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Abstract

With the rapid development of laser technology, it is nowadays possible to produce
intense few-cycle pulses for larger wavelengths from microwave to visible range
and attosecond pulses for shorter wavelengths from ultraviolet to the X-ray range.
When an atom or molecule is irradiated by such intense laser pulses, it can undergo
various ionization processes, resulting in an ion plus one or more free electrons.
Typically, kinetic-energy spectra for the liberated electrons are measured. A
suitable combination of ultrashort pulses with highly accurate delays between
them allows for a “detailed look” into fundamental processes.

Apart from well-known processes, like single-photon ionization, i.e., the photo-
effect, the short duration may trigger new processes like non-adiabatic photoioniz-
ation (NAPI) that is driven by fast changes in the pulse envelope. It is interesting
to see whether this process is sensitive to ultrashort laser pulse shaping. It will
be shown how NAPI can be controlled by means of phase details of the ionizing
radiation using ultrashort laser pulse shaping. A catalyzing state, which should
be quasi-resonance with respect to the initial state, will be introduced. Such a
state allows for coherent control of NAPI by modeling the phase details of the
pulse.

Even for strong laser pulses time-dependent perturbation theory might be
helpful, in particular, in cases where the laser frequency is large than the electron
binding energy. In this case, several ATI peaks occur with the 0th peak, caused by
NAPI, being an addition. High-order perturbation thereby helps to understand
the dependence on the driving pulses, being it shaped pulses for the 0th peak or
strong pulses resulting in interference stabilization for the 1st peak.

A natural question that arises with the availability of ultrashort is the meas-
urement of times in particular of the photoionization time delay upon single-
photon ionization. This has been studied mainly for atoms and attributed to the
Wigner-Smith scattering time delay. In anisotropic potentials as in molecules, the
relation of the two time delays is more involved. We discuss this relation in detail
for model potentials.
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Kurzfassung

Durch die rasante Entwicklung der Lasertechnologie ist es heute möglich, intens-
ive Pulse mit wenigen Zyklen für größere Wellenlängen vom Mikrowellen- bis
zum sichtbaren Bereich und Attosekundenpulse für kürzere Wellenlängen vom
Ultraviolett- bis zum Röntgenbereich zu erzeugen. Wird ein Atom oder Molekül
mit solch intensiven Laserpulsen bestrahlt, kann es verschiedene Ionisierungs-
prozesse durchlaufen, bei denen ein Ion und ein oder mehrere freie Elektronen
entstehen. Typischerweise werden die kinetischen Energiespektren der freigeset-
zten Elektronen gemessen. Eine geeignete Kombination ultrakurzer Pulse mit
hochpräzisen Verzögerungen zwischen den Pulsen ermöglicht einen “detaillierten
Blick” auf grundlegende Prozesse.

Abgesehen von bekannten Prozessen wie der Ein-Photonen-Ionisation, d.h.
dem Photoeffekt, kann die kurze Dauer neue Prozesse wie die nicht-adiabatische
Photoionisation (NAPI) auslösen, die durch schnelle Änderungen der Pulshülle
angetrieben wird. Es ist interessant zu sehen, ob dieser Prozess empfindlich auf
die Formung ultrakurzer Laserpulse reagiert. Es wird gezeigt, wie NAPI durch
Phasendetails der ionisierenden Strahlung mittels ultrakurzer Laserpulsformung
gesteuert werden kann. Es wird ein katalysierender Zustand eingeführt, der in
Bezug auf den Ausgangszustand quasi-resonant sein sollte. Ein solcher Zustand
ermöglicht die kohärente Kontrolle von NAPI durch Modellierung der Phasende-
tails des Pulses.

Selbst für starke Laserpulse kann die zeitabhängige Störungstheorie hilfreich
sein, insbesondere in Fällen, in denen die Laserfrequenz größer ist als die Bindung-
senergie der Elektronen. In diesem Fall treten mehrere ATI-Peaks auf, wobei der
nullte Peak, der durch NAPI verursacht wird, eine Ergänzung darstellt. Die
Störung hoher Ordnung hilft dabei, die Abhängigkeit von den treibenden Pulsen
zu verstehen, seien es geformte Pulse für den nullten Peak oder starke Pulse, die
zu einer Stabilisierung der Interferenz für den ersten Peak führen.

Eine natürliche Frage, die sich mit der Verfügbarkeit ultrakurzer Pulse stellt,
ist die Messung von Zeiten, insbesondere der Zeitverzögerung der Photoionisation
bei der Einzelphotonenionisation. Diese wurde hauptsächlich für Atome unter-
sucht und auf die Wigner-Smith-Streuung zurückgeführt. Bei anisotropen Poten-
tialen wie in Molekülen ist die Beziehung zwischen den beiden Zeitverzögerungen
komplizierter. Wir diskutieren diese Beziehung im Detail für Modellpotentiale.
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Chapter 1

Introduction

“In science one tries to tell people, in such a way as to be understood by everyone, something

that no one ever knew before. But in poetry, it’s the exact opposite.”

– Paul Dirac

1



1.1 Preface

1.1 Preface

In 2018, Gérard Mourou and Donna Strickland were awarded half of the Nobel Prize in
Physics for their groundbreaking work on generating high-intensity, ultra-short optical pulses
[1, 2]. The intensity of these pulses is so high that it allows for multi-photon processes [3],
with a particular form resulting in above-threshold ionization (ATI) peaks [4, 5]. In recent
decades, techniques for generating pulses have been improved that allow for the generation
of ultrashort pulses at the extreme-ultraviolet (XUV) by means of high-harmonic generation
(HHG) [6].

Another route for ultrashort in XUV is free-electron lasers (FEL) [7, 8]. Short-duration
pulse has two implications that are considered in this thesis. (1) In interaction with atoms
and molecules, it triggers a new ionization process. (2) It allows for the measurement of
duration on this time scale, thereby allowing for the study of electron dynamics in atoms and
molecules in real-time [9].

The experimental progress in shaping laser pulses will be an important aspect of the
thesis. Tailored laser pulses used in coherent control (CC) schemes have led to the discovery
of new phenomena in the coupling of light to matter [10]. These phenomena have been
uncovered through the use of shaped laser pulses. Quantum coherent control was not realistic
until the early 1990s, when ultrashort pulse shaping techniques became practical, and the
coherent control of quantum phenomena finally became a reality [11]. For these pulses, phase
manipulation using a seeded FEL is possible [7]. In this thesis, we will use it in a new context.

One of the ionization processes that exclusively rely on short pulses is non-adiabatic
photoionization (NAPI) [12, 13]. It occurs if the photoelectron cannot follow the fast change
of the pulse envelope. It only depends on the envelope of the short ionization pulse but
not on the phase details of the pulse [14]. Therefore, it is difficult to control NAPI in the
experiment. In chapter 3, we put emphasis on how to coherently control this process using
ultrashort pulse shaping. In section 3.3.2, by shaping the spectrotemporal content of XUV
pulses, one can render NAPI to phase details of an ionizing pulse in a resonance condition
[15].

One may consider NAPI as the zeroth ATI-peak, which is a low-energy peak right above
the threshold. This peak is different from the “traditional” ATI peaks, which will be done
with time-dependent perturbation theory (TDPT) [16, 17, 18]. Hereby, it turns out that
TDPT is a promising method in the ultrashort regime that shows useful applications. Not
only can we utilize the 2nd-order perturbation theory to describe the 0th ATI-peak, a process
involving the absorption of one photon followed by the emission of another photon, but we

2



1.2 Thesis outline

can also account for the stabilization in single-photon ionization [19, 20]. The onset of the
stabilization, one of the most surprising phenomena with strong fields, can be investigated
using 3rd-order TDPT which is a destructive interference between the first and third-order.

The most natural application of ultrashort pulses is to measure times, in particular upon
single-photon ionization. It is well known from fundamental principles in quantum theory
that time is not a direct observable quantity [21, 22]. The study of attosecond photoionization
time delays is an active area of research with applications in a wide range of fields, some of
which were reviewed by Patel and Michielssen in 2021 [23] and by Kheifets in 2023 [24].

Photoionization time delay of molecules represents a much richer process, as compared
to atomic ionization, involving a strong angular dependence due to the anisotropic nature of
molecular scattering potentials. However, it has received less attention so far, presumably
because of the associated experimental and theoretical complexity. The first fully theoretical
study of three-dimensional photoionization delay was made by Hockett et al. in 2016 [25]
that was mapped in the molecular frame and showed the dependence of the emission delay on
the electron kinetic energy, the molecular orientation with respect to the light polarization,
and molecular symmetry. The experimental measurement also has been made in the group
of Wörner in 2016 for N2O and H2O molecules [26].

The Wigner-Smith time delay [27, 28] is a scattering process. In the case of spherical
potentials there is a connection between the scattering time delay, Wigner-Smith, and the
photoionization time delay, since we have selection rules and channels have well-behaved time
delays. This is different in molecular systems with anisotropic potentials. In Chapter 5 we
discuss this non-trivial connection between scattering time delay and photoionization time
delay in molecular systems.

Time delay is a quantity sensitive to the calculation of bound and continuum states. In this
thesis, we perform the renormalized Numerov method [29], which is a very accurate numerical
method. By modifying precise boundary conditions in this method, we can calculate time
delays with high accuracy.

1.2 Thesis outline

The thesis is structured into six chapters: chapter 1 provides an introduction, in chapter 2
we introduce strong field ionization along with basic concepts and present the non-relativistic
time-dependent Schrödinger equation for modeling atoms in laser fields, and in chapter 6,
the thesis will be rounded off with a short summary of the findings presented, along with
some concluding remarks and an outlook on open questions and potential future work. The

3



1.2 Thesis outline

remaining chapters which cover three aspects of photoionization are organized as follows:

• Chapter 3
Non-adiabatic photoionization occurs if the light pulse changes fast as compared to the
electronic states it couples to. Its occurrence depends on the envelope of the ionizing
pulse. We study this process using ultrashort laser pulse shaping, where we introduce
a catalyzing state whose presence renders non-adiabatic ionization sensitive to phase
details of the tailored pulses in order to enhance ionization and eventually paves the
way for experiments for coherent control of this process.

• Chapter 4
In this chapter, we investigate time-dependent perturbation theory in ultrashort pulses,
where we develop new applications of this method. For example, using second-order
perturbation theory, we provide a formula for non-adiabatic photoionization, which
depends on the square of the pulse envelope. Furthermore, third-order perturbation
theory is taken into account, in order to study interference stabilization, for which we
provide an expression for the critical field strength.

• Chapter 5
Time delay is a hot topic that is discussed and measured primarily for atoms. However,
this is more complicated in molecules since it depends on the molecular orientation
with respect to light polarization and molecular symmetry. This chapter considers
this topic from two perspectives: a scattering theory and a wavepacket approach, in
which we discuss the theoretical results of angle and energy-resolved time delays in the
photoionization of molecules in this rich attosecond phenomenon.

Throughout this thesis, we used atomic units in short ‘a.u.’, unless specifically stated other-
wise, see Appendix F.

4
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2.1 Preface

2.1 Preface

Strong field physics is a field of physics that studies the behavior of matter and radiation in
extremely strong electromagnetic fields [30]. These fields are typically so intense that they
cause significant deviations from the behavior of matter and radiation in weak fields. The
field of laser-matter interaction is one of the most active areas of research within strong field
physics. Laser-matter interaction refers to the interaction between high-intensity laser beams
and various types of matter, including gases, solids [31], and plasmas [32]. It has applications
in ultrafast science, which involves studying chemical and physical processes that occur on
extremely short timescales. This has potential applications in fields such as materials science
[33], chemistry [34], and biology [35, 36].

This chapter introduces fundamental concepts in strong field physics, which will be used
and referred to throughout the thesis. Furthermore, introductions to the more specialized
sub-fields for which new results are presented in chapters 3 to 5 can be found at the start of
the respective chapters.

The chapter is structured as follows. In section 2.2, we start a ‘journey’ from weak field
to strong field ionization and introduce the related phenomena. In section 2.3, we review the
basic equations used throughout the thesis. In section 2.4, we have an introduction to pulse
shaping and the way to shape pulses and provide some pulses that are used in this thesis.
Lastly, we conclude this chapter in section 2.5.

2.2 Introduction to strong field ionization

Strong field ionization (SFI) is a physical phenomenon that occurs when an atom or molecule
is subjected to an intense electromagnetic field, typically in the form of a laser pulse. Under
such conditions, the electric field of the laser can become strong enough to ionize the atom or
molecule, stripping one or more electrons from the system. SFI is a crucial process in many
areas of physics, such as high harmonic generation, attosecond science, and laser-induced
breakdown spectroscopy.

2.2.1 From the photoelectric effect to strong-field ionization

Photoionization is a process in which an atom or molecule absorbs a photon of sufficient
energy to remove an electron from the atom or molecule, resulting in the formation of a
positively charged ion and a free electron, multiple ionization processes are illustrated in Fig.
2.1.

6



2.2 Introduction to strong field ionization

Figure 2.1: Basic ionization processes in atoms, the blue line is the potential, and the black
line indicates the ground state energy, where the electron initially is. (a) In single-photon
ionization, the atom is ionized through the absorption of a single-photon, the red line implies
that one photon energy is sufficient to ionize the electron. (b) If the laser intensity is high
enough, multiple photons (red line) can be absorbed simultaneously, leading to ionization
even if the individual photons’ energy is insufficient. (c) In tunnel ionization, the laser light
can be considered as a classical field that is strong enough to bend the Coulomb potential of
the atom, such that a tunnel barrier is created, and the electron may tunnel out. The dashed
arrow indicates the barrier can oscillate as the field oscillates. The graphic is taken from [37]

.

The most basic ionization process that exists even in the most straightforward bound
electronic system, a hydrogen atom, is single-photon ionization, see Fig. 2.1a. A single
photon can remove an electron from its initial bound state into the continuum. Single-photon
ionization is also the mechanism underlying the photoelectric effect [38].

In 1905, Einstein published [38] his work on the photoelectric effect and the light quantum
hypothesis, which gave rise to a reformation in the field of light-matter interaction. The
photoelectric effect that Einstein described is marked by the following three features of pho-
toelectric emission [39] (i) For a given atom, there exists a certain minimum frequency of
incident radiation below which no photoelectrons can be emitted. (ii) For a given atom and
frequency of incident radiation, the rate at which photoelectrons are ejected is proportional to
the intensity of the incident light. (iii) Above the threshold frequency, the maximum kinetic
energy of the emitted photoelectron is independent of the intensity of the incident light and
is described by Ekin = ℏω − Ip where Ip is the ionization potential or work function. This
framework was able to account for diverse unsolved experimental results of that time.

With the advent of lasers, particularly high-intensity lasers, these “laws” were no longer

7



2.2 Introduction to strong field ionization

applicable and broke down, even though they are still valid for weak lasers. The reason was
that Einstein’s photoelectric was based on the assumption that a single photon is absorbed.
However, as theoretically postulated by Maria Göpper in 1931 [40] and experimentally verified
in the 1960s [41, 42], an atom can be ionized by absorbing two photons. With the rise of even
more intense lasers, this concept was found to be more general, with multiphoton bridging
the energy gap from the binding energy to the continuum, see Fig. 2.1b. Regarding the
above-mentioned three features to describe photoionization, these have to be modified, for
instance, even below the minimum frequency, multiphoton can provide the energy for the
electron release if the intensity of the incident laser is sufficiently high. Moreover, In the
perturbation regime, the ionization rate becomes proportional to In, where n is the number
of absorbed photons and laser intensity I [43]. This can be considered that Einstein’s single-
photon ionization is a special case with n = 1.

The photoelectron spectrum in strong-field ionization becomes more complicated [4, 44]
than one might expect and requires more words to fully refine the above features. From
the photoelectron spectrum, one can expect the maximum kinetic energy Ekin = nℏω − Ip,
where n is the minimum number of photons needed to overcome the ionization potential Ip.
However, it was observed that far more photons could be observed in the ionization process
than are required to overcome the ionization potential. Consequently, photoelectrons can
achieve a higher maximal kinetic energy than expected [4]. This effect is known as “above-
threshold ionization” (ATI), and it appears as several peaks separated by photon energy ℏω
in the photoelectron spectrum and had been seen in experimental observations [5].

Still, there is one observation that does not entirely fit into this picture: as laser intensity,
I, increases, peaks at higher energies appear, nonetheless, the lower-order peaks are reduced
and finally suppressed [45, 5]. The reason for this peak suppression was later found to be
that the energies of the atomic states are stark-shifted in the presence of a laser field [46, 47].

There can be two sorts of stark shifts, AC Stark shift and dynamic Stark shift. Both are
related to the interaction between an atom or molecule and an external electromagnetic field.
However, there are some differences between them. The AC Stark shift, also known as the
Autler-Townes effect [48], is a shift in the energy levels of an atom or molecule that occurs
when it is exposed to an intense laser field. The shift is caused by the coupling of different
energy levels by the external field, which results in the splitting of the original energy levels
into new energy levels. This effect is usually observed when the frequency of the external field
is resonant with one of the atomic or molecular transition frequencies [49]. On the other hand,
the dynamic Stark shift is a time-dependent shift in the energy levels of an atom or molecule
that occurs when it is exposed to a laser field. The laser field can induce transitions between
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2.2 Introduction to strong field ionization

different energy levels of the atom or molecule, causing shifts in the energies of these levels.
The resulting energy shifts are known as the dynamic Stark shifts [50, 51]. In other words,
the dynamic Stark shift describes the changes in the energy levels of an atom or molecule in
response to a varying electric field.

Back to the observation that does not fit into the picture. The lowest bound states’ AC
Stark shifts are negligibly small for low laser frequency. On the contrary, the level shift due
to the dynamic stark effect of the Rydberg and continuum states are essentially given by the
electron ponderomotive energy

Up = E2
0

4ω2 , (2.1)

the cycle-averaged kinetic energy of the electron’s quiver motion in the laser field [52, 53],
where E0 is the field strength and ω the angular frequency of the laser field. In light of this,
the kinetic energy of the photoelectrons is expressed by

Ekin = nℏω − Ip − Up, (2.2)

where n is the number of absorbed photons. Yet, the shift of the atomic state was not observed
in the early experiments due to the long pulses [45, 47, 54]. In the long pulse regime, the
duration of the ionizing radiation is long compared to the time it takes a photoelectron
to leave the interaction volume. A photoelectron is produced in an intense field at kinetic
energy Ekin = nℏω − Ip − Up. Upon leaving the focus, the ponderomotive energy of the
newly created photoelectron in the optical field at the same location is also Up. Thus for long
pulses, the electron converts the ponderomotive energy into kinetic energy as it exits from
the interaction volume, just compensating for the decrease in its initial kinetic energy due to
the raised ionization potential, and the peaks appeared at Ekin = nℏω− Ip. After all, leaving
the suppression of the lowest order peaks the only conspicuous feature hinting at the Stark
shift. If the pulse duration of the ionizing radiation is short compared to the time for the
photoionized electron to escape the interaction volume, there is no time for the photoelectron
to accelerate before the pulse leaves [55, 56]. Therefore, only when the pulses became shorter
the peaks in the ATI spectrum did shift by Up.

As for the last point, it is worth mentioning that, although not the focus of this thesis,
when the ponderomotive energy Up is much larger than the ionization potential, ionization
occurs by the tunneling mechanism [57], i.e., the electron tunnels through the barrier formed
by the atomic potential and the laser electric field, provided that the field is of low frequency
[45], see Fig. 2.1c. In this case, the regular structure of ATI peaks disappears [58, 59].
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2.3 Non-relativistic time-dependent Hamiltonian

2.3 Non-relativistic time-dependent Hamiltonian

To theoretically describe laser-matter interaction in the non-relativistic regime, we consider
the time-dependent Schrödinger equation (TDSE). Note that in this thesis, we utilize the
single-active-electron (SAE) approximation, where the core and other electrons are frozen in
a system, and instead, an effective potential is engaged. If the system is not subjected to any
external field, its field-free Hamiltonian reads [60]

Ĥ0 =
ˆ⃗p 2

2µ + V (r⃗), (2.3)

where µ, r⃗, and p⃗ are the mass, coordinate, and momentum of electron, respectively. The
potential V (r⃗) can have a spherical or anisotropic form. In the position space ˆ⃗p = −iℏ∇⃗, and
ˆ⃗r |r⃗⟩ = r⃗ |r⃗⟩, the wavefunctions are given by ψ(r⃗) = ⟨r⃗|ψ⟩. We assume that energy eigenstates
|j⟩ of Ĥ0, which are both bound and continuum states, satisfying the time-independent
Schrödinger equation

Ĥ0ψj(r⃗) = Ejψj(r⃗), (2.4)

where ⟨r⃗|j⟩ = ψj(r⃗).
In the presence of an external field, the Hamiltonian becomes

Ĥ(r⃗, t) = 1
2µ
[
ˆ⃗p+ eA⃗(r⃗, t)

]2
− eΦ(r⃗, t) + V (r⃗), (2.5)

where A⃗(r⃗, t) and Φ(r⃗, t) are the vector and scalar potential, respectively, of the external field,
and −e is the electron charge, e taken to be positive. According to classical electrodynamics,
the electric field F⃗ (r⃗, t) and the magnetic field B⃗(r⃗, t) can be expressed in terms of a scalar
potential Φ(r⃗, t) and a vector potential A⃗(r⃗, t) as

F⃗ (r⃗, t) = − ∇⃗Φ(r⃗, t) − ∂A⃗(r⃗, t)
∂t

,

B⃗(r⃗, t) = ∇⃗ × A⃗(r⃗, t),
(2.6)

and are invariant under the gauge transformations

Φ′(r⃗, t) = Φ(r⃗, t) − ∂χ(r⃗, t)
∂t

,

A⃗′(r⃗, t) = A⃗(r⃗, t) + ∇⃗χ(r⃗, t),
(2.7)

where χ is an arbitrary function of r⃗ and t.

10



2.3 Non-relativistic time-dependent Hamiltonian

2.3.1 Dipole approximation and choice of gauges

At this point, we make a definite choice of gauge, namely the Coulomb (or radiation) gauge,
for which Φ(r⃗, t) = 0 and A⃗(r⃗, t) satisfies the transversal condition ∇⃗ · A⃗(r⃗, t) = 0. The vector
potential A⃗(r⃗, t) satisfies the following wave equation, which comes from Maxwell’s laws

∇2A⃗(r⃗, t) − 1
c2
∂2A⃗(r⃗, t)
∂t2

= 0, (2.8)

where c is the light speed. For the description of the laser fields, we may use a vector potential
of the form

A⃗(r⃗, t) = ϵ̂A0f(t)1
2
[
ei⃗k·r⃗−iωt + e−i⃗k·r⃗+iωt

]
, (2.9)

which is the solution of Eq. (2.8). Such a solution describes an ϵ̂ polarized laser pulse propagat-
ing, with the wave vector k⃗ where |⃗k| = 2π

λ , the carrier frequency ω, the field strength A0, and
the time-dependent envelope f(t). For |r⃗| of typical atomic dimensions (a few Ångströms)
and λ of typical optical wavelength (a few hundred nanometers), k⃗ · r⃗ ≪ 1 so that over
the extent of an atom, the vector potential is spatially uniform, A⃗(r⃗, t) ⋍ A⃗(t). This is the
so-called “dipole approximation”. This procedure is justified by arguing that the wavelength
is considerably larger than the atomic length scale, which holds under usual experimental
conditions. As a result, by using the approximation e±i⃗k·r⃗ ≈ 1, the vector potential becomes

A⃗(t) = ϵ̂A0f(t) cos(ωt). (2.10)

The magnetic field is then given by

F⃗ (t) = − ∂A⃗(t)
∂t

,

B⃗(t) = 0,
(2.11)

which implies that any effect induced by the magnetic field in the dipole approximation is
neglected. In this approximation, there are several ways to express TDSE

Ĥ(r⃗, t)Ψ(r⃗, t) = iℏ∂Ψ(r⃗, t)
∂t

. (2.12)

where the Hamiltonian now in the dipole approximation is given by

Ĥ(r⃗, t) = Ĥ0 + e

µ
A⃗ · p⃗+ e2

2µA⃗
2 (2.13)

and Ĥ0 is defined in Eq. (2.3). We define a unitary operator R̂ such that Ψ′(r⃗, t) = R̂Ψ(r⃗, t)
to simplify the form of the electron-field interaction. Then we have

Ĥ ′(r⃗, t)Ψ′(r⃗, t) = iℏ∂Ψ′(r⃗, t)
∂t

, (2.14)
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2.3 Non-relativistic time-dependent Hamiltonian

where
Ĥ ′ = R̂ĤR̂† + iℏ∂R̂

∂t
R̂†. (2.15)

We now choose R̂ = exp (−ieχ (r⃗, t)). As a way to eliminate the last term in Eq. (2.13), we
may choose χ = e/2µ

∫ t
−∞ A⃗ 2(t′)dt′, thus the Hamiltonian in Eq. (2.13) becomes

Ĥ ′(r⃗, t) = Ĥ0 + e

µ
A⃗(t) · p⃗. (2.16)

This gauge is also known as the velocity gauge because the velocity v⃗ = p⃗
µ appears in

Eq. (2.16). The second important gauge we need to know for the interaction between electrons
and electromagnetic fields is the length gauge resulting from the transformation χ = −A⃗ · r⃗
thus we get

Ĥ ′(r⃗, t) = Ĥ0 + eF⃗ (t) · r⃗, (2.17)

where Ĥ0 is given by Eq. (2.3). The length gauge is only defined within the dipole approx-
imation. If the dipole approximation fails, one needs to be very careful in specifying what
exactly means as the length gauge [61]. By definition, all gauges are equivalent in the sense
that the results do not depend on the chosen gauge.

The TDSE in the dipole approximation therefore becomes

iℏ∂Ψ(r⃗, t)
∂t

=
(
Ĥ0 + V̂ (t)

)
Ψ(r⃗, t), (2.18)

where V̂ (t) is the interaction potential, which becomes V̂ (t) = e
µA⃗(t) · p⃗ in velocity gauge and

V̂ (t) = eF⃗ (t) · r⃗ in length gauge. We mostly use the velocity gauge in this thesis because it
converges faster [50], though, as a convergence check, we solved the TDSE for some selected
cases in the length gauge that obtained essentially identical results. Throughout the thesis,
the time-independent Schrödinger equation (TISE) is solved numerically by employing the
Numerov method, see Appendix A.

As a matter of fact, our theoretical studies presented in this thesis are all restricted within
the dipole approximation. However, in some situations, it may break down, which leads to
non-dipole effects, the interested reader is referred to Refs. [62, 63].

2.3.2 Interaction of an electron with a classical field

Assuming that the vector potential has a form of Eq. (2.10), and this field is turned on at the
initial time t = t0, further assume that the initial state of the atom is |i⟩ where Ĥ0 |i⟩ = Ei |i⟩.
We expand the wavepacket |Ψ(r⃗, t)⟩ in terms of the complete set of uncoupled atomic states
|ψj(r⃗)⟩ for times t > 0 as

|Ψ(r⃗, t)⟩ =
∑

j

aj(t) |ψj(r⃗)⟩ , (2.19)

12



2.3 Non-relativistic time-dependent Hamiltonian

where the time-dependent amplitudes, aj(t), satisfy the normalization condition of∑j |aj(t)|2 =
1. Note that we may consider a “sufficiently large box” in our simulation, then states |ψj(r⃗)⟩
include both bound and continuum.

Substituting Eq. (2.19) into Eq. (2.18) and multiplying from the left by ⟨ψk(r⃗)| yields the
set of the coupled first-order differential equation for the amplitudes as

ȧk(t) = i
ℏ
∑

j

(Ejδjk + Vjk) aj(t), (2.20)

where

Vjk(t) = ⟨j| V̂ (t) |k⟩ =

⟨j| r⃗ · F⃗ (t) |k⟩ length gauge,

⟨j| p⃗ · A⃗(t) |k⟩ velocity gauge.
(2.21)

This is the basic set of coupled differential equations that must be solved, subject to the
initial condition ai(0) = 1, i.e., only the state |i⟩ being initially populated, in order to obtain
the probability of finding |j⟩ as a function of t. Here we define the matrix-element

djk =

⟨j| r⃗ · ϵ⃗ |k⟩ length gauge,

⟨j| p⃗ · ϵ⃗ |k⟩ velocity gauge.
(2.22)

Notice that the dipole elements between the two gauges are related through

⟨j| p⃗ |k⟩ = iµ
ℏ

(Ej − Ek) ⟨j| r⃗ |k⟩ , (2.23)

where this relation is obtained using [Ĥ, r̂] = −i ℏµ p̂, this relationship works well when the
eigenenergies and eigenstates are accurately calculated.

Equation (2.20) can be solved numerically by using Taylor expansion of the exponential
matrix Hjk = Ejδjk + Vjk, which is given by

aj(t+ δt) =
∑

k

[
e− i

ℏH δt
]

jk
ak(t) = aj(t) − iδt

ℏ
∑

k

Hjkak(t) − (δt)2

2ℏ2

∑
k

Hjk

∑
l

Hklal(t) + ...

(2.24)
that is a matrix-vector multiplication, and δt, which is the time step, can be set accordingly.
Since the finite Taylor expansion is not unitary, we need δt → 0 for the series to converge,
i.e., ∑j |aj(t)|2 = 1.

Finally, the probability for the electron to make a transition from state |i⟩ to state |j⟩ in
time t is given by

Pi→j(t) = |aj(t)|2. (2.25)

The general definition for determining the photoelectron spectrum as t → ∞ is with a delta
function. Then, because of numerics and the discretization of the energy, we need a Gaussian
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2.4 Ultrashort laser pulse shaping

distribution which is given by

p(E) = 1√
2πδE

∑
j

|aj(t → ∞)|2 exp
[
−
(
E − Ej

δE

)2
]
, (2.26)

where δE is a positive and small number in the order of the distance between eigenvalues.
Moreover, the ionization probability can be defined as follows

Pion =
∫

dE p(E), (2.27)

where p(E) is the electron spectrum and defined in Eq. (2.26).
The vector potential we have introduced in this section might have different shapes, and

in the following, we investigate this pulse shaping.

2.4 Ultrashort laser pulse shaping

Ultrashort pulse shaping is the process of controlling the intensity and phase of ultrashort light
pulses to create a specific desired pulse shape [64, 65, 66, 67, 68]. Ultrashort laser pulses can
be shaped in a variety of ways to optimize their properties for specific applications, including
pulse compression [69], pulse shaping [70], phase control [71], and polarization control [72].
Pulse shaping, which we use in this thesis, involves manipulating the pulse waveform that
is typically done by passing the pulses through a spatial light modulator, which is a device
that can rapidly change the phase and amplitude of light. This can be used to create specific
pulse shapes, such as Gaussian, flat-top, or square pulses, or to tailor the pulse spectrum to
a specific application. Pulse shaping is used in many fields, including laser physics, nonlinear
optics [73, 74], and spectroscopy [75] to study the dynamics of matter and energy on an
ultrashort timescale. In essence, ultrashort pulse shaping is a way of controlling the shape of
light pulses that are very short in duration. The ultrashort pulse duration allows access to the
real-time motion of the electron at their natural timescale, the attosecond, using pump-probe
techniques [70].

We consider the vector potential A⃗(t) = A(t)⃗ex is given by [70]

A(t) = ReA(t), (2.28)

where ReA(t) denotes the real part of the complex vector potential. The vector potential can
be modified with a proper filter acting in the frequency domain. Thus the pulse is Fourier
transformed, filtered, and back-transformed to yield a new pulse which is given by

A(t) = F−1
[
F [I(t)] (ω′)e−iφ(ω′−ω)

]
(t), (2.29)
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2.4 Ultrashort laser pulse shaping

where I(ω) = F [I(t)] (ω) is the spectral intensity profile and can have various pulse shapes,
see Ref. [76], here, we choose the Gaussian profile, and the filter, e−iφ(ω′−ω), is chosen
accordingly. Hence, the complex vector potential is given by

A(t) = A0F−1
[
exp

(
−(ω′ − ω)2

2∆ω2 − iφ(ω′ − ω)
)]

(t) = F−1
[
Ã(ω′)

]
(t), (2.30)

where A0 = A0N ensures the proper amplitude of the vector potential with N ≡ T/
√

8π ln 2,
and F−1 denotes the inverse Fourier transform which is defined in Eq. (2.31). The width of
the inverse Fourier transform of the laser pulse is ∆ω′ = 2

√
ln 2/T . The frequency of the

fast oscillating part of the laser pulse is ω. The laser pulse duration is given by T . These
parameters, i.e., T , A0, and ω, are the fundamental parameters of a general pulse.

The Fourier transform and the inverse Fourier transform of the signals are defined as

F [u(t)](ω′) = 1√
2π

∫ ∞

−∞
dt exp

(
iω′t

)
u(t),

F−1[ũ(ω′)](t) = 1√
2π

∫ ∞

−∞
dω′ exp

(
−iω′t

)
ũ(ω′).

(2.31)

We choose this formula, Eq. (2.30), for shaping the laser pulse as it has two advantages
(i) In the experiment, “arbitrary” pulses are created by modifying only the spectral phase
[77], and we can model these pulses by Eq. (2.30), (ii) pulse energy is kept constant. Figure
2.2 shows this process clearly.

Figure 2.2: Experimental setup for shaping a sinusoidal pulse, see subsection 2.4.2, in
which the spectral phase is modified in order to generate an ultrashort pulse as the same
in Eq. (2.30). The graph is taken from [77].

The Fourier transform of the vector potential is given by

Ã(ω′) = F [A(t)](ω′) = F [ReF−1[Ã(ω′)](t)](ω′). (2.32)
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Since A(t) is purely real, one has Ã∗(ω′) = Ã(−ω′). The quantity Ã(ω′) is real if and only
if the imaginary part of Ã(ω) is odd, i.e., Im Ã(ω′) = − Im Ã(−ω′), where Im denotes the
imaginary part. Therefore, we can write

Ã(ω′) = 1
2
[
Ã(ω′) + Ã

∗(−ω′)
]
, (2.33)

where Ã(ω) is defined in Eq. (2.30).
In order to define the general vector potential in terms of the pulse envelope, f(t), and

phase details of the pulse, Φ(t), we use the analytic potential defined as

Aa(t) = A(t) + iH [A(t)] , (2.34)

where H denotes the Hilbert transform defined as

H [u(t)] = 1
π

∫ ∞

−∞
dτ u(τ)

t− τ
=
( 1
πt

∗ u(t)
)

(t), (2.35)

with · ∗ · the convolution product. The analytic vector potential is a complex signal which
embeds the main properties of the laser field. Any analytic signal can be written in polar
coordinates

Aa(t) = f(t) exp [iθ(t)] , (2.36)

where f(t) = |Aa(t)| is the instantaneous laser envelope, θ(t) is the instantaneous phase and
ω(t) = dθ(t)/dt is the instantaneous laser frequency. The vector potential of the laser pulse
is given by the real part of the analytic vector potential A(t) = ReAa(t).

We consider the time-dependent vector potential defined from Eq. (2.30). The Fourier
transform of the complex vector potential Ã(ω′) is a function of ω′ − ω. Using the Fourier
transform properties of translation, Eq. (2.30) can be written as

A(t) = A0 exp (−iωt)F−1
[
exp

(
− ω′2

2∆ω′2 − iφ(ω′)
)]

(t). (2.37)

As a consequence, using A(t) = ReA(t), a general expression of the vector potential A(t) is
given by

A(t) = A0f(t) cos [ωt+ Φ(t)] , (2.38)

where the instantaneous laser envelope is f(t), the instantaneous phase is ωt+ Φ(t) and the
instantaneous frequency is ω+∂Φ(t)/∂t. The laser envelope and time-dependent term of the
instantaneous frequency are given by

f(t) exp [iΦ(t)] = ∆ω′ exp
[
−∆ω′2t2

2

]
∗ F−1

[
exp

[
−iφ(ω′)

] ]
(t). (2.39)
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We notice that if φ(ω′) = −φ(−ω′), (exp[−iφ(ω′)])∗ = exp[−iφ(−ω′)]. In this case, i.e.,
if φ(ω′) = −φ(−ω′), the inverse Fourier transform of exp[−iφ(ω′)] is purely real, and as a
consequence Φ(t) = 0 or Φ(t) = π. In this case, the vector potential reads exactly A(t) =
f(t) cos(ωt).

Following are some examples of laser pulses that we employ throughout this thesis.

2.4.1 Fourier-limited pulse: Gaussian envelope

For the Fourier-limited pulse, i.e., φ(ω′ −ω) = const., the time-dependent and Fourier trans-
forms of the vector potential are given by

Ã(ω′) = A0 exp
[
−(ω′ − ω)2

2∆ω′2

]
,

Ã(ω′) = A0
2

[
exp

(
−(ω′ − ω)2

2∆ω′ 2

)
+ exp

(
−(ω′ + ω)2

2∆ω′ 2

)]
,

A(t) = F
[
Ã(ω′)

]
(t) = A0∆ω′ exp

[
−∆ω′ 2t2

2 − iωt
]
.

(2.40)

Therefore the Fourier-limited pulse with a Gaussian envelope is given by
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Figure 2.3: An example of a Fourier-limited pulse with the Gaussian envelope for the pulse
duration T = 1 fs, the carrier frequency ω = 0.5 a.u., and the field strength of A0 = 0.7 a.u..
The envelope (red line) is obtained using the Hilbert transform in Eq. (2.35).

A(t) = A0 exp
(
−2 ln 2t2/T 2

)
cos(ωt). (2.41)

In some cases, the envelope also is expressed as exp
(
−t2/T ′2), where T ′ = T/

√
2 ln 2. The

duration of the pulse is controlled by T . How strong the intensity of the pulse also is fixed
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by the field strength A0, and the central frequency of the pulse is defined as ω. Figure 2.3
shows a Gaussian shape pulse as an example.

2.4.2 Modulated pulse: sinusoidal phase modulation

A sinusoidal laser pulse is a type of laser pulse whose intensity varies sinusoidally over time.
Sinusoidal laser pulses can be created using a technique in which passing a laser pulse through
a device that can modulate its intensity with a sinusoidal pattern, see Fig. 2.2. This pulse
is routinely investigated in coherent control experiments [78, 79, 80, 77] because the use of
sinusoidal laser pulses in coherent control experiments allows for precise control over the
properties of the laser pulse, which can lead to the manipulation of quantum systems in
a variety of ways, for example, these pulses can be used to generate pulse sequences with
specific temporal profiles. These pulse sequences can be used in coherent control experiments
to implement various control strategies, such as population transfer.

This pulse can be generated by choosing a modulated pulse with φ(ω′−ω) = a sin[ω′τ+ϕ],
the vector potential in the frequency domain is then given by

Ã(ω′) = A0 exp
[
−(ω′ − ω)2

2∆ω′2 − ia sin
[
ω′τ + ϕ

]]
(2.42)

Fourier transform of the vector potential

A(t) = Ã0
2 F

[
Ã(ω′) + Ã(−ω′)

]
(2.43)

Using Eq. (2.39)

A(t) = A0
2 F

[
e−[ω′−ω]2 T 2

8 ln 2
]
(t) ∗ F

[
e−ia sin(ω′τ+ϕ)

]
(t)

= A0e−2 ln 2 t2/T 2eiωt ∗ F
[
e−ia sin(ω′τ+ϕ)

]
(t)

(2.44)

Making use of the Jacobi-Anger expansion e−ia sin(ω′τ+ϕ) = ∑∞
k=−∞ Jk(a)e−ik(ω′τ+ϕ), where

Jk(a) describes the Bessel function of the first kind and order k. To obtain its Fourier
transform

F
[
e−ia sin(ω′τ+ϕ)

]
(t) =

∞∑
k=−∞

Jk(a)e−ikϕδ(kτ − t) (2.45)

By means of the convolution integration as (f∗g)(t) =
∫∞

−∞ dt′f(t′)g(t−t′), and
∫∞

−∞ dtf(t)δ(t−
a) = f(a), we end up with

A(t) = A0

∞∑
k=−∞

Jk(a) e−2 ln 2 [t−kτ ]2/T 2 cos
(
ω[t− kτ ] − kϕ

)
. (2.46)

18



2.5 Summary

-15 -10 -5 0 5 10 15
time [fs]

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

ve
ct

or
p

ot
en

ti
al
A

(t
) τ

k = 0

k = -1

k = -2

k = 1

k = 2

Figure 2.4: An example of the sinusoidal pulse Eq.(2.46) along with its envelope (red line),
which obtained using the Hilbert Transform, Eq. (2.35), for the fundamental pulse parameters
of Fig. 2.3 and modulated parameters of a = 1, τ = 4T, ϕ = 0.

How strongly the original Gaussian pulse is distributed over separate pulses in the train is
controlled by a, The amplitude of the phase oscillation in Eq. (2.42). As an example, for
a = 1, which results in a train with essentially 9 pulses mark in Fig. 2.4, since Jk=−4,··· ,4(1)
are only significant in values. The delay between the pulses is fixed by τ . The modulation
phase ϕ introduces a difference ϕ in the carrier-envelope phase of adjacent pulse members of
the train, as one can see in Eq. (2.46). Figure 2.4 shows a sinusoidal pulse example.

For the limit of τ = 0 we have

A(t) = A0e−2 ln 2 t2/T 2 cos(ωt)
∞∑

k=−∞
Jk(a)e−ikϕ, (2.47)

using the Jacobi-Anger identity e−ia sin(ϕ) = ∑∞
k=−∞ Jk(a)e−ikϕ, it becomes a Gaussian pulse

as

A(t) = A0e−2 ln 2 t2/T 2 cos
(
ωt+ a sin(ϕ)

)
(2.48)

2.5 Summary

To conclude the chapter, we had an introduction to strong filed ionization in which we intro-
duced the related phenomena and the basic formula which is used and referred to throughout
the thesis. In addition, the pulse shaping is reviewed and formulated, and we introduced the
pulses we used in this thesis, namely, the Gaussian envelope and sinusoidal pulse.
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3.1 Preface

3.1 Preface

In recent years new phenomena in coupling of light to matter have been uncovered through
tailored laser fields, where the emphasis has shifted from a typical coherent-control scenario
by a shaped laser pulse [81] to two-color pulses and/or different time-dependent polarizations
[82, 83, 84]. Coherent control of multi-photon transitions in the optical strong-field regime by
shaped pulses has been demonstrated [78, 85] aided by Stark shifts which modify multi-photon
processes [86]. Along another thrust, ever shorter pulses with nominal carrier frequencies in
the extreme-ultraviolet (XUV) regime have been pursued, either generated by high-harmonic
sources [87, 88] or by free-electron lasers [89, 90], which can produce quite intense pulses. For
those pulses, phase manipulation is also possible [91]. Surprisingly, using the longitudinal
coherence within the waveform of light wave-packets, produced by individual relativistic
electrons, it is even possible with synchrotrons to shape pulses on the attosecond time-scale
(duration and separation) with XUV carrier frequencies [92].

For the regime of ultra-short intense pulses, non-adiabatic photo-ionization (NAPI) has
been demonstrated [12, 13, 14], typically for weakly-bound systems E0 ≪ω, with the elec-
tron’s binding energy E0 and the photon frequency ω. The characteristic of NAPI is a peak
of the ionization yield just above the ionization threshold. The physics behind NAPI is a
time-scale hierarchy such that the photo-electron cannot follow the fast change of the pulse
envelope (therefore non-adiabatic photo-ionization).

In the following, we will investigate if NAPI can be influenced and steered by a tailored
pulse form, where we put emphasis on the question how this is possible in the first place,
rather than asking and interpreting effects of specifically shaped pulses.

This chapter is organized as follows: In section 3.2, we have an introduction to this process
and, with the help of intuitive and mathematical pictures. In section 3.3, NAPI is investigated
with tailored laser pulses in which we introduce a catalyzing state, whose presence renders
NAPI sensitive to phase-details of tailored pulses. Since a catalyzing state is generally easy
to create, this opens a perspective for coherent control of ultra-fast ionization. Finally, we
summarize this chapter in section 3.4.

3.2 Introduction to non-adiabatic ionization

Non-adiabatic ionization refers to the process of ionization that occurs when the time scale
of the ionizing process is too fast for the electron to follow the motion of the parent ion, and
the system undergoes the fast-changing of energy as a function of time. Here we analyze this
process in two pictures: intuitive and mathematical pictures.
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3.2 Introduction to non-adiabatic ionization

3.2.1 Intuitive picture

Consider the sketch in Fig. 3.1 as an intuitive picture of this process. Here we have a
bound state and continuum states. The thick red line is the electron occupation. There
is also a strong field along with its envelope. The strong field causes a Stark shift in that
state (the ground state). It implies that the energy of the ground state becomes time-
dependent, indicating a rapid change in energy which makes a transition from the ground
state to continuum states, called a “non-adiabatic” transition. If the energy of this state
changes slowly, the electron will stay in this state adiabatically all the time. The adiabatic

Stark shift

E

E0(+∞) = E0E0(−∞) = E0 E0(t)

A(t)

t

t

Figure 3.1: Sketch of the intuitive picture of the non-adiabatic transition process

process means that the state changes slowly. One can also have a large Stark shift, but if the
state changes slowly, the eigenstate barely changes its character. As a result, if the state’s
character is slowly changing, it has time to adapt to the new situation and will remain there.

For the high-frequency pulse, the coupling with the higher state is weak (the matrix
element is small), and accordingly, the Stark shift is weak, and the ground state is not
significantly affected by the variation in time. For that reason, there is no non-adiabatic
process. Consequently, there are two probable reasons for no state changes: (i) the field is
not strong enough, or (ii) the coupling is not strong enough.

An examination of the mathematical explanation in the Kramers-Henneberger (KH) frame
[93, 94] supports this intuitive picture of NAPI.
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3.2 Introduction to non-adiabatic ionization

3.2.2 Mathematical picture

The formation of the KH atom is described in the literature [93, 94, 95]. Following in the
footsteps of these works, we consider a one-electron atom with an effective atomic potential
V (r⃗) that is subjected to a linearly polarized laser field F (t). We merge the origin of our
reference frame with the atomic electron oscillating in the field. This is accomplished by using
the unitary transformation operator R̂ = exp

{
i
∫

dt A⃗(t) · p⃗
}

in Eq. (2.15), where A⃗(t) is the
vector potential defined in Eq. (2.10). By this transformation, we transform the initial velocity
gauge Hamiltonian to the so-called Kramers-Henneberger gauge, where the Hamiltonian in
this frame is given by [13]

Ĥ = p⃗ 2

2µ + V (r⃗ + xω(t)e⃗x) , (3.1)

where xω is the classical quiver position in a linearly polarized laser field along x. The laser
field in terms of the quiver amplitude F (t) = −d2xω

dt2 where xω(t) = f(t) cos(ωt) and the pulse
envelop f(t) = α0 e−4 ln 2t2/T 2 . For the pulse to remain in the non-relativistic domain, it is
characterized by the maximum field strength F (0) = E0, which leads to the prefactor α0 given
by

α0 = E0
ω2

1
1 + 8 ln 2/(Tω)2 . (3.2)

We can construct the Hamiltonian in terms of Fourier components of the oscillating
potential as

H = p⃗ 2

2µ +
∑

n

Vn(r⃗, t) einωt, (3.3)

where Vn(r⃗, t) are single-cycle averaged Fourier components of the potential in Eq. (3.1) given
by

Vn(r⃗, t) =
∫ t+ π

ω

t− π
ω

dt′ V
(
r⃗ + f(t) cos

(
ωt′
)
e⃗x
)

einωt′
. (3.4)

The oscillating potential in Eq. (3.1) consists of two parts of the fast-oscillating field, cos(ωt),
and the slowly-varying envelope, f(t). Equation (3.4) is an average over the fast-oscillating
part.

The expression in Eq. (3.3) becomes useful if we consider a few terms. Here we only focus
on the 0th-order term because H0 is responsible for non-adiabatic transition and changes
with the envelope. The 0th-order term is provided by

H0(t) = − ℏ2

2µ∇2 + V0(r⃗, t), (3.5)

where V0(r⃗, t) is the cycle-averaged potential.
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3.2 Introduction to non-adiabatic ionization

Figure 3.2 is depicted to understand the cycle-averaged potential. It shows an envelope
and the cycle-averaged potential for different times marked on the envelope. Since the poten-
tial changes in time, the instantaneous ground state does as well, which may imply changes
in shape and corresponding energy. The latter may be interpreted as a Stark shift. We per-
formed the imaginary time propagation method to obtain the time-dependent ground state.
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Figure 3.2: Envelope (a) and the cycle-averaged potential V0 (b-e) along with its ground state
E0 for some selected time on the envelope respectively. The pulse parameters are of the field
strength E0 = 1 a.u., the carrier frequency ω = 0.314 a.u. and the pulse duration of T = 1 fs.
The blue curve denotes the atomic potential, and the red curve denotes the cycle-averaged
potential for different times.

We have the potential V0, which changes slowly over time and depends on changing the
envelope. Here, we use the adiabatic approximation [22] to calculate the transition matrix.

Begin with the eigenvalue equation

H(t) |n; t⟩ = En(t) |n; t⟩ , (3.6)

where |n; t⟩ and En(t) are the instantaneous eigenstate and eigenenergy respectively. Here we
used the Sakurai notation [22]. The general solution for the Schrödinger equation iℏ ∂t |ψ(t)⟩ =
H(t) |ψ(t)⟩ is given by

|ψ(t)⟩ =
∑

n

cn(t) |n; t⟩ eiθn(t), (3.7)

where
θn(t) = 1

ℏ

∫ t

−∞
En(t′)dt′. (3.8)

Inserting Eq. (3.7) into the TDSE, we obtain∑
n

eiθn(t) [ċn(t) |n; t⟩ + cn(t)∂t |n; t⟩] = 0. (3.9)
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3.3 Non-adiabatic ionization with tailored laser pulses

Taking inner product of ⟨m; t| from left leads to

ċm(t) = −
∑

n

cn(t)ei[θn(t)−θm(t)] ⟨m; t| ∂t |n; t⟩ , (3.10)

where ⟨m; t| ∂t |n; t⟩ is the transition matrix. To make this the general case, we take the time
derivative of both sides of Eq. (3.6), then we have

⟨m; t| ∂t |n; t⟩ = ⟨m; t| ∂tH(t) |n; t⟩
En(t) − Em(t) . (3.11)

The Hamiltonian in Eq. (3.11) may be replaced with H0(t). As a result, in order to have
non-adiabatic ionization, in the first place, the eigenstate has to be changing quickly. This
change is quantified in an overlap with two eigenstates. How large is this change, left-hand
side in Eq. (3.11), is given by the ratio at the right-hand side. The ratio is large under the
following two conditions:

• the time-derivative of the cycle-averaged potential has to be large

• the energy differences have to be small

These two conditions explain the intuitive picture of NAPI in the sketch in Fig. 3.1. The
ground state is denoted by m = 0, and the continuum states by n. As a result, if n is small,
just above the threshold, the energy differences are small, and this condition, along with the
fast-changing envelope, explain the non-adiabatic peak, which is why most of the occupation
goes to the low-energy continuum.

To conclude this section, we reviewed NAPI and provided two intuitive and mathematical
pictures to explain this process and connect these two pictures. In the following section, we
will consider this process with tailored laser pulses and try to reveal an exciting property to
control NAPI.

3.3 Non-adiabatic ionization with tailored laser pulses

To be specific, we work with a pulse form which is routinely used in coherent control experi-
ments [78, 96, 79]. It is generated in the frequency domain by a modulation of the spectral
phase in the vector potential, as considered in Chapter 2

A(ω′) = N E0
ω

e−[ω′−ω]2T 2/8 ln 2 eiφ(ω′) (3.12)

of a pulse with peak field strength E0, carrier frequency ω and full-width-at-half-maximum
duration T . Hereby N ≡T/2

√
2π ln 2 ensures the proper amplitude of the corresponding
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3.3 Non-adiabatic ionization with tailored laser pulses

pulse. The phase in Eq. (3.12) is defined as φ(ω′) = a sin(ω′τ + ϕ). The role of three control
parameters a, τ and ϕ, which determine the spectral phase in Eq. (3.12), is more intuitive for
the pulse expressed in the time domain, as given below in Eq. (3.14).
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Figure 3.3: (a) Sketch of the physical system with the relevant states. (b, c) Photo-electron
spectra in logarithmic scale from short intense pulses (I=1016W/cm2, T=1 fs) at two photon
frequencies ω.

We do not aim at a specific control target, e. g., maximizing or minimizing the population
of a specific state. Rather, we want to identify situations where the NAPI spectrum depends
sensitively on pulse details, in particular the modulation phase ϕ. We will see that this
requires another discrete state to be closely coupled, which acts as a “catalyzer” to evoke
controllability of NAPI. To this end, we study ionization from the excited 1s2p state of
Helium. Changing the photon frequency ω, non-resonant as well as resonant situations are
realized by coupling to a deeper-lying bound state as indicated by the sketch in Fig. 3.3a.
A resonant coupling can strongly enhance the Stark shift and thereby drive non-adiabatic
ionization. We determine the electron dynamics in a single active-electron description.

The Helium atom is treated in the single-active-electron approximation. The following
effective potential [97]

V (r) = −1 + e−αr

r
(3.13)

with α = 2.1325 has been used. It provides a good approximation for the energies of the
relevant states of Helium, namely E1s2= − 24.59 eV and E1s2p= − 3.48 eV (with the values
E1s2= − 24.59 eV and E1s2p= − 3.37 eV from accurate two-electron calculations [98]).

3.3.1 Ionization by single Gaussian pulses

To set the stage and put NAPI into perspective, we show the photo-electron spectra for
single Gaussian pulses, Eq. (2.41), for two different photon frequencies ω in Fig. 3.3b,c. For
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3.3 Non-adiabatic ionization with tailored laser pulses

the smaller one (ω= 15 eV) one can distinguish four peaks corresponding to the absorption of
j = 0 . . . 3 photons within the energy range shown. For future reference and for facilitating
to address the features in the electron spectrum, we define energy intervals ∆Ej about these
peaks with ∆Ej = {E | −ω/2<E−Ej<ω/2} with Ej ≡ E0 + jω reached by a photon energy
jω from the initial state at E0. Note, that the final electron states can carry different angular
momentum ℓ in this few-photon scenario, see the sketch in Fig. 3.3a.
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Figure 3.4: (a) Ionization probability for the non-adiabatic channel as a function of the
photon frequency ω for a Gaussian pulse with duration T=1 fs and various intensities specified
in the graph. The dotted line marks the transition energy between the 1s2 and 1s2p state,
cf. Fig. 3.3. (b–e) Photo-electron spectra for selected frequencies specified in the graphs and
marked in panel (a) with circles.

The NAPI channels correspond to “zero-photon absorption”, which refers to the obser-
vation of an amplified ionization at low-energy electrons in the interval ∆E0, with E> 0,
forming the first peak in the spectra of Fig. 3.3b. In fact, this peak is the result of a two-
photon Raman-like process which excites the low-energy continuum close to the initial state
in a combination of photon absorption and emission. The next peak around E1 is the biggest
one and corresponds to single-photon ionization into ℓ= 0, 2 continua. It is structured through
dynamic interference[50]. Also clearly visible on the logarithmic scale are the peaks in the in-
tervals ∆E2 and ∆E3, respectively. At the higher photon energy of ω= 35 eV, the light-matter
interaction is basically perturbative such that only the (standard) single-photon ionization
peak E1 survives, even on the logarithmic scale.

With Fig. 3.4 we explore the total NAPI probability P , as defined in Eq. (3.16), for con-
tinuum electrons with p-character (angular momentum ℓ=1) for an ultra-short (T=1 fs) Gaus-
sian pulse as a function of ω for three different laser intensities. The p-state probabilities
dominate since the NAPI process is an effective zero-photon process with a (small) admixture
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3.3 Non-adiabatic ionization with tailored laser pulses

of an even number of photons. Hence, optical selection rules do not permit ℓ=0, 2 final states
to be reached from our initial p-state, and the allowed final f-state channel (ℓ=3) is much
weaker than the final p-state channel.

Outside resonances, photo-ionization yields typically decrease with increasing frequency,
for large ω proportional to ω−7/2 [99], which is also the case here. However, in the frequency
range displayed, the spectrum is dominated by a resonance-like peak between 20 and 25 eV.
For increasing intensity, it shifts slightly to larger ω and develops a preceding dip. This
structure is due to the resonance with the 1s2–1s2p electron transition located (for weak
fields) at E1s2p −E1s2 ≈ 21.1 eV. Despite the strong variation of the yield around frequencies
close to the resonance, the corresponding NAPI spectra (Fig. 3.4b–e) have remarkably similar
and structure-less shapes inside and outside the resonance region, albeit on very different
scales.

3.3.2 Sensitivity of non-adiabatic photoionization to the modulation phase

One might infer from the quite similar shapes of the NAPI spectra in Figs. 3.4b–e that it is
very difficult to coherently control NAPI with standard shaped pulses. Yet, as it will turn out,
a pulse train with a modulated spectral phase, routinely used in experimental realizations of
pulse shaping in the frequency domain [78, 96, 79] can achieve controllability of NAPI. The
pulse train is obtained from a Fourier transform A(t) = F [A(+ω′) + A∗(−ω′)]/2 with A(ω′)
given in Eq. (3.12) and reads [70]

A(t) = E0
ω

∑
k

Jk(a) e−2 ln 2[t−kτ ]2/T 2cos (ω[t−kτ ] − kϕ), (3.14)

with Jk denoting Bessel functions. How strongly the original Gaussian pulse is distributed
over separate pulses in the train is controlled by a, the amplitude of the phase oscillation
in Eq. (3.12). We will choose a=1, which results in a train with essentially 9 pulses, since
J0...4(1) ≈ {0.765, 0.440, 0.115, 0.020, 0.002}. The delay between the pulses is fixed by τ . The
modulation phase ϕ introduces a difference ϕ in the carrier-envelope phase of adjacent pulse
members of the train, see Eq. (3.14), which will become important later on.

Firstly, we take a look at the ionization probability with this pulse train as we did in
Fig. 3.4a for single Gaussian pulses. Figure 3.5a shows the probability P as a function of ω
for the same three intensities I. Note that the separation τ = 4 fs together with the duration
T = 1 fs of the individual pulses in the train ensures that they do not overlap in time. The
bar indicates that we have averaged the spectra over the modulation phase ϕ,

p(E) = 1
2π

∫
dϕ pϕ(E) , (3.15)
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Figure 3.5: (a) Same as Fig. 3.4a but for a pulse train, given by Eq. (3.14), with a=1, τ=4 fs.
The curves are averages over the phase parameter ϕ. (b) Ratios of the probabilities from
panel (a) and Fig. 3.4a as a function of the photon frequency ω. The shadings mark the
enhancement region.

with P being the integral over p(E). The corresponding non-adiabatic ionization probability
are obtained from the integration

P =
∫ E1/2

0
dE p(E) (3.16)

with the upper integration limit E1/2 = E0 + ω/2. Despite the different shapes compared to

-20 -10 0 10 20
time [fs]

-0.01

0.00

0.01

sl
op

e
∂
t
f

(t
)

Gaussina pulse

train pulse

Figure 3.6: Time derivative of pulse envelope for the Gaussian pulse (blue line), and the
sinusoidal pulse (red line).

the single-pulse yields in Fig. 3.4a, the qualitative behavior is the same: a monotonic decrease
interrupted by a peak in the vicinity of ω ≈ E1s2p−E1s2 . Interestingly, the total yield can be
considerably larger than for the Gaussian pulse, as apparent from Fig. 3.5b, which shows the
ratio of the yields from Fig. 3.5a and Fig. 3.4a. Since NAPI is enhanced by large derivatives of
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3.3 Non-adiabatic ionization with tailored laser pulses

the pulse envelope [14], it is surprising that a longer pulse, with smaller slopes in the overall
envelope, can induce an order-of-magnitude larger ionization probability at I = 1016W/cm2.
As shown in Fig. 3.6, the time derivative of the envelope for a single Gaussian pulse is larger
than the pulse train.

The enhancement for all three intensities is visualized by shaded areas in Fig. 3.5b.
In contrast, outside the resonance region, for frequencies ω≲ 20 eV or ω≳ 27 eV, the ion-

ization probability is strongly suppressed as expected for a stretched pulse.
Secondly, we want to assess how strongly the photo-electron spectra depend on the phase

parameter ϕ, since a strong sensitivity could represent a knob for controlling NAPI. In order
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Figure 3.7: (a) Variance of the photo-electron spectra with respect to the modulation phase
ϕ, defined in Eq. (3.17), for pulse trains according to Eq. (3.14) with I=1016W/cm2, a=1,
τ=4 fs as a function of the photon frequency ω. (b–e) Representative photo-electron spectra
pϕ(E) as a function of ϕ for selected photon frequencies, marked with circles in Figs. 3.5a and
3.7a, with the color scale for the electron yield normalized to the maximal yield.

to quantify this sensitivity, we compute the variance of the spectra with respect to the
modulation phase ϕ, defined as

V 2 = 1
P 2

∫
dE

∫
dϕ
[
pϕ(E) − p(E)

]2 (3.17)

with p(E) from (3.15) above, and show it in Fig. 3.7a. As already seen for the probability,
the region around the resonance sticks out and shows a noticeable variance. Below and above
the resonance frequency, however, one sees the behavior characteristic for NAPI, namely
that the ionization is determined by the envelope of the pulse only [14], but not by any
carrier-oscillation features. In order to visualize this dependence, we show representative
photo-electron spectra from different regions appearing in Fig. 3.5a in parallel to Fig. 3.7b–e
now, however, as a function of electron excess energy and modulation phase ϕ. While for

30



3.3 Non-adiabatic ionization with tailored laser pulses

a single Gaussian pulse, the photo-electron spectra are not affected by the resonance, the
situation is quite different for the spectra generated with the pulse train: Here, the shape of
the spectra varies strongly around the resonance for different ϕ.

3.3.3 The role of the catalyzing state

Having established that NAPI can be coherently controlled, at least in the presence of a
catalyzing state which can be energetically very far away (here at an energetic distance of ω),
we will elucidate the origin of the sensitivity of NAPI on ϕ in the vicinity of the resonance,
in the pulse train.

In order to analyze the role of the catalyzing state, we build a dressed-state matrix

Hjj′(E0, ω) = [Ej + njω]δjj′ + E0/ω

2 djℓjj′ℓj′ , (3.18)

that has a block-diagonal shape, whereby the 5 blocks are defined by the “photon numbers”
nj = {+1,+1, 0,−1,−1} and the angular momenta ℓj = {0, 2, 1, 0, 2}. To understand the
details of the dressed-state calculation, the reader refers to the supplementary material in Ref.
[100]. Field strength E0 and photon energy ω are parameters here. Field-free eigenenergies
Ej and the coupling-matrix elements djℓjj′ℓj′ are calculated as described in subsection 2.3.2.

The eigenstates Vjk from diagonalization of the matrix (3.18)
∑
j′

Hjj′(E0, ω)Vj′k(E0, ω) = Vjk(E0, ω)Ek(E0, ω) (3.19)

are used to calculate by means of a angular-momentum projection operator P [ℓ]
jj′ ≡ δℓℓj

δjj′

weights wk = ∑
jj′ VjkP

[1]
jj′Vj′k and therewith, according to

p(E) = 1√
πδE

(ℓ=1)∑
j

wje−[E−Ejℓj
]2/δE2

, (3.20)

the density of states (DOS) shown in Fig. 3.8.
To this end, and using the dressed-state analyses, we show in Fig. 3.8 how energies of p-

state (ℓ=1) electrons get “deformed”, i. e. Stark shifted and hybridized, due to the coupling to
s- and d-states. The color code of the hybridized density of states (DOS) marks the strength of
their p-character at energy E (for a specific ω). The color-coded DOS also nicely illustrates
the hybridization of angular momentum character of the DOS near the avoided crossings:
Along an adiabatic trace which bends strongly near the avoided crossing, the character of the
electron density changes, from dominant s-character through the 1s2 + ω dressed state (with
a finite slope due to ω) to the 1s2p state with dominant p-character given by a horizontal line
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3.3 Non-adiabatic ionization with tailored laser pulses
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Figure 3.8: Density of states with p-character (ℓ=1) in logarithmic scale from a dressed-state
diagonalization, as a function of the photon frequency ω for three laser intensities. The
dashed horizontal line marks the energy E1s2p, and the dotted sloping line marks the energy
E1s2+ω. They cross at resonance.

at energy E1s2p which the electron density trace approaches towards large frequencies from
below (and towards small frequencies from above). Note that the background density is also
hybridized, most clearly visible from the area-filling color shades in Fig. 3.8.

At resonance E1s2p =E1s2 +ω the 1s2p-state shows an Autler-Townes splitting [48], i. e.,
structures below and above the field-free energy of E1s2p = −3.48 eV (dashed line). The latter
is crossed by the dressed state with field-free energy E1s2 + ω (also shown with a dashed
line). Note that the actual field-dressed states are shifted and have their interaction-caused
avoided crossing at higher photon energies than the field-free states. This results in peaks
consistently blue shifted with respect to the ω = E1s2p − E1s2 resonance energy of 21.1 eV
in Figs. 3.4a – 3.7a. This blue shift is another signature of non-adiabatic ionization, which
is in fact a virtual two-photon process: Whereas the coupling from the initial state to the
catalyzing state (“1st photon”) is symmetric around the resonance condition, the transition
from the catalyzing state to the continuum (“2nd photon”) is not. This can be illustrated in
2nd-order perturbation theory.

3.3.4 Second-order perturbation theory

In order to understand the optimal frequency in Fig. 3.4, we can take advantage of the 2nd-
order perturbation theory. In chapter 4, we will widely examine the second-order perturbation
theory. An exact expression is also provided for the Gaussian pulse that is given by

a[2](Ej) = − 1
8ℏ2 A2

0 π T
2 ∑

k

djkdk0 e−(δ2
ζ +δ2

σ)
(

1 + i erfi
(δσ − δζ√

2

))
. (3.21)
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3.3 Non-adiabatic ionization with tailored laser pulses

where δσ = (ωjk +σω)T/2 and δζ = (ωk0 +ζω)T/2 are the detuning variables, and σ, ζ = ±1,
can be “up” or “down.” Function erfi(z) = −i erf(i z) is the imaginary error function.

For maximizing the transition probability to the continuum, the imaginary part of Eq. (3.21)
has to be zero. In other words, the argument of the imaginary error function, erfi, has to be
zero which leads to

δσ − δζ = 0. (3.22)

In the case of the zero-photon, we have two pathways “up-down” and “down-up”, as shown

E1s2p + ℏω

E1s2p

E1s2

Figure 3.9: the two-photon process pathways that reach net zero-photon energy level.

in the sketch in Fig. 3.9. The dominant pathway is down-up since this path’s matrix element
is large. Therefore, from Eq. (3.22) we obtain the optimal frequency

ω = E1s2p − 2E1s2

2 = ωre + E1s2p/2 ∼ 23eV, (3.23)

where ωre is the resonance frequency. Here we suppose that the zero-photon spectrum peaks
close to zero, which is true when the intensity is low. This shifts to the higher energy for
large intensity, and the maximum ionization probability shifts to the higher frequency. This
also works for the case of two-photon ionization, while it peaks around E0 + ℏω. Therefore
the maximum ionization probability happens at the resonance frequency ω = 2E1s2p−2E1s2

2 =
ωre = 21.1eV.

3.3.5 Pulse optimization

So far we considered NAPI in the presence of the catalyzing state, which becomes dependent
on the phase details of the laser pulse. Another question then arises whether we can find
a pulse that provides the maximum ionization probability in the presence of this state. For
this matter, we take advantage of the optimization methods.

Laser pulse optimization is a process of finding the best parameters for a laser pulse to
achieve a desired effect, such as maximum ionization probability. Various algorithms were
used in ultra-fast laser systems for active feedback optimization of laser parameters or laser-
matter interactions [101, 102]. Here we employ the Gaussian process and use a package
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3.3 Non-adiabatic ionization with tailored laser pulses

named M-Loop [103, 104], to optimize pulse parameters in the presence of the catalyzing
state.

We found that the optimized pulse for this process in the presence of the catalyzing state
is the temporal Airy pulse [70], which is the cubic term of the frequency phase expansion,
i.e., φ(ω′) in Eq. (3.12) is defined by

φ(ω′) = α
(
ω′ − ω

)3 T 3

3!(2 ln 2) 3
2
, (3.24)

where α denotes “airy parameter”. The corresponding pulse in the time domain (see Appendix
D) is given by

A(t) = Aα e( 2
9α

)2/3
( 2/3τ−t

∆τ

)
Ai
(
τ − t

∆τ

)
cos(ωt), (3.25)

where Ai describes the Airy function, and the field strength Aα = A0
√

4π τ . Equation (3.25)
shows that the temporal pulse shape exponentially decay and the Airy function is shifted
by τ =

(
2

9α

)1/3
T/

√
8 ln 2 and stretched by ∆τ =

(
9α
2

)1/3
T/

√
8 ln 2. Figure 3.10 shows the

pulse for the airy parameter with different signs that it has a long tail and depends on the
sign of the airy parameter.
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Figure 3.10: Temporal Airy pulse Eq. (3.25) with pulse parameters of pulse duration T = 1 fs,
carrier frequency ω = 23.13 eV, intensity I = 1016 W/cm2, and airy parameters α = ± 0.6.

The electron spectrum of NAPI driven by the temporal Airy pulse is depicted in Fig. 3.11.
The non-adiabatic electron spectrum, the left panel in Fig. 3.11, for the negative sign of airy
parameters is 8 times larger than the positive sign of the airy parameter, which is substantial
for NAPI. Moreover, the electron spectrum for both positive and negative airy parameters is
larger than the system driven by a Gaussian pulse with α = 0. In the right panel of Fig. 3.11,
the ionization probability is shown as a function of the airy parameter. The ionization
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probability for the negative value of the airy parameter is larger than the positive value, and
for the Gaussian pulse has the lowest value.
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Figure 3.11: Left panel: Photoelectron spectrum driven by the temporal Airy pulse describes
in Fig. 3.10 for different airy parameters α = ± 0.6, and 0. Airy parameter α = 0 corresponds
to a Gaussian pulse. Right panel: Ionization probability as a function of the airy parameter
in which the system that is subjected to a Gaussian pulse in the presence of the catalyzing
state has a minimum ionization.

To sum up, the temporal airy pulse for NAPI has a maximum ionization probability in
the presence of the catalyzing state. In this pulse, there is only one parameter to tune, and
the negative value of this parameter results in a large ionization probability. Since these
temporal pulses are accessible in the experiment, and thanks to ultrashort pulses, which are
now possible in the experiment [105, 9], NAPI can be experimentally measured in the near
future.

3.4 Summary

We have investigated how non-adiabatic photo-ionization (NAPI) induced by ultra-short
XUV pulses, can be influenced through specific pulse forms to exert coherent control as well-
known for standard photo-ionization. We have demonstrated that a spectral-phase modulated
pulse train, where individual pulses k in the train have different carrier-envelope phases kϕ,
can achieve control provided an additional catalyzing state is available. A state qualifies
as catalyzing if it forms a resonance with the initial state E0 − Ecat ≈ω. Since this kind of
pulse trains is routinely used to shape longer optical pulses in the frequency domain and since
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3.4 Summary

pulse shaping has also been demonstrated for XUV pulses recently, we expect that controlling
NAPI will be possible experimentally in the future.

Moreover, while illustrated here with the quantitative example of Helium, the control
scheme should be applicable to other targets as well, in particular as it relies on a resonant
situation which usually dominates over other (e. g. multi-electron effects) in the vicinity of
the resonant energy.
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4.1 Preface

4.1 Preface

Since analytical quantum solutions for a driven system are scarce, perturbation theory is
a promising technique for providing insight. Time-dependent perturbation theory (TDPT)
determines the effect of small, time-varying perturbations on a system described by a time-
independent Hamiltonian. It is a tool for analyzing how a quantum mechanical system
changes with time and provides a way to estimate the transition probabilities between dif-
ferent quantum states. It was developed by Born, Heisenberg, and Jordan in 1926 [16], later
employed by Dirac for studying multiphoton processes [17, 18]. Dirac’s time-dependent per-
turbation theory has served as a basis for perturbative solutions of the TDSE in different
systems, such as quantum scattering [106, 22], quantum field theory [107, 108] and multi-
photon processes [109, 110]. Despite being widely used, certain aspects remain difficult, for
instance, the diverging terms that are related to “secular” and “normalization” terms (see
Ref. [111] and references therein), where numerous attempts have been made to cope with
these terms, including those with the renormalization group [112] or exponential functions
[113]. The divergence of TDPT is also investigated in laser-induced atomic, and molecular
transitions [114, 115], and still, diverging terms remain an open question.

The essence of the theory of multiphoton processes lies in the perturbation theory of
one form or another. Perturbation theory has been utilized for the interaction of an atom
with laser fields and examined for long laser pulses [116, 110], even for higher orders of TDPT
[109]. With the advent of ultrashort laser pulses, atomic or molecular systems can be strongly
perturbed [117], and the strong field ionization phenomenon has received attention, such as
atomic stabilization [118], dynamic interference [50, 119], and non-adiabatic ionization [14,
15]. This chapter addressed TDPT for ultrashort pulses, and we show that it can be utilized to
explain these phenomena in the frequency domain, thereby providing a multiphoton picture.
We found that TDPT in ultrashort pulses can be an alternative technique to the time-
propagating the Schrödinger equation. In TDPT, orders only depend on the fundamental
pulse parameters, which are the parameters of the Fourier limited pulse; see section 2.4. The
full-width-at-half-maximum (FWHM) duration acts as a parameter to control convergence.
Furthermore, in the limit of slowly varying envelope approximation [120, 121], we found an
explicit analytic expression for the non-adiabatic ionization, where it depends on the Fourier
transform of the square envelope. Finally, atomic stabilization is explained in the frequency
domain using third-order TDPT, and an expression for the critical field is provided.

This chapter is structured as follows. In Sec. 4.2, we give an overview of TDPT and
describe how it can be used for ultrashort pulses in which we find that the TDPT’s orders are
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4.2 Introduction to time-dependent perturbation theory

independent of pulse shaping parameters. Section 4.3, as the first application, second-order
TDPT was considered in which we provide a model expression for non-adiabatic ionization
that depends on the square of the pulse envelope. As the second application, the atomic
stabilization is explained in the frequency domain using third-order TDPT, and we derive
the critical field in Section 4.4. Lastly, in section 4.5, we conclude this chapter.

4.2 Introduction to time-dependent perturbation theory

Perturbation theory can be formulated directly in terms of the time evolution operator, see
Dyson [122] and Feynman [123], which is considered in this chapter. Although, It can be
equivalently formulated using operators form [124]. Knowing that our quantum system is
in a specific state at time t0, the goal is to determine its state at a later time t, which
is related through the time-evolution operator U(t, t0). The problem is to determine the
operator U(t, t0), where ψ(t) = U(t, t0)ψ(t0), as exactly as possible. Here we start with the
Schröndinger “picture.” This operator is defined by integral equation [125]

U(t, t0) = I − i
ℏ

∫ t

t0
dt′H(t′)U(t′, t0), (4.1)

or by the Schrödinger equation

iℏ∂U(t, t0)
∂t

= H(t)U(t, t0), (4.2)

with the boundary condition U(t0, t0) = I. Since H(t) is Hermitian, U(t, t0) is unitary.
Consider the Hamiltonian in Eq. (2.16) given by Ĥ(t) = Ĥ0 + V̂ (t), where all time-dependent
variables enter the potential V (t), and Ĥ0 is the Hamiltonian of a Schrödinger equation whose
solution is known. As in our case, Ĥ0 is computed numerically. It is useful to decompose the
unitary operator as U(t, t0) = U [0](t, t0)UI(t, t0), where U [0](t, t0) is the evolution operator
corresponding to Ĥ0:

iℏ∂U
[0](t, t0)
∂t

= H0U
[0](t, t0), U [0](t0, t0) = I. (4.3)

The solution is known as U [0](t, t0) = e−iH0(t−t0)/ℏ, then U will be determined if

UI(t, t0) ≡ U [0] †(t, t0)U(t, t0) = eiH0(t−t0)/ℏU(t, t0), (4.4)

where UI(t, t0) is the evolution operator for the states in the “interaction picture”, derived
from the Schrödinger picture by unitary transformation U [0] †(t, t0). With this definition,
UI(t, t0) may be defined through

iℏ∂UI(t, t0)
∂t

= VI(t)UI(t, t0), (4.5)
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4.2 Introduction to time-dependent perturbation theory

where
VI(t) ≡ U [0](t0, t)V (t)U [0](t, t0). (4.6)

Integrating this equation from t0 to t, we obtain

UI(t, t0) = UI(t0, t0) − i
ℏ

∫ t

t0
dt′VI(t′)UI(t′, t0). (4.7)

This result provides a “self-consistent” equation for UI(t, t0), i.e., if we take this expression
and substitute UI(t′, t0) in the integrand, we obtain

UI(t, t0) =
∞∑

n=0

(
− i
ℏ

)n ∫ t

t0
dt1 · · ·

∫ tn−1

t0
dtnVI(t1)VI(t2) · · ·VI(tn), (4.8)

where the term corresponding to n = 0 is I. From this result, with the aid of Eq. (4.4), and
Eq. (4.6) we get the following expansion for U :

U(t, t0) =
∞∑

n=0
U [n](t, t0), (4.9)

where

U [n] = (−i/ℏ)n
∫

t>tn>···>t0

dtndtn−1 · · · dt1 U [0](t, tn)V (tn)U [0](tn, tn−1)

× · · · U [0](t2, t1)V (t1)U [0](t1, t0),
(4.10)

where U [0] represents the zero-order approximation, and U [1], U [2], ... are the corrections of
order 1, 2, ... to that approximation. In practice, the calculation of these corrections becomes
increasingly complicated with higher orders, and one usually takes only the lowest-order
corrections.

We assume the eigenvalue problem of H0 |j⟩ = Ej |j⟩ to be solved, where the |j⟩ are
a complete set of eigenvectors of H0 with corresponding eigenvalues Ej . Thus we define
ωjk = (Ej − Ek)/ℏ which is the “Bohr frequency” relative to the transition k → j.

If at the initial time t0 the system is in the state |i⟩, the system will be in a final state j
with the probability amplitude aj(t) given by

aj(t) = ⟨j|U(t, t0) |i⟩ =
∑

n

⟨j|U [n](t, t0) |i⟩ , (4.11)

or more explicitly,

aj(t) = δji − i
ℏ

∫ t

t0
dt′ ⟨j|V (t′) |i⟩ eiωjit

− 1
ℏ2

∫ t

t0
dt′
∫ t′

t0
dt′′

∑
k

⟨j|V (t′) |k⟩ ⟨k|V (t′′) |i⟩ eiωjkt′+iωkit
′′ + · · · .

(4.12)
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Therefore, the expansion of the probability amplitude into a power series is given by

aj(t) =
∑

n

a
[n]
j (t), (4.13)

where a[0]
j (t) = δji is the initial condition. The time-dependent amplitude, aj(t), satisfies the

normalization condition of ∑j |aj(t)|2 = 1. Moreover, we can define the matrix element in
the velocity gauge as

Vjk(t) ≡ ⟨j|V (t) |k⟩ = djkA(t), (4.14)

where dkl is the dipole matrix element in the velocity gauge, and A(t) is the vector potential,
see also Eq. (2.22). Assuming that an atom is in the initial state before the laser field is
turned on, i.e., t0 → −∞, the probability amplitude at time t > t0 can be obtained using the
following relation

a
[n]
j (t) = − i

ℏ
∑

k

djk

∫ t

−∞
dt′A(t′)eiωjkt′

a
[n−1]
k (t′). (4.15)

Equation (4.15) is solved numerically using the finite difference method, Appendix E.
Since we are interested in finding the electron in its final state with Ej at t → ∞, therefore

a[n](Ej) ≡ a
[n]
j (t → ∞) = − i

ℏ
∑

k

djk

∫ ∞

−∞
dt A(t)eiωjkta

[n−1]
k (t). (4.16)

Henceforth, a[n](Ej) = a
[n]
j (t → ∞) is denoted to be the probability amplitude of finding the

particle in the state j. In the case of degeneracy or different angular momentum, another
index can appear beside index j.

As an example, we consider the first-order TDPT with initial condition ai(−∞) = 1 and
aj(−∞) = 0 for all j ̸= i, which describes single-photon ionization:

a[1](Ej) = − i
ℏ
dji

∫ ∞

−∞
dt′A(t′)eiωjit

′ = − i
ℏ
dji F [A(t)] (ωji) . (4.17)

Equation (4.17) signifies that the single-photon ionization is the Fourier transform Eq. (2.31)
of the pulse, here F indicates the Fourier transform. This implies that the shorter pulse in
the time domain, the wider the spectrum in the energy domain.

In the case that the laser pulse has a Gaussian envelope Eq. (2.41), the probability of
transition from initial state |i⟩ to final state |j⟩ is given by

Pi→j =
∣∣∣a[n](Ej)

∣∣∣2 =
∣∣∣∣∣− i

2ℏA0T

√
π

2 ln 2 dji

∑
±

e−(ωji±ω)2 T 2
8 ln 2

∣∣∣∣∣
2

, (4.18)

where A0 is central pulse strength, T is the pulse duration, and cos(ωt) = 1/2∑± e±iωt.
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4.2 Introduction to time-dependent perturbation theory

In perturbation theory, the behavior of pathways is similar to a binary tree, and the
number of pathways is proportional to 2n, where n is the perturbation order. Here in 1st-
order PT, we have two pathways: the final energy reaches E0 + ℏω or E0 − ℏω, as can be
seen in the sketch in Fig. 4.1.

E0 + ℏω

E0

E0 − ℏω

Figure 4.1: Single-photon ionization pathways

We keep the term with “−” sign in Eq. (4.18), and since Ej − Ei > 0, therefore ωji + ω is
very large and e−(ωji+ω)2T 2/8 ln 2 is exponentially suppressed. As a result, the term with the
“+” sign is neglected. For an initial condition in the ground state, all states are occupied
around E0 + ℏω, so the single-photon spectra has a peak around this energy.

In some situations, the first-order TDPT is not applicable, because its use relies on the
following two conditions

• the laser carrier frequency (ω) is high enough to overcome the gap between the initial
state and the ionization threshold. As an example, If the ground state is the initial
state, the gap is the ionization potential Ip.

• the shift of the atomic state, ponderomotive energy Eq. (2.1), has to be negligible in
comparison with the maximum kinetic energy, i.e., Ekin,max = ℏω − Ip then

Up = E2
0

4ω2 ≪ Ekin,max ⇒ E0 ≪ 2
√
ω(ℏω − Ip), (4.19)

this ensures that the atomic state has no Stark shift. Here E0 is the electric field
strength.

With the advent of intense laser pulses, particularly high-intensity laser, the first-order TDPT
is no longer applicable and breaks down. Furthermore, the electron spectrum gets more
complicated in this regime [4, 44, 50, 119]. This signifies that the photoelectron spectra need
to be modified by contributing higher orders of TDPT.

4.2.1 Higher order time-dependent perturbation theory

In high-order perturbation theory, the perturbation is treated to a higher order of approxim-
ation, which means that more terms in the series of corrections are included. This results in
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4.2 Introduction to time-dependent perturbation theory

a more accurate description of the system’s behavior under the perturbation but also makes
the calculations more complex and computationally intensive. We numerically solved the
series in Eq. (4.15), see Appendix E, and investigated the photoelectron spectra at the end
of the pulse. We continued adding more orders until no significant changes in the final result
were observed in the spectrum we wished to compare to the TDSE solution.

Figure 4.2 shows comparisons between the electron spectrum obtained from TDSE solu-
tion and Eq. (4.16) for various intensities of the three-dimensional hydrogen atom solution
driven by a Gaussian envelope pulse. Higher intensity, makes convergence more difficult, res-
ulting in a significantly higher order of the TDPT. The deviation from the maximum energy
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Figure 4.2: Single-photon photoelectron spectra, which is defined in Eq. (2.26), for 1s hydro-
gen exposed to a 5 fs pulse with a carrier frequency of ω = 53.6 eV for different intensities, com-
pared with TDSE for different perturbation order n. (a) For intensity I = 1015 W/cm2, TDPT
requires 5 orders, (b) for I = 1016 W/cm2, requires 9 orders, and (c) for I = 1017 W/cm2,
requires 41 orders to get converged.

of E0 + ℏω which is depicted as a vertical line at E = 40 eV in Fig. 4.2 at higher intensity
is known as the dynamic interference [50]. As the intensity increases, the spectra get wider,
which can be explained by the fact that higher orders of TDPT become dominant at higher
intensities. Since each order of TDPT is proportional to the Fourier transform of the pulse
envelope to the power of that order F [fn(t)], higher orders are wider in spectra. More on
this in Sections 4.3 and 4.4.

A sequence of events can sometimes be expected to settle into a pattern. The pattern
may, for instance, be convergence in the classical sense to a fixed value. If there is a reliable
reference, then we compare the outcomes with that reference, but in most cases, such a
reference does not exist. Therefore, a quantity that ensures the series converges is needed.
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4.2 Introduction to time-dependent perturbation theory

This quantity can be defined as

Prn =
∑

j

|a[n](Ej)|2, (4.20)

which is the so-called “convergence in probability”, see Van der Vaart 1998 [126]. The basic
idea behind this is that as the sequence progresses, the probability of an “unusual” outcome
decreases. Consequently, if this quantity reaches zero for large n,

lim
n→N

Prn ∼ 0, (4.21)

the series get converged, i.e., no more correction term is needed. If this condition is fulfilled,
the TDPT converges to a finite value.
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Figure 4.3: Converged order N for 1s hydrogen exposed to the Gaussian pulse for different
durations T with the carrier frequency ω = 54 eV as a function of electric field strength. Left
panel: linear scale. Right panel: logarithmic scale.

In certain instances, the expansion of the time evolution operator (perturbation orders) in
terms of matrix elements in a particular basis set may not necessarily converge [111]. Many
efforts were made to deal with diverging terms [112, 113, 114, 115]. However, in ultrashort
laser pulses, another parameter plays an important role, which is a feature of the pulse
envelope. We found that the full-width-at-half-maximum (FWHM) duration T can act as
a parameter that controls the divergence of TDPT orders. For very short pulses, TDPT is
converged fast and can cover higher intensities, see Fig. 4.3. On the contrary, as expected,
the diverging terms become dominant in the long pulse regime, and TDPT diveres rapidly.

In order to calculate the converged order, N , we monitor the quantity in Eq. (4.20) for
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4.2 Introduction to time-dependent perturbation theory

each order. When this quantity for an order n∗, reaches a threshold, Prn∗ < ϵ, we record the
converged order N , where ϵ ∼ 10−6.

Ultrashort pulses are extremely brief bursts of electromagnetic radiation, typically in the
form of light, that last for just a few femtoseconds or even attoseconds. These ultrashort
pulses have revolutionized the field of ultrafast science, allowing researchers to study phe-
nomena that occur on incredibly short timescales [9]. With the accessibility of ultrashort
pulses in experiments, TDPT gets more attention and can be used as an alternative solution
for TDSE. As shown in Fig. 4.3, in the attosecond regime, it is possible to reach a very high
intensity that is accessible in experiments at the moment, without any diverging in TDPT
terms.

With advanced experimental techniques, pulse shaping is accessible in the ultrashort re-
gime [65, 66, 78, 79, 80, 77], accordingly, more parameters that control the pulse are involved.
These parameters may play a role in the divergence or convergence of TDPT. In the next
section, we address this point.

4.2.2 Perturbation theory in shaped short laser pulse

For the Gaussian envelope pulse, the convergence of TDPT strongly depends on the fun-
damental parameters, i.e., intensity I, carrier frequency ω, and the FWHM duration T .
Moreover, we can form a pulse with a complicated shape by changing the modulated phase
in its definition in the frequency domain. Thus, these pulses are controlled by some extra
parameters. In this subsection, we wish to know the effect of modulated phase parameters
on the convergence of TDPT.

As discussed in Chapter 2, the general pulse definition is given by

A(ω′) = NA0e−(ω′−ω)2T 2/4 eiφ(ω′), (4.22)

where φ(ω′) represents the modulated spectral phase and N ≡ T/
√

4π. Assume that the
modulated phase has the form φ(ω′) = a sin(τω′ + ϕ) and is controlled by three parameters:
a, τ , and ϕ (see Fig. 2.4). By setting a = 1 and ϕ = 0, we examine the parameter τ ,
which fixes the time delay between the sub-pulses. To contemplate perturbation order and
phase parameters, we define a cost function, which is a quantity that measures the difference
between the predicted output and actual output of a model, and the goal is to minimize the
cost function with an exact reference, as

Cn(τ) =
∫

dE [pref(E, τ) − pn(E, τ)]2∫
dE [pref(E, τ)]2

, (4.23)
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4.2 Introduction to time-dependent perturbation theory

Figure 4.4: Cost function, Cn(τ) in Eq. (4.23), for 1s hydrogen atom for the pulse with
sinusoidal modulated phase defined in Eq. (2.46) as a function of τ and the perturbation
order n. (a) Linear scale and (b) logarithmic scale, with pulse parameters as T = 3 fs,
ω = 24.5 eV, and I = 1016 W/cm2. The cost function increases as going to higher orders and
finally converges at n ≈ 43 for all values of τ .

where pref is the reference photoelectron spectra, which are calculated from the TDSE solu-
tion. Figure 4.4 is depicted the single-photon ionization of a three-dimensional hydrogen
atom. As seen in Fig. 4.4, the number of orders required to converge is independent of the
delay between sub-pulses, and this is surprising since by increasing τ , the pulse in the time
domain gets stretched and becomes much longer than the Fourier-limited pulse (see Fig. 2.4).
Still, it needs the same number of orders as for the Fourier-limited. The ripples in Fig. 4.4
are because of the period of the pulse that we have used. The reason is that the middle single
Gaussian peak in this pulse train (see Fig. 2.4) is dominant. Therefore, if we, for example,
intentionally remove the middle pulse train, the PT’s order becomes dependent on pulse train
parameters.

To sum up, the perturbation orders required for convergence depend only on the fun-
damental pulse parameters, i.e., T , A0, ω, and the pulse shaping parameters, namely, τ ,
does not affect the convergence of TDPT. In the following two sections, we introduce two
applications of TDPT in the ultrashort regime, non-adiabatic ionization, and interference
stabilization.
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4.3 Application I: non-adiabatic ionization

4.3 Application I: non-adiabatic ionization

In the high-intensity regime, second-order TDPT, which describes the two-photon ionization
was used, particularly when an electron can be ionized with the help of two photons [40] that
is experimentally verified [41, 42]. We found that in the ultrashort pulse regime, the second-
order perturbation theory finds an application, known as the “non-adiabatic” transition,
which happens due to the fast-changing of states. This transition, see Fig. 4.5, is mostly
considered in the time domain, and it first appeared in Ref. [127] considering ATI peaks
[4, 128] in the stabilization regime [129, 130], and was later studied in detail [12, 13] using
the Siegert-state expansion for nonstationary systems [131]. In this section, we take advantage
of TDPT to investigate this process in the energy domain.
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Figure 4.5: ATI peaks in the log scale of a 1D system that is defined in Eq. (4.37) for the
Gaussian pulse with T = 2 fs, ω = 0.314 a.u., and A0 = 1 a.u.

Figure 4.5 shows the electron spectrum Eq. (2.26) that are ATI peaks, of which the
0th ATI peak is the motivation of this section. We consider this process using perturbation
theory and will provide a model in order to understand it. The rising and falling observed in
the 1st, 2nd, etc. peaks are related to the stabilization [132] which will be discussed in the
next section. Those in the 0th peak will be discussed in this section. It’s worth mentioning
that each ATI peak has an under-curve area that is distinct by different colors. The integral
over the under-curve area with a specific energy range gives the ionization probability of that
ATI peak.

Second-order PT contains eight pathways that are sketched in Fig. 4.6. It describes
two-photon ionization, in which the pathway reaches net two-photon energy E0 + ℏω, and
non-adiabatic ionization, in which pathways reach net energy E0. The latter process is the
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4.3 Application I: non-adiabatic ionization

focus of this section.

E0 + 2ℏω

E0 + ℏω

E0

E0 − ℏω

E0 − 2ℏω

Figure 4.6: All possible pathways of the second-order PT. Red arrows end net two-photo
ionization with final energy E0 + ℏω. Blue arrows end net final energy E0. Green arrows
do not participate in ionization because they are exponentially suppressed, as explained in
Fig. 4.1.

Finding an electron in the final state |j⟩ at time t → ∞ for the general pulse Eq. (2.38),
is derived in 2nd-order PT from Eq. (4.16) which reads

a[2](Ej) = − 1
ℏ2

∑
k

djkdk0

∫ ∞

−∞
dt A(t)eiωjkt

∫ t

−∞
dt′A(t′)eiωk0t′

, (4.24)

where we assumed the initial state is the atom’s ground state, i.e., |i⟩ = |0⟩. If the laser pulse
has the form A(t) = A0 cos(ωt), the transition probability in second order is given by

a[2](Ej) = − i
4ℏ2A

2
0
∑

k

djkdk0 lim
ϵ→0+

[
δ(ωj0) + δ(ωj0 + 2ω)

ωk0 + ω − iϵ + δ(ωj0) + δ(ωj0 − 2ω)
ωk0 − ω − iϵ

]
, (4.25)

where we have used ωj0 = ωjk + ωk0, and δ is the Dirac delta function. The second-order
terms in the probability are maximal for Ej = E0 and Ej = E0 ± 2ω. The peaks for
Ej = E0 ± 2ω correspond to two-photon absorption or two-photon emission. The peaks for
Ej = E0 correspond to one photon absorption and one photon emission. This is the so-called
“net zero-photon” transition, short “zero-photon”, transition in which the photon that has
been first emitted or absorbed is given by the denominator ωk0 + ω (resp. ωk0 − ω).

Solving integrations in Eq. (4.24) for a general pulse analytically is challenging. However,
an exact solution exists for certain pulses, such as the Gaussian pulse. For simplification, we
define two variables that can be interpreted as detuning

δζ ≡ (ωk0 + ζω)T/2, and δσ ≡ (ωjk + σω)T/2, (4.26)

where ζ and σ can be “up” or “down”, so that ζ, σ = ±1.
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Second-order TDPT for the Gaussian pulse is given by

a
[2]
j (t) = − 1

16ℏ2A
2
0πT

2∑
k

djkdk0e−δ2
ζ −δ2

σ

[
1 + erf

(
t/T − iδζ

)]
− 1

8ℏ2A
2
0
√
πT

∑
k

djkdk0e−δ2
ζ −δ2

σ

∫ t

−∞
dt′e− 1

T 2 (t′−iδσ)2
erf
(
t′/T − iδζ

)
.

(4.27)

The integration in the second term does not have a close form, but it can be solved for t → ∞.
The solution1 is given by∫ ∞

−∞
dt exp

[
− 1
T 2 (t− iδσ)2

]
erf
(
t− iδζ

T

)
= iT

√
π erfi

(
δσ − δζ

T
√

2

)
, (4.28)

where here we use the fact that d
dz erf(z) = 2√

π
e−z2 , and erfi(z) = −i erf(iz) is the imagin-

ary error function. Substituting the solution of Eq. (4.28) into Eq. (4.27), the two-photon
occupation, is given by

a[2](Ej) = − 1
8ℏ2A

2
0πT

2∑
k

djkdk0e−(δ2
ζ +δ2

σ)
(

1 + i erfi
(δσ − δζ√

2

))
. (4.29)

Since the imaginary error function diverges rapidly which makes it difficult for numerical
calculation, one can use the Dawson function F (x) ≡

√
π

2 e−x2erfi(x). Then, the two-photon
occupation becomes

a[2](Ej) = − 1
8ℏ2A

2
0πT

2∑
k

djkdk0

(
e−(δ2

ζ +δ2
σ) + i 2√

π
F
(δσ − δζ√

2

)
e− 1

2 (δζ+δσ)2
)
, (4.30)

which is more convenient for numerical calculation.
Equation (4.30) is an exact solution for a Gaussian pulse. Using the same strategies, an

exact solution also can be obtained for a sinusoidal pulse2, as defined in Eq. (2.46). However,
1Assume δζ > 0, δσ > 0, and T > 0, then the integration can be solved as follows∫ ∞

−∞
dt exp

[
− 1

T 2 (t − iδσ)2
]

erf

(
t − iδζ

T

)

=
∫ (∫ ∞

−∞

∂

∂δζ
erf

(
t − iδζ

T

)
exp
[
− 1

T 2 (t − iδσ)2
]
dt

)
dδζ

=
∫ (

− 2i
T

√
π

T
√

π√
2

exp
[

(δσ − δζ)2

2T 2

])
dδζ = iT

√
π erfi

(
δσ − δζ

T
√

2

)
,

2Second-photon occupation for the sinusoidal pulse defined in Eq. (2.46) is given by

a[2](Ej) = −1
8A2

0T 2π
∑

k

djkdk0
∑
l′,l

Jl′ (a)Jl(a) ei[lωk0+l′ωjk]τ−i[lζ+l′σ]ϕ

× e−(δ2
ζ

+δ2
σ)/4

(
1 + i erfi

(
δσ − δζ

2
√

2
+ iτ [l − l′]√

2T

))
.
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in most cases of pulse shaping, such an exact solution is not available. Hence, we utilize the
technique of slowly-varying-envelope-approximation (SVEA) [120, 121] to derive a general
solution.

4.3.1 Slowly varying envelope approximation

We consider a general form of the vector potential given by Eq. (2.38), in which f(t) and
exp[iΦ(t)] vary slowly compared to the laser frequency ω, i.e., ∂mf(t)/∂tm ≪ ωm and
∂mΦ(t)/∂tm ≪ ωm for all integer m. In second-order perturbation theory given by Eq. (4.24),
we make the approximation∫ t

−∞
dt′ exp

(
iωk0t

′)A(t′) = 1
2
∑

ζ=±1

∫ t

−∞
dt′ f(t′) exp

[
−iζΦ(t′)

]
exp

[
i (ωk0 − ζω) t′

]
,

≈ − i
2f(t)

∑
ζ=±1

exp [−iζΦ(t)] exp(iωk0t)
ωk0 − ζω

,

(4.31)

where we have used the integration by parts and neglected terms of order ∂mf(t)/∂tm and
∂mΦ(t)/∂tm for all m. The integer ζ corresponds to one photon absorption if ζ = +1 and
one photon emission if ζ = −1. Substituting this equation into Eq. (4.24), one obtains

a[2](Ej) ≈ i
4ℏ2A

2
0
∑

k

djkdk0
∑

ζ=±1
σ=±1

1
ωk0 − ζω

∫ ∞

−∞
dt f2(t)ei(ωj0−(ζ+σ)ω)t exp [−i(ζ + σ)Φ(t)] ,

(4.32)

where we have used ωjk + ωk0 = ωj0. Equation (4.32) can be written with the Fourier
transform as

a[2](Ej) ≈ i
4ℏ2A

2
0
∑

k

djkdk0
∑

ζ=±1
σ=±1

1
ωk0 − ζω

F
[
f2(t)e−i(ζ+σ)Φ(t)

](
ωj0 − (ζ + σ)ω

)
. (4.33)

An electron in the ground state of the atom |i⟩ = |0⟩ can only couple with states of energy
larger than the energy of the ground state, i.e., ωk0 ≥ 0 for all k. If the atom is initially in
its ground state, |0⟩ = |E0⟩ with energy E0, the electron can only absorb one photon, and as
a consequence, the only possible value for ζ is ζ = 1. Therefore

a[2](Ej) ≈ i
4ℏ2A

2
0

{
F
[
f2(t)

]
(Ej − E0) + F

[
f2(t)e−2iΦ(t)

]
(Ej − E0 − 2ω)

}∑
k

djkdk0
ωk0 − ω

,

(4.34)

where the first term is for σ = +1 and the second term is for σ = −1.
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Equation (4.34) describes the two-photon amplitude for a general pulse. Now we can
consider it for a Gaussian pulse with the envelope of f(t) = exp

[
−t2/T 2], and Φ(t) = 0 which

is given by

a[2](Ej) ≈ i
4ℏ2

√
π

2TA
2
0

{
e−(Ej−E0)2T 2/8 + e−(Ej−E0−2ω)2T 2/8

}∑
k

djkdk0
ωk0 − ω

. (4.35)

If we compare Eq. (4.35) with the exact expression in Eq. (4.30), we immediately find out
that the first term in Eq. (4.30) is missing. With the asymptotic behavior of the Dawson
function, F (x) ∼ 1/2x in the second term of Eq. (4.30), we reach Eq. (4.35). The variable
δσ = (ωjk + σω)T/2 does not show up in the denominator in Eq. (4.35) since we used SVEA
in 1st-order PT, and we missed it as it comes from the 1st-order PT.

As long as the Fourier transform of the laser pulse and the Fourier transform of the laser
pulse shifted by 2ω do not overlap, the term F [f(t)2](ωj0)F [f(t)2 exp[−2iΦ(t)]](ωj0 − 2ω) is
negligible. As a consequence, the photoelectron energy distribution (PED) P (E) is given by

p(Ej) ≈
∣∣∣a[1](Ej)

∣∣∣2 +
∣∣∣a[2](Ej)

∣∣∣2 ≈ 1
ℏ2

∣∣∣A0F
[
f(t)e−iΦ(t)

]
(Ej − E0 − ω)dj0

∣∣∣2
+ 1

16ℏ4

{∣∣∣∣A2
0F
[
f2(t)e−2iΦ(t)

]
(Ej − E0 − 2ω)

∣∣∣∣2 +
∣∣∣∣A2

0F
[
f2(t)

]
(Ej − E0)

∣∣∣∣2
} ∣∣∣∣∣∑

k

djkdk0
Ek − E0 − ω

∣∣∣∣∣
2

.

(4.36)

The dominant term in the summation over k is the state of energy E1, which corresponds to
the intermediate single-photon absorption of energy E1 = E0 + ℏω. The PEDs of the system
will consist of three main parts, which correspond to the three main terms on the right side
of the latter equation:

• The first term corresponds to the single-photon process. The electron absorbs one
photon and ends in the final energy level Ej ≈ E0 +ω where ω is the central frequency
of the fast-oscillating part. The PED corresponds to the Fourier transform of the laser
pulse envelope f(t)e−iΦ(t) shifted by E0 + ω.

• The second term corresponds to the two-photon process. The electron absorbs one
photon and goes to the intermediate energy level E1 = E0 + ω, then absorbs a second
photon and ends in the final energy level Ej ≈ E0 + 2ω. The PED corresponds to the
Fourier transform of the pulse envelope squared f2(t)e−2iΦ(t) centered around E0 + 2ω.

• The third term corresponds to the two-photon (or zero-photon) process. The electron
absorbs one photon and goes to the intermediate energy level E1 = E0 + ω, then emits
a photon through stimulated emission and ends in the final energy level Ej ≈ E0. The
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PED corresponds to the Fourier transform of the pulse envelope squared f2(t) centered
around E0.

It is worth mentioning that the two-photon PED, which is the Fourier transform of the
square pulse envelope, has a slightly broader width than the single-photon PED, and higher
orders are likewise affected by it. Equation (4.36) can be understood by looking at the
schematic diagram depicted in Fig. 4.7.

ultrashort pulse𝐸! + ℏ𝜔

𝐸!

𝐸! + 2ℏ𝜔

𝐸

𝐸! + ℏ𝜔

𝐸!

𝐸! + 2ℏ𝜔

𝐸

observable peak

two-photon process

𝐸! + ℏ𝜔

𝐸!

𝐸

single-photon process

Figure 4.7: A diagram of the multiphoton process, in particular the single- and two-photon
processes, is drawn. The vertical arrow indicates the energy, and the horizontal axis is the
ionization threshold (zero energy). In the two-photon process, there are two pathways: (i)
two-photon absorption and (ii) one-photon absorption and emission, which correspond to the
zero-photon process for electrons interacting with a laser pulse. The spectrum is inclined to
zero at low energies, E ≈ 0, due to the tendency of the matrix element to zero, and as a
result, an independent peak is observed in the calculation.

4.3.2 Zero-photon transition

The direct effect of ultrashort pulses observes in low energy in the sketch in Fig. 4.7 is
considered to be zero-photon. Figure 4.8 reveals that by going to longer pulses, this low-
energy effect disappears.
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Figure 4.8: The net zero-photon photoelectron spectrum for a Gaussian pulse with different
pulse duration T = 1, 2, and 3 fs, carrier frequency ω = 0.314 a.u., and field strength A0 =
0.5 a.u. Left panel, the result is for TDSE and right panel for TDPT.

The zero-photon process exhibits certain characteristics, which we shall outline here. (1)
It is a consequence of ultrashort pulses; therefore, in order to study this process, it is necessary
to subject it to such pulses. (2) For this process, an initial state with low energy is of great
importance. If the initial state is close to the threshold, the process is evident. Whereas if the
initial state is deep, it is difficult to observe even if the pulse is strong or of short duration.
(3) When an atom is subjected to a strong field, atomic states experience a shift, which is
equivalent to the dynamic Stark shift. This gives rise to increasing the ionization in this
process. The shift in atomic states is effective in this process if conditions (1) and (2) are
already fulfilled.

The model system that we consider here is a one-dimensional system with the potential
[132]

V (x) = −
exp

[
−a1

√
(x/a1)2 + a2

2

]
√

(x/a1)2 + a2
3

, (4.37)

with a1 = 24.856, a2 = 0.16093, and a3 = 0.25225, it supports one bound state of E0 =
−0.0277 a.u. This potential has a weak bound state, this property makes it suitable to
investigate the zero-photon process.

Although Eq. (4.30) provides a solution for a Gaussian pulse, we are interested in finding
a model for a general laser pulse and understanding the behavior of this process. For that
matter, we use SVEA which is described in the section 4.3.1.
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A model

The photoelectron peak that is observed at low energy is attributed, see Fig. 4.8, to non-
adiabatic photo-ionization (NAPI). In the frequency domain, as shown in Fig. 4.7, this mech-
anism is a two-photon process with absorption and emission of one photon. The amplitude for
this zero net photon process can be formulated in second-order time-dependent perturbation
theory. Evaluated in SVEA is reads

a[2](Ej) ≈ i
4ℏ2A

2
0 d

[2]
j F

[
f2(t)

]
(Ej − E0) , (4.38)

which is proportional to the Fourier transform of the square of the pulse envelope, with the
matrix-element

d
[2]
j =

∑
k

djkdk0
2ωk0

ω2
k0 − ω2 . (4.39)
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Figure 4.9: Photoelectron spectra for two different pulses, (a) a Gaussian pulse and (b) a
pulse train defined in Eq. (2.46), with pulse parameters ω = 0.314 a.u., T = 2 fs,A0 = 0.5 a.u.
and the modulated spectral phase parameters a = 1, τ = 4T, ϕ = 0. Shown is the solution of
TDSE (solid blue line) and the SVEA approximation in (Eq. (4.38), dashed red line).

Figure 4.9 shows a comparison between TDSE and Eq. (4.38) for two pulses, the Gaussian
and sinusoidal pulse, Eq. (2.46). In the SVEA approximation Eq. (4.38), some prefactors
are missing; therefore, we have to normalize the SVEA results to compare with the TDSE
solution. The small peak in Fig. 4.9b is due to the interference between the sub-pulses and is
controlled by τ . The sinusoidal pulse, Eq. (2.46), is depicted in Fig. 2.4. For τ = 4T = 8 fs,
and a = 1 sub-pulses are well separated and contain 9 sub-pulses, each of them has an intensity
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proportional to the Bessel function Jk(a) where J0...4(1) ≈ {0.765, 0.440, 0.115, 0.020, 0.002}.
The interference between the middle sub-pulses leads to raising and falling structures in the
photoelectron spectrum. Since a part of the zero-photon spectrum appears in the continuum,
we only can see a visible small peak in Fig. 4.9. However, in the case of the net two-photon
ionization, we can observe many peaks in its spectrum, see Fig. 4.10.

In general, zero-photon ionization depends on the square of the pulse envelope. How-
ever, since ζ + σ = 0, the factor e−i(ζ+σ)Φ(t) vanishes in Eq. (4.38), and as a result, this
process is independent of the phase information of the laser pulse. Fig. 4.10 illustrates this
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Figure 4.10: The zero- and two-photon photoelectron spectrum for the same model as in
Fig. 4.9 for the sinusoidal pulse, Eq. (2.46), with pulse parameters of ω = 0.314 a.u., T =
2 fs,A0 = 0.5 a.u. and the modulated spectral phase parameters of a = 1 and τ = 4T for
ϕ = 0 (blue line) and ϕ = π/2 (red line). TDSE (left panel) and TDPT (right panel) produce
the same result.

well, demonstrating how the two-photon ionization strongly depends on the pulse’s phase,
whereas the zero-photon ionization does not, as predicted from second-order TDPT. Here,
the modulation phase ϕ is the relative phase between subpulses, see Chapter 3.

4.3.3 Zero-photon ionization probability

Zero-photon ionization is effectively a two-photon process, which is a new channel in the
photoionization process. This new peak has a different trend for the ionization probability as
a function of laser intensity in comparison with other multiphoton processes, as can be seen
in Fig. 4.11. The ionization probability can be calculated by integrating the area under each
photon peak at different intensities. Figure 4.5, shows the ATI peaks and the area under
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4.3 Application I: non-adiabatic ionization

each peak separated by different colors. Thus, the ionization probability in Fig. 4.11 for
each photon corresponding to each peak in Fig. 4.5. Although the focus of this section is on
net two-photon and zero-photon ionization, we also present the result for net single-photon
ionization in order to better understand the mechanism.
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Figure 4.11: TDSE solutions of ionization probabilities for zero- (black line), single- (blue
line), and two-photon (red line) transitions for a Gaussian pulse with carrier frequency ω =
0.314 a.u. and pulse duration T = 2 fs are given as a function of field strength. the left panel is
for linear scale and the right panel is for log scale. The model system is defined in Eq. (4.37).

In the low-intensity limit, the dominant term is the single-photon process, where the
system can be described using 1st-order PT, and the ionization probability increases as A2

0,
see Eq. (4.18). As shown in Fig. 4.11, single- and two-photon ionization after a certain point,
also known as the critical field, starts to have a decreasing trend, while zero-photon ionization
at that point starts to have an increasing trend.

The slowly varying envelop approximation reveals unique properties of the zero-photon
ionization probability at high intensity. To this end, we restrict ourselves to the block of
pathways that produces net zero-photon absorption.

Using the fact that higher-order pathways have a small matrix element and contribute less
to the ionization probability we can restrict ourselves to the block in Fig. 4.12, and calculate
the matrix element for every order which ends net zero-photon absorption. For instance,
we can calculate the four-photon matrix element of one path, that is “up-down-up-down” or
E0 → Ek → El → Em → Ej , where Ek, El, and Em are intermediate states and Ej is the
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E0 + ℏω
· · ·

E0
· · ·

E0 − ℏω

Figure 4.12: A possible block of pathways that reach the net zero-photon transition, two-
photon (blue and black), and four-photon (red and green)

final state, as

d
[4]
j = lim

ϵ→0+

∑
m

∑
l

djmdmld
[2]
l

(ωm0 − ω)(ωl0 + iϵ) , (4.40)

where d[2]
l is defined in Eq. (4.39). There is a singularity at Em = E0 + ω and at El = E0 in

the integral of intermediate states in Eq. (4.40). We keep one singularity and integrate over
the other intermediate state with singularity El = E0.

Using the Cauchy principle value and the fact that it has a principle value (PV), we have

lim
ϵ→0+

∫
dE g(E)

E − E0 + iϵ = PV
(

g(E)
E − E0

)
− iπ

∫
dE δ(E − E0)g(E). (4.41)

Ignoring the principle value [110] and using
∫

dx g(x)δ(x − x0) = g(x0), the integration in
Eq. (4.40) can be performed. The fourth-order matrix element becomes d[4]

j ≈
(

− i d[2]
0

)
d

[2]
j ,

where d[2]
j is defined in Eq. (4.39). The six-photon matrix element can be obtained using the

same technique. Thus, in general, the matrix element for every even order of PT is given by

d
[n]
j ≈ d

[2]
j

(
−i d[2]

0

)n−2
2 for n = 2, 4, 6, · · · . (4.42)

Using the fact that each even TDPT order is the Fourier transform of the squared pulse
envelope to the power of that order, F [f2n(t)](E − Ej), we can obtain the zero-photon
probability amplitude by switching the Fourier transform to the integral form as

a[n](Ej) ≈ i
ℏ2

(
−1

2

)n

An
0 d

[n]
j

∫ ∞

−∞
dt f2n(t) ei(Ej−E0)t/ℏ, for n = 2, 4, 6, · · · (4.43)

where d[n]
j is the corresponding matrix-element. By substituting Eq. (4.42) into Eq. (4.43),

and with n → 2n + 2, we can make sum the contributions for n = 0, 1, 2, · · · , in form of an
infinite geometry series, i.e., ∑∞

n=0 ar
n = a/(1 − r). Eventually, we achieve at

a(Ej) =
∑

n

a[n](Ej) ≈ i
4ℏ2 A2

0 d
[2]
j

∫ ∞

−∞
dt f2(t) ei(Ej−E0)t/ℏ

1 − i d[2]
0 f2(t)A2

0/4
. (4.44)
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For low intensity, higher matrix elements are negligible and Eq. (4.44) turns into Eq. (4.38),
as expected.

In the case of high intensity, the PED is expressed by p(E) = |a(E)|2 and the zero-photon
ionization probability Pion =

∫
dE p(E) for this limit tends to 1.

4.3.4 Oscillation in zero-photon transition

As ATI peaks are generated by an intense short pulse, they also get modulated as a result
of interference of photoelectron emission in the rising and falling wing of the pulse [131, 133]
also found in molecules [134, 135] and termed dynamic interference. Spatial interference, i.e.
ionization from different positions of the oscillating potential [118], during the peak of the
pulse can be interpreted as the onset of stabilization. The number of oscillations rises as
going to higher intensity.
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Figure 4.13: TDSE solution of the photoelectron spectra (ATI peaks) up to energies corres-
ponding to 3-photon in logarithmic scale for a Gaussian envelope with a central frequency
ω0 = 0.314 a.u., and a pulse duration T = 2 fs for two different field strengths (a) A0 = 0.5 a.u.
and (b) A0 = 1 a.u.. As can be seen, oscillations in ATI peaks grow at a higher intensity.
These results are for a one-dimensional solution with the potential defined in Eq. (4.37).

Figure 4.13 shows ATI peaks up to energies corresponding to 3-photon. For high intensity,
we can see the photoelectron spectrum, Eq. (2.26), of ATI peaks get modulated in the single-,
2-,3-, and 4-photon and also in the low energy peak, zero-photon ionization. We found that
the reason for the oscillations in the zero-photon is similar to those in other peaks, namely,
single- and two-photon processes.

To this end, two alternative paths were considered reaching net zero-photon ionization,
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Figure 4.14: Photoelectron spectra of zero-photon transition in a logarithmic scale for the
Gaussian envelope with a central frequency ω0 = 0.314 a.u., a pulse duration T = 2 fs and
the field strength A0 = 1 a.u.. The interference of two- and four-photon transitions (dashed
red line) covers the small dip around E ∼ 2 eV in the TDSE solution (solid black line). Here,
the system is identical to that shown in Fig. 4.13.

each requiring a different number of photons. Two- and four-photon processes are taken
into account in this. The outcome of their interference with one another is an oscillation in
the spectrum, as shown in Fig. 4.14, which gives rise to so-called “interference stabilization”
[19, 20]. These oscillations may lead to an increase in the ionization probability in the zero-
photon ionization, and in the case of other ATI peaks, they may lead to a decrease in the
ionization probability, see Fig. 4.11.

4.4 Application II: interference stabilization

Atomic stabilization is a strong-field effect in the short-wavelength regime. The ionization
rate does not follow In, with n number of the absorbed photon, which is predicted by the
perturbation theory, but shows a decreasing trend (possibly in an oscillatory manner) with
increasing laser intensity I, see the right panel in Fig. 4.15. This expresses the fact that
the ionization probability at the end of a laser pulse of fixed shape and duration does not
approach unity as the peak intensity increases but either starts decreasing with the intensity
(possibly in an oscillatory manner) or flattens out at a value smaller than unity [118]. This
phenomenon typically requires the photon energy ℏω to be larger than the ionization potential
Ip. It was first discovered by theoretical calculations [129, 130] and later confirmed by a few
experiments performed on Rydberg atoms [136, 137, 138, 139]. The interested reader who
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4.4 Application II: interference stabilization

wishes to gain a deeper understanding is referred to Ref. [118]. It is also worth mentioning
that these theoretical studies are in the dipole approximation, and the non-dipole terms do
not destroy the stabilization effect [140].

The stabilization process has been explained in the time domain. However, we found that
it can be understood by going to the frequency domain and taking advantage of the TDPT. In
this domain, stabilization may be explained by the interference of different electron pathways
that reach the same final energy.
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Figure 4.15: Atomic stabilization. (a) The photoelectron spectrum of photon ionization for a
Gaussian pulse, Eq. (2.41) with parameters of the pulse duration of 1 fs, the central frequency
of ω = 6.8 eV and the field strength of A0 = 0.6 a.u.. (b) A comparison between the results
of 3rd-order PT and TDSE solutions for ionization as a function of field strength, with a
critical field strength of Ac = 0.8 a.u. where the ionization probability reaches the maximum
value. The result of PT labeled “3-photon” implies the coherent summation of single-photon
and three-photon contributions, which are obtained from 1st-order PT and 3rd-order PT,
respectively. The other results are also obtained accordingly. The system is a 1D model with
potential defined in Eq. (4.37).

The single-photon electron spectrum is generated by an intense short pulse, and it gets
modulated as a result of interference of photo-electron emission in the rising and falling wing of
the pulse. This interference effect appears in the electron spectrum as an oscillation pattern.
Spatial interference, i.e., ionization from different parts of the pulse can be interpreted as
the onset of stabilization. In the frequency domain, these oscillations in the single-photon
spectrum start in the 3rd-order perturbation theory. As explained in sections 4.2, and 4.3.1,
the single-photon ionization obtained from 1st-order PT is the Fourier transform of the pulse
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envelope, and from 3rd-order PT, it is the Fourier transform of the cubic pulse envelope which
is wider. The interference between the 1st- and 3rd-order PT leads to a dip in the rising and
falling structure of the electron spectrum, see the left panel in Fig. 4.15.

The interference in the electron spectrum which appears for the first time in a coherent
summation of 1st- and 3rd-order PT, is the beginning of the stabilization regime. Therefore,
the 3rd-order PT is enough to predict the critical field strength, in which at that certain
point the ionization probability inverse the trend and starts to decrease. The right panel in
Fig. 4.15 shows the ionization probability for coherent summation of pathways from different
orders of PT which reach net single-photon ionization. As can be seen, up to 3rd-order
pathways are enough to predict the critical field strength Ac. By adding more pathways from
different orders of PT, the result approaches the ionization probability calculated from the
TDSE solution.

Since the critical field strength does not depend on pulse duration, we can safely employ
the SVEA approximation to predict it.

4.4.1 Third-order time-dependent perturbation theory

The number of pathways in 3rd-order PT, as explained in section 4.2, is 23 = 8. Among
these eight pathways, three end the net single-photon energy level, as shown in the sketch in
Fig. 4.16.

E0 + 2ℏω

E0 + ℏω

E0

E0 − ℏω0

Figure 4.16: All possible three-photon process pathways that end net single-photon energy
level.

In order to calculate 3rd-order PT, we take advantage of SVEA. Initiate by inserting the
integral form of Eq. (4.32) into Eq. (4.16) for 3rd-order PT, we obtain

a[3](Ej) ≈ i
4ℏ3

∑
ζ,σ,η=±1

∑
l,k

djldlkdk0
ωk0 − ζω

A3
0

∫ ∞

−∞
dt f(t) ei(ωjl−ηω)t e−iηΦ(t)

×
∫ t

−∞
dt′ f2(t′) ei(ωl0−(ζ+σ)ω)t′e−i(ζ+σ)Φ(t′).

(4.45)
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We assume that the envelope f(t) and e−iΦ(t) vary slowly compared to the laser frequency,
then we can make an approximation in the second integral in Eq. (4.45), and solve it as we
did in Eq. (4.31). Therefore, the three-photon amplitude in SVEA for all possible pathways
in Fig. 4.16 is given by

a[3](Ej) ≈ − i
8ℏ3 A3

0 d
[3]
j F

[
f3(t)e−iΦ(t)

]
(Ej − E0 − ω) , (4.46)

where the matrix element

d
[3]
j =

∑
lk

djldlkdk0

( 1
(ωk0 − ω)(ωl0 − 2ω) + 1

(ωk0 − ω)ωl0
+ 1

(ωk0 + ω)ωl0

)
. (4.47)

The first term in Eq. (4.47) corresponds to the “up-up-down” pathway, two-photon absorp-
tion, and one photon emission. The second term corresponds to the “up-down-up” pathway,
and the last term corresponds to the “down-up-up” pathway.

As briefly mentioned in this section, we can study stabilization using three-photon path-
ways for single-photon ionization to understand this process’s mechanism in the frequency
domain.

4.4.2 Ionization probability and stabilization

Considering the whole pathway that reaches the net single-photon up to the three-photon, the
photoelectron spectrum (PED) for single-photon ionization (SPI) using first- and third-order
TDPT Eq. (4.46) and Eq. (4.17) for the Gaussian pulse is given by

p(Ej) = |a[1](Ej) + a[3](Ej)|2

≈ 1
4ℏ2A

2
0 |dj0|2 T 2 π e−(ωj0−ω)2T 2/2 + 1

82ℏ6A
6
0 T

2 π

3 |d[3]
j |2 e−(ωj0−ω)2T 2/6

+ 1
8ℏ4A

4
0 dj0d

[3]
j T 2 π√

3
e−(ωj0−ω)2T 2/3.

(4.48)

We can calculate the ionization probability that is provided by

Pion(A0) =
∫

dE p(E) ≈ A2
0 A + A6

0 B + A4
0 C, (4.49)

where A, B and C are independent of intensity and given by

A ≡ 1
22ℏ2 T

2 π

∫
dE |dj0|2 e−(E−E1)2T 2/2,

B ≡ 1
23ℏ6 T

2 π

3

∫
dE |d[3]

j |2 e−(E−E1)2T 2/6,

C ≡ 1
22ℏ4 T

2 π√
3

∫
dE dj0d

[3]
j e−(E−E1)2T 2/3.

(4.50)
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where E1 = E0 + ℏω. The sign of these constants are A,B > 0, and C < 0. The sign of C
has to be negative to have interference, otherwise, the ionization probability is monotonically
increasing.

For long pulses, T ≫ 1, the matrix elements d[3]
j and dj0 in Eq. (4.50) do hardly change

over the frequency range near ω = ωj0, they can be taken out the integrals. Therefore, we
can calculate integrals in Eq. (4.49) as

A = 1
4ℏ2Tπ

√
2π|dE1 |2, B = 1

82ℏ6Tπ/3
√

6π|d[3]
E1

|2, C = 1
8ℏ2Tπ

√
πdE1d

[3]
E1
. (4.51)

Since the sign of A0 does not matter, thus we may assume A0 > 0. With the help of Eq. (F.1),
we finally get for Eq. (4.49)

Pion(I) ≈ A I + B I3 + C I2. (4.52)

To achieve the critical field strength, we should maximize the ionization probability

dP (I)
dI

∣∣∣
Ic

= A + 3 B I2
c + 2 C Ic = 0. I > 0 (4.53)

Hence, the ionization probability reaches its maximum value at

Ic =

√
C2

9B2 − A
3B − C

3B ≈ 2 dE1

d
[3]
E1

, (4.54)

independent of the pulse duration T .
To conclude this section, for laser amplitude A0 < Ac, the ionization probability increases

as increasing laser amplitude as A2
0, see Eq. (4.18), and the dominant term is single photon

absorption. For A0 > Ac the single-photon ionization probability decreases, and the dominant
term is the zero-photon process, see Fig. 4.11. This is the stabilization regime. In this
regime, we expect higher-order corrections in the perturbation theory to contribute more to
the photoelectron energy distribution. Therefore, Ic predicted from Eq. (4.54) is only an
approximation.

When the third-order term becomes non-negligible, there are interferences between the
three-photon and single-photon processes. When the fourth-order term becomes non-negligible,
there is interference between the four-photon and two-photon processes (in particular in the
zero-photon region). When these terms become non-negligible, we begin to see oscillations
in the PED as a function of laser amplitude because Eq. (4.48) now has more terms that
contribute of a higher order in A0, as shown in Fig. 4.13.

63



4.5 Summary

4.5 Summary

In the regime of ultrashort pulses, the pulse envelope plays a crucial role in the convergence
of TDPT, in which the FWHM of the pulse. Furthermore, we observed that the TDPT is
independent of phase modulation; as a result, for ultrashort pulses, the same TDPT order
is required as for a Fourier-limited pulse. In addition, non-adiabatic ionization can be inter-
preted as a zero-photon process, which the second-order TDPT can describe. By considering
the third-order TPDT, we identified the critical strength field and explained the interference
stabilization in the frequency domain.

Despite the fact that perturbation theory is an old topic, one can still derive some inter-
esting features in different regimes. A special emphasis should be placed on the ultrashort
regime, which demonstrates some notable applications that contribute to understanding the
strong field phenomenon in the frequency domain.
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5.1 Preface

Time plays a peculiar role in quantum mechanics. It is considered as a crucial parameter in
the dynamical evolution [141] other than as a quantum observable associated with a Hermitian
operator. However, there are controversial questions connected with the definition of a time
observable [142, 143, 144]. Time delay refers to a measure of the time it takes for a wavepacket
to travel through an interaction region and interact with the system. Time delay can be
estimated as the difference in arrival time at a given point in space compared to a reference
arrival time which, by definition, corresponds to a situation with zero delay or, equivalently,
zero advance [145]. Time delay is used to study quantum scattering, resonances [146, 147],
and quantum chaos [148]. Early results on time delay were based on Kelvin’s Principle of
Stationary Phase [149, 150], often employed to derive the group velocity of a wavepacket
[151]. Later, it was a kind of motivation for Eisenbud [152] and Wigner [27] to study the
time delay in quantum-mechanical scattering wavepacket. The theory of time delay has been
investigated in two concepts, in terms of displacement of the “center” of the wavepacket
[152, 27, 153, 154, 155, 156]. Although this concept has different meanings for different
authors, and in terms of an approach that was proposed by Smith [28] in which he defined
it as the difference, for large r, between the time spent by particle within a sphere with
radius r of scattering center and the same quantity without interaction [28, 157, 158, 159].
In addition, interest in the study of time delay stimulated experimentalists to measure the
duration of quantum collisions [160, 161, 162].

“When does photoemission begin?” This is an editorial title of van der Hart [163], which
accompanied the report by Schultze et al. [164], that relates the time delay between the
absorption of a photon and emission of a photoelectron with rearrangement of the ionic
core. Photoionization time delay is a fundamental aspect of the dynamics of photoionization
and can provide information about the electronic structure of a system. In simple terms,
photoionization time delay is the time it takes for light to knock an electron off a molecule
or atom. For over a century, since the Nobel prize-winning work by Einstein [38], atomic
photoionization was thought to be an instantaneous process. With the recent advances in
attosecond science, measurements of electron dynamics with attosecond time resolution [165]
became possible, which has allowed us to resolve this process in time. Thus, the experimental
validation of this prediction was realized, for example, time-resolved measurements of electron
dynamics and the delay of photoemission [166, 167, 168], which was observed in Helium [169],
noble-gas atoms [170, 171, 172, 173, 174], negative ions [175], and condensed matter systems
[176, 177, 178] for the single-photon weak field regime. For more details on the attosecond
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physics of photoionization, a few reviews are available [179, 180, 181, 182]. It is worth
mentioning that photoionization time delay can be measured using a single attosecond XUV
pulse in a streaking experiment [183, 184, 185, 186, 187, 168], or using attosecond XUV pulse
train in a RABBITT experiment (Reconstruction of Attosecond Beating by Interference of
Two-photon Transitions) [188, 189, 190]. The latter has been used to measure photoionization
group delay in various molecules: N2 [191, 192, 193], N2O [26], CO2 [194], NO [195] and CF4

[196, 197].
Attosecond photoionization delays from molecules, the focus of this chapter, have received

surprisingly little attention so far, presumably because of the associated experimental and
theoretical complexity. However, it is a subject of growing theoretical and experimental
interest, for instance, time delay in the process of single-photon ionization of two-center
systems [198, 199, 192, 200, 201, 202]. As compared to atomic ionization, the time delays
expected from molecular ionization present a much richer phenomenon, with a strong spatial
dependence due to the anisotropic nature of the molecular scattering potential. A very
detailed theoretical study by Hockett and coworkers in 2016 targeted photoionization delays
in small molecules [25]. Examining the emission delay in CO and N2 molecules, this work
provided the first fully three-dimensional photoionization delay maps in the molecular frame
and showed the dependence of the emission delay on the electron kinetic energy, the molecular
orientation with respect to the light polarization, and the molecular symmetry. Moreover,
recently a few measurements of photoionization delays of N2O and H2O [26] molecules have
been reported.

Here we discuss the theoretical results of angle and energy-resolved time delays in the
photoionization of molecules in two domains. (i) The energy domain, in which we formulate
the continuum states using some asymptotic solutions and the outgoing boundary condition
and utilize the Johnson renormalized Numerov method [29] in order to calculate bound states
and continuum states for the coupled-channel Schrödinger equation. (ii) The time domain, in
which we examine the wavepacket perspective to study the partial time delay and the ionized
electron far from the center. Note that we are only discussing the time delay, in this chapter
but not its measurement.

This chapter is structured as follows. In section 5.2, we have an overview of time delay
in a scattering process and derive the phase of the scattering states and the expectation
value of the wavepacket at a large distance which behaves as a free particle wavepacket. In
section 5.3, the photoionization time delay is considered in a scattering approach in which we
consider two asymptotic solutions of the scattering state and apply the outgoing boundary
condition in order to form the final wavefunction. Having the final wavefunction and initial
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state, we can determine the matrix element. The energy derivative of the phase of the matrix
element is the photoionization time delay. An anisotropic potential, two-center system with
two dimensions model system, is considered to illustrate the photoionization time delay. In
section 5.4, we investigate the time delay in the time domain in which we form the wavepacket
and consider the incoming and outgoing wavepacket at a large distance from the scattering
potential. Then we try to calculate the expectation value. Specifically, the two-center model
system is utilized to study the time delay in order to demonstrate this. Lastly, section 5.5
concludes this chapter.

5.2 Introduction to time delay

Early results on time delay were based on the stationary phase, which was employed to derive
the group velocity of a wavepacket. Group velocity is a property of waves that describes the
velocity at which the wavepackets or groups of waves propagate through a medium. Having
a one-dimensional wavepacket [203, 151],

Ψ(x, t) = 1√
2πℏ

∫
dE ϕ(E) exp {ikx− iEt} (5.1)

where ϕ(E) = |ϕ(E)| exp[iδ(E)], with |ϕ(E)| peaked around an energy E = k2
0/2 with a wave

number k0, one might try to answer around what value of x would the wave packet Ψ(x, t)
be peaked, at a given point of time t. Here E is energy and k is wave number k =

√
2E.

Concerning Eq. (5.1) as a superposition of monochromatic waves, one argues that rapid
phase variation will generally lead to destructive interference so that the most favorable
situation will occur when k0 coincides with a point where the phase is stationary i.e. the
derivative of the phase vanishes,

d
dk

(
δ(E) + kx− k2

2 t
)

k=k0

= 0, (5.2)

thus, the wavepacket peaks at
x = vgt− x0, (5.3)

where
x0 = (dδ/dk)k=k0

= vg (dδ/dE)k=k0
, (5.4)

and the wavepacket is propagating with the group velocity vg = (dE/dk)k0
=

√
2E. The

group velocity can be different from the phase velocity, which is the velocity at which the
individual waves of the wave packet propagate.

68



5.2 Introduction to time delay

Equation (5.3) describes the peak position of the wavepacket at different stationary points
k0 with a shift in position x0. In the case of a free particle wavepacket, the peak position is
x = vgt, where the shift in position is zero, x0 = 0. Therefore this shift in the peak position
of the wavepacket, i.e., Eq. (5.4), is related to the arrival time at a given point in space
compared to a reference arrival time which, by definition, corresponds to a situation with
zero delay or, equivalently, zero advance. As a result, we can rewrite Eq. (5.3) as

x =
√

2E (t− τ), (5.5)

where the offset τ represents the time delay in the wavepacket’s arrival at a given point
in space relative to the free particle wavepacket. This offset is given by the expression
τ = dδ(E)/dE, which denotes the derivative of the phase shift δ(E) with respect to energy
E.

5.2.1 Time delay in scattering scenario

Quantum scattering is the interaction of quantum particles, such as electrons or photons,
with a target, resulting in a change in the particle’s direction and energy. The behavior of
the scattered particles is described by quantum mechanics and can be different from classical
scattering due to the wave-particle duality and other quantum phenomena. In simple terms,
quantum scattering is the way in which particles “bounce off” of each other and change their
behavior when they collide. Fig. 5.1 shows this process, in which the incoming particle with
momentum k⃗i scattered by a target (atomic potential), and the corresponding asymptotic
stationary wavefunctions are offset by a phase δ.

The concept of time delay is often being with a narrow wavepacket, which was an inspir-
ation for Wigner to start with a time-dependent wave function composed of two frequencies
[27]. He wrote down the wavepacket in an asymptotic region and considered the delay that
emerges from the wavepacket due to interaction. At the large distance, the asymptotic be-
havior of the incoming wavepacket is given by

Ψin(r, t) ≃ 1√
r

∫
dE |ϕ(E)| exp {−ikr − iEt} r → ∞, (5.6)

where it peaks at r = −v t, with the group velocity v ≡ dE/dk = k/µ. The asymptotic
behavior of the outgoing wavepacket at a large distance from the center of scattering, which
carries a phase δ(E), is provided by

Ψout(r, t) ≃ 1√
r

∫
dE |ϕ(E)| e2iδ(E)eikr−iEt r → ∞, (5.7)
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𝜑𝑘!
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Figure 5.1: Upper part: The incoming particle with momentum k⃗i is deflected by the angle φ.
The magnitude of the particle’s momentum is unchanged, while the corresponding asymptotic
stationary wavefunctions are offset by a phase δ in comparison with the free particle wave
function (Middle part). The red solid line wave depicts the scattered wave, while the dashed
blue line depicts the free wave without the change of the phase. Lower part: Atomic potential.
The idea of this sketch is taken from [204].

where it has a peak at
r = v t− 2 dδ(E)/dk, (5.8)

which the interaction has delayed the particle by a time

τ = 2 dδ(E)
dE . (5.9)

In 1948 Eisenbud in his Ph.D. dissertation [152] obtained the time delay in a single
channel, which is given by the energy derivative of the phase shift as the same in Eq. (5.9).
He derived the multichannel generalization by restricting to the case that only waves with
angular momentum m = 0 (s-wave) participate in the reaction. The relation he found for the
matrix time delay [205] is given by

τEisenbud
mm′ = d

dE [S − 1]mm′ , (5.10)

where S describes the scattering matrix, short ‘S-matrix’ [206]. The scattering matrix S
describes the transformation of a set of input excitations |ψin⟩ on M channels into the set of
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outputs |ψout⟩ as |ψout⟩ = S |ψin⟩ [207], which is a unitary matrix, i.e., SS† = I. As Eisenbud
considered only s-wave scattering, he concluded that, in the case of single-channel scattering,
his relation is equivalent to the time delay he defined earlier.

The problem of multichannel time delay was resolved by Smith [28] in 1959, where he
defined the lifetime matrix Q, which is Hermitian, and its diagonal element Qmm describes
the average lifetime of a collision beginning in the mth channel. In the case that Q is
diagonalized, its proper values, qmm, are the lifetimes of metastable states. The lifetime
matrix as a function of energy has some properties [205]. As the first property, it has a
relation with the scattering matrix as

Q = iℏ SdS†

dE = −iℏ dS
dES† = Q†, (5.11)

where this relation shows that Q is a Hermitian matrix. The second property shows that one
can find S from Q as a function of energy that is given by

S = I − i
ℏ

∫ ∞

E
dE′Q(E′)S(E′). (5.12)

Smith’s lifetime matrix, Q, for a single channel reduced to the time delay relation that is
obtained by Eisenbud and Wigner, which is called “Eisenbud-Wigner-Smith” time delay or
just the Wigner time delay (both terms are used interchangeably) and is given by

τEWS
m = 2ℏdδm(E)

dE . (5.13)

5.2.2 Asymptotic behavior of ⟨r⟩

It has been proposed by Brenig, and Haag [156] that instead of specifying the scattered wave
packet’s position by its peak, one can evaluate the expectation value of r = |r⃗| at large times
outside the interaction range. Under this condition, the scattered wavepacket behaves like a
free particle wavepacket. For this matter, let’s consider a two-dimensional wavepacket [151]
as

Ψ(r⃗, t) = 1
2π

∫
Φ
(
k⃗
)

exp
{

iφ
(
k⃗
)}

d2k, (5.14)

where the phase

φ
(
k⃗
)

= k⃗ · r⃗ − k⃗ 2

2µt. (5.15)

Note that, Eq. (5.14) is normalized to unity. Therefore |Φ
(
k⃗
)

|2 is the momentum space
probability density. The wave number is defined by

k ≡ ±
√

2µE
ℏ

. with

k > 0 ⇒ traveling to the right,

k < 0 ⇒ traveling to the left.
(5.16)
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The wavefunction in momentum space Φ
(
k⃗
)

is a relatively slowly varying function of
k, where the phase φ

(
k⃗
)

is generally large and rapidly varying. The rapid oscillations of
exp

{
iφ
(
k⃗
)}

over most of the range of integration means that the integrand averages to
almost zero. Exceptions to this cancellation rule occur only at points where φ

(
k⃗
)

has an
extremum. The integral can therefore be estimated by finding all the points in the k-plane
where φ

(
k⃗
)

has a vanishing derivative,

∇
k⃗

(
k⃗ · r⃗ − k⃗ 2

2µt
)

= 0 ⇒ k⃗0 = µr⃗

t
, (5.17)

evaluating (approximately) the integral in the neighborhood of each of these points, and
summing the contributions. This procedure is known as the method of stationary phase.

The phase φ
(
k⃗
)

has a vanishing first derivative at k⃗ = k⃗0. In the neighborhood of this
point, φ

(
k⃗
)

and Φ
(
k⃗
)

can be expanded as a Taylor series. Therefore, the wavepacket in
Eq. (5.14) becomes

Ψ(r⃗, t) ≈ exp
{

i
(
µr⃗ 2

2t − π

2

)}[(
µ

t

)
Φ
(
k⃗0
)

− i
2

(
µ

t

)2
∇2

k⃗0
Φ
(
k⃗0
)

+ ...

]
. (5.18)

Appendix B contains the underlying details of this derivation. Using this asymptotic form,
Eq. (5.18), we can evaluate the expectation value of r = |r⃗| that is given by

⟨r⟩ = ⟨v⟩ t+ b+ O(t−1), t → ∞ (5.19)

where
⟨v⟩ t = ⟨k⟩

µ
t =

(
t

µ

)∫
|⃗k| Φ∗

(
k⃗
)

Φ
(
k⃗
)

d2k, (5.20)

and

b = i
2

∫ [
Φ∗
(
k⃗
)]2 ∂

∂k

 Φ
(
k⃗
)

Φ∗
(
k⃗
)
d2k. (5.21)

With Φ
(
k⃗
)

= |Φ
(
k⃗
)

| exp
[
i arg

(
Φ
(
k⃗
))]

= |Φ
(
k⃗
)

|ei2δ(E), Eq. (5.21) becomes

b = −
〈 d

dk arg
(
Φ
(
k⃗
))〉

= −2
〈
v

d
dEδ(E)

〉
(5.22)

where v = k/µ, and if the energy spectrum of the wave packet is sharply peaked, we can
replace v by ⟨v⟩. Eventually Eq.(5.19) becomes asymptotically

⟨r⟩ = ⟨v⟩ (t− τ), (t → ∞) (5.23)

where

τ = 2
〈
∂δ(E)
∂E

〉
, (5.24)
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is the s-wave result of Eisenbud-Wigner-Smith’s time delay.
Figure 5.2 shows the time delay for a wavepacket, the offset in expectation value of wave-

packet Eq. (5.23) away from interaction region and the time delay with considering the energy
derivative of the phase shift, which is the limit for an infinite narrow-bandwidth wavepacket.
The system is a model two-dimensional spherical potential V (r) = − exp

{
−(r/r0)2}, where

with r0 = 1.73, it supports a ground state energy of E0 = −9.75 eV.
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Figure 5.2: Eisenbud-Wigner-Smith time delay process for a 2d system for angular momentum
of m = 1. The left panel shows the expectation value as a function of time, the blue
dot indicates the expectation value during the scattering process, and red lines indicate
the asymptotic behavior of ⟨r⟩ before and after scattering far from the center, wherewith
propagating back from both side, an offset (see inset plot) is obtained which implies the time
delay. The right panel represents a comparison of the time delay as a function of energy
for the two approaches, the phase (blue line) and the asymptotic expectation value of the
wavepacket (red dotted) far from the scattering center.

In the left panel of Fig. 5.2, the expectation value is depicted (blue bullet). We fit a linear
function at a large distance far, before and after, the region of the interaction (red line). The
slope of the fitted line gives the velocity of the particle, v. The distance between the fitted
lines that meet the time axis, before and after the interaction, denotes to be the time delay,
τ .

The right panel in Fig. 5.2 indicates the time delay using two methods as mentioned
earlier which are the same. An increasing and then decreasing trend observes in the time
delay as a function of energy. For higher kinetic energy, the particle hardly feels the potential,
thus, the time delay tends to be zero. By decreasing the energy, the particle starts to feel the
target, and the time delay increases. For very low energy, E ≈ 3 eV, the particle is trapped
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5.3 Photoionization time delay from a scattering theory perspective

into the centrifugal barrier induced by angular momentum m = 1, consequently, the time
delay shows a decreasing trend and the advance delay increases.

To sum up this section, we reviewed time delay in scattering systems briefly, but this
chapter focuses primarily on photoionization time delay in two-dimensional models with
anisotropic potentials, which we analyze analytically from two perspectives: scattering the-
ory, which emphasizes the phase shift of continuum states (energy-domain), and wavepacket
theory, which concentrates on the expectation value of wavepackets at a considerable large
distance from the center (time-domain).

5.3 Photoionization time delay from a scattering theory per-
spective

In scattering theory, the phase of the transmitted wave is a direct consequence of the inter-
action of the incident wave with the scattering potential. For studying the scattering process
in two-dimensional systems, we restrict our attention now to solving the time-independent
Schrödinger equation, Eq. (2.4) with Hamiltonian in Eq. (2.3) for such systems by beginning
with the following ansatz

Φj(r⃗, E) = 1√
2π

M∑
m=−M

eimϕψmj(r, E)√
r

, (5.25)

where the subscript j indicates the degeneracy of scattering states which are independent,
orthogonal solutions of the Hamiltonian for each energy E [208]

(H − E) Φj(r⃗, E) = 0,〈
Φj(r⃗, E)

∣∣Φj′(r⃗, E′)
〉

= δjj′ δ(E − E′),
(5.26)

where δjj′ is the Kronecker delta, and δ(E − E′) is the Dirac delta function. Here r⃗ =
r (cosϕ, sinϕ) is the electron coordinate, and a complete orthogonormal set eimϕ that

〈
eimϕ

∣∣∣eim′ϕ
〉

=
2π δmm′ .

Inserting Eq. (5.25), into Schrödinger equation, we obtain[
∂2

∂r2 − 2µ
ℏ2
m2 − 1/4

2r2 + 2µ
ℏ2 E

]
ψmj(r, E) = 2µ

ℏ2

∑
m′

Vmm′(r)ψm′j(r, E), (5.27)

where Vmm′ is potential matrix and given by

Vmm′(r) = 1
2π

∫ 2π

0
dϕ e−imϕ V (r⃗) eim′ϕ, (5.28)
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which is not necessarily diagonal. The potential, V (r⃗), vanishes as r → ∞. We compute
Vmm′(r) by performing the Gauss-Legendre quadrature integration. Because of the high
oscillating nature of the integral Eq. (5.28), we use a high-order quadrature. In general, the
potential matrix Vmm′ is a Hermitian matrix, and as r → ∞ becomes diagonal.

As we have 2M + 1 solutions for angular momentum, we expect to find also 2M + 1
linearly-independent solutions, j = −M, · · · ,M . Thus we can address ψmj(r) as representing
a ([2M + 1] × [2M + 1]) matrix as a function of r. This is a square matrix, each column of
which represents a separate independent solution.

The phases of Φj in Eq. (5.25) can be chosen such that Φj is real for almost all problems in
atomic and molecular physics, for instance, we can choose a real angular basis set instead of
that complex we have here chosen. Here the coupled-channel Eq. (5.27) is solved numerically
using the Johnson renormalized Numerov method, see Appendix A.

This set of solutions, ψmj , have a well-defined behavior at a large distance far from the
center. In the next subsection, we discuss two asymptotic behaviors of these solutions.

5.3.1 Asymptotic solutions and scattering matrix

In the limit as r → ∞ equation (5.27) becomes uncoupled, and we must impose the following
asymptotic boundary conditions on the radial functions[

∂2

∂r2 − 2µ
ℏ2
m2 − 1/4

2r2 + 2µ
ℏ2 E

]
ψmj(r, E)r→∞ ∼ 0. (5.29)

From Eq. (5.29), and using the fact that the potential matrix is symmetric we can write

ΨΨ′′ † − Ψ′′ †Ψ = ∂

∂r

(
Ψ†Ψ′ − Ψ′ †Ψ

)
= 0, (5.30)

where Ψ′′ is equivalent to
(
∂2/∂r2)Ψ(r). The boundary condition at the origin Ψ(0) = 0

imposes the constraint
Ψ†Ψ′ − Ψ′ †Ψ = 0. (5.31)

We have yet to impose well-behaved boundary conditions at Ψ(r → ∞). The general
solution of Eq. (5.29) can be expressed as a linear combination of two independent solutions
as

lim
r→∞

ψmj(r, E) ∼ Jm(kr)Amj + Ym(kr)Bmj , (5.32)

where Jm and Ym are the Riccati-Bessel functions of the first and second kinds, respectively,
and asymptotically approach standing waves. Here k =

√
2µE/ℏ is the wave number. It is

worth mentioning that the Wronskian of Jm and Ym is equal to unity, that is

W {Jm, Ym} = Ym
∂Jm

∂r
− Jm

∂Ym

∂r
= 1. (5.33)
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The r-independent matrix coefficients A and B are determined by matching Eq. (5.32) with
the numerical solutions of Eq. (5.27) where V (r⃗) ≈ 0. Almost all the information regarding
the scattering phase is embedded in these two matrices. These matrices are full matrices and
in the case of spherical potentials are diagonal.

Applying the condition imposed by Eq. (5.31) to Eq. (5.32) and using Eq. (5.33) we find
that the following constraint must be imposed on the matrices A and B

A†B = B†A. (5.34)

It is worth mentioning that for long-range potentials, one expects to use Coulomb functions
Fm and Gm [209, 210, 211] instead of Jm and Ym which are related to short-range potentials.

Equation (5.32) can be defined by introducing the alternate set of independent functions
as follows

lim
r→∞

ψmj(r, E) ∼ 1
2
[
H+

m(kr)(A− iB)mj +H−
m(kr)(A+ iB)mj

]
, (5.35)

where H±
m are the Riccati-Hankel functions which are specified by

lim
r→∞

H±
m(kr) = Jm(kr) ± iYm(kr) ∼ i∓me±ikr, (5.36)

where these functions approach running waves e±ikr rather than that standing waves sin(kr − πm/2)
and cos(kr − πm/2) that are asymptotically associated with Jm and Ym.

We can always take an arbitrary linear combination of these 2M+1 solutions and generate
a new solution. In other words, if the matrix Ψ is a set of solutions, then Ψ × C([2M +
1] × [2M + 1]) is also a set of solutions provided C has an inverse [208]. Knowing this fact,
starting with standing waves solution Eq. (5.32), we have

lim
r→∞

ψK
mm′(r, E) =

∑
j

ψmj(r, E)A−1
m′j ∼ Jm(kr)δmm′ + Ym(kr)Kmm′ , (5.37)

where superscript ‘K’ indicates these solutions are in terms of the K matrix, where the matrix
K is related to the reactance matrix, short “K-matrix”, of scattering theory [212, 213] and is
given by

K = BA−1. (5.38)

The K-matrix is a Hermitian matrix, K† = K, which can be proved by using Eq. (5.34).
Equation (5.37) is a real representation of the radial functions. Another real represent-

ation is the eigenchannel version of the multichannel quantum-defect theory introduced by
Fano in 1970 [214], which utilizes the eigenvalues tan(δ) and eigenvectors U of the matrix K,

K = U tan(δ)U†. (5.39)
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The radial solutions in the Fano representation have the following form outside the reaction
volume

lim
r→∞

ψmj(r, E) ∼ Umj [Jm(kr) cos(δm) + Ym(kr) sin(δm)] . (5.40)

Comparing to Eq. (5.32), we can write

A = U cos(δ), B = U sin(δ). (5.41)

The techniques for obtaining physical solutions that remain well-behaved at r → ∞ and for
calculating the observables, using the Fano representation, are discussed in numerous papers
[215, 216, 217].

In the context that we are considering, the definition of open and closed channels are
as follows: Channels with E > 0 will support unbound radial wavefunctions, continuous
with respect to E, and are termed open channels. Closed channels are those with E <

limr→∞ Vm(r) with m the channel index, and will result in discrete bound wavefunctions.
Therefore, the specific set of radial functions, ψK

mm′ , in Eq. (5.35) are real and represent
physical solutions if all scattering channels are open. In closed channels, the solutions ψK

mm′

are diverging. In the system under consideration, there are no closed channels, therefore, the
set of solutions in Eq. (5.37) represents a physical solution.

For the case of running waves solution Eq. (5.35), a set of solutions by a linear combination
as the following is given by

lim
r→∞

ψS
mm′(r, E) =

∑
j

ψmj(r, E) (A− iB)−1
m′j ∼ 1

2
[
H+

m(kr)δmm′ +H−
m(kr)Smm′

]
, (5.42)

where matrix S is related to the scattering matrix, short ‘S-matrix’, of scattering theory and
is given by

S = (A + iB)(A − iB)−1, (5.43)

and immediately, we can derive a relation between the K-matrix and the scattering matrix,
which reads

S = (I + iK)(I − iK)−1. (5.44)

Using the same technique as in Eq. (5.39), the S-matrix can be decomposed into a product of
two matrices according to S = Uei2δU†. The diagonal matrix, δ is the phase shift of scattering
theory, and is the same as in Eq. (5.39). Moreover, from Eq. (5.44) we can understand that
the S-matrix is a unitary matrix

SS† = I. (5.45)

The S-matrix in the case of spherical potentials is a diagonal matrix and the diagonal element
is ei2δm , where m is the angular momentum index.
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5.3.2 Energy normalization

If Φj(r⃗, E) and Φj′(r⃗, E′) are two specific solutions of the total Hamiltonian H, with total
energy eigenvalues E and E′ respectively, we must evaluate the overlap

Njj′(E,E′) =
〈
Φj′(r⃗, E′)

∣∣Φj(r⃗, E)
〉
, (5.46)

to ensure that the solutions yield a proper orthonormal set that satisfies Eq. (5.26). Here
Njj′(E,E′) denotes the normalization matrix. The wavefunctions expansion in Eq. (5.25)
already employ basis sets of angular momentum which are orthonormal. Therefore we must
consider the normalization with respect to the total energy E and the degeneracies of the
continuum states j. These properties are determined by the radial function ψmj(r, E) in
Eq. (5.25). Consequently, Eq. (5.46) in an integration form is given by

lim
r→∞

Njj′(E,E′) ∼
∫ r

0
dr′ ψ∗

mj′(r′, E′)ψmj(r′, E). (5.47)

The solutions Φj′(r⃗, E′) and Φj(r⃗, E) from Eq. (5.25) must satisfy the condition [208]〈
Φj′(r⃗, E′)

∣∣(H − E)Φj(r⃗, E)
〉

=
〈
(H − E′)Φj′(r⃗, E′)

∣∣Φj(r⃗, E)
〉

= 0. (5.48)

Using the fact that the matrix potential is symmetric, Eq. (5.48) yields the following result
as r → ∞ ∫ r

0
dr′

[
ψ∗

mj′(r′, E′) ∂2

∂r′ 2ψmj(r′, E) − ∂2

∂r′ 2ψ
∗
mj′(r′, E′)ψmj(r′, E)

]
=
∫ r

0
dr′ 2µ

ℏ2 (E − E′)ψ∗
mj′(r′, E′)ψmj(r′, E)

(5.49)

Since we can write the bracketed term as a total differential, we can integrate the left-hand
side of Eq. (5.49) using the boundary condition ψmj(0, E) = ψmj′(0, E′) = 0 that becomes as
follows∫ r

0
dr′ ψ∗

mj′(r′, E′)ψmj(r′, E) = ℏ2

2µ(E − E′)

[
ψ∗

mj′(r, E′) ∂

∂r
ψmj(r, E)

− ∂

∂r
ψ∗

mj′(r, E′)ψmj(r, E)
]
.

(5.50)

This result allows us to determine the normalization matrix N entirely in terms of the asymp-
totic analytic properties of the radial functions

lim
r→∞

Njj′(E,E′) ∼ ℏ2

2µ(E − E′)

[
ψ∗

mj′(r, E′) ∂

∂r
ψmj(r, E) − ∂

∂r
ψ∗

mj′(r, E′)ψmj(r, E)
]
, (5.51)

The set of functions in Eq. (5.42) are complex and represent physical solutions. Therefore,
introducing Eq. (5.42) into Eq. (5.51) leads to the result

NS
mm′(E,E′) =

(
ℏ2π

2µ

)
δ(E − E′)

[
δmm′ + (SS†)mm′

]
, (5.52)
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5.3 Photoionization time delay from a scattering theory perspective

Note that in Eq. (5.52), we have used the asymptotic behavior of Hankel functions which
are defined in Eq. (5.36). The unitarity of S in Eq. (5.45) assures that the continuum
states, expressed in terms of radial function with asymptotic properties prescribed by ψS

mm′

in Eq. (5.42), form an orthogonal set of solutions that is NS
mm′(E,E′) =

(
ℏ2π
µ

)
δmm′ δ(E−E′).

Consequently, if each radial function ψS
mm′ is multiplied by

√
µ/ℏ2π, we obtain the complete

energy-normalized set of continuum states implied in Eq. (5.25)

ΦS
m(r⃗, E) =

√
µ

2ℏ2π2

∑
m′

eim′ϕ ψ
S
m′m(r, E)√

r
. (5.53)

For many purposes, it is preferable to form an orthonormal set of continuum states with
real radial function. In Eq. (5.37) we presented a particular set of solutions ψK

mm′ which have
the virtue of yielding real radial functions which are expressed in terms of the standing waves
rather than the complex running waves. In the special case that all channels are open, these
sets of solutions represent a physical solution, therefore the normalization matrix for these
functions may also be evaluated, that is

NK
mm′(E,E′) =

(
ℏ2π

µ

)
δ(E − E′)

[
δmm′ + (KK†)mm′

]
. (5.54)

Using the results of Eq. (5.54), a real orthonormal set of energy-normalized radial functions
can be defined.

In this section, we examined two asymptotic solutions and determined a way to make
continuum states energy-normalized; now in order to study the photoionization process, we
must generate the total molecular wave function.

5.3.3 Boundary condition and final molecular wavefunction

Two wavefunctions involve in the scattering scenario: incoming and outgoing. The photoion-
ization time delay corresponds to a half-scattering process in which a matter wavepacket
exists in the continuum only in the exit channel. In contrast, in the entrance channel, the
wave function represents a bound rather than a continuum state [218]. Therefore, we consider
only the outgoing wavefunction.

The molecular wavefunction can be formed as

Ψf (r⃗, k⃗) =
∑
m

am(φ)ΦS
m(r⃗, E), (5.55)

where k⃗ = k(cosφ, sinφ) is the wave vector in which φ denotes the emission direction of the
photoelectron with the asymptotic momentum k. The subscript ‘f ’ signifies the final wave
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5.3 Photoionization time delay from a scattering theory perspective

function. The coefficient am is to be determined, and ΦS
m is defined in Eq. (5.53), which are

energy-normalized.
The wavefunction calculated in Eq. (5.55) contains both incoming and outgoing wavefunc-

tions. To separate them and choose the outgoing part, we have to calculate the coefficient am

in such a way as to only keep the outgoing part. For this matter, we employ the well-defined
boundary condition of the asymptotic behavior of the outgoing wavefunction as r → ∞ in
terms of plane waves

Ψ(−)
f (r⃗, k⃗)r→∞ ∼ eikr cos(ϕ−φ) + f (−)(k⃗, ϕ)e−ikr

√
r
, (5.56)

where the second term signifies the spherical wave along with its scattering amplitude of
f (−). The first term in Eq. (5.56) indicates the incident plane wave, which has a partial wave
expansion [219]

eikr cos(ϕ−φ) =
√

1
2π

1√
kr

∑
m

imeim(ϕ−φ)
[
H−

m(kr) +H+
m(kr)

]
, (5.57)

where H±
m are defined in Eq. (5.36).

It is worth mentioning that the choosing sign ‘(−)’ for outgoing or (+)’ for incoming
wavefunction is related to the sign of e∓ikr which is appeared in the asymptotic behavior in
Eq. (5.56).

To obtain coefficient a(−)
m , from the left side of Eq. (5.56), we insert Eq. (5.53) in which

we use the asymptotic solution of Eq. (5.42), and from the right side substitute Eq. (5.57),
then we derive∑

m

am(φ)
√

µ

ℏ24π
∑
m′

eim′ϕ 1√
r

[
H+

m′(kr) +H−
m′(kr)Sm′m

]
=
√

1
2π
∑
m′

im′eim′(ϕ−φ) 1√
kr

[
H−

m′(kr) +H+
m′(kr)

]
+ f (−)(k⃗, ϕ)e−ikr

√
r
.

(5.58)

Using the asymptotic behavior of Hankel functions, i.e., Eq. (5.36), and substituting in
Eq. (5.58), we have

eikr

√
r

√ 1
2π

∑
m,m′

[√
µ

2ℏ2 am(φ)i−m′eim′ϕ −
√

1
k

eim′(ϕ−φ)δm′m

]
= e−ikr

√
r

f (−)(k⃗, ϕ) +
√

1
2π

∑
m,m′

[√
1
k

i2m′eim′(ϕ−φ)δm′m −
√

µ

2ℏ2am(φ)im′eim′ϕSm′m

] .
(5.59)
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Since e±ikr are linearly independent, and the two (· · · ) expressions in this equation are inde-
pendent of r, they must each be identically zero. Therefore, from the left side, we drive

am(φ) =
√

2ℏ2

µ

im√
k

e−imφ, (5.60)

and from the right side, the scattering amplitude determines as

f (−)(k⃗, ϕ) =
√

1
2πk

∑
m

∑
m′

[
im+m′ei(mϕ−m′φ)Smm′ − i2meim(ϕ−φ)δmm′

]
. (5.61)

Substituting Eq. (5.60) into Eq. (5.55), the final outgoing wavefunction can be written as

Ψ(−)
f

(
r⃗, k⃗

)
=
√

2ℏ2

µ

∑
m

im√
k

e−imφ ΦS
m(r⃗, E), (5.62)

where ΦS
m is defined in Eq. (5.53).

Using the same technique we can derive the incoming wavefunction, which we do not need
here.

Having the final wavefunction and initial state, the dipole matrix element between the
bound state and the final state can then be calculated.

5.3.4 Matrix element and photoionization time delay

A complete description of photoionization requires information on the amplitude of the dipole
transition matrix elements through the measurement of cross-sections.

The dipole matrix element between the final state and the bound state is thus given by

D(−) (E,φ) =
〈
Ψ(−)

f (r⃗, k⃗)
∣∣∣r⃗ · F⃗

∣∣∣Ψi(r⃗)
〉

=
√

2
π

∑
m

i−m

√
k
d(−)

m (E) eimφ, (5.63)

where F⃗ is the electric field, Eq. (2.11), Ψi is the initial state, which here is the ground state
and can be calculated by using renormalized Numerov method, see Appendix A. the partial
dipole transition matrix element d(−)

m is given by

d(−)
m (E) =

∑
j

(
(A− iB)−1

)†

mj
dj(E). (5.64)

where dj(E) is determined by

dj(E) =
〈
Φj(r⃗, E)

∣∣∣r⃗ · F⃗
∣∣∣Ψi(r⃗)

〉
. (5.65)

Here Φj is defined in Eq. (5.25). As we discussed in Eq. (5.25), we can choose the angular
basis sets in such a way that Φj will be real. Therefore, dj(E) in Eq. (5.65) is a real vector.
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5.3 Photoionization time delay from a scattering theory perspective

Using Eq. (5.41) we can write

(A − i B)−1 =
[
U cos(δ) − i U sin(δ)

]−1
= eiδ U−1. (5.66)

Introducing Eq. (5.66) to Eq. (5.64), we provide a relation between the partial dipole matrix-
element and the scattering phase as

d(−)
m (E) =

∑
j

e−iδj Umj dj(E), (5.67)

where δj is the scattering phase related to the eigenvalue and Umj is the eigenvector unitary
matrix of the S-matrix.

By having the dipole matrix element, we can simply define the photoionization cross-
section as

σ (E,φ) = 4π2ω

3c
∣∣∣D(−) (E,φ)

∣∣∣2 . (5.68)

where ω is the photon frequency, and c is the speed of light.
Since we are investigating a system in weak field interaction, we can safely use first-order

time-dependent perturbation theory, Eq. (4.17), in order to describe single-photon ionization
photoelectron wavepacket as the outgoing wavepacket. As we discussed in Section 5.2.1, the
wavefunction in the momentum representation, Φ(E), in the wavepacket after scattering, see
Eq. (5.7) has a phase. In the case of a photoelectron wavepacket, the wavefunction in the
momentum representation is the 1st-order perturbation theory, which contains the dipole
matrix element. Consequently, in the case of the photoelectron wavepacket, we investigate
the phase of the matrix element. Therefore, the single-photon ionization time delay may be
defined as an energy derivative of the phase of the matrix element

τ(E,φ) = d
dE arg

[
D(−) (E,φ)

]
, (5.69)

where photoionization time delay depends on energy and emission angle as well as the field
direction, which makes it a rich phenomenon. To avoid the problem of possible jumps of the
calculated phase of the matrix element D(−), entering the time delay definition Eq. (5.69),
it is convenient to calculate the phase derivative as the imaginary part of the logarithmic
derivative of the matrix element itself, i.e.,

τ(E,φ) = Im
{

1
D(−)

dD(−)

dE

}
, (5.70)

where Im implies the imaginary part.
In the case of spherical potentials, we can calculate the photoionization time delay and

compare it with the Wigner time delay obtain from a full scattering process, see Section 5.2.1.
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5.3 Photoionization time delay from a scattering theory perspective

Since in spherical potentials, the scattering matrix is diagonal; thus, its eigenvector matrix
Umj is an identity matrix, we can write the partial matrix element, Eq. (5.67) as

d(−)
m (E) = e−iδm dm(E). (5.71)

Inserting this into Eq. (5.70), we obtain

τm(E,φ) = Im
{

1
d

(−)
m

dd(−)
m

dE

}
= dδm(E)

dE , (5.72)

where it is independent of the emission angle, as expected, and δm is the partial phase of the
partial matrix element. Comparing it with the Eisenbud-Wigner-Smith time delay, which is
τEWS

m = 2dδm(E)
dE , we figure out that in the case of spherical potentials, the photoionization

time delay is independent of the initial state and is equal to the Wigner time delay. The
factor 2 has not appeared in Eq. (5.72), as the photoionization time delay is a half-scattering
process. Figure 5.2 provides an example of Wigner time delay in a spherical potential, the
photoionization time delay is the same as in Fig. 5.2 with the difference that the quantity in
the right panel, should be divided by factor 2.

It is clear in spherical potentials that scattering time delay (Wigner-Smith) and pho-
toionization time delay are similar since channels have well-defined time delays and there are
selection rules. However, this does not apply any longer to anisotropic potentials, and these
two time delays are different.

Having an explicit relation for photoionization time delay, we can consider more complic-
ated systems, for instance, a two-center system.

5.3.5 Two-center system

Two-center system is one of the most basic molecular structures for understanding some
properties of matter, such as the wave character of matter using two-center interference, as
first done in 1801 by Thomas Young with light waves [220] and in 1961 by Claus Jönsson
with electrons [221]. With the introduction of attosecond pulses, we can now reveal more
properties of matter in their interactions with lasers, namely, two-center interference in the
photoionization delays of Kr2 [222]. Here we consider the angle and energy-resolved time
delay in a two-dimensional model two-center system.

A model potential for a two-center system is defined by

V (r⃗) = −e−([x−R/2]2−y2)/r2
0 − e−([x+R/2]2−y2)/r2

0 , (5.73)

where R is the intra-atomic distance. We use with R = 2, and r0 = 1.732. Here with these
values, the potential supports a ground state with an energy of E0 = −20.35 eV. Moreover,
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5.3 Photoionization time delay from a scattering theory perspective

we use a linear polarized pulse, and the direction of the field polarization is parallel to the
molecular axis, i.e., r⃗ · F⃗ = ∓ r cosϕ. The angle ϕ is the angle between the field direction and
x-axis which is the molecular axis.

Figure 5.3: Left panel: polar surface photoionization time delay as a function of energy and
emission angle. The structure at E ≈ 60 shows a large positive and negative time delay at
certain emission angles. Right panel: polar surface photoionization cross-section as a function
of energy and emission angle in logarithmic scale. There are minimums at E ≈ 60, and at
φ ≈ π/2, the cross-section is zero, since the field direction is parallel to the molecular axis;
thus, the dipole element is zero.

Figure 5.3 shows energy and angular dependence of time delay and cross-section. These
results present a complete, but complicated, picture of the molecular photoionization event,
and the associated time delay for the outgoing photoelectron wavepacket. It is immediately
apparent that there is a significant amount of structure observed, both as a function of
energy and angle, with τ values ranging from −100 to +100 as. Because of the symmetry
of the potential and selection rules, just odd partial dipoles are considerable, and among
them, m = ±1 and ±3 are dominant, see Fig. 5.5. Physically, the peaks in the cross-section
correspond to maxima in the dipole integrals, which define the coupling between initial orbital
and final continuum wavefunctions induced by ionizing radiation, with an angular dependence
given by the partial-wave interferences. For a two-center system, this peak is the well-known
shape-resonance [146, 147]. It corresponds to an enhancement of one of the partial waves,
here, in this case, m = ±1, which can be considered as trapping of this part of the outgoing
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wavepacket due to the form of the molecular potential energy surface. Figure 5.4 shows the
effective potential, which is given by

Vm(r) = V̄ (r) + m2 − 1/4
2r2 , (5.74)

where V̄ (r) the angular average of V (r⃗). Among different angular momentum, only m = 1

0 5 10 15 20
radius r

-0.10

-0.05

0.00

0.05

0.10

ef
ec

ti
ve

p
ot

en
ti

al
V
m

(r
)

m = 1

m = 3

m = 5

m = 7

Figure 5.4: potential matrix component for m = 1 as a function of radius, we can see a
barrier and this case, a large positive time delay

induces a barrier. It is, therefore, not unexpected that the time delay is also large in this
region, as it appears as a ring between the energy range of 5 − 12 eV with a positive time
delay, τ > 0, in Fig. 5.3a. However, this effect is not significant, since the barrier here is not
too high. For large energy, the particle barely sees the potential, and as a consequence small
time delay, and it tends to zero.

For very low energy, the particle can only see the lowest angular momentum, then the
behavior of the system is as the spherical case and a large negative time delay in this region
is predicted. The reason is that for very low energies, only the lowest angular momentum
participates, one can see it from Fig. 5.4. Large negative and positive time delays that are
observed in Fig. 5.3, also consider as singularities, at Ec = 60 eV are related to being zero in
the cross-section. That means the coupling between the initial state and the final continuum
state in this energy and emission angle is almost zero. The position of these points depends
on the intra-atomic distance (R), in particular, one finds that as increases R they move to
lower energies.

As can be seen in Fig. 5.5, at the given energy, the partial dipole matrix for m = ±1 turns
into zero. The situation of a partial amplitude turning into zero at a particular energy value
is commonly referred to as Cooper’s minimum, in honor of J. W. Cooper, who theoretically
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Figure 5.5: Left panel: time delay as a function of the emission angle for the given energy
Ec ≈ 67 eV that implies singularities. Right panel: the partial matrix element as a function of
energy in logarithmic scale for m = 1, 3, and 5, as can be seen in m = 1, the matrix element
turns into zero, which is related to Cooper’s minimum. Other partial matrix elements are
negligible.

predicted this phenomenon for the photoionization of noble gases [223]. Such a situation takes
place in the molecular case. We use the two dominant angular momenta to demonstrate
singularities, m = ±1 and ±3. We write the dipole matrix element, Eq. (5.63), for the
dominant angular momentum as

D(E,φ) = i
√

8
π

(
|d(−)

3 |2eiζ3 cos(3φ) − |d(−)
1 |2eiζ1 cos(φ)

)
, (5.75)

where ζ3 and ζ1 are the corresponding phases of the partial matrix element d(−)
3 and d

(−)
3

respectively. Here we inserted the prefactor 1/
√
k in Eq. (5.63) into d

(−)
m for the sake of

simplicity. Now we consider Eq. (5.75) for singularities which take place in the vicinity of
Cooper’s minimum energy E ≈ Ec ≈ 67 eV and then calculate the time delay using Eq. 5.70
as

τ(Ec, φ) = dζ3
dE |E=Ec −

(
|d(−)

1 (Ec)|2
)′

|d(−)
3 (Ec)|2

cos(φ)
cos(3φ) sin(ζ1 − ζ3), (5.76)

where
(
|d(−)

1 (Ec)|2
)′

= d
dE |d(−)

1 |2E=Ec
. From Eq. (5.76), it is evident that time delay variation

with the ejection angle at the energy Ec has no relation to the phase derivatives of the partial
waves but depends on the difference ζ1 − ζ3 of phases themselves. As for the singularities,
they arise at the ejection angles φ, for which the function cos(3φ) possesses nodes that do
not coincide with the node φ = 90◦ of the function cos(φ). Therefore the position of the
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singularities is at φ = · · · ,−π/6, π/6, 5π/6, · · · with a slight shifting in time delay due to the
first term in Eq. (5.76).

Last but not least, large negative values of τ , which are observed as the singularities,
i.e. τ → −∞, contradict the causality principle [27], since, formally, they mean that the
electron is ejected by the molecule long before the absorption of the photon. In Ref. [202],
by analytical consideration of the emitted electron wavepacket evolution, they demonstrated
that large negative values of the phase derivative with respect to energy do not violate the
causality principle in which the maximum time delay does not exceed the ionizing laser pulse
duration T . Thus, there is no contradiction with the causality principle.

In the conclusion of this section, we studied photoionization time delay using the phase
of the scattering state in which we formulated the final wavefunction using the outgoing
boundary condition and calculated the dipole matrix element between the ground bound
state and the final state. Having the matrix element, we derived the photoionization time
delay, which is the energy derivative of the phase of the matrix element.

Time delay can also be studied from the perspective of a wavepacket, which gives us a
deeper understanding of its mechanics, this is a query that we wish to address in the next
section.

5.4 Photoionization time delay from a wavepacket perspective

The scattering phase shift and associated time delay result in a group delay of the outgoing
photoelectron wavepacket, born at a time t0 within the ionizing laser pulse in a time-domain
picture of photoionization [25]. In this case, the advanced wavepacket appears sooner than
it would for the V = 0 case, while the retarded wavepacket appears later than it would for
V = 0, where V is the scattering potential.

To demonstrate a wavepacket perspective of time delay, initially, we start with a full
scattering process for an anisotropic potential and derive channel delays, then go further and
investigate the photoionization time delay.

5.4.1 Partial time delay

Partial time delay is defined as the energy derivatives of the phase of the eigenvalues of the
scattering matrix [224, 225, 226]. Using a standard linear-algebra diagonalization technique,
the scattering matrix, as discussed in Section 5.3.1, decomposed into a product of two matrices
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according to
S = Uei2δU†, (5.77)

where the columns of U are orthogonal and comprise the eigenvectors of S, and the nonzero
elements of the diagonal matrix ei2δ are its corresponding eigenvalues. Thus, the partial time
delay is defined by

τν(E) = dδν(E)
dE . (5.78)

In a full scattering process, an incoming free particle wavepacket is scattered by the
scattering potential. After scattering at a large distance from the interaction region, we
consider the outgoing wavepacket, which should be the same as the incoming wavepacket with
slight shifting, and then we can measure the Wigner-Smith time delay. In order to achieve
this, we create an initial wavepacket based on the eigenfunction of the scattering matrix for
each channel. This guarantees that the outgoing wavepacket is the same as the incoming
wavepacket in angular distribution, accordingly, the partial time delay can be measured. To
illustrate this, an initial Gaussian wavepacket, which describes the free particle wavepacket,
is formed as

Ψν(r⃗, k0; t) =
( 2
π

) 1
4
√

1
2α(t)

∑
m′

Um′ν(k0) eim′ϕ exp
{

−(r − r0)2

4α2(t) + ik0r

}
, (5.79)

where the width of a Gaussian wavepacket evolves as

d
dtα(t) = −2iα2(t) → α(t) = 1

2it+ c
, (5.80)

thus, assuming t = 0 being the time of minimal width αmin(being real and positive)

α(t) = 1
2it+ 1/αmin

= αmin
1 + 2iαmint

with |a(t)| = αmin√
1 + (2αmint)2 , (5.81)

where here we fix the minimal width with αmin = 60. In Eq. (5.79) Um′ν is the S-matrix’s
eigenvector. The channel is represented by the index ν, which is the index of the S-matrix’s
eigenvalues.

Time-dependent wavepacket can be derived using the scattering state basis ΦS
j , i.e.,

Eq. (5.53), as

Ψν(r⃗, k0; t) =
∑

j

∫
dE bνj(E, k0, t) ΦS

j (r⃗, E) eiEt, (5.82)

where bνj is the coefficient to be determined. At t = 0, we assume the wavepacket is far
from the center of interaction and described by Eq. (5.79). Therefore, we can calculate the
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coefficient bνj in such a way that Eq. (5.82) at t = 0 be as Eq. (5.79). By multiplying〈
ΦS

j′(r⃗, E′)
∣∣∣ from the left of Eq. (5.82), then

〈
ΦS

j′(r⃗, E′, t)
∣∣∣Ψν(r⃗, k0; t)

〉
=
∑

j

∫
dE bνj(E, k0)

〈
ΦS

j′(r⃗, E′)
∣∣∣ΦS

j (r⃗, E)
〉
. (5.83)

In Eq. (5.52), we created the asymptotic solutions such that the final wavefunctions are
energy-normalized, thus,

〈
ΦS

j′(r⃗, E′)
∣∣∣ΦS

j (r⃗, E)
〉

= δ(E −E′)δjj′ . Applying this in Eq. (5.83),
bνj becomes

bνj(E, k0, t) =
〈
ΦS

j (r⃗, E)
∣∣∣Ψν(r⃗, k0; t)

〉
, (5.84)

where Ψν(r⃗, k0; t) is defined in Eq. (5.79).
Having the time-dependent wavepacket helps to analyze the system each time. To invest-

igate the time delay, we consider the incoming and outgoing wavepacket before and after the
interaction, far from the center, where it behaves like a free wavepacket. We then calculate
the expectation value, as we discussed in subsection 5.2.2, which is given by

⟨r⟩ =
∫

d2r r|Ψν(r⃗, k0; t)|2∫
d2r |Ψν(r⃗, k0; t)|2 . (5.85)

Once we have the expectation value and also the velocity ⟨v⟩, which can be determined using
the slope of ⟨r⟩, we can calculate time delay using Eq. (5.23), which is the difference between
the delay before and after interaction with the scattering potential as was considered in Fig.
5.2.

We begin by generating an incoming wavepacket in such a way that it is not an eigen-
channel of the scattering matrix, for example, in Eq. (5.79), the eigenvector Um′ν has been
chosen that is not the eigenvector of the S-matrix, see the left panel in Fig. 5.6. The sys-
tem here is the two-center model potential in two dimensions, defined in Eq. (5.73). The
incoming wavepacket is then scattered by the scattering potential, and after the interaction
region far from the canter, we record the outgoing wavepacket, see the right panel in Fig. 5.6.
The outgoing wavepacket has a different spatial distribution, and this difference in spatial
distribution will not allow us to calculate the partial time delay correctly. Consequently, the
time delay cannot be determined in this case.

However, in another situation where we generate an incoming wavepacket that is an
eigenchannel of the S-matrix, in Eq. (5.82) the Um′ν is the eigenvector of the S-matrix, see
the left panel in Fig. 5.7. After scattering away from the interaction region we have an
outgoing wavepacket. This outgoing wavepacket has the same spatial distribution as the
incoming wavepacket, see the right panel in Fig. 5.7. Having the same spatial distribution in
both incoming and outgoing wavepackets, we can calculate the partial time delay correctly.
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5.4 Photoionization time delay from a wavepacket perspective

Figure 5.6: Polar surface of a two-dimensional wavepacket, Eq. (5.82), for initial momentum
k0 = 0.9 a.u. for the case the incoming wavepacket is not the eigenchannel of the S-matrix.
Left panel: a snapshot of the incoming wave packet far away from the scattering center. Right
panel: a snapshot of the outgoing wavepacket at a large distance from the center. Here tin,
and tout indicate the incoming wavepacket at the initial time and the outgoing wavepacket
at the final time respectively.

The fringes in the wavepackets in Fig. 5.7 that is observed are due to the interference between
the two atomic center; thus, the number of these fringes depends on the intra-atomic distance
R. The larger R, the more fringes in the wavepacket will be observed.

Establishing a wavepacket in terms of eigenchannels of the S-matrix in which the incoming
and outgoing wavepacket have the same spatial distribution, we can measure the partial time
delay appropriately. Figure 5.8 displays the partial time delay using two approaches i.e.,
Eq. (5.78) where the energy derivative of eigenvalues of the scattering matrix and the offset
in the expectation value of wavepackets away from the interaction region Eq. (5.85). In
this figure, as an example, we considered the eigenvalue of the S-matrix and the wavepacket
perspective for the channel ν = 0, although, we can apply this approach for all channels. As
can be seen, both approaches agree with each other. This approach can provide an intuitive
picture of partial time delay, which is very helpful and understandable. The same procedure
can be applied to the photoionization time delay in which we deal with the photoelectron
wavepacket, which we investigate in detail in the next subsection.
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5.4 Photoionization time delay from a wavepacket perspective

Figure 5.7: Polar surface of a two-dimensional wavepacket, Eq. (5.82), for the case the incom-
ing wavepacket is the eigenchannel of the S-matrix. Left panel: a snapshot of the incoming
wave packet far before the scattering center. Right panel: a snapshot of the outgoing wave-
packet at a large distance from the center and has identical angular distribution as for the
incoming. Here the numeric parameters are the same as Fig. 5.6.
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Figure 5.8: Partial time delay as a function of energy for channel ν = 0, for two prospectives,
the energy derivative of the phase of eigenvalues of the S-matrix, Eq. (5.78) and the wave-
packet propagating.
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5.4 Photoionization time delay from a wavepacket perspective

5.4.2 Photoelectron wavepacket and photoionization time delay

A photoelectron wavepacket is a quantum mechanical entity that describes the behavior of an
electron that has been ejected from an atom or molecule by the absorption of a photon. The
ejected electron can be described by a wavepacket, which is a superposition of many different
energy states. One of the key features of a photoelectron wavepacket is its coherence, which
arises from the interference of the different energy states that make up the wavepacket.
This coherence can be observed in experiments that measure the properties of the ejected
electrons, such as their momentum distributions or their angular distributions. By studying
the behavior of a wavepacket, one can gain insights into the underlying quantum mechanical
processes that govern the behavior of atoms and molecules such as photoionization time delay.

In the weak field regime, the first-order perturbation theory is sufficient to describe the
generation of a photoelectron wavepacket for a certain system. By inserting the 1st-order
perturbation, Eq. (4.15), into the photoelectron expression, Eq. (2.19), we obtain

Ψ(r⃗, E; t) = −i
∑
m

∫
dE′ d(−)

m (E′) e−iE′t
∫ t

−∞
dt′ F (t′) ei(E′−E)t′ ΦS

m(r⃗, E′), (5.86)

where the partial matrix-element d(−)
m defined in Eq. (5.64) and ΦS

m in Eq. (5.53). The energy
E is donated to E ≡ ℏω+Ip, where ω is the laser frequency, and Ip is the ionization potential.
The laser field is an XUV pulse with a Gaussian envelop defines as F (t) = E0 e−t2/T 2 cos(ωt),
where T is the pulse duration, and E0 the field strength.

To obtain the photoionization time delay using the wavepacket, we consider the wave-
packet at a large distance far from the interaction region as t → ∞, then calculate the center
of mass for each direction given by

⟨r⟩ (ϕ, t) =
∫
r |Ψ(r⃗, E; t)|2 rdr∫
|Ψ(r⃗, E; t)|2 rdr

, (5.87)

where ϕ indicates the direction. Once we have the expectation value, the time delay can be
determined using Eq. (5.23).

Figure 5.9 shows a comparison between the photoionization time delay obtained from
the phase of the dipole matrix in Eq. (5.70) and the expectation value of the photoelectron
wavepacket in Eq. (5.87) for the Wood-saxon potential given by

V (r) = − 1
1 + exp

[
r−L

a

] , (5.88)

with L = 50 and a = 0.01, it supports a ground state of E0 = −27.2 eV. Parameter
L indicates how long the potential extended in space, and a implies the sharpness of the
potential.
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Figure 5.9: Photoionization time delay. Left panel: the expectation value for E = 16 eV as a
function of time (blue bullet points) and linear fit with the offset τ driven by a Gaussian laser
pulse with the duration of T = 1 fs. Right panel: time delay calculated from the phase of
the dipole (black dashed line), wavepacket for two different pulse duration, and the classical
delay (green dotted line).

Photoionization time delay is a half-scattering process; the electron is ejected from atoms
or molecules driven by a laser. By means of the photoelectron wavepacket, we can record the
expectation value during the evolving wavepacket. Far from the center of the interaction as
t → ∞, we project back in the expectation value, the offset (τ) in which the linear fitting
meets the time axis denoting the photoionization time delay, see Fig. 5.9. The reference is
the free particle which is assumed that originates at t = 0.

As can be seen in Fig. 5.9, for long pulse durations, which means a narrow peak in
the energy domain, the time delay calculated from the expectation value of the wavepacket
matches the one that obtained from the phase. The reason is that this narrow peak in the
energy domain eliminates the effect of the structure of the dipole moment and is constant for
a long pulse duration. On the other hand, for a short pulse, we observe a broad peak in the
energy domain; as a consequence, the effect of the dipole moment is visible and appears in
the time delay, as can be seen in the figure.

The oscillations observed in the time delay in Fig. 5.9 are a pure quantum effect that does
not occur in the classical delay. Appendix C describes the approach for deriving the classical
delay. These oscillations can be interpreted as a resonance in the infinite potential well since
the Wood-saxon potential for the selected parameters behaves like an infinite well potential.
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5.4 Photoionization time delay from a wavepacket perspective

The approximate resonance positions are then given by [219, 227]

En ≈ (nπℏ)2

2µL2 + V (0) (5.89)

where in Eq. (5.88), V (0) ∼ −1.

5.4.3 Anisotropic potential and half-collision checking

The two-center system described in Eq. (5.73) is considered here as an anisotropic potential
and we calculate the photoionization time delay for this system.

Figure 5.10 shows the photoionization time delay from a wavepacket perspective. In the
left panel, the time delay is depicted, which is the same as the time delay calculated from the
matrix element’s phase in Fig. 5.3. These identities indicate that both approaches produce
the same results.

Figure 5.10: Time delay for an anisotropic potential, Eq. (5.73). Left panel: Photoionization
time delay as a function of energy and direction driven with a Gaussian pulse with pulse
duration of T = 3 fs. Right panel: a snapshot of the photoelectron wavepacket, Eq. (5.86),
away from the center for E = 38 eV, we calculate the expectation value for each direction, ϕ,
of the wavepacket.

The fringes in the photoelectron wavepacket in the right panel of Fig. 5.10 are accounted
for the interference between the two atomic centers, which depends on the intra-atomic
distance (R) and laser field direction.
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Figure 5.11: A comparison between the half-scattering and full-scattering process photoion-
ization time delay for a specific direction of ϕ = 0. The system and field parameters are the
same as in Fig. 5.10.

As a last point, it is worth checking the half-scattering process in photoionization. For this
matter, we keep the photoelectron wavepacket that is generated from Eq. (5.86) at t → ∞.
Then use this wavepacket as the initial wavepacket in Eq. (5.82) in order to consider a full
scattering process. The photoionization time delay then is determined by investigating the
final wavepacket as described in the subsection 5.4.1.

Figure 5.11 demonstrates a full- and half-scattering process for photoionization time delay
and both are the same in which the time delay in full-scattering is two times the half-scattering
process.

5.5 Summary

As the photoelectron wavepacket leaves the molecule, it experiences a highly anisotropic scat-
tering potential; as a consequence, molecular ionization is a complicated phenomenon. This
results in a highly structured time delay as a function of energy and angle in the molecu-
lar frame. With the use of scattering calculations, which were formulated using asymptotic
solutions and the outgoing boundary condition, the angle-dependent photoionization delay
τ(E,φ) was examined from two perspectives. A scattering perspective, the energy domain,
and a wavepacket perspective, the time domain. We observed that both approaches pro-
duced the same results, with the difference that, in the time domain, we needed a long pulse
to match the one obtained in the energy domain.

These two perspectives are two sides of the same coin, which were shown numerically. In
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5.5 Summary

the case of spherical potentials, the Wigner-Smith time delay and the photoionization time
delay are the same by a factor of 2, since channels have a well-defined time delay and there
are selection rules. However, for anisotropic potentials, things are completely different, in
which the photoionization time delay strongly relies on the initial state and dipole matrix
elements. The deep link between the photoionization time delay and the photoionization
matrix elements was revealed in the correlation of energy-domain photoionization phenomena.
In this case, we observed the singularities in time delay, which are related to zeros in matrix
elements.

The photoionization delay in molecular photoionization is a particularly promising field.
Strong anisotropy of the potential landscape and coupling of the electronic and nuclear degrees
of freedom make these studies especially attractive. Undoubtedly, time-resolved studies of
atomic and molecular photoionization will continue in the future. The concept of the time
delay will remain a strong focal point for these studies.
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Chapter 6

Conclusions and Outlook

“The whole strenuous intellectual work of an industrious research worker would appear,

after all, in vain and hopeless, if he were not occasionally through some striking facts to find

that he had, at the end of all his criss-cross journeys, at last accomplished at least one step

which was conclusively nearer the truth.”

– Max Planck in his Nobel Lecture in 1920
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This thesis primarily discussed atomic and molecular systems in both strong-field ionization
and weak-field ionization regimes driven by ultrashort laser pulses. The investigated processes
in this thesis include coherent control photoionization of the low-energy process, non-adiabatic
photoionization (NAPI), with tailored ultrashort laser pulses, and attosecond photoionization
time delay in molecular systems.

The basic concepts and equations that are needed to describe systems in this thesis
were considered in chapter 2. Strong and weak field ionization regimes were reviewed, and
their corresponding phenomena were explained; throughout the thesis, these phenomena and
concepts were referred to many times. The most promising theoretical equation that can
successfully describe experimental realizations is the Schrödinger equation. In chapter 2, we
described this equation for a single active electron exposed to an external laser pulse and
considered the dipole approximation on which this thesis was based.

Ultrashort laser pulse shaping was considered in chapter 2, where has been used in
chapters 3, and 4. Ultrashort laser pulse shaping is a powerful tool for manipulating the
temporal and spectral properties of ultrashort laser pulses. One of the trained laser pulses
that were considered in this thesis is sinusoidal phase modulation, which is routinely invest-
igated in coherent control experiments [78, 79, 80] since it allows for precise control over the
properties of the laser pulse, which can lead to the manipulation of quantum systems.

Non-adiabatic photoionization, which is the direct consequence of ultrashort pulses, which
are characterized by fast raising and falling of the pulse envelope, is difficult to control as it
does not rely on phase details of the short ionizing pulse. It depends only on the laser pulse
envelope. A question immediately arose whether it is possible to render NAPI sensitive to
phase details of tailored pulses. This question became the motivation of chapter 3. In that
chapter, we have investigated how non-adiabatic photo-ionization (NAPI) induced by ultra-
short XUV pulses, can be influenced through specific pulse forms to exert coherent control
as well-known for standard photo-ionization. We have introduced a catalyzing state, whose
presence renders non-adiabatic ionization sensitive to the phase details of pulses. A state
qualifies as catalyzing if it forms a resonance with the initial state E0 −Ecat ≈ω, where E0 is
the electron’s binding energy. Moreover, since catalyzing states are easy to create, it opens
up new avenues to coherently control ultrashort ionization. Pulse optimization, on the other
hand, helped to find a proper pulse train in which we have maximum ionization of NAPI in
the presence of this catalyzing state.

Time-dependent perturbation theory (TDPT), although, being an “old” topic, may allow
for new insights for ultrashort pulses. In the ultrashort regime, the pulse duration plays a
crucial role in controlling diverging terms occurring in TDPT. Chapter 4 covered how the
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finite pulse duration can make TDPT work for higher intensities without diverging in higher
orders.

Time-dependent perturbation theory showed some applications in the ultrashort regime,
such as NAPI and interference stabilization. Non-adiabatic photoionization was considered
in the frequency domain using second-order PT, which is the zero-photon process followed
by one-photon absorption and emission. In this domain, we could have insight into NAPI
and reveal some general properties. These properties include that it requires a weakly-bound
initial state is required, and a deeply-bound state does not work. As another property, it
relies on the Fourier transform of the squared pulse envelope. Furthermore, an oscillation
pattern that appears in single-photon ionization when exposed to an intense ultrashort pulse
has been explained using third-order PT. These structures that result in interference between
different electron pathways reaching the same final energy in the continuum are the onsets
of stabilization. With the help of the slowly varying envelope approximation, we could find
a relation for the critical field strength point, where at this point the ionization probability
decreases despite an increasing intensity.

A natural question with the availability of attosecond pulses is to measure the time it
takes for a photoelectron to be ionized. In Chapter 5 we considered photoionization time
delay in molecular systems with anisotropic potentials. In the case of spherical potentials
there is a connection between the scattering time delay, Wigner-Smaith time delay [27, 28],
and the photoionization time delay. The reason is that in these cases, the selection rules are
applied and channels have a well-behaved time delay. Nevertheless, this is different in the
case of anisotropic potentials, and the selection rule does not apply in molecular systems.
Consequently, there is no trivial connection between scattering and photoionization time
delay, we investigated this connection in Chapter 5.

The photoionization time delay was investigated from two perspectives: scattering and
wavepacket. In the scattering approach, we studied the connection between the scattering
time delay and photoionization time in which it is the energy derivative of the phase of
the dipole matrix element. Moreover, from the wavepacket approach, we considered the
photoelectron wavepacket far from the interaction region and computed its expectation value.
The photoionization time delay was then defined as an offset in the expectation value.

The time delay was considered in this thesis, although some questions are still open to
discussion. The formulation that has been used is based on asymptomatic solutions of the
plane wave and the outgoing boundary condition to define the final molecular wave function
and matrix element. There is, though, another approach that considers a particle in a “box”,
known as the box solution. In this approach, the boundary condition is that the state should
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reach zero in space at the edge of the box simulation. Since time delay is an attosecond
quantity and is very sensitive to the errors caused by calculating bound and continuum states,
comparing results from these two approaches would be recommended. However, in this thesis,
we have used the Numerov method, Appendix A, which is very accurate in calculating state.
As the last point, in chapter 5 we compared numerically the photoionization time delay from
the two-mentioned perspectives. An analytical comparison is also possible to do.

Dealing with simple atomic systems to more complicated molecular structures while still
trying to answer some basic questions was the goal of this thesis. However, there are plenty
of basic questions that should be discussed, as we have already mentioned some of them.
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Time-independent Schrödinger equation (TISE) is a partial differential equation that de-
scribes the wave function of a quantum system in a stationary state, where the energy and
wave function are constant in time and has been solved many times as an ordinary differen-
tial equation [228, 229] or as a set of coupled equations [230, 29]. The numerical solution of
the TISE is a common approach to finding approximate solutions to the wave function and
energy levels of a quantum system. There are several numerical methods that can be used to
solve the TISE, including the finite difference method [231, 232], matrix diagonalization [233],
shooting method [234], variational method [235, 236], and Monte Carlo methods [237, 238].
Each of these methods has its own advantages and disadvantages, and the choice of method
depends on the specific problem being solved and the desired accuracy. Numerical methods
are widely used in quantum mechanics to study the properties of quantum systems and to
make predictions about the behavior of atoms, molecules, and materials.

Finite difference approximations for derivatives are one of the simplest and oldest meth-
ods to solve differential equations. It was already known by L. Euler (1707-1783) in one
dimension of space and was probably extended to dimension two by C. Runge (1856-1927).
The advent of finite difference techniques in numerical applications began in the early 1950s,
and their development was stimulated by the emergence of computers that offered a conveni-
ent framework for dealing with complex problems in science and technology. Today, finite
difference approximation continues to be an essential tool for solving differential equations
in a wide range of fields, including physics, engineering, finance, and biology. Its simplicity
and versatility make it a popular choice for solving complex problems, and ongoing research
continues to refine and improve the method.

The finite difference method (FDM) is a numerical method in which the partial differential
equation is approximated using finite difference approximations. The wave function is dis-
cretized on a grid, and the differential equation is converted into a set of algebraic equations
that can be solved iteratively. In the early 20th century, the method was further developed
and applied by physicists and mathematicians such as Max Born, Robert S. Mulliken, and
John von Neumann. There are several techniques for implementing the method, including,
the central, forward, and backward difference method, alternating direction implicit (ADI)
[239], Runge-Kutta [240], and Numerov method [241].

The Numerov method has many advantages, such as high accuracy, stability, efficient
computation, and simplicity, making it a powerful and efficient numerical method for solving
second-order differential equations. However, it has some drawbacks in coupled equations.
Coupled equations are a set of two or more equations that are interconnected with one an-
other. In other words, the solution to one equation is dependent on the solution of the other
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A.1 Introduction to Numerov method

equations in the system. These drawbacks include node-counting, which is generally a dif-
ficult task, and the coupled state has to be linearly independent solutions during Numerov
propagation, but due to instability, it leads to dependent solutions. In 1978 Johnson [29]
eliminated these flaws in the Numerov method by introducing a ratio matrix in which solu-
tions remained linearly independent and redefining node-counting; this method is known as
the Johnson renormalized Numerov method (JNM).

In the chapter 5 we treated anisotropic potentials, and for considering systems with these
potentials we need to take advantage of JNM. In this chapter, we introduce JNM and resolve
the matching point problem in continuum states by keeping the eigenvector corresponding to
the minimum eigenvalue of the ratio matrix at the end of the box and using that eigenvector
to backpropagate and calculate states. Furthermore, in JNM, the initial start is well-defined,
but in some extreme cases, a proper initialization at the origin is needed in order to calculate
eigenvalues precisely. For that matter, we find a way to modify some elements of the ratio
matrix at the origin in order to reduce the error in calculating eigenvalues and eigenfunctions.

This chapter is structured as follows: In section A.1, we review the Numerov method
and introduce the node-counting and bisection algorithms to calculate the Hamiltonian’s
eigenvalues. In section A.2, we review the Jonson renormalized Numerov method, in which we
provide some modifications in the boundary condition at origin, resolve the matching point
in the continuum state in the box solution, and finally offer some algorithms to calculate
bound states and coupled-channel wavefunctions.

A.1 Introduction to Numerov method

The Numerov method was developed by Boris Numerov, a Russian astronomer and mathem-
atician, in the early 20th century [242]. It is a numerical integration method used to solve
second-order differential equations, especially those arising in problems of wave propagation.
It is particularly suited for problems involving stiff differential equations and offers improved
accuracy compared to other numerical methods like the Euler method. The Numerov method
approximates the solution at each time step by a Taylor series expansion, making it highly
effective for problems with small stepsizes. The radial Schrödinger equation is a second-order
differential equation that in a compact form is given by[

d2

dr2 +Q(r)
]
ψ(r) = 0, (A.1)

where ψ(r) is the wavefunction

Q(r) = 2µ
ℏ2

[
E − Ṽ (r)

]
. (A.2)
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A.1 Introduction to Numerov method

The potential Ṽ (r) is assumed to be capable of supporting bound states and vanishes as r →
∞, and the centrifugal potential is assumed to be included in Ṽ (r). The wavefunctions are
required to be continuous together with their first derivatives and must satisfy the boundary
conditions as

ψ(r = 0) = 0,

lim
r→∞

ψ(r) ∼ 0.
(A.3)

We now describe the Numerov method (see also Landau and Páez [243]). By ψn ≡ ψ(rn)
we suppose that the rn are uniformly spaced with a separation of δr = rn+1 − rn. A Taylor
series for ψn+1 gives

ψn+1 = ψn + δrψ′
n + δr2

2 ψ(2)
n + δr3

6 ψ(3)
n + δr4

24 ψ
(4)
n + · · · , (A.4)

where ψ(k)
n signifies the kth derivative dkψ/drk. Adding Eq. (A.4) to the series for ψn−1 all

the odd powers of δr vanish as

ψn+1 + ψn−1 = 2ψn + δr2ψ(2)
n + δr4

24 ψ
(4)
n + O(δr6), (A.5)

whereas ψ(2)
n follows exactly from Eq. (A.1) as ψ(2)

n = −Qn ψn, we have to consider d4

dr4ψ(r) =
− d2

dr2Q(r)ψ(r) to get

ψ(4)
n = −Qn+1ψn+1 +Qn−1ψn−1 − 2Qnψn

δr2 . (A.6)

where Qn ≡ Q(rn). Plugging ψ
(2)
n and ψ

(4)
n into Eq. (A.5) and eliminating terms of order

O(δr6) and collecting terms contain ψn, ψn−1, and ψn+1 one gets

(1 − Tn+1)ψn+1 − (2 + 10Tn)ψn + (1 − Tn−1)ψn−1 = 0 (A.7)

which is the Numerov algorithm, where

Tn = −δr2

12 Qn. (A.8)

Using this algorithm, we can compute ψn from the values of ψn−1 and ψn−2. This means, we
either need to know the values of ψ0 and ψ1 and go forward through the lattice or know the
values of ψN and ψN−1 and go backward through the lattice. From the boundary condition,
Eq. (A.3), ψ0 = 0, but ψ1 has to be determined. In most cases, we can replace ψ1 with a
small value, but it is a problem if the potential diverges at the boundary, e.g, V (r) = −1

r ,
V (r) ∼ ℓ(ℓ+1)

r2 , etc, where ℓ is the angular momentum. In these cases, ψ1 needs to be properly
chosen by considering the physical system at hand.
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A.1 Introduction to Numerov method

The most straightforward procedure to deal with the initial start is using the power series
expansion of the wavefunction about the origin. In the power series expansion, terms through
the cubic should be retained in order to be compatible in accuracy with the Numerov method.
Expanding the wavefunction in a power series as

ψ(r) = rk
(
1 + br + cr2 + · · ·

)
. (A.9)

Substituting Eq. (A.9) into Eq. (A.1) and evaluate the parameters k, b and c. The error
in the computed eigenvalues is greatly reduced when correct values of the initial start are
calculated.

Once we have the initial start, we can then calculate eigenvalues of Eq. (A.1) using the
node-counting and the Numerov forward and backward integration in Eq. (A.7) with high
precision, which we explain in the next subsection.

A.1.1 Eigenvalue calculation

The Numerov method requires the initial conditions ψ0, ψ1, and the energy E. However, for
a bound state problem, the energy is the observable one wants to calculate. Remember that
for a bound state with negative energy, it follows that the physical solution has to vanish as
r → ∞. Clearly, it is not possible to calculate all steps up to infinity, but since the wave
function has an exponential decrease, it is sufficient to set the rmax such that ψ(rmax) ≈ 0.
Thus one has to solve Eq. (A.1) for all energies in a given energy interval [EL, EH] and pick
out the energy satisfying the ψ(rmax) ≈ 0. The endpoint rmax is located inside the classically
forbidden region. There are two regions, (i) classically forbidden region for both r = 0 and
r = rmax and (ii) classically allowed region on either r = 0 (ℓ = 0, 3D) or r = rmax (continuum
states). A trial energy E is chosen, and Eq. (A.7) is integrated numerically. This solution
is done in two parts, a forward integration starting at r0 = 0 and a backward integration
starting at rmax. They meet at a common matching point rmatch located within the classically
allowed region. The matching point can be anywhere inside the region, but it should not be
close to a node of the wavefunction. This procedure is iterated and usually converges rapidly
to the eigenvalue En nearest in value to the initial guess. A bisection procedure can be used
initially to isolate a single eigenvalue within a small energy interval with a specified node
count. Let us assume we know two energies, EL, and EH, such that the desired eigenvalue
lies between them EL < En < EH. The initial value for EL can be the minimum value of the
potential since the ground state can not be less than the potential’s minimum.

In order to compute eigenvalues, we can count nodes by applying the oscillation theorem
[244, 245], which states that if the eigenvalues are arranged in ascending order, then the
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eigenfunction ψn(x)(n = 0, 1, 2, · · · ) corresponding to the (n + 1)th eigenvalue En has n
nodes. The node-counting process is as follows:

1. set the energy parameter in the Schrödinger equation, Eq. (A.1), equal to

E = EL + EH
2 . (A.10)

2. do forward and backward integration and count the nodes.

3. if the node count is greater than n, set EH = E and if it is less than or equal to n set
EL = E

4. calculate new trial energy using Eq. (A.10) and repeat the process.

5. when |EH − EL| < ϵ the iteration is stopped, where ϵ, the tolerance factor, is a small
positive number that here we fix it with ϵ ∼ 10−12.

This method will converge linearly to the desired eigenvalue.
We can compute the continuum state (E > 0) inside a box [0, rmax] as a box solution by

forcing the wavefunction to reach zero at rmax, in this case, continuum states will be discrete,
and we can calculate eigenvalues through the node-counting as we did for bound states. The
matching point for calculating the continuum state can be anywhere as long as not close to
a node.

In summary of this section, the Numerov method is a highly accurate, computationally
efficient, and stable method for solving differential equations. It is well suited for a variety
of scientific and engineering applications, including solving problems in quantum mechanics,
celestial mechanics, and numerical weather prediction [246]. However, this method is not
suitable for coupled-channel equations since the definition of a node changes in this method,
and traditional wavefunction node counting does not work. Moreover, without taking special
precautions, this procedure would have severe overflow and linear dependence problems.
Notwithstanding, there is a technique in which these difficulties do not occur that we introduce
in the next section, which is known as renormalized Numerov method.

A.2 Johnson renormalized Numerov method

This section describes the renormalized Numerov method [228, 29, 247, 248], an efficient
integration scheme for solving coupled equations. The formalism below is also applicable to
single-channel problems following a trivial reduction from matrix to functional form. The
coupled-channel Schrödinger equation is a matrix differential equation form of Eq. (A.1), in
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A.2 Johnson renormalized Numerov method

which the M columns of a single M×M square matrix wavefunction Ψ(r), which the columns
of Ψ(r) are linearly independent, satisfies[

I d2

dr2 + Q(r)
]

Ψ(r) = 0, (A.11)

where I is the identity matrix and the boundary conditions at the origin is Ψ(r = 0) = 0.
Here M is the size of the matrix. In Eq. (A.11) the matrix Q is given by

Q(r) = 2µ
ℏ2

[
EI − Ṽ(r)

]
, (A.12)

with the matrix potential Ṽ(r). Note that the centrifugal potential is assumed to be included
in Ṽ(r).

The matrix form of the Numerov algorithm in Eq. (A.7) is then given by

(I − Tn+1) Ψn+1 − (2 + 10Tn) Ψn + (I − Tn−1) Ψn−1 = 0. (A.13)

where T is the matrix form of Eq. (A.8), and Ψn ≡ Ψ(rn).
In order to obtain the renormalized Numerov algorithm, two transformations are made

to Eq. (A.13). First a convenient matrix defines as

Fn = [I − Tn] Ψn. (A.14)

Substituting Eq. (A.14) into Eq. (A.13), we obtain in 3-step recurrence formula that is given
by

Fn+1 − UnFn + Fn−1 = 0, (A.15)

where
Un = (I − Tn)−1 (2I + 10Tn) . (A.16)

Then defining ratio matrix as
Rn = Fn+1F−1

n . (A.17)

By replacing Eq. (A.15) into Eq. (A.17), we obtain a 2-step forward recurrence relation given
by

Rn = Un − R−1
n−1. (A.18)

The same procedure can be applied to obtain a backward recurrence relation as

R̃n = Un − R̃−1
n+1, (A.19)

where R̃n = Fn−1F−1
n .
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A.2 Johnson renormalized Numerov method

Physically, Fn is very similar in form to Ψn, being renormalized by I − Tn. The ratio
matrix Rn is then closly related to the ratio Ψn+1/Ψn. Iteration of Eq. (A.18) requires fewer
matrix multiplications at each step than Eq. (A.13), and this makes calculations faster.

Equation (A.18) can be solved with the initial starting term R−1
0 = 0 for forward and

R̃−1
N = 0 for backward propagation. The matrix Un, defined by Eq. (A.16), is symmetric

since the matrix potential Ṽ(r) is symmetric. It follows from this that the matrix Rn is also
symmetric.

The definition of “nodes” in coupled equations is different. Johnson discovered a definition
for a node in these equations, which is the zero of the determinant function |Ψ(r)|. Nodes
occur when the wavefunction’s determinant changes between two adjacent points and can
be implemented by the renormalized Numerov formalism. It follows from Eqs. (A.14) and
(A.18) with requirement of |I − Tn| > 0 that |Rn| < 0 only if |Ψn| changes sign between
two point in a sequence, rn and rn+1. The node-counting method, which has been described
in the previous section, also applies here with the difference that we monitor eigenvalues of
the matrix Rn and increasing the count by one every time one of them is less than zero.
Using node-counting and bisection algorithms, we can then calculate bound state energies,
see Section A.1.1, with a slight difference that in the renormalized Numerov method, we only
need to perform Eq. (A.18).

A.2.1 Proper initialization for extreme values of potential

The initial start of the JNM at n = 0, where the wavefunction is zero, in Eq. (A.18) is
R−1

0 = 0. However, in some cases where the wavefunction experiences a rapid onset, we
observe a significant error in the calculation of energies, for example, in a two-dimensional
system, the wavefunction for angular momentum m = 0 has a rapid onset at the origin
ψ(r)r→0 ∼

√
r, and the reason is that the centrifugal potential for m = 0 proportional to

∼ − 1
8r2 . The error appears even in a very small grid spacing, see the second column of

Fig. A.1. Therefore, we need an appropriate initialization at the origin. For this, we consider
a single-channel renormalized Numerov for a free particle in one-, two- and three-dimensional
in which the corresponding centrifugal potentials in Eq. (A.12) are given by

Ṽ (r) = 0, (1D)

Ṽ (r) = m2 − 1/4
2r2 , (2D)

Ṽ (r) = ℓ(ℓ+ 1)
2r2 . (3D)

(A.20)
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A.2 Johnson renormalized Numerov method

We choose potential zero, as an example since its solutions are known, and it can be extended
to a general case. The exact solutions for the free particle in different dimensions are known

ψ(k, r) ∼ {sin(kr), cos(kr)} (1D)

ψ(k, r) ∼ Jm(kr), (2D)

ψ(k, r) ∼ jℓ(kr), (3D)

(A.21)

where Jm and jℓ are Riccati-cylindrical-Bessel and Riccati-spherical-Bessel function respect-
ively, and k =

√
2E. In the case of 1D, there are two channels, symmetric and antisymmetric.

Thus the solutions are cos(kr) and sin(kr).
We solved TISE numerically using forward JNM and compared the solutions with the

exact solutions in Eq. (A.21) by means of the earth mover’s distance [249], which is easy to
calculate for (normalized) one-dimensional distributions, ρ(r). The error is then defined by

ε ≡
∫ R

0
dr
∣∣∣∣∫ r

0
dr′ [ρexact(r′) − ρnumeric(r′)

]∣∣∣∣ (A.22)

We examined this error in 1-, 2- and 3-dimensional systems for a free particle, and results
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Figure A.1: Error calculation Eq. (A.22) for 1-, 2-, and 3-dimensional systems as a function
of grid spacing δr for three different energies, and modifying a ratio matrix element in 2D
leads to an increase in accuracy, as shown in the second column for different correction terms.
The dashed line is the target error.
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A.2 Johnson renormalized Numerov method

are shown in Fig. A.1 for three different energies. A reasonable target error distance is 10−3

(dashed line in Fig. A.1). As can be seen in Fig. A.1, for 1- and 3-dimensional, we can achieve
the target error simply by choosing the grid spacing δr = 0.01 and no initialization is needed,
but in the case of 2-dimensional for m = 0, a large error is observed which causes inaccuracy
in calculating eigenvalues. A proper way to overcome this issue is that we can correct the
element of the Rn matrix corresponding to m = 0 for a few grid points (# in Fig. A.1)
according to the correct solution. We can do this using Eq. (A.14) and Eq. (A.17) as follows

Fm,m(rn) = [δm,m − Tm,m(rn)]ψm(k, rn),

Rm,m(rn) = Fm,m(rn+1)
Fm,m(rn)

(A.23)

where ψm(k, r) is defined in Eq. (A.21). By means of these corrections, even up to 3 grid
points, we achieve the target error, as shown in the second column of Fig. A.1 and for higher
correction terms the accuracy increases. This initialization works also for potentials with
k =

√
2 [E − V0] for E > V0 or k = i

√
2 [V0 − E] for E < V0. For the case that k is imaginary,

one can use the modified Riccati-Bessel function of the first kind.
As the last point, one is able to achieve extreme accuracies with this method and these

corrections.

A.2.2 Matching point and bound states solutions

Once we set a proper initialization and determine eigenvalues using node-counting and bi-
section algorithms, we can calculate eigenstates with the corresponding eigenvalues. In the
bound state region, i.e., E < V (r), we have classically allowed regions where the solutions
have an oscillating behavior, and classically forbidden regions where the solutions exponen-
tially decay as e−kr. The border between these two regions is known as the “classical turning
point”. Since we can not avoid ending up an exponentially exploding branch in a classically
forbidden region in numerics, a proper matching point where the forward and backward solu-
tions meet is necessary. Given that in coupled equations, the definition of a node is different,
thus, finding the correct position of the matching point is essential. To find the correct po-
sition, Johnson defined a matrix which is the difference between the forward and inverse of
the backward propagation given by

D(rn) ≡ Rn − R̃−1
n+1, (A.24)

the matching point happens when the determinant of this difference matrix turns to zero, i.e.,
|D(rmatch)| ∼ 0 for a given eigenvalue. Finally, the bound state solutions can be calculated
using the following steps:
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A.2 Johnson renormalized Numerov method

1. calculate the potential matrix Ṽn

2. modify the necessary elements of R1,R2, · · · ,Rp according the system under investig-
ation, see Section A.2.1, where p is the number of steps that needs to modify.

3. compute the bound state energy using node-counting and bisection algorithm in which
the forward propagation in Eq. (A.18) should be performed

4. determine the matching point position rmatch by means of the difference-matrix D(r)

5. calculate the eigenvector corresponding to the minimum eigenvalue of D(rmatch) which
is denoted as fm

6. use the eigenvector in step (5), fm, as the initial starting vector for forward and back-
ward propagation using fn = R−1

n fn−1 and fn = R̃−1
n fn+1 respectively.

7. calculate the bound state vector wavefunction through ψn = (I − Tn)fn

8. normalize the wavefunction

These steps help to compute the solutions of the bound states with E < 0, and for continuum
state with E > 0, we can use a “box” solution in which we force solutions to be zero at
endpoint (rmax) of the box.

A.2.3 Discretized continuum states solutions

For n ∈ A with A the asymptotic region where V (r) ≈ 0, the matrix Qn becomes diagonal,
then from the matrix form of Eq. (A.8) and Eq. (A.14) we can write

Tn ∼ −Iδr
2

6 E,

Fn ∼
(

I + Iδr
2

6 E

)
Ψn.

(A.25)

Therefore, the ratio matrix in Eq. (A.17) becomes

Rn ∼ Ψn+1
Ψn

(A.26)

where for grid spacing δr → 0, this matrix becomes identity

Rn ∼


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 , (A.27)
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A.2 Johnson renormalized Numerov method

that means for decaying states Rn ∼ e−kδr ≈ 1 and for oscillating Rn ∼ cos(kδr) ≈ 1.
However, there is an exception in which the wavefunction for a given energy turns into zero at
n = N . In this case, some components of Ψn+1 become zero; subsequently, the corresponding
components of the ratio matrix also become zero, and other components remain 1. Those
elements of the ratio matrix, which are zero, correspond to the box solution’s continuum
eigenvalues. The case in which more than one element turns into zero indicates that the
energy is degenerate, and the degree of degeneration is determined by the number of zeros
in the ratio matrix.

The box continuum stats can thus be computed using the algorithm described in the
previous subsection A.2.2, but with some modification in which we do not need to calculate
the matching point and backward propagation. We only need to calculate the eigenvector
corresponding to the minimum eigenvalue of Rn matrix, fN , as the initial start vector and
using fn = R−1

n fn+1. Then we follow steps 7 and 8 in algorithm A.2.2. This algorithm works
for coupled and uncoupled equations, and eigenvalues and eigenfunctions can be accurately
calculated.

A.2.4 Continuum states solutions

So far the JNM has been used to calculate bound states or discretized continuum states in
a box. It is, however, also useful in calculating continuum states without a box. Here, any
energy E > 0 is possible and states are calculated up to the asymptotic region, where analytic
solutions are available.

A possible recipe for obtaining the coupled-channels solutions is as follows:

1. specify Ṽn and E

2. modify the necessary elements of R1,R2, · · · ,Rp according the system under investig-
ation, see Section A.2.1

3. calculate Tn, Un and Wn = I − Tn, then Rn using Eq. (A.18), where n = p + 1, p +
2, · · · , N and the initial term is R−1

p which is calculated in step (2).

4. record columns of the last term of the matrix WN which are wj
N , where index j specifies

the independent solution (column index)

5. use backward propagating for each solution j

fn = R−1
n fn+1,

ψj
n = W−1fn,

(A.28)
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A.2 Johnson renormalized Numerov method

where the initial starting vector is fN = wj
N .

6. determine the matrix wavefunction Ψn in which each column of this matrix specifies
with ψj

n.

Using these 6 steps, the coupled-channels wavefunction is obtained.
In conclusion of this appendix, we considered the Johnson renormalized Numerov method,

which is a suitable method for single- and coupled-channel equations. In addition, we provided
some techniques for properly initializing the ratio matrix, resulting in an increase in the
accuracy of calculating eigenvalues. Having accurate eigenvalues and eigenfunctions is a vital
key to computing some sensitive quantities, namely time delay (see Chapter 5), which is an
attosecond quantity.
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Appendix B

Derivation of the Asymptotic Behavior of ⟨r⟩

For evaluating ⟨r⟩, we consider a two-dimensional free-particle wave packet,

Ψ(r⃗, t) = 1
2π

∫
Φ
(
k⃗
)

exp
{

iφ
(
k⃗
)}

d2k, (B.1)

where the phase

φ
(
k⃗
)

= k⃗ · r⃗ − k⃗ 2

2µt. (B.2)

Note that, Eq. (B.1) is normalized to unity. Therefore |Φ(k⃗)|2 is the momentum space
probability density.

The wavefunction in momentum space Φ(k⃗) is a relatively slowly varying function of
k, where the phase φ

(
k⃗
)

is generally large and rapidly varying. The rapid oscillations of
exp

{
iφ
(
k⃗
)}

over most of the range of integration means that the integrand averages to
almost zero. Exceptions to this cancellation rule occur only at points where φ

(
k⃗
)

has an
extremum. The integral can therefore be estimated by finding all the points in the k-plane
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where φ
(
k⃗
)

has a vanishing derivative,

∇
k⃗

(
k⃗ · r⃗ − k⃗ 2

2µt
)

= 0 ⇒ k⃗0 = µr⃗

t
, (B.3)

evaluating (approximately) the integral in the neighborhood of each of these points, and
summing the contributions. This procedure is known as the method of stationary phase.

The phase φ
(
k⃗
)

has a vanishing first derivative at k⃗ = k⃗0. In the neighborhood of this
point, Φ

(
k⃗
)

can be expanded as a Taylor series,

Φ
(
k⃗
)

= Φ
(
k⃗0
)

+ ∇
k⃗

Φ
(
k⃗
) ∣∣∣

k⃗=k⃗0

(
k⃗ − k⃗0

)
+ 1

2!∇
2
k⃗

Φ
(
k⃗
) ∣∣∣

k⃗=k⃗0

(
k⃗ − k⃗0

)2
+ .... (B.4)

We also can rewrite φ
(
k⃗
)

around k⃗ = k⃗0 as

φ
(
k⃗
)

= µ r⃗ 2

2t − 1
2

(
t

µ

)(
k⃗ − k⃗0

)2
. (B.5)

Inserting Eqs. (B.5) and (B.4) into Eq. (B.1), we obtain

Ψ(r⃗, t) = 1
2π exp

{
iµr⃗

2

2t

}[
Φ
(
k⃗0
) ∫

exp
{

− i
2

(
t

µ

)(
k⃗ − k⃗0

)2
}

d2k

+ ∇
k⃗

Φ
(
k⃗
) ∣∣∣

k⃗=k⃗0

∫ (
k⃗ − k⃗0

)
exp

{
− i

2

(
t

µ

)(
k⃗ − k⃗0

)2
}

d2k

+ 1
2!∇

2
k⃗

Φ
(
k⃗
) ∣∣∣

k⃗=k⃗0

∫ (
k⃗ − k⃗0

)2
exp

{
− i

2

(
t

µ

)(
k⃗ − k⃗0

)2
}

d2k + ...

]
,

(B.6)

where integrating in the second term gives zero since
∫∞

−∞ x e−αx2dx = 0. In addition, using
the following integral relations∫ ∞

−∞
e−iαx⃗ 2d2x = −iπ

α
= π

α
e−iπ/2,∫ ∞

−∞
x⃗ 2 e−iαx⃗ 2d2x = π

(iα)2 = iπ
α2 e−iπ/2,

(B.7)

Eq.(B.6) becomes

Ψ(r⃗, t) ≈ exp
{

i
(
µr⃗ 2

2t − π

2

)}[(
µ

t

)
Φ
(
k⃗0
)

− i
2

(
µ

t

)2
∇2

k⃗0
Φ
(
k⃗0
)

+ ...

]
. (B.8)

The expectation value of r = |r⃗| can be evaluated using the following equation

⟨r⟩ =
∫

d2r Ψ∗(r⃗, t) |r⃗| Ψ(r⃗, t). (B.9)
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By substituting the asymptotic form of Ψ(r⃗, t) in Eq. (B.8) into Eq. (B.9), we have

⟨r⟩ =
(
t

µ

)2 ∫
d2k0 |⃗k0| Φ∗

(
k⃗0
)

Φ
(
k⃗0
)

− i
2

∫
d2k0 |⃗k0| Φ∗

(
k⃗0
)

∇2
k⃗0

Φ
(
k⃗0
)

+ i
2

∫
d2k0 |⃗k0| Φ

(
k⃗0
)

∇2
k⃗0

Φ∗
(
k⃗0
)

+ ...

= ⟨v⟩ t+ b+ O(t−1), (t → ∞)

(B.10)

where (for simplicity k⃗ = k⃗0)

⟨v⟩ t = ⟨k⟩
µ
t =

(
t

µ

)∫
|⃗k| Φ∗

(
k⃗
)

Φ
(
k⃗
)

d2k,

b = − i
2

∫
k⃗
[
Φ∗
(
k⃗
)

∇2
k⃗
Φ
(
k⃗
)

− Φ
(
k⃗
)

∇2
k⃗
Φ∗
(
k⃗
)]

d2k.

(B.11)

By means of partial integration, we have

Φ∗
(
k⃗
)

∇2
k⃗
Φ
(
k⃗
)

− Φ
(
k⃗
)

∇2
k⃗
Φ∗
(
k⃗
)

= ∇
k⃗

·
[
Φ∗
(
k⃗
)

∇
k⃗
Φ
(
k⃗
)

− Φ
(
k⃗
)

∇
k⃗
Φ∗
(
k⃗
)]
, (B.12)

Inserting Eq. (B.12) into Eq. (B.11), we then obtain

b = − i
2 k⃗
[
Φ∗
(
k⃗
)

∇
k⃗

Φ
(
k⃗
)

− Φ
(
k⃗
)

∇
k⃗
Φ∗
(
k⃗
) ]∣∣∣∣∣

∞

−∞

+ i
2

∫ [
Φ∗
(
k⃗
)

∇
k⃗

Φ
(
k⃗
)

− Φ
(
k⃗
)

∇
k⃗

Φ∗
(
k⃗
)]

d2k,

(B.13)

where the first term is zero and we can write b as

b = i
2

∫ [
Φ∗
(
k⃗
)

∇
k⃗

Φ
(
k⃗
)

− Φ
(
k⃗
)

∇
k⃗

Φ∗
(
k⃗
)]

d2k = i
2

∫ [
Φ∗
(
k⃗
)]2 ∂

∂k

 Φ
(
k⃗
)

Φ∗
(
k⃗
)
d2k.

(B.14)
With Φ(k⃗) = |Φ

(
k⃗
)

|ei2δ(E), Eq. (B.14) becomes

b = −2
∫ ∣∣∣Φ∗

(
k⃗
)∣∣∣2 ∂δ(E)

∂k
dk⃗ = −2

〈
∂δ(E)
∂k

〉
= −2

〈
k

µ

∂δ(E)
∂E

〉
= −2

〈
v
∂δ(E)
∂E

〉
, (B.15)

where v = p/µ, and E = p2/2µ.
If the energy spectrum of the wave packet is sharply peaked, we can replace v by ⟨v⟩.

Therefore Eq. (B.10) becomes asymptotically

⟨r⟩ = ⟨v⟩ (t− τ), (t → ∞) (B.16)

where
τ = 2

〈
∂δ(E)
∂E

〉
, (B.17)

is the s-wave result.
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Appendix C

Classical Time Delay

In this appendix we consider classical time delay for a 2D spherical potential. However, one
can try considering the time delay for an anisotropic potential, but since the initial condition
is challenging to determine, we confine ourselves to a spherical potential.

The Hamiltonian for a 2D system is given by

Ĥ = p 2
x

2µ +
p 2

y

2µ + V (x, y). (C.1)

Assuming the particle is initially located at the following boundary conditions

px(0) = a, py(0) = 0

y0 = b, x0 = 0,
(C.2)

and let it fly. Since the potential is spherical, for an arbitrary value of E, the parameters a
and b can be determined using

E = a2

2 + V (b). (C.3)

On the other hand, we have the angular momentum in 2D that is given by

M = r⃗ × p⃗ = xpy − ypx, (C.4)
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where r =
√
x2 + y2 and p =

√
p2

x + p2
y. Substituting condition in Eq. (C.2) into Eq. (C.4)

then we obtain
M = ab. (C.5)

Inserting Eq. (C.5) into Eq. (C.3), we obtain an equation of

a2

2 + V (M/a) − E = 0, (C.6)

which should be solved for arbitrary energy E.
Once we have initial conditions, we can solve the following set of coupled equations sim-

ultaneously

ṗx = − ∂H

∂x
= −∂xV (x, y), ṗy = −∂H

∂y
= −∂yV (x, y),

ẋ =∂H

∂px
= px

µ
, ẏ = ∂H

∂py
= py

µ
.

(C.7)

We can then calculate the trajectory as t → ∞ where the particle behaves as the free particle

r(t) = v(t− τ) (C.8)

where r(t) =
√
x2(t) + y2(t) from Eq. (C.7), and v =

√
2E. The time delay, τ , for a specific

angular momentum, m, can be determined by comparing to the free particle trajectory which
obtains using the above initial conditions as

x(t) =
√

2E
µ

t, y(t) = b. (C.9)

In general, if τ < 0, then the particle spends less time near x = 0, because the potential
is attractive and the particle speeds up. If τ > 0, then the particle spends more time near
x = 0, typically because it slows down or gets temporarily trapped in the potential.
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Appendix D

Temporal Airy Pulse

In ultrashort laser shaping, a temporal Airy pulse is a specific type of laser pulse that has a
unique and distinctive temporal profile. It is named after the Airy function, which describes
the shape of the pulse’s intensity profile over time. The temporal Airy pulse is characterized
by a central peak with multiple surrounding lobes, similar to the shape of an Airy function
in space [250].

This unique temporal profile of the Airy pulse has several applications in ultrashort laser
shaping, including the ability to create ultrafast optical needles for high-resolution imaging
and the ability to control the propagation of the pulse through complex media [250, 251, 252].

The temporal Airy pulse is created through a spectral phase with φ(ω′ − ω) = α(ω′ −
ω)3T 3/6, where α is the “airy parameter”. The vector potential for this spectral phase in the
frequency domain is given by

Ã(ω′) = NA0 exp
[
−(ω′ − ω)2T 2/8 ln 2 + iα(ω′ − ω)3T 3/6

]
(D.1)

Fourier transform of the vector potential

A(t) = A0
2 F

[
Ã(ω′) + Ã

∗(−ω′)
]
. (D.2)
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In order to get the Fourier-Transform, we take advantage of a variable as u = (ω′−ω)T/2+i/a,
where a = 9α/2, therefore

A(t) = NA0e−iωt+ 2
a

( 1
3a

− t
T

)
∫ ∞

−∞
ei a

3 u3+i( 1
a

− 2t
T

)udu. (D.3)

This integral is similar to the Airy function with the relation of

Ai(z) = 1
2π

∫ ∞

−∞
exp

[
iη3/3 + izη

]
dη, (D.4)

as a result using the Airy function Eq. (D.3) becomes (T → T/
√

2 ln 2)

A(t) = NA02π( 2
9α)

1
3 e

4
9α

( 2
27α

−
√

2 ln 2 t
T

)Ai
([ 2

9α −
√

8 ln 2 t
T

]
( 2
9α)

1
3

)
cos(ωt) (D.5)

where Ai describes the Airy function. Reformulating Eq. (D.5) as

A(t) = Aα e( 2
9α

)2/3
( 2/3τ−t

∆τ

)
Ai
(
τ − t

∆τ

)
cos(ωt), (D.6)

where Aα = A0
√

4π τ . Equation (D.6) shows that the temporal pulse shape exponentially
decay and the Airy function shifted by τ =

(
2

9α

)1/3
T/

√
8 ln 2 and stretched by ∆τ =(

9α
2

)1/3
T/

√
8 ln 2. Figure D.1 shows the pulse in Eq.(D.6) for different sing of the cubic

parameter (α).
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Figure D.1: An example of the temporal Airy pulse Eq.(D.6) with the fundamental pulse
parameters of the pulse duration T = 1 fs, carrier frequency ω = 23.13 eV, intensity I =
1016 W/cm2, and airy parameters α = ± 0.6.

For the limit of α → 0, we take advantage of the asymptotic behavior of the Airy functions
at infinity as

lim
z→∞

A(z) = 1
2
√
π 4

√
z

e− 2
3 z3/2

, (D.7)
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where z =
[ 2

9α − 2t
T

]
( 2

9α) 1
3 =

[
1 − 9αt

T

]
( 2

9α) 4
3 , using Taylor expansion

z3/2 =
( 2

9α

)2 [
1 − 3

2
9α
T
t+ 3

8(9α
T

)2t2 + · · ·
]
,

z1/4 =
( 2

9α

)1/3 [
1 − 1

4
9α
T
t− 3

32(9α
T

)2t2 + · · ·
]
.

(D.8)

Substituting Eq. (D.8) into Eq. (D.7), one can write

lim
z→∞

A(z) = 1
2
√
π( 2

9α)1/3[1 + · · · ]
e[− 4

9α
2

27α
+ 4

9αT
t−( 1

T
)2t2+··· ], (D.9)

by inserting Eq. (D.9) into Eq. (D.5), we get the Fourier-limited pulse, which is given by

A(t) = T√
8 ln 2

A0 e−2 ln(2)t2/T 2 cos(ωt), (D.10)

where there is an extra prefactor compared to Eq. (2.41) since we picked an unnormalized
asymptotic behavior.
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Appendix E

Numerical Details of Perturbation Theory

The Finite Difference Method (FDM) is utilized to solve Eq. (4.15) as

ȧ
[n]
ℓj (ti) =

a
[n]
ℓj,i+1 − a

[n]
ℓj,i−1

2δt , (E.1)

where index i runs over time, ℓ over angular momentum, j over states, and n over perturbation
orders. δt is the time step in the simulation.

Inserting Eq.(E.1) into Eq. (4.15), we obtain

a
[n]
ℓj,i+1 = a

[n]
ℓj,i−1 − 2δt i

ℏ
∑

k

dℓjk eiωℓjktiA(ti) a[n−1]
ℓk,i , (E.2)

where the initial start a[0]
ℓk,0 = δk0. The matrix element dℓjk, Eq. (2.22), is determined by

taking advantage of the Numerov technique (see Appendix A) to solve the time-independent
Schrördinger equation.
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Appendix F

Atomic Units

In this thesis, some equations are written in a unit system different from the canonical SI
units. In atomic physics, the quantities are often expressed in terms of another system of
units which helps simplify the numerics and the analytic expressions. This system is called
“atomic units”, short “a.u.”. It is built on the introduction of four independent quantities in
atomic units given in Table F.1

atomic unit of mass me ≈ 9.1 × 10−31 [kg] electron mass
atomic unit of elec-
tric charge

e ≈ 1.6 × 10−19 [C] absolute value of electron charge

atomic unit of action ℏ ≈ 1.05 × 10−34 [Js] reduced Planck’s constant
atomic unit of per-
mittivity

4πϵ0 ≈ 1.1 × 10−10 [F/m] inverse of Coulomb’s constant

Table F.1: Fundamental atomic units.

Using combinations of powers of these units, one can construct atomic units for other
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observables, as can be seen by looking at Table F.2, where SI and atomic units are given for
some frequently occurring physical quantities.

Physical Quantity Expression Value (a.u.) Value (SI)

Bohr constant a0 1 ≈ 5.29 × 10−11 [m]
Coulomb’s constant ke = 1/4πϵ0 1 ≈ 8.988 × 109 [N · m2/C2]
energy E = mee

4/(4πϵ0ℏ)2 1 ≈ 4.36 × 10−18 [J]
time t = ℏ/E 1 ≈ 2.419 × 10−17 [s]
velocity v = a0/t 1 ≈ 2.188 × 106 [m/s]
electric field ε = E/ea0 1 ≈ 5.142 × 1011 [V/m]

Table F.2: Some physical quantities in atomic units.

There are two quantities that it is worth mentioning, which are 1[eV] = 27.211369[a.u.]
and the relations between the laser intensity in SI units and the electric field in atomic units

E0 [a.u.] =
√
I [W/cm2]

I0
, (F.1)

where I0 = 3.5095 × 1016 [W/cm2].
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[7] David Gauthier, Primož Rebernik Ribič, Giovanni De Ninno, Enrico Allaria, Paolo
Cinquegrana, Miltcho Bojanov Danailov, Alexander Demidovich, Eugenio Ferrari, Luca
Giannessi, Benoˆit Mahieu, and Giuseppe Penco. Spectrotemporal Shaping of Seeded
Free-Electron Laser Pulses. Phys. Rev. Lett., 115:114801, Sep 2015.

[8] Giovanni De Ninno, David Gauthier, Benoˆit Mahieu, Primož Rebernik Ribič, En-
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[68] K Eickhoff, L Feld, D Köhnke, L Englert, T Bayer, and M Wollenhaupt. Coherent con-
trol mechanisms in bichromatic multiphoton ionization. Journal of Physics B: Atomic,
Molecular and Optical Physics, 54(16):164002, sep 2021.

[69] Franz Hagemann, Oliver Gause, Ludger Wöste, and Torsten Siebert. Supercontinuum
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