyyu(t)®@er| |W(t) (4.17)
Y(t) Cy (t)® I, Dy (t) ® I, Dyu(t) ® ey u(t)
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where e; = (U) = [1,0,...,0]7 € R” is the L-dimensional unit vector. Galerkin projec-

tion of the isolated uncertain mapping (4.13) leads to

W(t) = (Iny @ (UT)) "HA @ (W) V(1)
= AHV(t)

(4.18)

The projection of the matrix A is denoted by Ay € R(®al)x(mal) Since A is a diagonal

matrix, Ay is a block-diagonal matrix

Ly © ((WOT)~1(5,00T)) 0
A = .. . (4.19)
0 Lyn,,, @ (W) =15, 0UT))

It is highlighted that since the nominal part (4.12) is purely deterministic, the
stochastic modes in the Galerkin projection (4.17) are decoupled from each other. This
has to be contrasted to the conventional Galerkin projection (4.10) applied to the origi-
nal uncertain LTV system, which generally leads to mode coupling, i.e., a fully coupled,
deterministic LTV system of increased dimension for the expansion coefficients.

In general, Galerkin projection of rational parameter-dependent LTV systems may
be a challenge, with computational cost increasing with the complexity of the nonlin-
ear parameter-dependence, see [43]. For instance, it may be required to compute high-
order multiplication tensors. Since A(d) depends linearly on 4, coupling of the stochastic
modes is reduced and isolated by the LET to the simple multiplication (4.13) [or (4.18)].
In Equation (4.18), solely the third-order multiplication tensor Toge = (Vatptbe)/(Yetbe)
is required, independent of how ¢§ originally enters the uncertain LTV system. Intu-
itively, this relieves the Galerkin projection of work by separating the system in deter-
ministic and stochastic parts a priori. In contrast, the conventional Galerkin approach
projects the system as is.

Furthermore, the third-order multiplication tensor 7i,5¢ has a particularly advanta-
geous, sparse structure since A depends affinely on §. Hence, A has an exact first-order
expansion, and Ay is a sparse matrix as well. The sparsity pattern of Ap is displayed
in Figure 4.2 exemplarily for ns = 3 independent uniform distributed random variables

i, i € {1,2,3}. The polynomial basis is constructed using total degree truncation. For
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increasing total polynomial degrees d, the markers indicate the nonzero entries of A,

assuming each §; is not repeated, i.e., the multiplicity is m; = 1.

d=1 d=2
) * T T ¢* ‘. T T
([ 3 — 5 *. ° |
°
41 N
10 + ° N
6 [ * | [ ] * ..
°
8 = 20 | i . N
) ° .
10 |- - 25 | ° R
°
12 | | | | o I 30 | | | L Ol
2 4 6 8 10 12 5 10 15 20 25 30
column column
d — d =
qf—s T T T “\‘ T T
20 [ [ ] .~ N 40 | ~ B
o~ °s N
Z 30| y ~ 18 ol ~, |
w0l S
“ T 80 |
50 | ~.
60 ! ! ! ! ~ 100 | ! ! !
10 20 30 40 50 60 20 40 60
column column

Figure 4.2: Sparsity of Ap for ng = 3, increasing total polynomial degrees d, and
constant multiplicity m; = 1 for i € {1,2,3}.

The decoupling and simplicity of Galerkin projection based PCE applied to uncer-
tain systems in LFT form can be exploited both theoretically and numerically. This

offers substantial advantages compared to the conventional Galerkin approach indicated



50
in the previous section, where treating rational parameter-dependencies may be com-
putationally expensive. We illustrate this by means of an example in the following

section.

4.4 'Two-link Robot Example

The computational benefits of LF'T Galerkin projection are now demonstrated by means

of an application example. This section is presented originally in the author’s work [25].

Figure 4.3: Two-Link Planar Manipulator [25]

Consider the two-link robotic manipulator depicted in Figure 4.3. The governing

rigid-body equations of motion can be derived by means of the Lagrange formalism [52]

o)L
92 T2 ‘
(4.20)

The first summand comprises inertial forces, the second summand the Coriolis and

P142p2 cos(fz)  p3+pacos(fa) |61 N —pasin(fa)fy  —posin(fy) (61 +62)
p3+p2 cos(62) D3 02 p2 sin(62)0; 0

centrifugal forces. The torques applied at the system joints are denoted by 7 = [r1, 7]7.

Mass and inertia parameters of the robot are collected in

p1 = Il + IQ + m17“% + m2(l% + T%)
p2 = maliry (4.21)
p3 = Is + mgrg.

Here, for i € {1,2}, I; is the moment of inertia, m; the mass, and /; the length of each

link. As indicated in Figure 4.3, r; denotes the distance between the ith center of mass
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and joint.
A desired trajectory for the tool center point (TCP) over a finite time horizon
T =5 s is displayed in Figure 4.4. Denote by © := [01, 02, 61, 92]T. A nominal reference
trajectory ©*(t), ©*(t), and 7*(t) for t € [0,T] can be deduced from the desired TCP
trajectory via inverse kinematics [52]. It is then straightforward to derive a nominal
LTV model by linearizing with respect to the reference trajectory. This may be accom-
plished analytically or, e.g., by automatic differentiation within the Julia programming

language [7].

-05 -04 -03 -02 -01 0 01 02 03 04 05

Figure 4.4: Tool Center Point Reference Trajectory [25]

The TCP trajectory shall be tracked despite the presence of disturbances. Hence a
linear quadratic regulator is implemented for the nominal LTV system by minimizing

the quadratic cost [cf. Equation (2.7)]
T
J(u) = 2T (T)Qra(T) + /0 2T (#)Qux(t) + ul (t) Ru(t) dt (4.22)

withz = ©—-0* u=7—7% @Q = diag(10,1,10,1), R = I, and Qr = diag(1,0.1,1,0.1).
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The optimal feedback controller is synthesized by solving the associated Riccati differ-
ential equation [cf. Equation (2.11)].

Now consider the manipulator’s mass and inertia parameters (4.21) as uncertain.
Take § = [I1,I,m1,m2,71,72]7 as a random vector, where each component is dis-
tributed uniformly around its mean d;, i.e., §; ~ U(0.5;,1.55;). The manipulator’s
mean parameters are 1, = 0.09 kg - m?, Iy = 0.06 kg - m?, m; = 3 kg, m» = 2 kg,
71 =T = 0.15 m. Both links have length [; = I = 0.3 m. Within the present example,
the analysis goal is to quantify the perturbed closed-loop trajectories due to the mod-
eled parametric uncertainty and a constant torque disturbance added at the input wu.
We focus on mean and standard deviation of the random linear perturbations xz(t,d)
around the target trajectory.

Three analysis methods are compared in the following:

e CGK: conventional Galerkin projection based PCE of the uncertain LTV system
(Section 4.2).

e LFTGK: LFT Galerkin projection based PCE (Section 4.3) of the uncertain sys-

tem in linear fractional representation.

e MC: Monte Carlo sampling-based estimation of the mean

N
Ela(t, )] ~ (o(t, )y = % 3 a(t,00) (4.23)

and standard deviation

N
Vit ()] = ol (6] = | g O (@5(669) — (et ) (4.22)
=1

The subsequent computations are all conducted on a standard desktop PC with 4 GHz
Intel i7 CPU and 16 GB RAM. The Julia toolbox PolyChaos.jl [51] is employed for com-
puting the Galerkin projection. Time integrals are solved numerically using a standard
Runge-Kutta scheme, e.g., Tsit5, implemented in [60] with relative tolerance 10~2 and

absolute tolerance 1076,
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Plots of mean and standard deviation fields as computed by LFTGK [cf. Equa-
tions (3.39) and (3.41)] are displayed in Figure 4.5. The PCE is truncated by maximum
total polynomial degree truncation with a total degree d = 3. Thus the number of
terms in the expansion is L = 84, see Equation (3.36). Applying CGK yields identical

approximations of the mean and standard deviation (up to numerical accuracy).

025

000 |- A

Perturbation
S
o
T

-0.50 -

-0.75 -

Figure 4.5: Mean and Standard Deviation Field of d = 3 LFTGK PCE [25]

However, in this example, it is necessary to compute multiplication tensors of order
up to 5 for the conventional Galerkin projection. This can be seen by inserting the
series expansion and projecting inertia terms such as (mlr%él,@bOJ. The calculation
of the required multiplication tensors takes 2 h. In practice, this is a reusable com-
putation performed once before simulating the polynomial chaos expanded system. In
contrast, the LFTGK solely requires computation of a third-order multiplication ten-
sor. In particular, the Galerkin projection of the uncertain LF'T system has a decoupled
and sparse structure, as shown in Section 4.3. The computation time required for the

especially sparse third-order multiplication tensor is therefore rather low (less than 1 s)



Table 4.1: Benchmark of CGK, LFTGK, and MC [25]

. . C tati
Dimension [lem(t)|ze  lleallee hmn
CGK d=1, 1.4x1073 1.7 x 1072 1s
LFTGK L=7 23x1073 1.8x 1072 1s
MC N=7 53x 1072 1.0x 107! 2s
CGK d=2, 1.5x 1072 1.6 x 1073 11s
LFTGK L =28 20x 1073 2.6 x 1073 6s
MC N =50 26x1072 1.5 x 1072 11s
CGK d=3, 1.5x 1072 4.9 x 10~ 60 s
LFTGK L=84 1.9x107% 1.8x1073 16 s
MC N = 250 25 %1073 1.9x 1073 63 s
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compared to CGK.

The three analysis methods are benchmarked in Table 4.1. Different total polyno-
mial degrees d € {1,2,3} are compared with a standard Monte Carlo estimator, whose
sample set dimension N is scaled appropriately. Mean and standard deviation of a MC
estimator with NV,.r = 10* are used as an unbiased reference solution. The errors with
respect to this MC reference are computed for the mean field [denoted e,,(t)] and stan-
dard deviation [denoted e,(t)]. The L signal norm, measuring the size of the error
by [le(?)]lc.. = maxi=1,...asupyco 7 lei(t)], is displayed. The last column lists the com-
putation time for numerical integration of the respective (system of) linear differential
equations, excluding the calculation of inner products required by the Galerkin pro-
jection based methods. Notice that the d = 3 Galerkin projected system of equations
require (less than) 1 min to solve, in contrast to 37 min for the N,.s = 10* MC samples.
Comparing LFTGK to the fully coupled system of equations resulting from CGK, the
decoupled sparse structure of LFTGK can be seen to yield computational advantages.

Finally, Figure 4.6 conducts a consistency check of the d = 3 LFTGK by comparing
to three sampling-based methods: MC, Latin Hypercube Sampling (LHS), and Sobol’
sequence. The maximum absolute difference over time in the approximation of (x4(t, -))

and olz4(t,)], cf. Equations (4.23) and (4.24), is plotted for increasing dimension N
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of the sampling algorithms. The coordinate x4 is selected since the highest variance
and largest approximation errors were observed in this component. As expected, all
sampling-based approaches converge roughly proportional to NV —1/2 (indicated by the
red line) to the d = 3 LFTGK. This behavior gives confidence and trust in the LFTGK
approach.

Consistency error (rad/s)
5
T

—2.0
—@— <=z,>MC
10_2-5 - < x,>LHS
< x, > Sobol
N2
o{r,) MC e
o(z,) LHS ?
10730 | | =% (274 ) Sobol
¥ >
101 10° 10° 10*

Sample set dimension N

Figure 4.6: Consistency Check of d = 3 LFTGK [25]

In summary, separating the deterministic from the stochastic parts by a LF'T before
applying Galerkin projection can lead to computational savings and numerical advan-
tages. Galerkin projection based PCEs (i.e., both CGK and LFTGK) are advantageous
especially when only the deterministic problem part changes, e.g., a different reference
trajectory or new controller is to be analyzed. In contrast to sampling-based, non-
intrusive black-box methods, which have to rerun the complete sampling campaign, the
PCEs based on CGK and LFTGK may provide prompt and accurate updated esti-
mates. Further, the LFT lightens the workload of Galerkin projection in separating the

deterministic from the uncertain parts of the problem.
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4.5 Equivalence of Gaussian Quadrature and LFT Galerkin

Projection

We now present the main theoretical results of this thesis. Large parts of this section are
based on the author’s article [28]. In order to simplify the proofs, we initially assume an
orthonormal polynomial basis and a single uncertain parameter, i.e., n5 = 1. The results
are extended to general uncertain linear systems in Section 4.5.2. Subsequently, the
theoretical findings are shown to hold for an orthogonal polynomial basis in Section 4.5.3
and also for the multivariate case ns > 1 in Section 4.5.4. The remaining Sections 4.5.5

and 4.5.6 illustrate the theory by means of two examples.

4.5.1 Main Theoretical Result

To set the stage, consider the uncertain linear time-invariant system
x(t,0) = A(d)x(t,0). (4.25)

Throughout this section, we assume an orthonormal polynomial expansion basis. The

conventional intrusive Galerkin approach approximates the PCE coefficients
X (t) = (z(t,-) @ V) (4.26)
by directly projecting Equation (4.25) along the lines of Section 4.2:
X(t)=AX(1), A=A @u")eROL*mL) (4.27)

In contrast, the non-intrusive method of Gaussian quadrature (see Section 3.5.1) deter-

mines the expansion coefficients by numerical integration:

N
X(t) = (x(t,) @) = Y wa z(t,6) @ ¥(5). (4.28)
a=1
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Now assume the system (4.25) can be written as a linear fractional transformation

#(t,0)]
o(t,8)]

Mll M12] [CL‘(t, 5)]

Ma M| |w(t,9) (4.29)
w(t,d) = A(0)v(t,0).
The PCE given by Galerkin projection of the system’s LFT is (see Section 4.3):
X)| |[Mu®I, Ml X(t)]
Vit Moy @1, Mo &1 W (t
(1) 21 @ I, 22 ® 1, (t) (4.30)

W(t) = (A ® (TE) V(1).
=:Aq

By closing the expanded LFT (4.30) — in contrast to Equation (4.27) — the expansion
coefficients (4.26) are approximated by

X(t)=AaX(t),  Ax:=F(M&I;,An). (4.31)

Therein, the LFT Galerkin projected system matrix Ax € RMeL)x(n=L) ig determined
by the lower LF'T

FI(M @I, An) = My @I+ (Mo @ 1) Ap[I — (Ma @ Ip)An] (Mo @ I1). (4.32)
=ZaA1—[

The perturbation term 0Ar is defined for later reference.

The main point of this section is to prove that the approximations (4.28) and (4.31)
of X (t) are equivalent. In order to build up to this main result, in the following, it is
first shown that the eigensystem of Aa is made up of realizations of A(9) evaluated at
the Gauss quadrature points. This is important, since generally speaking, conventional
Galerkin projection may not necessarily yield meaningful realizations of the original
system. There even exist mathematical examples of A(9) stable Vé € D with an unstable
conventional Galerkin projection (4.27). See Section 4.5.5 for details. This is alleviated
completely by LFT Galerkin projection (4.31), which preserves the eigenvalues and

eigenvectors of the original system. Hence, stability is preserved. The following theorem,
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including the proof, is taken from the author’s work in [28].
Theorem 4.1 (Gaussian Eigensystem Preservation [28]). Let the lower LFT of A(9)
be given by

A(8) = F{M, AG)},

Fora=1,...,L, denote by 6% the L realizations of § € D given by the distinct Gauss
quadrature nodes of 6. For each «, let the n, eigenvalues and eigenvectors of A((S(a)) be
given by

A(é(a)):ﬂgf) = A,ga)x,ga), kE=1,..,n,.

Then the eigenvalues and eigenvectors of the LFT projected system matriz Aa defined
in (4.31) are given by

As [z @ 0(6)] = N o)) © W(5)]

fora=1,...Landk=1,..n,.

Proof [28]. In the interest of clarity, assume ¢ is a scalar, i.e., ng = 1. The proof is
generalized to orthogonal polynomials in Section 4.5.3 and then in Section 4.5.4 to the
case ng > 1. For ng = 1, the A-matrix in the LFT A(J) = F{M, A(d)} reduces to

A(6) = 611, (4.33)

with § = 6; and multiplicity m1 = na. In this case, A = (A ® (P¥T)) is given by the
block-diagonal matrix
An = I, @ (6007T). (4.34)

It is known, see [76] or Section 4.5.3, that the eigenvalues of (§WWUT) are distinct re-
alizations 6(® of § corresponding to the Gauss quadrature nodes of order L. The

corresponding eigenvectors are W(5(®)), such that
(EOITYW(5@)) = §(@p(5), (4.35)

Therefore, the eigenvalues of each block of Ay are the distinct realizations 5@ as well.
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Hence, Ay can be diagonalized by
=1, 0V, Ag=TI,, @ \)T! (4.36)

where V' = [¥(5(*))] concatenates horizontally the column eigenvectors W(5(®)) and
A = diag[6(®] for o = 1,..., L. Using the diagonalization (4.36), note that the term
OAq in the expanded LFT (4.32) can be “block-diagonalized”, meaning

OAn = An[l — (Mas ® I1)Apn]

NTT™! — (My®I)T (1, @N)T 1

— (Mo ®IL)T (I, @A)

Lia@M)[T — (Mg ®1I1,) (In, @V ) (Iny @A) ! (4.37)

T (I &M)T™
(InA®A)
( )
(Ins@M)[T = (In,@V) (M2 ®11) (Ina®A)] ™!
( )
( )

[T
[
Ina®@N)[I — (Moo @IL) (In @A) 71T}
Lia®A) (I — Moy @A)~ 771

Denote by e, € RY the L-dimensional unit vector with all zeros except the ath compo-
nent. Define E, := eqel. Then the term (I — May ® A)~! in Equation (4.37) can be

written as

(I —MypoA)~t= (ilf,m ®Ea) — Mo ® (ilcs(a)Ea)

Q
Il

L -1
= Z — M8) ® Eq (4.38)
L a=1
L
= Z M225 )) ! ® F,.
The last equality can be checked by multiplying
L L
37 (Ina = M226@) 7 @ By | | Y (Inp — M20P)) @ B (4.39)
a=1 B=1

which yields the identity matrix. Now define by T, : R™ — R™Z’ the linear submap
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of Aa

To(2) = Aalz @ U(8)] = F(M @ Ir, An)z @ U(6)]
= [M®Iy + (Mya ® I1)0An (Mo ®@17)][2@ W (5)]
= (M112) @Y (6'Y) + (M12@11)0An[ Moz @ (5)]
= (M112)@P(6@) + (M12®11,)0An[In, @ U (6)] (M2 @1).

(4.40)

Therein, using Equation (4.37) and T'=1,,, ® V

OAN [y ® V()] = (Lny @ VAYI = Maz @ A) " (Lny @ V) [y @ U(5))] (4.41)
= (Iny, @ VAY(I — Moy @ A) "M (I, ® e€a). '

Inserting Equation (4.38) yields

L
ATy ® U(6)] = (I, ® VA) Z (Inn — M225(a))71 @ Eo | (Iny @ €q)

a=1
— (InA ® VA) [(I _ M225(a))—1 ® ea] (4.42)

= 6T — M6 ™! @ W(5).

Plugging (4.42) into (4.40), T, (x) becomes

To(x) = (M) @ W)+ (M2 1) [§) (1 = M228'™) T @ U (6) | (Mar21) (4.43)
= [Miy12 + M8 (I — M) Myyz] @ U(6(). '

In (4.43), for a specific a, i.e., eigenvector W(5(®), one picks out a realization of the

LFT’s perturbation term

MlgA(5(a))[I — MQQA(é(a))}ilel. (4.44)

Adding the nominal map Mj; then yields a realization A(6(®)). Denote by )\gfa) and :réa)

the eigenvalues and eigenvectors of A(5(*))

ANz = Al (4.45)
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for k=1,...,n,. Clearly, by definition of T:

Aa[e)® @ 03] = Ta(zy) = N2} @ 9(6©)). (4.46)
This yields the desired statement of the theorem. O

Consequently, the eigenvalues and eigenvectors of A(d (0‘)) are preserved within the LFT
Galerkin projection Aa. The subsequent Corollary follows immediately. It is briefly

stated in order to simplify the proof of our main result afterwards.
Corollary 4.1. Aa[l,, ® U(6()] = A(5®) @ ().

Proof. The proof is identical to the derivation of Equations (4.40)—(4.43). The vector z
merely needs to be replaced by the identity matrix I, . O

Our main theoretical result is presented in the following theorem, taken from [28].

Theorem 4.2. The expansion coefficients X (t) determined by Gaussian quadrature (4.28)
are equivalent to X (t) obtained by LFT Galerkin projection (4.31).

Proof [28]. Denote by X (0) the expansion coefficients of the initial condition x(0,d)
to the uncertain system (4.25)

X(0) = (z(0,-) ® U). (4.47)

Without loss of generality, assume the projection (4.47) is calculated by Gaussian

quadrature

L
X(0) = wa x(0,6) @ B(5)). (4.48)
a=1

This assumption is not a restriction. In essence, the initial condition X (0) for both
approaches (4.28) and (4.31) simply needs to be the same. Clearly, since (4.31) is a

linear system, the expansion coefficients determined by LFT Galerkin projection obey

X(t) = 21X (0). (4.49)
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Using Corollary 4.1, note that

eAAt[InI ® \IJ((;(Q))] _ i (-AAt)k’ [Ing; 2 \I’(é(a))]

Kl
k=0
= |1+ Aat+ (A§t>2 |, @ W) (4.50)
[AE ™)y

= I, ® U(3)) + Ayt @ w(5)) + @ W)+ ...

2
= A g (5,

Plugging Equation (4.48) into (4.49) yields

L
_ Aat Zwa (0,6@) @ W) = 3 wa 431, @ B(E)}(0,5€). (4.51)

a=1
Inserting Equation (4.50), we obtain

L
Z A(ﬁ(a) ® \];,(5(01))]33(07 5(&))

L
Z [0, 5())] @ w(5@) (4.52)
L
Z ) @ W(5()
which is clearly equivalent to Gaussian quadrature (4.28) for N = L. O

In conclusion, for (systems of) uncertain linear differential equations with ratio-
nal parameter-dependence, applying LFT Galerkin projection is equivalent to applying

Gaussian quadrature.

4.5.2 General Uncertain Linear Systems

Within this section, we show that the previous results generalize to uncertain linear
systems with an input u. For this task, it does not matter if the system matrices are

time-varying or not. Thus, to simplify the notation, we assume the time-invariant case.
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Consider an uncertain LTI system (see Section 2.1.2):

(4.53)

According to Section 4.3, assume Equation (4.53) can be written as a linear fractional

transformation
T Ay Bw Bu T
v| = | Cy, Dyw Dl |w ( )
4.54
Y Cy Dyw Dyl |u
w=Av
with LFT Galerkin projection
X Ay®I, B,®I, B,®e | |X
VIi=1C,®I, Duyw®I, Dy, ®er W (455)
Y Cy®IL Dyw®IL Dyu®€1 U '
W = AqV.
Define the following matrices by closing the LFT (4.55):
A B
Aa = F MUl @I, An
v VW (4.56)

= Ay @I+ (By @ I)An[l — (Dyw @ I1)An]H(C, @ I1)

Ba = Fi , An
(4.57)
=B, ®e1 + (By ®IL)An[l — (Dyw ® I)An| H(Dyy ® €1)

B, ®e B, ® 1,
Dvu ®eq Dvw ® IL

C, Dyw
Ca = F YOl eI, An
Cv Dy (4.58)

=Cy @I+ (Dyw @ I)An[I — (Dyw ® I1)An] 1 (C, @ I1)
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) AH
(4.59)
=Dy ®e1 + (Dyw ® I)An[I — (Dyw @ I)An] ™ (Do @ €1).

Dyu ®eq Dyw ® Iy,

Da = F
Dyy ®@e1 Dy, ® I,

The stochastic modes of the closed LF'T Galerkin projection are thus given by

X X] . (4.60)

Y

Axr  Ba
Can Da

u

Similar to Corollary 4.1, it is straightforward to show that LFT projected linear sys-

tems (4.60) can be “block-diagonalized”, as stated in the following corollary.

I, 0
0 I,

Proof. The proof is analogous to the derivation of Equations (4.40)—(4.43) in the proof
of Theorem 4.1. It is therefore omitted. O

Corollary 4.2.

Aar  Ba
Can Da

A5 B(5(@)

(@
cey | © YO

® \1/(5@)) =

Using Corollary 4.2, it is a simple exercise to extend the proof of Theorem 4.2
to general uncertain LTT systems, i.e, to show that the stochastic modes obtained by
LFT Galerkin projection (4.60) and by Gaussian quadrature are equivalent. In an even
broader context, the results generalize to any linear system of differential equations with
rational parameter-dependence. For example, this also applies to Lyapunov differential
matrix equations. These appear, for instance, when computing the finite horizon Ho-
norm [19, 33]. However, it does not apply to Riccati differential equations as considered

in the subsequent chapter due to the quadratic nonlinearity.

4.5.3 Extension to Orthogonal Polynomials

Previously, Theorem 4.1 is proven assuming an orthonormal polynomial basis and
ns = 1. The proof is generalized here to orthogonal polynomials (similar to [28])
and to ng > 1 in the subsequent section. It is sufficient to generalize solely the proof
of Theorem 4.1, since the remaining results follow immediately as soon as Theorem 4.1

holds.
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Assume the polynomial basis is orthogonal instead of orthonormal. The uncer-

tainty ¢ is still considered as a scalar throughout this section, i.e., ng = 1. Thus, A in
the expanded LFT (4.30) is then given by (see Section 4.3):

A = (Iny @ (PUT))HA @ (PUT)) = (Iny @ (PUT)) 701y @ (WPT)).  (4.61)

Note that this Ap is not symmetric in contrast to the orthonormal case (Section 4.5.1).
However, it can be shown, analogously to [76], that the na - L eigenvalues of Ay are the
L distinct Gauss quadrature points of J, repeated na times.

To see this, we need the insights of orthogonal polynomial theory presented in Sec-

tions 3.2.2 and 3.2.3. Rewrite the recurrence relations in Equation (3.11) as

5¢a(5) = wa-i-l(é) + aawa(é) + boﬂ/}a—l(é)
Yo(0) =1 (4.62)
b1 () = 0.

Using the recursion (4.62), note that the term (0141g) within (4.61) may be written as

<6¢awﬂ> = ((Yat1 + aata + ba¢a71)¢5> = <w%>(ba6(a—1)ﬁ + aa5a6 + 5(a+1)ﬁ) (4.63)

where 6,45 denotes the Kronecker delta. Note further that (UWT) is symmetric since
(0Yathg) = (0951q). It can then be verified using Equation (4.63) that each block of

A is given by the Jacobi matriz Jr, introduced in Section 3.2.3:

ag 1
b1 al 1
(e ueTy = 7, = by . e . (4.64)
ar—92 1
bp-1 arp—1

Furthermore, it is shown in Section 3.2.3 that the eigenvalues of Jp, are the L roots of the
orthogonal polynomial 11,(9). These roots are exactly the Gauss quadrature nodes of

order L. It is also shown in Lemma 3.1 that the roots of ¢1,(6) are all real and distinct.
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Hence, the eigenvalues of [J; are real and distinct. It follows that the spectrum of
Jr is simple, implying the eigenspace belonging to each eigenvalue is one-dimensional.
Therefore, Arr can be diagonalized just as in Equation (4.36). The remaining proof of

Theorem 4.1 given in Section 4.5.1 holds unaltered.

4.5.4 Generalization to ns > 1

Within this section, we extend the proof of Theorem 4.1 to the general case ng > 1,
based on [28]. In addition to assuming an orthogonal polynomial basis, we now con-
sider § as a random vector comprising ns independent random variables. According
to Section 3.3.2, an appropriate multivariate orthogonal polynomial basis can then be
built simply by taking products of the individual univariate orthogonal polynomials.
As a concrete example, assume for ¢ = 1,...,ns each ¢; has an orthogonal (univari-
ate) polynomial basis truncated by maximum polynomial degree d. Denote the vector

concatenating the respective basis polynomials by
. , T
U,(5;) = [wg )(67), ... ,wy(ai)] e R+, (4.65)
The associated multivariate orthogonal polynomial basis is then given by
ng
V=01®...0 Uy, = (K) V. (4.66)
i=1
Clearly, ¥ € R” is of dimension L = (d + 1)". Recall that the matrix
A = (I, @ (FUT)"HA @ (T0T)) (4.67)
is made up of ¢ = 1, ..., ns blocks
(e =5, wwT) (4.68)

possibly repeated with multiplicity m;. Note that in Equation (4.68), we can integrate

(6 0UT) = (5;(V10T) @ ... @ (Uny U )) = (6 é(w?» (4.69)
j=1
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independently over each §;:

i—1

Q)(w;vT)

J=1

ns

&) (v, 97)

j=it1

(6; 00Ty = ® (6; 9,07 @ . (4.70)

Consistent with the previous section, denote by J. d(_?l the Jacobi matrix associated with

the orthogonal polynomial basis ¥; for d;. It can be concluded that

(@)~ 15,0eT) =

ns
Q) Tan

j=i+1

:Id+1®---®Id+1®~7$1®fd+1®---®Id+1-

® T ®

i—1
®Id+1

J=1

(4.71)

The distinct eigenvalues of J d(_?l are given by the univariate (d+1)-point Gauss quadra-

ture rule with respect to the probability density of ;. Hence
T = TAT (4.72)

can be diagonalized, where T; = [\Ilz(él(al))] concatenates horizontally the column eigen-

vectors \I’Z-((?(ai)) and A; = diag[(sl(ai)] for a; = 1,...,d + 1. In conclusion, Ay can be

2

diagonalized as

A =TAT™! (4.73)
with
-Iml ®T1®Id+1®...®fd+1 0
T =
0 I, @111 ®@...@ 1541 ®T,
! B I (4
Iml®A1®Id+l®~--®Id+l 0
A=
! 0 Iy @ Igi1 © ... @ Igg1 © Mg,
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The remaining proof of Theorem 4.1 is analogous to the one given in Section 4.5.1.

Consistently, A can again be ”block-diagonalized”, i.e.,

OAn = An[l — (Mo @ It)An) ™' = TAT Y TT™! — (Myy ® I)TAT 7!
= TA[T — (M ® I,)TA]™* (4.75)
=TA[l — (M2 ® IL)A]flel.

Using a standard multi-index notation & = a1 x ... X an, € N{° (see e.g. [77]),
T

Qg

define by Eq := Eq, ®...® Eq,, . Here, analogous to Section 4.5.1, denote Eq, = €q,€
where e, € R is the unit vector with all zeros except the cjth component. In the
following equation, for notational simplicity, sums are indexed by a single scalar a.. The
relationship between multi-indices o € Ni° and a single scalar index a € Ny is one to
one assuming the polynomial basis is ordered, e.g., lexicographically. See e.g. [77] for

details. The middle term in Equation (4.75) may then be rewritten as

-1

L L
[I— (My®I)AI™! = [Z Iny @ Eq — (M2 ® I1) ( Y AGW) Ea>

|

a=1

-1 -1

ZL: (InA - M22A(5(a))) ® Eq

a=1

M=

Is @ Bo — (MnAG)) @ E,

Q
Il
-

[IM _ Mng@(a))} " 8 Ea.

M=

a=1

(4.76)

At this point, just as in Section 4.5.1, define by T, : R™ > R™ L the linear submap
of Aa

To(z) == Aplz @ U(6')] = F(M @ I, An)[z © U(5)]

(4.77)
= (M) @ U(6)) 4+ (Mg @ I1)0AR L, ® U(6))] Moy .

Herein, together with Equations (4.75) and (4.76), it can be shown that

OBlIny ® W(E)] = {AG)T - MppAGE)] "} 2 WE@).  (4.78)
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The rest of the proof is precisely as in Section 4.5.1. As a supplement, note that the
validity of Theorem 4.1 remains untouched despite using different truncation schemes.
For example, truncating by maximum total polynomial degree translates to simply

deleting some rows and columns from the matrix A considered throughout this section.

4.5.5 Illustrative Example

Within this section, we visualize our main theoretical results by means of an example

given in [28]. Consider the system matrix

. 12852 —725 —32 20562 —-1996+4 16552 —2345+46
A(é):m —826%2—5904270 —26662+1446—73 —1476%—2106+286| (4.79)
706242965 —80 4362 +966+8 156241465 —251

originating from [59]. The eigenvalues of A(J) ranging within § € [—1,1] are indicated
in Figure 4.7 by the colored lines. Eigenvalues with real part less than —1.3 are not
displayed for brevity. The matrix (4.79) is asymptotically stable for all ¢ in the afore-
mentioned parameter range. Therein, assume ¢ is distributed uniformly, such that the
corresponding orthogonal polynomial basis is given by the Legendre polynomials. Note
that for a polynomial expansion degree d = 0, the conventional Galerkin projection
already generates an unstable system, see the top plot in Figure 4.7. The d = 0 projec-
tion (i.e., L = 1) is given simply by the expectation E[A]. Clearly, this conventionally
projected system does not yield a meaningful realization regarding the eigenvalues of
the original system. It can also be observed for higher-order expansion degrees that the
eigenvalues of the conventional Galerkin projection are not necessarily realizations of
the actual eigenvalues. In this example, the conventionally Galerkin projected system
remains unstable regardless of the expansion order.

In contrast, the eigenvalues of the LF'T Galerkin projection are shown in the bottom
plot of Figure 4.7 for different polynomial expansion degrees d. Here, the eigenvalues
correspond to meaningful realizations of the actual system. It can be verified numerically
that these are precisely the realizations given by the respective Gauss quadrature points
of §.
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Figure 4.8 compares the two Galerkin projected systems in the time domain for
increasing polynomial expansion degrees d. Visible are the approximations of E[x1 (t, -)]
given by the o = 0th expansion coefficient. Both projected systems are always simu-
lated starting from the same deterministic initial condition x(0) = [~0.75, —0.65,0.08] .
Evidently, all the conventional approximations diverge after some time, since the con-
ventional Galerkin projection is unstable. The bottom plot shows the approximations
of E[z1(t,-)] given by LFT Galerkin projection and Gaussian quadrature. Since these
approximations are equivalent, the plotted lines lie above of each other. The maximum
absolute difference between the approximations of E[zi(t, )] yielded by LFT Galerkin
projection and Gaussian quadrature is less than 107! for all t. This illustrates the

statement of Theorem 4.2.

4.5.6 LTI Robust Performance Lower Bound

Within this section, we present an application to the robust performance analysis of
uncertain LTT systems, taken from [28]. According to Section 2.3, robust performance
can be certified by solving a parameter-dependent algebraic Riccati equation (ARE).
This applies to several system norms appearing throughout control theory, e.g., the
‘Hoo-norm. Equivalently, the associated Hamiltonian matrix H(d) can be checked for
eigenvalues on the imaginary axis, see Theorem 2.4. System norms are then often
computed by finding the minimal scalar performance index v while H(J) does not have
imaginary axis eigenvalues for all §, since this is a requirement for the existence of a
stabilizing solution to the ARE.

Since the eigenvalues of the LFT projected matrix are actual realizations of the orig-
inal Hamiltonian, we have derived a lower bound for robust performance computed by
solving algebraic Riccati equations. Assume an uncertain LTI system is given, depend-
ing on a parameter vector §. If we project the associated random parameter-dependent
Hamiltonian H () according to the LFT Galerkin projection scheme, we end up with
Gauss quadrature realizations of the actual eigenvalues. Hence, the projected Hamil-
tonian will have eigenvalues on the imaginary axis only if the actual Hamiltonian does
so too. Thus, minimizing over v yields a lower bound for the exact robust performance

index.
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The following example briefly illustrates the main gist of this concept. Consider an

uncertain LTT system G(0)

&= A(d)x + Bu
(4.80)
y=Cx
where A(9) is given in Equation (4.79) and B = C = I3. For some v > 0, the Hamilto-

nian matrix associated with the Ho-norm |G|/~ is (see Section 2.3):

A(6)  ~2BBT

HO=\ e _ar

(4.81)

Figure 4.9 shows different approximations of the robust H,,-norm

5;1{1_&&}“6?(5)”00 =miny s.t. det[jwl — H(0)] #0 V(0,w) € [-1,1] xR. (4.82)
As a comparison, mean and standard deviation of Monte Carlo (MC) estimators are
plotted, for increasing size of the sample set N. Each MC estimator simply takes
the largest v resulting from a bisection carried out for N samples of . The depicted
empirical mean (solid line) and standard deviation (shaded area) are computed with
respect to 100 MC estimators. The actual worst-case (at 6 = —1) and the worst-case
out of 10° MC samples are plotted by horizontal dashed lines as a reference.

Figure 4.9 also shows approximations yielded by minimizing v over the LFT pro-
jected Hamiltonian matrix. The expansion order is thereby adapted appropriately such
that N = L. It is highlighted that equivalent results are obtained regardless if the
approximation is computed by LFT Galerkin projection of the Hamiltonian or simply
by taking the worst-case out of the L Gauss quadrature nodes for §. Interestingly, the
approximation by LFT Galerkin projection (Gaussian quadrature) can be observed to
converge significantly faster — almost exponentially — compared to the Monte Carlo
estimators, which converge rather slowly (asymptotically).

Figure 4.10 shows how the Gauss quadrature nodes “sample” the H, norm ||G(6)| -
It can be seen how the “kink” in Figure 4.9 around N = 1,...,4 emerges, since for

instance the N = 1 realization in Figure 4.10 is greater than the worst-case out of the
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N = 2 realizations. In the present example, the results of the conventional Galerkin
projection are not useful at all, since the projected system is always unstable. The

corresponding approximations are therefore not shown in Figure 4.9.
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Figure 4.7: Eigenvalue comparison of the two Galerkin projection schemes: conventional
approach (top) and projection of the system in LFT (bottom). The eigenvalues of A(d)
are plotted by the colored lines [28].
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Figure 4.8: Time Response Comparison of Galerkin Projection Schemes [28]
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Truth... is much too complicated to allow

anything but approximations.

JOHN VON NEUMANN

Chapter 5

RDE Projection

This chapter approximates the worst-case quadratic performance of uncertain linear
systems defined over a finite time horizon. Recall that this robust performance analysis
problem boils down to checking if the solution to a (random) parameter-dependent
Riccati differential equation exists, see Chapter 2. Accordingly, the stage is set in
Section 5.1. The parametric RDE is then approximately solved by a Galerkin projection
based polynomial chaos series expansion. The approach is detailed in Section 5.2. It
originates from the author’s work in [26]. The effectiveness of the approximation is
illustrated in Section 5.3 on the example of a worst-case analysis for a space launcher
within the atmospheric ascent phase. The final two sections propose the LFT Galerkin
projection approach for determining the projections of the RDE coefficient matrices.
This approach is needed in the subsequent chapter. Section 5.5 discusses existence

inheritance of the solution.

5.1 Riccati Differential Equations

Consider an uncertain linear time-varying system defined over a finite time horizon.
According to Theorem 2.3, analyzing the robust quadratic performance of such sys-

tems boils down to certifying if the solution X (¢,0) to a Riccati differential equation

76
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of the form

~X(t,8) = E(t,5)
X(t,5) X(t,5) (5.1)
X(T,6) = Q(T,9)

exists for all (¢,0) € [0,7] x D. Generally, nominal quadratic performance, i.e., for a
fixed 0y € D, is straightforward to evaluate simply by integrating the RDE numerically
for X (t,0p). In practice, checking robust quadratic performance is computationally
much harder, since existence of X (¢,0) needs to be certified V6 € D. Since D C R"™,
the RDE (5.1) is infinite-dimensional. To the best of the author’s knowledge, there
exist only approximate techniques to solve this problem (see Section 1.4). The main
idea presented within this chapter is to apply a polynomial chaos series expansion to
approximate the solution X (¢,0) and hence the worst-case quadratic performance of
uncertain LTV systems.

The well-known smoothness properties of RDEs provide the justification and opti-
mism for the applicability of this approach. It is known that the solutions of RDEs
depend smoothly and vary monotonically with respect to the coefficient matrix E(¢,0)
and the initial condition. Solutions X (¢,d) are smooth differentiable functions of ¢,
see [1] or [30] for details. Especially for smooth problems, polynomial chaos expan-
sions converge well due to their spectral convergence behavior, see Theorem 3.2. The

following section introduces our approach.

5.2 Galerkin Projection based PCE of Random RDEs

This section originates from the author’s work in [26]. Assume a solution X (¢, d) to the
random parameter-dependent RDE (5.1) exists for all (¢,9) € [0,7] x D. Solving for the
strong solution X (¢,6) is computationally intractable, i.e., numerically integrating (5.1)
exactly for all § € D. Instead, we seek a weak solution, determined by Galerkin pro-

jection (see Section 3.4) of the RDE. In essence, Galerkin projection approximates the
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solution by a truncated series expansion

L-1

X(t,0) =Y (t,0) = > Ya(t)ta(d). (5.2)

a=0

The random parameter-dependent RDE (5.1) is projected on a suitable finite-dimensional
orthogonal polynomial basis {¢ | « = 0,...,L — 1}. According to Section 3.4, the ap-

proximate solution is then determined by

Va=0,...,L—1: —<Y(t,-),¢a>:<

<Y<T7 ')71/}a> = <Q(T7 ')7 ¢a>'

As usual, the inner products (-,-) are evaluated component-wise. Inserting (5.2) into

(5.3), orthogonality of the polynomial basis yields

T
) 1 I, I,
Ya t) = —5% a ’ E ty- .
O lzgém)m] ( )lzé(}l/g(t)wgb (5.0
(¥2)

It is highlighted that Equation (5.4) is a coupled system of L deterministic RDEs. As

Yo (T) =

is typical within the Galerkin approach, the projected system (5.4) has the same form
as the original differential equation (5.1) (for deterministic realizations of §). Equa-
tion (5.4) is coupled and of higher dimension increased by a factor of L. In order to
make this point more clear, denote by FE;;, i,7 = 1,2, the R"**™*-valued blocks of the
coefficient matrix E(¢,0)

(5.5)
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Define by £(t, ) the symmetric R (E+D)>xne(L+1)_yalued matrix

[ By Ewtdo ... By |
£(t.6) = EZTQZ}O E227,'/)0¢0 E2277Z)(?¢L—1 (5.6)
| Bt | Exothp—1tho ... Extravri |
Denote the Hilbert space projection of (5.6) onto 1, by
Ealt) = 1 (Wi, E(1,)) 6.7
(¥2)
This allows us to write Y,,(t) in Equation (5.4) as
I N A
Yo(t) = — Yolt) Ealt) Y().(t) Va=0,...,L—1 (5.8)
| Yi-1(t) ] | Yi-1(t) ]

This RDE clearly has the same form as the original differential equation (5.1), but
is coupled and of higher dimension. In contrast to the computationally intractable,
infinite-dimensional RDE (5.1), the approximate solution Y (¢,4) can be determined

simply by numerically integrating the L coupled RDEs (5.8).

5.3 Launcher Analysis Example

This section demonstrates the effectiveness of the approximate worst-case analysis on the
example of a launcher in atmospheric ascent. The analysis example is taken from [26].
It is also studied in [12] and originates from [80].

Consider the Vanguard space launcher, a launch vehicle from the early phase of space
exploration. During its atmospheric ascent, significant perturbations from the nominal
trajectory should be avoided in order to minimize the risk of the launcher being lost.

Specifically, goal of the analysis is to quantify the effect of external wind disturbances
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and parametric aerodynamic uncertainties on the launch trajectory. A linear time-
varying model of the launcher’s first-stage rigid body pitch dynamics is derived in [12]

by linearizing with respect to a predefined gravity-turn trajectory:

. Za(t)  —gsinfy(t) T, Za(t)

?é(t) e o~ b ||a) g M) u(t)

o0l = o 0 1 (e |+ o 0 [ (t)]. (5.9)
. Ma(t) Mg (t) Tyé Ma(t) «

q(t) wmo 0 Lwlld®) T T®

Angle of attack «, pitch angle 8, and pitch rate ¢ denote the states of the system.
Input u is a corrective gimbal used for attitude control. The effect of wind is simulated
by the disturbance input d, perturbing the angle of attack. In [80], numerical values
for the aerodynamic stability derivatives Z,, M,, and M, are provided as functions
of time. The time-varying mass m and pitch inertia Jy, are given analytically. The
nominal values along the reference trajectory for speed vy and pitch angle 6, are given
for t € [11.35 s,146.35 s| with a step size of 2.7 s. Thrust Ty, gravitational acceleration g,
and lever arm & of u with respect to the center of gravity are constants.

A time-invariant controller only using pitch angle feedback 6 is provided in [80].
It consists of a linear quadratic regulator in combination with a full-order observer.
The controller is designed in the region of maximum dynamic pressure. Additionally,
a first-order actuator model with bandwidth 50 rad/s is included in the analysis. The
closed-loop system matrix therefore has n, = 7 states.

Due to inevitable modeling errors, assume the aerodynamic coefficients are uncertain
§ = [Zo, Mo, M,)T. (5.10)

Each parameter d; is considered to be distributed uniformly around its nominal value &;
with §; ~ U(0.758;,1.255;). In order to quantify the effect of external wind disturbances
on the uncertain closed-loop system, the finite-horizon induced La-gain from d, () to

a(t) is to be computed. The finite-horizon induced Ls-gain is

[l £op0,19

1Gll 210,17y = sup { do € L2[0, T\ 0, 2(0) = 0} =7 (5.11)

ol o0,
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It falls into the class of quadratic performance metrics (see Chapter 2) by setting

S(t,8) = CT(t,8)D(t,9), (5.12)

A finite time horizon ¢ € [15 s, 100 s] is considered, marking the start and end point
of the gravity-turn maneuver. For the following computations, a 0.5 s grid of the LTV
model is generated by linear interpolation.

Approximations of the robust induced Lo-gain given by the polynomial chaos series
expansion ypcr and Monte Carlo (MC) sampling 4ps¢c are shown in Figure 5.1. The
minimal v for which an associated RDE solution exists is determined by a standard
bisection algorithm. The worst-case out of N = 10* MC samples serves as a reference
gain 7.cs. The nominal induced L3-gain of the system without parametric uncertainty
1S Ynom = 3.06.

Using a total polynomial degree truncation scheme, five Galerkin projections (5.4)
of the RDE (5.1) are computed. For this task, the PolyChaos.jl toolbox [51] within
the Julia programming environment [7] is used. The smallest 4pcg for which a solu-
tion to the RDE (5.4) exists is determined for each expansion degree d € {0,1,2,3,4}.
All involved Riccati differential equations are solved throughout using an order 5/4 ex-
plicit Runge-Kutta method with stiffness detection and automatic switching to TRBDF2,
see [60].

The average 4arc provided by 10 Monte Carlo estimators with sample size N is

computed as a comparison. According to Section 3.3.2, applying a truncation scheme

(ns+d)!

—i— terms in the expansion. Therefore,
ngld!

by total polynomial degree leads to L =
for each polynomial degree d, a MC estimator is calculated as the worst-case gain out
of N = L samples of §. Empirical mean and standard deviation are calculated with
respect to 10 MC estimators, indicating the randomness of the estimates. In contrast,
the polynomial chaos approximation always yields a reproducible deterministic result.
It can be observed in Figure 5.1 that the polynomial chaos approximation converges
to the reference worst-case from below. This convergence behavior (from below) could

be reproduced for various other engineering application examples. However, it cannot be
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generalized to yield a lower bound since there exist mathematical examples contradicting
this convergence from below, see for instance the example given in Section 4.5.5.

In the following section, we introduce a method to determine the projection inte-
grals of the RDE coefficient matrices given as a LF'T. This method will be used in the
subsequent chapter. In case the coefficient matrices are projected in this manner, the
zeroth order PCE can in fact be shown to be a guaranteed lower bound to the true

worst-case quadratic performance index, see Section 5.5.

5.4 LFT Projection of RDE Coefficient Matrices

Consider Equation (5.8) in Section 5.2. Therein, the projection integrals of the RDE
coefficient matrix (5.5) need to be computed. Within this section, based on the work

in [27], we propose to compute the required projection integrals (v, ), (¥a¥3,-), and



83
(Yas1e, -) by applying the LET Galerkin projection approach elaborated in Chapter 4.

Following a similar notation as in Chapter 4, assume the LFT of the considered

uncertain coefficient matrix is given by Fi{M(t), A(d)}, i.e.,
M (t) ﬂ4120?] [u(f75)]

[y(t,f»] _
U(t, 5) Mgl(t) Mzz(t) w(t, 5)
w(t, §) = A(S)v(t, ).

(5.13)

The expansion coefficients of w(t,§) — now a matrix setting u(t) = I, in Figure 4.1 —

can be concatenated within
W(t) = An[l — (Mu(t) ® IL)AH]_l(Mm(t) ®e1) (5.14)

by closing the expanded LFT. According to Chapter 4, the expansion coefficients wq ()

are concatenated within the expanded matrix W (t) as
T\\ —1
W(t) = (Iny @ (FT)) " (w(t, ) ® V). (5.15)

In the following, we switch from the Kronecker product notation to explicitly writing
out the expansion sums for ease of exposition. Thus, the projection (1, y(t,-)) can be
written as
L-1
(W Y Us(D)¥5) = ia(t)E[7)] (5.16)
5=0
due to orthogonality of the basis polynomials 1),. Inserting the series expansion for
y(t,0) and w(t,d) into
y(t,8) = May () (t, 8) + Maa(t) (5.17)

it follows with (5.16)
ya(t) = Mgg(t)éao + Mgl(t)wa(t). (518)

Higher-order projections can be obtained similarly, e.g.,

L-1 L-1

(Pathp, Y Ye(t)e) = (Yaths, Moo (b)) + (Yath, D Mo (t)we(t)ibe) (5.19)

=0 £=0
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and
L-1 L-1
(batbpibe, Y yn(t)y) = (Yatptbe, Moo (b)) + (Yathstle, Y Mar(t)wy(t)iby).  (5.20)
n=0 n=0

5.5 Existence Inheritance for d =0

Assume the RDE coefficient matrices are projected as suggested within the previous
section. In this case, the projected RDE (5.8) for a zeroth order expansion inherits
existence of the solution from the original RDE (5.1). This can be deduced by the
following reasoning.

For a polynomial degree d = 0 (i.e., « = 0, L = 1), note that the projected matrix A
is obtained from A(J) simply by setting d to its expected value:

W(t) = EIA]V(t) = A(E[])V(2). (5.21)

It follows that the projected RDE (5.8) for Yj is given simply by the corresponding
realization of (5.1) for the expected value of . Thus, the zeroth order PCE Y{(¢)
always exists provided the actual solution X (¢,[E[d]) exists for all ¢ € [0,7]. We have
therefore obtained a lower bound to the actual robust quadratic performance when
applied in a bisection in order to find the minimal performance index ~ for which the
RDE exists.

At this point, we emphasize that existence of the zeroth order PCE is not inherited
when applying the conventional Galerkin projection approach. This is due to the fact
that, unfortunately, the expectation of a random matrix is not necessarily a realization of
the original matrix. For example, albeit unlikely to encounter in practical applications,
there exist system matrices A(J) stable V6 € D such that the expectation E[A] (i.e.,
zeroth order PCE) is unstable, see Section 4.5.5. Therefore, existence of the zeroth
order expanded RDE is not necessarily inherited when applying conventional Galerkin
projection as in [26].

However, despite the absence of theoretical convergence guarantees, the approach
still works well in practice. The situation is analogous to a similar problem of the original

Fourier series: there also exist exemplary periodic functions for which convergence of the
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original Fourier series expansion breaks down [42]. These mathematical counterexamples
are unlikely to be encountered in real physical systems. This is illustrated by the

following example.

Example 5.1. Consider two system matrices for & = Ax:

—€/2 1

A =
0 —€/2

Ay =

)

(5.22)

—€/2 0
1 —e/2]’

with some small scalar € > 0. Assume the probability is 50% that the system is either
given by A1 or As. Note that the mathematical expectation is a weighted sum. This also
applies to the stochastic modes of PCEs in general, which are defined via the respective
projection relations [see Equation (3.27)]. Even though Ay and As are stable individually
(both have two eigenvalues at —e/2), the sum Ay + A has two distinct eigenvalues,
one at about —1 (stable) and one at +1 (unstable). This destabilizing phenomenon is
similar to the example given in Section 4.5.5. However, the different structure of the
matrices A1 and Ay implies that the order of integration switches, as becomes evident
when drawing the block diagrams of both systems (consisting of two first-order systems
in series). Physically, this means for instance in a mass-spring-damper system, the
states for velocity and deflection from the equilibrium switch. This is unlikely to occur

m practice.



Scientists investigate that which already is;

engineers create that which has never been.

Albert Einstein

Chapter 6

Automatic Landing System
Analysis

Within this chapter, we illustrate the utility of the robustness analysis methods pre-
sented in the previous chapters. An industry-sized autolanding system of a civil trans-

port aircraft is analyzed. The chapter is taken from the authors work in [27].

6.1 Autoland System Model

Throughout this chapter, the effect of parametric uncertainty and crosswind on the
touchdown maneuver of an automatic landing system is analyzed. The aircraft system
model is open-access available on https://w3.onera.fr/smac/aircraftModel. It was
initiated within the autopilot design challenge [9] formulated by ONERA and Airbus.
The model is representative of a civil transport aircraft in full configuration throughout
the phases final approach and landing.

The aircraft equations of motion are implemented by a standard six-degrees-of-
freedom flight mechanics model. The total sources of forces and moments acting on
the airframe are: gravity, aerodynamics, and twin engines supplying equal thrust in
the fuselage direction. The dynamic response of engines and control surface deflections
(aileron, elevator, and rudder) are modeled by first-order actuator systems with rate
and magnitude saturations.

The robust performance of the autopilot designed in [81] is to be analyzed in this
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chapter. It is synthesized using loopshaping and robust control techniques. The control
algorithm is split into the following common phases. In the first part of the final
approach, the control objective is to let the aircraft track a desired glide path provided by
the instrument landing system (ILS). Subsequently, the controller features two distinct
switches, based on the measured height above ground. These switches initiate flare and
decrab maneuvers. The switch to flare is at 20 m above ground, decrab at 5 m. The
reader is referred to [81] for further details.

According to the original challenge formulation, the performance of the autoland
system is evaluated with respect to six analysis criteria: short landing, long landing,
hard landing, decentered landing, steep bank angle at touchdown, and steep wheel
sideslip at touchdown. Since the goal of this chapter is to demonstrate the proposed
analysis methods, we focus only on the hard landing requirement. In [81], this criterion
is identified as the main performance limiting requirement. Of course, the analysis

performed in the following sections can be repeated for the other criteria.

6.2 Disturbance Model

The hard landing requirement limits the aircraft’s vertical sink rate at touchdown. Ro-
bust performance in the face of various sources of uncertainty, parameter variations,
and atmospheric turbulence is to be assessed. As uncertain parameters, we consider

CG as well as the aerody-

throughout the total mass m, center of gravity location x
namic coefficients C, (lift) and Cps (pitching moment). Each parameter is distributed
uniformly within the limits given in Table 6.1. Note that the center of gravity position is
given relatively with respect to the mean aerodynamic chord. Cf, and Cj; are assumed
to lie within 10% intervals of their mean values denoted by Cr and Cj;. The other
parameters of the original problem formulation not listed in Table 6.1 are set to their
mean values in the scope of this analysis. A complete reference of the original model
parameter set can be found in [9].

Furthermore, the effect of static wind shear is added to the list of disturbances acting
on the aircraft system model. Longitudinal head-/tailwind and lateral crosswind are

considered. Denote by HYC the landing gear’s height above ground. Both wind profiles

are implemented as quadratic functions of the altitude, with maxima at H“C = 15 m.
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Table 6.1: Uncertain Parameters [27]

Parameter min max
Mass m 120-10% kg 180 - 10° kg
Center of Gravity z°C 15 % 41 zé
Lift Coefficient C7, 0.9 Cyp, 1.1 Cq,
Pitch Coefficient Cjy 0.9 C,, 1.1 C,,

Besides parametric uncertainty and static windshear, we include wind gusts and
turbulence into the analysis. Atmospheric turbulence is considered according to [9] as
first-order Markov processes, i.e., first-order filters driven by standard (unit variance)
zero-mean white noise. For instance, at specific parameter values of 25 kts crosswind

and 7.5 kts headwind, longitudinal turbulence is modeled by the transfer function

20.139

Guu(8) = 5577

(6.1)

excited by the white noise input mentioned earlier. Vertical turbulence is produced

analogously with the wind filter

1.7325

G (8) = 5571

(6.2)

Both transfer functions (6.1) and (6.2) have their output given in m/s.

6.3 Linear Time-Varying Model

An uncertain LTV system approximating the closed-loop aircraft dynamics is required
in order to deploy the analysis methods proposed in the scope of this thesis. A dedicated
LTV model is derived within this section. First, a nominal trajectory of the closed-loop
system is obtained by executing the nonlinear simulation model. It is displayed in
Figure 6.1. Starting point of the trajectory is 300 m above the runway, 30 m below
the desired glide slope and 20 m left of the localizer signal. The time instants at which

the controller switches to flare and decrab — in that order — are indicated by vertical
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dash-dot lines. The gray thick line symbolizes the runway centerline. The landing gear’s
lateral displacement from the runway centerline is denoted by Y'G. Hard landing is
considered as a vertical sink rate of the landing gear V*¢ > 12 ft/s (3.7 m/s). Thus,
the requirement avoiding a hard landing is specified as V¢ < 12 ft/s. The constraint
is visualized in the lower left plot by the horizontal red-dashed line. Moreover, the
aircraft’s orientation is shown in the lower right plot, as determined by the Euler angles

® (bank), © (pitch), and ¥ (heading).
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Figure 6.1: Nominal Trajectory without Turbulence [27]

All uncertain parameters are set to their mean values for the nominal trajectory.
The mass is at 150 t, center of gravity is at 28%, headwind is 7.5 kts, etc. Merely
the lateral crosswind value is fixed at its maximum: 25 kts. In order to obtain a
smooth reference trajectory for the linearization performed subsequently, turbulence is
not included within the nominal trajectory.

An uncertain LTV model is then generated as follows. Using Matlab & Simulink’s
ulinearize command, an uncertain linearization around the nominal trajectory is de-
termined. In beforehand, parametric uncertainties are added to the original Simulink
model by inserting uncertain state-space blocks. We highlight that the modeling

within Simulink, use of uncertain state-space blocks, and the ulinearize command
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are very intuitive and user-friendly, readily allowing an application of the proposed anal-
ysis methods to other engineering problems. Moreover, Matlab automatically generates
the LTV model in linear fractional representation.

Inputs for the linearization are the white noise inputs of the turbulence filters (6.1)
and (6.2). The nonlinear model is linearized at 20 equidistantly spaced points in time
throughout the approach, flare, and decrab segments of the reference trajectory. The
model is generated over the complete time interval by linear interpolation with respect to
the linearization time points. Since the hard landing requirement limits the vertical sink
rate, solely the longitudinal dynamics are considered. This implies sufficient decoupling
from the lateral aircraft dynamics. Thus, the determined uncertain LTV model has

n, = 20 states.

6.4 Touchdown Analysis

This section checks satisfaction of the hard land requirement in face of the disturbances

specified in Section 6.2. We apply the analysis methods of Chapters 4 and 5.

6.4.1 Trajectory Perturbations

First, we analyze deviations from the reference trajectory by considering mean and
standard deviation of the linear perturbations. A polynomial chaos expansion of the
uncertain LTV system is applied for this task. The expansion is computed for the system
in linear fractional representation, see Section 4.3.

Let the white noise signals, i.e., inputs to the turbulence filters (6.1) and (6.2), be
given. For a given input signal, the mean output due to parametric uncertainty of the

LTV system is obtained by [see Equation (3.31)]

L—-1 L—-1
Ely(t,0)] ~ E[Z ya<t>wa} = (%0, > Ya(D)tba) = yo(1). (6.3)
a=0 a=0
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The output variance is approximated similarly [cf. Equation (3.32)] by

VIy(t,8)] = E[(y(t, 5) — Ely(t, 9)]) (u(t, 6) — Ely(t,6)])" ]

L—1 L-1
~ () va®ta —yo@®) (D yst)vs — yo(t)")
a=0 B=0

o L1 (6.4)
= (3 gata Y yh (O)vs)
a=1 B=1

L-1
=3 valwE (0 (2).
a=1

Note that Monte Carlo simulation (MCS) can simultaneously handle both the para-
metric uncertainty and the random input turbulence signals at once: for each parametric
uncertainty sample, an associated random noise seed is determined, generating a unique

white noise sequence. The empirical formulae for mean

5(1) = v > 90 (65)
i=1
and (unbiased) variance
N
V(t) = s 3 (00(0) ~ 50) (0 (1)~ 5(1)” (6.6)
i=1

then yield the targeted variables of interest.

On the other hand, the method of polynomial chaos can account primarily for para-
metric uncertainty. In order to quantify the effect of the complete disturbance model
detailed in Section 6.2 — including the random turbulence signal — the perturbations
due to the white noise input and parametric uncertainty need to be combined. The
approach applied for this task is summarized by pseudo-code given in Algorithm 1. The
perturbation due to the white noise input is accounted for by Monte Carlo sampling,
i.e., in a loop over the noise seeds, with Ny samples. For each noise seed, a specific
input turbulence signal u()(¢) is determined. Given the input signal, the perturbation

due to parametric uncertainty is obtained by simulating the polynomial chaos expanded



92

Algorithm 1 Combined LFT expanded LTV Simulation and Monte Carlo Turbulence
Sampling [27]

1: fori=1: Ny do

2: Generate noise seed and input signal u() (t).

3: Simulate LFT expanded LTV system (4.17), (4.18).
(1)

4: Get mean g, (t) and standard deviation O’;i) (t) from (6.3), (6.4).
@) (o

1

6: Get the combined standard deviation o; according to Equation (6.7).
7: end for

LTV system. In total, the combined mean is then still computed along the lines of Equa-
tion (6.5). Here, Welford’s online algorithm (see [88]) is used for combining the mean
of the first i noise seeds in Line 5. Line 6 computes the total standard deviation o; at
iteration i by
. _ _ NE ) \2
(i = D[oFs + @Gia — 5% + 0] + (w” —7)

o = - 0 . (6.7)

The reader is referred to Appendix A for detailed information on how to combine the
standard deviation. Note that also a (Karhunen-Loeve) series expansion is applicable
to the random input process (see e.g. [44]), as an alternative to the Monte Carlo loop.
However, this is out of scope of the present thesis.

Throughout this chapter, the Galerkin projection of the uncertain system and its
matrices are determined according to Sections 4.3 and 5.4, respectively. The uncertain
system is given as a linear fractional transformation by Matlab’s ulinearize command,
see the previous section. Note that it is not straightforward to implement the conven-
tional Galerkin approach by hand, since the system has n, = 20 states and a non-trivial
parameter dependence. This would therefore demand considerable programming effort
and computational resources. At this point, the Galerkin projection of the system in
linear fractional representation presents a viable and automated alternative.

Figure 6.2 displays the mean (solid line) and standard deviation (shaded area) com-
puted by Algorithm 1 in blue. A polynomial expansion degree of 1 and Ny, = 100 noise
seeds are used. A Monte Carlo simulation of the full nonlinear model with Ny;cg = 10*

samples serves as a benchmark. It is shown in red. 7 denotes the elevator deflection.
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Figure 6.2: Comparison of Alg. 1 (blue) and Nonlinear MCS (red) [27]. Reference
trajectory is in black.

The touchdown requirement for V*¢ is shown by the horizontal red-dashed line. Ver-
tical blue dash-dot lines mark the initiation of the flare and decrab maneuvers by the
autoland controller. Regarding the LTV system analysis, these switching times are fixed
by the reference trajectory. The mean time instants of when flare and decrab are ini-
tiated as determined by the MCS are indicated by vertical red dash-dot lines. A slight
discrepancy is visible. On average, flare and decrab maneuvers are initiated sooner.
However, regarding especially the vertical sink rate VzLG, already a polynomial ex-
pansion degree of 1 yields a good approximation compared to the Monte Carlo (MC)
reference with Ny;cg = 10* samples. Moreover, on a standard laptop, the MCS re-

quires 2 - 10* s (5.5 h) of computation time whereas Algorithm 1 with Np7y = 100
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simulations of the expanded LTV system requires 200 s (3.3 min) to execute. Hence,
the time needed for a single simulation of the expanded LTV system is comparable to a
single MC sample (about 2 s). Yet, for a fixed input signal, the PCE already accounts
for the parametric uncertainty, i.e., it delivers the mean and standard deviation. This
demonstrates that the PCE approach is beneficial especially when the analyzed system
incorporates uncertain parameters.

Histograms of the vertical sink rate V¢ at touchdown are shown in Figure 6.3. The
PCE approach (Algorithm 1 with d = 1 and Nppy = 100) is displayed in blue and the
MCS (with Ny;cs = 10%) in red. The histograms are scaled in the y-direction such that
the bar areas add up to 1, imitating a probability distribution. The VZLG requirement
is marked by the vertical red-dashed line. It can be observed that the MCS is biased
towards harder touchdown speeds compared to Algorithm 1. A part of the bias can be
traced back to be attributed to the earlier switching times to flare and decrab. This
alters the reference trajectory. During the analysis, especially the switch to decrab was
found to influence the touchdown conditions significantly. Apart from that, it has to be

acknowledged that the linearization can only approximate the true system response.

6.4.2 Robust System Gain Analysis

An approximate worst-case analysis is also performed in the following. The estimated
worst-case bounds for the vertical sink rate are added to Figure 6.3. These are deter-
mined as follows. We approximate the robust Lo-to-Euclidean gain [see Equation (2.9)]
by applying a polynomial chaos expansion along the lines of Chapter 5 for increasing
total polynomial degrees d. Each series expansion is truncated by a standard total
polynomial degree truncation scheme. The bounds plotted in Figure 6.3 are obtained
in accordance with [14] by multiplying the approximated worst-case Lo-to-Euclidean
gain with a scaling factor and adding the reference sink rate at touchdown. Note that
the approximate bounds tightly enclose all realizations obtained by the nonlinear MCS
(and Algorithm 1).

We further consider more sophisticated truncation schemes in the following. Fig-
ure 6.4 displays different approximations of the worst-case gain. The robust Lo-to-
Euclidean gain ||G||2,z, is plotted over the dimension N of the approximation used. For

approximations based on polynomial chaos, N indicates the number of expansion terms.
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Figure 6.3: Vertical Sink Rate at Touchdown [27]

For Monte Carlo estimators, N is the size of the sample set. We emphasize that Monte
Carlo is a random estimator. KEvery trial with N samples is a random variable. In
contrast, the PCE always yields the same reproducible estimate (for a fixed polynomial
basis). Regarding the Monte Carlo estimates, Figure 6.4 shows in red the empirical
mean (solid line) and standard deviation (shaded area) with respect to 50 random es-
timators. The worst-case out of 10> Monte Carlo samples is plotted by the horizontal
dashed line. The Matlab package LTVTools [70] is used for the involved bisection and

solution of sampled instances of RDEs used by the MC estimators.
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Figure 6.4: Approximate Robust L2-to-Euclidean Gains [27]

Besides the standard truncation scheme with total degree d < 2, a total degree
truncation with d < 3 and maximum interaction limited to 1 as well as a custom
adaptively built basis are used. See for instance [46] for details on advanced truncation
schemes. In this example, they do not yield an advantage contrasted with the standard
truncation scheme. Note that the zeroth (N = 1) and first-order (N = 5) expansion
remain unaltered regardless which basis truncation scheme is used. The nominal La-to-
Euclidean gain is given by the first point at N = 1, since the zeroth order LF'T expansion
is given simply by the expectation of 4. The expectation matches the nominal case 6 =0
for symmetric probability densities of 4.

The average gain computation time for one MC sample is 4.6 s. The total 103
samples need 4640 s (1.3 h) to compute. Table 6.2 logs the computation times needed
by the polynomial chaos approximations employing the standard total degree truncation
scheme. The right column shows the corresponding mean sample set size of a Monte
Carlo estimator determined to fit the computation time of each row. Together with

Figure 6.4, it is evident that the PCE yields quick and qualitatively good approximations
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contrasted with the Monte Carlo estimators and the worst-case out of 10® samples. This
has to be contrasted with the Ny;cg = 10* nonlinear MCS in Figure 6.3, which needs
5.5 h computation time. Note that already the d = 0 gain approximation bounds all
realizations of the MCS, including a realization at approximately 12.5 ft /s which violates

the requirement.

Table 6.2: Polynomial Chaos Gain Approximation Times [27]

Total Computation Mean MC
Degree d Time Sample Set Size N
0 9.6 s 1
1 73.8 s 16

2 1438.7 s 313




You live and learn. At any rate, you live.

The Hitchhiker’s Guide to the Galaxy
DouGLAs ADAMS

Chapter 7

Conclusion and Discussion

7.1 Conclusions

Within this thesis, it is shown that a polynomial chaos expansion (PCE) of an uncertain
linear time-varying (LTV) system in linear fractional representation (LFR) enables a
computationally more efficient approach for probabilistic robustness analysis, see the
first part of Chapter 4. In essence, the main advantage follows from exploiting the
structure yielded by the uncertain system’s linear fractional transformation (LFT) be-
fore deploying the PCE. The method’s effectiveness is demonstrated on the example of
a two-link robotic manipulator.

The second part of Chapter 4 shows that a PCE of an uncertain system in LFR
is equivalent to applying Gaussian quadrature for numerical integration. This is inter-
preted in [28] as an argument to better apply Gaussian quadrature than a conventional
polynomial chaos expansion based on Galerkin projection, for uncertain linear systems
with rational parameter-dependence. We do not make this interpretation here. How-
ever, we do note that theoretically, conventional Galerkin projection may alter the
differential equation in a manner such that important system characteristics, e.g., sta-
bility or existence of the solution, are not necessarily preserved. The LFT Galerkin
projection is clearly advantageous here, since it yields realizations of the actual system.
However, it is mentioned once more that there also exist exemplary periodic functions
for which convergence of the original Fourier series breaks down as well [42]. Luckily,

these situations seldom occur in real physical applications, see Example 5.1.
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The equivalence of LFT Galerkin projection and Gaussian quadrature motivates
to reconsider the problem we are actually solving throughout probabilistic robustness
analysis, see the following section. In nearly all instances, the dominating challenge
is computation of a probability integral. Practical solution approaches essentially boil
down to means of efficient and accurate numerical integration. We have shown that
applying PCE to uncertain systems in LFR essentially applies Gaussian quadrature. It
is known that, for smooth (polynomial) integrands, Gaussian quadrature is the optimal
approach and no other quadrature rule has a higher order of accuracy for a fixed number
of nodes [77].

The previous theoretical findings are straightforward to apply to probabilistically
robust controller synthesis, e.g., by a scenario approach [79] with realizations given by
the Gauss quadrature points. Gaussian quadrature may further be applied to compute
the probabilistic structured singular value (see for instance [5]).

Chapter 5 proposes to approximate the worst-case quadratic performance of uncer-
tain LTV systems by applying a polynomial chaos expansion to the underlying Riccati
differential equation (RDE). This Galerkin approximation can be applied throughout all
fields of control systems theory where the solution of parametric RDEs, i.e., with ran-
dom coefficients and initial conditions, is required. Existence inheritance of the solution
is discussed in Section 5.5. Theoretically, this may be an issue, although unlikely to be
encountered in practice. If simply the Gauss quadrature realizations are used, as sug-
gested in Section 4.5.6, a lower bound to the true worst-case quadratic performance is
obtained trivially. A lower bound is also obtained if the zeroth order PCE is determined
by LFT Galerkin projection of the RDE coefficient matrices, see Section 5.5.

Finally, Chapter 6 demonstrates the usefulness of the methods proposed throughout
this thesis on the example of a robustness analysis of an industrial-grade autolanding
system. Therein, the proposed methods are shown to rapidly produce analysis results in
good agreement with extensive Monte Carlo simulations. They can hence complement
existing approaches for Verification & Validation, accelerate the control system design
process, or provide a fast online robustness assessment (e.g., health monitoring) with

reduced computational effort.
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7.2 Further Remarks

As noted in the previous section, the ultimate undertaking within probabilistic robust-
ness analysis is the computation of a probability integral. For nontrivial models and
problems at the frontiers of engineering, the integral is not solvable analytically and
must be approximated by numerical integration. However, the accurate and efficient
numerical integration of a possibly high-dimensional integral is limited by our finite
computational resources. Quadrature (i.e., gridding) suffers from the well-known curse
of dimensionality. This explains the rapid growth of terms in the polynomial chaos
expansion [see Equation (3.36)].

Arguably, Monte Carlo does not alleviate the curse of dimensionality. Rather, it is
merely ignored. Nearly every application example given throughout this thesis shows
that Monte Carlo estimators converge more slowly than a PCE or Gaussian quadrature
with the same number of terms (i.e., samples). Instead of randomly fumbling around
the parameter space in order to determine the nodes within a numerical quadrature
rule, PCE and Gaussian quadrature make an informed choice based on the probability
distribution of the input uncertainty 9.

Regarding the problem of scaling to high-dimensional parameter spaces, we remark
the following. It is shown very intuitively in [6] that, with increasing dimension of the
parameter space, the parameter regions which contribute most to the desired proba-
bility integral become more and more narrow. This problem amplifies to the point of
singularity the greater the number of parameters. It is known that the application
of any sound methodology is limited by the existence of the solution to the question
asked [33]. One way to ensure a waste of time is by attempting to solve a problem
with no solution. If the problem of a high-dimensional parameter domain persists, the
method of Hamiltonian Monte Carlo [6] delivers promising results [93] worth further

investigation and future research.
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Appendix A

Combined Standard Deviation of

Two Sets

Line 6 of Algorithm 1 computes the total standard deviation at iteration ¢ by combining
the standard deviation of the ¢th noise sample with the total standard deviation at
iteration ¢ — 1. For this task, Equation (6.7) is applied. We derive Equation (6.7) in the
following, based on [27]. For i € {1,2}, consider two data sets of size n;. Denote their
individual mean by ¥, and standard deviation by ;. The combined mean of both data

sets is
_ nlgl + n2?2 (A 1)
n+ng '

The combined standard deviation o, is further given by
o _ o + (51 —5.)*] + n2[03 + (72 — )]

= : A2
o —— (A.2)

Equation (6.7) used in line 6 of Algorithm 1 follows by setting the first data set as the

first 7 — 1 noise samples (seeds) and the second data set as the ith noise sample (seed).
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