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Abstract

Living systems are subject to various types of spatial and temporal noise at all scales
and stages. Nevertheless, evolving under the pressure of natural selection, biology
has mastered the ability of dealing with stochasticity. This is particularly crucial
because these systems encounter numerous situations which require taking robust
and proper actions in the presence of noise. Due to the complexity and variabil-
ity of these situations, it is impossible to have a prescribed plan for an organism
that keeps it alive and fully functional. Therefore, they have to be active, rather
than passive, by following three essential steps: I) gathering information about their
fluctuating environment, II) processing the information and making decisions via
circuits that are inevitably noisy, and finally, III) taking the appropriate action ro-
bustly with organizations crossing multiple scales. Although various aspects of this
general scheme have been subject of many studies, there are still many questions
that remain unanswered: How can a dynamic environmental signal be sensed col-
lectively by cell populations? and how does the topology of interactions affect the
quality of this sensing? When processing information via the regulatory network,
what are the drawbacks of multifunctional circuits? and how does the reliability of
the decisions decrease as the multifunctionality increases? Finally, when the right
decision is made and a tissue is growing with feedbacks crossing different scales,
what are the crucial features that remain preserved from one subject to another?
How can one use these features to understand the mechanisms behind these pro-
cesses? This thesis addresses the main challenges for answering these questions and
many more using methods from dynamical systems, network science, and stochas-
tic processes. Using stochastic models, we investigate the fundamental limits arising
from temporal noise on collective signal sensing and context-dependent information
processing. Furthermore, by combining stochastic models and cross-scale data anal-
yses, we study pattern formation during complex tissue growth.
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Zusammenfassung

Lebende Systeme sind in allen Größenordnungen und Stadien verschiedenen Arten
von räumlichem und zeitlichem Rauschen ausgesetzt. Dennoch hat die Biologie, die
sich unter dem Druck der natürlichen Selektion entwickelt hat, die Fähigkeit gemeis-
tert, mit stochastischen Fluktuationen umzugehen. Dies ist besonders wichtig, da
Organismen auf zahlreiche Situationen stoßen, die es erfordern, in Gegenwart von
Rauschen robuste und angemessene Maßnahmen zu ergreifen. Aufgrund der Kom-
plexität und Variabilität dieser Situationen ist es unmöglich, einen vorgeschriebe-
nen Plan für einen Organismus zu haben, der ihn überlebens- und funktionsfähig
hält. Daher können Organismen sich nicht passiv verhalten, sondern befolgen aktiv
drei wesentliche Schritte: I) Das Sammeln von Informationen über ihre dynamische
Umgebung, II) Das Verarbeiten von Informationen und das Treffen von Entschei-
dungen über Regelnetzwerke, die unvermeidlich mit Rauschen behaftet sind, und
schließlich, III) das robuste Funktionieren durch organisierte Maßnahmen, welche
mehrere Größenordnungen überbrücken. Obwohl verschiedene Aspekte dieses all-
gemeinen Schemas Gegenstand vieler Studien waren, bleiben noch viele Fragen
unbeantwortet: Wie kann ein dynamisches externes Signal kollektiv von Zellpop-
ulationen wahrgenommen werden? Wie beeinflusst die Topologie der Interaktio-
nen die Qualität dieser Wahrnehmung? Was sind die Nachteile multifunktionaler
Schaltkreise bei der Verarbeitung von Informationen über das Regelnetzwerk? Wie
nimmt die Zuverlässigkeit der Entscheidungen mit zunehmender Multifunktional-
ität ab? Und abschließend, wenn die richtige Entscheidung getroffen wurde und ein
Gewebe wächst und dabei Rückkopplungen auf verschiedenen Größenordnungen
erfährt, was sind die entscheidenden Merkmale, die von einem Versuchsobjekt zum
anderen erhalten bleiben? Wie kann man diese Merkmale nutzen, um die Prozesse
zu verstehen? Diese Arbeit befasst sich mit den wichtigsten Herausforderungen zur
Beantwortung dieser und vieler weiterer Fragen mit Methoden aus dynamischen
Systemen, Netzwerkforschung und stochastischen Prozessen.
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Chapter 1

Introduction

Stochasticity is present in all real-world systems and is not negligible in many cases.
Yet, living systems have found ways to overcome the uncertainties arising from the
stochastic components and achieve reliable functionality and reproducibility. Com-
prehending natural systems and designing artificial ones that can function in the
presence of noise require a deep understanding of stochastic processes. To this end,
powerful probabilistic methods have been developed with inspirations from statisti-
cal physics in the past few decades. However, the earliest form of a stochastic prob-
lem dates back to the late 1800s when Lord Rayleigh addressed the composition of n
isoperiodic oscillators with unit amplitude and random phase at the limit of n→ ∞
[1]. An explicit and more famous formulation of the problem was later given by K.
Pearson in 1905 [2] as following: “A man starts from a point O and walks l yards in
a straight line; he then turns through any angle whatever and walks another l yards
in a second straight line. He repeats this process n times. I require the probability
that after these n stretches he is at a distance between r and r + δr from his start-
ing point, O.” This problem was solved in one dimension and with finite n by M.
Smoluchowski in 1906 [3]. A more general form of this problem historically known
as random flights (finite steps n and random step size l) was formulated by A. A.
Markoff who also touched on the method of obtaining a general solution [4]. Con-
verting the random flights problem to a differential equation with given boundary
conditions in general was done by S. Charndrasekhar [5]. This Ref. also provides a
great source for the history of the early developments in this field from which a part
of the discussions here are adopted.

In parallel to the problem of random flights, another problem of significant impor-
tance, the Brownian motion, was established by A. Einstein in 1905 [6, 7]. Einstein’s
approach was to derive and solve a partial differential equation that describes the
time evolution of the probability distribution of a Brownian particle. This type of
equations was later known as the Fokker-Planck equation since deriving them was in a
general and systematic way described by A. D. Fokker [8] and M. Planck [9]. A math-
ematically different yet physically similar approach to the Brownian motion problem
was introduced by P. Langevin [10, 11].In this work, Langevin applied Newton’s sec-
ond law to a generic Brownian particle and derived its stochastic equation of motion.
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The original form of this equation for the velocity v a Brownian particle with mass
m and radius a moving in a liquid with viscosity µ reads

mv̇ = −6πµav +X , (1.1)

in which the first term is the viscous resistance derived from Stokes’ law. Here, X
is the randoms driving force originally described as following:“About the comple-
mentary force X , we know that it is indifferently positive and negative and that its
magnitude is such that it maintains the agitation of the particle, which the viscous
resistance would stop without it”.This was one of the biggest landmarks of the field
as it is equivalent of “F = ma” for stochastic processes and later called the Langevin
equation. In the later applications of this formalism, the deterministic part of the
dynamics (the drag force in 1.1) is called the drift term and the stochastic part of
dynamics (the stochastic driving force in 1.1) is called the diffusion term.

Another seminal work necessary to mention is H. A. Kramers’ where he attempts
to formulate the deterministic reaction rates in terms of molecular parameters [12].
More importantly, this work illustrates the application of the Brownian motion to
the problem of the escape of particles from a potential barrier. This type of problems
are nowadays known as noise-induced transitions and are of significant importance
in a variety of contexts such as biology, ecology, economics and climates science to
name a few.

A useful and intuitive approach to model stochastic processes is to consider a prob-
abilistic combination of different states at any given time. Then, the switching be-
tween states can be described by a transition rate matrix. This formalism was first
derived by W. Pauli to describe the approach of a quantum system to statistical equi-
librium [13]. A more rigorous derivation of this approach as well as its higher order
considerations was introduced by L. Van Hove [14]. This framework nevertheless
did not remain limited to quantum systems and soon found applications in micro-
scopic chemical reaction systems (e.g. biological systems) [15] and countless other
fields.

In many cases stochasticity hinders the functionality of the system. For example in
multi-stable systems, fluctuations can cause noise-induced transitions from the de-
sired stable state to an undesired one [16, 17].There are, however, many observations
where stochasticity is utilized to achieve a certain goal such as noise-induced syn-
chronization in chaotic oscillators [18] as well as stochastic cell fate determination to
establish necessary fate diversity in some tissues such as retina [19].

1.1 Noise and stochasticity in biology

Living organisms are exposed to dynamic environments where everything from the
temperature to food sources are fluctuating over space and time. Nevertheless, life
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is still flourishing in nearly all conditions by robustly gaining information about the
dynamic environment. However, the main tools used by cells to infer environmental
cues are biochemical reaction networks with small reaction volumes that are intrin-
sically stochastic due to random timing of reactions also known as intrinsic noise.
The concentration of these biochemical species also fluctuates over the intercellular
space which adds extra uncertainty to external signal estimation in a single cell. Be-
sides, cell-to-cell variability in the rates of the reactions introduces extrinsic noise to
the system.

After sensing the dynamic and inhomogeneous environmental signal, cells again use
their internal noisy chemical reaction network (i.e. regulatory network) to process
the information and make decisions. Here, coping with uncertainties originating
from intrinsic and extrinsic noise further increases complications. Even in the next
step where cells produce proteins and other necessary components, noisy reactions
result in uncertainty and variability. Despite all these stochasticities, living cells are
capable of surviving and functioning properly. Multicellular organisms face yet an-
other challenge. They even need to maintain the abundance and location of differ-
ent cell types to form tissues during the development. This requires feedbacks and
interactions crossing multiple scales which gives rise to complicated patterns that
sometimes necessitate cross-scale analyses for studying them.

In principle, stochasticity can originate from one or more of the following phenom-
ena: I) Lack of technology and precise measurements resulting in lack of knowl-
edge II) Ignoring some of the information (degrees of freedom) to make the system
tractable III) fundamental uncertainties at the quantum scale. Quantum phenomena
are relevant in certain biological cases such as olfactory sensing, magneto-reception
in birds and photosynthesis. However, in most cases the fact that biological systems
are “warm, wet and noisy” causes rapid decoherence and suppression of quantum
effects [20]. Therefore, throughout this thesis, we solely focus on the cases in which
the uncertainties arise from lack of knowledge and/or from ignoring information
for the sake of simplicity.

Living organisms differ from most other chemical systems as they utilize nonlinear
regulatory pathways that can suppress stochasticities and achieve reliable function-
ing. Studying these mechanisms, besides deepening our knowledge into biology,
can in principle help us to design novel information processing devices based on
chemical reactions or similar dynamics. In the remainder of this chapter, we first
review different sources of temporal fluctuations and how they affect biological pro-
cesses. We then briefly discuss some examples of spatial fluctuations and challenges
during development. In the end, we touch on general modeling techniques common
for studying stochastic processes in biology.
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1.1.1 Temporal fluctuations

Many phenomena and processes can cause temporal fluctuations in internal states
of cells. A good example is the dynamic environment in which many vital resources
and properties change throughout the organisms life cycle. Cells sense these changes
and adjust their internal states consequently. At short time scales, these state vari-
ables also fluctuate due to the intrinsic noise of molecular machinery used by cells.
In this subsection, we first discuss a few experiments showing how dynamic en-
vironments affect living systems, and then review empirical evidences of intrinsic
noise influencing cells’ function.

Living in a dynamic environment

Survival of living organisms depends on the information they can get about their
dynamic environment as much as it depends on energy [21]. Studies in this area
can be divided into three general categories: I) when time scales of environmental
changes are significantly shorter than species’ lifetime, II) when the time scale of the
changes is comparable to the life time, and III) when time scale of changes is much
longer than the life time. In the third scenario which is the simplest one, the clas-
sic evolution is the dominant view: seemingly constant environment favors better
adopted species enabling them to flourish by using their maximum potential while
the other species decline. In the second case with the intermediate time scale, bet-
hedging strategy is shown to be the favored strategy in which cell-to-cell variability
is utilized for encountering various environmental conditions [22]. However, this is
a population level strategy and individuals also have to deal with notable changes
during their life time. A simple yet important examples is the winter dormancy of
plants. The changes in temperature and daylight duration enables them to sense
the start of cold season and begin hibernation process, accordingly [23, 24]. At a
shorter scale, single cell organisms also experience changing environment and use
their regulatory network to react. For instance, Escherichia coli bacterial cells ideally
grow consuming glucose, but when exposed to only lactose, they can express Lac
protein to catabolise it [25]. When the food source fluctuates, depending on the time
scale of the fluctuations relative to the life-time, these cells can incorporate different
strategies to maximize their growth rate [26, 27].

Many theoretical studies have focused on determining the fundamental limits of
sensing environmental cues carried out via chemical reaction networks at the steady
state by a single cell [28, 29]. Similarly, sensing a dynamic environmental signal by a
single cell have been studied in [30, 31]. Limitation of collective sensing of an envi-
ronmental signal is also partially explored, mostly focusing on the steady-state con-
centration sensed through simplified mean-field interactions [32]. However, combi-
nation of dynamic signal and collective sensing requires is not well understood and
will be discussed in chapter 2.
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Random timing of bio-chemical reactions

Many crucial biochemical reactions regulating cell functions occur at such a low
rate that the abundance of the reactants and products follow fluctuating trajecto-
ries. Let us demonstrate this by a simplified example. Consider the DNA transcrip-
tion process which is the first step of gene expression. Generally, in this step, an
mRNA molecule is synthesized from a segment of the DNA using an RNA poly-
merase macro-molecule, and translated into the desired protein in the next step. The
ploymerase molecules get recruited at so called promoter regions of the DNA and
then transcribe the downstream coding segment. As a specific system, we consider
bacteria E. coli which is a prokaryote meaning there’s no membrane bound nucleus
and transcription can happen anywhere in the entire cell volume. The cell volume of
E. coli is of order of magnitude of 1µm3 [33]. In this volume, there are approximately
3000 RNA polymerase [34], 20− 30% of which are active [35]. Given that each poly-
merase is around 10nm3 in volume [36], only 0.0001% of the cell is occupied by RNA
polymerase. Diffusion coefficient of these molecules is measured to be of the order
of magnitude of 0.1 µm2

s [37]. Given that the DNA molecule, because of its size, is dif-
fusing much slower than the polymerase, one can calculate the typical time that the
polymerase molecules need to explore the entire cell volume and find a given pro-
moter site. If we ignore the probability of losing the polymerase to other promoter
sites, this time will equal the time needed for filling the cell volume V with sum
of spheres that are explored by polymerase molecules. The volume that a molecule
explores due to diffusion is a sphere whose radius equals the Mean Square Displace-
ment (MSD) which is 6Dτ in three dimension. Therefore, for N molecules, we have
N 4

3 πMSD3/2 = V, in which the typical time τ equals to 0.04s by substituting the
values mentioned above. Since the probability of each reaction event in an infinitely
small time interval is constant and independent of each other, the reaction events
are Poisson point process and the waiting times follow an exponential distribution
with average of τ = 0.04s. It should be noted that this is a hand waving argument
to show the relevance of stochasticity and the actual problem is much more com-
plicated. Many high-order effects such as the shape of the cell and volume of the
polymerase molecules are ignored here. Also, there are complicated mechanisms
employed by cells to regulate this typical time that are beyond the scope of this sim-
ple calculations. For example, attachment of activating transcription factors to the
promoters and can increase its effective volume and consequently boosting the prob-
ability of recruiting a polymerase molecule, or attachment of inhibitor molecules can
prevent the recruitment of other molecules.

In reality, cells usually produce even fewer mRNA molecules. Consider mRNA pro-
duction in yeast, as an example. Although directly measuring the reaction events is
technically very challenging, if possible, one can infer the kinetic parameters of the
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transcription-translation models from the protein abundance over time as demon-
strated in Ref. [38]. Here, the authors show that in their specific case, on aver-
age around six mRNA molecules are produced per minute and their half-life is 10
minute. This implies that processes as simple as mRNA production should indeed
be considered stochastic. This stochasticity gets amplified in the next step of protein
production in which mRNA gets translated into protein. As a result, the produc-
tion of proteins obtains bursting dynamics where periods of high reaction events are
followed by long waiting periods between them [39]. This temporal stochasticity in
gene expression can explain many variations observed in clonal populations with
the same genome which is experimentally observed in Ref. [40] and theoretically
discussed in Ref. [41].

1.1.2 Spatial noise

Bursting dynamics, discussed earlier, can result in cell-to-cell variability. Moreover,
low copy number of biochemical species combined with slow diffusion can cause
spatial fluctuations in the abundance of typical biochemical species. In this section,
we briefly review these phenomena and cases where their effects are observed.

Diffusion-limited spatial fluctuations

Much of the cells’ information processing and functioning is done via their enor-
mous regulatory networks. Elements (nodes) of this network are biochemical species
produced stochastically and diffused in the cell volume stochastically. Most studies
solely focus on the temporal fluctuation of these processes and assume well-mixed
intracellular space which is achievable in the regime of fast diffusion. However, ex-
periments on the mobility of proteins in the cytoplasm show the relevance of spatial
fluctuations even in the small E. coli bacterial cells [42]. During proliferation, inho-
mogeneous distribution of small number of proteins results in random partitioning
of these molecules and causes cell-cell variation in the daughter cells. These varia-
tions are significant and their effect is comparable to that of temporal fluctuations of
gene expression [43]. In the extracellular environment, crucial signals are also in the
form of biochemical species at low copy number which is subject to fluctuations due
to slow diffusion. Cells in some communities secret signaling molecules and sense
the pool of the molecules to communicate with each other. Inhomogeneity of dis-
tribution of these molecules due to low copy number and slow diffusion is another
complication making the effective communication challenging.

Cell-to-cell variability

Inhomogeneous partitioning of proteins during cell division causes cell-to-cell vari-
ability also known as extrinsic noise [43, 44]. This variability can be distinguished
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from intrinsic noise by measuring concentration of two gene products that are con-
trolled by the same transcription factor [45]. This variability can in principle be sup-
pressed by utilizing phase separation where dilute and dense phase coexist and their
concentration is determined by the thermodynamics of the system. The extra pro-
tein is then partitioned into the dense phase (droplets whose size can vary) keeping
local concentrations constant [46]. However, in many cases, the variability is present
and affecting cells’ functions. For example, in communicating cells estimating the
cell density (quorum sensing), the internal master regulators show a big variability
especially at low cell density [47]. Similar to other processes, here, internal and ex-
ternal feedbacks can be utilized to optimize quorum sensing despite the cell-to-cell
variability [48].

Development of multicellular organisms is a prime example of achieving organiza-
tion and reproduciblity despite various stochasticities. During this process, different
cell types are established at specific location. The positional information required
for this are usually provided by so called morphogens gradient [49]. Target cells
that are adjacent to the secreting domains can sense the morphogen concentration
and express the necessary genes for the desired cell type. Variability in the target
cells results in spatial fluctuations of the effective diffusion coefficient as well as
degradation rate of the morphogen. These fluctuations in turn limit the precision
of the positional information provided by the morphogen gradient [50]. However,
cells can circumvent this limitation by transducing the signal through their com-
plex and redundant regulatory network [51]. Some developmental processes such
as skull bone growth, involves cell differentiation and and proliferation (resulting
in tissue growth) at the same time and with the same time scales which is known
as progressive differentiation. This adds extra complexity necessitating non-local inter-
actions to achieve organization and reproducibility. These tissues form non-trivial
patterns that require high-order and non-local analyses for characterization. For ex-
ample, when embryo size is varied, non-local feedbacks (e.g. expansion-repression
mechanism to scale morphogen gradients) are responsible for maintaining proper
development and scaling of the tissues [52, 53].

1.2 Modeling temporal noise in biology

Before discussing robustness of biological processes, one needs to model the tem-
poral stochasticity present in different processes and reaction volumes. We start by
construction of Chemical Master Equation (CME) in a well-mixed setup. We then
discuss challenges when dealing with CME’s. Finally, we discuss how to construct
a Langevin equation and its corresponding Fokker-Planck equation at large reaction
volume regime resulting in small fluctuations.
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1.2.1 Chemical reaction networks

Suppose that N chemical species are connected via m reaction channels as following:

N

∑
i=1

ai,jXi
f j(x)−−→

N

∑
i=1

bi,jXi (j = 1, . . . , m) , (1.2)

where Xi represents species i whose abundance is given by xi, and ai,j and bi,j are
the stoichiometric coefficients of reactants and products, respectively which acquire
nonnegative values. In a deterministic view, f j (x) is the rate of the reaction j which is
in general a function of x := (x1, x2, . . . xN)

⊤. However, in a more rigorous stochas-
tic setup, f j (x(t))dt is regarded as the probability of reaction j taking place between
time t and t + dt. In a well mixed system (i.e. neglecting the spatial fluctuations)
one can simulate stochastic trajectories of abundance (in terms of copy number) of
each species over time for any given reaction network using the Gillespie algorithm
based on a rigorously derived Monte Carlo procedure [54].

For a probabilistic treatment of the reaction network described in Eq. 1.2, one can
write the chemical master equation [15] as:

∂

∂t
P (x, t|x0, t0) =

m

∑
j=1

[︁
f j
(︁
x− νj

)︁
P
(︁
x− νj, t|x0, t0

)︁
− f j (x) P (x, t|x0, t0)

]︁
(1.3)

where P (x, t|x0, t0) is the probability of having the system at state x at time t given
that the system has been initiated from x0 at time t0. Moreover, νj is a vector corre-
sponding to the change in the state variable x when reaction j occurs. Its components
are the difference between the stoichiometric coefficients on two sides of Eq. 1.2 i.e.
νi,j = bi,j − ai,j.

Given that for every value of x there is an Ordinary Differential Equation (ODE)
coupled to those with different x, treating these master equations analytically for
most practical cases is nearly impossible. However, useful insight can be achieved
from the moments of the distribution. In principle, one can multiply both sides of
Eq. 1.3 by the desired powers of xi and integrate over all values, but because of the
term f j (x) on the r.h.s., any given moment equation is coupled to higher-order ones
when the rates are polynomial functions. Therefore, one cannot truncate the system
of equation to solve them. It becomes even worse in the case of non-polynomial rate
functions as they produce moments of non-integer order. The issue with the poly-
nomial rate functions, also known as the moment closure problem, can be circum-
vented by certain assumptions about the distributions which enables one to rewrite
higher-order moments in terms of the lower-order ones. Although this approach
offers some insight to the statistics of the system, it does not provide a complete
description. Additionally, the assumptions needed here limit the applicability.
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1.2.2 The chemical Langevin equation

Assuming that the reaction volume is large enough, one can consider the abundance
of each species as continuous variables with small fluctuations over time. Then, the
random trajectories of the system can be realized via the chemical Langevin equation
that is rigorously derived from the chemical master equation in Ref. [55]. For the
reaction network described in eq. 1.2, we have

∂

∂t
xi (t) =

m

∑
j=1

νi,j f j (x (t)) +
m

∑
j=1

νi,j f 1/2
j (x (t)) Γj (t) , (1.4)

where Γj (t) are temporally uncorrelated white Gaussian noise with zero mean and
and unit variance, i.e. ⟨Γj (t) Γ′j (t)⟩ = δj,j′ . In this setup, the probability distribution
of the system starting from x0 at t0 is governed by a Fokker-Planck equation as

∂

∂t
P (x, t|x0, t0) =−

N

∑
i=1

∂

∂xi

[︄(︄
m

∑
j=1

νi,j f j(x)

)︄
P (x, t|x0, t0)

]︄
(1.5)

+
1
2

N

∑
i=1

∂2

∂x2
i

[︄(︄
m

∑
j=1

ν2
i,j f j(x)

)︄
P (x, t|x0, t0)

]︄

+
N

∑
i,i′=1
i<i′

∂2

∂xi∂xi′

[︄(︄
m

∑
j=1

νi,jνi′,j f j(x)

)︄
P (x, t|x0, t0)

]︄
.

This formalism is widely used for modeling reaction networks at the biologically
relevant scales. The first term in Eq. 1.4 is called the drift term which describes
the deterministic part of the dynamics. The second term describing the stochastic
part of the dynamics is referred to as the diffusion term. Since the diffusion term
for chemical reaction networks depends on the state variables, it is categorized as
a multiplicative noise. Fixed points of the system can be determined from the drift
term while the diffusion term drives the system away from the trajectories generated
by the deterministic dynamics.

1.3 Modeling spatial noise in biology

Spatial noise inside a cell, at low copy number and slow diffusion regime, can be
modeled by a master equation similar to 1.3, but with expanding the state vector
to incorporate the position of each molecule. This results in an infinite-dimensional
system of equations due to continuity of space which rendering this approach use-
less. Certain assumptions can be made to simplify the system that we discuss in this
section. First, we discuss compartmentalization of intracellular space and reaction-
diffusion at the sub-cellular scale. We then go beyond cellular scale and consider
cell-population level where a mean-field approximation can be used to make the
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continuous system tractable as well as the network approach in which cells con-
stitute units (nodes) and all the interactions between them can be condensed and
considered as pairwise connections (links).

1.3.1 Spatial fluctuations in the intracellular volume

A rigorous framework to study a dynamic population of compartments with arbi-
trary interactions is developed in Ref. [56]. This formalism can be used to model
spatial fluctuations in the intracellular space. Suppose there are N compartments
inside a cell that can in principle represent membraneless condensates, organelles
with membrane or even the cytoplasmic space containing the other compartments.
Content of compartment i is represented by its D-dimensional state vector xi whose
components correspond to the number of D chemical species encapsulated and they
acquire non-negative integers. Such a system can then be treated as a counting pro-
cess similar to a chemical reaction system discussed in Sec. 1.2.1 and the full state
of the system can be represented by a compartment number nx enumerating the
compartments with a given content x. This approach can incorporate spatial fluctu-
ations in terms of variations in the compartment contents, but it cannot capture any
positional information about the compartments.

In order to capture the positional information about the fluctuations, i.e. spatial dis-
tribution of high or low concentration of a certain species, one can employ a similar
method discussed in Ref. [57]. In this approach, one can divide the entire cell vol-
ume into N subvolumes that are small enough to assume a constant concentration
of given species. Then, the diffusion of a molecule to the neighboring subvolumes
can be considered as an event similar to the chemical reactions. The authors here
introduce an efficient Monte Carlo algorithm in which the expected time for the next
reaction is only recalculated for the subvolumes when they undergo a change due
to a reaction or a diffusion event.

1.3.2 Networked dynamics

A large number of elements interacting with each other in a pairwise manner can
be modeled as a network where each node represents a subunit, and the links rep-
resent the interaction between the nodes. This type of models are widely used in
physics, biology and other fields due to their power and generality. Each node can
in principle have more than one state variables corresponding to the internal states
of interest, but for the sake of simplicity, in this section, we only discuss the sce-
nario where each node has one state variable xi. The dynamics of such a networked
system with N units can be represented as

ẋi = Fi (xi) +
N

∑
j=1

ai,jG
(︁
xi, xj

)︁
, (1.6)
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where ai,j is an element of the adjacency matrix, and equals the strength of the inter-
action between node i and j, and it can have real value. Fi (xi) is the self dynamics
of node i, and G

(︁
xi, xj

)︁
determines the form of the interactions. Variations in cell

parameters can be captured in the first term on the r.h.s of Eq. 1.6, and the second
term is capable of capturing variations in neighborhood and interactions. Even a
diffusion term capturing the temporal fluctuations can be added here to construct a
Langevin equation and incorporate temporal fluctuations if needed. Using this type
of models, one can thus go beyond mean-field approximations and study effect of
variations, separately. Additionally, advanced topological measures are designed to
capture local and non-local network features that makes studying role of network
structures on the functionality of the system possible [58, 59].

It should be noted that applicability of network dynamics in biology is not limited to
multicellular level. This framework is also proven useful for modeling intracellular
processes such as gene regulatory network [60, 61].

1.4 Analyzing fluctuations to uncover the underlying processes

So far we have only discussed the modeling approaches for studying fluctuations.
However, this type of approaches require a priori knowledge or assumptions about
the underlying mechanisms. For example, when building a stochastic model of a
specific gene regulatory network, one needs information about gene expression pro-
cesses such as the intermediate steps (i.e. transcription and translation), an estimate
of copy numbers to determine the noise strength, and the relevant dynamics. Also,
a set of possible interactions (within the regulatory circuits and its interaction with
other genes) is needed to be able to construct a model and study effects of each com-
ponent.

A prior knowledge or plausible assumptions might not be feasible in some cases
at least at the length- or time-scale of interest. However, in such cases, useful in-
formation can still be obtained by repeating the measurement over space or time,
and analyzing the stochastic and potentially nonlinear data sequence in space or in
time (time-series). Various analyses are developed to shed light on the stochastic or
deterministic components of the system [62].

1.4.1 Non-parametric model construction

More information such as the dynamical model of a stochastic system can be achieved
when adequate empirical data is accessible. For example, little is known about un-
derlying dynamics of electroencephalographic (EEG) recordings as they are readouts
of a sum of activity of thousands or millions of neurons throughout the inhomoge-
neous and complex scalp tissue. Especially, under pathological conditions such as
epilepsy, it is challenging to make useful models based on the known mechanisms
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of neural activities. Nevertheless, when long time-series are available, one can con-
struct a Langevin equation and its corresponding Fokker-Planck equation for EEG
recordings by calculating Kramers–Moyal coefficients [63]. Besides shedding light
into the process, these dynamics parameters have also proved useful for diagnostic
purposes. A similar pipeline is applied to beat-to-beat fluctuations of the heart rates
of healthy subjects and those affected by Congestive Heart Failure (CHF) [64]. In
this case, again, a Langevin equation is constructed without assumptions about the
underlying mechanisms and its drift and diffusion terms are both capable of distin-
guishing healthy subjects from those with CHF. Ref. [65] provides a review of this
approach in many fields while Ref. [66] portraits a more comprehensive overview
on the conditions and generalizations.

It should be noted that in this framework, determining the dynamics is possible
solely due to existence of fluctuations. In fact, the stochastic components of the
systems under study act as random perturbations and recovery from them is the key
to understanding systems dynamics. Considering these fluctuations to be random
noise and removing them renders such methods futile.

1.4.2 Combining models with fluctuation analyses

Although non-parametric model construction provides very powerful tools for study-
ing complex systems, they typically require hundreds of thousands of sequential
measurements which is not possible in many practical cases. For example, in the
context of developmental biology where measurements may be invasive and the
processes of interest happen over such a short period of time that given the lim-
ited time-resolution, only few measurements are possible. Therefore, constructing
a stochastic model as discussed in Sec. 1.3, and fitting the parameters to the em-
pirical data is more practical. As an example, one can consider cell sheet folding
in the development of green alga Volvox during which the spherical embryos turn
themselves inside out. Here, the combination of theoretical modeling and analyz-
ing shape variability reveals how two separate and temporally uncorrelated mech-
anisms are involved in this shape change process [67]. In a different context, yet
conceptually similar case, analyzing fluctuations in abundance of gene products re-
veals the kinetic parameters of a regulatory network [68].
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Chapter 2

Collective sensing of dynamic
environmental signals

Biological systems being exposed to dynamic environments need to gain informa-
tion about their surrounding and adjust their internal states and functions. Here,
like many other cases, collaboration and communication may improve the efficiency
and accuracy of sensing. However, this is not well understood in the case of cell
populations communicating through arbitrary topologies to estimate a dynamic sig-
nal. In this chapter, we construct a robust framework for collective signal estimation
via continuous time Markov chains. We then study the effects of communication in
the identical cell populations as well as nonidentical ones. We furthermore investi-
gate the role of topological properties of the network on the quality of estimation at
the single cell and population level. The majority of the material presented in this
chapter is adopted from our article published in 2020 (see Ref. [69]).

2.1 Introduction

Information about the environment is crucial for cells’ survival and functionality.
Slow changes in environmental conditions are dealt with at the population level and
across generations, but fast changes needs reactions at short time scales compared
to the life cycle. For example, optimally using limited resources requires bacterial
populations to sense the cell density and adjust the proliferation rate. Also in devel-
oping embryos, cells need to sense the morphogens and acquire the appropriate fate
in a limited time in order to properly form tissues.

Majority of biological signals are in the form of concentration of biochemical species
and therefore the ability of a cell to estimate external concentrations determines its
fitness and potential to make reliable decisions. Therefore, much effort has been de-
voted to studying physical limits of concentration sensing in various setups. The
pioneering work by Berg and Purcell [28] introduced a lower bound for error of
sensing concentration by single cell at steady state and showed that the concentra-
tion sensitivity of E. coli is surprisingly close to the optimal value. Later studies
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addressed the accuracy of sensing a concentration gradient in a single cell [70, 71].
Also, sensing an external concentration increasing in time by single cells was ad-
dressed in Ref. [72]. A more general case in which the external signal can fluctuate
in time was studied by Zechner et. al. in Ref. [30] where they develop an optimal
estimation framework to address the problem of sensing a dynamic signal by single
cells. However, the inference of environmental signals can in principle be made col-
lectively and the topology of interactions between cells may play a crucial role on
the quality of estimation.

In other fields, the distributed estimation across communities has already been a
central focus for years [73, 74, 75]. However, the first attempts to study the effect
of communication on the quality of estimation in cell populations have been made
recently. Fancher and Mugler [32], for instance, modeled concentration sensing in
communicating cells by directly exchanging transmembrane molecules or through
secreting and sensing diffusive signalling molecules.However, even in the first case,
this analysis is limited to the mean-field approach where neighborhood is assumed
to be identical for all cells. Besides, assuming constant concentration of the external
signal limits applicability of the model and obscures any transient effects arising
from communications.

In this chapter, we develop a framework capable of addressing the accuracy of
sensing a dynamic external signal by cell populations interacting through arbitrary
and complex networks. Our formalism rigorously captures temporal fluctuations
due random timing of reactions in the sensory and communication channels as
well as cell-to-cell variability. We then study the effect of network topology (i.e.,
neighborhood inhomogeneity) on the sensing accuracy in identical and nonidenti-
cal cells. We first investigate these effects in two biologically inspired case studies: I)
bacterial-like all-to-all communication (fully-connected networks), II) epithelial-like
two-dimensional hexagonal lattice. Then, in order to better shed light on the effects
of the interaction topology, we construct random networks and study the interplay
between the sensing accuracy (at the single cell and population level) and the local
and global topological properties.

2.2 Collective sensing of dynamic external signals

Let us consider a cell population of size N that is supposed to sense a dynamic exter-
nal signal Z(t). This signal Z(t) can, for example, be the concentration of a signaling
molecule acting on the cell population. For the sake of simplicity we consider Z(t)
to be a one-dimensional birth-death process as

∅
ρ−⇀ Z

φ−⇀ ∅, (2.1)

where ρ and φ are the birth-rate and and death-rate of the molecule, respectively. In
our model cells are supposed to estimate the signal up to proportionality constant
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γ, i.e. γZ(t). For simplicity, one can consider that cell i is sensing the signal Z(t)
through a single catalytic reaction channel:

Z
γcM−−−⇀ Z + M(i). (2.2)

Here, γcM is the rate constant where cM and γ are the sensor rate and the enhance-
ment factor of the cell (i.e. the proportionality constant of the estimation), respec-
tively. When a sensor reaction happens inside cell i, one molecule M(i) is produced
which can then regulate the downstream processes. It should be noted that the re-
action times of the sensors here provide a noisy and indirect readout of the external
signal Z(t) to the cell since higher values of Z(t) results in more frequent firings of
sensor reaction and vice versa. Moreover, the enhancement factor γ controls the in-
formativeness of these sensor reactions. Large γ values result in more frequent firing
of the sensor reaction and following the abundance of Z(t) more closely.

For this system, Zechner et. al. in Ref. [30], construct a stochastic differential equa-
tion governing the time evolution of the so called filtering distribution. This distri-
bution determines the probability of Z(t) = z given the observed timings of the
sensing reaction in 2.2. They then showed that the mean of this distribution which
minimizes the error of estimation [76] can be approximated by the sensor molecule
M(i) if it also undergoes the following birth-death:

∅
γρ−−−⇀ M(i) φ+cM−−−−−⇀ ∅, (2.3)

when an estimation of γZ(t) is required. We refer to this setup as a Poissonian es-
timation since in the absence of the sensor reaction, the abundance of the molecule
M(i)(t) exhibits Poissonian statistics at stationarity. However, in the presence of ex-
trinsic noise arising from cell-to-cell variability or additional chemical steps in the
dynamics of estimator, the circuit can exhibit super-Poissonian statistics. We consider
a super-Poissonian estimator by introducing a random mismatch between the birth
rate of the estimator in cell i and the optimal birth rate γρ. More precisely, we as-
sume cell i is equipped by a different birth rate γρ(i) = γ

(︁
ρ + ∆ρ(i)

)︁
where ∆ρ(i)

for all i = 1, . . . , N are uncorrelated, zero-mean random variables (i.e., E[∆ρ(i)] =

E[∆ρ(i)∆ρ(j)] = 0) with variance E[(∆ρ(i))2] = σ2.

We extend this model to allow communication between cells. In particular, we con-
sider the scenario in which estimator molecules can diffuse back and forth between
two neighboring cells with a fixed rate constant, i.e.,

M(j)
αij−−−⇀↽−−−
αji

M(i) (2.4)

where αij is the rate constant of transport from cell j to i. It should be noted that αij =

0 if cells i and j are not neighbors. For simplicity, we assume symmetric interactions,
i.e. αij = αji = α for every connected i and j. Such interactions will equalize the
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estimation values and suppress cell-to-cell differences. This is achieved by a net flux
of estimator molecules from cells containing more towards neighboring cells with
fewer estimator molecules.

2.3 The quality of sensing in cell population

We assume that each cell’s internal volume as well as the environment are well-
mixed, individually. In other words, we consider the spatial fluctuations of con-
centration of chemical species to be negligible in every subvolume of the system.
Therefore, we can describe the time-evolution of the environmental signal Z(t) and
each cell’s estimator molecule M(i)(t) by continuous-time Markov chains [77, 78]. In
particular, we employ a counting process formalism, where Z(t) and M(i)(t) are de-
scribed by a system of stochastic integral equations with independent unit Poisson
processes counting the occurrence of each reaction (see appendix A.1).

We can then derive the time evolution of the expected estimator E[M(i)(t)] as de-
scribed in App. A.1 which reads:

d
dt

E[M(i)(t)] =γρ− (φ + cM)E[M(i)(t)] + γcME[Z(t)]

+ ∑
j

(︁
αijE[M(j)(t)]− αjiE[M(i)(t)]

)︁
. (2.5)

Note that taking an average over an ensemble of cell populations results in van-
ishing the effect of the parameter mismatch since by definition E[∆ρ(i)] = 0, and
consequently both Poissonian super-Poissonian’s expected estimator behave simi-
larly over time. Moreover, E[Z(t)] is the expected environmental signal whose time
evolution is governed by

d
dt

E[Z(t)] = ρ− φE[Z(t)]. (2.6)

It is worth noting that Eq. 2.5 has the same form as Eq. 1.6, and therefore, it is capable
of capturing spatial fluctuations in the neighborhood as an interactions topology.

2.3.1 Sensing bias in cell populations

We define the Mean Error (ME) E [ei(t)] = E
[︁
Z(t)− M(i)(t)/γ

]︁
to assess the bias of

each cell’s estimator. By subtracting the Eq. 2.6 from Eq. 2.5, one easily gets the or-
dinary differential equation governing the dynamics of expected error of estimation
in cell a:

d
dt

E[ei(t)] =− (φ + cM)E[ei(t)] + ∑
j

(︁
αijE[ej(t)]− αjiE[ei(t)]

)︁
. (2.7)

By simultaneously solving the set of equations in 2.7 for given initial conditions,
one arrives at the time-evolution of the expected error of the estimation. Typical



2.3. The quality of sensing in cell population 17

0 25 50 75 100 125 150
t

−10

−5

0

5

10

M
E

coupled
uncoupled

FIGURE 2.1: Evolution of expected error of estimation in two cases
of coupled (blue curve) and uncoupled (red curve) where parameters

are chosen as cM = 0.01, ρ = 0.1, φ = 0.01 and α = 0.04.

trajectories of ME for a two cell system starting from opposite biases are depicted in
Fig. 2.1. Here, we compare two cases with coupling (in blue) and without coupling
(in red). As one can see in this figure, the coupling or communication between cells
helps them to achieve zero ME much faster than in the uncoupled case, but in either
case ME vanishes at the stationary state. This is due to the construction of estimators.

To demonstrate the performance of these estimators, we simulate the trajectories
of the environmental signal as well as a population of three Poissonian estimators
using the Gillespie algorithm [79]. Fig. 2.2 depicts a comparison of two fully-
connected and uncoupled estimators with a typical set of parameters (cM = 0.5,
ρ = 1, φ = 0.1,γ = 1 and α = 0.8). Figs. 2.2a and 2.2c show the transient dynamics
of coupled and uncoupled populations, respectively. As one can see here, coupled
populations of estimators approach the ground truth signal Z(t) faster. However,
both populations of estimators can estimate not only the correct steady state value
of Z(t), but also resolve its fluctuations (see 2.2b and 2.2d).

2.3.2 Sensing accuracy in cell populations

The value of the mean error always approaches zero over time, the Mean Squared
Error (MSE) E

[︁
e2

i (t)
]︁
= E

[︂(︁
Z(t)− M(i)(t)/γ

)︁2
]︂

represents a better measure for the
accuracy of estimation. Using Ito’s lemma for counting processes, we derive a set of
ODE’s describing the dynamics of the MSE of estimation in populations of Poisso-
nian and super-Poissonian estimators as descussed in App. A.2. The generality of
our derivation allows studying the quality of estimation in cell populations commu-
nicating through any arbitrary network.

Communication effect on sensing accuracy in Poissonian estimators

We first consider a simple mean-field interaction between population of N Poisso-
nian estimators. More specifically, we assume a fully-connected network which can
capture, for example, the interactions between cells in a bacterial population through
secreting and sensing fast diffusing signaling molecules. This assumption simplifies
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FIGURE 2.2: Typical trajectories of the environmental signal and its
Poissonian estimators simulated using the Gillespie algorithm [79].
(A) The transient part of the estimation in fully-connected estimators.
(B) The trajectories over a longer period of time. (C) and (D) also
show the transient and longer trajectories in the case of uncoupled
estimators. In these simulations the parameters are chosen as cM =

0.5, ρ = 1, φ = 0.1,γ = 1 and α = 0.8.
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FIGURE 2.3: Dynamics of MSE of a Poissonian estimator in a fully-
connected network with 5 neighbors and different coupling strength
α and following set of parameters: ρ = cM = 0.1, φ = 0.01, and γ = 2.

the system significantly rendering it analytically tractable. With this assumption, we
rewrite the general equations for time-evolution of MSEs derived in App. A.2 as
following:

d
dt

E
[︁
e2

i (t)
]︁
=2 (φ (1 + γ) + cM + nα)

ρ

γφ
− 2 (φ + cM + nα)E

[︁
e2

i (t)
]︁

+ 2nαE
[︁
ei(t)ej(t)

]︁
+

1
γ
(φ + cMnα (1 + γ))E [ei(t)] , (2.8)

for all i and j’s. Here, E
[︁
ei(t)ej(t)

]︁
is the correlation between the error of estimations

in cell i and j. Their dynamics can also be simplified as

d
dt

E
[︁
eiej(t)

]︁
=2ρ

(︃
1− α

φγ

)︃
− 2 (φ + cM + α)E

[︁
eiej(t)

]︁
+ 2αE

[︁
e2

i (t)
]︁
+ 2αE [ei(t)] . (2.9)

Similarly, the dynamics of ME is governed by

d
dt

E [ei(t)] =− (φ + cM)E [ei(t)] . (2.10)

Solving these equations simultaneously, one can uncover the full dynamics of the
system. Fig. 2.3 depicts typical trajectories of MSE for a cell in a fully-connected
population with five neighbors and various strength α. As one can see here, starting
from the same biased estimation and consequently large initial MSE, the estimators
with stronger coupling will approach the steady state MSE faster. However, the
steady state values appear be independent from α. One can find these steady state
values analytically. The dynamics of ME in equation 2.10 is independent of the other
two state variables and can be solved separately, resulting in an exponential decay
with exponent− (φ + cM), i.e. E [ei(t)] = E [ei(0)] e−(φ+cM)t. Therefore, at the steady
state, ME vanishes and one can solve the following equations for the steady-state
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FIGURE 2.4: MSE vs. number of neighbors n = N − 1 in fully-
connected networks of Poissonian estimators with enhancement
factor γ = 1. The average (blue circles) and the standard error (shown
with the error bars) of MSE are the result of 105 realizations of stochas-

tic simulations.

MSE from stationary A.13 and A.15:

0 = −(φ + cM + nα)E[e2
i ] + nαE[eiej] +

1
γ

(︁
φ(1 + γ) + cM + nα

)︁ ρ

φ

0 = −(φ + cM + α)E[eiej] + αE[e2
i ] +

(︁
1− α

φγ

)︁
ρ (2.11)

where n = N − 1 is the number of neighbors of each cell and j ̸= i. This system of
algebraic equations is easily solvable, but the solution is surprisingly independent
of the coupling strength α and the number of neighbors n:

E[e2
i ] =

ρ

γφ
+

ρ

cM + φ

E[eiej] =
ρ

cM + φ
. (2.12)

Note that here, E[e2
i ] is a simple shift of E[eiej] by ρ

γφ . We verify this by using exact
stochastic simulations [79] of a population of estimators with size N communicating
across a fully-connected networks. As depicted in Fig. 2.4, by increasing number of
neighbors n, the MSE of estimation does not change.

In order to investigate how the coupling terms (coupling strength α and number of
neighbors n) are canceled out, we write Eqs. 2.11 in the matrix form i.e.[︄

−(φ + cM)− nα nα

α −(φ + cM)− α

]︄ [︄
E[e2

i ]

E[eiej]

]︄

=

[︄
− ρ

γφ (φ(1 + γ) + cM)− nα
ρ

γφ

−ρ + α
γφ ρ

]︄
. (2.13)
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This can be rearranged as(︄[︄
−(φ + cM) 0

0 −(φ + cM)

]︄
+

[︄
nα

−α

]︄ [︂
−1 1

]︂)︄ [︄ E[e2
i ]

E[eiej]

]︄

=

[︄
− ρ

γφ (φ(1 + γ) + cM)

−ρ

]︄
+

[︄
nα

−α

]︄
−ρ

γφ
. (2.14)

As is evident in this form, the terms including the coupling strength and the number
of neighbors are separated into the second term on either side. Thus, they cancel out
if their coefficients on both sides are equal. This requires that E[e2

i ]−E[eiej] = ρ/γφ

which is indeed true in our case according to 2.12. This relation can also be written
in terms of second order-moment and covariance of estimators as following:

E
[︁
(M(i))2]︁−E[M(i)M(j)] =

ρ

γφ
=

1
γ2 E[M(i)]. (2.15)

It should be noted that we here solely considered fully-connected network since it
is analytically tractable. However, any arbitrary topology can be investigated by
numerically solving the set of equations derived in App. A.2 and the general results
we presented here are valid, independent of the topology.

In summary, our analysis here shows that communication in a population of Poisso-
nian estimators allows them to reach the steady-state MSE more quickly. This could
play an important role during cell fate determination, where cells have to make de-
cisions upon external cues within a limited period of time. However, the communi-
cation here does not affect the steady-state MSE. This result is generally because of
the fact that the MSE is fundamentally bounded by the intrinsic Poissonian fluctua-
tions, which cannot be overcome by diffusive transport (i.e. spatial averaging). This
behavior has been observed in studies of gene expression [80, 81]. Nevertheless, this
is new to the context of dynamical signal sensing.

Communication effect on sensing accuracy in super-Poissonian estimators

Having established that the communications in a population of Poissonian estima-
tors solely enhance the rate at which the MSE approaches its steady state value and
leaves the the final accuracy unchanged, we now focus on the super-Poissonian es-
timators.

We first consider the simple case of fully-connected network again since the it is
analytically tractable. We solve Eqs. A.9, A.13, A.15, A.16 and A.17 assuming that
all cell are identical in terms of topology being connected to all other cells in the
population. We then compare the effect of the coupling strength α to that of the
enhancement factor γ. Increasing either of these parameters enhances the estimation
and decreases the MSE as one can see in Fig. 2.5a. Note that although the MSE
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(A) (B)

FIGURE 2.5: The effect of coupling on the estimation in super-
Poisson estimators. (A) MSE vs. coupling strength α and cell’s en-
hancement factor γ in the fully-connected network of cells with fol-
lowing set of parameters: ρ = 0.1, φ = cM = 0.01, n = 10 and
σ2 = 0.01. (B) MSE (orange surface) and covariance of errors be-
tween two cells (blue surface) vs. number of neighbors n and cou-
pling strength α in the fully-connected network of super-Possonian

estimators with γ = 6.

values here are obtained for a specific set of parameter, the qualitative behavior of
the results doesn’t change over a broad range of relevant parameters.

One can see in Fig. 2.5a that even small values of the coupling strength α can de-
crease the MSE much faster than by increasing the enhancement factor of the esti-
mation γ. For example, note that even when γ → ∞ while α = 0, the MSE is larger
than when γ = 1 and α = 0.002. These results indicate that cell-to-cell communica-
tion is more beneficial for enhancing the estimation compared to expending energy
for producing more copies of the signal though the same noisy reaction channel.

Fig. 2.5b shows the MSE of fully-connected super-Poissonian estimators as well as
the covariance (COV) of the errors in two cells E

[︁
(e(i))e(j))

]︁
for i ̸= j. As one can

see here, both coupling strength α and number of neighbors n enhance the estima-
tion, but for the specific set of parameters used here, the coupling strength is more
effective. Additionally, at a given coupling strength, the COV reduces as the number
of neighbors increases which is due to the fact that each cell’s estimation would be
affected by more cells and therefore each cell will have a smaller effect.

Before further studying the effect of coupling through complex topologies, we ana-
lyze the effect of coupling between neighbors of a cell (also known as local cluster-
ing) on its MSE. To this end, we compare our results from fully-connected network
with another analytically solvable case: A mean field case where a hub cell is con-
nected to n neighbors which are not connected to each other. The results obtained
at the steady state in App. A.2.1 show that the MSE of the hub cell is equal to the
MSE of any of the cells in a fully connected network of the same size. Thus, to our
surprise, the local clustering of a cell does not affect its MSE of estimation, while
it decreases the neighbors’ MSEs. In order to test this finding in more complicated
cases, we study all intermediate steps of transition from a sparse star-shape network
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of size N = 5 to a dense fully-connected population with the same size. We then
calculate the MSE of the cells as well as the COVs. Fig. 2.6 depicts these steps and
shows that the MSE of the cell at the center (number 0) is not affected by adding
links among its neighbors. This indicates the fact that MSE does not depend on the
local clustering of the system is not limited to the mean field cases.

Sensing accuracy in spatial and complex networks

Although the MSE of estimation in a cell at steady-state is not affected by the the con-
nection between its neighbors, its evolution is affected by the COV of its error and
the error of the neighbors. The COV between a pair of cells in turn depends on the
COVs of each of the two cells with their neighbors (see Eq. A.13 and A.14). There-
fore, important effects can arise from next nearest neighbors. This can be of signifi-
cant importance in a more realistic and spatially extended case where cells interact
through networks that are neither fully-connected nor star-shaped but somewhere
in between and embedded in real space. We thus study a biologically important
scenario in which cells are epithelial-like, with six neighbors (except for those at the
boundary) and placed in a two-dimensional regular lattice. We start by constructing
a perfect 2D hexagonal lattice with open boundaries. Then, we solve the set of equa-
tions derived in appendix A.1 numerically, to find the time evolution of the MSE
estimations. As shown in Fig. 2.7a and 2.7b, the MSE as well as the COV depend
on the position of the cells within the network. Moreover, the covariance of errors
(which can be interpreted as information shared between cells) increases when es-
timations are worse (i.e. the MSE increases). This implies that cells with worse
estimation tend to get more information through their available links. In order to
further investigate this observation, we use three ensembles of random networks:
Random Spatial (RS), Scale-Free (SF) and Small-World (SW) networks.

We start with the RS ensemble, capturing interactions in tissues and similar systems.
In order to construct a RS network without boundary effects, we first make a regular
hexagonal lattice with periodic boundaries, and then, cut links with a constant prob-
ability of 0.05. We generate 30 realizations with fixed N = 100 and then calculate the
steady-state value of MSE’s. Fig. 2.7d shows one example of these networks while
Fig. 2.7e shows its unwrapped version in which some links are cut for a better vi-
sualization. In order to further investigate the effect of communication in a broader
range of node degrees s, we next generate 30 realizations of Scale-Free (SF) networks
with size N = 100 and mean degree 6 using the Barabási-Albert model [82]. Fi-
nally, since information spreading in complex networks is inherently connected to
the small world property of the network [83], we generate 30 realizations of Small-
World (SW) networks with N = 100 and rewiring probability of 0.05 by employing
the Watts-Strogatz model [84].

Fig. 2.8 summarizes the results for these three ensembles of random networks cou-
pling super-Poissonian estimators with the following set of parameters: ρ = 0.1,
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FIGURE 2.6: The effect of local clustering on a cell’s MSE of esti-
mation. The MSE of cells connected through a sparse stare-shaped
network (A), a dense fully-connected network (H) and all intermedi-

ate steps (B)–(G)
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FIGURE 2.7: Sensing accuracy in spatial networks.(A) Sensing accu-
racy in a perfect hexagonal lattice at stationary state (B) Covariance
between cells in the network at stationary state (C) Dynamics of MSE
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variance of errors of cells in a typical RS network with real represen-
tation. (E) The same network in (D) which is only unwrapped for the

sake of visibility
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FIGURE 2.8: Sensing accuracy in random network. The results of
30 realizations of random networks with size 100 and topology of RS
(the first column), SF (with mean degree 6 in the second column) and
SW (with rewiring probability of 0.05 and mean degree 6 in the last
column). Each color represents a specific realizations. Scatter plot of
COV of a link vs. the minimum of MSE over the two ends of that
link is shown in the first row. (A), (B) and (C) depict this for RS, SF
and SW topologies, respectively. Scatter plot of COV of a link vs. the
maximum of MSE over the two ends of that link in RS networks (D),
SF networks (E) and SW networks (F). Scatter plot of MSE vs. degree
of the nodes s for RS networks (G), SF networks (H) and (I) . The
red dashed line in (H) shows the MSE of a cell in a fully connected
network with size 100 and the same set of parameters used in SF net-
work. This implies that in SF networks, the hubs have almost the
same quality of estimation as in a fully connected networks with the

same size, although their degrees do not exceed 50.
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FIGURE 2.9: The role of local and global topological features on
the MSE of estimation(A) Scatter plot of MSE of each cell vs. its
closeness centrality for all realizations of three different topologies
presented in Fig. 2.8. (B) Average MSE vs. average path length for
different network topologies: blue circles correspond to SW networks
with rewiring probability ranging from 0.0001 to 0.5, orange circles
correspond to SF network and green circles show the result of RS net-

works. In all of these simulations, the mean degree is equal to 6.

ϕ = 0.01, cM = 0.01, γ = 1, α = 0.06 and σ2 = 0.01. The relations between co-
variance of errors of two neighboring cells and the smaller MSE of estimation of
those two cells are shown in Fig. 2.8a for RS, in Fig. 2.8b for SF and in Fig. 2.8c
for SW topology. Similarly, Figs. 2.8d, 2.8e and 2.8f show the relation between co-
variance of errors of pairs of neighboring cells and the higher MSE of estimation of
those two cells for RS, SF and SW topologies, respectively. As on can see here, there
is a strong correlation between COV and the MSE of estimation of the cells. This
topology-independent correlation verifies our previous hypothesis about the rela-
tion between MSE and covariance in the hexagonal lattice. This suggests that cells
relying more on a few links generally achieve a worse estimation accuracy than cells
which can average over more individual links. Moreover, we check the relation be-
tween MSE of estimation in a cell and its degree s. Figs. 2.8g, 2.8h and 2.8i show this
relation for RS, SF and SW topologies, respectively. The negative correlation shows
that indeed by increasing the degree of a cell the quality of its estimation increases.
Surprisingly however, in SF networks, as shown in Fig. 2.8h, the MSE of the hubs
approach a value (shown by dashed line) which corresponds to the MSE of a cell in a
fully-connected network with the same size (i.e. 100). One should note that in these
realizations, the hubs’ degrees do not exceed 50 and yet the MSE of their estimation
is very close to that of cells with 100 neighbors. This may well be because of the
high closeness centrality (defined as the average of distance from the given node to
all other nodes [85]) of the hubs of SF networks. We therefore investigate the depen-
dence of MSE of each cell on its closeness centrality for all different topologies. As
depicted in Fig. 2.9a, the scatter plot of all nodes from all random networks gen-
erated with the three topologies shows an anti-correlation, indicating that closeness
centrality is a key property with critical effect on the quality of estimation in a cell,
independent of the network topology.
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Accuracy of estimation at the population level

So far we have only focused on the effect of coupling on MSE of estimation at the
individual cell level, but now, we investigate the role of coupling on the overall MSE
at the population level. Recall that the MSE of estimation on a node depends not
only on the number of its first neighbors, but also on its next neighbors and beyond.
However, the effect of more distant neighbors is weaker on a given cell. This can
be seen in Fig. 2.7a where the effect of boundary cells gets weaker as one moves
towards the center. As a consequence, the average path length of a network (the av-
erage number of steps along the shortest paths for all possible pairs of nodes [85])
is a great candidate for the read-out of the effectivness of communications in a net-
work. In other words, one would expect that at a given population size, the cells
will be on average more affected by the other cells if the network of interactions has
a lower average path length. We hypothesize that populations interacting through
a network with lower average path length will have a better average estimation.
To test this hypothesis, we generate SW networks with different rewiring probabili-
ties which result in different average path lengths. Then, we compare their average
MSEs. Fig. 2.9b depicting the average MSEs of the SW networks with 15 different
rewiring probabilities (from 0.0001 to 0.5) and 10 realizations for each rewiring prob-
ability shows that indeed the average path length is a crucial parameter. This figure
also depicts average MSE of SF and RS networks collapsing on the same curve as the
SW networks.

2.4 Conclusion and outlook

We employed the continuous-time Markov chain formalism to develop a framework
for studying a collective signal sensing based on an approximation of the optimal
Bayesian estimation. Our framework is general and capable of incorporating various
noise types: intrinsic noise, cell-to-cell variability and spatial fluctuations of neigh-
borhood. We demonstrated this by a few case studies. We showed that in identical
cell populations where only intrinsic noise is present (i.e. Poissonian estimators),
estimation at the steady state does not benefit from communication between cells.
Here, communication solely reduces the rate at which cells reach unbiased estima-
tion and their steady state value of MSE. This transient enhancement is important
when cells need to collect information and make decision in a limited time such as
cell fate determination in developing tissues. We furthermore considered extrinsic
noise or in other words unidentical cell populations. In this setup, communication
indeed reduces MSE of estimation at steady-state. However, to our surprise, com-
munication between a cell’s neighbors and their MSEs do not affect its quality of
estimation. By studying estimation in random networks, we show that at the in-
dividual cell level, the MSE is inversely related to the closeness centrality and the
average MSE of a population is related to the average path length of the interaction
network.
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Although we here solely focused on the estimation of an external bio-chemical sig-
nal, our framework is general and applicable to other similar problems where es-
timation of a dynamic external physical quantity (other than concentration) for a
cell population is needed. For example, when a cell sheet is bounded by a curved
surface, the cells’ membrane acquire a similar curvature. This membrane curva-
ture which is a readout for the surface curvature is sensible through activity of bent
macro-molecules such as BAR domains [86]. Therefore, our work presented in this
chapter is an important step towards understanding and modeling information pro-
cessing tasks performed by a large coupled and, spatially distributed system with
complex network of interactions relevant in biology, distributed swarm computing
across a complex network, etc.
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Chapter 3

Context-dependent information
processing in living cells

In order to survive, cells need to collect information regarding their dynamic envi-
ronment. Then this collected information, along with the information regarding the
internal states are processed via the cell’s regulatory network. Given that numerous
information processing tasks are required for a typical cell’s life, reusing the circuits
are of significant importance. In other words, information processing circuits must
be flexible to perform multiple necessary tasks. In this chapter, we introduce a few
dynamically switchable logic gates that can perform different logical functions depend-
ing on the basin of attraction that the system resides in. We study the robustness
of these gates against various noise types, and characterize the trade-off between
reliability and their multifunctionality. Much of our results and discussions in this
chapter are adopted from our pre-print in arXive (see Ref. [87]).

3.1 Introduction

Various types of information processing tasks are necessary in biology at all levels of
complexity and across many length- and time-scales [21]. For example, pack animals
collectively make high-level social decisions requiring integration of vast amounts of
information about other individuals in the pack [88, 89].Also, predators must make
rapid, complicated decisions during their hunt for food while potential prey must
navigate similar complexities to avoid being predated upon [90, 91]. At the level of
individual high level multicellular organisms, numerous information is processed
in the central nervous system consisting of billions of neurons communicating via
electrophysiological pulses [92]. At the individual cell level, however, information
typically takes the form of concentration of bio-chemical species and is processed
in non-trivial and non-linear ways via cell’s enormous and complex regulatory net-
work [29, 93, 94].

Depending on the context (e.g. different environmental conditions or stages of life
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cycle), cells perform a variety of distinct functions [95]. Much effort has been de-
voted to studying the relation between functions and the regulatory mechanisms
assuming each circuit carries out one information processing task. However, re-
cent studies have shown that the whole regulatory network can change the effective
topology to incorporate multifunctionality [96].

The observed multifunctionality in living organisms have driven some attempts to
explain it in terms of multistable dynamical systems [97]. For example, Jiménez et
al. computationally survey a broad range of bi-functional circuits and show that in
many cases two qualitatively distinct functions cannot be mapped to the sub-circuits
[98]. Payne and Wagner with a computational model exhaustively study many con-
figuration of three-gene circuits and show that they can perform enormous diversity
of patterns some of which exhibit multifunctionality [99]. Perez et al. combine a
bistable motif with an oscillator and show that the circuit can have different dy-
namics depending on the control parameters and initial conditions [100]. Moreover,
many experiments have confirmed existence of multistability in regulatory networks
[101, 102]. However, fundamental questions about the multifunctionality in reg-
ulatory network remain unanswered. For example, what are the advantages and
disadvantages of using multistable circuits instead of many separate circuits in the
presence of intrinsic and extrinsic noise?

Flexible information processing and multifunctional circuits are well-established and
relatively common concepts in other contexts. In the realm of silicon-based infor-
mation processing, for example, field-programmable gate arrays, in which a layer of
memory bits sets the connection between logic gates at the circuit layer, are widely
used due to their flexibility and reusability. Similarly, in the context of neural infor-
mation processing, context-dependency is utilized to achieve function switching at
time-scales much smaller than what is needed for plastic changes [103, 104]. In biol-
ogy, however, context-dependancy is more than just a luxury to achieve fast function
switching. Here, as mentioned earlier, information has the from of copy number or
concentration of bio-molecules. Rerouting this type of signal to the desired circuit is
very challenging if possible making context-dependency or multifunctionality of the
circuits of critical. Besides, since living cells generally have several functions, being
able to perform many of them with a given subsystem is crucial. Especially, when
there are limited resources. Nevertheless, the trade-off between multifunctionality
and robustness in biology is well studied. Therefore, in this chapter we propose
a framework for studying context-dependent information processing which allows
different operations (e.g. logical functions) by the same unit on a given input.

Studying information processing in a given setup benefits from investigating prop-
erties of its building blocks, i.e. logic gates. For example, discussions about quantum
information processing are formulated around its constitutes: quantum logic gates
[105]. Similarly, in biology, many studies have focused on designing an investigating
logic gates implementable by living systems [106, 107, 108].
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While traditional logic gates make useful toy models for traditional and static infor-
mation processing devices, they are unable to constitute a multifunctional circuit.
For studying such circuits, dynamically switchable logic gates are required that can
dynamically switch between different functions when needed. This concept was first
introduced in the context of neural information processing in Ref. [109]. It should be
noted that some of the currently available biological gate designs have the capability
of multifunctional operations, e.g. by increasing the output’s threshold [110], but a
systematic study of such multifunctionality, their costs and benefits is missing. Also,
the switching in the current designs are dictated externally and directly to the out-
put by changing its inhibitor concentration. This is equivalent to altering the circuit’s
structure, and it is not a result of the underlying dynamics of the system. However,
we here introduce some examples of dynamically switchable logic gates based on
dynamics of regulatory network of cells. We then show their applicability by con-
structing a binary adder/subtractor, and discuss the advantages and disadvantages
of multifunctionality based on these examples.

3.2 Dynamics of gene regulatory networks

Before discussing the designs of dynamically switchable logic gates, let us review
the dynamics of their components. Here, we assume that our circuits are composed
of biochemical species used by cells to process information and make decisions. In
principle, these species can be gene products or any other regulatory components of
a cell. The time evolution of concentration of such molecules are typically described
by a simple and nonlinear dynamical equation with two terms corresponding to the
production and degradation processes. To be more specific, we here assume that the
dynamics of concentration x at time t is governed by

ẋ(t) = F (s(t))− γx(t), (3.1)

where γ is the degradation rate constant, s is the sum of all incoming regulatory
signals (activation, repression, and self-regulation loops) to this element, and F (s) is
the regulatory function that describes the production rate as a function of the input
regulatory signal s. Note that activation signals have positive contribution while re-
pressive ones have negative contribution to the total incoming signal s. Throughout
this study, we use a phenomenological and common sigmoidal function as

F (s) =
1

1 + e−β(s−α)
, (3.2)

in which β controls the sharpness (i.e. inverse of the fuzziness), and α controls the
location of the switch (threshold of sigmoidal function) or in other words, the value
of the input signal after which the production occurs [98]. Note that the threshold α

can also acquire negative values meaning the species will be produced even if it is
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FIGURE 3.1: The generic dynamically switchable logic gate. In this
structure, there are two inputs and one output as well as an interme-
diate layer shown in green box. Each element of the circuit is rep-
resented by an orange circle and the number written on it shows its
threshold of activation α. Normal arrows (i.e. →) show activation

(positive) signal.

inhibited with a strength smaller than this negative value.

It should be noted that we use this specific type of dynamics because of its simplicity.
However, all the discussions and results presented here are valid when assuming a
different dynamics such as Hill function, as long as the production term has switch-
like behavior. We demonstrate this generality in in App. B.1 by reproducing part of
our results using a Hill function.

3.3 Dynamically switchable logic gates

Let us begin by considering a simple and generic configuration of a dynamically
switchable logic gate, as depicted in Fig. 3.1, based to the proposed circuit in Ref.
[109] in the context of neural networks and their corresponding dynamics. In our
case, as mentioned earlier each element of the circuit shown by an orange circle
in the diagrams represents a biochemical species. Moreover, the number on each
element shows its threshold of activation α. In this configuration, an intermediate
layer (highlighted by the green box) receives the signal from two inputs (upstream
elements), and sends a signal to the output (downstream element) according to its
state variables (i.e., concentration of the elements in this layer). In our setup, positive
signal (activation) from the two components in the intermediate layer is necessary
for activating the output since its threshold α is equal to 1.5. It should also be noted
that in this diagram and the following ones, the links have unit weight unless it
stated otherwise. Negative signals (inhibition) will represented by bar-headed lines
(i.e. ⊣) as opposed to positive signals that are represented by arrows (i.e. →.)

For the sake simplicity, we consider the state of each element in the left layer (inputs
to the intermediate layer) to be constant over time, independent from each other
and acquiring either zero or one corresponding to OFF and ON state, respectively.
Therefore, we here only focus on the dynamics and fluctuations of the intermediate
layer.
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3.3.1 The ANDOR gate: structure and dynamics

The simplest case of a dynamically switchable logic gate is when the circuit can
perform “AND” and “OR” functions hence called ANDOR. According to the truth
tables of these two gates, the output should be OFF regardless of the gate type when
there is no input. Similarly, for both gate types, the output should be ON when both
inputs are ON. The only difference between the output of these two gates is when
one of the inputs is ON and the other is OFF (intermediate signal level). In this
case, an OR gate results in ON output while AND gate’s output is OFF. Therefore,
replacing the green box in Fig. 3.1 with a circuit which has bistability at intermediate
input level enables the gate to perform OR and AND functions. This can be achieved
by replacing the green box of Fig. 3.1 with a bistable motif which has two element
inhibiting each other and one of them has a self-promotion link as shown in Fig. 3.2a.
Note that here, s corresponds to the sum of the two inputs to the intermediate layer
(i.e. s ≡ Input 1 + Input 2) which can only be zero, one or two and is assumed to be
static. The concentration of the two elements in the intermediate layer x1 and x2 can
however acquire any positive real values, and their time-evolution is governed by

ẋ1 =
λ0

1 + e−β(s−x2+ω(x1−α1))
− λ1x1 (3.3)

ẋ2 =
λ0

1 + e−β(s−x1−α2)
− λ2x2. (3.4)

Here, λ1 and λ2 are the degradation rate constants for x1 and x2, respectively. λ0 is
the production rate of both genes when they receive a very strong input signal. Also,
α1 and α2 are the activation thresholds for x1 and x2 which in our case are equal to
0.5 and 0.3, respectively. Finally, ω controls the slope of the separatrix of the two
basins of attraction which equals to 1 unless otherwise is mentioned.

Fig. 3.2b shows the phase portrait of the system with no input. In this type of plots,
streamlines represent the flow in the phase space and and their color shows the
strength of the flow field. Fig. 3.2b also shows the nullclines ẋ1 = 0 (in blue) and
ẋ2 = 0 (in orange) that cross each other three times producing three fixed points.
Two of them are stable fixed points (marked by filled black circles) while the other
one is a saddle point (marked by a hollow circle). As one can see here, with s = 0
two stable fixed points shown by filled black circles are at (1, 0) and (0, 1) both corre-
sponding to one of the elements being ON and the other one being OFF. Approach-
ing either of these fixed points results in OFF output.

At high input level s = 2, as depicted in Fig. 3.2d, there’s only one crossing re-
sulting in one stable fixed point at (1, 1) which corresponds to availability of both
x1 and x2 that can together turn the output ON. Finally, at the intermediate input
level (i.e. s = 1), the dynamics shown in Fig. 3.2c has two stable fixed point. The
stable fixed point at (1, 1) again corresponds to the situation where both elements
are produced and available for the downstream genes while the other stable fixed
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FIGURE 3.2: The ANDOR gate. (A) Topology of the ANDOR gate.
Here, s ≡ Input 1 + Input 2, and the bar-headed lines (i.e. ⊣) repre-
sent repression (negative) signal. (B),(C) ,(D) The phase portrait of the
bistable motif shown in (a) with no input signal s = 0, intermediate
signal s = 1, and high input s = 2, respectively. The black filled and
hollow circles show the stable fixed points and saddle point, respec-
tively. Moreover, the shaded area in (B) shows the basin of attraction

of the left fixed point.
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point corresponds the situation in which only x2 is expressed, and it represses the
production of x1. Therefore, replacing the green box of the generic configuration in
Fig. 3.1 with this motif enables the system to perform both AND and OR functions.
Whether the ANDOR gate performs AND or OR function depends on the “context”
of the decision and is discussed in Sec. 3.3.1.

It should be noted that the ANDOR gate only requires five components while tra-
ditional static AND and OR gates three components each. Besides, an additional
controller unit causing an even higher component cost is needed to redirect the sig-
nal to the desired gate if function switching is not possible. Therefore, using the
ANDOR gate can reduce the number of necessary components, significantly. It is
also worth noting that the bistability which allows this emerges from the interaction
between the components. In other words, there is an emergent behavior of the system
that enables it to perform multiple functions without requiring as many components
compared to other systems lacking this behavior.

Logical function switching in the ANDOR gate

In the ANDOR gate, switching between the two functions is possible by simply tran-
sitioning from one basin of attraction (shaded area or the rest of the phase space in
Fig. 3.2c) to the other one. This transition can happen due to an additional and
external signal to the dynamics of x2 which might be tissue specific and originate
from the extracellular environment. For example, there can exist another produc-
tion reaction (additional term in Eq. 3.1) dedicated for the production of species 2.
By such a signal, the value of x2 can be controlled and the system can be steered ver-
tically to the desired basin of attraction. Using such a strategy, cells would be able
to make different decisions depending on the tissue which they are a part of, and
the external signal that they receive because of that. Moreover, the decision made
(i.e. the approached fixed point) can also be controlled via the initial concentration
of the components i.e. x1(t = 0) and x2(t = 0). This strategy is useful in cell differ-
entiation processes where two daughter cells acquire different fates due to unequal
partitioning of the original cell content during the division. For example, amount of
x2 could be divided unequally between two daughter cells, resulting in two distinct
initial conditions and giving rise to two distinct decisions and cell fates. This type of
asymmetric cell division leading to distinct fates is observed in the development of
retina [111]. Finally, if the system has to be initialized at the origin of the phase space
(i.e. zero concentrations), the final state can be controlled by adjustment of the slope
of the separatrix (the line which separates two basins of attraction). In this scenario,
the function (i.e. AND or OR) that the system performs can be interpreted as the
“ground state” of the system since it is the function performed naturally, without
requiring expending any additional external energy for steering the system.
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3.3.2 Beyond ANDOR: the ANDOROFF and XORANDOROFF gates

Having multifunctionality enables a system to perform more functions without re-
quiring as many components as its static counterparts, but it may also result in un-
wanted noise-induced transitions. In order to have a framework to study the trade-
off between multifunctionality and robustness, one needs to have circuits with more
functions and possibly more components. Therefore, we here go beyond the simple
ANDOR gate and design more novel dynamically switchable logic gates capable of
performing a greater number of distinct functions. This is achievable by increasing
the complexity of the intermediate layer (the green box in Fig. 3.1). For example,
we consider a motif in which both genes in the toggle switch have a self-induction
loop, as depicted in Fig. 3.3a. This circuit with no input (i.e. s = 0) has three stable
fixed points as shown in Fig. 3.3b none of which send strong enough signal to the
output to turn it ON. For the intermediate signal level (i.e. s = 1) shown in Fig. 3.3c,
there are three stable fixed points. Two of them are identical to the ones in Fig. 3.2
while the third stable fixed point corresponds to a state in which x1 dominates and
inhibits the expression of x2. Finally, when s = 2 (i.e. both inputs are ON), one of the
fixed points in which output is OFF will be preserved (as shown in Fig. 3.3d) if the
self promotion loop of x2 has a relatively high strength, for example twice as strong
as the other promoting links. The basin of attraction of this fixed point (shaded area
in Fig. 3.3d) corresponds to the set of initial conditions from which the system can-
not reach the central fixed point (neither with one input nor with two). Thus, this
area represents the situations where the system acts as an OFF switch. This means
that adding a new self loop and producing a new fixed point enables the system to
switch among three different functions: AND, OR and OFF. We therefore name this
gate “ANDOROFF”.

Although increasing the number of fixed points can in principle enable the system
to perform more functions, it decreases the size of the basin of attraction of each
fixed point. Accordingly, the reliability of each decision, defined as the robustness
of each fixed point against uncertainty in the initial conditions, decreases. One way
to overcome this limitation is by increasing the dimension of the phase-space by
increasing the number of regulatory components at the intermediate layer. This will
be discussed in detail later in Sec. 3.5.1. Our proposed “XORANDOROFF” gate
depicted in Fig. 3.4a has three genes in the intermediate layer which, with a proper
set of parameters, can have four different fixed points at ((0, 0, 0), (1, 0, 0), (0, 1, 1)
and (1, 1, 1)). However, for each input signal (s = 0, 1 or 2), only two of them occur,
and with the appropriate set of parameters, this circuit can switch between four
logical operations: XOR (exclusive OR), AND, OR and OFF. In Fig. 3.4b, consider
a system initially located at the blue region. For no input the system approaches
the fixed point at which no gene is expressed (0, 0, 0) and the output is OFF. When
one of the inputs is ON, the system, starting from this region, approaches the fixed
point at which only x2 and x3 are expressed (0, 1, 1) and therefore, the signal for
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FIGURE 3.3: The ANDOROFF gate. (A) The topology of the ANDO-
ROFF gate.(B),(C),(D) The phase portrait of the bistable motif shown
in (A) with s = 0, s = 1 and s = 2, respectively. The black filled and
hollow circles show the stable fixed points and saddle point, respec-
tively. Moreover, the shaded area in (D) shows the basin of attraction

of the lower fixed point.
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FIGURE 3.4: The XORANDOROFF gate. (A) A multistable circuit
which can dynamically switch among XOR, AND, OR and OFF log-
ical functions. (B) The regions of phase space corresponding to each
function. The colors yellow, red, gray, and blue correspond to the

function AND, OR, OFF, and XOR, respectively.

output is strong enough to turn it ON. However, when both inputs are ON all three
genes (x1, x2 and x3) will be expressed and expression of x1 inhibits the expression
of output. Therefore, if the system is initially located in the blue region it performs
XOR function. Similarly, locating the system in other regions enables it to act as
other gates and to perform the corresponding functions.

3.4 Switchable binary adder/subtractor: an example

After introducing our novel dynamically switchable logic gates, let us demonstrate
the applicability and power of this framework for reducing the number of required
elements. We design a circuit that is capable of performing binary addition as well
as binary subtraction [112]. The traditional static circuits for either of these functions
are depicted in Fig. 3.5a and 3.5b.

As one can see in Fig. 3.5a, an adder circuit requires XOR and AND gates while
a binary subtractor shown in Fig. 3.5b needs XOR, NOT and AND. Being able to
perform these two functions (i.e. addition and subtraction) in a traditional static
framework, requires having these circuits in the system and rerouting signal (e.g.
using a controller circuits) to the desired one when needed. However, by utilizing
context-dependency and reusing of the components, one can perform these compu-
tations using only three logic gates: AND, XOR and NOT1+AND. In the previous
section, we already demonstrated that the XORANDOROFF gate having three nodes
in the intermediate layer is able to perform AND, XOR and more. By breaking the
symmetry of the inputs to the intermediate layer and adjusting the other parame-
ters, one can modify this circuit into the one shown in Fig. 3.5c. This circuit is able to
perform all three logic functions required for binary addition and subtraction. This
circuit is also able to perform the OR operation, act as an OFF switch or just simply
reflect input 2 as its output. The basins of attraction of these functions are shown
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FIGURE 3.5: An Example: Adder/subtractor circuits. Traditional bi-
nary (a) adder and (b) subtractor circuits based on static components.
(c) Dynamically switchable binary adder/subtractor circuit. (d) Initi-
ating the system from each region shown here, enables it to perform
a distinct function. Starting from green results in OR function, from
red results in XOR, from blue performs NOT1+AND, from yellow
does AND and if starting from grey the output is always OFF. Finally,

starting from the purple area, the output simply reflects Input2.

in Fig. 3.5d. Similar to the ANDOR gate discussed in Sec. 3.3.1, switching among
different functions in this circuit can be achieved by various means.

Using the proposed binary adder/subtractor reduces the number of required ele-
ments and it is therefore more efficient in this sense. However, it may sacrifice the
speed of computation since there’s only one output from the system. This means
that only either Sum or Carry (in binary adder) can be computed at a time and in
the subtractor circuit, either Difference or Borrow. In order to circumvent this draw-
back, one may alter the circuit structure and parameters to get both outputs simulta-
neously, but this is beyond the scope of our study here, since we focus on maximum
multifunctionality and reusibility of the elements.

3.5 Robustness of dynamically switchable logic gates

As mentioned earlier, multifunctionality of information processing circuits enables
them to perform more functions than their static analogs. Unfortunately, this also
makes them susceptible to errors as unwanted switching to undesired functions may
occur due to various noise types. In this section, we discuss how different uncertain-
ties can affect reliability of functions in dynamically switchable logic gates and how
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FIGURE 3.6: The average resilience length of general multifunc-
tional systems. (A) vs. number of functions n at various dimensions

d, and (B) vs. dimension d with different number of functions n.

one can quantitatively characterize these definitions of reliability. We start by con-
sidering uncertainty in the initial conditions of the system. Then, we discuss uncer-
tainties in the dynamics parameters, and finally, using the ANDOR gate we discuss
robustness against intrinsic noise due to low copy number of chemical species and
random timing of their reactions.

3.5.1 Robustness against uncertainty in initial conditions

Let us consider a d-dimensional system (i.e. d components in the intermediate layer
of of Fig. 3.1) that performs n distinct functions. Also, assume that the relevant phase
space is a hypercube with sides of length L resulting in an overall hypervolume of
Ld. The system is supposed to be initialized at the basin of attraction of the desired
fixed point, but it may miss that due to uncertainties in initial conditions. This can,
for instance, be the result of temporal fluctuations in the upstream processes or of
spatial fluctuations during cell division. In any case, a larger basin of attraction
results in higher resilience. In order to have a measure to compare systems with
different dimensions, one can define the average resilience length as d-th root of the
average size of basins of attraction i.e. l̄R ≡ L

d√n
. Therefore, for a given number of

functions n, higher dimension d results in higher resilience meaning that the system
can better withstand uncertainties in initial conditions.

In Fig. 3.6a, one can see the average resilience length l̄R vs. the number of functions
n which decreases faster at lower dimensions d. This indicates that in order to have
higher resilience against uncertainties in initial conditions, higher dimension is re-
quired, especially when a high number of functions is required. Additionally, Fig.
3.6b depicts the average resilience length l̄R vs. dimension of the intermediate layer
d with different number of functions showing how decreasing the dimension results
in decrease in the resilience length particularly for greater number of functions n.

We furthermore calculate the size of the basins of attraction, numerically, for all func-
tions of the ANDOR, ANDOROFF and XORANDOROFF gates. We employ a simple
Monte Carlo method to calculate the size of the parts of the phase space from which
our proposed gates perform each function. For the two-dimensional cases (ANDOR
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FIGURE 3.7: The resilience length of each function vs. dynamics pa-
rameters of the three proposed dynamically switchable logic gates.
(A–D) The resilience length of the ANDOR gate functions vs.β, ω, λ1,
and λ2 respectively. (C–G) The resilience length of the ANDOROFF
gate’s functions vs. β, λ1, and λ2, respectively.(H) The resilience

length of the XORANDOROFF gate’s functions vs. β.
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FIGURE 3.8: The phase diagram of the ANDOR gate described by
Eqs. 1 and 2 in (a) sβ– λ1/λ0 and (b)λ1/λ0– λ2/λ0 planes. Blue color
shows the region in which system meets all requirements while red
area shows where it does not have bistability. When the bistability
exists, yellow shows where the sum of signals to the output does not
meet its threshold, and gray shows where the output turns ON with-
out any input (i.e. S = 0). Note that in both phase plots the parameter
range for which the network operates as an ANDOR gate is signifi-

cant.

and ANDOROFF gates) we draw 106 random samples and for the XORANDOFF
gate 2 × 107 from the phase space with uniform distribution for every parameter
value and input levels. We then run the dynamics to find the area (for 2d cases)
and the volume (for the 3d case) from which each function is performed. Finally, we
calculate the resilience length lR that is presented in Fig. 3.7.

3.5.2 Robustness against uncertainty in dynamics parameters

Cell-to-cell variability in the parameters of information processing circuits can also
result in errors. Also, fluctuations in the upstream processes controlling the produc-
tion of the components can have similar effects. Here, like the previous section, one
can consider the parameter space of the system and find the sub-volume in which
the system performs all the functions properly. Then it is possible to again simply
define a resilience length. However, it should be noted that since different parame-
ters of the system have different dimensions, one needs to construct the phase plots
of the system with respect to the non-dimensionalized set of parameters.

Exploring the phase diagrams of a system is also important for understanding its
potential applications and practicality. Fig. 3.8a shows the different regions in the
dimensionless parameter space of the sβ and λ1

λ0
plane when λ2

λ0
is set to 1. The blue

area shows the parameter combinations which satisfy all conditions required for
performing AND and OR functions. The yellow part shows the region in which
the system at the right fixed point does not send enough signal to the output (i.e.
x1 + x2 < 1.5) making the system unable to perform the AND function. Finally,
the red region is where the bistability does not occur. Similarly, we also determine
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the right combination of λ1
λ0

and λ2
λ0

, as shown in Fig. 3.8b for sβ = 20. Here, each
color to the same situation as as in Fig. 3.8a,and the gray color shows the region
where degradation for both x1 and x2 is so low that even without any inputs, their
steady-state concentrations meet the output threshold turning it ON. As one can see
in these figures, there is a robust range of parameters for which this circuit behaves
as a context-dependent logic gate switching between AND and OR.

3.5.3 Robustness against intrinsic noise

Low copy number of species and consequently the random timing of reactions cause
intrinsic noise in the dynamics of cells’ regulatory network, in general. In multi-
functional circuits, these temporal fluctuations allow for undesired noise-induced
transitions that reduce the reliability of the decisions. In order to study these tran-
sitions, one can employ the theory of large deviations constructed by Freidlin and
Wentzell [17] described as following. Consider a stochastic system whose dynamics
is governed by a Langevin equation as

Ẋ(t) = b (X(t)) + εσ (X(t)) Ẇ(t), (3.5)

where X(t) is the n-dimensional state vector of the system at time t, b (X) is the
drift term (i.e. deterministic part of the dynamics). The second term on the right
hand side is the diffusion term which is composed of W an m-dimensional uncorre-
lated Wiener process, σ (X(t)) is the standard deviation of multiplicative noise and
ε which is a small parameters determines the noise strength. For a given path φ in
phase space that starts at t = 0 and stops at t = T, the Freidlin-Wentzell action can
be written as:

S(φ) =
1
2

∫︂ T

0
∑
i,j

aij (φt)
(︂

φ̇i
t − bi (φt)

)︂ (︂
φ̇

j
t − bj (φt)

)︂
dt, (3.6)

in which i and j go through dimensions of the system. Also, aij are elements of
A(x) ≡ (σ(x)σ∗(x))−1. Then, the probability of the path φ to be taken by the system
due to noise is proportional to exp

(︁
−S(φ)/ε2)︁. Note that when ε is small enough,

all paths from a given point to another will have negligible probabilities compared to
the one which minimizes the action in S(φ). This path, called the Minimum Action
Path (MAP), determines the trajectory in the phase space with the highest proba-
bility for a given transition at the given time period T. We employ this theory for
studying characterize noise-induced transitions in our circuits.

Due to the random timing of chemical reactions in biological systems, the concen-
trations of species follow stochastic dynamics. In the case of well-mixed systems, as
discussed earlier, one can use the chemical Langevin equation [55] to fully describe
the dynamics when fluctuations are sufficiently small (i.e. the reaction volume is
large). For the ANDOR gate whose deterministic dynamics is described by Eq. 3.3
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FIGURE 3.9: The MAP for the ANDOR gate. The phase portrait of
the ANDOR gate shown in Fig. 3.2 along with the MAP which con-

nects the central fixed point to the left one.

and 3.4, the chemical Langevin equation is as following:

ẋ1 = F (x1, x2)− λ1x1 + Ω−1/2
(︃√︂

F (x1, x2)Ẇ11 +
√︁

λ1x1Ẇ12

)︃
(3.7)

ẋ2 = G (x1, x2)− λ2x2 + Ω−1/2
(︃√︂

G (x1, x2)Ẇ21 +
√︁

λ2x2Ẇ22

)︃
. (3.8)

Here, F (x1, x2) and G (x1, x2) are the production terms in Eq. 3.3 and 3.4. Moreover,
Ω is the reaction volume and Ws are Wiener processes each of which arises from
the corresponding reaction. Since there is no reaction coupling fluctuations of two
species x1 and x2 (i.e. their stochastic dynamics do not share any noise term Ẇ) all
the non diagonal terms of the matrix A vanish and it simply reads

A(x1, x2) =

[︄
1

λ1x1+F(x1,x2)
0

0 1
λ2x2+G(x1,x2)

]︄
. (3.9)

Therefore, the Freidlin-Wentzell action for the ANDOR gate simply becomes

S(φ) =
1
2

∫︂ T2

T1

(φ̇1 − [−λ1φ1 + F (φ1, φ2)])
2

λ1φ1 + F (φ1, φ2)
dt

+
1
2

∫︂ T2

T1

(φ̇2 − [−λ2φ2 + G (φ1, φ2)])
2

λ2φ2 + G (φ1, φ2)
dt

(3.10)

in which φ1, φ2 are the coordinates of the path φ at any time t ∈ [T1, T2].

Minimizing the action in Eq. 3.10 over the function space containing all paths which
connect the point X0 at time t = 0 to XT at time t = T provides the Minimum
Action Path, and then, the minimum action value can be used for calculation of the
rate of that transition. The MAP which connects the right fixed point at (1, 1) to
the left one at (0, 1) for a typical set of parameters is shown in Fig. 3.9. The color
on the path shows the gradient of the action at any given point. This gradient can
be interpreted as the effective force exerted by the noise for causing the movement
along the MAP. As one can see in this figure, the MAP goes directly towards the



3.5. Robustness of dynamically switchable logic gates 47

0 10 20 30 40 50 60 70
0

0.5

1

1.5

g
ra

d
ie

n
t 

o
f 

a
c
ti
o

n

0

0.02

0.04

0.06

a
c
ti
o

n

gradient of action (effective force) 
action (effective energy)

0 10 20 30 40 50 60 70
t

0

0.02

0.04

0.06

v
e

lo
c
it
y
 a

lo
n

g
 t

h
e

 M
A

P

(A)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

g
ra

d
ie

n
t 

o
f 

a
c
ti
o

n

0

0.02

0.04

0.06

a
c
ti
o

n

gradient of action (effective force) 
action (effective energy)

0 0.2 0.4 0.8 1 1.20.6

arc length

0

0.02

0.04

0.06

v
e

lo
c
it
y
 a

lo
n

g
 t

h
e

 M
A

P

(B)

FIGURE 3.10: Action properties along the MAP for the ANDOR gate
shown in Fig. 3.9. (A) and (B) shows the action, its gradient and

velocity vs. time and arc length along the MAP, respectively.

separatrix in the opposite direction of stream lines. Then, it follows the streamlines
getting close to the separatrix until it approaches the saddle point. Finally, it enters
the other basin of attraction and follows those streamlines to the left fixed point.
The observation that the MAP for the ANDOR gate crosses the separatrix close to
the saddle point is consistent with the findings of other studies in different contexts
[16]. It should be noted that when the system undergoes a transition from one fixed
point to another, it spends most of the time at the fixed points and a small fraction
of total time will be spent on the actual transition. This is evident from Fig. 3.10a
which shows the action, its gradient and velocity of the transition along the MAP
shown in Fig. 3.9. Therefore, in order to get an acceptable accuracy, one needs to
use an adaptive minimum action path method in which the discretization of time
is adaptively adjusted based on the speed (see App. B.2). The performance of the
adaptive meshing is demonstrated by plotting the these quantities vs. the arc length
along the MAP in Fig. 3.10b.

The rate of noise-induced transitions from the desired fixed point to another is a
proxy for the reliability of the decisions. Therefore, we investigate this reliability
(i.e. resilience against intrinsic noise) of the system as the parameters change. In
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order to find the transition probability from one stable fixed point to another, one
may intuitively expect to do this procedure for the transitions from every point in
one basin of attraction to the fixed point of the other basin. However, it is shown
that for small noise strength ε, all trajectories which leave a basin of attraction due to
the fluctuations will visit a small neighborhood around the stable fixed point before
leaving the basin [17]. Therefore the transition from one fixed point to the other rep-
resents the dominant transition trajectory and suffices for determining the resilience
against intrinsic noise. We thus use this measure for studying the reliability of the
decisions of the ANDOR gate.

Fig. 3.11a shows the action vs. sharpness of transition sβ for the transitions from the
left fixed point to the right one (in black circles) and vice versa (in red triangles). As
one can see in here, as β increases, the action for both transitions increase, but for
the L→R transition increases faster which results in a critical value at sβ∗ = 14.75.
The dependence of the action S (φ) on the slope of the sepratrix ω, degradation
rate λ1 of x1, and that of x2 are shown in 3.11b, 3.11c, and 3.11d, respectively. The
critical values at which the action for L→R transition equals R→L are ω∗ = 0.87,
λ∗1/λ0 = 0.97 and λ∗2/λ0 = 1.01. Note that in all these figures, unless a parameter
is variable, we fix them as following: sβ = 20 and λ1/λ0 = λ2/λ0 = ω = 1. Note
that although higher values of S mean higher reliability, any difference between the
actions for two transitions results in a biased error. Therefore, one can set these
parameters to their critical values in order to equalize the transition probability and
minimize the bias. Rapid switching would be achievable in this regime. On the other
hand, parameters consistent with one strongly stabilized basin at the expense of the
other are attainable.

3.6 Conclusion and outlook

In this chapter we designed three dynamically switchable logic gates in which mulista-
bility emerges from interaction between components, and their dynamics mimic that
of gene regulatory system or any signaling pathways of living cells with switch-
like production rate. These gates can perform two, three and four distinct functions
based on the basin of attraction in which the system resides in or is steered to. We in-
troduced three noise types and defined robustness against every one of them. For the
uncertainty in initial condition of the system we showed a trade-off between mul-
tifunctionality and robustness which can be overcome by increasing the dimension
of the system (e.g. by adding more regulatory components). For the uncertainties
in dynamics parameters (extrinsic noise), we demonstrated how to construct phase
diagram for the systems with respect to non-dimensionalized parameters. Finally,
using the theory of large deviations, we characterized noise-induced transitions be-
tween the possible logical functions and determined the reliability of the decisions.
We therefore demonstrated resilience of the proposed gates against three types of
uncertainty: uncertainty in initial conditions, in dynamics parameters, and in the
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FIGURE 3.11: The minimum action for noise-induced transition vs.
(A) the dimensionless sharpness of expression sβ, (B) the slope of sep-
aratrix ω, (C) the degradation rate λ1/λ0, and (D) degradation rate
λ2/λ0. Black circles show the action for the transition from the right
fixed point the left one and the red triangles show the action for the
opposite transitions. For each dependency a critical value at which
the cost of transiting L→R and R→L is balanced can be attained and is
indicated by dashed line and have the following values: sβ∗ = 14.75,

ω∗ = 0.87, λ∗1/λ0 = 0.97 and λ∗2/λ0 = 1.01.

dynamics. Finally, to demonstrate generality and applicability of our framework,
we provided an example in which a more complex circuit could carry out more com-
plex computations dynamically switchable, otherwise requiring multiple logic gates
with many more components.

To construct high-order information processing circuits, the existence of memory
is a necessary feature. In the engineering applications, sequential logic circuits are
widely used in which the output depends not only on the current input but also on
the history. In the context of biological information processing, memory can be at-
tained by addition of a toggle switch to an existing combinational (i.e. memoryless)
logic gate [113]. In our setup, however, the bistability that results in switchability
plays an additional role by capturing a memory of the last action without needing
the addition of an extra toggle.

We believe that our work here is only the first steps towards a comprehensive un-
derstanding of how network topology, dynamics, and information processing can
combine in flexible and non-trivial ways in the context of gene regulatory networks,
signaling networks, and (bio-)chemical computations. Many extensions and gener-
alizations are to be explored. Here, we have assumed that these biochemical systems
are in a well-mixed reaction volume, but spatial localisation, compartmentalisation
and even fluctuations are more and more appreciated as being important players
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in cell biology [114, 115, 116]. These phenomena in principle have significant ef-
fects on the operation of these switchable information processing elements. Another
important direction of extension of framework is considering how families of more
complex calculations constructed from the ANDOR gate and others can be coupled
to adaptive pressures on evolutionary timescales. This can provide a framework
analog to deep learning but in the context of bio-chemical computations. Finally, of
course, in vitro implementation of these gates is an important first step towards any
real-world application of our framework.
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Chapter 4

Fractal fluctuations as a tool for
characterizing patterns

Development of tissues during embryonic stage typically involves cell division, cell
differentiation and material secretion. How biology coordinates these processes to
make tissues robustly despite the temporal and spatial fluctuations present at var-
ious scales is a crucial and interesting problem. The complexity of this problem
further increases when proliferation, differentiation and material deposition occur
simultaneously. Development of flat bones such as skull caps is one of such cases
that are not well-studied. During these processes, non-local and non-linear feed-
backs are employed to overcome noise and maintain important tissue properties.
Therefore, studying such processes requires advanced non-local methods to charac-
terize the patterns as well as generative models to explore the mechanisms respon-
sible for the observed features. In this chapter, we employ Multi-Fractal Detrended
Analysis (MFDFA) to robustly characterize ossification patterns in developing skull
caps of mouse embryos based on their singularity spectra. We then produce vari-
ous surrogate data sets to unveil the origin of observed multifractality. We next use
Wavelet Transform Modulus Maxima Maxima Method (WTMMMM) to investigate
the spatial distribution of singularities in the data. Finally, using a simple generative
model we explore the mechanisms involved in ossification process that are needed
to produce multifractal features. All the experimental data used in this chapter are
courtesy of our collaborators in Tabler lab at MPI-CBG.

4.1 Introduction

Multicellular organisms are composed of many cells of various types, and the devel-
opment of such organisms involves many processes such as cell proliferation, cell
differentiation, migration and deposition of non-living organic and inorganic ma-
terials. To better control the tissue development, biology has chosen to take these
actions in a sequential manner, most of the time. Occasionally, however, they oc-
cur simultaneously rendering a robust development nearly impossible without co-
ordination across time- and length-scales especially in the presence of temporal and
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spatial noise [117, 118]. A typical hallmark of such an orchestration is complex spa-
tial patterns whose fluctuations (spatial inhomogeneities) carry crucial information
about the underlying mechanisms [119, 120, 121]. The first step of studying these
processes is characterizing the patterns which requires advanced cross-scale meth-
ods.

The concept of statistical self-similarity is proven useful for quantifying patterns formed
by complex systems composed of many elements interacting through multiple scales
[122]. A rough definition of self-similarity is having the same statistical behavior at
various scales. This has been applied to a broad class of pattern formation systems
whose details are wildly different such as diffusion limited aggregates, the Laplace
equation, etc. They were initially assumed to be monofractal meaning that all statis-
tics of their structures can be described with a single exponent [123, 124, 125]. How-
ever, later studies showed that many structures in nature, including the aforemen-
tioned ones, require an infinite hierarchy of exponents to be fully described, i.e. they
are multifractal [126, 127, 128]. Understanding this multifractal complexity could
unveil deeper links between structure and function across scales.

Bone is a prime example of complex pattern formation in biology as the nanoscale
structure of extracellular matrix laid down by the cells determines the coarse-grained
material properties of these skeletal elements [129]. Here, mineralisation is the key
mechanism linking processes across many spatial scales [130]. To be more specific,
carbonate-substituted hydroxyapatite crystallises on collagen fibrils and generates
the bone’s ultimate form and mechanical properties [131, 132, 133]. As mineraliza-
tion depends on molecular interactions and geometric constraints, mineral density
and morphology are great proxies for studying bone formation in wild type and mu-
tant animals [134]. However, most studies of these patterns use mono-fractal tools
relying solely on linear correlations (e.g. Fractal Dimension). Additionally, they do
not take into account the development of these patterns during which the shape and
form evolves. Bones of the skull vault indeed undergo anisotropic expansion of a
mineralised tissue from the lateral side of the forebrain toward its apex (i.e. midline)
[135]. Instead of a continuous layer, the mineral forms a fine lace-like meshwork
that thickens and fills over the course of development. This gradual and hierarchical
construction of bone plates is a robust evolutionary innovation that allows the skull
vault to accommodate continued expansion of an underlying brain [136, 137, 138].
However, this also results in extra complexity which is why despite the importance
of skull morphogenesis, how mineral pattern emerges remains largely unexplored.

In this chapter, we demonstrate the utility of two multi-fractal analyses, namely
the Multi-Fractal Detrended Fluctuation Analysis (MF-DFA) and the Wavelet Trans-
form Modulus Maxima Maxima Method (WTMMMM) to describe mineralization
patterns of the developing mouse skull vault. More specifically, we study the combi-
nation of parietal and frontal bones of each hemisphere as shown in Fig. 4.1a which
depicts the schematic of this tissue, its relative location, and development between
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FIGURE 4.1: Schematic of the ossification data. (A) Schematic of
bone tissues used in our study. (B) Typical images of ossified tissue at
embryonic days 14.5,15.5, 16.5, 17.5 and 18.5. (C) and (D) magnified

pieces of images from E14.5 and E17.5, respectively.

Embryonic day 14.5 (E14.5) and E18.5. Our data-set comprises images of Alizarin
red-stained mineral within flat-mounted embryonic skull caps. Therefore, higher
intensity in our data corresponds to higher density of minerals. We analyze the im-
ages acquired from different hemispheres separately as two independent samples of
our ensemble. Fig. 4.1b, shows one typical representative from every stage included
in our study. As one can see here, as the embryos develop, the ossified part of their
skull grows. Also the voids (i.e. low intensity parts) get filled in. Using MF-DFA, we
find that deposited mineral indeed has multifractal features i.e. a single exponent
is not sufficient to fully describe the statistical self-similarity. This mulitfractality
can in turn be used to characterize emergent patterns. We can also investigate its
origin by employing data surrogation techniques. With a simple generative model
we are able to reproduce ossification patterns observed during normal mouse devel-
opment and we predict that collagen density is a key regulator of mineral pattern.
Finally, we experimentally confirm this hypothesis by demonstrating the sufficiency
of nanoscale collagen organisation to generate multifractal mineral patterns during
development.

4.2 Multi-Fractal Detrended Fluctuation Analysis in higher
dimensions

In past decades, there have been many attempts to develop tools for characteriz-
ing multifractality of stochastic time-series which can then be generalized to study
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multifractal patterns in higher dimensions (e.g. 2D images). The simplest standard
method for studying multifractal features is based on partition function [125, 139]
and is not applicable to signals affected by trends or non-normalizable signals. Ad-
ditionally, in this formalism, the negative order of moments are dominated by the
voids (empty parts of the image). These problems can be solved by some variation
of the box-counting method in which the signal is covered by equally sized and po-
tentially overlapping boxes. This is then followed by studying the scaling of the
statistics of the filled boxes [126]. The Wavelet Transform Modulus Maxima Method
(WTMMM) can be considered an extension of box counting methods in which a
proper wavelet (instead of simple boxes) is chosen depending on the properties of
the system. Then detection of singularities is done by tracking the local maxima
of the wavelet transform modulus throughout different scales. In this method, the
chains of local maxima can also be used for constructing the partition function and
studying multifractal properties [140]. However, for small data sets, it is shown that
the measured multifractality by WTMMM deviates more from actual values, com-
pared to a more recent method called Multi-Fractal Detrended Fluctuation Analysis
(MF-DFA) [141]. This method was introduced by Kantelhardt et al. [142] in the con-
text of 1D time-series, and later, was generalized by Gu and Zhou [143] for higher-
order applications.

One-dimensional MF-DFA comprises a few simple steps which can be easily gener-
alized to higher-dimensional data-sets such as conventional images or three-dimensional
tomographic scans. We here focus on two-dimensional MF-DFA whose simple steps
are as following:

• Step 1. Divide the surface under study (i.e. the intensity of the image) given by
a two-dimensional array X(i, j) with size N × M into Ns × Ms disjoint boxes
of size s × s (see Fig. 4.2a). Here, Ns =

[︁N
s

]︁
and MS =

[︁M
s

]︁
. Each segment

can be represented by Xv,w(i, j) = X ((v− 1) s + i, (w− 1) s + j) where i, j =

1, 2, . . . , s, v = 1, 2, . . . , Ns and w = 1, 2, . . . , Ms.

• Step 2. Calculate the cumulative sum Yv,w for each segment Xv,w via the fol-
lowing relation:

Yv,w (i, j) =
i

∑
h=1

j

∑
l=1

Xv,w(h, l), (4.1)

where i, j = 1, 2, . . . , s. In fig. 4.2a, one can see the cumulative sum shown by
red points.

• Step 3. Detrend the cumulative sum surface in each segment Yv,w by first fitting
a bivariate polynomial function Ỹv,w (i, j) and then obtaining the residuals

ϵv,w (i, j) = Yv,w (i, j)− Ỹv,w (i, j) . (4.2)
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Then, calculate the “detrended fluctuation” at segment v, w as

F2
v,w (s) =

1
s2

s

∑
i=1

s

∑
j=1

ϵv,w (i, j)2 . (4.3)

In fig. 4.2a, the polynomial fit to the cumulative sum is shown by the solid
plane, the residuals are shown by dots above.

The procedure of choosing the order of polynomial fitted in eq. 4.2 will be
discussed in App. C.1

• Step 4. Calculate the q-th order overall fluctuation function

F (q, s) =

[︄
1

Ns Ms

NS

∑
v=1

MS

∑
w=1

[︁
F2

v,w (s)
]︁ q

2

]︄ 1
q

. (4.4)

Fig. 4.2b, depicts F (q, s) vs. s for a few values of q. As one can see here, in the
selected range of s, F (q, s) vs. s shows power-law behavior whose exponent
depend on q.

• Step 5. Determine the scaling behavior of the fluctuation function F(q, S) by
varying s for each value of q reading

F (q, s) ∼ sh(q), (4.5)

where h (q) is generalized Hurst exponent. This can be obtained by simply
fitting a line to the log− log plot of F (q, s) vs. s for each value of q i.e.

h(q) =
log (F (q, s))

log(s)
. (4.6)

The generalized Hurst exponent for a typical ossification pattern at E15.5 is
shown in fig. 4.2c.

It is worth noting that the traditional DFA method can be realized by performing
steps 1–3 exactly as mentioned above and the remaining steps with q = 2. This way,
only the Hurst exponent H = h(q = 2) can be determined. Furthermore, it should
be noted that MF-DFA is capable of extracting multifractal characteristics of the data
subject to many forms of trends and artifacts except for periodic trends which appear
in our data. However, removing these types of trends is straightforward and can be
done with the help of Fourier analysis (see App. C.2 for the details). Apart from this
simple step, there is no pre-processing required for our imaging data. Analyzing
these images, we observe that all of them show some level of multifractality that can
be used for characterizing the patterns. Before discussing the multifractal measures,
we investigate the origin of multifractality in our data.
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FIGURE 4.2: The basic steps of MFDFA. (A) the first three steps of
MFDFA. (B) The fluctuation function of the data F(q, s) vs. scale s for

a few q. (C) The generalized Hurst exponent H(q) vs. q.
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FIGURE 4.3: Investigating the origin of multifractality in our data
from (A) E15.5 and (B)E16.5

4.2.1 Origin of multi-fractality in data

A data set can exhibit multifractality for various reasons including: I) non-Gaussian
(e.g. fat-tailed) distributions, II) existence of linear or III) nonlinear long-range corre-
lations. One can investigate the contribution of each of these properties to the over-
all multifractality using surrogates which change one or more properties while pre-
serving the others. Here, we first use Ranked-Wise (RW) Gaussian surrogate [144],
which preserves all linear and non-linear correlations but changes the distribution of
the intensities to Gaussian. We also use random phased surrogate to preserve linear
correlations, remove nonlinear correlations, and change the distribution to Gaussian
with the help of the central limit theorem. Finally, we shuffle the pixels in the image
to preserve the distributions while removing all correlations.

We analyzed two images from 15.5 and 16.5 stages, and as one can see in Fig. 4.3, the
closest curve to the h(q) of the original data is the RW-Gaussian surrogate. The one
which differs the most is unsurprisingly the shuffled one, which only preserves the
distribution. One can accordingly conclude that the non-Gaussian distribution has
the least contribution, and the long-range correlations contribute most to the overall
multifractality. Moreover, one can consider a random-phased surrogate and argue
that the linear correlations set the offset of the generalized Hurst exponent h(q) but
do not contribute significantly to the multi-fractality. We therefore established that
the observed multifractality originates primarily from long-range non-linear correla-
tions in the data.

4.3 Singularity spectrum and multi-fractal measures of the
data

Singularity points at which a signal’s value or its derivatives are discontinuous carry
crucial information. Various statistics of singularities are widely used for data char-
acterization. For example, the abundance and variety of singularities of continuous
neural time series can be used to infer the neuron’s activity [145]. Moreover, sin-
gularity exponents can be used to segment water bodies in optical and synthetic
aperture radar (SAR) satellite images [146]. Additionally, in WTMMM [140], instead
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of storing and analyzing information over an entire data set, information at singular-
ities alone suffices to construct the partition function and determine many properties
of the data.

The generalized Hurst exponent h (q) can be transformed into the singularity spec-
trum f (α) using the following Legendre transformation:

α = h(q) + qh′(q) (4.7)

f (α) = q2h′(q) + D, (4.8)

where D is the space dimension and equals to two in our case. Here, f (α) is the
Hausdorff dimension of the set of all data points with the given singularity exponent
α. In order to develop an intuition about the singularities, it is useful to consider a
simple one dimensional singularity. A singularity exponent of a one-dimensional
function X(t) at point t0 is the largest exponent α such that there exists a polynomial
Pn(t) of order n < α that satisfies the Hölder condition

|X(t)− Pn(t)| = O (|t− t0|α) (4.9)

for any point t at a small neighborhood of t0 [147]. It should be noted that having
a larger value of α at a singularity means that the function has higher-order deriva-
tives and therefore is more regular. In other words, the singularity exponent at a
point determines how regular the function at that point is [140]. Since h(q) is always
monotonically decreasing, f (α) is less than or equal to D. The closer f (α) gets to D,
the more uniformly the singularity points with strength α are distributed throughout
the space.

The singularity spectrum f (α) of a typical image from stage E15.5 is shown in Fig.
4.4a. This spectrum shows a wide range of singularity exponents α with vary-
ing Hausdorff dimension that again indicates multifractality. However, in a mono-
fractal data set, there is only one type of singularities with a given exponent α that
depends on the type of the fractal, and these singularities are distributed uniformly
over space (i.e. with f (α) = D). Analyzing all images from multiple developmental
stages between 14.5 and 18.5 showed that different measures have two main types
of time evolution: (I) constant distribution width, but changing the average in an
oscillatory way, and (II) a general narrowing of an initially wide distribution. The
former behavior is shown by the min(α) vs. embryonic day in Fig. 4.4b. This mea-
sure characterizes how irregular the most irregular singularities of the patterns are
(as discussed in the next section). The second behavior is shown in 4.4c by the width
of the spectrum (indicating the variety of singularities in the patterns) vs. embry-
onic day (age). This behavior indicates that some aspects of the ossification pattern
start with higher randomness (or subject-to-subject variability) but are modified and
reach to a more robust point over the course of development. In App. C.3, more ex-
amples of these two behaviors are presented along with their implications. Note that
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FIGURE 4.4: The multifractal measures of the ossification data. (A)
A typical singularity spectrum for an image from 15.5D and the few
measures of multifractality. (B) The minimum of singularity spec-
trum min(α) that corresponds to the most irregular singularities in
the ossification patterns. This measure among some others (as dis-
cussed in App. C.3) shows an oscillatory behavior. (C) The width
of singularity (representing the variety of singularities in the pattern)
vs. age. This measure similar to a few others (as discussed in App.
C.3) shows a decrease in the variance over time. Different colors in
(A) and (B) represent subjects from different litters, and as one can

see here, there’s little intra-litter variability.

in Figs. 4.4b and 4.4c, each color at a given stage corresponds to a litter of embryos
and it is easy to convince oneself that the inter-litter variability is not more than the
intra-litter variability.

4.4 Singularities and WTMMMM

Having established that singularities in general carry essential information about the
data and how different aspects of their spectrum have potentials for characterization
of the data, we now study the spatial distribution of singularities within the images.
Let us first sketch the basic ideas of singularity detection on a simple image contain-
ing a single isolated singularity as well as a Gaussian local maximum as shown in
Fig. 4.5a. In this figure, the height or equivalently, the intensity f (X) of the point
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X = (x, y) is governed by

f (X) = e−(X−X1)
2/(2×642) + |X− X0|0.3, (4.10)

where X0 is the singularity point with exponent 0.3 and X1 is the maximum point
(center) of the isotropic Gaussian with width of 64 pixel while the entire surface is
composed of 1024× 1024 pixels.

The simplest way of detecting a singularity is to define a measureM over the data
at a given scale s, change the scale and study the power-law behavior of the mea-
sure at every point. Then the exponents of non-singular points have a trivial value
determined by the characteristic behavior of the measure while at singularity points
the exponents obtain nontrivial values carrying crucial information about the singu-
larity. For demonstration, we use a sum measure defined asMs(X) = ∑

(i,j)∈Ω
g(i, j),

where g(i, j) is the grey scale intensity at pixel (i, j) and Ω is a box with size s around
the point X. Fig. 4.5b shows the sum measure over entire the image in 4.5a (except
for the points close to the boundary) at three scales S ∈ {8, 10, 13}. In this figure,
three specific points are marked: the red triangles show the singularity at X0, the
blue circles show the center of the Gaussian maximum X1, and finally the purple
squares show a random point within the space. Fig. 4.5c shows the sum measure
of those marked points over a wider range of scales s in log-log scale. As one can
see here, all three points show a power-law over this range but the exponent at the
singularity is 2.3 while at the other points is 2 which is due to the scaling behavior
of the sum measure. This simple procedure has many limitations. For example, in
practice it requires saving many copies of the data and tracking the measure values
at all points which is computationally expensive. Besides it does not provide the pre-
cise location of the singularities as all points around it will have nontrivial scaling
behavior if their distance is smaller than the scales used. However, this method still
captures the basic idea of singularity detection that is shared with more advanced
methods such as WTMMMM.

4.4.1 The Wavelet Transform Modulus Maxima Maxima Method

The Wavelet Transform Modulus Maxima Maxima Method (WTMMMM) is based
on tracking the gradient maxima of the wavelet transform moduli over a range of
small scales. A detailed discussion of this and the necessary steps is provided in
Ref. [140]. We here only discuss this method briefly. The first step of this procedure
is choosing a proper wavelet ϕ depending on the characteristics of the singularities
(e.g. isotropy or the biggest singularity exponent) in the data f . The wavelet used
in this method works as a lens for detection of singularities which is blind to singu-
larities that have an exponent larger than the order of the wavelet nϕ. The order of a
wavelet ϕ is defined as the number of vanishing moments of its derivative ψ whose
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FIGURE 4.5: A basic singularity tracking procedure. (A) a simple
image which contains an isolated singularity as well as a Gaussian
local maximum described by Eq. 4.10. (B) The sum measure at three
different scales. (C) The sum measure of marked points in (B) over
a wider range of s in logarithmic scale. The black and orange lines
here show two power-laws with exponents equal to 2 (typical scal-
ing behavior of the measure) and 2.3 (corresponding to singularities)

respectively.
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components are defined as

ψ1(x) =
∂

∂x
ϕ (x) (4.11)

ψ2(x) =
∂

∂y
ϕ (x) . (4.12)

In this study, we determine the range of singularities via MFDFA method. Therefore,
we can choose the wavelet accordingly. Next, we perform the wavelet transform as
following:

Tϕ[ f ](b, s) = s−2

(︄
∂

∂bx

[︁∫︁
d2xϕ

(︁
a−1(x− b)

)︁
f (x)

]︁
∂

∂by

[︁∫︁
d2xϕ

(︁
a−1(x− b)

)︁
f (x)

]︁ )︄ , (4.13)

where s is the scale, x is the position vector, and b is its conjugate. We use the modu-
lus of this transformMϕ[ f ] as a measure to find the singularities in a fashion similar
to the aforementioned example. Fig. 4.6a show the components of the transform and
its modulus as well as the argument for the simple example of Fig. 4.5a. Here, we
used Gaussian wavelet which is a first-order wavelet ideal for detecting isotropic
singularities with exponents smaller than 1.

After performing the transform, one can find the local maxima of modulus along
the argument in order to determine the location of highest intensity changes, similar
to the Canny’s multi-scale edge detection [148]. This enables us to construct the
maxima lines at each scale which is shown in Fig. 4.6b for the case of the isolated
singularity of Fig. 4.5a. In this case, at each scale, there are two maxima lines: one
is a closed loop around the singular point and the other one which is an open curve
around the Gaussian maximum.

The next step is finding the local maxima along the maxima lines. In Fig. 4.6b, these
are shown by red circles. Then one needs to chain these maxima points together
throughout different scales to construct the maxima chains and the skeleton of the
data which is the collection of all maxima chains. The blue lines in Fig. 4.6b show
these chains for our simple example in which two of the lines point towards the sin-
gularity point while the other one is pointing towards the steepest side of Gaussian
local maximum (the side opposite to the singularity). The last step of singularity de-
tection via WTMMMM is determining whether a chain corresponds to a singularity
or not. To do this, one can simply investigate the power-law exponent of the mod-
ulus along the maxima chains. The exponent of the power-law is dictated by the
order of the wavelet if the chain corresponds to a point with more derivatives than
the order of the wavelet. Obviously, this is the case when the point that the chain is
pointing toward is a local maximum with infinite derivatives, but it is also the case
when the order of the wavelet is less than the exponent of the singularity. Therefore,
these two cases are not differentiatable via this method if the wavelet is not chosen
properly. Nevertheless, if the point is a singularity with an exponent smaller than
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FIGURE 4.6: Simple singularity tracking procedure via WTM-
MMM. (A) The components ( Tϕ

1 [ f ] and Tϕ
2 [ f ]) and modulusMϕ[ f ]

and argument Aϕ[ f ] of the wavelet transform of the simple example
in Fig. 4.5a using Gaussian wavelet with s = 20 (B) The Wavelet mod-
ulus maxima lines, modulus maxima maxima points (red circles) and
maxima chains through different scales. (C) The power law behavior
of the modulus Mϕ[ f ] along the maxima chains.The black and or-
ange lines here show two power-laws with exponents equal to 1 (typ-
ical scaling behavior of the Gaussian wavelet) and 0.3 (corresponding

to singularity exponent) respectively.
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FIGURE 4.7: The result of WTMMMM on ossification data. (A) and
(B) The detected singularities and their exponents along with a typi-

cal data from E15.5 and E17.5, respectively.

the wavelet order, the exponent of the power-law is equal to that of the singularity.
This is demonstrated by using our simple example in Fig. 4.6c where the the blue
circles show the modulus along the chains that are pointing to the singularity point
and follow a power-law with exponent 0.3. The red triangles however correspond to
the chain of the Gaussian maxima that show a power-law with exponent 1 which is
unsurprisingly equal to the order of the Gaussian wavelet. It should be noted that as
a noisy data gets smoothed by wavelets with larger scale s, more information about
the smaller scale fluctuations is lost. Therefore, at smaller scales there exist more
chains that vanish as one goes to the larger scales.

So far we have discussed the singularity detection aspect of WTMMMM. However,
this method with a few extra steps can be used to characterize multifractal features
of images as discussed in App. C.4. Since this method is less accurate than MFDFA
[141], we only use MFDFA for determining multifractal features and WTMMM for
detecting singularities. In Fig. 4.7a and Fig. 4.7b, one can see a typical ossifica-
tion pattern from E15.5 and E17.5 along with their singularities detected by a Morlet
wavelet (a third-order wavelet). As one can see here, there are singularities with
exponents ranging from −13 and 2. By comparing these two figures. One can con-
vince oneself that as the ossified tissue develops, more singularities with negative
exponents appear. This method is more insightful when combined with our gener-
ative model presented and discussed in the next section as it can unveil the relation
between singularities and components of ossification process.
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4.5 A toy model for generating ossification patterns

We investigated the origin of the observed multifractality in the data using surro-
gates in sec. 4.2.1, but implications of these features on the biological mechanisms
involved in ossification remain yet to be uncovered. In this section, we therefore con-
struct a simple model to generate patterns similar to those produced by ossification
and analyze the results with MFDFA to find the necessary components to produce
multifractal structures. We then apply WTMMMM to unveil the relation between
features in the model and singularities.

We here propose a random coarse-grained model to produce multifractal patterns
observed in real data. Note that our objective here is not to reproduce the entire
ossification patterns with their complicated boundary since it is a result interactions
with the surrounding tissues and vasculature. We solely focus on recapitulating a
small section of the ossified tissue such as the magnified pieces in Fig. 4.1d which
still shows multifractality when analyzed separately. Therefore, in our model, the
tissue is composed of 900× 1500 pixels each of which correspond to a region with
area of approximately 1µm2. In each iteration, the intensity of a given pixel at (i, j)
can increase by one with the probability

P(i, j) = Pgrad(i, j)×
(︁

Pneigh(i, j) + Pcoll(i, j)
)︁

(4.14)

which incorporates three basic mechanisms known to be involved in mineral de-
position [149, 150]: Phosphate metabolism which acts as an effective morphogen
gradient, a positive feedback from neighboring pixels, and a field of collagen fibres
that act as ossification nucleators. To be more specific, Pgrad corresponds to the effect
of the phosphate metabolism, which is assumed to effectively act as a morphogen
gradient. This term is proportional to the concentration of phosphate in the form of
a one-dimensional exponential gradient exp (− i/a). It is multiplied into the other
terms so that there is no ossification where this function vanishes. Pneigh takes into
account the fact that once a pixel’s intensity is increased, its neighboring pixels are
more likely to ossify and increase their intensity in the next iterations. In order to
implement this, we use the convolution of the ossification intensity X(i, j) with a ker-
nel with a given width β (i.e. ∑v ∑u K(i− u, j− v, β)X(i, j)). Here, we use box kernel
for faster computations. Finally, Pcoll is the contribution of collagen fibers such that
presence of a fiber in a neighborhood increases probability of ossification. For this
term, we again use convolution of a collagen field with a box kernel with width γ.
Substituting these into Eq. 4.14, one gets the explicit form of the probability as

P(i, j) ∝ exp
(︃
− i

a

)︃(︄
∑
v

∑
u

K(i− u, j− v, β)X(i, j)

+ b ∑
v

∑
u

K′(i− u, j− v, γ)X(i, j)

)︄
. (4.15)
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FIGURE 4.8: Typical example of our ossification simulations. (A) the
collagen fiber template used containing 1400 fibers with length 20 dis-
tributed with uniform distribution across the field. (B) The result of
our generative model for the fiber template shown in (A). (C) A small
segment of ossification pattern from E15.5 with the same dimensions
as (B). (D) Simulation results similar to (B) but with 100 pixels long

fibers.
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Fig. 4.8a shows a typical fiber field which contains 1400 fibers with length of 20
pixels randomly distributed in space. Running our simulation on this fiber template
results in an image similar the one depicted in Fig. 4.8b if the following biologically
relevant parameters are used: a = 30000, β = 20, γ = 12, and b = 7.5. Comparing
this to a typical ossification pattern from E15.5 shown in Fig. 4.8c, one can argue that
longer fibers are needed. In Fig. 4.8d, on can see a simulation result with very long
(100 pixel long) fibers. Although, this image is more similar to the experimental
data it does not exhibit any multifractality (i.e. the generalized Hurst exponent is
constant). In principle, it might be possible to recapitulate both multifractality and
appearance of the data by incorporating long-range interactions of fibers resulting in
long persistence length. However, this type of interactions and alignment of fibers
adds extra complexity which defies the purpose of our toy model. We therefore
ignore the visual differences and focus on the multifractal features of our toy model.

We first investigate the effect of the collagen fiber density (length and number) on
the overall multifractailty as measured by max(α) −min(α) which is the width of
singularity spectrum. Fig. 4.9a summarizes the result of our simulations in which
number of collage fibers vary from 1000 to 3400 and their lengths range from 16 to 34.
Each value of the heatmap is the average over 30 realizations. As one can see here,
increasing the number of fibers independent of their length results in suppression of
multifractality. This is due to the fact that with very high number of fibers, the im-
age fills with fibers and no voids (areas with low ossification) form. We also change
the length scale of the phosphate gradient a to study its effect on the multifractality.
Fig. 4.9b shows the width of singularity spectrum for four different values of a. As
a increases, the phosphate gradient becomes shallower resulting in a more homoge-
neous ossification pattern with smaller multifractality. We also investigated if any
effect arises from preferential orientation of collagen fibers. We assumed that fibers
either acquire a predefined orientation (a multiple of π/4) with a given probability
(decreasing exponentially from left to right) or a random orientation with uniform
distribution over [0, π). By varying the scale of the exponential over more than an
order of magnitude, we did not observe any significant change in the multifractality.

Having studied how different components of the generative model affect multifrac-
tality, one can use WTMMMM to study the relation of singularities (whose expo-
nents and their spectrum are used for characterizing multifractality) with fibers
(whose density and number is the most important parameter affecting multifrac-
tailty). Fig. 4.8a depicts a typical fiber field used in a simulation along with the
singularities detected by WTMMMM whose exponents are shown by the color of
the circles. It appears that singularities are mostly located next to fibers. This can be
tested by comparing the singularities to the same number of random points drawn
from uniform spatial distribution shown by red circles. Fig. 4.10b shows the his-
tograms of distance of points to their nearest fiber. As one can see here, the his-
togram for singularities has a peak around 9 pixels while for the random points ,
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FIGURE 4.9: The role of components of our generative model on the
overall multifractality max(α) −min(α). (A) Effect of fiber density
(length and number). (B) The effect of phosphate gradient scale a.
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FIGURE 4.10: WTMMMM on simulation results. (A) shows the col-
lagen fibers along with the resultant singularities (in color coded cir-
cles) and random points with uniform distribution (in red circles). (B)
The histogram of distances of the singularities (in blue) and random

points (in red) to their the nearest fiber.

the histogram shows an exponential like decrease indicating a Poisson distribution.
Therefore, one can conclude that the distance of singularities from fibers are indeed
not random and they are produced as a result of fibers being nucleators of the ossi-
fication process. It should be noted that smallest scale used for WTMMMM here is
12 pixels which contributes to the separation between fibers and singularities.

Studying our simple generative model suggests that collagen fibers as nucleation
centers are the most crucial components of ossification in terms of multifractality.
In order to explore this implication experimentally, we studied ossification process
of skull bone in Beta Aminoproprionitrile (BAPN) treated embryos. This drug is
an irreversible inhibitor of the collagen crosslinker highly enriched in bone [151].
Therefore, this treatment in principle disrupts collagen fiber formation. Analyzing
skull caps of BAPN treated embryos at E17.5, we found that the width of singularity
spectrum f (α) indeed reduces significantly as shown in Fig. 4.11a. However, this
perturbation does not affect min(α) corresponding to the most irregular singularities
of the data as shown in Fig. 4.11b.
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FIGURE 4.11: Multifractal features of BAPN treated ossification pat-
terns. (A) The width of singularity spectrum of BAPN treated data
at E17.5 (shown by black triangles) compared to the wild type sub-
jects (shown by hollow circles). (B) Comparison of min(α) of BAPN
treated ossification patterns (shown by black triangles) and wild type

subjects (shown by hollow circles).

4.6 Conclusion and outlook

In this chapter, we demonstrated the utility of fluctuation statistics for studying bi-
ological mechanisms. We employed multi-scale analyses, in particular multifractal
methods, to study ossification process in flat bone formation which involves mech-
anisms from various scales. We first showed that multifractal measures such as the
width of singularity spectrum provides a robust measure for characterizing the pat-
terns produced in ossification of skull caps. We then investigated the origin of multi-
fractality in the data and showed that the observed multifractality is mostly emerg-
ing from long-range non-linear correlations. We furthermore developed a simple
generative model capable of producing multifractal patterns based on mechanisms
involved in ossification process. Using MFDFA and WTMMMM, we studied the
relation between singularities and the components of ossification showing that col-
lagen fibers as nucleation centers of ossification cause singular points and the den-
sity of fibers in our model is a crucial parameter for producing multifractality. This
was tested by perturbations of ossification process in the embryo which resulted in
suppressed multifractality.

While we have only tested the practicality of multifractal analyses in one specific
tissue, we believe that such techniques are extremely valuable for addressing a more
broad range of biological questions. For example, mesenchymal tissues fill space
in an irregular manner. Therefore, applying tools developed for studying regular
epithelial sheets on mesenchyme is not as practical. More advanced tools such as
multifractal approaches are required to better study their formation and effects of
different perturbation on mesenchymal tissues.

It should also be noted that all the characterization approaches used here are based
on the spatial fluctuations of the data. This emphasizes the fact that fluctuations are
not merely random, but they carry crucial information about the system. Therefore,
filtering out these fluctuations causes loss of information.
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Chapter 5

Conclusion

Living systems are subject to various types of noise originating from different sources.
Even their tools for coping with these noises are inherently stochastic. Nevertheless,
they manage to overcome all these uncertainties and flourish in a wide range of
conditions. Therefore, studying how this robustness is achieved is an imperative
aspect of biology. Also, this knowledge can be potentially helpful for diagnosis and
treatment purposes. Additionally, it can guide engineers when designing delicate
systems functioning under noisy conditions with inherent stochasticity.

Living organisms in order to survive, need to collect information about their sur-
roundings and react to changes. Much effort has been devoted to understanding lim-
its and mechanisms of sensing external signal via cells individually or collectively.
However, a rigorous framework incorporating temporal and spatial fluctuations in-
cluding intrinsic noise of reactions, cell-to-cell variability and neighborhood fluctu-
ations was unfortunately missing. Therefore, we constructed a stochastic model of
collective signal sensing based on continuous-time Markov chain formalism that en-
ables us to study the quality of estimation in populations with interactions beyond
simple mean-field.

Our results presented in chapter 2 show that in identical populations (without cell-
to-cell variability), communication between cells, independent of interaction topol-
ogy, solely reduces the time required for reaching steady state MSE while leaving
the final values intact. This is relevant in scenarios where a consensus decision is
needed in a limited time, but in the case of inhomogeneous cells, communication
also enhances steady-state estimation quality. Our framework is applicable to any
arbitrary interaction topology which we utilized to reveal the effect of interaction at
the individual cell and population level. At the individual cell level, the MSE of a
given cell reduces as the number of neighbors or strength of coupling increases, but
to our surprise, it does not depend on the communication between the neighbors.
As an element in large network, cell’s quality of estimation depends on its closeness
centrality. At the population level, we showed that the average MSE of estimations
decreases as average shortest paths between cells decreases.
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Generalizations of our model are possible by minor modifications in order to make
it more realistic. For example, the interaction between cells is assumed to be in-
stantaneous while in reality, the transport of molecules takes time. Therefore, in-
corporating a time delay between disappearing a sensor molecule from a cell and
its appearance in the receiving one is needed. Also, in our framework all cells are
exposed to the same exact environmental signal while graded signal or its spatial
fluctuation defy this assumption. Finally, in many real-world cases, only a fraction
of cells are exposed to the given external signals and the rest of the population’s
estimation is solely through the communication.

Applicability of our framework goes beyond just studying collective estimation of
biochemical cues. Any physical property of the environment that can be represented
by an internal concentration of chemical species can be studied by our framework.
For example, cells in an epithelial sheet attached to a curved surface can sense the
curvature via activity of macro-molecules with intrinsic bent such as BAR molecules.

It is easy to convince oneself that our results on collective sensing have deeper im-
plications even outside the realm of small and non-intelligent cells. For instance,
noisy communication between identical autonomous agents is not expected to en-
hance their perception of reality. Similarly, in a scientific community if all members
have the exact same school of thought, nonideal communications may not reduce
the errors and just speed up the process of reaching a consensus. On the other hand,
in order to gain a better grasp of reality in a diverse community, people with more
central positions have a better advantage. Finally, in order to reduce the errors in our
scientific community, establishing links and reducing the average distance is indeed
profitable.

Having collected the necessary information about their environment, cells need to
process it along with their internal states via their regulatory machinery to perform
crucial decisions. Given the enormous number of decisions and functions needed
during cells’ life cycle, multifunctional motifs are common in their regulatory net-
work. Robust decisions are especially challenging here because of various types of
noise that the regulatory network is subject to.

In chapter 3, we introduced a few examples of dynamically switchable logic gates
that are capable of performing multiple functions depending on their context. They
serve as a toy model to study the trade-off between multifunctionality and robust-
ness against three types of uncertainty: cell-to-cell variability, uncertainty in initial
conditions and intrinsic noise. We defined robustness against each of these noise
types and showed how one can calculate them for a given system. We furthermore
demonstrated the applicability of our setup by designing a simple circuit capable of
performing binary addition and subtraction.

Our proposed multifunctional circuits are crucial for designing high-order comput-
ing devices based on (bio-)chemical reactions since in such systems, directing the
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signal to different sub-units is particularly difficult if possible. Similar ideas exist
and is utilized in the realm of silicon based information processing. Here, in so
called field-programmable arrays, connections in the processing layer is manipulated
by the control layer allowing for design flexibility and device reusability. In our
circuits, however, the multifunctionality emerges from interactions between compo-
nents and enables them to perform more number of functions without requiring as
many components as the traditional static counterpart. Additionally, in our design
there’s no need for extra components dedicated to control the connections as switch-
ing between functions is possible via initial conditions.

There are several follow-up questions worth mentioning here. For instance, how
can high-order and complex calculations be performed by combining the ANDOR
gate and its cousins? Is it possible to “train” such networks to perform a given com-
putation similar to artificial neural networks but by adjusting the initial conditions
instead of adjusting strength of the connection? Furthermore, is there a way of con-
trolling the initial conditions and consequently the performed functions via dynamic
inputs? For example, if the connections between the input layer and the intermedi-
ate one is asymmetric, is it possible to steer the system towards the desired basin
of attraction by a time-dependent input signal? Additionally, it is imperative to ex-
plore actual biological systems and regulatory networks to see when robustness is
preferred over multifunctionality and how their trade-off compares to the idealized
theoretical cases.

Finally, after processing the necessary information, a community of cells may take
action in a collective manner and possibly by combining multiple processes across
different scales. This type of activities results in complicated and non-trivial patterns
requiring cross-scale analyses. A prime example of such processes is development
of flat bones like skull caps. In chapter 4, we employed two-dimensional multifrac-
tal analyses to characterize and study spatial fluctuations in ossification patterns of
developing skull caps of mouse embryos. We demonstrated the utility of these anal-
yses by robustly characterizing the experimental data using multifractal measures
such as width of the singularity spectra. We studied surrogates of the data to show
that the observed multifractality originates from long-range non-linear correlations
in the data. We also introduced a simple generative model capable of producing
multifractal patterns with the right set of parameters. We furthermore introduced a
generative model to reproduce multifractality of ossification pattern based on sim-
ple mechanisms. We then analyzed the simulation results via MFDFA and showed
that the density of the collagen fiber patterns in the tissue are crucial to organize the
ossification dynamics in order to produce the observed multifractality. We found
further support for these predictions by analyzing the patterns in which the proper
production and organization of collagen in the developing mouse embryo was per-
turbed. We showed that in this case multifractality is significantly reduced. Using
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WTMMMM, an advanced singularity tracking method, we revealed that singulari-
ties co-localize with the collagen fibers.

There are many follow-up directions to pursue from where we ended this project.
One crucial extension to our generative model is including interactions between os-
sification nucleators (i.e. collagen fibers). The alignment of these fibers can improve
the appearance of simulation results without suppressing multifractality. Another
important extension is to consider the thickness of the bone. Ossification and pres-
ence of fibers at different depths could result in a richer dynamics with potentially
more control on producing multifractal features. Furthermore, the relation between
ossification and underlying collagen fiber can be investigated via analyzing the elec-
tron microscopy images.

Note that multifractality is a property of fluctuations in the data and our study here
shows how insightful they are for studying biological pattern formation. This in-
formation will be lost if crude filtering or some smoothing process is done to the
raw data. Hopefully, this would increase appreciation of fluctuations in biology and
related fields.

To sum up, this thesis was a step towards understanding the limitations arising from
stochasticity, and appreciating the information that can be acquired from investigat-
ing fluctuations in the context of biology. We here studied robustness of biological
processes despite various types of stochasticity present at all scales and stages from
sensing to functioning. Biological systems achieve robustness by following a general
scheme composed of three steps: sensing the environment, processing information
and taking the action. More specifically, we considered three problems of signif-
icant importance in biology: collective sensing of dynamic environment, flexible
information processing via internal machinery of cells, and stochastic pattern for-
mation during tissue growth. We combined techniques from various fields such as
stochastic processes, dynamical systems, and network science to tackle the problem
of robustness in biology: from sensing to functioning.
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Appendix A

More on collective sensing of
environmental signals

A.1 Sensing dynamics in interacting cell communities

As mentioned in the main text, the dynamics of the environmental signal Z(t) and its
estimators M(i)(t) can be described by a set of stochastic differential equations which
have independent unit Poisson processes counting the occurrences of the reactions,
i.e.

Z(t) =Z(0) + RZ
b (ρt)⏞ ⏟⏟ ⏞

birth reaction

− RZ
d

(︃
φ
∫︂ t

0
Z(s)ds

)︃
⏞ ⏟⏟ ⏞

death reaction

(A.1)

M(i)(t) =M(i)(0) + R(i)
s

(︃
γcM

∫︂ t

0
Z(s)ds

)︃
⏞ ⏟⏟ ⏞

sensor reaction in cell i

+ R(i)
b

(︂
γ(ρ + ∆ρ(i))t

)︂
− R(i)

d

(︃
(φ + cM)

∫︂ t

0
M(i)(s)ds

)︃
⏞ ⏟⏟ ⏞

estimator reactions in cell i

+
N

∑
j=1

[︄
Ri←j

t

(︃
αij

∫︂ t

0
M(j)(s)ds

)︃
⏞ ⏟⏟ ⏞

transport to cell i

− Rj←i
t

(︃
αij

∫︂ t

0
M(i)(s)ds

)︃
⏞ ⏟⏟ ⏞

transport from cell i

]︄
. (A.2)

Here, RZ
b , RZ

d , R(i)
b , R(i)

d , R(i)
s and Rj←i

t are the independent unit Poisson processes
counting the occurrences of the respective reaction. A single isolated estimator will
therefore follow a stochastic differential equation:

dM(i)(t) = dR(i)
b (t)− dR(i)

d (t) + dR(i)
s (t), (A.3)

with R(i)
b (t), R(i)

d (t) and R(i)
s (t) as the reaction counters of the birth, death and sens-

ing reactions, respectively. Note that these can each be decomposed into a pre-
dictable part and a zero-mean process such that R(i)

b (t) = γρ(i)t+ R̃(i)
b (t) and R(i)

d (t) =

(cM + φ)
∫︁ t

0 M(i)(s)ds+ R̃(i)
d . However, in the presence of cell-to-cell communication,
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one needs to take into account the molecule exchange. Therefore, we define the net
flux of the transport reactions as

dRij
t (t) =dRi←j(t)− dRj←i(t)

=
(︁
αij M(j)(t)− αji M(i)(t)

)︁
dt + dR̃(ij)

t (t), (A.4)

with dR̃(ij)
t (t) = dR̃i←j

(t) + dR̃j←i
(t). By adding this transport reaction to the birth-

death reactions of estimator M(i) Eq. A.3, it’s dynamics would be

dM(i)(t) = dR(i)
b (t)− dR(i)

d (t) + ∑
j

dR(ij)
t (t) + dR(i)

s (t) (A.5)

where i, j = 1, 2, ..., N are indices and N is the size of the system (i.e. the number of
estimators). Note that in practice, these interactions are symmetric and αij = αji.

Now, by substituting values of R(ij)
t , R(i)

b and R(i)
d into Eq. A.5, the evolution of the

estimator in cell i becomes

dM(i)(t) =
[︁
γ(ρ + ∆ρ(i))− (φ + cM)M(i)(t) + γcMZ(t)

+ ∑
j

(︁
αij M(j)(t)− αji M(i)(t)

)︁]︁
dt

+ dR̃(i)
b (t)− dR̃(i)

d (t) + dR̃(i)
s (t) + ∑

j
dR̃(ij)

t (t), (A.6)

which is the stochastic differential equation describing the dynamics of estimator
i. The third term in this equation stems from the interactions with the neighboring
cells and it is commonly known as a consensus term [152]. Taking the expectation of
Eq. A.6 gives:

d
dt

E[M(i)(t)] =γρ− (φ + cM)E[M(i)(t)] + γcME[Z(t)]

+ ∑
j

(︁
αijE[M(j)(t)]− αjiE[M(i)(t)]

)︁
. (A.7)

Note that the time-evolution of estimators are coupled to each other and also to
the expectation of the environmental signal E[Z(t)], whose time evolution similarly
satisfies:

d
dt

E[Z(t)] = ρ− φE[Z(t)]. (A.8)

A.2 Sensing accuracy in interacting cell communities

To assess the bias and accuracy of each cells estimator, we define the Mean Error
(ME) E [ei(t)] = E

[︁
Z(t)− M(i)(t)/γ

]︁
and the Mean Squared Error (MSE) E

[︁
e2

i (t)
]︁
=

E
[︂(︁

Z(t)− M(i)(t)/γ
)︁2
]︂

, respectively. It is also easy to show (by subtracting Eq. A.8
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from A.7) that the expected sensing error of cell i (i.e. E[ei(t)] = E[Z(t)− 1
γ M(i)(t)])

is

d
dt

E[ei(t)] =− (φ + cM)E[ei(t)] + ∑
j

(︁
αijE[ej(t)]− αjiE[ei(t)]

)︁
. (A.9)

Since the stationary state of the mean error is always zero, the Mean Squared Error
(MSE) represents a better measure for quality of the estimation. In order to calculate
this, we employ the Itô formula for counting processes, which can be formulated for
our special case as following: assume a counting process X(t) has the form dX(t) =
adN(t), where dN(t) is a counting process. Any function of this process F(X(t))
will then evolve in time as

dF(X(t)) = [F(X(t) + a)− F(X(t))]dN(t). (A.10)

For convenience, we separate the transport reaction term in Eq. A.4 as dR(i)
t =

dR(i)
in − dR(i)

out in which dR(i)
in = ∑j dRi←j(t) and dR(i)

out = ∑j dRj←i(t). By definition
we have

dei(t) =dZ(t)− 1
γ

dM(i)(t)

=dZb(t)− dZd(t)

− 1
γ

(︁
dR(i)

b (t)− dR(i)
d (t) + dR(i)

in (t)− dR(i)
out(t) + dR(i)

s (t)
)︁

(A.11)

using Eq. A.10 (the Itô formula) yields

de2
i (t) =

(︁
1 + 2ei(t)

)︁
dZb(t) +

(︁
1− 2ei(t)

)︁
dZd(t)

+
(︁ 1

γ2 +
2
γ

ei(t)
)︁[︁

dR(i)
d (t) + dR(i)

out(t)
]︁

+
(︁ 1

γ2 −
2
γ

ei(t)
)︁[︁

dR(i)
b (t) + dR(i)

in (t) + dR(i)
s
]︁

(A.12)

Substituting the values of each term and taking the average over realizations, gives
the following differential equation for the MSE of the cell i:

d
dt

E[e2
i (t)] =ρ(1 +

1
γ
)− 2(φ + cM + si)E[e2

i (t)]

− 1
γ
(φ + cM + si)E[ei(t)]− 2E[∆ρiei(t)]

+ ∑
j

αij
(︁
2E[ei(t)ej(t)]−E[ej(t)]

)︁
+

1
γ

(︁
φ(1 + γ) + 2cM + 2si

)︁
E[Z(t)] (A.13)

where si = ∑N
j=1 αij is degree of cell i and E[∆ρiei(t)] is the covariance of cell’s un-

certainty and its error of estimation. Since the evolution of MSE depends on the
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covariance of the errors (i.e. E[ei(t)ej(t)]), we also must find its time-evolution to
obtain a closed set of equations. To this end, we start with the chain rule, i.e.,

d
(︁
ei(t)ej(t)

)︁
= ei(t)dej(t) + dei(t)ej(t) + dei(t)dej(t). (A.14)

The third term in Eq. A.14 is always zero unless dei and dej jump simultaneously.
This happens only if: (1) an estimation molecule is exchanged between cell i and
j, or (2) a birth or death reaction occurs for the Z species. Using this assumption,
substitution of Eq. A.11 into Eq. A.14, and finally taking the expectation, results in

d
dt

E[ei(t)ej(t)] =ρ− (2φ + 2cM + si + sj)E[ei(t)ej(t)]

+ ∑
k

(︁
αjkE[ei(t)ek(t)] + αikE[ej(t)ek(t)]

)︁
+ αij

(︁
E[ej(t)] + E[ei(t)]

)︁
+
(︁

φ− 2αij

γ

)︁
E[Z(t)]

−E[∆ρiej(t)]−E[∆ρiej(t)] (A.15)

Similarly, one can easily find the time evolution of E[∆ρiei(t)] and E[∆ρiej(t)]

d
dt

E[∆ρiei(t)] = −(φ + cM + si)E[∆ρiei(t)] + ∑
j

αijE[∆ρiej(t)]−E[∆ρ2
i ] (A.16)

d
dt

E[∆ρiej(t)] = −(φ + cM + sj)E[∆ρiej(t)] + ∑
k

αjkE[∆ρiek(t)] (A.17)

Solving Eqs. A.13, A.15,A.16 and A.17 jointly with Eq. A.9 gives the time evolu-
tion of the MSE (and all other variables) for any given initial conditions and set of
parameters.

A.2.1 Sensing accuracy in star-shaped network

In this section, we study another simple yet informative case in which only a hub
is connected to the rest of nodes and there are no other connections. Such networks
which are known as star-shaped networks, represent one type of mean-field config-
uration. In this case, the stationary state version of equations A.13 and A.15 will
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be

0 =− (φ + cM + nα)E[e2
c ] + nαE[ecem]−E[∆ρcec]

+
1
γ
(φ (1 + γ) + cM + nα)

ρ

φ
(A.18)

0 =− (φ + cM + α)E[e2
m] + αE[ecem]−E[∆ρmem]

+
1
γ
(φ (1 + γ) + cM + α)

ρ

φ
(A.19)

0 =2ρ− (2φ + 2cM + (n + 1)α)E[ecem] + αE[e2
c ] + (n− 1)αE[emem′ ]

+ αE[e2
m]−

2α

γ

ρ

φ
−E[∆ρcem]−E[∆ρmec] (A.20)

0 =− (φ + cM + α)E[emem′ ] + αE[emec] + ρ−E[∆ρmem′ ] (A.21)

where index c indicates the central cell (hub) while m and m′ indicate two distinctive
marginal cells (on the periphery) which are only connected to the central one. In the
case of Poissonian estimators, ∆ρi will be zero for every i and the set of equations
will be closed. With this assumption, solving these equations gives us the same MSE
independent of coupling similar to the case of fully connected or any other topology.
However, in a more realistic case, ∆ρi will not be zero due to the presence of super-
Poissonian statistics. In this case one should also consider [∆ρiej] from Eqs. A.17 and
A.16 which obey the following equations for different indices

0 =− (φ + cM + nα)E[∆ρcec] + nαE[∆ρcem]−E[∆ρ2] (A.22)

0 =− (φ + cM + α)E[∆ρcem] + αE[∆ρcem] (A.23)

0 =− (φ + cM + nα)E[∆ρmec] + (n− 1)αE[∆ρmem′ ] + αE[∆ρmem] (A.24)

0 =− (φ + cM + α)E[∆ρmem] + αE[∆ρmec]−E[∆ρ2] (A.25)

0 =− (φ + cM + α)E[∆ρmem′ ] + αE[∆ρmec]. (A.26)
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Appendix B

More on context-dependent
information processing

B.1 The ANDOR gate with Hill dynamics

As mentioned in Chap. 3, we a specific type of dynamics for our examples which is
shown in Eq. 3.1. However, one can in principle use any other type of regulatory
function (e.g. the Hill function) as long as it features a switch-like sigmodal behavior
and dynamically switching should still be achievable. In order to demonstrate this,
we also constructed another version of the ANDOR gate based on the Hill function
regulatory dynamics instead of the one shown in Eqs. 3.3 and 3.4:

ẋ1 =
(x1/0.3)n + (s/0.8)n

1 + (x1/0.3)n + (s/0.8)n + (x2/0.5)n − x1, (B.1)

ẋ2 =
(s/0.35)n

1 + (s/0.35)n + (x1/0.5)n − x2. (B.2)

Assuming this dynamics for the intermediate layer of the ANDOR gate with n = 15
results in a phase portrait that is qualitativey similar to that of Eqs. 3.3 and 3.4. In
Fig. B.1, one can see these two plots side by side for the intermediate input signal
level s = 1.

B.2 Adaptive Minimum Action Path

As discussed in 3.5.3, one can study noise-induced transitions by the theory of large
deviations constructed by Freidlin and Wentzell [17]. Recall that For a given stochas-
tic system whose stochastic time evolution is given by a Langevin equation as fol-
lowing:

Ẋ(t) = b (X(t)) + εσ (X(t)) Ẇ(t), (B.3)

where X(t) is the n-dimensional state vector at time t, b (X) is the drift term and the
diffusion. This diffusion term is composed of an m-dimensional Wiener process W
and σ (X(t)) which is the standard deviation noise and ε which is a small parameters
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FIGURE B.1: Different underlying regulatory dynamics display the
same bistability. The phase portraits of the bistable motif in Fig. 3.2
(A) with the phenomenological dynamics and in (B) with Hill func-
tion dynamics. In both of these plots, the solid black circles show the
fixed points, the hollow ones show the saddle points and the shaded

area show the basins of attraction of the left fixed points.

determining the noise strength. In this system, the probability of a path φ in the
phase space to be taken by the system due to the intrinsic noise is proportional to
exp

(︁
−S(φ)/ε2)︁, where the action S(φ) is defined as:

S(φ) =
1
2

∫︂ T2

T1
∑
i,j

aij (φt)
(︂

φ̇i
t − bi (φt)

)︂ (︂
φ̇

j
t − bj (φt)

)︂
dt. (B.4)

Here, i and j count dimensions of the system and aij are elements of
A(x) ≡ (σ(X)σ∗(X))−1.

When ε is small, all paths connecting a given pair of points have negligible prob-
abilities compared to the one which minimizes the action in Eq. 3.6. This path is
called the Minimum Action Path (MAP) which determines the path with the highest
probability for a given transition at the given time interval.

In order to numerically find the MAP for a given system, one needs to discretize the
system. Suppose that the path φ takes place over the time interval [T1, T2]. One can
simply divide this interval into k sub-intervals as:

T1 = t0 < t1 < · · · < tk = T2. (B.5)

Then, the path φ can be approximated by the set of its values Φn at these time points
tn for n = 0, . . . , k. Also, the action S(φ) can be approximated by

S(Φ0, . . . , Φk) =
1
2

k

∑
n=1

∆tn ∑
i,j

aij (Φn−1/2)

(︄
2Φi

n−1/2

∆tn
− bi (Φn−1/2)

)︄
(︄

2
Φj

n−1/2

∆tn
− bj (Φn−1/2)

)︄
, (B.6)

in which Φn−1/2 = (Φn + Φn−1)/2 and ∆tn = tn − tn−1. If the time steps ∆tn are
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assumed to be constant and independent of the rate of change in systems position
in the phase space φ̇, then the approximation of the path will not have acceptable
accuracy in most practical cases. This is due to the fact that when a path is connecting
two metastable points, the majority of the time is spent at the end points. Therefore,
most of the time points are dedicated to the semi-static part of the path. This problem
can be circumvented via adaptive discretization of time. In other words, ∆tn should
change depending on φ̇ so that it can be resolved with a good accuracy. An adaptive
Minimum action path was introduced in Ref. [153] to address this problem. In the
following, we briefly discuss this method that we used in our study to find the MAP
to the ANDOR gate.

The key concept of obtaining the adaptive MAP is using a monitor function accord-
ing to which the re-meshing process of the time is performed. A good candidate
would be the rate of change φ̇. However, this value is zero in many cases resulting
in singularities and a more practical choice would be

w(t) =
√︁

1 + Cφ̇ (B.7)

in which C is a large constant. Then, the quality of meshing can be measured by

Q =
maxn (wn∆tn)

minn (wn∆tn)
(B.8)

where wn is the value of monitor function at time step tn.

Having the monitor function and the quality of meshing, it is straightforward to
find the adaptive MAP. One needs to start with a uniform meshing, find the MAP
for the current meshing, and check the quality of meshing. If the quality is above
a threshold, then calculate the monitor function and new meshing such that ∆tn ∝
1/wn. Next, by interpolating, one can find the values of the calculated MAP at the
newly meshed time points and use those as initial condition for the optimization
procedure of the action and find a new MAP. Then, by repeating the procedure of
remeshing and optimization until a good quality of meshing is achieved, one obtains
the adaptive MAP.

In our study we set the constant C in Eq. B.7 to 10000, and the threshold of the Q is
3. The performance of re-meshing procedure is clear in Fig. 3.10b where discretized
points cover the trajectory with little separations.
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Appendix C

More on Fractal fluctuations

C.1 Choosing the parameter for MF-DFA

The parameters that should be used for MF-DFA vary from one system to another
depending on their properties and therefore they should be determined separately
for each dataset. In this study, we used the following procedure for a small subset of
samples (from E15.5) to determine the parameters and then used these parameters
to analyze all images.

In order to determine the range of scales s over which the analysis is done, one
needs to start from the widest meaningful range. This range should start from the
order of the fitted polynomial, so that the number of parameters does not exceed
the number of points. Moreover, the range of s should stop at smax that results in
a number of segments being large enough so that the averaging process in eq. 4.4
remains meaningful. Once this maximum range is determined, one should find the
sub-range in which the fluctuation function F(q, s) shows power law scaling for all
values of q. This range can be then used for the rest of the analysis.

In eq. 4.4, q is the order of the moment of the fluctuations. The range of this pa-
rameter should be chosen according to the minimum number of segments. There
should be high number of segments for each value of q. Large values of q corre-
spond to statistics of the segments with large fluctuations and negative values corre-
spond to the segments with small fluctuations. Therefore, maximum and minimum
q’s should be chosen in a way that their corresponding fluctuation functions behave
similar to others, i.e. show power law behavior over the chosen range of s.

The order of the chosen polynomial trend depends on the nature of the data and any
intrinsic trends contained therein. As described in [145], we determined this order
by starting from the simplest polynomial Ỹ = ai + bj + c and increasing the order in
i and j until the surface Yv,w (i, j) is over-fitted and the generalized Hurst exponent
is no longer a monotonic function of q. Here, it is especially loosing its accuracy in
small q’s corresponding to small fluctuation segments.
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FIGURE C.1: The effect of removing periodic trends on measuring
multifractaility. (a) F(q, s) vs. s for a typical and raw image at 15.5
stage. (b) F(q, s) vs. s of the same image after removing 2 of the lowest

frequencies in all directions.

C.2 Periodic trends and frequency analysis of the data

Although MFDFA is capable of determining multifractal features in the presence of
many forms of trends in data, it fails when applied to the data sets with periodic
trends. However, it is shown that such trends only cause an increase in the overall
fluctuation function at scales near the wavelength of the trend which in turn results
in inaccurate determination of generalized Hurst exponent [154]. One can circum-
vent this problem by filtering out two lowest frequency (i.e. long wavelength) com-
ponents of the Fourier transform. This can be done by simply Fourier transforming
the data, replacing low frequency terms by zero one by one, then taking the inverse
Fourier transform, and analyzing the result until the crossover is removed.

In Fig. C.1a, the overall fluctuation function F (q, s) is shown for a typical ossification
at E15.5 with q ∈ {−3, 2, 1, 0, 1, 2, 3}. As one can see in this plot, there is a sudden
increase in F (q, s) at the large values of s. This crossover is more pronounced for
smaller q’s but exists in all of them which makes determination of h(q) inaccurate.
By removing a two lowest frequency components of the data, however, one gets
proper power laws within the same range of s. In Fig. C.1b, the same plot as in C.1a
is shown but after removing two lowest frequency components in all directions. It
is worth noting that removing more frequency components results in flattening the
generalized Hurst exponent i.e. suppressing the multifractality. In Fig. C.2, one can
see the generalized Hurst exponent h (q) of the data whose results are shown in Fig.
C.1 with various number of low frequencies (m ∈ {0, 2, 5, 8, 11, 14, 17}) removed. As
one can see here, the overall multi-fractality which can be defined as the change in
h(q) decreases as we increase m. Therefore, we only use m = 2 for analyzing all
images in order to prevent over-filtering and getting the most accurate multi-fractal
measures. A similar behavior has been observed in another context where low-pass
filtering (removing the highest frequencies) also results in flattening of h(q) when
analyzing time-series recorded from V1 cortex [145].
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FIGURE C.2: The effect of removing periodic trends on the multi-
fractaility. Generalized Hurst exponent of a typical ossification pat-

tern after removing m lowest frequency.

C.3 Different multifractal measures of the data

In chapter 4, we used MFDFA to characterize the ossification patterns in the devel-
oping skull caps of mouse embryos. There are many different measures one can
define based on the singularity spectrum shown in Fig. 4.4a. These measures are
investigated for all images and the results are summarized in Fig. C.3. As one can
see in this here, there are two main behaviors that the measures show over time: (I)
starting from a wide distribution and getting narrower, and (II) having the width
of distribution almost constant, but changing the average in a oscillatory way. The
entire width of the spectrum max(α)−min(α) in fig. C.3b and the maximum sin-
gularity exponent max(α) in Fig. C.3d show the first behavior. They have wider
range at E14.5 and their range gets narrower as the embryo develops. The average
of these measures also increase over time. max(α)−min(α) indicates the variety of
singularities in the data and increasing its average over time means more diversity
of singularities form over the course of development. Similarly, increase in average
of max(α) implies addition of more regular singularities.

The second type of behavior can be seen in the location of the maximum of the spec-
trum αmax shown in Fig. C.3c, the minimum of the singularity exponents min(α)
in Fig. C.3a, left part of the range of the singularity exponents (i.e. αmax −min(α))
in Fig. C.3e. In order to interpret this type of behavior, it is useful to recall that
f (αmax) = 2 meaning that singularities with exponent αmax are distributed every-
where with Hausdorff dimension of 2. Therefore, may speculate that these corre-
spond to non-informative and uniform noise in the data. In that case, the other
oscillatory measures might also correspond to trivial and non-informative aspects
of singularities.
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C.4 Characterizing multifractal features using WTMMMM

In Chap. 4, we used MFDFA for characterizing multifractal features of the data and
WTMMMM for finding location of singularities. However, this method is also ca-
pable of determining all multifractal measures as we discuss in this section. Having
constructed the skeleton of the data as shown in Sec. 4.4.1, one can calculate the
partition function defined as

Z(q, s) = ∑
L∈L(s)

(︄
sup

(x,s′)∈L,s′≤s
Mψ[ f ]

(︁
x, s′

)︁)︄q

, (C.1)

whereL(s) is the set of all maxima chains that exist at scale s and persist at scales s′ <
s. This partition function then can be used to determine the multi-fractal features of
the data. One can define the exponent τ(q) as

τ(q) :=
log (Z (q, s))

log(s)
. (C.2)

Here, τ(q) is linear if the data is mono-fractal, and nonlinear if it is multi-fractal.
Alternatively, one can use a Legendre transform to obtain the singularity spectrum
as following:

α = τ′(q), (C.3)

f (α) = αq− τ(q), (C.4)

where results in a delta function for a mono-fractal signal and in a wide spectrum
for a multi-fractal signal.

In order to show the next final steps of the WTMMMM on a data set with known
fractal features, we apply it to a two-dimensional Brownian motion field with H =

0.6 and size 1024× 1024. Note that this is a monofractal field with constant gener-
alized exponent i.e. h(q) = H = 0.6. Therefore, according to Eq. 4.7, there’s only
one type of sibgularities in the data with exponent α = H = 0.6 and the Hausdof
dimension f (α = 0.6) = 2. Accordingly, we can here again use the Gaussian wavelet
since its order is larger than the largest singularity exponent in the field. Fig. C.4a
shows the skeleton that are pointing toward the singularity points as s → 0+. Fig.
C.4b depicts the partition function in logarithmic scale showing power law at small
scales. Finally, Fig. C.4c and Fig. C.4d show the comparison between the results
of MFDFA, WTMMMM and the theoretical values. The exponent can be written in
terms of the generalized Hurst exponent h(q) as τ(q) = qh(q) − D which for our
case reads τ(q) = 0.6q− 2 which is shown by black line in Fig. C.4c. As one can see
here, for both measures, MFDFA gives more accurate results. This is again consistent
with other studies such as Ref. [141]. However, MFDFA does not provide any infor-
mation about the position of the singularities while in WTMMMM, one can simply
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FIGURE C.4: Application of WTMMMM on Fractional Brownian
motion field with H = 0.6 (A) A section of the skeleton of the data.
(B) The partition function Z(q, s) in log-log scale. Here, the dashed
black lines show the range in which the power laws are fitted to the
curves. (C) Comparison of the exponent τ(q) obtained via WTM-
MMM, MFDFA and its theory value. (D) Comparison of the sin-
gularity spectrum obtained via WTMMMM, MFDFA and its theory
value. Both analyses have good agreement with the theoretical line,

but MFDFA performs slightly better.

extrapolate the maxima chains to s = 0 and find the approximate location of the
singularities along with their exponents (by determining the exponent of the power
law of the modulusMϕ[ f ] vs. s). It should be noted that some maxima chains exist
because of local maxima in the data, not singular points. In these cases, the expo-
nents of the power-laws are determined by the order of the chosen wavelet and, it is
easy to distinguish them.
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