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Abstract

Personalized treatment strategies for oncological patient management can improve outcomes of

patient populations with heterogeneous treatment response. The implementation of such a con-

cept requires the identification of biomarkers that can precisely predict treatment outcome. In the

context of this thesis, we develop and validate biomarkers from multimodal imaging data for the

outcome prediction after treatment in patients with locally advanced rectal cancer (LARC) and in

patients with newly diagnosed glioblastoma multiforme (GBM), using conventional feature-based

radiomics and deep-learning (DL) based radiomics. For LARC patients, we identify promising

radiomics signatures combining computed tomography (CT) and T2-weighted (T2-w) magnetic

resonance imaging (MRI) with clinical parameters to predict tumour response to neoadjuvant

chemoradiotherapy (nCRT). Further, the analyses of externally available radiomics models for

LARC reveal a lack of reproducibility and the need for standardization of the radiomics process.

For patients with GBM, we use postoperative [11C] methionine positron emission tomography

(MET-PET) and gadolinium-enhanced T1-w MRI for the detection of the residual tumour status

and to prognosticate time-to-recurrence (TTR) and overall survival (OS). We show that DL mod-

els built on MET-PET have an improved diagnostic and prognostic value as compared to MRI.

Kurzzusammenfassung

Personalisierte Therapiekonzepte bieten die Möglichkeit das Behandlungsergebnis von Krebspa-

tienten mit einem derzeit heterogenen Ansprechen des Tumors zu verbessern. Die Umsetzung

eines solchen Konzepts erfordert die Identifizierung von Biomarkern, die das Behandlungser-

gebnis präzise vorhersagen können. Im Rahmen dieser Arbeit werden Biomarker aus multimo-

dalen Bildgebungsdaten entwickelt und validiert um das Outcome von Patienten mit lokal fortge-

schrittenem Rektumkarzinom (LARC) und neu diagnostiziertem Glioblastoma multiforme (GBM)

unter Verwendung von konventionellen Radiomics-Analysen und Deep-Learning (DL) basierten

Radiomics-Verfahren vorherzusagen. Für LARC-Patienten werden Radiomics-Signaturen basie-

rend auf der Computertomographie (CT) und der T2-gewichteten (T2-w) Magnetresonanztomo-

graphie (MRT) gemeinsam mit klinischen Parametern entwickelt um das Tumoransprechen auf

eine neoadjuvante Chemoradiotherapie (nCRT) vorherzusagen. Weitere Analysen von extern

verfügbaren Radiomics-Modellen für LARC zeigen einen Mangel an Reproduzierbarkeit und die

Notwendigkeit einer Standardisierung des Radiomics-Prozesses. Für Patienten mit GBM werden

Modelle zur Vorhersage des Resektionsstatus, der lokalen Tumorkontrolle (TTR) sowie des Ge-

samtüberlebens (OS) entwickelt, basierend auf Bildgebung der postoperativen [11C]-Methionin

Positronenemissionstomographie (MET-PET) und T1-w MRT. DL-Modelle, die MET-PET-Daten

verwenden, zeigen dabei eine bessere diagnostische und prognostische Güte als MRT-basierte

Modelle.
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1 Introduction

In recent years, the morbidity and mortality of cancer is continuously increasing due to global age-

ing population and environmental factors such as pollution, increased consumption of Western

pattern diet, alcohol, and tobacco (Anand et al., 2008; Soerjomataram & Bray, 2021; Chhikara

& Parang, 2023). The main goals of modern oncology are to prevent or diagnose cancer at an

early stage and improve the quality and length of life after cancer through multimodal and per-

sonalized treatment. There are currently three main treatment methods for cancer management

that are often used in combination: (i) surgery, (ii) chemotherapy, and (iii) radiation therapy. The

present approaches to cancer treatment are largely empirical and often referred as “one size

fits all” (Duffy & Crown, 2008). In general, evidence for treatment options is derived from clin-

ical trials based on a patient population with similar diagnosis and staging. As a result, some

patients with aggressive disease may be undertreated, and some with indolent disease may be

overtreated. In addition, for those patients who receive treatment, only a proportion derives clini-

cal benefit, whereas adverse side effects are common. In contrast, personalization of treatment

offers the potential to improve treatment outcomes by considering the tumour characteristics of

patients or subgroups individually. The implementation of this approach requires the identification

of prognostic biomarkers, that can reliably stratify the patients into subgroups with similar tumour

characteristics and treatment response, illustrated in Figure 1.1.

Currently, the main method of treatment personalization for cancer patients is the analysis of

molecular profiles from tumour biopsies. Because a tumour may show marked subclonal hetero-

geneity, molecular profiles from a single biopsy may be insufficient for yielding robust biomarkers

for treatment personalization. Multiple biopsies may be required to capture the heterogeneity

present in the tumour and yield biomarkers to develop accurate prognostic models. Since acquir-

ing tissue biopsies is invasive and not always possible, there is a need to develop non-invasive

biomarkers for cancer treatment personalization that can incorporate whole-tumour information.

Medical imaging modalities such as magnetic resonance imaging (MRI), computed tomography

(CT), positron emission tomography (PET), X-ray, and ultrasound are widely used in clinical prac-

tice to aid decision-making in cancer patients and can capture three-dimensional whole-tumour

information. Medical imaging has thus the potential to overcome challenges posed by molecular

biomarkers. For example, studies have shown that simple imaging features such as tumour vol-

ume determined on multimodal imaging data, i.e. MRI, CT or PET, were able to predict treatment

response (Partridge et al., 2005; Hutchings et al., 2006; Meneghetti et al., 2021).

Recently, radiomics has attracted considerable interest in the field of radiology and clinical

oncology. Radiomics analyses perform a non-invasive, quantitative characterization of medical

imaging to identify image biomarkers (Figure 1.2). Such analyses employ modern machine learn-

ing (ML) algorithms for the evaluation of cancer diagnosis or the prediction of treatment outcomes
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Figure 1.1: Schematic representation to individualize radiotherapy based on inter-tumour heterogeneity.

In standard treatment, a heterogeneous patient population is treated with the same dose, which may

lead to under or overtreatment of tumour regions. Biomarker-based patient stratification can be used to

personalize treatment, e.g., by dose adaptation in clinical trials.

in different cancer types, incorporating different imaging modalities (Aerts, 2016). Within the field

of cancer diagnosis, studies employing magnetic resonance (MR) have, for instance, tackled the

differentiation of high grade and low grade gliomas (Cho et al., 2018), between malignant and be-

nign prostate tumours (Wibmer et al., 2015) and positive and negative O6-methylguanine–DNA

methyltransferase (MGMT) methylation status in glioblastoma (Kong et al., 2016; Korfiatis et al.,

2016). Conventional radiomics approaches work with handcrafted features to capture tumour

characteristics. However, manual feature engineering bears the risk of not capturing the full infor-

mation content present in the data. Alternatively, deep learning (DL) based radiomics addresses

this issue by automatically learning features from the data when training them on suitable tasks

and could therefore improve performance for the prediction of radiotherapy outcomes compared

to traditional statistical and ML models (Figure 1.3).

Rectal cancer (RC) is a distinct type of Colon cancer (CC) with high rate of local and regional

recurrence (Lee, 1995). The standard treatment for locally advanced rectal cancer (LARC) is

preoperative, neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision and

postoperative adjuvant chemotherapy. This standard of care was established from various land-

mark clinical trials (Fisher et al., 1988; Franke et al., 2021). It has been shown that pre-operative
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There is increased interest in the adoption of organ preservation and low morbidity surgeries

such as local excision in partial responders and watch-and-wait strategy for pathological com-

plete response (pCR) (Dossa et al., 2017). Retrospective studies comparing survival outcomes

between pCR’s treated with wait-and-watch strategy and those who had surgical resection have

shown 94% 5-year disease-free survival and 81-85% 5-year OS (Renehan et al., 2016). A study

conducted by the Mercury group (Group et al., 2007) also suggests selective radiotherapy rather

than reflexive radiotherapy in patients with good prognosis, i.e. without suspicious lymph nodes

or extramural vascular invasion.

Tumour response to treatment depends on several factors including the type of chemotherapy

administered, radiation dose, and surgical practice; however, also the biology of a tumour plays a

most important role in describing treatment response. Several studies have analysed molecular

data, such as gene expression, mutations, and single nucleotide polymorphisms as potential

biomarkers of response to nCRT in LARC (Rimkus et al., 2008; Boige et al., 2010; Duldulao

et al., 2013). Treatment outcome prediction and patient prognosis through radiomics analyses

is another widely explored topic in literature, with more than 300 studies alone having been

published for treatment response and long-term outcomes prediction in LARC (Staal et al., 2021).

For outcome prognosis in LARC, MRI-based radiomic models have been widely developed for

tumour response and freedom from distant metastases (FFDM) after nCRT (Nie et al., 2016;

Dinapoli et al., 2018; Horvat et al., 2018; Jeon et al., 2019; Antunes et al., 2020). Some studies

have considered radiomic features extracted from CT imaging (Chee et al., 2017; Bibault et al.,

2018) or a combination of CT and MRI features (Li et al., 2020b; Zhang et al., 2020).

Glioblastoma multiforme (GBM) is the most common type of primary brain tumours that be-

longs to the heterogeneous and invasive tumours of the central nervous system arising from glial

cells (Bailey, 1985; Ferguson & Lesniak, 2005). These tumours are highly invasive. They typ-

ically arise in the deep white matter and proceed to infiltrate grey matter and other structures

(Rees et al., 1996). The standard treatment in glioblastoma is surgical resection followed by

chemoradiotherapy (CRT) (Stupp et al., 2005). Despite intense multimodal treatment, patients

with GBM have poor prognosis with 5-year OS rate of only 9.8% (Stupp et al., 2009). In order

to prolong patient survival, GBM resection aims at maximal safe resection. However, for many

patients, aggressive resection is not possible as GBM may reside in critical regions (Sanai &

Berger, 2009; Sanai et al., 2011; Bloch et al., 2012). Thus, the residual tumour is left behind,

leading to tumour recurrence and resulting in poor prognosis. Additionally, regardless of the ex-

tent of resection, infiltrative growth patterns may also lead to tumour recurrence and eventually

to patient death. Thus, controlling and/or targeting residual tumours and infiltrative tumour cells

may improve patient survival. Furthermore, the assessment of patient prognosis in GBM prior to

the start of treatment may help to identify subgroups of patients that would benefit from escalated

radiotherapy doses.

Researchers have discovered molecular, genetic and histopathological biomarkers pertaining

to long-term outcomes in GBM patients, with the most widely accepted prognostic biomarkers

4



for GBM being age and MGMT promoter methylation status. The effectiveness of treatment is

lower in elderly patients due to reduced innate immunity and higher postoperative complication

rates, thus resulting in poorer prognosis (Laigle-Donadey & Delattre, 2006). MGMT is a deoxyri-

bonucleic acid (DNA)-repair gene whose high level of activity in cancer cells causes resistance

to chemotherapy (Wen & Kesari, 2008). Suppression of the MGMT gene through methylation

blunts DNA repair processes and sensitizes tumour cells to radiation, which leads to improved

tumour control and improved patient survival (Laigle-Donadey & Delattre, 2006). Many studies

have performed gene-expression profiling to identify genes whose expression can predict patient

survival in GBM (Rich et al., 2005; Yamanaka et al., 2006; Candido et al., 2019). Similarly, many

studies also predicted the chemotherapeutic response and survival of patients with GBM using

MRI radiomics features (Cui et al., 2016; Kickingereder et al., 2016c; Li et al., 2022). Although

the results of these analyses are encouraging, important processes of radiomics such as assess-

ing feature robustness, were not always considered, and external validation is rarely performed.

Despite the potential of radiomics for the individualization of cancer therapy, further research and

developments are required, e.g., regarding the choice of suitable machine learning algorithms for

risk modelling.

The aim of this thesis is to develop and validate imaging biomarkers using radiomics for patients

with LARC and GBM. The presented results help to facilitate image-based treatment decisions

and to gain a deeper understanding of radiomics for treatment personalization.

This thesis is structured as follows: Chapter 2 provides an overview of GBM and LARC followed

by and the essential background information about imaging modalities. Afterward, statistical

methods used for conventional and DL-based radiomics for diagnostic and prognostic modelling

are introduced.

Traditional radiomics analyses commonly apply imaging features of different complexity for

the prediction of the endpoint of interest. However, the prognostic value of each feature class

is generally unclear. In this thesis, we developed and independently validated signatures for

outcome prediction after nCRT in patients with LARC based on imaging datasets by analysing

different feature classes (Chapter 3).

Over the past years, over 300 radiomics studies have been published on LARC indicating

promising results for treatment outcome prediction. Because of the complexity, heterogeneity and

increasing volume of that literature, it is challenging to interpret the results. Furthermore, many

radiomics models lack independent external validation that is decisive for their clinical application.

Therefore, in Chapter 4 we aim to validate previously published radiomics signatures for LARC

on our multicentre cohort.

For patients with GBM, gross total resection cannot always be achieved due to infiltrative growth

patterns and thus residual tumour cells persist after surgery. Patients with residual tumour may

be candidates for escalated radiotherapy doses to eradicate residual disease. Imaging-based

diagnosis of residual tumour is a complex evaluation process, and automatic methods may be

helpful to support the clinical decision. In Chapter 5, we compared the diagnostic performance
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of both, conventional and DL-based radiomics, for automatic detection of residual tumour on

MET-PET and T1c-w MRI data.

Patients with GBM may benefit from the development of accurate prognostic biomarkers, e.g.

by selection for escalated radiotherapy doses after surgery. Therefore, in Chapter 6, we de-

veloped and independently validated conventional and DL-based radiomics biomarkers for the

prognosis of time-to-recurrence (TTR) and OS.

Chapter 7 provides a conclusion of the work presented in this thesis and related further per-

spectives.
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2 Theoretical background

2.1 Introduction to locally advanced rectal cancer and glioblastoma

multiforme

In this section, we discuss both considered tumour entities, LARC and GBM, including epidemi-

ological and pathological features and conventional treatment.

2.1.1 Locally advanced rectal cancer

Colorectal cancer (CRC) is the third most commonly diagnosed cancer that accounts for 10% of

global cancer incidence (Xi & Xu, 2021) is also the third leading cause of cancer-related deaths

in both genders, however, higher incidence rate is found in males compared to females. CRC

is regarded to be comprising CC and RC as both are developed in the colon, however, studies

have shown that CC and RC are two distinct cancer types with differences in molecular car-

cinogenesis, pathology and multimodal treatment (Wei et al., 2004; Li et al., 2007; Paschke et

al., 2018). RC is defined as a tumour whose margin is 16 cm or less from anal verge (Sobin,

2009). The patients with RC present with severe disabling symptoms, including rectal bleeding

and change in bowel habit. These symptoms are sometimes attributed to local bowel conditions

such as haemorrhoids, and due to delay in seeking proper medical treatment it results in expan-

sion of disease to advanced stage (McCarthy et al., 2012). The causes of RC include alcohol

abuse, smoking, western diet including consumption of processed food. Other factors that show

association with RC include history of CRC and age with the majority of incidences occurring in

patients with age above 50. Current screening of RC is commonly performed with colonoscopy or

flexible sigmoidoscopy and once suspicion of extended disease is found, diagnostic CT and MRI

is conducted for staging of the disease. Approximately 5% to 10% of patients with RC present

with LARC. LARC comprises rectal tumours within 6-12 cm of the anal verge, reaching to and

beyond mesorectal fascia. LARC is defined as T3 or T4 primary tumours or nodal metastases

(T3-4 and/or N+) (Edge & Compton, 2010; Amin et al., 2017). The current management of LARC

includes nCRT (40-50.4 Gy plus augmented 5-flurouracil (FU) alone or combined with oxaliplatin

) followed by TME and adjuvant therapy with 5-FU combined with oxaliplatin (Sauer et al., 2004).

This treatment regime has shown to improve the LC and OS of patients, however recurrent dis-

eases and distant metastases (DM) still pose a major problem after treatment.

2.1.2 Glioblastoma multiforme

Gliomas are the most common cancer of central nervous system (CNS) and represent almost

80% of all CNS and primary brain tumours (Ostrom et al., 2022). Gliomas originate from glial
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cells that surround the nerve cells and are classified into three types based on the type of glial

cells involved, thus including tumours of astrocytomas, ependymomas, and oligodendrogliomas.

World Health Organization (WHO) classifies these tumours into malignancy grade ranging from

I to IV, with GBM being most malignant astrocytic glioma (WHO grade IV) with poor prognosis

(median survival of 15 months) (Stupp et al., 2005). GBM can occur at any age. However, it

is most common in adults with more than 80% of patients diagnosed at the age above 55, and

males have 1.6 times higher incident rate than women (Ostrom et al., 2022). Studies have sug-

gested that immune surveillance mechanisms stimulated by the protective effect to infections and

allergies result in the development of gliomas (Fisher et al., 2007; Ohgaki, 2009; Barnholtz-Sloan

et al., 2018), however, no carcinogenetic causes of gliomas and more specifically of GBM has

been identified. In addition, rare genetic syndromes are also held responsible for the develop-

ment of approximately 10% of gliomas (Fisher et al., 2007; Bondy et al., 2008). GBM tumour

mass is characterized with high level of regional heterogeneity and poor delineation. The lesions

often occur in the subcortical of white matter of cerebral hemispheres, thus occupying a mas-

sive region of the brain lobe and invading rapidly into surrounding brain tissue. In high-resolution

contrast-enhanced MRI scans, the infiltrating tumour cells can be seen dispersed within normal

brain tissues around the necrotic region of GBM (Louis et al., 2007). The symptoms of GBM

arise late after the origin of the disease and are depicted in patients as neurological symptoms

including memory loss, personality changes and seizures, and raised intracranial pressure with

tension headaches, nausea, and vomiting (Wen & Kesari, 2008). The standard treatment of GBM

consists of surgery followed by radiotherapy up to a dose of 60 Gy with concomitant and adju-

vant chemotherapy. Temozolomide is the main chemotherapeutic agent used for the treatment

of GBM. Commonly, total resection of the tumour is not possible in GBM due to infiltrative growth

patterns. Therefore, debulking is performed to reduce the tumour size. The tumour remnants

are then irradiated by including a 2-3 cm margin around the resection. Even after multimodal

treatment, tumour recurrence happens in almost all patients.

2.2 Basic physical principles of imaging modalities

Imaging is an integral component of present-day radiation oncology practice within the clinics.

Radiological imaging has substantially improved our understanding of cancer biology, diagnosis,

staging, and prognosis. The most used imaging modalities in radiation oncology include CT, MRI

and PET. In this section, we explain basic principles of these imaging modalities.

2.2.1 Computed tomography

Computed tomography (CT) is a common imaging modality with many uses, including quick

diagnosis of injuries, diseases and radiation treatment planning. In radiation oncology, CT is

particularly useful as it provides three-dimensional (3D) information of anatomical structures that
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In order to explicitly calculate a value of the integral, a simple rotation matrix is used to transform

x and y to point r in projection space. The above equation can be written as:

pθ(r ) =

ˆ >

2>

ˆ >

2>
f (x , y )δ(x cos θ + y sin θ 2 r ) dx dy (2.3)

where the Dirac function δ ensures that only relevant rays contribute to projection pθ(r ). Equa-

tion (2.3) is also known as the Radon transform (Radon, 1986). The CT image reconstruction is

the process of computing the function f (x , y ) from projections pθ(r ), a process known as back-

projection (Herman, 2009). This is achieved by computing the inverse Radon transform as fol-

lows:

(x , y ) =

ˆ

π

0

p(s, θ)|s=x cos θ+y sin θ dθ (2.4)

CT imaging relies on the principle that the fraction of X-rays absorbed or scattered by an object

depends on its material composition, which is quantified through the attenuation coefficient. In

the typical energy range of an X-ray beam for CT, the attenuation coefficient is mainly defined by

the electron density of the substance. Therefore, denser substances and substances containing

elements with many electrons will have higher attenuation coefficients. In practice, hounsfield

unit (HU) (Hounsfield, 1980), attenuation coefficients normalized to the attenuation coefficient

of water are used, because it is a well-suited scale for the examination of objects with high

concentration of water, e.g. humans. The HU unit of a tissue is defined as:

Htissue =
µtissue 2 µwater

µwater

× 1000 (2.5)

The typical clinical range of a CT scan, between air and bone, is approximately 21024 HU to

3071 HU. In this work, the primary target are soft tissues which represent a small portion of this

range, i.e. 2150 to 180 HU.

2.2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) can provide high contrast and detailed assessment of mor-

phology, and can also be combined with functional and metabolic evaluation. It is generally a safe

imaging modality, with the possibility of repeating the scanning process without any side effects

due to the lack of exposure to ionizing radiation or iodinated contrast agents. MRI scans are used

to diagnose a variety of conditions, from torn ligaments to tumours.

MRI works on the principles of nuclear magnetic resonance (NMR), i.e. under the effect of a

resonating electromagnetic radiofrequency the nucleus of an atom is perturbed or excited and

responds by producing the radiofrequency signal (Bloch, 1946). MRI uses the natural magnetic

property of hydrogen, which as a part of lipids or water constitutes 70%-90% of most tissues in

human body. Protons in the nucleus of every hydrogen atom have a nuclear spin and are thus

sensitive to the presence of an external magnetic field. Typically, due to thermal movement, the
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Figure 2.3: An axial slice of the brain measured using T1-weighted (T1-w) and T2-weighted (T2-w) MRI

sequences. (a) In T1-w images, fluid appears dark, fatty tissues are bright and wet tissues are mid-grey. (b)

In T2-w images, fluids appear bright, while wet and fatty tissues are mid-grey. The tissue types indicated

are white matter (WM), grey matter (GM) and cerebrospinal fluid.

pulse sequences, and by controlling the time of these sequences. There are different sequences,

however, they all have radiofrequency pulses and gradient pulses with carefully controlled timing

values called relaxation time (TR) and echo time (TE). The time between each repetition of ra-

diofrequency pulse is referred to as TR and body tissues can be characterized by two relaxation

times: i) T1, and ii) T2. Following the application of the excitation pulse, the time required for the

z component of M0 to return to 63% of its original value is called T1 relaxation. The value of the

net magnetization in the external field aligned axis then follow an exponential growth:

Mz(τ ) = M0

(
1 2 e

−τ

T1

)
(2.8)

where is the time following the radiofrequency pulse and T1 is a time constant describing the rate

of growth. Similarly, the time required for the transversal magnetization component Mxy to return

to 37% of the original value is known as T2 relaxation. This return of magnetization also follows

an exponential decay

Mxy = M0e
−τ

T2 (2.9)

The strength of the signal produced by the above magnetization components is proportional to the

number of protons contained within the voxel weighted by the T1 and T2 relaxation times for the

tissues within the voxel. T1-weighted (T1-w) images show better contrast with clear boundaries

between different tissues: a fluid shows a very dark contrast, fatty tissues are very bright and

water-based are mid-grey as shown in Figure 2.3(a). T2-weighted (T2-w) images are also called

’pathology scans’. In T2-w images, fluids show higher contrast while water based and fat tissues

are mid-grey as shown in Figure 2.3(b).
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2.2.3 Positron emission tomography

Positron emission tomography (PET) is a nuclear imaging technique that is heavily used in the

field of clinical oncology for detecting tumours and tumour metastases, and for the clinical di-

agnosis of diffuse brain diseases and injuries. PET imaging reveals functional or physiological

activities such as blood flow, metabolism and absorption in certain tissues or organs. PET imag-

ing can visualize biological processes via injecting radiotracers in the patient. Radiotracers are

designed by connecting positron-emitting radioactive isotopes to molecules with different function

in the human body (Becquerel, 1896). Such radiotracers are for example fluorodeoxyglucose (18-

F FDG) and [11C] methionine (MET). The PET images are typically acquired contemporaneously

with MRI or with CT to produce fused images for more precise expert interpretation. Radionu-

clides with an excess of protons, decay by positron emission (β+ decay) alongside an outgoing

neutrino. For example, 11C decays by positron emission:

11C ³ 11B + e+ + v (2.10)

The positron loses its energy almost immediately when it combines with electrons present in

tissues and forms positronium that last for only 10210 seconds before the process of annihilation

occurs. In the annihilation process, the mass of the positron and electron is converted into

electromagnetic energy. 1.022 MeV of energy is released in the form of two high-energy photons,

each carrying 511 keV of energy, as shown in Figure 2.4. These photons have a high probability

of escaping the body for external detection. In a typical PET scan, overall 106 to 109 events

(decays) are detected externally by detectors surrounding the imaging object that are designed

to convert the outgoing high-energy photons into an electrical signal. The line joining the detected

location that passes directly through the annihilation point, as shown in Figure 2.4, is referred to

as the coincidence line, or line-of-response. Numerous coincidence line form a dataset (also

known as line integral data) is then reconstructed utilizing iterative reconstruction algorithms, e.g.

the ordered subset expectation maximization (OSEM) algorithm, which is an optimized version

of maximum likelihood expectation maximization (MLEM) (Qi & Leahy, 2006).

Once the PET scan is performed, the images defining the radioactivity concentration map of

the human body are converted into a quantitative measure known as the standardized uptake

values (SUV). In order to account for injection and body weight variability, SUV is commonly

defined as follows:

SUV =
radioactivity concentration

injected dose
× body weight (2.11)

2.3 Conventional radiomics

Conventional radiomics aims to characterize the tumour phenotype by extracting quantitative

features from medical imaging data. The most extensively used imaging modalities for radiomics
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delineation of the ROI leads to the creation of a mask M(x , y , z). Each voxel location (x , y , z) in

the ROI is represented as:

M(x , y , z) =





1 if V(x,y,z) in ROI

0 otherwise
(2.12)

For radiotherapy treatment planning, the contours for targeted regions and organs at risk are

stored. If multimodality imaging is done for the same tumour entity, image registration is used

to transfer contours from one imaging modality to another without the need for re-segmentation.

This step is carried by rigid image registration, where two sets of imaging volumes from the same

patient are aligned anatomically and contours are propagated (Woods et al., 1993; Hajnal et al.,

1995). Current clinical treatment planning systems such as Raystation (RaySearch Laboratories,

Stockholm) incorporate image registration algorithms with a high degree of flexibility for managing

multimodality data.

2.3.2 Image pre-processing

Texture-based image analyses are highly dependent on image spatial resolution and noise.

Therefore, prior to feature extraction, spatial pre-processing of imaging data must be performed

to improve image quality and thus facilitate modelling tasks. Below, we described pre-processing

steps that are used within this thesis.

Background suppression

MR images often suffer from background phase variation, which arise due to magnetic field in-

homogeneity and result in nonuniformity across and along the boundaries of the scanned organ.

These regions contain image pixels (referred to as background pixels in this thesis) around the

scanned organ that may decrease the performance of any image processing algorithm. A mask

that separates the scanned organ is necessary to turn background pixels to zero. In this thesis,

we corrected all MR images for background phase variation. This was achieved by creating a

mask of the soft tissue region in the image using the Canny Edge detection algorithm (Canny,

1986) and multiplying the true image with the mask, setting all the background phase variations

to zero.

In order to reduce the false detection of edges, the Canny Edge detection algorithm first ap-

plies Gaussian filtering for smoothing. In the next step, it applies intensity gradients to compute

horizontal, vertical, and diagonal edges. Ideally, edges computed should be thin, which is done

by non-maximum suppression. After non-maximum suppression, thresholding is applied to re-

move weak edges that are irrelevant to desired strong edges that are sufficient to create image

boundaries (Canny, 1986). Once strong edges are detected by Canny edge detection, an image

mask is created by contour filling (pixels inside contour=1, pixels outside contour=0) and finally
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the corrected image is computed by using the results of a previous iteration as a prior. In this

work, we used the N4 bias correction method before the feature computation step for MRI data.

Image interpolation

Following N4 bias correction, image interpolation is performed. Medical images are often ac-

quired with different voxel size due to different scanner settings across different centres and

patients. Therefore, in order to increase reproducibility in radiomics, interpolation of images

to an isotropic voxel size is imperative. The dimensions of these isotropic voxels can be de-

cided based by analysing the entire patient cohort. Given an imaging volume V (x , y , z) with

voxel size 0.971 × 0.97 × 1 mm3, the suitable isotropic voxel resampling would be V1(x , y , z) =

1 × 1 × 1 mm3. Consequently, the corresponding ROI mask R(x , y , z) could be resampled to

R1(x , y , z) = 1 × 1 × 1 mm3. Three common types of algorithms used for interpolation are: (i)

nearest neighbour, (ii) linear, and (iii) cubic interpolation. In this work we used cubic interpolation

for resampling imaging volumes while nearest neighbour interpolation was used for resampling

the ROI mask.

Image normalization

MR images can be normalized to improve comparability. A relatively simple normalization method

is z-score normalization:

z =
V1(x , y , z) 2 µ

σ
(2.14)

where and are the mean and standard deviation of all voxels within an image, respectively. This

type of normalization is sufficient when MR images are acquired with high spatial resolution,

however more sophisticated methods such as histogram equalization or normalization by pth per-

centile can be used when image intensities show more variability. Normalization by pth percentile

value of V1(x , y , z) gives new voxel intensity P:

P =
V1(x , y , z) 2 minV1(x , y , z)

pthpercentile
(2.15)

In this thesis, we used normalization by the 95th percentile for T2-w MRI in rectal cancer radiomics

analysis, i.e. 5% of the highest image intensities were ignored due to the occurrence of outliers,

while z-score normalization was applied to T1c-w MRI data for glioblastoma.

For CT, we typically re-segment the ROI mask, so that only soft tissue voxels are used for

feature extraction. An intensity range between 2150 to 180 HU is reasonable to remove air and

bone voxels from the CT scan.
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2.3.3 Radiomics feature extraction

Radiomics aims to characterize the tumour phenotype using quantitative imaging features com-

puted and extracted from medical imaging. After feature computation, the resulting features are

used to develop either prognostic or diagnostic models. In this section, we describe the main

steps and different classes of feature extraction in detail. Theory in this section is adapted from

the Imaging Biomarker and Standardization Initiative (IBSI) (Depeursinge et al., 2020; Zwanen-

burg et al., 2020).

ROI extraction and Image discretization

Before feature calculation, the ROI is separated from the surrounding voxels. This is done using

the image ROI mask to keep voxels contained within the delineated ROI, and surrounding voxels

are replaced with NaN. Given an interpolated image volume V1(x , y , z) and corresponding ROI

mask R1(x , y , z), the ROI imaging volume is given as follows:

VR(x , y , z) =





V1(x , y , z) if R1(x , y , z) = 1

NaN otherwise
(2.16)

Once the ROI is extracted, for histogram and texture features it is essential to bin or discretize

the intensity range within the ROI to reduce computation time and suppress image noise. Given

a column vector vR of image intensity values in the ROI, the discretization process maps vR to

b number of bins in range [1, Ng ], where g = 1, 2, . . . , N are the number of discretized grey-level

values. The two common methods of discretization are fixed number and fixed bin size.

Fixed bin number discretization

As the name suggests, the fixed bin number (FBN) method discretizes the vR intensity values to

a fixed number of Ng bins as follows:

vd =





+Ng
vR2vR,min

vR,max 2vR,min
, + 1 if vR < vR,max

Ng if vR = vR,max

(2.17)

where vR,max and vR,min are the lowest and highest intensity values in the ROI, respectively, and

the bin width is given by
vR,max 2vR,min

Ng
. Thus, in fixed bin number method, the voxel intensity in vR

is corrected by the minimum intensity value in vR divided by the bin width. The resulting value is

then rounded to the nearest integer. This type of discretization introduces a normalization effect,

which may be beneficial for imaging data with arbitrary intensity values, such as MRI.

18
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Fixed bin size discretization

In fixed bin size (FBS) discretization, a new bin with width wb is assigned to every intensity value

in vR .The bin width wb starts at the minimum value vR,min, which is the user defined lower-bound

of the re-segmentation range. The method is recommended when re-segmentation of intensity

values is required, e.g. for CT and PET. However, if intensity values are arbitrary as in MRI, the

use of fixed bin size discretization is not recommended. Fixed bin size discretization is defined

as follows:

Vd = +vR 2 vR,min

wb

, + 1 (2.18)

Please refer to the IBSI reference manual for a fully details list of discretization methods (Zwa-

nenburg et al., 2020)

Feature classes

After image pre-processing, radiomics features can be extracted from the defined ROI, e.g., CTV,

and GTV delineated on images. Radiomics features can be broadly categorized into three fea-

ture classes i.e. (i) morphological or shape-based features, (ii) first-order (FO) statistical and

histogram-based features, and (iii) second-order texture (SOT) features. The detailed definition

used to calculate different feature classes can be found in the IBSI reference manual (Zwanen-

burg et al., 2020) and are extracted and calculated according to those guidelines.

Morphological features

Morphological features based on the geometrical aspects of the ROI are calculated from the

morphological mask. The common examples of morphological features include volume, surface

area, and compactness, related to the size of the ROI. For instance, the ROI volume V can be

approximated by counting voxels as follows:

V =

Nv∑

k=1

Vk (2.19)

where Nv is a total number of voxels in the morphological mask and Vk is the volume of a voxel.

Another feature of the morphological class is the compactness that measures how compact, or

sphere-like, the ROI is. It is defined by:

C =
V:
πA3

(2.20)

where A is the total surface area of the morphological mask. Please refer to the IBSI reference

manual for a fully detailed list of morphological features (Zwanenburg et al., 2020).

19



2 Theoretical background

First-order features

The FO features can be broadly classified into local intensity features, intensity-based statistical

features, intensity histogram features and intensity volume histogram features. All these fea-

tures provide information about intensity distributions in the ROI. The local intensity features are

computed by defining a neighbourhood around the centre voxel, where the centre voxel must be

located within, ROI and the neighbourhood can be defined anywhere around the ROI. Local and

global intensity peaks are two examples of local intensity features.

Intensity-based statistical features describe how continuous intensity values are distributed

within ROI. An example of an intensity-based statistical feature is the mean intensity:

M =
1

Nv

Nv∑

i=1

vR,i (2.21)

where vR is the set of intensities in Nv voxels.

Intensity histogram features describe how discretized pixel intensity values are distributed

within ROI. The intensity histogram features are obtained by discretizing the intensity distribution

vR into bins represented by, vd as explained previously. The mean of the discretized intensities

is calculated as follows:

M =
1

Nv

Nv∑

i=1

vd ,i (2.22)

Intensity volume histogram features describe the relationship between an intensity value i and

the volume fraction v that contains the intensity value, equal or greater than i . Please refer to the

IBSI reference manual for a fully detailed list of first-order features (Zwanenburg et al., 2020).

Second-order features

The SOT features characterize spatial patterns within the ROI of imaging volumes. Texture fea-

tures describe image heterogeneity by analysing spatial groupings of discretized intensities, and

are thus capable of expressing separation or clustering between different parts of tissue in the

ROI. Texture features are computed from texture matrices derived from either 2D images (slice)

or 3D volumes. In this thesis, six distinct types of texture matrices were extracted from the 3D

ROI: the grey level co-occurence matrix (GLCM), grey level run length matrix (GLRLM), grey

level size zone matrix (GLSZM), grey level distance zone matrix (GLDZM), neighbouring grey

tone difference matrix (NGTDM), and neighbouring grey level dependence matrix (NGLDM).

For instance, the GLCM is one of most classical second-order statistical methods for texture

analysis introduced by Haralick et al. (Haralick et al., 1973). In simple words, GLCM is a tab-

ulation of how often different combinations of gray levels (i , j) co-occur distributed within the

considered ROI. Therefore, it is also referred as co-occurrence distribution matrix. The two main

parameters of GLCM are direction (θ) and distance (d). The distance metric used for computing
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texture features is the Chebyshev distance. Pixel pairs are then analysed in a specified direction

and their frequency is recorded in a square matrix. The computed matrix is then normalized to

convert frequencies into probabilities. A GLCM element, denoted by pixel pair p(1, 2) and direc-

tion 0°, will correspond to the number of pixel pairs that were found in an image with gray-level

values 1 and 2 in the horizontal direction (Figure 2.6). Generally, there are 8 and 26 connected

neighbourhoods in 2D images and 3D volumes, respectively. Therefore, it is possible to compute

multiple GLCM matrices for a single image; one for each distance and direction pair, which can

be aggregated using either averaging or merging (Further details on aggregation methods are

available in IBSI reference manual). One example of a second-order statistics calculated from

GLCM is entropy that measures the randomness of co-occurring grey levels within the image,

with higher values indicating higher heterogeneity. It is calculated as follows:

E = 2
Ng21∑

i=0

Ng21∑

j=0

p(i , j) log p(i , j) (2.23)

where Ng are distinct grey-levels in the discretized intensity mask and p(i , j) is the (i , j)th entry in

normalized GLCM.

The GLRLM texture matrix was proposed by Galloway (Galloway, 1975), It captures the infor-

mation about runs of grey-level values in a particular direction. Longer runs indicate finer texture,

while the relatively shorter runs characterize coarser textures in the observed ROI. Similar to

GLCM, GLRLM are also calculated for all possible (d , θ) pairs. Assuming that p(i , j) =
ri ,j

Ns
, where

ri ,j is the number of times there is a run of length j having a grey level i , Ns =
∑Ng21

i=0

∑Nr 21
j=0 ri ,j is

the total number of runs in the ROI, where Nr is the maximum number of runs along a direction

θ.

Run entropy, a feature that can be derived from the GLRLM can be computed as follows:

E = 2
Ng21∑

i=0

Nr 21∑

j=0

p(i , j) log p(i , j) (2.24)

Discretized intensities or voxel values can also be identical, that result in formation of linked

groups or zones. GLSZM counts the number of such zones of linked voxels (Thibault et al.,

2013). In order to capture the relationship between grey level values and location, GLDZM can

be computed that counts the number of zones of linked voxels that have specific grey level value

and same distance to the ROI edge.

Finally, there are neighbourhood based matrices that either expresses the sum of grey level

differences of central pixel/voxel from their neighbouring pixels/voxels (NGTDM) (Amadasun &

King, 1989) or how neighbouring pixels/voxels are distributed around central pixel/voxel (NGLDM)

(Sun & Wee, 1983) in the discretized ROI. Please refer to the IBSI reference manual for a fully

detailed list of second-order features (Zwanenburg et al., 2020).

21





2.3 Conventional radiomics

where x and y are coordinates of pixels surrounding the central pixel on which the equation is

used to calculate the convolution. The value of is particularly important in emphasizing image

details. A small value of emphasizes fine image details, whereas larger values highlight coarser

image details. The LoG filter profile depends on the 1D radius 'r' that corresponds to the radial

second-order derivative of a general D-dimensional Gaussian filter. Hence, for a D-dimensional

LoG filter, the above equation can be written as

LoG(r ) = 2 1

σ2

(
1:
2πσ

)D (
D 2 'r'2

σ2

)
e

2
'k'2

2σ
2 (2.26)

The application of the LoG filter on images enhances the short-range differences in pixel in-

tensities and reveals the texture appearance according to the value. In this work, 3D LoG filters

were used to transform 3D volumetric data.

2.3.4 Radiomics modelling pipeline

After image pre-processing and feature extraction, the next steps within the computation pipeline

of radiomics comprises feature selection and machine learning based predictive modelling to

predict the outcome of interest. In the following section, modelling steps are described more in

detail.

Robustness

The previously mentioned features from different feature classes are sensitive to changes in the

experimental conditions used for image acquisition and must be assessed for repeatability and

reproducibility. ‘Repeatability’ refers to features that remain the same when imaging is performed

multiple times in the same subject. ‘Reproducibility’ refers to features that remain the same when

imaging is performed using different software applications, image acquisition settings or imaging

performed at different clinics. Studies have shown that features that lack repeatability and re-

producibility (non-robust features) deteriorate the performance of machine learning models and

increase the risk of false predictions when applied to new data (Traverso et al., 2018). Therefore,

careful filtering of non-robust features is very important for reducing the risk of poor generalizabil-

ity of radiomics models. Conventionally, feature robustness is assessed by computing features

from test-retest imaging (Tixier et al., 2012; Leijenaar et al., 2013; Balagurunathan et al., 2014a;

van Velden et al., 2016). In test-retest imaging, the imaging process is repeated after a few hours

or days, acquiring similar but not identical images. Thus, the features extracted are also not

identical and have reduced intra-class correlation. This helps to identify non-robust features that

change significantly due to small variations in imaging conditions.

However, acquiring images under test-retest condition for every radiomics study is not clinically

feasible. Therefore, in order to mimic the perturbations induced by difference in imaging con-
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ditions, various handcrafted perturbations, e.g., rotation, translation, noise, volume adaptation,

and contour randomization, are applied to acquire single images as proposed by Zwanenburg et

al. (Zwanenburg et al., 2019a). Rotation perturbs the image and corresponding segmentation

mask by rotating them at specified angles θ * [2θç, θç] along the temporal axis (z-axis). When

perturbing the image by translation, both mage and mask are shifted by a specified fraction η of

isotropic voxel spacing along x , y and z. The translation fraction is permuted over the different

directions, thus generating a new image for each permutation. Noise is an additive perturbation

drawn from a normal distribution with mean 0 and standard deviation equal to the noise present

in the images. Volume adaptation expands and/or shrinks the ROI by a specified fraction. Con-

tour randomization is based on linear iterative clustering (Scharstein & Pal, 2007) and perturbs

the mask by randomly selecting supervoxels based on the overlap with the original mask. Noise

and contour randomization can be repeated multiple times, and each repetition generates a new

image. Similarly, each rotation angle and volume adaptation lead to the creation of a new image

and ROI mask.

The pipeline for introducing image perturbation is incorporated in the radiomics feature extrac-

tion software MIRP (Zwanenburg et al., 2019a; Zwanenburg et al., 2019b). Feature computation

is then executed on base images resulting in baseline or unperturbed features, and features

extracted with combinations of perturbations. Robustness of each perturbed feature is then eval-

uated on a scale of 0-1 using the intraclass correlation coefficient (ICC) (1,1)(Shrout & Fleiss,

1979). The ICC value of 1 indicates that the feature is fully repeatable between perturbations,

while lower values indicate increasing variance between different perturbations and thus lower

repeatability. Normally, ICC values are computed with a 95% confidence interval (CI). Within this

thesis, features with the lower boundary of the 95% CI of the ICC below 0.80 are considered as

not reproducible. After the filtering step, the baseline version of the reproducible features is used

for modelling.

Clustering

Considering different feature classes as mentioned previously, it becomes obvious that hundreds

of radiomics features can be extracted from a single image. Features may show high degrees

of correlation with each other and this increases the risk of model overfitting resulting in unfit

model coefficients and false predictions or type I error (Chalkidou et al., 2015). Therefore, after

performing a preliminary analysis for selecting robust features, the feature space can be further

reduced by correlation and redundancy analysis (Balagurunathan et al., 2014b; Parmar et al.,

2015). Cluster analysis refers to the discovery of distinct and non-overlapping subpopulations

within a large population (Jain & Dubes, 1988). Cluster analysis for the radiomics features aims

to create groups (clusters) of similar features with high redundancy. There are different types

of clustering algorithms such as k-means clustering (McQueen, 1967; Hartigan, Wong, et al.,

1979), agglomerative hierarchical clustering (Hastie et al., 2001), and model-based probabilistic
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clustering (Titterington et al., 1985; Banfield & Raftery, 1993; Cheeseman, Stutz, et al., 1996).

However, in this work, we focused on agglomerative hierarchical clustering due to its intuitive

appeal and its data visualization properties. Hierarchical clustering starts with as many clusters

as there are features. The number of clusters is reduced by one at each step by combining two

clusters based on some optimization criteria. The most used criterion for merging clusters is

dissimilarity between two clusters. In single linkage (smallest dissimilarity) the distance between

two clusters is represented by the minimum distance between all possible pairs of features in

clusters. In average linkage (average dissimilarity) the distance used is the average of all pairs of

features and in complete linkage (maximum dissimilarity) the distance is the maximum between

all possible pairs of features in two clusters. Several distance metrics can be used, such as

Euclidean distance or correlation dissimilarity. In this work, average linkage in combination with

Spearman correlation (ρ) was used for optimization and ρ f 0.8 was defined as a threshold for

placing features into the same cluster after hierarchical clustering. The feature with the highest

mutual information with the endpoint was selected as the representative for each cluster and

used for further modelling.

Feature transformation and normalization

After selecting non-redundant features for downstream modelling of some endpoint of interest,

we attempt to improve feature distributions. Imaging features might vary in their distribution due

to skewness. In order to map features to a more central, normal, distribution, a simple log-

transformation, more complex Box-Cox (Box & Cox, 1964) or Yeo-Johnson transformations (Yeo

& Johnson, 2000) from a parametric family of transformations can be used. Within this thesis,

features were transformed using the Yeo-Johnson transformation, which is defined as:

ψ(λ, y ) =





((y+1)λ 2 1)/λ if λ ;= 0, y g 0

log(y + 1) if λ = 0, y g 0

[(-y+1)22λ 2 1] if λ ;= 2, y < 0

-log(2y + 1) if λ = 0, y < 0

(2.27)

where y is a value of a feature that can be negative and is a transformation parameter which

optimized via maximum likelihood estimator. Yeo-Johnson transformation is also known as a

power transformation, as the variable y is raised to a particular power. Figure 2.7 shows the

distribution of an example feature before and after applying the Yeo-Johnson transformation. After

applying the power transformation, a widely used strategy to is to standardize feature values to

have a zero-mean and unit-variance. This can be achieved by applying z-score normalization,

defined by

y 2 =
y 2 µ(y )

σ(y )
(2.28)
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where t ranges from 0 to infinity. S(t) is the probability that an individual is still alive at time

t . Theoretically, the survival function can be portrayed as a smooth curve, as shown in Figure

2.8(a). The survival function is non-increasing with S(0) = 1, as no event can occur prior to t = 0.

For a limited dataset, the survival curve is estimated as a step function as shown in Figure 2.8(b)

through use of the Kaplan-Meier estimator. S(t) is accompanied by a hazard function, which is

the instantaneous rate of event and defined as follows:

λ(t) = lim
∆t³0

Pr[t < T f t + ∆t |T > t ]

∆t
=

f (t)

S(t)
(2.30)

where - f (t) is the derivative of S(t), which suggests writing Equation 2.29 as

λ(t) = 2 d

dt
log S(t) (2.31)

Integrating Equation 2.31 from limits 0 to t with the boundary condition S(0) = 1, we can obtain

the probability of surviving to duration t as a function of hazard at all durations up to t :

S(t) = exp(2
ˆ t

0

λ(x) dx) (2.32)

Λt =

ˆ t

0

λ(x) dx (2.33)

where Λt is called cumulative hazard function, and thus it holds that

S(t) = e2Λ(t) (2.34)

One method of studying the effect of covariates in survival models is the Cox proportional hazard

models (CPHM).CPHM assumes that a unit increase in a covariate has a multiplicative effect on

the hazard function, i.e. the relative hazard function eβT x (β being a set of unknown regression

parameters) is multiplicative with the baseline hazard λ0(t)

λ(t |x) = λ0(t)eβT x (2.35)

where λ(t |x) is the hazard function of a person with covariates x . The CPHM is a semi-parametric

model because the baseline hazard λ0(t) remains unspecified, while the parameter estimate in

the CPHM is carried out by maximizing the Cox’s partial likelihood of the coefficients.

L(ω) =
∏

Ti uncensored

eβT xi

∑
Tj gTi

eβT xj
(2.36)

The above equation provides the probability that one event occurred for the ith individual at time

Ti with respect to the remaining individuals with Tj g Ti still at risk of an event.
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censored survival time (Ti ) of one subject is greater than the uncensored survival time (Tj ) of the

other subject. Thus, the C-index can be interpreted as the fraction of all possible subject pairings

whose predicted and actual survival times (or hazards) are orders in the same way. It can be

written as:

C =
1

|N|
∑

Ti uncensored

∑

Tj >Ti

1f (xi )<f (xj ) (2.38)

where |N| is the number of all pairs, f is the model applied for prediction and f (xi ) is the time

predicted for ith the subject. The indicator function in above equation 1a<b = 1 if a < b and 0

otherwise. The value of the C-index ranges between 0 and 1: a value of 0.5 indicates that the

predicted values do not reflect the correct order of events according to their observed survival,

whereas the values 0.0 and 1.0 indicate that the predicted values reflect the correct order of

events according to their observed survival, with the value of 0.0 being applicable to predicted

values that have an inverse relationship to survival.

2.5.2 Confusion matrix

In a binary classification problem, the given data point can either be positive with an assigned

label of 1, or negative with label 0. Hence, there are four possible combinations of predicted and

true label: If a positive label was observed, and it is classified as positive by a classifier, it is

referred as true positive (TP), whereas if it is classified as negative by a classifier, it is referred

as false negative (FN). Similarly, if a negative was observed, and it is also classified as negative

by a classifier it is referred as true negative (TN), and if it is classified as positive by a classifier it

is referred to as false positive (FP). These combinations can be arranged as a confusion matrix,

as shown in Figure 2.9(a). The confusion metric can be used to compute a number of different

metrics. However, an important aspect that should be considered before computing any evalua-

tion metric is class imbalance. Class imbalance refers to the skewed distribution of class labels,

with the most frequent class referred to as majority class. Some metrics, such as accuracy, may

produce misleading values when class imbalance is present. Below we will discuss the metrics

that were used in this work and the effect of class imbalance on each of them.

2.5.3 Sensitivity

Sensitivity is the ratio of correctly classified positive samples to the total number of actual positive

samples and hence it is also referred as true positive rate (TPR):

Sensitivity =
TP

TP + FN
(2.39)

When positive samples are disproportionally more frequent, a simple naive classifier that always

predicts the majority class yields a high sensitivity value. This indicates that sensitivity may be

optimistically biased under class imbalance.
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2.5.4 Specificity

Specificity is the ratio of correctly classified negative samples to the total number of actual nega-

tive samples, hence it is also referred as true negative rate (TNR):

Specificity =
TN

TN + FP
(2.40)

When negative samples are disproportionally higher, generally the classifier would be biased

towards the negative class and thus specificity would be high.

2.5.5 Accuracy

Accuracy is defined as the ratio of correctly classified samples (TP, TN) to the total number of

samples:

Accuracy =
TP + TN

FP + TP + TN + FN
(2.41)

Accuracy treats all error types 8 (FP, FN) as equal. However, equal is not always preferred, in

particular when the samples are imbalance in terms of positive and negative class distribution.

2.5.6 Area under the ROC curve

Finally, another metric summarizing the performance of a binary classifier is the AUC. After fitting

a classifier for a binary classification problem on training data, the model is applied on test data

and predictions are made in the form of probabilities or scores, which are then transformed

into normalized probabilities. Each of these probabilities is then used as a threshold to convert

predicted probabilities into class labels. An ROC curve is a plot of TPR against false positive

rate (FPR) (1-specificity) for all possible threshold values. As shown in Figure 2.9(b) reducing

the threshold value decreases both TPR and FPR. AUC measures the 2D area underneath the

ROC curve, thus providing an aggregate performance measure across all possible thresholds. It

is measured on the scale of 0 to 1 where a value of 0.5 indicates that the predicted values do not

reflect the correct labels, whereas the values 0.0 and 1.0 indicate that the predicted values reflect

the correct labels, with the value of 0.0 being applicable to predicted values that have an inverse

relationship to labels. AUC measures the quality of a model’s prediction irrespective of selected

thresholds, therefore it is generally a desirable evaluation metric in presence of imbalanced data.

2.6 Machine learning and deep learning

In this section, we provide an overview of feature selection methods together with machine learn-

ing algorithm and basic principles and terminologies of DL used in this thesis.
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correlation (Peng et al., 2005). This is achieved by selecting the feature that maximizes the score

(f ) using greedy forward selection based on MI (I) as follows:

f (xi , y ) = argmax


I(xi , y ) 2 1

|S|
∑

Sj *S

I(xi , Sj )


 (2.43)

where S is the number of already selected features.

Univariate and multivariate regression

For each feature (univariate) or subset of features (multivariate), logistic regression and Cox

regression models are built for binary classification problems and for time-to-event endpoints,

respectively. These models are then assessed on a holdout test set, and ranked according to

AUC values for logistic regression and C-index for Cox regression models.

Elastic net

The standard algorithms for binary and time-to-event outcome are logistic regression and Cox

regression, respectively, that assume a linear relationship between features x and output y . An

extension to these algorithms involves adding penalties or regularization to the loss function,

which encourages simpler models that have smaller coefficient values. The elastic-net (EN) al-

gorithm is a type of regularized model that combines two types of penalties, i.e. L1 and L2 penalty

functions (Zou & Hastie, 2005). L1 regularization adds a penalty equal to the absolute value of

the magnitude of the coefficients of the model. A regression model that uses L1 regularization is

called Lasso regression. L2 regularization minimizes the size of coefficients but no coefficient is

turned exactly to zero, thus preventing coefficients from getting removed from the model. The fi-

nal estimates from the EN method with L1 and L2 regularization for regression (linear or survival)

model is defined as

E = Loss + λ(α
k∑

j=1

|βj | +
1 2 α

2

m∑

j=1

β2
j ) (2.44)

where βj = β1,β2, ... ,βk are the coefficients of the model and λ denotes the amount of shrinkage.

When λ = 0 no feature is removed and when λ = >, all features are removed. penalty term that

decides how much we want to penalize the model. When α = 1 the loss function reduces to L1

regularization and when α = 0 the loss function reduces to L2 regularization.
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2.6.2 Machine learning algorithms

Machine learning algorithms are used to find the mapping between input features and an outcome

of interest. In this section, we describe the more advanced machine learning algorithms used in

this thesis.

Random forest

The random forest (RF) (Breiman, 2001) is a machine learning algorithm that leverages the power

of multiple decision trees to map input features to outcome labels. Decision trees (Magee, 1964)

are developed incrementally by breaking down the dataset into smaller subsets, resulting in a tree

with leaf nodes and decision nodes. Each decision node has two or more branches, while each

leaf node represents the final decision of classification or regression for the subset of samples

contained within this node. Important features are on average selected early in the tree-forming

process, depending on hyperparameters of the algorithm like the number of features assessed

for each node. One of the widely used methods for selecting features on each node is called the

Gini index (G). In case of a binary classification problem, it is calculated as follows:

G = 1 2 P2(yi = 0) 2 P2(yi = 1) (2.45)

where P is the probability of a data point being classified for a distinct class. The Gini index

measures how effectively a predictor splits the mixed classes into two or more groups. However,

decision trees tend to perform worse if complex interactions are present in the data and small

variations in the data can generate very different looking trees, resulting in high variance. RFs

tend to eliminate some of these limitations. RF methods reduce the variance of individual decision

trees by constructing M different decision trees, each with its own predictions for outcome. The

final predictions are then ensembled and one of the commonly used ensembling method for

getting final model predictions is majority voting. This concept can be represented by the following

function

f (xi ) =





1 if 1
M

∑M
m=1 fN > 1

2

0 otherwise
(2.46)

where M is the number of trees, fN is a tree with n training examples and x is the feature vector. In

case of binary classification, fN is a measurable function of the training data and feature vector xi ,

that is used to estimate label y . Moreover, feature subsets are randomly created when growing

RF, and the splitting algorithm searches for the best feature in this subset. This results in a wider

diversity of features being used, which may help create a better model.

For time-to-event problems, a random survival forest (RSF) is used (Ishwaran et al., 2008).

The main difference between RF for classification and RSF for estimating survival endpoints is

that the feature split on root nodes of the decision tree is created by maximizing the log-rank test

statistic instead of computing the Gini index.
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Boosted gradient linear and tree models

Gradient boosting is a type of ensemble method that combines output from multiple weak learn-

ers with the aim of creating an ensemble model that is better than any of the underlying weak

learners. New learners are crated to correct the residual errors in the predictions from previous

learners. The gradient in gradient boosting refers to the gradient of the loss function, which is

the target value for each new learner to predict. If we let F (X , θ) be a function that maps input

features x to output labels y , then the boosting procedure fits an additive model of the form:

F (X , θ) =

M∑

m=1

βmfm(x , θm) (2.47)

where fm(x , θm) is the individual learner, θm is a set of parameters and βm is the coefficient of the

mth model. Multiple learners are created in a consecutive manner, each of them minimizes the

loss function over training data by considering the output of previous learners. Thus, boosting is

a forward stage-wise additive technique. In case of gradient boosting the optimization method is

the following minimization using the loss function L:

f̂m(X ) = min

n∑

i=1

L(yi ,

M∑

m=1

βmfm(x , θm))

︸ ︷︷ ︸
{βm,θm}

(2.48)

One of the most popular methods of gradient boosting is Extreme Gradient Boosting (XGB) (Chen

& Guestrin, 2016) that still minimizes the same loss function, however, it performs second order

Taylor expansion to gain analytical tractability. In this thesis, we used XGB linear and XGB tree

models for binary classification and time-to-event outcome data.

2.6.3 Deep learning

In this thesis, CNN are used for the diagnostic and prognostic studies on GBM. Therefore, in

this section, we provide a summary of key concepts in DL. For a more detailed and in-depth

discussion on deep neural network (DNN) and CNN, please read the referred literature to (LeCun

et al., 2015; Weidman, 2019).

Neural network

Neural networks are inspired by networks of neurons in the human brain. Therefore, each com-

putational unit in a neural network is also referred to as a neuron. Multiple neurons are organized

in layers to form a neural network (Figure 2.10). A typical (shallow) neural network consists of an

input layer that takes in the data, one hidden layer that perform transformations on the data and

an output layer that maps these transformations to the results. To get meaningful predictions,
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neural networks can be trained to recognize the patterns in the data. Each neuron in a neural

network takes one or more inputs and computes an output as follows:

ouput = h(wT x + b) (2.49)

where x represents an input vector, w is the weight vector, b is the bias and h is a non-linear

activation function. During computation, every input value in x is multiplied with a weight in w

and finally offset is provided to data by adding bias b. The linear combination thus formed is

transformed via a non-linear activation function h to produce the final output. Common choices

for non-linear activation function are the sigmoid function (Bishop & Nasrabadi, 2006):

h(x) =
1

1 + e2x
(2.50)

the hyperbolic tangent function:

h(x) =
ex 2 e2x

ex + e2x
(2.51)

and the rectified linear unit (ReLU):

h(x) = max(0, x) (2.52)

A single hidden layer neural network with a linear combination of N individual neurons can ap-

proximate any continuous function f̂ (x) as follows:

f̂ (x) =

N21∑

i=0

vih(wT
i x + bi ) (2.53)

where vi is the combination weights between neurons. A DNN can be composed by combining

more hidden layers that are connected to each other. Due to the multi-layer architecture, deep

neural networks are capable of representing features in a hierarchical fashion, i.e. layers close to

the input extract lower-level or minor features from the input data, while layers close to the output

extract higher-level or more detailed information. The ability to represent features as a non-linear

combination of lower level features sets them apart from conventional machine learning methods

(Bengio et al., 2009). A neural network with multiple layers can be defined as:

f̂ (x ; θ) = (fm, ... , f1)(x) = hm(hm21(... (h2(h1(wT
1 x + b1) + b2) + ...) + bm21) + bm) (2.54)

where θ defines parameter set with weights and biases and these parameters are learned during

the training process of the neural network. The aim of parameter learning is to reduce the error

E(θ) between ground truth and predicted values, however, this cannot be achieved by finding

an analytical solution of the equation 'E(θ) = 0. This is because the optimization problem is

non-convex with multiple local minima beside one global minimum. Therefore, iterative numerical
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Convolutional neural network

A CNN is a type of deep neural network that is specifically designed for image classification and

detection tasks. CNNs are capable of extracting spatial relationships from nD (where n=1,2,3,4)

imaging data by using the mechanism of local receptive fields, image subsampling and weight

sharing. Typically, a CNN has convolution layers, activation or nonlinearity layers, pooling or

subsampling layers, fully connected layers and finally an output layer.

Convolution layer: In a CNN an input is a tensor of shape:

N × H × W × C (2.56)

where N is the number of input samples also known as batch size, H and W are height and width

of inputs, respectively, while C is the number of input channels (one channel for greyscale images

and three channels for RGB images). Convolutional layers convolve the input with connected

weights or learnable filter kernels. Normally, for 2D imaging data such as natural images, 2D

filters are used to extract spatial features and kernel slides along 2 dimensions of the image

(single slice for medical imaging) as shown in Figure 2.12(a). In 3D-CNNs, the kernel slides in 3

dimensions, as illustrated in Figure 2.12(b). Medical images such as CT and MRI are normally

acquired in a 3D fashion and information in each slice is related to the slice next to it, thus

providing a complete view of internal organs. Therefore, 2D CNNs inherently fail to leverage

context from the adjacent slice if used for 3D medical imaging data. 3D-CNNs address this

issue by using 3D filters in order to extract features from a volumetric patch of a scan. The

ability to extract interslice context can lead to improved predictions. However, this improvement

in performance comes at the cost of a large number of parameters and computational resources

required to train a 3D-CNN (Singh et al., 2020).

Non-linearity layer: The convolutional layer is followed by a non-linearity layer that consists of

an activation function. The purpose of activation functions is mainly to add non-linearity to the

network, which otherwise would constitute a linear model. The most commonly use activation

function is ReLU.

Pooling layer: The feature map of the convolution layer is downsampled in the pooling layer.

The basic role of the pooling layer is to reduce the spatial size of the feature map and thereby

reduce the number of parameters and computational burden of the network. Normally, a pixel

window of size 2 × 2 is selected on a feature map and maximum (max pooling) or average

(average pooling) of these pixels is considered as new pixel value for the feature map. Thus, if

we select a pixel window of size 2 × 2 with a stride (number of pixels shift over the input matrix)

on a feature map is of size 6 × 6 (36 pixels), then the output pooled feature map will be of size

3 × 3 (9 pixels).
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Figure 2.13: An illustration of VGGNet. Conv: convolution layer, FC: fully connected layer.

ResNet: This architecture for CNN was proposed in the paper “Deep Residual Learning for

Image Recognition,” which achieved success on the 2015 version of the ImageNet ILSVRC chal-

lenge (He et al., 2016). First contribution of ResNet paper shows that if you just keep stacking

convolutional layers on the top of activations, such as in VGGNet, performance starts getting

worse as the network grows deep. A key innovation in the ResNet was the residual module or

residual block (Figure 2.14). A residual block can be realized by feedforward neural networks

with shortcut connections. The shortcut connections perform identity mapping, and their outputs

are added to the outputs of the stacked convolution layers. Thus, the output from each layer is

not only fed into the layer next to it, but also added to layers that are 2–3 hops away. With the

help of shortcut connections training of convolutional layer in some residual blocks of ResNet can

be skipped and thus different part of network are trained at different rates. This helps to produce

improved accuracy with increased depth of network. A 18-layer ResNet architecture (ResNet18)

with repeated residual blocks is shown in Figure 2.14

DenseNet: This architecture was published in the paper ’Densely Connected Convolutional

Networks’ (Huang et al., 2017). DenseNet achieved higher accuracy than previous published

models (such as ResNet) on ImageNet dataset. The network is composed of dense blocks.

Within each dense block convolution layers are densely connected together i.e. the output feature

maps from each layer are fed into the input of all subsequent layers. A dense block is composed

of repeated stack of batch normalization (BN) layer followed ReLU activation and 3×3 convolution

layer as shown in Figure 2.15. The dense connectivity ensures the maximum flow of information

because each layer has direct access to the original input signal as well as gradients from the

loss function, thus making it easy to train the model. DenseNet has an additional layer called

transition layer that assures the concatenation of feature maps that each layer receives from the

previous layer. Figure 2.15 shows the basic architecture of DenseNet.
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2 Theoretical background

training a DNN and CNN requires the optimization of a loss function. Faraggi et al. (Faraggi

& Simon, 1995) first introduced the CPHM in a single hidden layer feed forward neural network

by replacing the output of hidden node from the logistic function to the CPHM. Katzman et al.

(Katzman et al., 2018) introduced DeepSurv, a feedforward deep neural network that estimates

the log-risk function βT x as shown in Equation (38) parametrized by the weights of the neural

network. Similarly, CNNs can be adapted to optimize the Cox proportional hazard likelihood for

predicting survival, as shown by Starke et al. (Starke et al., 2020) and Meier et al. (Meier et al.,

2020). The CPHM assigns hazards or risks of event to every observation, which can subse-

quently be used to assign observations to high and low risk groups. In case of CNNs, we first

restrict the output of the network by using a single neuron with tanh activation. In CNNs, the layer

before the output layer defines a feature vector x extracted from the input image volumes which

is then multiplied by a weight vector w to give a scalar risk value βT x . In the CNN forward pass,

n feature vectors are extracted from the input patch of images X = {xi} where i=1,2,3. . . , n. In

case of the CPHM for CNN, the loss is given by the following negative log partial likelihood

l(X , w) = 2
∑

i ;δi =1


βT xi 2 w log

∑

j :Tj gTi

eβT xj


 (2.57)

where βT x is the output of the CNN and i indicates a patch coming from an uncensored obser-

vation (δi = 1) and Ti is the corresponding survival time. The inner sum is over all patches j from

patients that have longer or equal survival time than Ti , β
T xi is the risk associated with patch i ,

while eβT xj is called the partial hazard. It is worth mentioning that the minimization of the negative

of the Cox partial log-likelihood function is carried out over the batch of images for each epoch of

data in the forward pass.

2.6.5 Binary cross entropy loss in deep learning

In case of diagnostic modelling for binary outcome, the most commonly used loss function is the

binary-cross entropy (BCE) loss. With BCE loss, the CNN returns the probability of a data point

to come from the positive class, i.e. πi = P = (yi = 1|xi ). This loss function is equal to the negative

log-likelihood of a Bernoulli distributed response variable with parameter n and has the form

L(yi ,πi ) = 2yi lnπi 2 (1 2 yi ) ln(1 2 πi ) (2.58)

BCE is the Kullback-Leibler divergence between the true label yi and the predicted probability πi .

It assigns a cost to the misclassified sample based on how incorrect the prediction is, i.e. the

cost is not the same for all incorrectly classified samples.
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treatment in locally advanced rectal cancer

3.1 Motivation

The treatment of LARC has evolved substantially during the past decade. Along with improve-

ments in preoperative staging and surgical techniques, the use of nCRT before surgery has

helped to decrease LC rates (Sauer et al., 2004). With this focus on loco-regional neoadjuvant

treatment options, LC occur less often than with upfront surgery so that now distant failures have

become the primary cause of morbidity and mortality for patients with locally advanced tumours.

Furthermore, the response to nCRT in LARC patients varies greatly, ranging from pCR with no

viable remaining tumour cells to continuing illness (pathological non-responder (pNR)) (Thies

& Langer, 2013). For patients who have achieved a clinical complete response (cCR) following

nCRT, the implementation of organ-preserving and low-morbidity procedures (Chau et al., 2006),

or watch-and-wait methods, is receiving more attention (Dossa et al., 2017).

Many recent studies have focused on personalized treatment strategies to improve outcomes

of patient populations with heterogeneous treatment response in LARC. However, there is still an

unmet need of validated biomarkers that enable precise identification of the patient population

that can benefit from organ preserving techniques or adjuvant therapies for improving long-term

outcome. Numerous studies have examined molecular information, including gene expressions,

mutations, and single nucleotide polymorphisms as potential biomarkers of response to nCRT

in LARC (Rimkus et al., 2008; Boige et al., 2010; Duldulao et al., 2013). The inclusion of non-

invasive biomarkers from clinical imaging may further increase the robustness and accuracy of

corresponding prognostic models.

Recently, radiomic analyses employing classical statistics and modern machine learning algo-

rithms to identify biomarkers based on multimodality imaging have shown a great potential for

treatment outcome prediction in different cancer entities (Parmar et al., 2015; Gillies et al., 2016;

Song et al., 2020). Radiomics models are widely developed on features extracted from T2-w

MRI to predict patient’s response to nCRT and long-term outcomes including FFDM and overall

survival in LARC (Caruso et al., 2018; Cusumano et al., 2018; Dinapoli et al., 2018; Antunes

et al., 2020; Petkovska et al., 2020; Petresc et al., 2020), and multiparametric MRI (mpMRI) (De

Cecco et al., 2016; Nie et al., 2016; Giannini et al., 2019; Zhou et al., 2019). Few studies have

considered radiomic features extracted from CT imaging (Chee et al., 2017; Bibault et al., 2018),

PET (Bang et al., 2016; Van Helden et al., 2018), or a combination of CT and MRI features (Li

et al., 2020b). Although the outcomes of these analyses are positive, crucial factors such as

determining feature robustness were not always considered, and external validation was rarely

carried out.
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One key challenge in radiomic-based prognostic modelling is the selection of features that cor-

relate well to the endpoint of interest. Different classes of features are commonly extracted, either

directly from the images or after applying different filters (Shahzadi et al., 2021). The different fea-

ture classes normally extracted include: (i) morphological features that describe the shape of the

ROI, (ii) FO features that describe the voxel intensity distribution, (iii) SOT features that describe

statistical interrelationships between neighbouring voxels, and (iv) higher order features, where

(i)-(iii) are extracted after applying transformations on the base images (see Section 2.3 for more

details). In several studies, morphological and first order (MFO) extracted from pre-treatment

T2-w MRI (De Cecco et al., 2016; Chidambaram et al., 2017; Cusumano et al., 2018; Coppola

et al., 2021) had a high association to treatment response in LARC. Other studies considered

SOT features only (Caruso et al., 2018; Cheng et al., 2021; Delli Pizzi et al., 2021) or in combina-

tion with MFO and SOT features (Zhou et al., 2019; Antunes et al., 2020; Petkovska et al., 2020;

Petresc et al., 2020). However, it is generally unclear which of these feature classes will have

the highest prognostic impact. Further, the direct combination of radiomic features may bring

redundant information to the final model that may reduce its performance in external validation.

Therefore, the main objective of this study is to identify and independently validate novel ra-

diomic signatures for the prognosis of tumour response to nCRT and FFDM in patients with LARC

using a multicentre retrospective cohort of the German Consortium for Translational Cancer Re-

search - Radiation Oncology Group (DKTK-ROG). In particular, we investigated the prognostic

value of different feature classes, and developed multimodal radiomics signatures combining pre-

treatment CT and T2-w MRI with clinical characteristics. The work presented within this chapter

has been published in an international journal (Shahzadi et al., 2021) and was presented at an

international conference (Shahzadi et al., 2022b).

3.2 Materials and methods

3.2.1 Patient cohort

In this retrospective study, multicentre data consisting of 190 patients was collected within the

DKTK-ROG from four partner sites and divided into training and validation data based on the site

(122 and 68 patients, respectively). 94 out of 122 patients of the training data were treated at

the University Hospital Dresden (UKD, Germany) between 2006 and 2014. The remaining 28

patients were treated at the Klinikum rechts der Isar Munich (MTU) between 2007 and 2013. In

the validation data, 12 out of 68 patients were treated at the University Hospital Freiburg between

2008 and 2013, while the remaining 56 patients in validation data were treated at the University

Hospital Frankfurt between 2007 and 2015.

Patients included in this study were diagnosed with histopathologically confirmed LARC and

underwent nCRT followed by surgery. Additional inclusion criteria for our study were the avail-

ability of pre-treatment MRI, treatment planning CT with sufficient image quality, and endpoint
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Table 3.1: Patient, tumour, and treatment characteristics for the LARC training and validation data.

Training data (122) Validation data (68)

Variable Median Range Median Range p-value

Age (years) 59.5 24-79 63.5 21-86 0.26

Number % Number %

Gender Male/female 79/43 65/35 48/20 71/29 0.51

cT 2/3/4/unknown
6/98/18/

0

5/80/

15/0

7/53/

7/1

10/78/

10/2
0.23

cN 0/1/2/3/unknown
7/112/2/

1/0

6/92/2/

1/0

8/54/1/

4/1

11/79/

2/6/2
0.06

Grading 0/1/2/3/unknown
10/5/71/

36/0

8/4/58/

30/0

4/3/53/

5/3

6/4/78/

8/4
0.001

UICC stage 1/2/3/4/unknown
0/7/115/

0/0

0/6/94/

0/0

1/7/52/

3/5

2/10/77/

4/7
<0.001

Localization (cm) 3-6/>6-12/>12-16 65/54/3/0
53/44/

3/0

24/37/

6/1
35/54/9/2 0.02

RT dose (Gy) 50.4/45 95/27 78/22 66/2 97/3 <0.001

Chemotherapy

regimen

5FU/5FU+OX/

CAP/CAP+other
97/10/7/8 80/8/6/7

59/7/

2/0
87/10/3/0 0.13

Response (TRG) 0/1/2/3/4
0/23/61/

24/14

0/19/50/

20/11

3/14/30/

10/11

4/21/44/

15/16
0.13

Distant metastases No/yes 103/19 84/16 52/16 76/24 0.25

Abbreviations: cT=clinical T stage; cN=clinical N stage; RT=radiation therapy;

TRG= tumour regression grade; CAP= capecitabine; OX=oxaliplatine; FU=fluorouracil.

information. Ethical approval for the multicentre retrospective analyses was obtained from the

Ethics Committee at the Technische Universität Dresden, Germany (BO-EK-385082020). The

details of the patient characteristics for training and validation cohorts are summarized in Table

3.1.

The endpoints considered for evaluation were tumour response to nCRT and FFDM. Tumour

response was determined by expert pathologists from the work-up of the surgical specimens.

The response to nCRT depicts regressive changes in the tumour, and it is evaluated on a scale

from 0-4 following Dworak et al. (Dworak et al., 1997), with 0 being no regression to 4 being

complete regression. A detailed description of the tumour regression grade (TRG) is presented

in Appendix Table A.1.

The survival endpoint FFDM was calculated from the first day of nCRT to the day of event or

censoring. For patients with observed distant metastases, the event time was indicated by an

event indicator variable of 1, whereas for patients without an observed event, the last follow-up

time was used together with an event indicator variable of 0.

3.2.2 Experimental design

In this study, we develop and independently validate radiomic signatures for the prognosis of

tumour response to nCRT and FFDM in patients with LARC using pre-treatment CT and T2-w

MR imaging based on different radiomic feature classes. Figure 3.1 summarizes the design of

this study. Imaging features were computed from the GTV individually on the treatment-planning
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CT and pre-treatment T2-w MRI, including MFO, SOT, and intensity features of LoG transformed

imaging. The features were filtered for stability under small image perturbations and clustered.

In order to assess which image modality is more suited for the prediction of the endpoints and

which feature class has the highest prognostic value, four radiomic models were developed on

the training cohort individually for each imaging modality based on (i) MFO, (ii) SOT, (iii) LoG, and

(iv) all features, i.e., the combination of MFO, SOT, and LoG features. In an additional analysis,

the selected features from CT and T2-w MRI were combined for each of the cases (i) to (iv) to

assess the benefit of multimodal radiomic models. The performance of each signature was then

validated on the independent validation data using the AUC and the C-index for the prognosis

of tumour response and FFDM, respectively. In the following paragraphs, the details of image

processing and modelling are outlined.

3.2.3 Image acquisition

The training and validation imaging datasets were retrieved from the Picture Archiving and Com-

munication System (PACS) in the respective centres. Staging T2-w MRI were acquired before

nCRT with either a 1.5 T or a 3T scanner. Patients received a CT scan for treatment planning

prior to radiotherapy. Appendix Table A.2 summarizes MR and CT image acquisition and recon-

struction parameters for training and validation data. The GTV was delineated for each patient

on T2-w transversal MR images by an experienced radiation oncologist and confirmed by a ra-

diologist on both training and validation data. CT images were coregistered with MRI using rigid

registration in RayStation 8B SP2 (RaySearch Laboratories, Stockholm, Sweden) and the GTV

were transferred to the CT.

3.2.4 Image pre-processing, and feature extraction

Appendix Figure A.1 represents the process of image preprocessing as previously described

(Shahzadi et al., 2022b). MRI images were first corrected for background phase variations that

arise due to magnetic field inhomogeneities. This was achieved by creating a mask of the soft tis-

sue region in the image using the Canny Edge detection algorithm (Canny, 1986) and multiplying

the true image with the mask, setting all the background phase variations to zero. Bias field ef-

fect in MR images was minimized by using N4ITK bias correction method (Tustison et al., 2010).

Image intensities were scaled using the 95th percentile of image intensities, i.e. 5% of the highest

image intensities were ignored, representing potential outliers. Further image pre-processing and

subsequent feature extraction was performed with Medical Image Radiomcis Processor (MIRP)

Python toolkit (version 1.1.3) (Zwanenburg et al., 2019b) (see Section 2.3.2 for image processing

details). In order to adjust the voxel spacing and slice thickness between the datasets, MR and

CT image voxels were resampled to an isotropic voxel size of 1.0 × 1.0 × 1.0 mm3 using trilinear

interpolation. In order to remove voxels containing air and bone, the GTV re-segmentation be-

tween 2150 and 180 HU was performed on CT images to cover only soft tissue voxels. A set of
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Figure 3.1: Design of the modelling study as presented in (Shahzadi et al., 2022b). Treatment planning

computed tomography (CT) and pre-treatment T2-w MRI data were collected from four centres and divided

into training and validation data. MRI data were pre-processed and gross tumour volume (GTV) was

delineated, which was then transferred to CT images after rigid registration. Different feature classes

were extracted from both modalities and signatures were developed on training data for tumour response

prediction to nCRT and FFDM in a cross-validation cross-validation (CV) setting. These signatures were

validated independently for both endpoints.
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LoG filters with 5 different kernel widths (1 mm, 2 mm, 3 mm, 4 mm, 5 mm) was applied individu-

ally to the base MRI and CT images. The five response maps thus generated were averaged to

create a single image.

Once image pre-processing was done, imaging features were computed from baseline and

LoG transformed images. A set of 25 morphological and 57 first-order intensity-based features

(MFO) was extracted from the 3D GTV on the treatment planning CT and on the pre-treatment T2-

w MRI, respectively. In addition, 95 SOT features were calculated for every modality. Finally, the

same 57 first-order intensity-based features were extracted from the GTV on the LoG transformed

images. This resulted in a total of 234 features extracted from each imaging modality. SOT

features were extracted from the 3D GTV based on GLCM, GLRLM, GLSZM, GLDZM, NGTDM,

NGLDM. Image pre-processing and feature extraction in MIRP were implemented according to

the recommendations of the IBSI (Zwanenburg et al., 2020). The definitions of the formulas

used to calculate the features can be found in the IBSI reference manual. Image processing

parameters used for feature extraction are summarized in Appendix Table A.3.

In order to obtain reproducible results, imaging features have to be stable under small im-

age perturbations, as e.g. caused by differing acquisition parameters or positioning uncertain-

ties (Zwanenburg et al., 2019a). We evaluated feature robustness by applying the following

image augmentations based on the training data: adding Gaussian noise (mean:0, standard de-

viation:as present in the image), random volume changes of the GTV (0%, 215%, 15%), and

translations (0.0, 0.25, and 0.75 mm) in all three spatial dimensions. All combinations of these

perturbations were considered, leading to 81 perturbed images for each original dataset. The

ICC was calculated with a 95% confidence interval, quantifying the similarity of feature values

under different perturbations for every feature. Features with the lower boundary of the 95% con-

fidence interval of the ICC below 0.8 were removed (see Robustness in Section 2.3.4 for more

details).

Hierarchical clustering was used to mitigate the redundancy of features in MRI and CT indi-

vidually, including (i) MFO features only, (ii) SOT features only, (iii) LoG features (statistical and

intensity histogram) only, and (iv) all features, corresponding to the analyses based on the differ-

ent feature classes. The Spearman correlation coefficient (ρ) was used as a similarity metric with

average linkage as a criterion for merging two clusters; ρ g 0.8 was defined for placing features

into the same cluster. The feature with the highest mutual information with the endpoint was

selected as the representative for each cluster (see Clustering in Section 2.3.4 for more details).

3.2.5 Radiomics modelling

In our analyses, we evaluated the prognostic performance of MRI and CT radiomic signatures

for the prediction of tumour response to nCRT and FFDM. We evaluated 12 different radiomic

models based on different (combinations) of feature classes and imaging modalities, as shown

in Figure 3.2. First, four radiomic signatures were created individually for MRI and CT based on
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(i) MFO, (ii) SOT, (iii) LOG, and (iv) all features. Once these signatures were developed for each

dataset, four joint signatures were created by joining the respective MRI and CT signatures from

(i) to (iv).

In order to create the eight single-modality signatures, a workflow containing four major pro-

cessing steps was applied after feature clustering using an in-house end-to-end statistical learn-

ing software package: (i) feature pre-processing, (ii) feature-selection, (iii) model building with

internal validation, and (iv) external validation. Steps (i)-(iii) were first performed using 33 rep-

etitions of 3-fold stratified CV nested in the training dataset to identify an optimal signature, i.e.

the steps were repeatedly performed on the internal training part and validated on the internal

validation part of the cross-validation folds. After identifying the final signature, a final model was

developed on the entire training data and validated on the independent validation data.

The following procedure was performed for each of the 99 CV runs: (i) Features were trans-

formed using the Yeo-Johnson transformation to align their distribution to a normal distribution.

Afterwards, features were z-transformed to mean zero and standard deviation one (see Feature

transformation and normalization in Section 2.3.4 for more details). Both transformations were

performed on the internal training part, and the resulting transformation parameters were applied

unchanged to the features of the internal validation part. (ii) Four supervised feature-selection

algorithms were considered: mRMR (Peng et al., 2005), MIM (Gelfand & I A glom, 1959), EN

(Zou & Hastie, 2005), and univariate regression (Cox, 1958; Cox & Oakes, 1984). To avoid po-

tential overfitting, only the five most relevant features were selected. (iii) The features selected by

each of these methods were used to build prognostic models on the internal training part, which

were validated on the internal validation part. Multivariable logistic regression was applied for

the prognosis of tumour response and Cox regression for FFDM. Average model performance

was assessed by the median cross validation AUC and C-index for tumour response and FFDM

prognosis, respectively, for every feature selection method.

After a model has been created on CV folds of training data, the signature was created as

follows. For each of the above-mentioned feature selection methods, the occurrence of every

feature in the 99 modelling steps was counted and features were ranked according to their occur-

rences across the cross-validation folds. Features with occurrence g50% across each feature

selection method were further considered. Finally, features that show repeated occurrences

across at least 75% of the feature selection methods were selected and the cumulative occur-

rence of each feature was calculated as a sum of its occurrences. If a subset of these features

showed a mutual Spearman correlation ρ > 0.5 on the entire training data, only the feature with

the highest cumulative occurrence was considered. Below, we describe our feature selection

scheme with an example.

Ranking scheme for feature selection: Here, we explain an example of feature selection

for LoG features for tumour response prediction. The same technique applies to FFDM pre-

diction as well. Appendix Table A.4 shows fourteen LoG MRI features and fifteen CT features

49



3 MRI and CT-based radiomics features for personalized treatment in locally advanced rectal

cancer

Figure 3.2: Modelling study workflow. After image pre-processing, radiomic features were extracted from

pre-treatment T2-w magnetic resonance imaging (MRI) and treatment planning computed tomography

(CT) and analysed for robustness. Features were separated into morphological and first-order (MFO),

second-order texture (SOT), and LoG features. Also, features in each modality were analysed without

any separation to feature classes, represented here by ‘All’. Clustering was performed and four radiomic

signatures were created individually for T2-w MRI and CT based on (i) MFO, (ii) SOT, (iii) LoG, and (iv)

all features using a cross-validation approach and validated independently for both endpoints. Once these

signatures were developed, four joint MRI and CT signatures in each feature category (i) to (iv) for both

endpoints were validated with and without adding significant clinical features.

with the highest mutual information with tumour response selected after hierarchical clustering.

These features were then used to build a prognostic model. Feature selection and model build-

ing with internal validation was first performed within 33 repetitions of 3-fold CV nested in the

training dataset to identify an optimal signature. Four supervised feature-selection algorithms

were considered: mRMR, MIM, EN, and univariate logistic regression (UR). To avoid potential

overfitting, only the five most relevant features were selected in each cross-validation fold. These

features were then used to build a multivariable logistic-regression model on the internal train-

ing part, and validated on the internal validation part. For each of the above-mentioned feature

selection methods, the occurrence of every feature in the 99 modelling steps was counted and
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features were ranked according to their occurrences across the cross-validation folds. Table

3.2 shows features with g50% occurrence across each feature selection method that were fur-

ther considered. Finally, features that showed repeated occurrences across at least 75% of the

feature selection methods were selected (MR_log_ih_max_grad_fbn_n32 and MR_log_stat_min,

CT_log_ih_max_grad_fbn_n32 and CT_log_stat_energy). MR_log_ih_max_grad_fbn_n32 showed

the highest cumulative occurrence (i.e. the highest sum of occurrences across all feature selec-

tion methods) of 365, while MR_log_stat_min showed a cumulative occurrence of 251. Both

features showed a Spearman correlation of <0.5 on the entire training data, thus forming the

MR-based LoG radiomic signature. A model with this signature was then fitted on the entire

training data and the trained model was applied to the external validation data. Similarly, for CT

data, CT_log_ih_max_grad_fbn_n32 showed the highest cumulative occurrence of 363, while

CT_log_stat_energy showed a cumulative occurrence of 277. The features were strongly cor-

related with a Spearman correlation >0.5. Therefore, only CT_log_ih_max_grad_fbn_n32 was

considered for the final CT-based LoG radiomic signature. The final performance in internal

cross validation was considered as the average of the cross-validation training AUC (CV train-

ing) and validation AUC (CV validation). The finally selected signature and the average AUC in

internal training and external validation are shown in Appendix Table A.5. After feature selection

was done, the resulting radiomic signature was then used to build prognostic models on the en-

tire training data and (iv) the trained model was applied to the independent validation data. For

creating the four joint signatures combining CT and MRI, the selected signatures in each feature

class were pooled together and the same procedure as described in the last paragraphs was

performed: clusters with ρ>0.5 were reduced to one feature, models were trained on entire train-

ing data and validated on external validation data. Finally, clinical features that were significantly

associated to tumour response in univariable logistic regression or to FFDM in univariable Cox

regression were added to the selected radiomic signature.

3.2.6 Statistical analysis

The following baseline clinical parameters were available: gender, age, tumour localization, UICC

stage, grading, T stage, N stage, surgery type, chemotherapy type. Continuous variables of the

clinical data were compared between training and validation cohort using the Mann-Whitney-

U test, while categorical variables were compared by the χ2 test. Model performance for the

prediction of endpoints were evaluated by the AUC for tumour response to nCRT and by the C-

index for FFDM prognosis. The estimated value and the 95% confidence interval of these metrics

were computed using the bias-corrected bootstrap confidence interval method on 400 bootstraps

of the data (Efron & Hastie, 2013). For creating a confusion matrix based on the final signature

for tumour response prediction, an optimal cutoff was selected on the training data using Youden

index and transferred to the validation data. For association with FFDM, patients were stratified

into an optimally separated low and a high-risk group. The cutoff for risk group stratification was
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Table 3.2: Median AUC for tumour response prognosis for LoG intensity features based on MRI and CT

using CV of the training data. Features with an occurrence g50% are shown here. Features with a

repeated occurrence across at least 75% (3 out of 4) of the feature selection methods are presented in

bold. AUC: area under the curve, CV: cross-validation, CT: computed tomography, EN: Elastic net, UR:

logistic regression, LoG: Laplacian of Gaussian, MRMR: minimum redundancy maximum relevance, MIM:

mutual information maximization, MRI: magnetic resonance imaging.

Modality
Feature

selection

CV

training

AUC

CV

validation

AUC

Features Occurrence
Cumulative occurrence of

selected features

MRI

MRMR 0.68 0.58 log_ih_max_grad_fbn_n32 73 log_ih_max_grad_fbn_n32=365

log_stat_min=251

Remarks: Both features occurred

in at least 3 out of 4 (75%)

feature selection methods. Both

were weakly correlated so they

were considered for the MRI_LoG

signature.

MIM 0.70 0.57

log_ih_max_grad_fbn_n32

log_stat_min

log_stat_max

98

92

60

EN 0.72 0.56

log_ih_max_grad_fbn_n32

log_stat_min

log_ivh_v25

98

73

50

UR 0.70 0.58

log_ih_max_grad_fbn_n32

log_stat_min

log_stat_max

96

86

56

CT

MRMR 0.71 0.67 log_ih_max_grad_fbn_n32 70 log_ih_max_grad_fbn_n32=363

log_stat_energy=277

Remarks: Both features occurred

in at least 3 out of 4 (75%)

feature selection methods. Both

were correlated with a Spearman

correlation >0.5, therefore only

log_ih_max_grad_fbn_n32

was considered for the CT_LoG

signature.

MIM 0.73 0.62

log_ih_max_grad_fbn_n32

log_stat_energy

log_stat_median

log_ivh_diff_v25_v75

98

97

87

61

EN 0.74 0.64
log_ih_max_grad_fbn_n32

log_stat_energy

99

86

UR 0.72 0.63

log_ih_max_grad_fbn_n32

log_stat_energy

log_stat_median

log_ivh_diff_v25_v75

96

94

64
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selected on the training data using maximally selected rank statistics (Hothorn & Lausen, 2003)

and transferred to the validation data. The FFDM of stratified groups was assessed with Kaplan

Meier curves compared with the log-rank test.

Calibration for the prediction of tumour response to nCRT and FFDM was evaluated via the

Hosmer-Lemeshow goodness of fit test (HL test) (Hosmer & Lemesbow, 1980) and Greenwood

Nam D’Agostino test (GND test) (Demler et al., 2015), respectively. Correlations between fea-

tures were assessed by the Spearman correlation coefficient (ρ). All tests were two-sided with

a significance level of 0.05. In order to evaluate the importance of individual features in the final

signature, univariate fitting of a logistic regression (tumour response) or Cox regression (FFDM)

models was performed and Wald-test p-values were computed. All analyses were performed in

R version 4.0.3.

3.3 Results

Patient characteristics of the training and validation data are summarized and compared in Ta-

ble 3.3. Patients in the training data had a higher tumour grading (p=0.001) and higher UICC

stage (p<0.001). Patients of the validation data were treated with a higher dose (p<0.001). The

endpoints tumour response and FFDM were similar for training and validation data (p=0.13 and

52



3.3 Results

p=0.25, respectively). In univariate analysis, a significant association was observed only between

clinical T stage (cT) and tumour response (Appendix Table A.6).

For radiomics modelling, 234 radiomic features were extracted from the GTV in the T2-w MR

and in the CT imaging dataset. Stability analysis reduced these to 208 features (MFO: 74, SOT:

82, LoG: 52) and 222 (MFO: 76, SOT: 95, LoG: 51) for MRI and CT, respectively. Cluster-

ing of correlated features further reduced the feature number to (i) MRIMFO:24, CTMFO:22; (ii)

MRISOT:16, CTSOT:19; (iii) MRILoG:14, CTLoG:15; and (iv) MRIAll:39, CTAll:47.

Table 3.3 presents the results for the prognosis of tumour response, including the names of fi-

nally selected features. In internal cross validation, models based on CT data showed better prog-

nostic performance than models based on MRI. Among feature classes, SOT features showed

a high prognostic value (MRI: AUCSOT=0.68, AUCMFO=0.57, AUCLoG=0.57, AUCAll=0.65; CT:

AUCSOT=0.70, AUCMFO=0.65, AUCLoG=0.64, AUCAll=0.67). This result, however, did not trans-

late to the independent validation data, where SOT features performed poorly. Here, the overall

best performance was achieved by LoG features for both imaging modalities (MRI: AUCLoG=0.66,

CT: AUCLoG=0.61). Joint MRI+CT signatures performed almost similar to MRI only signatures in

independent validation for all four models.

The clinical model containing only cT stage achieved training and validation AUCs of 0.60.

Combining cT stage with the combined signature from MRI and CT achieved the best validation

result with an AUC of 0.70. At a threshold of 0.248 this signature was able to accurately classify

16/21 responders and 20/47 non-responders (Appendix Figure A.2). Figure 1.3 shows ROC

and the corresponding calibration plots for this signature on training and validation data. All

features represented independent information (Appendix Figure A.3) and significantly contributed

to the prediction in training (p<0.05), while only MR_log_stat_min was significant in validation

(p=0.04). The MRI feature log_stat_min (IBSI:1GSF) represents the minimum intensity, while

the CT feature log_ih_max_grad_fbn_n32 (IBSI:12CE) represents the gradient of the discretised

histogram (32 bins) within the GTV on the LoG transformed image. Image-based interpretation of

these features is presented in Figure 3.4. In the non-responder group, MR_log_stat_min showed

relatively low values, which translates to the existence of bright voxels in the GTV on the original

baseline T2-w MRI (Figure 3.4(b)). In comparison, responders showed no such high grey values

(Figure 3.4(a)). Box plots of these features (Yeo-Johnson transformed and z-score normalized)

in the two response groups are shown in Supplementary Appendix Figure A.4.

Table 3.4 presents the results for the prognosis of FFDM, including the names of finally selected

features. Median follow-up time in training and validation data was 49.1 (5.7-111.8) months and

29.5 (1.2-94.1) months, respectively. Most of the metastases occurred until 24 months after

treatment (training: 76%, validation: 56%). Until that time, 7 patients (training: 5, validation: 2)

were lost to follow-up because of death, i.e. the competing risk of death was small. In inter-

nal cross validation, models based on MRI data showed a better prognostic performance than

models based on CT. Among feature classes, LoG features showed a somewhat higher prog-

nostic value (MRI: C-indexLoG=0.65, C-indexMFO=0.60, C-indexSOT=0.59, C-indexAll=0.60, CT:
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Table 3.3: Median AUC values for CV and external validation for tumour response prediction based on

MRI, CT, joint MRI+CT, and imaging combined with clinical T stage. Values in parentheses represent the

95% confidence interval.

Modality
Feature

level

CV

training

AUC

CV

validation

AUC

Signature

Final

training

AUC

External

validation

AUC

MRI

All 0.76 0.65 MR_dzm_zd_entr_3d_fbn_n32
0.72

(0.62-0.82)

0.34

(0.19-0.50)

MFO 0.74 0.57
MR_morph_av

MR_morph_geary_c

0.70

(0.60-0.79)

0.57

(0.39-0.73)

SOT 0.75 0.68 MR_dzm_zd_entr_3d_fbn_n32
0.72

(0.62-0.81)

0.34

(0.10-0.50)

LoG 0.70 0.57
MR_log_ih_max_grad_fbn_n32

MR_log_stat_min

0.67

(0.57-0.75)

0.66

(0.51-0.82)

CT

All 0.78 0.67
CT_dzm_zd_var_3d_fbn_n32

CT_cm_corr_d1_3d_v_mrg_fbn_n32

0.77

(0.69-0.84)

0.47

(0.34-0.63)

MFO 0.77 0.65 CT_morph_av
0.72

(0.60-0.82)

0.52

(0.38-0.66)

SOT 0.78 0.70
CT_dzm_zd_var_3d_fbn_n32

CT_cm_corr_d1_3d_v_mrg_fbn_n32

0.77

(0.59-0.80)

0.47

(0.36-0.66)

LoG 0.73 0.64 CT_log_ih_max_grad_fbn_n32
0.70

(0.60-0.79)

0.61

(0.44-0.76)

Joint

MRI +CT

MRI_All

+

CT_All

- -
MR_dzm_zd_entr_3d_fbn_n32

CT_cm_corr_d1_3d_v_mrg_fbn_n32

0.76

(0.67-0.84)

0.38

(0.24-0.56)

MRI_MFO

+

CT_MFO

- -
MR_morph_geary_c

CT_morph_av

0.74

(0.64-0.83)

0.57

(0.40-0.67)

MRI_SOT

+

CT_SOT

- -
MR_dzm_zd_entr_3d_fbn_n32

CT_cm_corr_d1_3d_v_mrg_fbn_n32

0.76

(0.67-0.84)

0.38

(0.24-0.56)

MRI_LoG

+

CT_LoG

- -
MR_log_stat_min

CT_log_ih_max_grad_fbn_n32

0.71

(0.62-0.80)

0.66

(0.50-0.82)

Clinical+

MRI/CT

No Radiomics - - cT
0.60

(0.53-0.66)

0.60

(0.50-0.70)

MRI_LoG - -

cT

MR_log_ih_max_grad_fbn_n32

MR_log_stat_min

0.69

(0.59-0.78)

0.69

(0.53-0.82)

CT_LoG - -
cT

CT_log_ih_max_grad_fbn_n32

0.72

(0.61-0.81)

0.66

(0.51-0.81)

MRI_LoG

+

CT_LoG

- -

cT

MR_log_stat_min

CT_log_ih_max_grad_fbn_n32

0.72

(0.62-0.80)

0.70

(0.54-0.84)

Abbreviations: AUC=area under a curve; cT=clinical T stage; CT=computed tomography; CV=cross-validation;

LoG=Laplacian of Gaussian; MRI=magnetic resonance imaging; MFO=morphological and first order;

SOT=second order texture.

C-indexLoG=0.52, C-indexMFO=0.47, C-indexSOT=0.51, C-indexAll=0.46). In external validation,

CT-based features showed a slightly higher performance compared to MRI. While both SOT

and LoG features achieved similar prognostic value on MRI data (MRI: C-indexSOT=0.57, CT:

C-indexLoG=0.57), the overall best prognostic performance in CT was achieved by SOT features

(CT: C-indexSOT=0.69). No additional benefit was achieved by joining the MRI and CT signatures.

Patient stratification into groups at low and high risk of distant metastases was performed based

on the SOT models for each modality, i.e. for MRI, CT, and joint MRI+CT. While the CT and
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Figure 3.3: (a) Receiver operating characteristics (ROC) curves and (b) calibration plots for tumour re-

sponse prognosis in training (left) and validation (right) resulting from best performing joint signature com-

bining clinical T stage and Laplacian of Gaussian (LoG) features from T2-w MRI and CT. For calibration,

data (thick lines) and 95% confidence intervals (shaded regions) are shown together with linear regression

lines (solid lines) that follow the optimal expectation (dashed lines). Density of expected probabilities is

shown above the calibration plot.

MRI+CT-based signatures achieved a significant patient stratification in independent validation

(p<0.01), this was not the case for the MRI-based signature (p=0.68). Kaplan-Meier curves and

corresponding calibration plots for the best performing CT signature are shown in Figure 3.5 and

for the MRI and MRI+CT signatures in Appendix Figure A.5. The definition and interpretation of

selected features are presented in Appendix Table A.7.

Final model parameters for the best performing signatures for the prognosis of tumour response

and FFDM are presented in Appendix Table A.8

3.4 Summary and discussion

In this modelling study, radiomics signatures based on pre-treatment T2-w MRI and treatment

planning CT imaging were developed and validated for the prediction of tumour response to nCRT

and FFDM in patients with LARC. For both imaging modalities, the predictive performance of

three feature classes i.e. MFO, SOT, LoG, and the combination of all features was independently

validated. The best predictive performance for tumour response prediction on validation cohort

was achieved by combining clinical T stage with LoG features from CT and MRI (AUC=0.70),

while SOT features from CT showed the best performance for FFDM (C-index=0.69).

In comparison to other independently validated MRI-based multicentre radiomic studies for

patients with LARC, our best performing signature for tumour response prediction (AUC=0.70)

showed similar results to the study by Antunes et al. (Antunes et al., 2020) (AUC=0.71), but

showed lower performance than results presented by Dinapoli et al. (Dinapoli et al., 2018)

(AUC=0.75), and Cusumano et al. (Cusumano et al., 2018) (AUC=0.79) who also assessed

tumour response to nCRT in LARC patients using T2-w MRI data. Dinapoli et al. (Dinapoli et
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Figure 3.4: Representative images from MRI (a, b) and CT (c, d) with corresponding Laplacian of Gaus-

sian (LoG) transformed images from two patients (P) in the two response groups, i.e. responder: P1

and non-responder: P2 on the training data. Red contours mark the gross tumour volume (GTV). P1

(responder: TRG=4) showed an overall homogenous appearance on the baseline MRI. On the contrary,

P2 (non-responder: TRG=1) showed a more heterogeneous GTV with a low stat_min value on the LoG

transformed MR image, which corresponds to some high pixel intensities on the baseline MRI. Similarly, a

more homogenous GTV (excluding the air voxels) can be seen in P1 compared to P2 on the baseline and

LoG transformed CT slices, possibly causing low gradients in the intensity histogram for the responder.

al., 2018) used first-order intensity histogram-based features, while the study by Cusumano et

al. (Cusumano et al., 2018) additionally used fractal features in the final signature to build the

model. Both studies also combined radiomics signature with clinical features (cT and cN).

Majority of studies presented for tumour response prediction in LARC are retrospective and

single centric. These studies have shown promising results for tumour response prediction in

LARC. De Cecco et al. (De Cecco et al., 2016) and Caruso et al. (Caruso et al., 2018) showed

a significant association (p<0.05) of FO statistical and GLCM features, respectively, with tumour

response to nCRT on small cohorts (f15 subjects). Ferrari et al. (Ferrari et al., 2019) showed that

complete responders have higher GLCM energy and good responders have high expression of

histogram features (AUC=0.87). Coppola et al. (Coppola et al., 2021) showed that heterogeneity

of local skewness is associated to tumour response (AUC=0.90). Some studies also showed the

association of SOT features with tumour response prediction. The studies by Delli Pizzi et al.

(Delli Pizzi et al., 2021) and Petresc et al. (Petresc et al., 2020) showed an AUC of 0.79 and 0.80

in internal validation, respectively.

Compared to T2w-MRI, CT imaging is rarely used for diagnostic evaluation in LARC. Some

studies have investigated the performance of CT imaging for tumour response prediction to nCRT
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Table 3.4: Median C-index values for CV and external validation for FFDM prediction in MRI, CT, and joint

MRI+CT. Values in parentheses represent the 95% confidence interval.

Modality
Feature

level

CV

training

C-Index

CV

validation

C-index

Signature

Final

training

C-index

External

validation

C-index

MRI

All 0.79 0.60 MR_log_stat_median
0.69

(0.56-0.81)

0.54

(0.36-0.69)

MFO 0.77 0.60 MR_stat_median
0.68

(0.54-0.82)

0.52

(0.34-0.68)

SOT 0.75 0.59

MR_ ngl_dc_var_d1_a0_0_3d_fbn_n32

MR_ szm_sze_3d_fbn_n32

MR_cm_clust_prom_d1_3d_v_mrg_fbn_n32

0.70

(0.58-0.82)

0.57

(0.40-0.74)

LoG 0.75 0.65

MR_log_stat_median

MR_log_stat_iqr

MR_log_ih_entropy_fbn_n32

0.69

(0.56- 0.82)

0.57

(0.39 - 0.73)

CT

All 0.74 0.46 No feature selected - -

MFO 0.73 0.47 CT_morph_volume
0.62

(0.50 - 0.75)

0.58

(0.42 - 0.73)

SOT 0.70 0.51 CT_szm_zsnu_3d_fbn_n32
0.64

(0.49- 0.80)

0.69

(0.51- 0.81)

LoG 0.70 0.52 CT_log_stat_energy
0.65

(0.53 - 0.76)

0.63

(0.46 - 0.77)

Joint

MRI+CT

MRI_All

+

CT_All

- - MR_log_stat_median
0.69

[0.56-0.81]

0.54

(0.36-0.69)

MRI_MFO

+

CT_MFO

- -
MR_stat_median

CT_morph_volume

0.70

[0.55-0.81]

0.55

(0.37-0.70)

MRI_SOT

+

CT_SOT

- -

MR_ ngl_dc_var_d1_a0_0_3d_fbn_n32

MR_ szm_sze_3d_fbn_n32

MR_cm_clust_prom_d1_3d_v_mrg_fbn_n32

CT_szm_zsnu_3d_fbn_n32

0.73

(0.61-0.84)

0.62

(0.45-0.79)

MRI_LoG

+

CT_LoG

- -

MR_log_stat_median

MR_log_stat_iqr

MR_log_ih_entropy_fbn_n32

CT_log_stat_energy

0.72

(0.59-0.85)

0.59

(0.41-0.75)

Abbreviations: C-index=concordance-index; CT=computed tomography; CV=cross-validation; LoG=Laplacian of

Gaussian; MRI=magnetic resonance imaging; MFO=morphological and first order; SOT=second order texture.

using patient populations treated with standard procedures, i.e. nCRT followed by TME (Rao et

al., 2016; Chee et al., 2017; Bibault et al., 2018; Hamerla et al., 2019), or combined CT and

MR imaging (Li et al., 2020b; Zhang et al., 2020). Based on radiomics features extracted from

treatment plan CT, Bibault et al. (Bibault et al., 2018) developed a model for the prognosis of

tumour response using DNN with an AUC of 0.72. Chee et al. (Chee et al., 2017) showed that

FO features extracted from pre-treatment contrast enhanced CT were associated with tumour

response prediction (responders showed low entropy, high uniformity, and low standard devia-

tion). Some studies have also indicated poor performance of CT features for predicting tumour

response in LARC. Exemplarily, Rao et al. (Rao et al., 2016) and Hamerla et al. (Hamerla et al.,

2019) showed that CT features failed to predict tumour response. Regarding the combination

of CT and MRI, Zhang et al. (Zhang et al., 2020) used MFO and SOT features extracted from

pre-treatment CT and MRI and achieved an AUC of 0.87, while Li et al. (Li et al., 2020b) showed

that contrast enhanced CT and multimodality MRI is able to achieve an AUC of 0.93. Although
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Figure 3.5: Kaplan-Meier (top) and calibration plots (bottom) on training (left) and validation (right) data

for the prediction of FFDM using the best performing CT-based SOT feature, resulting in significant patient

stratifications (p<0.01). For calibration, data (thick lines) and 95% confidence intervals (shaded regions)

are shown together with linear regression lines (solid lines) that should follow the optimal expectation

(dashed lines). Density of expected probabilities is shown above the calibration plot.

the results from most of these studies are promising, external validation is rarely performed in

them.

The prognostic performance of models in LARC may be improved by including additional imag-

ing modalities such as PET, other MRI sequences such as T1-w, T1c-w and diffusion weighted

imaging (DWI), or images acquired at different time point during the course f treatment. For ex-

ample, Jeon et al. (Jeon et al., 2019) built a predictive signature for treatment outcomes in LARC

by using delta-radiomic features extracted from pre- and post-nCRT T2-w MRI. Their signature

showed significant risk group stratification for FFDM (p<0.05). Chiloiro et al. (Chiloiro et al., 2020)

also used delta radiomics to predict FFDM as binary outcome with an AUC of 0.78. Gianni et al.

(Giannini et al., 2019) showed that radiomic signatures based on PET, T1-w MRI, and apparent
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diffusion coefficient (ADC) images had an increased performance for tumour response prediction

(AUC=0.86) compared to PET only (AUC=0.84) and T1-w MRI only (AUC=0.72). To the best of

our knowledge, no study was yet performed to predict FFDM combining pre-treatment MRI and

treatment-planning CT for LARC

One of the major challenge in radiomics analyses is the selection of features, as numerous

features of different complexity can be extracted and most often their number is larger than the

study population. This can not only lead to substantial model overfitting, but also causes difficult

feature interpretability. In our analyses, we observed that more complex SOT features showed a

high predictive performance for tumour response prediction, while LoG transformed intensity fea-

tures showed a high performance for the prognosis of FFDM in internal CV. However, the same

was not true for external validation, and we observed the opposite behaviour, i.e. LoG trans-

formed statistical, and intensity histogram features showed a high performance for the prediction

of tumour response, while SOT features showed a somewhat higher performance for FFDM pre-

diction. Also, it is noteworthy that the performance trend of feature classes in internal and external

validation was similar for both modalities, i.e. similar feature classes were predictive for both CT

and MRI.

In our analyses, features in final signature were somewhat interpretable on imaging level.

Specifically, we discovered one MRI-based statistical feature, i.e. log_stat_min, which was pre-

dictive of tumour response to nCRT. This feature represents the minimum intensity on LoG trans-

formed images, which is closely related to the maximum intensity (i.e. stat_max) on baseline

images. The predictive performance of both features was analysed separately using univari-

ate logistic regression. In training, stat_max was less predictive (AUC=0.57) than log_stat_min

(AUC=0.64), while both features showed similar performance in validation with an AUC of 0.66.

The high association of LoG transformed intensity features with the training data can be attributed

to the fact that the LoG kernels help to reduce large variations in the signal, which can be de-

tected within a single image slice (e.g. irregularities due to magnetic field, respiratory motion,

or patient movement). Further, we interpret log_stat_min as a potential biomarker for tumour

response prediction to nCRT based on the fact that a tumour normally is represented by low to

intermediate signal intensity on T2-w MRI, excluding the intestinal lumen (Horvat et al., 2019;

Jeon et al., 2019). The increased expression of log_stat_min in non-responders indicates the

presence of high intensities within the GTV on baseline T2-w MRI, possibly indicating an aggres-

sive or resistive tumour resulting in incomplete remission.

Limitations of this study are relatively low number of patients in the training and validation data

and its retrospective nature. In addition, there is a class imbalance due to the smaller number of

events for both endpoints, leading to wide confidence intervals in Tables 3.3 and 3.4 often includ-

ing the value 0.5, i.e., the external validation results have a relatively large uncertainty. We aimed

to mitigate the class imbalance problem by internal CV on the training data for feature selection. A

3-fold CV approach was used and repeated 33 times, ensuring that each fold contained sufficient

events for training and validation and that the finally considered average model performance was
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sufficiently robust. Another common strategy used in machine learning to deal with the problem

of imbalanced data is random undersampling of the majority class. We tested this procedure dur-

ing stratified splitting of training data in internal cross-validation. We did not observe significant

differences in feature selection for both endpoints, and therefore do not present the results from

these experiments.

In conclusion, in the present modelling study, we developed and independently validated ra-

diomic signatures for the prognosis of tumour response to nCRT and FFDM in patients based

on T2-w MR and CT imaging. We studied feature classes of differing complexity and observed

that a combination of LoG transformed intensity features from MRI and CT together with clinical

T stage (cT) led to highest prognostic value for the prediction of nCRT, while CT-based SOT

features performed well in external validation for FFDM.
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4.1 Motivation

Current evaluation of patient response and long-term outcomes in LARC depends on visual in-

terpretation of imaging data obtained after nCRT or by analysing resected specimens obtained

after surgery. Thus, there is a need for non-invasive biomarkers that can aid in treatment per-

sonalization based on individual chance for response. Many radiomics-based studies have been

published recently that demonstrate encouraging results for predicting patient outcome after treat-

ment. For LARC the most interesting and most explored area in radiomics analysis is predicting

patient’s response to nCRT, while relatively fewer studies have explored radiomics for predicting

long-term outcomes including FFDM, overall survival and progression free survival (PFS) (Bund-

schuh et al., 2014; Chee et al., 2017; Dinapoli et al., 2018; Meng et al., 2018; Park et al., 2020).

Radiomics models were commonly developed on features extracted from T2-w MRI (Caruso

et al., 2018; Cusumano et al., 2018; Dinapoli et al., 2018; Antunes et al., 2020; Petkovska et al.,

2020), and mpMRI (De Cecco et al., 2016; Nie et al., 2016; Giannini et al., 2019; Zhou et al.,

2019). Few studies have considered radiomic features extracted from CT imaging (Chee et al.,

2017; Bibault et al., 2018), PET (Bang et al., 2016; Van Helden et al., 2018), or a combination

of CT and MRI features (Li et al., 2020b). However, it is difficult to evaluate the findings of these

studies due to the complexity, and heterogeneity of the literature that has been published in the

past decade. Furthermore, different studies have proposed different imaging biomarkers, and

there is lack of consensus on which features are more relevant or generalizable for predicting

treatment outcomes in LARC. A comprehensive review of radiomics studies published for predic-

tion of patient response and long-term outcomes in LARC have appeared (Davey et al., 2021),

but none of them have externally validated previously published radiomics signatures.

Therefore, in this chapter, we aimed to externally validate radiomics signatures that were previ-

ously developed by other researchers for predicting tumour response to nCRT or FFDM in LARC.

The work presented within this chapter has been published in an international journal (Shahzadi

et al., 2022b).

4.2 Materials and methods

4.2.1 Patient cohort

The evaluation in this external validation study is based on multicentre, retrospective data of

190 patients as described previously in Chapter 3, Section 2.2.1. The data was collected from
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four partner sites and divided into training and validation data based on the site (122 and 68

patients, respectively). The details of the patient characteristics for both cohorts are summarized

in Chapter 3 Table 3.1.

The considered endpoints for external validation were tumour response to nCRT and FFDM.

A detailed description of tumour response, tumour regression grade and FFDM was described

in Chapter 3. For the external validation study, patients were stratified into response groups

according to the grading scheme indicated in the respective manuscript. Regardless of grading

scheme, Dworak (Dworak et al., 1997) criteria of TRG (as explained in Appendix Table A.1) were

used as reference standard for response prediction. The patients were stratified into either (i)

responders (corresponding to TRG 3 and 4) and non-responders (corresponding to TRG 0-2) or

(ii) complete responders (corresponding to TRG 4) and non-responders (corresponding to TRG

0-3) (iii) complete responders as in (ii) and non-responders (corresponding to TRG 0 and 1 thus

excluding partial responders).

For the validation of published signatures, non-contrast-enhanced treatment planning CT and

T2-w MRI data were used. Where necessary, imaging information was also combined with patient

clinical information, as described below.

4.2.2 Literature search

The design for literature search is shown in Figure 4.1. A free search was conducted using

Google Scholar and PubMed until October 2021 to identify the relevant radiomics-based LARC

studies for the validation of biomarkers. The following free search keywords were used: ‘rectal

cancer’ OR ‘Locally advanced rectal cancer’, ‘radiomics’, ‘response prediction’ OR ‘response to

neoadjuvant chemoradiotherapy’, ‘distant metastases prediction’ OR ‘prognosis’, ‘deep learning’,

‘machine learning’.

The studies were then reviewed for their eligibility. Studies that met the following criteria

were included: (1) patients with LARC, (2) radiomics analysis on pre-treatment T2w MRI or

non-contrast-enhanced CT, (3) radiomics features extracted from primary tumour or GTV, (4)

normo-fractionated nCRT (dose 45–55 Gy) followed by surgery, (5) clear radiomics workflow and

definition of finally used features available, (6) prediction of FFDM as time to event endpoint. The

search and inclusion of studies were supervised by two reviewers with expertise in radiomics

modelling.

The following data were extracted from the included studies: (1) sample size and distribution

of training and validation dataset (if any), (2) nature of study, i.e. single centre or multicentre,

(3) clinical characteristics of patient cohort (4) used imaging modality, (5) reference standard

for TRG, (6) image pre-processing workflow, (7) feature extraction geometry, i.e. 3D, 2D, or

largest slice, (8) applied feature extraction framework, (9) final classification/regression model or

statistical test, (10) features included in final model, (11) final model parameters (if any), and (12)

reported results. The studies were arranged in chronological order of year of publication.
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Figure 4.1: Design of the external validation study. Studies were identified via free search using Google

Scholar and PubMed and excluded if the inclusion criteria were not fulfilled. Information regarding image

processing, radiomics workflow, and the best performing radiomics signature was extracted as reported.

Image processing and feature extraction was reproduced using MIRP (Zwanenburg et al., 2019b). Finally,

validation was performed either on the pooled training and validation data if model parameters were re-

ported in the study or the model was re-trained on the training data and validated on the validation data.
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4.2.3 Data pre-processing

Feature extraction was carried out in accordance with IBSI guidelines for the studies that qualified

for inclusion in the validation analysis, using the MIRP Python toolkit (version 1.1.3). The reported

features in each study were mapped to the IBSI manual’s closest-matching synonyms. A feature

was excluded from validation analysis if (i) it was not defined in the IBSI manual or (ii) MIRP

cannot extract it, and the remaining features were considered candidates for validation investi-

gation. Image pre-processing (e.g. image interpolation, image normalization, bias correction)

and feature extraction parameters (e.g. feature extraction in 2D, 3D or from the largest tumour

area, discretization used for histogram or texture features, LoG or wavelet transformations) were

replicated for each study if indicated. If specified, feature extraction parameters from the study

were repeated; if not, the MIRP default settings were applied.

4.2.4 Radiomics modelling

For this external validation study, the pooled training (DD and MTU cohort) and validation data

(F and FR) were used for biomarker validation if final model coefficients or model training pa-

rameters were provided in the respective study, or a statistical test, e.g. t-test or Wilcoxon test,

was performed for associating the considered biomarker to the endpoint of interest. On the other

hand, if model coefficients or model training parameters were not provided, the given radiomic

features were used to re-train a predictive model on the training data, and was subsequently

validated on the validation data. Clinical features were combined with imaging biomarkers if

mentioned in the study.

4.2.5 Statistical analysis

As shown in Table 3.1, the following baseline clinical parameters were available: gender, age,

tumour localization, UICC stage, grading, T stage, N stage, surgery type, chemotherapy type.

Categorical variables of the clinical data were compared between the training and validation data

by the χ
2 test, whereas continuous variables were compared using the Mann-Whitney-U test. The

majority of the studies evaluated the association between final model predictions and the tumour

response using the AUC metric, and so did we. The estimated value and the 95% confidence

interval of these metrics were computed. For the studies with acceptable performance for tumour

response to nCRT, model calibration was also assessed via a calibration plot and the HL test

(Hosmer & Lemesbow, 1980). Where required, two-sided statistical tests were performed with

a significance level of 0.05. Statistical analysis and model building for validation analysis was

performed in R (version 4.0.3).
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4.3 Results

In total, 34 studies were identified as relevant based on their titles and abstracts. All identified

studies were performed on patients with LARC that were treated with nCRT followed by surgery

with the aim of predicting tumour response using radiomics. 23 studies were excluded after full

text review due to following reasons: 3 studies used contrast enhanced CT data that was not

available in our dataset (Chee et al., 2017; Li et al., 2020a; Zhuang et al., 2021), 4 studies used

both pre and\or post treatment data (Aker et al., 2019; Boldrini et al., 2019; Jeon et al., 2019;

Li et al., 2021), 5 studies used pre-treatment multiparametric MRI (mpMRI) to develop a final

signature with no standalone T2-w MRI signature being reported (Liu et al., 2017; Giannini et al.,

2019; Zhou et al., 2019; Bulens et al., 2020; van Griethuysen et al., 2020), 2 studies did not report

any final signature (Bibault et al., 2018; Delli Pizzi et al., 2021), 3 studies could not be reproduced

as the radiomics workflow or feature definition was not clearly explained (Yi et al., 2019; Li et al.,

2020b; Yuan et al., 2020), 1 study was excluded as the considered ROI was not the primary

tumour (Shaish et al., 2020), 3 studies were excluded as authors reported failure of radiomics

to predict the outcome of interest (Rao et al., 2016; Hamerla et al., 2019; Crimı et al., 2020), 2

studies were excluded as the reported signature was computed from feature maps, which are

currently not supported by MIRP (Ferrari et al., 2019; Coppola et al., 2021). Finally, eleven

studies were included for external validation analysis. All of them used T2-w MRI for predicting

tumour response and were published between 2015 and 2020. One study was prospective, nine

were retrospective, and three were multicentric. Two of these multicentre studies considered both

clinical features and imaging biomarkers.

The clinical characteristics of the 11 included studies are given in Appendix Table B.1. Our ex-

ternal validation results are summarized in Table 4.1. The considered biomarkers and their cor-

responding synonyms together with image processing and feature extraction details for included

studies are summarized in Appendix Table B.2. Except for one study, none of the included studies

could be validated, i.e. they showed p-values above 0.05 and/or a training/validation AUC signif-

icantly below the reported value in the study with a 95% confidence interval including the value

0.5. The only study that could be validated is by Petkovska et al. (Petkovska et al., 2020). An

acceptable performance was observed on our pooled data (AUC=0.64 [0.51-0.77]). In a study by

Chidbaram et al. (Chidambaram et al., 2017), pathological complete responders showed a signif-

icant association with tumour volume delineated on T2-w image (Mann-Whitney-U test p=0.013).

This was somewhat confirmed in our analysis, where we observed a statistical trend (p=0.061).

However, radiomics analyses are not needed to assess the tumour volume. For the study by

Antunes et al. (Antunes et al., 2020), the random forest model created on a single feature was

not successful on our training data but achieved an acceptable performance on the validation

data (AUC: Train, Validation = 0.48, 0.63). Still, on the pooled training and validation data, the

selected feature was insignificant (Mann-Whitney-U test p=0.12). Below we show details for the

validation of each study and describe the results as summarized in Table 4.1.
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Table 4.1: Overview of studies included in validation analysis. For all included studies, patients were

treated with nCRT followed by resection. Radiomics analysis was reported on pre-treatment T2-w MRI

with features extracted from the primary tumour region. The column Validation approach indicates whether

model coefficients or statistical tests were applied on the pooled training and validation data (Pooled) or

the model was re-trained on the training data and validated on the validation data (Train/valid). AUC:

area under a curve (with 95% confidence interval in brackets), MRI: magnetic resonance imaging, nCRT:

neoadjuvant chemoradiotherapy.

Study Study type
Validation

approach
Final results from study

Results from validation analysis

(Unadjusted p-value)

De Cecco (2015-16)
Prospective,

single centre
Pooled

AUC = 0.91, 0.86

p-value = 0.01, 0.01

AUC=0.56 (0.44-0.68)

p-value=0.31

Chidbaram (2017)
Retrospective,

single centre
Pooled p-value = 0.013 p-value=0.061

Caruso (2018)
Retrospective,

single centre
Pooled

p-values <0.05

for all features

p-values >0.05

for all features

Casumano (2018)
Retrospective,

multicentre
Pooled AUC=0.79 AUC=0.58 (0.46-0.70)

Dinapoli (2018)
Retrospective,

multicentre
Pooled AUC=0.75 AUC=0.59 (0.47-0.71)

Meng (2018)
Retrospective,

single centre
Pooled p-value=0.02 p-value=0.098

Cui (2019)
Retrospective,

single centre
Pooled AUC=0.73 AUC=0.52 (0.38-0.64)

Antunes (2020)
Retrospective,

multicentre
Train/valid

Train\Valid AUC= 0.699\0.712

Skewness-Laws Wave-Ripple

(p-value Train=1.6 × 10−4)

Results on

Skewness-Laws Wave-Ripple

Train\valid AUC=

0.48 (0.36-0.57) \0.63 (0.52-0.76)

p-value Train\valid=0.71\0.055

p-value Pooled=0.12

Petkvoska (2020)
Retrospective,

single centre
Pooled AUC=0.75 AUC=0.64 (0.51-0.77)

Petresc (2020)
Retrospective,

single centre
Pooled AUC=0.80 AUC=0.48 (0.38-0.57)

Included studies

The two consecutive single centre studies by De Cecco et al. (De Cecco et al., 2015; De

Cecco et al., 2016) extracted first-order intensity features from the tumour ROI delineated on the

largest slice for the prediction of pathological complete responders (TRG=4) and non-responders

(TRG=0-3). Images were transformed using the spatial scale filter (SSF4) filter (alternate name

for LoG filter). In both studies SSF4 kurtosis was reported to be significant (Wilcoxon rank-sum

test) in predicting response groups (AUC=0.91, 0.86; p-value= 0.01, 0.01). To replicate this study,

we extracted features from the largest tumour slices in our pooled cohort. Images were trans-

formed using the LoG filter and validation was performed for stat_kurt (IBSI: IPH6). We adapted

TRG status to match the study (TRG=4 vs TRG<4 following Dworak et al. (Dworak et al., 1997)).

The study was not validated successfully, as stat_kurt achieved an AUC of 0.56 and a p-value of

0.31.

The study by Chidambaram et al. (Chidambaram et al., 2017) as no high-dimensional features

were extracted from imaging data. However, this study analysed some basic morphological and

statistical features for tumour response prediction using ADC maps of T2-w MRI. Pre-treatment
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MRI volume was found to be significantly associated with tumour response (complete responders

vs incomplete/non-responders following American Joint Committee on Cancer (AJCC)) with p-

value of 0.013 from a Mann–Whitney-U test. We extracted morph_vol (IBSI: RNU0) from the

3D GTV on the pooled cohort and analysed its significance via the Mann–Whitney-U test for

tumour response (TRG=4 vs TRG<4 following Dworak et al. (Dworak et al., 1997)). The study

was not validated successfully, however, we observed a statistical trend for morph_vol feature

(p-value=0.061)

In a retrospective study conducted by Caruso et al. (Caruso et al., 2018) on a small cohort

of 8 patients, the directional GLCM (no discretization mentioned) features extracted from T2-

w MRI were shown to be significantly different between pathological complete and incomplete

responders, while partial responders were excluded from the study. The logistic regression model

followed by a Wald test for feature importance was used to analyse the predictive performance

of features in the model. The study reported a p-value<0.05 for included features. For validation,

we excluded partial responders from our pooled training and validation data, thus including only

65 patients (TRG=4 vs TRG=0 following Dworak et al. (Dworak et al., 1997)). Directional features

are not supported by MIRP. Thus, we extracted 2D GLCM features using the average method, i.e.

features were computed from all matrices and then averaged using a fixed bin number of 64. IBSI

synonyms for validated features are mentioned in Appendix Table B.2. Validation was performed

by fitting a multivariable logistic regression model followed by the Wald test to obtain p-values

for each feature. The study was not validated successfully, as all included features showed an

insignificant p-value (> 0.05) on our pooled cohort.

Two multicentre retrospective studies (Cusumano et al. (Cusumano et al., 2018) and Dinapoli

et al. (Dinapoli et al., 2018)) proposed statistical and intensity histogram features extracted from

LoG transformed images together with clinical T and N stage for tumour response prediction

(TRG=1 vs TRG>1, Mandard et al. (Mandard et al., 1994)). The study by Cusumano et al.

(Cusumano et al., 2018) showed an AUC of 0.79, while the study by Dinapoli et al. (Dinapoli

et al., 2018) showed an AUC of 0.75. The signature presented by Cusumano et al. also in-

cluded an additional fractal feature that could not be extracted by MIRP. The studies did not

report discretization for intensity histogram features. Final model coefficients were reported. To

validate the study by Cusumano et al. (Cusumano et al., 2018) pixel intensities inside the GTV

were normalized by the 99th percentile. The fractal feature was excluded, and the remaining

features were extracted from 2D slices from the discretized intensity histogram (25 bins). The

model provided in each study was then applied to our pooled cohort. Details of features and

their corresponding IBSI synonyms are presented in Appendix Table B.2. Both studies were not

validated successfully as they showed AUC <0.60 on our pooled cohort.

The study by Meng et al. (Meng et al., 2018) analysed statistical and intensity histogram fea-

tures extracted from the largest tumour slices for tumour response prediction. The image intensi-

ties were discretized. However, the study did not report the number of bins used for discretization.

Further response groups were created as responders (TRG=1-2) and non-responders (TRG=3-5)
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following Mandard et al. (Mandard et al., 1994). The study showed image kurtosis to be signifi-

cantly different between responders and non-responders (Mann-Whitney-U test p-value = 0.02).

For validation, we extracted intensity histogram features from the largest tumour slices after dis-

cretizing image intensities into 25 uniform bins from the pooled cohort. Finally, the ih_kurt (IBSI:

C3I7) feature was tested for tumour response prediction (TRG=3-4 vs TRG=0-2, Dworak et al.

(Dworak et al., 1997)) using the Mann-Whitney-U test. The study was not validated successfully,

since the ih_kurt feature showed a p-value of 0.098 on our pooled cohort.

The study by Cui et al. (Cui et al., 2019) used mpMRI to develop a radiomic signature. How-

ever, a standalone T2-w MRI signature comprising directional GLCM, statistical, and morpholog-

ical features extracted from the GTV for tumour response prediction (TRG=1 vs TRG>1 following

Mandard et al. (Mandard et al., 1994)) was also presented. The coefficients of the final model

built on z-score normalized features were reported by the study. The model was shown to achieve

an AUC of 0.73. However, feature extraction parameters including discretization, merge method,

and feature extraction plane, i.e. 2D/3D for GLCM features were not reported by. Since di-

rectional features are not supported by MIRP, we extracted 3D GLCM features with a fixed bin

number of 64 using the average method, i.e. features were computed from all matrices and then

averaged, thus compensating for directional texture features. We then applied the model coeffi-

cients provided in the study to compute the radiomics score presented in the study and assessed

the AUC on our pooled cohort. Since we can get only closely related features for this study,

we also fitted the logistic regression model on the training data and applied it to the validation

dataset. However, this validation was not successful (AUC: train/valid = 0.72/0.32). We excluded

‘HaralickCorrelation_angle90_offset7’ from the signature, as by definition Haralick features are

no different from the GLCM feature ‘Correlation_angle135_offset7’ except for the difference in

angle (Zwanenburg et al., 2020).

A retrospective study conducted by Antunes et al. (Antunes et al., 2020) reported 4 (1 Haralick

co-occurrence, 2 Gradient organization, 1 Laws energy response) features extracted from the

largest tumour slice for tumour response prediction (TRG=4 vs TRG<4 following Dworak et al.

(Dworak et al., 1997)). Pre-processing applied before feature extraction in this study includes (i)

image interpolation to 0.781 × 0.781 × 4.0 mm, (ii) N4 bias correction, and (iii) intensity normal-

ization with a reference to the mean intensity of the obturator internus muscle. The signature

comprised of above-mentioned 4 features achieved a training and validation AUC of 0.699 and

0.712 respectively. To validate this study, we replicated steps (i) and (ii) of pre-processing, while

for step (iii) relative range intensity normalization [0, 90] was performed. Furthermore, gradient

organization features assessed in the study are not IBSI compliant. Therefore, none of the orga-

nization features could be extracted. Finally, a random forest model was created on training data

using one feature, i.e. Skewness-Laws Wave-Ripple w5s5, and subsequently transferred to the

validation data. The model achieved training and validation AUC of 0.48 and 0.63, respectively.

Feature importance was computed via the Mann-Whitney-U test. On pooled data, feature was

not significant (p-value Pooled=0.12).
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Figure 4.2: (a) Receiver operating characteristics (ROC) curve and (b) calibration plot for tumour response

prognosis in our pooled training and validation data based on the study by Petkovska et al. (Petkovska

et al., 2020). For calibration, data (thick lines) and 95% confidence intervals (shaded regions) are shown

together with linear regression lines (solid lines). The density of expected probabilities is shown above the

calibration plot. The calibration line roughly follows the optimal expectation for most of the observations at

small probabilities.

Petkovska et al. (Petkovska et al., 2020) reported 6 features (2 morphological, 2 grey level

texture, 2 directional Gabor) extracted from the 3D tumour volume using T2-w MRI. The pro-

posed radiomics signature achieved an AUC of 0.75 for tumour response prediction. In the study,

images and corresponding tumour mask were interpolated 1 × 1 × 1 mm prior to feature extrac-

tion. The study reported discretisation of normalized image intensities using fixed bin size=128,

however the normalization step was not clearly explained. Moreover, to unambiguously spec-

ify Gabor filters at least two out of three parameters are required (scale (sigma), wavelength

(lambda), bandwidth). The study reported only sigma values and initial angles for Gabor filters.

Model coefficients were provided in the study for the T2-w signature. In our validation analysis,

we interpolated MR images to isotropic 1 mm resolution using cubic interpolation followed by

standard normalization of image intensities within the soft tissue region. Grey level intensities

were discretized using fixed bin size=128 for texture features. Gabor transformed features were

extracted using angle and sigma values as reported in the study, however we used lambda=4 to

complete feature extraction. Finally, the radiomics score was computed by applying model coef-

ficients using our pooled cohort and subsequently the AUC was computed for tumour response

prediction (TRG=4 vs TRG <4 following Dworak et al. (Dworak et al., 1997)). The study was

somewhat validated, as we observed acceptable performance on our pooled data (AUC=0.64

[0.51-0.77]). Figure 4.2 shows the ROC and calibration plot for this validation.

A retrospective single-centre study conducted by Petresc et al. (Petresc et al., 2020) proposed

a signature comprising second-order texture features on LoG and wavelet transformed images to

predict tumour response (TRG=3 vs TRG=1,2 following Ryan et al. (Ryan et al., 2005)). These
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features achieved an AUC of 0.80. Image intensities within the GTV were discretized using a

fixed-bin width of 5. However, discretization of wavelet features, the merging method for tex-

ture features, and the neighbourhood distance for GLCM features were not documented. Model

coefficients were provided in the study. In our validation analysis, we applied pre-processing

steps as indicated in the study, including image standardization (mean=0, std=100), B-spline

interpolation, re-segmentation of segmentation mask. For feature extraction we used fixed bin

number=64, fixed bin size=5, merge method=average, and GLCM neighbourhood distance=1.

Further, we excluded the ’wavelet_hhl_glcm_MCC’ feature, as it is not standardized by the IBSI.

For the remaining features, we computed a radiomics score by applying model coefficients on

z-score normalized features using our pooled cohort and subsequently computed the AUC for tu-

mour response prediction (TRG=3,4 vs TRG=0-2 following Dworak et al. (Dworak et al., 1997)).

The study was not validated successfully and achieved an AUC of 0.48.

4.4 Summary and discussion

In general, the external validation of previously published radiomics signatures developed for

tumour response prediction based on our multicentre data was not successful. Remarkably, no

significant results were obtained, except for one study by Petkovska et al. (Petkovska et al., 2020)

(AUC=0.64), which overall indicates a potential lack of reproducibility for radiomics studies.

The results shown by the included studies are promising, however most of these studies are

based on data from a single centre without any external validation, which can be one of the

factors leading to low reproducibility of radiomics models. Considering MRI-based multicentre

radiomic studies with an independent validation for patients with LARC, Antunes et al. (Antunes

et al., 2020) used features extracted from laws kernels and gradient organization responses.

In our validation analysis, only skewness-laws features could be validated. The corresponding

feature used by Antunes et al. (Antunes et al., 2020) was not significant in training and showed

a statistical trend in validation (p=0.055). Dinapoli et al. (Dinapoli et al., 2018) used first-order

intensity histogram-based features, while the study by Cusumano et al. (Cusumano et al., 2018)

additionally used fractal features in the final signature to build the model. Both studies also

combined clinical features (cT and cN) with the radiomics signature. In our validation study,

these signatures did not show a good performance (AUC < 0.60).

Single centre retrospective studies have shown promising results for tumour response predic-

tion in LARC. De Cecco et al. (De Cecco et al., 2016) and Caruso et al. (Caruso et al., 2018)

showed a significant association (p<0.05) of FO statistical and GLCM features, respectively, with

tumour response to nCRT on small cohorts (≤15 subjects). However, in our validation analysis,

no significant association has been found for these features (p>0.05). Coppola et al. (Cop-

pola et al., 2021) showed that heterogeneity of local skewness is associated to tumour response

(AUC=0.90). Ferrari et al. (Ferrari et al., 2019) showed that complete responders have higher

GLCM energy and good responders have high expression of histogram features (AUC=0.87).
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These studies could not be validated as the features were extracted from feature maps, which

are currently not supported in MIRP. More recent studies showed the association of SOT fea-

tures with tumour response prediction. The studies by Delli Pizzi et al. (Delli Pizzi et al., 2021)

and Petresc et al. (Petresc et al., 2020) showed an AUC of 0.79 and 0.80 in internal validation,

respectively. However, validating the results of Petresc et al. (Petresc et al., 2020) on our mul-

ticentre data was not successful (AUC=0.48). Fewer studies have investigated the performance

of CT imaging for tumour response prediction to nCRT using patient populations treated with

standard procedures, i.e. nCRT followed by TME (Rao et al., 2016; Chee et al., 2017; Bibault

et al., 2018; Hamerla et al., 2019), or combined CT and MR imaging (Li et al., 2020b; Zhang

et al., 2020). Bibault et al. (Bibault et al., 2018) developed a model for the prognosis of tu-

mour response with radiomics features extracted from treatment plan CT data using DNN with

an AUC of 0.72. However, the study did not mention any finally selected features for building the

deep learning model and hence it could not be validated. Contrast enhanced CT images pro-

vide better evaluation of tumours compared to unenhanced images and some studies have also

utilized contrast enhanced CT. For example, Chee et al. (Chee et al., 2017) demonstrated that

pre-treatment contrast enhanced CT-based FO features were associated with tumour response

prediction (responders showed low entropy, high uniformity, and low standard deviation). How-

ever, the validation of this study was also not possible as our multicentre data contains treatment

planning CT without contrast enhancement.

In this work a literature search was also performed to identify studies that handle FFDM as

time-to-event endpoint. However, to the best of our knowledge, none of the studies has used

radiomics modelling for FFDM prognosis in LARC patients.

One major issue in radiomics analyses is feature reproducibility and the lack of consensus on

which features should be extracted from clinical imaging data. In our validation study, we expe-

rienced limited reproducibility of published literature. Only 32% of the eligible literature could be

assessed for their validation performance with our data and methods, mostly due to the use of dif-

ferent software implementations and underreporting of methods employed for radiomics analysis

of LARC. Important details such as image processing for feature extraction (e.g. discretization for

intensity and texture features), final signatures together with their interpretation and final models

were not always provided. Thus, there is a strong need of standard radiomics process for signa-

ture definition for both reproducibility and progression of radiomics towards clinical application.

Although some studies have used large cohorts for radiomics analyses in LARC, external val-

idation was rarely performed. Only 4 studies (Cusumano et al., 2018; Dinapoli et al., 2018;

Antunes et al., 2020; Shaish et al., 2020) have used retrospective multicentre cohorts with a

maximum of 3 data centres involved, which may lead to a low generalizability of the presented

radiomic signatures. To tackle such problems, in our multicentre study, we have established and

externally validated radiomics signatures in accordance with the IBSI guidelines, and we report

parameters and algorithms used for their extraction, transformation, stability analysis, and mod-

elling. In addition to the lack of standardization in the radiomics workflow, there is lack of stan-
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dardized imaging protocols as well. This can obstruct the successful validation of radiomics mod-

els, e.g. for imaging from MR scanners of different vendors or different magnetic field strengths,

because such differences may lead to the extraction of differently distributed features (Cusumano

et al., 2021b). Standardization at hardware level is costly, thus there is a need to develop gen-

eralizable models by incorporating data from different scanners and protocols. We addressed

this issue by using multicentre data independent of vendor and imaging protocols for training and

validation. Furthermore, we observed significant differences between the clinical characteristics

of our pooled cohort and the external cohorts included in the validation study (mainly clinical T

and N stage). These differences may explain part of the observed reduced performance of the

published models in our external validation analysis.

In conclusion, we observed low performance of published radiomics literature in our external

validation analysis, which indicates an overall lack of reproducibility and the need for standard-

ization in radiomics procedure and reporting before its prospective clinical application.
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5 Radiomics for the detection of tumour residuals after

surgery of glioblastoma based on [11C] methionine

PET and T1c-w MRI

5.1 Motivation

The current standard of care for newly diagnosed GBM is maximum safe surgical resection fol-

lowed by CRT. Despite multimodal treatment, patients with GBM still face an overall poor progno-

sis, with a high recurrence rate and 5-year survival probability of only 5% (Alexander & Cloughesy,

2017). Gross total resection of GBM has been associated with improved local control and survival

compared to subtotal or partial resection (Coburger et al., 2017; Wang et al., 2019). However,

due to infiltrative growth patterns, total resection cannot always be achieved, and residual tumour

cells may persist after resection. These residual tumours are widely held to be responsible for

recurrence of the tumour, leading to overall poor prognosis of GBM patients (Nazzaro & Neuwelt,

1990).

The residual tumour status is usually evaluated by T1c-w MRI. The area of gadolinium-diethylen-

etriaminepentaacetic acid (Gd-DTPA) enhancement is generally assumed to correspond well to

the main mass of active tumour tissue. However, the reliability of T1c-w MRI in distinguishing

tumour tissue from unspecific treatment effects such as post-surgical blood-brain barrier break-

down is limited. For example, reactive transient blood–brain barrier alterations with consecutive

contrast enhancement can mimic tumour progression. This phenomenon, so-called pseudo-

progression, is seen in 20%–30% of cases (Kumar et al., 2000).

Amino acid PET, e.g. L-[methyl-11C] methionine (MET) has been shown to be particularly

useful for determining the extent of cerebral gliomas more precisely than MRI alone (Galldiks

et al., 2010; Galldiks et al., 2012; Harat et al., 2016). The high uptake of radiotracer in residual

tumour reflects an increased expression of amino acid transporters (Jager et al., 2001).

The accurate detection of tumour residuals in post-surgical imaging can help to identify pa-

tients with a poor prognosis, who may benefit from escalated treatment (Nazzaro & Neuwelt,

1990). Commonly, the imaging-based assessment of the residual tumour status is done visually

by experienced radiation oncologists, nuclear medicine experts, and radiologists in a complex

evaluation procedure that is at risk for inter-rater variability (Kubben et al., 2010). Thus, auto-

matic methods of detecting residual tumour status may be helpful to support the clinical decision.

Currently, only few studies have evaluated the automatic detection of residual tumours. A study

by Chow et al. (Chow et al., 2014) examined a semi-automated computer aided volumetry (CAV)

approach to quantify residual disease in GBM and noted no significant difference compared with

manual volumetric measurements, which are time-consuming and impractical in a busy clinical
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practice. Meier et al. (Meier et al., 2017) used a fully automated end-to-end machine learning

based algorithm for segmentation of tumour residuals. Similarly, Krivoshapkin et al. (Krivoshap-

kin et al., 2019) used an automated tool based on a mathematical model to segment residual

tumours. However, the analyses in these studies have been performed only on post-surgical

contrast enhanced MRI using small cohorts without independent validation.

Conventional and DL-based radiomics have been widely used for medical image analysis, as

non-invasive methods for diagnosis support and biomarker discovery. However, to the best of our

knowledge, no studies have evaluated the diagnostic performance of post-surgical T1c-w MRI

and methionine (MET)-PET for the detection of tumour residuals.

Therefore, in this study, we developed and independently validated conventional radiomics and

3D-CNN models to detect the residual tumour status in postoperative MET-PET and gadolinium-

enhanced T1-w MRI in patients with newly diagnosed GBM.

5.2 Materials and Methods

5.2.1 Patient cohort

Imaging and clinical data of 132 adult patients were collected from the PETra trial, which is

a prospective one-arm, single-centre, nonrandomized biomarker study as described elsewhere

(Seidlitz et al., 2021) and from an additional retrospective validation cohort. All patients were

newly diagnosed with histologically confirmed GBM and were treated at the University Hospital

and Faculty of Medicine Carl Gustav Carus. 85 consecutive patients from the PETra trial (ethics

id. EK41022013) were allocated to the training data, while 47 consecutive patients from the

validation trial (ethics id. EK390072021) were allocated to an independent test data. Patients

underwent standard CRT with standard radiotherapy dose of 60 Gy and temozolomide, starting

within 7 weeks after surgery. The inclusion criteria for this study were: T1c-w MRI acquired

contemporaneously with MET-PET before RCT with sufficient imaging quality and availability of

considered endpoints. Patient characteristic of training and test cohort are summarized in Table

5.1.

5.2.2 Experimental design

We developed and independently validated conventional radiomics and deep learning (DL) mod-

els for the detection of the residual tumour status in patients with, GBM based on MET-PET

and T1c-w MRI data acquired before RCT. Figure 5.1 summarizes the design of this study. For

the conventional radiomics analysis, we used the CTV to separately compute imaging features

in MET-PET and T1c-w MRI. These features included first-order features (local, statistical, in-

tensity histogram and intensity volume histogram), second-order texture features, and Laplacian

of Gaussian (LoG) transformed intensity features. The features were filtered for stability under
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Table 5.1: Patient, tumour, and treatment characteristics for the training and test data.

Variable Training (85) Test (47)

Median Range Median Range p-value

Age years 58 23-82 61 24-77 0.049

TTR months 7.43 0-73.0 9.76 1.15.58.0 0.60

OS months 16.6 1.54-73.0 13.9 1.94-58.0 0.10

Number % Number %

Gender Male/female 51/34 60.0/40.0 31/16 66.0/34.0 0.63

ECOG 0/1/2/unknown 45/35/5/0 52.9/41.2/5.9/0 21/19/3/4 44.7/40.4/6.4/8.5 0.054

MGMT
Wildtype/methylated/

unknown
56/29/0 65.9/34.1/0 20/26/1 42.6/55.3/2.1 0.019

Resection GTR/STR/BIO 49/29/7 57.6/34.1/8.2 26/21/0 55.3/44.7/0.0 0.09

IDH
Wildtype/mutated/

unknown
75/6/4 88.2/7.1/4.7 44/2/1 93.6/4.3/2.1 0.60

PET status 0/1 (negative, positive) 28/57 32.9/67.1 17/30 36.2/63.8 0.85

MRI status 0/1 (negative, positive) 49/36 57.6/42.4 23/24 48.9/51.1 0.44

TTR status 0/1 (censored, event) 11/74 12.9/87.1 12/35 25.5/74.5 0.11

OS status 0/1 (censored, event) 13/72 15.3/84.7 17/30 36.2/63.8 0.011

Abbreviations: BIO, biopsy; ECOG, Eastern Co-operative Oncology Group; GTR, gross total resection; IDH,

isocitrate dehydrogenase; MGMT, O6-methylguanine DNA methyltransferase; MRI, magnetic resonance

imaging; OS, overall survival; PET, positron emission tomography; STR, subtotal resection; TTR, Time-to-

recurrence. Age was compared using Mann-Whitney-U test, TTR and OS were compared using log-rank test

and Categorical variables were compared using χ
2 test between training and test data.

small image perturbations and clustered. Separate radiomic models for each imaging modality

were developed using the data in the training data. Three different machine-learning algorithms

of varying complexity were assessed, including logistic regression (GLM_logistic), Xgboost linear

model (XGB_lm), and random forest (RF). The finally selected features were applied to the test

data and performance was compared between PET- and MRI-based models. In our DL analysis

for detection of residual tumour status in PET and MRI, end-to-end feature extraction and mod-

elling were performed using three different 3D-CNN architectures, i.e. 3D-VGGNet, 3D-Resnet,

3D-DenseNet (see Section 2.6.3 for more details on CNN architectures). Model losses were

optimized using the BCE loss. 3D-CNN models were trained from scratch on image patches

extracted around the CTV centre of mass individually for each imaging modality. To address the

limited data problem and to improve the generalizability of 3D-CNN models, training was per-

formed using two approaches: (i) without data augmentation and (ii) with data augmentation (see

Section 2.6.3 for more details on data augmentation). We then applied the developed models

to the independent test data and compared their performance. The performance of conventional

radiomics and 3D-CNN models was evaluated using the AUC, sensitivity and specificity for the

detection of residual tumour status in PET and MRI. Image processing and modelling details are

explained in the following paragraphs.
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as negative (0). In case of distinct progression between the two MRI scans, MRI status was

changed to positive (1). Difficult cases with small residual tumours or laminar enhancement, so

that distinction from residual blood in the cavity was difficult, were independently reviewed by

an experienced radiologist. A more detailed description of the qualitative analysis performed by

clinical experts to evaluate residual tumour status is given in (Seidlitz et al., 2021).

For automatic detection of residual tumour status in PET and MRI with conventional radiomics

and DL, PET/MRI images were rigidly co-registered to the planning CT using the treatment plan-

ning system RayStation 8B SP2 (RaySearch Laboratories, Stockholm, Sweden) and the clinical

target volume that received at least 50 Gy (CTV50) was transferred to MET-PET and T1c-w MRI.

After registration, imaging datasets were retrieved from the RayStation for further analysis.

5.2.4 Image pre-processing, and feature extraction

Figure 5.1(a) illustrates the process of image pre-processing used before radiomics and DL mod-

elling. T1c-w MR imaging was bias-corrected using the N4ITK bias correction algorithm (Tustison

et al., 2010) after masking the soft tissue region in the image using the Canny Edge detection

algorithm (Canny, 1986). After bias correction, intensity values of T1c-w data were z-score nor-

malized. PET imaging was converted SUV. SUV values were truncated to the range [0, 10] to

remove potential outlying intensities. Subsequently, the entire volume was normalized to the

[0,1] range (see Section 2.3.2 for more details on image processing). Further pre-processing

was specific to radiomics or DL analysis. For the DL analysis, we aligned the orientation of all

MET-PET and T1c-w MR images and resampled these to isotropic 2.0 × 2.0 × 2.0 mm3 voxels

using trilinear interpolation. A single image volume of size 60 × 60 × 44, centred around the CTV

centre of mass, was extracted in the axial plane for both imaging modalities.

For the radiomics analysis, further image pre-processing followed by feature extraction was

carried out using the MIRP Python toolkit (version 1.1.3) (Zwanenburg et al., 2019b). MET-PET

and T1c-w MR image voxels were resampled to 2.0 × 2.0 × 2.0 mm3 and 1.0 × 1.0 × 1.0 mm3,

respectively, using trilinear interpolation. LoG filters with kernel widths σ = 2 mm for MET-PET

and σ = 1 mm for T1c-w MRI were applied to the base images. The choice of kernel width was

based on the original slice thickness of each imaging modality. A total of 270 and 152 intensity-

based and texture-based features were extracted from the 3D CTV on the baseline MET-PET

and T1c-w MRI, respectively. In addition, 57 first-order intensity-based features were extracted

from the CTV on the LoG transformed images for both imaging modalities. This resulted in a total

of 327 and 209 features extracted from MET-PET and T1c-w MRI, respectively. Further details

on feature classes are summarized in Appendix Table C.2.

Image pre-processing and feature extraction in MIRP were implemented according to the rec-

ommendations of the IBSI (Zwanenburg et al., 2020). The definitions used to calculate the fea-

tures can be found in the IBSI reference manual. Image processing parameters are summarized

in Appendix Table C.3.
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In order to obtain reproducible results, imaging features have to be stable under small image

perturbations, such as those caused by slight variations in acquisition parameters or positioning

uncertainties (see Section 2.3.2 for more details). We evaluated feature robustness by applying

the following image augmentations based on the training data: adding Gaussian noise (mean

0, standard deviation as present in the image), random volume changes of the CTV (0%, -15%,

15%), and translations (0.0, 0.25, and 0.75 mm) in all three spatial dimensions. All combinations

of these perturbations were considered, leading to 81 perturbed images for each original dataset.

The intra-class correlation coefficient (ICC) was calculated with a 95% confidence interval. Fea-

tures with the lower boundary of the 95% confidence interval of the ICC below 0.8 were removed

(Zwanenburg et al., 2019a). Feature redundancy was reduced through clustering. The Spear-

man correlation coefficient (ρ) was used as a similarity metric, with average linkage as a criterion

for merging two clusters. The feature with the highest mutual information with the endpoint was

selected as the representative for each cluster. The clustering process was done separately for

MET-PET and T1c-w MRI-based feature sets.

5.2.5 Conventional radiomics modelling

Figure 5.1(b) illustrates the workflow for the conventional radiomics analysis. We implemented

a workflow containing four major processing steps to derive radiomics signatures from the pre-

processed feature sets: (i) feature pre-processing, (ii) feature selection, (iii) model building with

internal validation, and (iv) testing. This workflow was implemented using the open-source end-

to-end statistical learning software package familiar (1.0.0) in R (version 4.0.3). Steps (i)-(iii) were

first performed using 5 repetitions of 5-fold stratified cross-validation (CV) nested in the training

dataset to identify an optimal signature, i.e. the steps were repeatedly performed on the internal

training part and validated on the internal validation part of the CV folds. After identifying the final

signature, a final model was developed on the entire training data and validated on the test data.

The following procedure was performed for each of the 25 CV runs:

1. Features were transformed using the Yeo-Johnson transformation to align their distribution

to a normal distribution. Afterwards, features were z-transformed to mean zero and stan-

dard deviation one. Both transformations were performed on the internal training part and

applied unchanged to the features of the internal validation part.

2. Four supervised feature-selection algorithms were considered: mRMR, MIM, EN, and uni-

variate regression (UR). To avoid potential overfitting, only the five most relevant features

were selected in each CV fold.

3. The selected features were used by three different classifiers: logistic regression (GLM_logi-

stic), Xgboost linear model (XGB_lm) and RF for detection of residual tumour status in PET

and MRI. Model hyperparameters were tuned automatically using a variant of the sequen-

tial model-based optimisation (SMBO) algorithm based on bootstrap sampling of the train-
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ing data (Hothorn & Lausen, 2003). Each classifier was built on the internal training part,

which was validated on the internal validation part.

For every feature selection method, average model performance was assessed by the median

AUC for the detection of PET and MRI status. After cross-validation, features were ranked ac-

cording to their occurrence across the 25 CV folds for each of the feature-selection methods. The

top 5 most commonly occurring features that appeared in at least 75% (i.e. 3 out of 4) of feature-

selection methods were selected. If a subset of these features showed a Spearman correlation

ρ> 0.5 with each other on the entire training data, the most relevant feature, i.e. the one showing

higher association with endpoint on the training data, was considered.

After feature selection has been performed, the resulting radiomics signature is used to build

a prognostic model on the entire training data and (iv) the trained model was applied to the

independent validation data.

Feature selection criteria for final signature in conventional radiomics model

Here, we explain an example of feature selection for residual tumour status prediction on MET-

PET imaging. The same technique applies to residual tumour status prediction on T1c-w MRI

as well. Appendix Table C.4 shows 39 MET-PET features with the highest mutual information

(measured by the AUC) with residual tumour status on MET-PET selected after hierarchical clus-

tering. These features were then used to build a diagnostic model. As mentioned above, feature

selection and model building with internal validation was first performed within 5 repetitions of 5-

fold cross-validation (CV) nested in the training data to identify an optimal signature, with model

performance evaluated in terms of median AUC across all CV folds. For each of the above-

mentioned feature selection methods, the occurrence of every feature in the 25 modelling steps

(5 repetitions of 5-fold CV) was counted, and features were ranked according to their occur-

rences across the cross-validation folds. Appendix Table C.5 shows features with top 5 ranks

across each feature selection method that were further considered. Finally, features that showed

repeated occurrences across at least 75% of the feature selection methods were selected. Two

features, i.e. log_ih_kurt_fbn_n16 and log_stat_skew occurred in all 4 feature-selection meth-

ods, thus meeting the 75% occurrence criteria for candidate features. Both features showed

a Spearman correlation (ρ) >0.5 on the entire training data, as shown in Appendix Figure C.1.

Finally, log_ih_kurt_fbn_n16 was selected as a one-feature signature due to the stronger asso-

ciation of this feature with the endpoint (p-value=2.58 × 10(−5)) as compared to log_stat_skew

(p-value=8.37 × 10(−5)). The finally selected signature and the average AUC (average of AUC

across all feature selection methods) in internal training and external test are reported in the

results section.
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5.2.6 Deep learning radiomics modelling

Three different 3D-CNN architectures, i.e. 3D-VGGNet, 3D-ResNet, and 3D-DenseNet, were

trained from scratch (see Section 2.6.3 for details). Architectures were adapted to get the best

performance on the internal validation data.

The 3D-VGGNet network consists of 3 convolution blocks with 2 convolution layers in the first

two blocks and 3 convolution layers in the third block (filter size = 3 × 3 × 3, activation = ReLU)

followed by max-pooling (pool-size = 2 × 2 × 2) and dropout layer (rate = 0.4). The first block

comprised 64 filters. The number of filters were doubled in each subsequent block. A batch

normalization and flattening operation followed the last convolutional block.

The 3D-ResNet network was based on a vanilla ResNet18 implementation for 3D image data,

adapted from (Ju, 2019). The first convolutional layer was modified to use a filter size of 3 × 3 ×

3, a stride of 2 and global average pooling after the last residual block followed by the flattening

layer.

The 3D-DenseNet121 was adapted from (Dudovitch, 2019). Instead of using 4 dense blocks

as in the original DenseNet implementation (Huang et al., 2017), only 3 dense blocks (6, 12, 24

layers per block) were used. Like the 3D-ResNet18 adaptation, we used 3 × 3 × 3 convolutions

with a stride of 2 in the first convolution layer and global average pooling after the last residual

block followed by a flattening layer.

All the above-mentioned architectures were further adapted for improved performance on 3D

data by appending a set of 4 fully connected (FC) layers with 512, 512, 256, and 128 neurons

respectively at the end of the network. To reduce potential overfitting, a dropout rate of 0.4 was

applied between those FC layers. Lastly, the model output was given by a single dense neuron

with tanh activation. We used a batch size of 16 and Adam optimizer to estimate model param-

eters while training of all three architectures. Training was done for a maximum of 300 epochs,

while doing early stopping (patience=100) with an adaptive learning rate using exponential decay

(initial learning rate = 1.10-4, decay steps = 1000, decay rate = 0.96) via Keras callbacks. Model

losses were optimized using binary cross entropy loss function. Final model output was given by

a single dense neuron with sigmoid activation.

For the analysis of each endpoint with the aforementioned 3D-CNN architectures, network

training was performed within 5 repetitions of 5-fold cross-validation (CV), stratified by the event

status on the training dataset. For each of the CV splits, training volumes were augmented by

changing contrast, brightness, Gamma correction, Gaussian noise, and Gaussian blur using the

open-source Python package batchgenerators for data augmentation (Isensee et al., 2020). To

assess the benefit of data augmentation on model generalization to unseen data, the above

pipeline was also implemented without augmenting the training data.

Model training was performed on the training folds of the CV splits, and model losses were

evaluated at the end of each epoch on the internal validation split. Since each of the 25 CV

runs resulted in a trained model, an ensemble prediction was created by averaging outputs for
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each patient. Training ensemble prediction was obtained by averaging the predicted output for

each patient across the 20 models for which that patient was part of the training fold. Similarly,

internal validation ensemble prediction was computed by averaging the predicted output using

the remaining five models for which the patient was assigned to the internal test fold. All trained

25 models were then applied to external validation data, and a patient’s ensemble prediction was

computed by averaging over all 25 model predictions. Below, we describe the details of data

augmentation applied to 3D imaging data.

3D data augmentation

In this work, we used random flipping to create mirror reflection of input image volume along

only the x and y-axis. Mirroring in the batchgenerators package is evenly distributed, i.e. the

probability of mirroring along each axis is 0.5. The rest of augmentations used in this work belong

to pixel-level transformations. We used additive Gaussian noise with a variance of the noise

uniformly sampled from the range (0, 0.05). We also used Gaussian blur with a standard deviation

(σ) selected randomly from the range (1, 1.75). Further, we used a gamma correction to improve

luminance of input volumes with gamma values selected randomly from the range (0.5, 2). Finally,

we applied the brightness multiplicative transform, where the multiplier is randomly sampled from

the range (0.7, 1.5), and the random contrast transform, where contrast values were randomly

sampled from the interval (1, 1.75) for augmenting MRI data only. We did not use brightness

and contrast transform for PET data, as the effect of these transformations was found to be

less effective for improving model performance. The hyperparameters for pixel-level transforms

were selected manually by visually inspecting the images so that each transformation creates an

image that is representative of real perturbations and by avoiding extreme transformations with

very high or low values of transformation parameters. All transformations were applied to image

volumes extracted around the CTV. Each augmentation was applied with the probability of 0.15,

which limits the number of original images shown to the network. The percentage of original

images used during the training was 40% and 10%, combining 4 and 6 different augmentation

techniques for MET-PET and MRI respectively. Data augmentation parameters are summarized

in Appendix Table C.6.

5.2.7 Statistical analysis

The following baseline clinical parameters were available: gender, age, Eastern Cooperative

Oncology Group (ECOG) score, MGMT promoter methylation status, IDH mutation status, and

resection type. Categorical clinical features were compared between training and test data by

the χ
2 test, whereas continuous features were compared using the Mann-Whitney-U test.

Associations between the final model predictions and the endpoints were evaluated by the

area under the curve (AUC). Its estimated value and 95% confidence interval were reported. The

importance of individual features in the final signature was assessed by the univariate fitting of a
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logistic regression and computing Wald-test p-values. For creating a confusion matrix based on

the final predictions, an optimal cutoff was selected on the training data using the Youden index

and transferred to the test data.

Model calibration was assessed via the HL test (Hosmer & Lemesbow, 1980) for the detection

of residual tumour status in PET and MRI, and by creating calibration plots. Correlations between

features were assessed by the Spearman correlation coefficient (ρ). All tests were two-sided with

a significance level of 0.05.

Radiomics analysis was performed in R version 4.0.3, while DL analysis was performed in

Python 3.7.0 and Keras (v2.3.1) with TensorFlow (v2.1.0) on NVIDIA GeForce RTX 2080 Max-Q.

Our code is publicly available from https://github.com/oncoray/cnn-petra

5.3 Results

Patient characteristics are summarized in Table 5.1. MGMT status and age was significantly

different between training and test data. Patients in the training data had a higher percentage

of wildtype and a lower percentage of methylated MGMT status (p-value=0.019), and a slightly

lower median age (p-value=0.049) compared to the test data.

For radiomics modelling, 327 and 209 radiomic features were extracted from the CTV MET-

PET and T1c-w MRI, respectively. Stability analysis reduced these features to 258 and 134 in

MET-PET and T1c-w MRI data. Clustering of correlated features further reduced their number

(MET-PET = 39, T1c-w MRI = 36). Based on these reduced feature sets, radiomic signatures

were developed and validated for both imaging modalities to detect tumour residual status based

on PET and MRI.

Table 5.2 presents the results for the classification of residual tumour status in PET and MRI

using conventional radiomics, including the model names and the finally selected features. In in-

ternal CV, overall higher performance for detection of residual tumour status in PET was observed

for all considered machine-learning approaches (AUC PET=0.93) compared to MRI-status clas-

sification (AUC MRI=0.66-0.68). Similarly, on the test data we observed higher performance for

detection of residual tumour status in PET with all machine learning models (AUC PET=0.90-

0.91), while for detection of residual tumour status in MRI, logistic regression and linear Xgboost

model showed a similar performance (AUC=0.78) and random forest showed a relatively low

performance (AUC=0.73). Corresponding confusion matrices for a logistic regression model are

shown in Appendix Figure C.2(a) with a sensitivity of 0.73 and 0.54 and a specificity of 0.88 and

0.87 on the test data for residual tumour status in PET and MRI, respectively. At a threshold

of 0.77, the signature developed for PET status prediction was able to accurately classify 22/30

PET-positive and 15/17 PET-negative patients in the test data. At a threshold of 0.38 the signature

developed for residual tumour status in MRI was able to accurately classify 13/24 MRI-positive

and 20/23 of MRI-negative patients.

82



5.3 Results

Table 5.2: Median AUC values for CV and for the final signature on the test data for PET-status prediction

based on MET-PET and for MRI-status prediction based on T1c-w MRI using conventional radiomics.

Values in parentheses represent the 95% confidence interval. Best test performance is marked in bold.

Modality Model
CV train

AUC

CV valid

AUC
Features Final training AUC Final test AUC

MET-PET

GLM

logistic
0.95 0.93

log_ih_kurt_fbn_n16

0.92

(0.86-0.97)

0.91

(0.81-0.98)

RF 0.97 0.93
0.93

(0.87-0.97)

0.90

(0.80-0.97)

XGB_lm 0.94 0.93
0.92

(0.86-0.97)

0.91

(0.81-0.98)

T1c-w

MRI

GLM

logistic
0.78 0.66

dzm_ldhge_3d_fbn_n32,

ih_rmad_fbn_n32

0.76

(0.65-0.87)

0.78

(0.64-0.89)

RF 0.87 0.68
0.86

(0.78-0.94)

0.73

(0.58-0.87)

XGB_lm 0.76 0.66
0.77

(0.63-0.87)

0.78

(0.64-0.90)

The selected MET-PET feature was log_ih_kurt_fbn_n16 (IBSI: C317). It represents the kur-

tosis of the discretized histogram (16 bins) on the LoG transformed images. High values indicate

the presence of high intensities within the CTV with pronounced peaks of MET uptake, which

was related to the positive PET residual tumour status, in comparison to the PET-negative group

with relatively low values of this feature. Box plots of this feature (Yeo-Johnson transformed and

z-score normalized) in the two PET residual tumour status groups of the training data are shown

in Appendix Figure C.3. The feature showed a significant contribution both in training and test

(p<0.01). The definition of the selected features for the PET and MRI signatures is presented in

Appendix Table C.7 and the logistic regression model and transformation parameters for the best

performing signatures are given in Appendix Table C.8.

For detection of residual tumour status in PET, 3D-CNN architectures trained with data aug-

mentation showed a higher performance in internal CV folds compared to 3D-CNN models trained

without data augmentation, as shown in Appendix Table C.9. Therefore, models with data aug-

mentation were evaluated on the test data. Table 5.3 presents the results of the 3D-CNN archi-

tectures with data augmentation, including the name of the 3D-CNN architecture and the model

performance in internal CV and external test. In internal CV, DenseNet showed a higher AUC

for both imaging modalities. As for conventional radiomics, detection of residual tumour status

with DL based radiomics in PET was more accurate than MRI (AUC PET=0.96, AUC MRI=0.77).

On the test data, the highest performance was achieved by DenseNet for detection of residual

tumour status in PET, while VGGNet showed a better performance for MRI (AUC PET=0.95, AUC

MRI=0.71). At a threshold of 0.56 the 3D-DenseNet model trained to predict PET residual tumour

status was able to accurately classify 29/30 MET-positive and 12/17 MET-negative patients in test

data. At a threshold of 0.40 3D-VGGNet trained to predict MRI residual tumour status was able

to accurately classify 9/24 MRI-positive and 20/23 of MRI-negative patients. Corresponding con-
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Table 5.3: Ensemble AUC values for CV and the final test data for PET-status prediction based on MET-

PET and for MRI-status prediction based on T1c-w MRI using deep learning. Values in parentheses

represent the 95% confidence interval. Best test performance is marked in bold.

Modality Model CV train AUC CV valid AUC Final test AUC

MET-PET

DenseNet
1.00

(0.99-1.00)

0.96

(0.93-0.99)

0.95

(0.89-1.00)

ResNet
1.00

(1.00-1.00)

0.92

(0.87-0.98)

0.81

(0.70-0.94)

VGGNet
1.00

(1.00-1.00)

0.95

(0.90-1.00)

0.93

(0.86-1.00)

T1c-w

MRI

DenseNet
1.00

(0.99-1.00)

0.77

(0.68-0.87)

0.63

(0.47-0.80)

ResNet
1.00

(1.00-1.00)

0.73

(0.63-0.84)

0.61

(0.44-0.78)

VGGNet
0.99

(0.98-1.00)

0.71

(0.59-0.82)

0.71

(0.55-0.86)

fusion matrices are presented in Appendix Figure C.2(b) showing a sensitivity of 0.97 and 0.38

and a specificity of 0.71 and 0.87 for PET and MRI-based classification, respectively.

Figure 5.2 compares the receiver operating characteristic (ROC) curves of the best performing

conventional radiomics and DL-based radiomics model for residual tumour status in (a, b) MRI,

and (c, d) PET. The corresponding calibration plots are shown in Appendix Figure C.3.

5.4 Summary and discussion

We investigated radiomics-based machine learning models and 3D-CNNs for detection of resid-

ual tumour status based on MET-PET and T1c-w MRI in patients with newly diagnosed GBM.

Overall, classification on MET-PET was possible with a higher accuracy than on T1c-w MRI. For

PET residual tumour status detection, the best performance was achieved by the 3D DenseNet

(AUC=0.95), while logistic regression using radiomics features performed best for MRI residual

tumour status detection (AUC=0.78).

For MET-PET, the best performing DenseNet model showed a high sensitivity but lower speci-

ficity. We visually assessed false-positive predictions on the test data and observed that MET

uptake appeared vague or patchy in falsely classified images, possibly due to infiltrative invasion

of tracer in white matter (Figure 5.3(a)). Furthermore, MET-negative volumes used in training

have an overall smoother appearance with no physiological uptake or patchy appearance (Figure

5.3), making neural networks blind to such images during training, thus leading to false-positive

classifications.

The observed lower performance of MRI-based classification can be attributed to the fact that

in the clinical setting, the extent of resection and residual disease was also assessed on early

post-operative MRI performed within 24-48 hours after surgery, due to the confounding effects
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6.1 Motivation

Treatment personalization is a major objective for radiation oncology research, particularly for dis-

eases with poor prognosis. Patients with GBM show poor prognosis despite the use of a standard

aggressive treatment regime that includes tumour resection, followed by concurrent chemoradi-

ation with temozolomide and radiation therapy (CRT), and subsequent adjuvant temozolomide

(Stupp et al., 2005; Mangla et al., 2010). Radiation therapy (RT) plays an important role in GBM

treatment, as it may help to delay further progression of disease and improve patient survival

(Nieder et al., 2008). However, a general increase of radiation doses is not possible due to asso-

ciated risks. Therefore, biomarkers are needed for the selection of patients that may benefit from

targeted RT.

Survival statistics for GBM are well-described at the population level, and many factors that

impact survival have been identified including age, Karnofsky performance status (KPS), MGMT

promotor methylation status, isocitrate dehydrogenase (IDH), neurological deficit, extent of resec-

tion, and tumour multifocality and tumour location among others (Lutterbach et al., 2003; Sizoo

et al., 2010; Zhou et al., 2018). However, none of these markers has been used in stratification

of GBM patients for treatment personalization in clinical settings (Zhou et al., 2018).

Conventionally, the diagnosis and chemoradiotherapy (RCT) treatment planning in GBM in-

cludes MRI comprising T1c-w, T2w and fluid-attenuated inversion recovery (FLAIR) images. Con-

current PET/MRI is not a widely available method for diagnosis in GBM. However, studies have

shown that post-surgical PET such as [11C] methionine (MET) and [18F]-fluorodeoxyglucose

(FDG) PET can have a superior prognostic value compared to MRI as it can predict tumour pro-

gression with a higher accuracy. Therefore, PET offers potential for treatment personalization

and guided therapy intensification (Wang et al., 2018b; Seidlitz et al., 2021).

For GBM, various studies have evaluated radiomics features extracted from multiparametric

MRI including T1-w, T2-w, T1c-w, FLAIR and DWI to evaluate OS and progression free survival

(PFS) (Yang et al., 2015; Kickingereder et al., 2016a; Chaddad et al., 2018; Lee et al., 2019).

Integrating MRI radiomics features with patient clinical and molecular profils was shown to further

improve the prognostic performance (Osman, 2018). Fewer studies have also evaluated CNN

based methods for OS prediction using MRI data (Lao et al., 2017; Tang et al., 2020). Only

few recent studies have involved radiomics analysis for evaluating the prognostic role of post-

radiotherapy f-fluoro-ethyl-l-tyrosine (FET) PET imaging (Lohmann et al., 2020; Carles et al.,
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2021). However, to the best of our knowledge, a comparative analysis of conventional radiomics

and deep learning to evaluate the prognostic role of pre-RCT MET-PET/MRI in patients with GBM

has not yet been evaluated.

Therefore, in this study, we developed and independently validated conventional radiomics

and 3D-CNN models for prognosis and risk stratification of TTR and OS in pre-RCT MET-PET

and T1c-w MRI in patients with newly diagnosed GBM. A part of the work presented within this

chapter has been presented at an international conference (Shahzadi et al., 2022a).

6.2 Materials and methods

6.2.1 Patient cohort

In this work, imaging and clinical data of 132 adult patients were collected from the same cohort

as outlined in Chapter 5, Section 5.2.1. Patient characteristics are given in Table 5.1.

6.2.2 Experimental design

We developed and independently validated radiomics signatures and deep learning models for

the prognosis of TTR and OS in patients with GBM based on MET-PET and T1c-w MRI data ac-

quired before RCT. Figure 6.1 summarizes the design of the radiomics analysis. Radiomics fea-

tures were extracted from the CTV separately for MET-PET and T1c-w MRI. Details concerning

feature classes, stability analysis, and clustering are reported in Chapter 5, Section 5.2.2. Three

different survival-based machine learning algorithms of varying complexity were assessed, in-

cluding Cox regression (Cox), Xgboost linear model (XGB_lm), and random survival forest (RSF)

for the prognosis of TTR and OS. The finally selected MET-PET and T1c-w MRI features were

applied to the test data for prognosis and risk stratification, and the performance was compared.

In our deep learning analysis, end-to-end feature extraction and modeling were performed us-

ing three different 3D-CNN architectures, i.e. 3D-VGG, 3D-Resnet, 3D-DenseNet. Model losses

were optimized using the CPHM, which is a survival-specific regression model for assessing time-

dependent endpoints (see Section 2.6.4 for more details). For each imaging modality, models

were individually trained on the training folds of each CV split for prognosis of TTR and OS, both

with and without data augmentation. The finally developed models were then applied to the inde-

pendent test cohort and model performances were compared. Predictions from best performing

3D-CNN models on the training data were integrated with important clinical/molecular features

in a multivariable Cox model, which was then validated on the test dataset. The performance of

developed models was assessed using the C-index.
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variable of 1, whereas for patients without an event, the last follow-up time was used together

with an event indicator variable of 0.

6.2.4 Image pre-processing, and feature extraction

Image pre-processing and feature extraction details are explained previously in Chapter 5, Sec-

tion 5.2.4. T1c-w MR imaging was bias-corrected and normalized, while PET imaging was con-

verted to SUV values followed by SUV truncation. Further, for DL analysis, image orientation for

both modalities was aligned and resampled to isotropic voxel resolution. Images patches centred

around CTV were then extracted for training DL models. For conventional radiomics analysis,

both imaging modalities were resampled to isotropic voxel resolution and feature extraction from

3D CTV MIRP Python toolkit (version 1.1.3) (Zwanenburg et al., 2019b).

6.2.5 Conventional radiomics modelling

For the prognosis of TTR and OS, we implemented a radiomics modelling workflow that is sim-

ilar to the one previously described in Chapter 5, Section 5.2.5. As mentioned in this section,

radiomics modelling consisted of four major steps, i.e. (i) feature pre-processing, (ii) feature

selection, (iii) model building with internal validation, and (iv) testing. However, the following

changes were made to adapt the workflow:

1. In model building with internal validation, we used three different survival specific regres-

sion models: Cox regression (Cox), Xgboost linear model (XGB_lm) and random survival

forest (RSF) for the prognosis of TTR and OS.

2. Model performances were assessed by the median C-index.

After step (i)-(iv) of radiomics modelling were executed on cross validation (5 times 5 fold CV)

splits, a final signature was defined based on feature ranking. Features were ranked according to

their occurrence across the 25 CV folds for each of the feature-selection methods, as explained

previously in Chapter 5. After feature selection is complete, the resulting radiomic signature was

then used to build prognostic models on the entire training data and (iv) the trained model was

applied to the independent test data.

Feature selection criteria for the final signature in conventional radiomics model

Here we explain an example of feature selection for prognosis of TTR on MET-PET imaging.

The same technique applies to prognosis of OS on MET-PET and prognosis of TTR and OS on

T1c-w-MRI as well. Appendix Table D.1 shows 39 MET-PET features with the highest mutual in-

formation with TTR on MET-PET selected after hierarchical clustering. These features were then

used to build a prognostic model. Feature selection and model building with internal validation
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was first performed within 5 repetitions of 5-fold CV nested in the training dataset to identify an

optimal signature. Four supervised feature-selection algorithms were considered: mRMR (Peng

et al., 2005), MIM (Gelfand & I A glom, 1959), EN (Zou & Hastie, 2005), and UR (Cox & Oakes,

1984). To avoid potential overfitting, only the five most relevant features were selected in each

CV fold. These features were then used to build a prognostic model on the internal training part,

and validated on the internal validation part. For each of the above-mentioned feature selection

methods, the occurrence of every feature in the 25 modelling steps was counted, and features

were ranked according to their occurrences across the CV folds. Appendix Table D.2 shows fea-

tures with top 5 ranks across each feature selection method that were further considered. Finally,

features that showed repeated occurrences across at least 75% of the feature selection meth-

ods were selected. Four features, i.e. dzm_sdhge_3d_fbn_n16, log_stat_min, log_ivh_i90, and

log_ih_skew_fbn_n16 occurred in all 4 feature selection methods thus meeting the 75% occur-

rence criteria for candidate features. All 4 features showed a Spearman correlation of >0.5 on

the entire training data, as presented in Appendix Figure D.1. Finally, log_stat_min was selected

as a signature due to the stronger association with the endpoint (p-value<0.001) as compared

to other features, thus forming the MET-PET based one-feature radiomic signature as shown in

Appendix Table D.3. The finally selected signature and the average C-index in internal training

and external test are reported in the results section.

6.2.6 Deep learning radiomics modelling

Three different 3D-CNN architectures, i.e. 3D-VGGNet, 3D-ResNet, and 3D-DenseNet, were

trained from scratch for the prognosis of OS and TTR using MET-PET and T1c-w MRI. The

details of model architecture and model training are explained in Chapter 5, Section 5.2.6. The

following adaptations were implemented:

1. The Cox proportional hazard loss was applied instead of the binary cross-entropy loss for

optimizing the model.

2. The tanh activation function was used instead of the sigmoid for the prediction of the final

output layer.

3. Model performance was evaluated using the C-index instead of the AUC.

6.2.7 Statistical analysis

The following baseline clinical parameters were available: gender, age, ECOG, MGMT promoter

methylation status, IDH mutation status, and resection type. Categorical clinical features were

compared between training and test cohorts by the χ
2 test whereas continuous features were

compared using the Mann-Whitney-U test. Associations between the final model predictions and

the endpoints were evaluated by the C-index. Its estimated value and 95% confidence interval
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were reported. The importance of individual features in the final signature was assessed by the

univariate fitting of a Cox regression and computing Wald-test p-values. For association with TTR

and OS, patients were stratified into an optimally separated low and a high-risk group using an

optimal cut-off on the training data that was based on maximally selected rank statistics (Hothorn

& Lausen, 2003). The cut-off was transferred to the validation data. TTR and OS of stratified

groups were assessed with Kaplan Meier curves, which were compared with the log-rank test.

Model calibration was assessed via the GND test (Demler et al., 2015) and by creating calibration

plots. Correlations between features were assessed by the Spearman correlation coefficient (ρ).

All tests were two-sided with a significance level of 0.05.

The radiomics analysis was performed in R version 4.0.3, while the deep learning analysis

was performed in Python 3.7.0 and Keras (v2.3.1) with TensorFlow (v2.1.0) on NVIDIA GeForce

RTX 2080 Max-Q. Our code for prognostic modelling of TTR and OS using 3D-CNNs is publicly

available from https://github.com/oncoray/cnn-petra

6.3 Results

Patients in the training data had a higher percentage of wildtype and a lower percentage of methy-

lated MGMT status (p-value=0.019), and a slightly lower median age (p-value=0.049) compared

to the test data. In univariate Cox analysis, a significant association of TTR and OS was observed

for MGMT status (TTR, OS p-value<0.001), age (TTR: p-value=0.034, OS p-value=0.001) and

IDH status (p-value=0.018) in the training cohort (Table 6.1). However, due to the large number

of missing values, IDH status was not considered in signature development.

For radiomics modelling, 327 and 209 radiomic features were extracted from the CTV MET-

PET and T1c-w MRI, respectively. Stability analysis reduced these features to 258 and 134 in

MET-PET and T1c-w MR data. Clustering of correlated features further reduced their number (in

MET-PET = 39, T1c-w MR = 36), as reported in Section 5.3. Based on these reduced feature sets,

radiomic signatures were developed and validated for both imaging modalities to prognosticate

TTR and OS.

Table 6.2 presents the results for the prognosis of TTR and OS using radiomics, including

the model names and the finally selected features. For the prognosis of TTR, XGB_lm and the

Cox model showed slightly better performance than the RSF on MET-PET data in internal CV

(C-index: XGB_lm=0.61, Cox=0.60, RSF=0.58). Furthermore, T1c-w MRI showed a lower per-

formance than MET-PET, with comparable results obtained for all considered machine learning

models (C-index: RSF=0.53, Cox=0.51, XGB_lm=0.51). This also translated to the test cohort,

where the signatures developed on MET-PET showed a better performance than the signatures

developed on T1c-w MRI. No significant difference was observed between different machine

learning models. For the prognosis of OS, all considered machine learning models showed over-

all lower performance in internal CV for both MET-PET and T1c-w MRI data (C-index MET-PET:

XGB_lm=0.54, Cox=0.52, RSF=0.51, C-index T1c-w MRI: RSF=0.51, Cox=0.49, XGB_lm=0.49).
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Table 6.1: Univariable analysis of TTR, and OS using Cox regression, in the training data. ci: confidence

interval. Significant p-values of patient’s clinical characteristics are marked in bold.

Clinical feature TTR OS

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Age / years 1.017 (1.001-1.033) 0.034 1.028 (1.011-1.045) 0.001

Gender (female vs male) 1.085 (0.679-1.733) 0.733 0.919 (0.57-1.481) 0.728

MGMT (Methylated vs Wildtype) 0.251 (0.147-0.429) <0.001 0.251 (0.144-0.437) <0.001

ECOG
(1 vs 0) 1.135 (0.705-1.826) 0.603 1.147 (0.702-1.873) 0.584

(2 vs 0) 1.624 (0.635-4.149) 0.311 2.243 (0.868-5.796) 0.095

IDH (Mutated vs Wildtype) 0.243 (0.076-0.78) 0.018 0.319 (0.099-1.022) 0.054

PET status (0 vs 1) 2.578 (1.518-4.379) <0.001 2.119 (0.472-1.251) 0.005

MRI status (0 vs 1) 2.755 (1.717-4.421) <0.001 2.129 (1.331-3.406) 0.002

Abbreviations: ECOG, Eastern Co-operative Oncology Group; IDH, isocitrate dehydrogenase;

MGMT, O6-methylguanine DNA methyltransferase; MRI, magnetic resonance imaging; OS,

overall survival; PET, positron emission tomography; TTR, Time-to-recurrence.

On the test cohort, the selected signature developed on MET-PET data achieved acceptable per-

formance in terms of C-index with all considered machine learning models (C-index: Cox=0.60;

RSF=0.60; XGB_lm=0.60) while the signature developed on T1c-w MRI showed slightly bet-

ter performance (C-index: Cox=0.63, RSF=0.62, XGB_lm=0.62). However, none of the above-

mentioned models achieved significant stratification of patients in low and high-risk groups of

TTR and OS on the test cohort (p-value>0.05).

The clinical model containing age and MGMT status showed a decent performance for prog-

nosis of TTR on the test cohort with significant risk group stratification, while the performance

for prognosis of OS was relatively low (TTR: C-index=0.59, p-value = 0.004; OS: C-index=0.55,

p-value=0.32). Combining this clinical signature with MET-PET and T1c-w MRI-based imaging

signatures showed improved performance, with significant stratification of the patients into low

and high-risk groups of TTR (Clinical+MET-PET: C-index=0.66, p-value<0.001; Clinical+T1cw-

MRI: C-index=0.62, p-value=0.008). Figure 6.2 shows the Kaplan-Meier curves for the clinical

model (Figure 6.2(a)), the clinical+MET-PET model (Figure 6.2(b)), and the clinical+T1cw-MRI

model (Figure 6.2(c)) for prognosis of TTR. The corresponding calibration plots are shown in

Appendix Figure D.2(a-c).

For the prognosis of OS, the joint clinical and imaging signature (both MET-PET and T1cw-MRI)

showed improved performance on the test cohort compared to the clinical signature alone but re-

duced performance compared to the imaging signature alone in terms of C-index (Clinical+MET-

PET: C-index=0.59, Clinical+T1cw-MRI: C-index=0.57), however, patient stratification into low

and high risk groups of OS still remained insignificant. As no significant benefit of using complex

machine learning models was observed, we used the simple Cox regression model for building

the signatures. Appendix Table D.4. contains model and transformation parameters for the best

performing signatures (highlighted in bold in Table 6.2) developed for the prognosis of TTR and

OS.
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Table 6.2: C-index for the endpoints TTR and OS based on MET-PET imaging and T1c-w MRI data using

radiomics. Values in parenthesis represent the 95% confidence interval. Best performance is marked in

bold.

Endpoint Modality Model
CV train

C-index

CV valid

C-Indedx
Features

Final training

C-index

Final test

C-index

p-value

test

TTR

MET-PET

Cox 0.66 0.60

log_stat_min

0.64

(0.57-0.71)

0.59

(0.48-0.70)
0.25

RSF 0.64 0.58
0.64

(0.57-0.51)

0.58

(0.47-0.69)
0.23

XGB_lm 0.66 0.61
0.64

(0.56-0.71)

0.59

(0.48-0.70)
0.25

T1c-w MRI

Cox 0.62 0.51 ivh_diff_i25_i75

dzm_zd_var_3d_fbn_n32

loc_peak_glob

0.60

(0.52-0.67)

0.54

(0.42-0.64)
0.58

RSF 0.64 0.53
0.64

(0.58-0.72)

0.53

(0.42-0.65)
0.89

XGB_lm 0.62 0.51
0.59

(0.52-0.66)

0.54

(0.44-0.65)
0.23

Clinical Cox - -
Age

MGMT

0.72

(0.65-0.79)

0.59

(0.49-0.71)
0.004

Clinical +

MET-PET
Cox - -

Age

MGMT

log_stat_min

0.74

(0.68-0.79)

0.66

(0.56-0.76)
<0.001

Clinical +

T1c-w MRI
Cox - -

Age

MGMT

ivh_diff_i25_i75

dzm_zd_var_3d_fbn_n32

loc_peak_glob

0.74

(0.67-0.79)

0.62

(0.51-0.73)
0.008

OS

MET-PET

Cox 0.63 0.52

stat_max

0.60

(0.53-0.68)

0.60

(0.46-0.74)
0.84

RSF 0.65 0.51
0.60

(0.52-0.68)

0.60

(0.48-0.70)
0.85

XGB_lm 0.63 0.54
0.60

(0.53-0.68)

0.60

(0.47-0.73)
0.84

T1c-w

MRI

Cox 0.62 0.49
ivh_diff_i25_i75

dzm_zd_var_3d_fbn_n32

0.60

(0.53-0.67)

0.63

(0.49-0.73)
0.86

RSF 0.65 0.51
0.61

(0.53-0.70)

0.62

(0.48-0.74)
0.63

XGB_lm 0.62 0.49
0.59

(0.52-0.66)

0.62

(0.50-0.73)
0.3

Clinical Cox - -
Age

MGMT

0.74

(0.69-0.81)

0.55

(0.45-0.66)
0.32

Clinical +

MET-PET
Cox - -

Age

MGMT

stat_max

0.75

(0.60-0.80)

0.59

(0.48-0.69)
0.21

Clinical +

T1c-w MRI
Cox - -

Age

MGMT

ivh_diff_i25_i75

dzm_zd_var_3d_fbn_n32

0.76

(0.70-0.81)

0.57

(0.46-0.67)
0.25

The selected MET-PET feature for the prognosis of TTR and OS was log_stat_min and stat_max

(IBSI:1GSF), respectively. Both these features are intensity-based statistical features that de-

scribe how intensities (or SUV values in case of MET-PET imaging) within the ROI are distributed.

The highest SUV present within the CTV on baseline MET-PET is captured by the stat_max fea-

ture, which is closely related to the minimum SUV on LoG transformed MET-PET images. High

values of stat_max and consequently low values of log_stat_min indicate MET uptake in the resid-

ual tumour. Image-based interpretation of these features is presented in Figure 6.3. Patients in

the high-risk group of TTR showed relatively low values of log_stat_min. which translates to the

existence of bright voxels or alternatively high values of stat_max in the CTV (Figure 6.3(a)). In
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Table 6.3: Ensemble C-index values for CV on the training and test data for TTR and OS prediction based

on MET-PET and T1c-w MRI data using DL.

Endpoint Modality Model C-index train C-index valid C-index test
p-value

test

TTR

MET-PET

DenseNet
0.84

(0.79-0.88)

0.68

(0.60-0.75)

0.66

(0.51-0.81)
0.027

ResNet
0.90

(0.85-0.93)

0.63

(0.56-0.71)

0.61

(0.43-0.79)
0.168

VGGNet
0.84

(0.79-0.89)

0.69

(0.62-0.76)

0.55

(0.44-0.67)
0.763

T1cw-MRI

DenseNet
0.86

(0.82-0.90)

0.63

(0.56-0.71)

0.50

(0.43-0.58)
0.406

ResNet
0.82

(0.78-0.85)

0.60

(0.51-0.70)

0.55

(0.46-0.64)
0.096

VGGNet
0.66

(0.60-0.73)

0.53

(0.46-0.60)

0.56

(0.45-0.68)
0.857

Clinical

+

DenseNet MET-PET

Cox
0.85

(0.81-0.88)

0.74

(0.67-0.79)

0.68

(0.53-0.83)
0.017

OS

MET-PET

DenseNet
0.82

(0.77-0.87)

0.61

(0.53-0.69)

0.64

(0.43-0.86)
0.033

ResNet
0.87

(0.84-0.91)

0.55

(0.47-0.62)

0.61

(0.44-0.77)
0.227

VGGNet
0.88

(0.82-0.93)

0.70

(0.64-0.76)

0.53

(0.42-0.65)
0.426

T1cw-MRI

DenseNet
0.84

(0.80-0.89)

0.62

(0.55-0.69)

0.60

(0.43-0.77)
0.067

ResNet
0.87

(0.82-0.92)

0.58

(0.50-0.65)

0.59

(0.49-0.70)
0.191

VGGNet
0.59

(0.51-0.66)

0.49

(0.42-0.57)

0.65

(0.55-0.76)
-

Clinical

+

DenseNet MET-PET

Cox
0.82

(0.77-0.87)

0.69

(0.63-0.75)

0.65

(0.51-0.78)
0.039

This joint clinical and imaging model further improved the prognosis of TTR and OS in terms

of C-index in the external test cohort, with significant stratification of the patients into low and

high-risk groups (TTR: Clinical + 3D DenseNet: C-index=0.68, p-value=0.017, OS: Clinical + 3D

DenseNet: C-index=0.65, p-value=0.039). Figure 6.4 shows the Kaplan-Meier curves for the best

performing Clinical + 3D DenseNet model for prognosis of TTR (Figure 6.4(a)) and Clinical+3D

DenseNet model for prognosis of OS (Figure 6.4(b)) using MET-PET imaging. The corresponding

calibration plots are shown in Appendix Figure D.3(a, b).

6.4 Summary and discussion

We investigated radiomics-based machine learning models and 3D-CNNs for the prognosis of

TTR and OS based on MET-PET and T1c-w MRI for both endpoints in patients with newly di-

agnosed GBM. Overall, MET-PET allowed for better prognosis than T1c-w MRI. The best per-
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before re-irradiation can predict OS (p=0.038). Overall, the performance of our best performing

conventional radiomics signature for the prognosis of OS based on features extracted from MET-

PET and T1c-w MRI was somewhat lower than other validated results (MET-PET C-index=0.60,

T1c-w MRI C-index=0.63). However, a full comparison with previous studies is not possible as

we used post-surgical imaging instead of pre-treatment imaging for prognostic modelling.

The finding that MET-PET allowed for better prognosis than T1c-w MRI mirrors the finding

for the residual tumour detection analysis presented in Chapter 5. Residual tumour burden is a

prognostic imaging biomarker in GBM (Matsuo et al., 2012), however, postoperative MRI is prone

to confounding effects that can lead to misinterpretation of residual tumours and alternatively

reduced prognostic performance (Grosu et al., 2005; Matsuo et al., 2012). On the other hand,

MET-PET is capable of providing better differentiation of nonspecific postoperative changes in

GBM and therefore provides improved prognostic and diagnostic performance (Palanichamy &

Chakravarti, 2017).

In order to build generalizable DL models, a large amount of data is required (LeCun et al.,

2015). It is particularly challenging to build deep learning models in medical image analysis,

where high-quality data is expensive and dependent on human resources for collection and la-

belling. To deal with the problem of limited training data, synthetic training examples are created

using data augmentation techniques that can help large-capacity learners to benefit from more

representative training data. Data augmentation can increase robustness of a deep learning

model by increasing its ability to correctly predict unseen examples that are noisy or slightly

perturbed. Therefore, it is necessary to perform data augmentation to reduce model overfitting.

Further, due to the volumetric nature of medical imaging data 3D-CNN models are preferred over

2D-CNN models as explained in Section 2.6.3.

In this work, we were able to show that CNNs, despite being highly parametrized models,

were able to achieve a somewhat better performance than conventional radiomics for prognostic

modelling. The improved performance of deep learning models can be attributed to the use of

3D-CNN models together with extensive data augmentation, as explained in the methodology of

this study. The generalizability of our 3D-CNN models was validated using an independent test

cohort.

Limitations of this study are the relatively low number of patients in the training and test cohorts,

which leads to model overfitting and wide confidence intervals. To overcome the problem of

potential model overfitting, we used extensive feature selection approach in over conventional

radiomics analysis and to diversify the training we used data augmentation approach in deep

learning analysis.

For future studies, we plan to use both T1c-w and MET-PET as a two-channel input in a 3D-

CNN to get a joint estimation of the prognostic performance from single 3D-CNN architectures to

improve model performance. The inclusion of early post-surgical MRI into the analysis may also

help to get improved prognostic performance, as it is less prone to nonspecific surgical changes

in GBM.
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Personalized treatment is an evolving field in translational oncology that aims to determine the

optimal treatment for each individual patient to improve treatment outcome. To do so, diagnos-

tic, prognostic and predictive biomarkers are being developed based on each patient’s clinical,

imaging and/or molecular information. Molecular characterization of tumour utilizes biopsies or

invasive surgeries to extract and analyse small portions of tumour tissue. However, radiomics

attempts to develop biomarkers using imaging data which is noninvasive process and provides

comprehensive view of entire tumour region. Further, radiomics analyses allows for tumour char-

acterization at several time points because imaging is often repeated during treatment in routine

clinical practice.

This thesis aims to develop diagnostic and prognostic radiomics biomarkers for predicting treat-

ment response and long-term survival outcomes in patients with LARC and generalized linear

model (GLM). The first part of this thesis is focused on a detailed analysis addressing challenges

in field of radiomics for LARC, while the second part addresses the goal of treatment personal-

ization in GBM by performing comparative analysis of deep learning and conventional radiomics

for biomarker development.

One of the major challenges in radiomics analyses is that normally numerous quantitative

imaging features of different complexity are extracted from multi-modality imaging data. In con-

ventional radiomics analyses, all feature classes are pooled together to identify the prognostic

signature. However, the association of individual feature classes to the endpoint of interest is not

often investigated. In this thesis, we aimed to address this issue for predicting tumour response

to nCRT and FFDM in LARC patients using diagnostic T2-w MRI and treatment planning CT data

in a multicentre cohort. For tumour response prediction after nCRT, a novel signature based on

LoG intensity features based on diagnostic T2-w MRI and treatment planning CT combined with

cT stage was developed and validated, while for FFDM prediction, a signature based on a SOT

feature based on treatment planning CT was developed and validated.

In the past decade, there has been an exponential growth in the radiomics literature. Several

radiomics studies for LARC have shown the potential of radiomics-based prognostic modelling,

however, most of these studies lack independent validation, which is an important step towards

their clinical application. Therefore, in this thesis, an extensive literature search was performed

to validate radiomics signatures developed by other researchers to predict tumour response to

nCRT or FFDM in LARC using our multicentre cohort. Remarkably, only one out of 11 studies

could be validated, indicating a lack of reproducibility of published radiomics models. We ob-

served that studies use different software and methods for feature extraction and often do not

report all required modelling details, which makes it difficult to reproduce or compare results.

101



7 Conclusion and further perspective

Thus, for successful application of radiomics in clinical management of patients, it is necessary

to standardize the radiomics workflow.

Among primary brain tumours, GBM is the most frequently occurring malignant brain tumour

with a poor prognosis. The median OS time is 12-15 months, and there is a high recurrence rate

after initial treatment. Most patients experience recurrence as it is difficult to completely excise

the tumour during surgery. The residual tumour burden after surgery is an established imaging

biomarker in GBM, which is commonly assessed on T1c-w MRI. PET imaging with radiotrac-

ers, such as [11C] MET, provides greater insight into image-specific pathophysiological changes

that extend beyond conventional T1c-w MRI. PET can be used for delineating the extent of the

residual tumour, for radiotherapy planning, patient follow-up monitoring and prognosis. However,

the accurate detection of residual tumour on MET-PET and T1c-w MRI is a complex evaluation

procedure that involves expertise from radiologists, radiation oncologists and nuclear medicine

experts, and it is at the risk of inter-rater variabilities. In this work, we leveraged the potential of

radiomics for detection of residual tumours on MET-PET and T1c-w MRI acquired after surgery.

Models were validated on an independent test cohort, and we could show that residual tumour

status was easier to detect on MET-PET imaging than on T1c-w MRI. The best results were ob-

served for a CNN-based 3D-DenseNet model. This model has the potential of increasing the

clinician’s confidence in residual tumour detection and reducing inter-rater variability.

GBM is associated with poor prognosis, and one of the major aims is to provide tailored clinical

management that fits to the needs of individual patient and thereby improve patient survival. To

achieve this aim, the development of noninvasive biomarkers for patient stratification into survival

risk groups is decisive. In this work, we assessed whether conventional radiomics and deep

learning-based imaging model developed on MET-PET and T1c-w MRI allow for the prognosis

and stratification of patients with newly diagnosed GBM. The considered endpoints were TTR

and OS. We compared machine-learning-based radiomics and 3D-CNN models of different lev-

els of complexity to evaluate the prognostic performance of both imaging modalities. As are

result, important clinical features combined with ensemble predictions from the CNN-based 3D-

DenseNet model developed using MET-PET provided improved prognostic performance com-

pared to machine learning models developed using a conventional radiomics approach. After

further prospective validation, the proposed models may be considered for the treatment person-

alization in GBM.

The field of conventional radiomics and DL-base radiomics for treatment personalization in

LARC and GBM still offers many interesting challenges and open research questions for the

future. Some of them are shortly discussed in the following paragraphs.

Standardization and validation of radiomics models for GBM

One of the current challenges in the field of radiomics is a lack of reproducibility and standardiza-

tion across heterogeneous acquisition protocols, multiple institutions, patient populations and ra-
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diomics workflows. Most of the radiomics-based studies develop their own models using different

software tools. This makes it difficult to reproduce the results. A recent study by Fornacon-Wood

et al. (Fornacon-Wood et al., 2020) showed that the use of different software platforms may result

in different values of radiomics features on the same imaging data. One of the efforts towards the

standardization of the radiomics workflow is the IBSI. The IBSI is an international collaboration

that is focused on providing recommendations concerning feature calculation and standardized

feature definition. In this thesis we focused on validation of previously published radiomics mod-

els for LARC, however the validation of GBM radiomics models is still an open question. As the

current field of radiomics for treatment personalization GBM is moving towards more complex

models, future research should focus on the validation of previously published models with stan-

dardized methods. This will not only help to identify the promising biomarkers, but also help to

evaluate the potential of radiomics.

CNN for prognostic modeling in LARC

In this thesis, we developed and validated DL-based radiomics models for diagnosis and prog-

nosis in GBM. Our analysis showed overall improved performance of DL over conventional ra-

diomics modelling. Similarly, the prognostic performance of radiomics risk models in LARC can

be improved by using a DL approach. Specifically, CNN-based models that are specialized to

learn spatial features from imaging data have shown a higher performance than human raters

for diagnostic tasks, e.g. for interpreting chest radiography and mammography (Rajpurkar et al.,

2018; Ardila et al., 2019; Wu et al., 2019). However, CNNs are also capable of predicting pa-

tient prognosis by learning subtle difference in tumour properties related to outcome and risk.

Existing studies for predicting patient response to nCRT and prognosis of long-term survival out-

comes in LARC focused mainly on using deep features extracted using 2D-CNNs, which were

then used by an external learner. Fu et al. (Fu et al., 2020) used the 2D-VGGNet model to extract

deep features from a CNN. These features were further post-processed and 105 deep features

were used to train a least absolute shrinkage and selection operator (LASSO) model. A recent

study by Liu et al. (Liu et al., 2021) used a pre-trained 2D-ResNet model for prognosis of FFDM

in LARC, however, model losses were optimized using the binary cross-entropy loss on FFDM

status without accounting for time to FFDM and finally model predictions were mapped to time-

to-event data using a Cox regression model. Thus, there is a need of end-to-end CNN models

such as 3D-CNNs and transformers (He et al., 2022), to prognosticate patient outcome in LARC.

Delta radiomics for prognostic modelling in LARC and GBM

Radiomics modelling is normally based on quantitative imaging features extracted from single

or multiple imaging modalities acquired at a single time point. However, the radiomics features

acquired at a single time point may be insufficient to describe all characteristics of prognostic out-

come. Incorporating information derived from several time points during treatment may contain
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additional prognostic information. Based on this idea, delta radiomics analyses feature variation

between different time points before, during and after treatment. In principle, this approach allows

for adapting the ongoing treatment. Chiloiro et al. (Chiloiro et al., 2020) used delta radiomics to

predict two year distant metastases in LARC using the ratio of pre-nCRT and post-nCRT MRI

based features. Other prognostic studies have shown significant associations between delta ra-

diomics features and patient OS in non-small cell lung cancer (Khorrami et al., 2020; Shi et al.,

2020) and locally advanced pancreatic cancer (Cusumano et al., 2021a). However, large mul-

ticentric prognostic studies with external validation utilizing delta radiomics are sparse in LARC

and GBM. Usage of delta radiomics in LARC and GBM may yield useful biomarkers for evaluating

different treatment strategies, which could be investigated in the future.

Deep learning for GBM

There are several open research questions concerning decision support and prognostication

of outcome in newly diagnosed GBM that can be explored for future research with the help of

deep learning. Firstly, a prognostic model based on single-modality medical imaging only par-

tially reflects the available tumour information. Similar to clinicians, who perform diagnoses and

give prognostic suggestions, predictive models should be based on multimodal imaging data to

extract more diverse aspects of phenotypical tumour information and integrate them in model de-

velopment. This is relatively simple to implement in conventional radiomics, where features from

multiple modalities are extracted and combined for model building (Tewarie et al., 2021). CNNs

have a specialized architecture that allows for processing multichannel data, e.g. the use of 3

(red, green, and blue) channels for RGB images. CNNs can be extended to process any num-

ber of channels at the cost of increased complexity and computational resources. This feature

of CNN architectures can be utilized to process multimodal medical imaging data, where each

imaging modality is fed to a designated channel. Thus, final prediction will be made on features

extracted from all modalities. Nie et al. (Nie et al., 2019) used a multichannel 3D-CNN to extract

deep features to prognosticate long and short-term OS (i.e. less than or more than 650 days after

surgery) in high grade glioma patients and achieved accuracy of 90.66%. However, to the best of

our knowledge, no study has been performed for the prognosis of TTR and OS in GBM patients

using PET/MRI data in multichannel CNN models. Therefore, this question can be investigated

in the future.

One of the most time-consuming tasks in radiotherapy (RT) treatment planning is defining the

target volume, which is currently done manually by a human expert. Especially in GBM, the un-

clear margins of the residual tumour on post-operative images makes it difficult to delineate even

for highly experienced experts (Visser et al., 2019). Over the last decade, auto-segmentation of

brain tumours with machine learning and deep learning methods has been a widely explored area

in medical imaging (Ghaffari et al., 2019). Promising results have been published for glioma seg-

mentation using CNNs (Kamnitsas et al., 2017; Wang et al., 2018a), however, automatic residual
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tumour definition with CNNs on postoperative PET/MRI has not been widely explored. Zeng et

al. (Zeng et al., 2016) used a generative model based on expectation maximization algorithm

(Gooya et al., 2012) for residual tumour segmentation in high grade gliomas on post-operative

MRI. The study did not report results on test data, however showed acceptable performance

of algorithm on training data (Dice coefficient on training data=0.7). Miere et al. (Meier et al.,

2017) reported a machine learning based auto-segmentation method for GBM residual tumour

segmentation on MRI. The study showed a good agreement of volumetric estimate of residual

tumour between automatic segmentation and human raters delineation (coefficient of concor-

dance=0.693). In this thesis, we developed a method based on 3D-CNN models to detect the

presence of residual tumours in MET-PET and T1c-w MRI. This work can be further extended to

the auto-segmentation of residual tumour with CNNs that will help to facilitate the clinical workflow

of GBM patient management.

Finally, it can be interesting to utilize MET-PET to assess the colocalization of MET uptake in

pre-RCT PET images with recurrence sites. Seidlitz et al. (Seidlitz et al., 2021) showed that

tumour recurrence occurred in the region of MET accumulation on pre-RCT images for 86.0% of

cases. Identification of regions of recurrence would help to deliver higher radiation doses to the

targeted volume and sparing the surrounding tissues. CNNs could be used to predict the regions,

where a recurrence is most likely to occur.

In summary, we focused on the development and external validation of radiomics-based prog-

nostic biomarkers for treatment personalization in LARC and GBM using multimodal data. We

utilized 3D CNNs and compared their performance with conventional radiomics approaches us-

ing machine learning methods. Moreover, we focused on the requirement for standardization and

external validation of radiomics biomarkers for their clinical application by conducting an external

validation study of published radiomics signatures for tumour response prediction in LARC. The

results may initiate future steps towards personalization of LARC and GBM treatment, e.g. by

their application in interventional clinical trials after prospective validation.
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Background

The standard treatment for locally advanced rectal cancer (LARC) is neoadjuvant chemoradio-

therapy (nCRT) followed by total mesorectal excision (TME) and postoperative adjuvant chemother-

apy, while the standard treatment for glioblastoma multiforme (GBM) is surgical resection followed

by chemoradiotherapy (CRT). Despite intense multimodal treatment, local and distant progres-

sion remain leading problems in current patient management. The personalization of treatment

is a central aim in cancer therapy to improve the outcome of patient populations with hetero-

geneous treatment response. LARC patients with a high chance of achieving pathologically

complete response (pCR) after nCRT may benefit from the adaptation of low-morbidity surgeries

or watch-and-wait strategies. Further, the assessment of patient prognosis in GBM before the

start of treatment and the detection of residual tumours after surgery may help to identify patients

that would benefit from escalated treatment strategies. Defining such sub-populations of patients

requires the identification of biomarkers. Several studies have been analysing clinical, molecu-

lar, and imaging data to identify potential biomarkers for patient prognosis in LARC and GBM.

However, few of these markers are currently considered for treatment personalization in clinical

routine. Thus, the development of reliable biomarkers and the validation of existing studies may

help to identify subgroups of patients for treatment adaptation.

Objectives

The main objective of this thesis is to identify and independently validate multimodal imaging

biomarkers for outcome prediction after treatment in patients with LARC and newly diagnosed

GBM using conventional feature-based radiomics and deep learning (DL) based radiomics ap-

proaches. Multimodal radiomics signatures are developed and validated for tumour response

prediction after nCRT and freedom from distant metastases (FFDM) in LARC and for predicting

time-to-recurrence (TTR) and overall survival (OS) in GBM. In addition, we perform an external

validation study to validate previously published radiomics signatures for the prediction of tumour

response to nCRT in LARC on our multi-centre cohort.

Material and methods

Imaging and clinical data of 190 LARC patients of the DKTK-ROG treated with nCRT followed

by surgery was evaluated for developing radiomics signatures and for our external validation

study. For treatment outcome prediction, a conventional feature-based radiomics approach using

machine learning techniques was employed to develop multimodal signatures based on CT, T2w-

MRI and clinical parameters. For each imaging modality, different feature classes were analysed,
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i.e. morphological and first order (MFO), second-order texture (SOT) and Laplacian of Gaussian

transformed (LoG) features. For the external validation study, the radiomics pipelines from in-

cluded studies were replicated and validated on our multi-centre data. For the analysis of patients

with GBM, imaging and clinical data of 132 adult patients were collected from the PETra trial and

from an additional retrospective validation cohort. Conventional radiomics and 3D-CNN-based

approaches were used to detect the residual tumour status in postoperative [11C] MET-PET and

in gadolinium-enhanced T1-w MRI. For the prognosis of TTR and OS in GBM patients, additional

clinical parameters were included in the final models.

Results

For LARC, we developed and validated a radiomics signature based on LoG features extracted

from pre-treatment T2-w MRI and treatment-planning CT combined with cT stage for the predic-

tion of tumour response to nCRT, while SOT features were extracted from CT for the prediction of

FFDM. Our external validation study of previously published radiomics signatures developed for

tumour response prediction after nCRT in LARC patients based on our multi-centre data showed

limited success. Of 11 studies that qualified for final validation, only one study achieved accept-

able performance, which indicates a potential lack of reproducibility for radiomics studies. For

patients with GBM, MET-PET allowed for a better classification of the residual tumour status and

prognosis of TTR and OS than T1c-w MRI. For MET-PET-based residual tumour status detec-

tion, the best performance was achieved by 3D-CNNs, while for MRI, the best performance was

given by logistic regression using a conventional feature-based radiomics approach. Finally, for

the prognosis of TTR and OS in GBM, the best performance with a significant stratification of

patients in groups at low and high risk was observed when combining clinical parameters with a

3D-CNN ensemble model based on MET-PET imaging.

Conclusion

In this thesis, novel radiomics signatures were identified by combining multimodal imaging and

clinical information to predict tumour response to nCRT and FFDM in LARC as well as TTR and

OS in GBM patients. Furthermore, this thesis provides valuable insight into unaddressed issues

in the radiomics workflow. Firstly, the interpretability of features in radiomics is poorly understood,

as a large number of features of different complexity are commonly extracted. In this thesis, we

addressed this issue by evaluating the performance of different feature classes. Secondly, the

standardization of the radiomics workflow is generally overlooked in various radiomics studies.

In this thesis, we emphasize on the need of reproducibility and standardization in the radiomics

process by conducting an external validation study to validate previously published radiomics

signatures for LARC. This thesis also provides valuable insight into conventional radiomics and

DL-based radiomics analyses. Our GBM analysis for the detection of residual tumour status and

prognosis of TTR and OS using MET-PET and T1c-w MRI data revealed that DL-based radiomics
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may provide improved diagnostic and prognostic performance. The analyses in this thesis can

be further extended by combining genomics and molecular signatures with radiomics signatures.

This might help to improve the prognostic performance for LARC and GBM. Overall, the radiomics

signatures identified in this thesis have to be validated in prospective studies before their potential

application in interventional clinical trials to improve personalized treatments.
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9 Zusammenfassung

Hintergrund

Die Standardbehandlung für lokal fortgeschrittene Rektumkarzinome (LARC) ist eine neoadju-

vante Radiochemotherapie (nCRT), gefolgt von einer totalen mesorektalen Exzision (TME) und

einer postoperativen adjuvanten Chemotherapie. Die Standardbehandlung für Glioblastoma mul-

tiforme (GBM) besteht aus einer chirurgischen Resektion, gefolgt von einer CRT. Trotz intensi-

ver multimodaler Behandlung limitieren lokale Rezidive und Fernmetastasen das Behandlungs-

ergebnis. Die Personalisierung der Behandlung ist ein zentrales Ziel in der Krebstherapie, um

das Outcome von Patientenpopulationen mit heterogenem Therapieansprechen zu verbessern.

LARC-Patienten mit einer hohen Wahrscheinlichkeit einer pathologisch vollständigen Remission

(pCR) können von angepassten Operationsformen oder Watch-and-Wait-Strategien profitieren.

Darüber hinaus kann die Beurteilung der Patientenprognose bei GBM vor Beginn der Behand-

lung und die Erkennung von Resttumoren nach der Operation dazu beitragen, Patienten zu iden-

tifizieren, die von eskalierten Behandlungsstrategien profitieren würden. Die Definition solcher

Patientengruppen erfordert den Einsatz von Biomarkern. Mehrere Studien haben klinische, mo-

lekulare und bildgebende Daten analysiert, um potenzielle Biomarker für die Patientenprognose

bei LARC und GBM zu identifizieren. Allerdings werden derzeit nur wenige dieser Marker für die

Personalisierung der Behandlung in der klinischen Routine in Betracht gezogen. Daher kann die

Entwicklung zuverlässiger Biomarker und die Validierung bestehender Studien dazu beitragen,

Patientengruppen für eine Behandlungsanpassung zu identifizieren.

Fragestellung

Das Hauptziel dieser Arbeit ist die Identifizierung und unabhängige Validierung multimodaler

bildgebender Biomarker für die Outcomevorhersage von Patienten mit LARC und GBM unter

Verwendung konventioneller merkmalsbasierter Radiomics-Verfahren und Deep Learning (DL)-

basierter Radiomics-Ansätze. Multimodale Radiomics-Signaturen werden für die Vorhersage des

Tumoransprechens nach nCRT bei LARC und für die Vorhersage der Zeit bis zum Rezidiv (TTR)

und des Gesamtüberlebens (OS) bei GBM entwickelt und validiert. Darüber hinaus wird eine ex-

terne Validierungsstudie durchgeführt, um veröffentlichte Radiomics-Signaturen für die Vorher-

sage des Tumoransprechens auf nCRT in LARC basierend auf unserer multizentrischen Kohorte

zu validieren.

Material und methoden

Bildgebende und klinische Daten von 190 LARC-Patienten des DKTK-ROG, die mit nCRT und

TME behandelt wurden, wurden für die Entwicklung von Radiomics-Signaturen und für die ex-
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terne Validierungsstudie ausgewertet. Zur Vorhersage des Behandlungsergebnisses wurde ein

konventioneller merkmalsbasierter Radiomics-Ansatz unter Verwendung von maschinellen Lern-

techniken eingesetzt, um multimodale Signaturen auf der Grundlage von CT, T2w-MRT und kli-

nischen Parametern zu entwickeln. Für jede Bildgebungsmodalität wurden verschiedene Merk-

malsklassen analysiert, d. h. morphologische Merkmale und Merkmale erster Ordnung (MFO),

Texturmerkmale zweiter Ordnung (SOT) und Laplace-transformierte (LoG) Merkmale. Für die

externe Validierungsstudie wurden die Radiomics-Pipelines aus eingeschlossenen Studien repli-

ziert und anhand der vorliegenden multizentrischen Daten validiert. Für die Analyse von Patien-

ten mit GBM wurden bildgebende und klinische Daten von 132 erwachsenen Patienten aus der

PETra-Studie und aus einer zusätzlichen retrospektiven Validierungskohorte verwendet. Konven-

tionelle Radiomics-Verfahren und 3D-CNN-basierte Ansätze wurden genutzt, um den Resttumor-

status in der postoperativen [11C] MET-PET und in der T1-w-MRT zu erkennen. Für die Prognose

der TTR und des OS wurden zusätzlich klinische Parameter in die endgültigen Modelle aufge-

nommen.

Ergebnisse

Für Patienten mit LARC wurde eine Radiomics-Signatur entwickelt und validiert, die LoG-Merkmale

der T2-w-MRT sowie des Bestrahlungsplanungs-CT in Kombination mit dem cT-Stadium für die

Vorhersage des Tumoransprechens auf nCRT enthält, während SOT-Merkmale des CT zur Vor-

hersage der Metastasenfreiheit (FFDM) verwendet wurden. Die externe Validierung bereits ver-

öffentlichter Radiomics-Signaturen für die Vorhersage des Ansprechens von LARC zeigte auf

Basis der vorliegenden Patientenkohorte nur begrenzten Erfolg. Von 11 Studien, die sich für die

endgültige Validierung qualifizierten, erreichte nur eine Studie eine akzeptable Güte, was auf

einen potenziellen Mangel an Reproduzierbarkeit für Radiomics-Studien hindeutet. Bei Patien-

ten mit GBM ermöglichte die MET-PET eine bessere Klassifizierung des Resttumorstatus und

eine bessere Prognose von TTR und OS als die T1c-w MRT. Bei der MET-PET-basierten Er-

kennung des Resttumorstatus wurde die beste Vorhersage durch 3D-CNNs erzielt, während bei

der MRT die beste Güte durch logistische Regression unter Verwendung eines konventionellen

merkmalsbasierten Radiomics-Ansatzes erzielt wurde. Schließlich wurde für die Prognose von

TTR und OS bei GBM die beste Vorhersage mit einer signifikanten Stratifizierung von Patienten

in Gruppen mit niedrigem und hohem Risiko beobachtet, wenn klinische Parameter mit einem

3D-CNN-Ensemble-Modell basierend auf MET-PET-Bildgebung kombiniert wurden.

Schlussfolgerung

In dieser Arbeit wurden neuartige Radiomics-Signaturen durch die Kombination multimodaler

Bildgebung und klinischer Informationen identifiziert, um das Ansprechen des Tumors auf nCRT

und die FFDM bei LARC-Patienten sowie TTR und OS bei GBM-Patienten vorherzusagen. Dar-

über hinaus bietet diese Arbeit wertvolle Einblicke in einige Probleme des Radiomics-Workflows.
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Erstens ist die Interpretierbarkeit von Radiomics-Signaturen häufig schwierig, da üblicherweise

eine große Anzahl von Merkmalen unterschiedlicher Komplexität extrahiert wird. In dieser Arbeit

wurde dieses Problem adressiert, indem der prognostische Beitrag verschiedener Merkmalsklas-

sen einzeln untersucht wurde. Zweitens findet die Standardisierung des Radiomics-Workflows

in zahlreichen Radiomics-Studien wenig Beachtung. Anhand einer externen Validierungsstudie

von zuvor veröffentlichten Radiomics-Signaturen für LARC wird die Notwendigkeit der Reprodu-

zierbarkeit und Standardisierung des Radiomics-Prozesses in dieser Arbeit herausgestellt. Die

Arbeit bietet weiterhin wertvolle Einblicke in konventionelle Radiomics-Verfahren und DL-basierte

Radiomics-Analysen. Die GBM-Analysen zur Erkennung des Resttumorstatus und zur Prognose

von TTR und OS ergaben, dass DL-basierte Radiomics-Ansätze eine verbesserte diagnosti-

sche und prognostische Güte aufweisen können. Die in dieser Arbeit entwickelten Radiomics-

Signaturen können in der Zukunft mit zusätzlichen Omics-Ebenen, wie beispielsweise Gensigna-

turen, kombiniert werden um die prognostische Güte weiter zu verbessern. Insgesamt müssen

die in dieser Arbeit identifizierten Radiomics-Signaturen in prospektiven Studien validiert werden,

bevor sie in interventionellen klinischen Studien zur Verbesserung der personalisierten Behand-

lung eingesetzt werden können.
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Appendix

A MRI and CT-based radiomics features for personalized treatment

in locally advanced rectal cancer

Table A.1: Tumour regression grade (TRG) system following Dowark et al (Dworak et al., 1997).

Grade Description

Complete regression (TRG 4) No tumour cells

Near complete regression (TRG 3) Very few tumour cells

Moderate regression (TRG 2) Dominantly fibrotic changes with few tumour cells or groups

Minimal regression (TRG 1) Dominant tumour mass with obvious fibrosis

No regression (TRG 0) No regression

Table A.2: Image acquisition parameters of diagnostic T2-w MRI and treatment planning CT data.

MRI CT

Imaging parameters
Training

(122)

Validation

(68)
Imaging parameters

Training

(122)

Validation

(68)

Voxel spacing / mm Voxel spacing / mm 119/2/0/1 57/3/8

1.0/0.9/0.8/0.7/0.6/

0.5/0.4/0.3

1/5/33/50/

27/4/1/1

4/1/15/17/

17/9/1/4
1/0.9/0.8/0.7

Slice thickness / mm Slice thickness / mm

7/6/5/4/3
0/4/53/35/

30
1/5/8/3/51 3/5 70/52 56/12

Flip angle / ° Reconstruction kernel

180/160/150/141-147/

132-137/120-127/90

69/1/22/2/

4/6/18

4/15/36/

1/2/2/8

B/B20f/B30f/B31s/B40s/

B41s/59.10.AB50/unknown

0/1/0/23/

86/0/3/9

56/0/1/0/

0/11/0/0

Scanning sequence Exposure time / ms

SE/RM 96/26 68/0
500/800/1000/1200

/1500/unknown

1/3/86/0/

23/9

1/0/0/1/

11/55

Field strength / T Tube voltage / kV 4/109/0/9
56/11/1/

0

1.5/3 103/19 51/17 120/130/140/unknown

Manufacturer Manufacturer

GE/PHILIPS/

SIEMENS/TOSHIBA

3/13/104/

2
8/0/60/0

SIEMENS/ PHILIPS/

MDS/Nordion/BrainLAB
113/0/7/2

12/56/0/

0
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Table A.3: Image pre-processing parameters for both CT and MRI data. All calculations were performed

in 3D volume. Detailed configuration settings used in MIRP for MRI and CT are available at the GitHub

repo. https://github.com/oncoray/radiomics-rectal_cancer

Parameters MRI CT

Pre-interpolation filter N4 bias correction None

Intensity normalization 95th percentile None

Interpolated isotropic voxel spacing (mm) 1 1

Image interpolation method linear linear

ROI interpolation method linear linear

Re-segmentation range None [-150,180]

Merge method for texture matrices volume merge volume merge

Discretisation method: fixed bin number (bins) 32 32

Table A.4: LoG transformed intensity features selected on the training data after clustering (left) extracted

from MRI and (right) extracted from CT images. Feature definitions can be found in the IBSI reference

manual (Zwanenburg et al., 2020).

MR LoG features CT LoG features

log_loc_peak_loc log_stat_range

log_loc_peak_glob log_stat_median

log_stat_rms log_stat_rmad

log_stat_var log_ivh_i90

log_stat_skew log_ih_kurt_fbn_n32

log_ih_rmad_fbn_n32 log_stat_p10

log_stat_min log_stat_p90

log_stat_p90 log_stat_max

log_stat_max log_stat_energy

log_stat_cov log_ivh_v25

log_ih_max_grad_fbn_n32 log_ivh_v75

log_ivh_v25 log_ivh_diff_v25_v75

log_ivh_v50 log_ih_iqr_fbn_n32

log_ivh_i25 log_ih_qcod_fbn_n32

log_ih_max_grad_fbn_n32

Table A.5: Example of average model performance computation in internal training and validation. CV:

cross-validation, AUC: area under a curve, LoG: Laplacian of Gaussian.

Modality Feature level CV training
CV

validation
Signature Final training External validation

MRI LoG 0.70 0.57
MR_log_ih_max_grad_fbn_n32

MR_log_stat_min

0.67

(0.57-0.75)

0.66

(0.51-0.82)

CT LoG 0.73 0.64 CT_log_ih_max_grad_fbn_n32
0.70

(0.60-0.79)

0.61

(0.44-0.76)
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cancer

Table A.6: Univariable analysis of tumour response (logistic regression) and freedom from distant metas-

tases (FFDM, Cox regression) in the training data. ci: confidence interval. Significant p-values are marked

in bold.

Clinical feature Tumour response FFDM

Odds ratio (95% ci) p-value Hazard ratio (95% ci) p-value

Age / years 1.00 (0.97-1.03) 0.92 1.00 (0.96-1.04) 0.98

Gender (female vs. male) 1.54 (0.69-3.38) 0.29 1.30 (0.52-3.24) 0.57

UICC stage (3 vs 2) 2.85 (0.46-54.78) 0.34 0.45 (0.10-1.95) 0.29

Grade

(1 vs 0) 1.00 (0.04-14.01) 1.00 *

(2 vs 0) 1.92 (0.44-13.38) 0.43 1.58 (0.20-12.34) 0.66

(3 vs 0) 2.00 (0.42-14.64) 0.42 2.45 (0.31-19.56) 0.40

Localization
(1 vs 0) 1.11 (0.50-2.46) 0.79 0.82 (0.32-2.12) 0.68

(2 vs 0) 4.84 (0.4-58.06) 0.21 1.89 (0.24-14.63) 0.54

cT
(3 vs 2) 0.24 (0.03-1.31) 0.11 *

(4 vs 2) 0.06 (0.004-0.51) 0.02 *

cN (1,2 vs 0) * 0.47 (0.11-2.04) 0.31

Dose / Gy 0.87 (0.74-1.02) 0.09 0.92 (0.76-1.12) 0.42

Chemotherapy

(2 vs 1) 0.91 (0.22-3.82) 0.90 1.061 (0.24-4.65) 0.94

(3 vs 1) 0.35 (0.04-3.14) 0.35 *

(4 vs 1) 1.28 (0.28-5.78) 0.75 0.86 (0.11-6.52) 0.89

Chemotherapy: 1 = 5 fluorouracil (FU), 2=5FU+oxaliplatine, 3= capecitabine (CAP) , 4=CAP+other

Localization (cm): 0 = 3-6, 1= >6-12, 2= >12-16

*: The model did not converge.

Table A.7: Summary of 3 selected SOT signatures from CT, MRI, and CT+MRI for the FFDM predic-

tion. GLSZM: grey level size zone matrix, NGLDM: neighbouring grey level dependence matrix, GLCM:

grey level co-occurrence matrix. 3d_fbn_n32: Features computed from discretized image intensities with

fixed bin number 32 from 3D volume. d1: Chebyshev distance=1 around a central voxel for determining

neighbourhood in NGLDM and GLCM based features, a0.0: alpha level 0.0 for NGLDM based features.

Signature Features Identifier

Texture

feature

type

Definition

CT_SOT szm_zsnu_3d_fbn_n32 4JP3 GLSZM

This feature assesses the

distribution of zone counts

over the different zone sizes.

Zone size non-uniformity

is low when zone counts

are equally distributed

along zone sizes

MRI_SOT

ngl_dc_var_d1_a0.0_3d_fbn_n32 DNX2 NGLDM

This feature estimates the

variance in dependence

counts over the different

possible dependence counts

szm_sze_3d_fbn_n32 5QRC GLSZM
This feature emphasises

small zones.

cm_clust_prom_d1_3d_v_mrg_fbn_n32 AE86 GLCM
This feature describes

cluster prominence

CT_SOT

+

MRI_SOT

CT_ szm_zsnu_3d_fbn_n32

As above
MR_ ngl_dc_var_d1_a0.0_3d_fbn_n32

MR_ szm_sze_3d_fbn_n32

MR_ cm_clust_prom_d1_3d_v_mrg_fbn_n32
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Table A.8: Final models for the prognosis of tumour response and FFDM. Training was performed on

the entire training data using multivariable logistic regression for tumour response and Cox regression

for freedom from distant metastases. In addition, transformation parameters from the Yeo-Johnson

transformation and z-normalization, and optimal cutoff values for Youden index and Kaplan-Meier esti-

mates are given. ci = confidence interval. The R models for prospective use are available on GitHub:

https://github.com/oncoray/radiomics-rectal_cancer

Tumour response

Model Feature Coefficient p-value
Yeo-Johnson

(λ)

z-score

normalization

(mean, sigma)

Cutoff

Clinical+

MRI_LoG+

CT_LoG

MRI_log_stat_min 0.4282 0.027 3.3 (-0.35, 0.054)

0.248

CT_log_ih_max_grad_fbn_n32 - 0.3088 0.004 0.0 (7.75, 1.12)

cT (3 vs 2) -0.4666
0.017

- -

cT (4 vs 2) -1.2655

Intercept -0.4337 - -

Clinical+

MRI_LoG

MRI_log_stat_min 0.3770 0.027 3.3 (-0.35, 0.054)

0.258

MR_log_ih_max_grad_fbn_n32 -0.3221 0.008 0.1 (10.33, 2.311)

cT (3 vs 2) -0.5255
0.017

- -

cT (3 vs 4) -1.3132

Intercept -0.3742 - -

Clincial+

CT_LoG

CT_log_ih_max_grad_fbn_n32 -0.4422 0.004 0.0 (7.75, 1.12)

0.321
cT (3 vs 2) -0.5802

0.017
- -

cT (3 vs 4) -1.4047

Intercept -0.3032 - -

Freedom from distant metastases

CT_SOT+

MRI_SOT

MR_ ngl_dc_var_d1_a0.0_3d_fbn_n32 -0.4945 0.071 0.6 (7.85,1.81)

2.249
MR_ szm_sze_3d_fbn_n32 -0.5044 0.192 10.0 (5.05,2.12)

MR_cm_clust_prom_d1_3d_v_mrg_fbn_n32 0.3013 0.176 -0.2 (4.27,0.10)

CT_szm_zsnu_3d_fbn_n32 -0.4584 0.046 0.3 (24.78,6.82)

MRI_SOT

MR_ ngl_dc_var_d1_a0.0_3d_fbn_n32 -0.6337 0.071 0.6 (7.85,1.81)

2.251MR_ szm_sze_3d_fbn_n32 -0.4769 0.192 10.0 (5.05,2.12)

MR_cm_clust_prom_d1_3d_v_mrg_fbn_n32 0.2189 0.176 -0.2 (4.27,0.10)

CT_SOT CT_szm_zsnu_3d_fbn_n32 -0.4790 0.046 0.3 (24.78,6.82) 1.663
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Figure A.1: Image pre-processing and feature extraction pipeline. Magnetic resonance (MR) images were

pre-processed, and the gross tumour volume (GTV) was delineated centrally by one experienced radia-

tion oncologist and one radiologist. GTV contours were then transferred to treatment planning computed

tomography (CT) after rigid registration. All features were extracted from the GTV on the original and the

Laplacian of Gaussian (LoG) transformed CT and MR images using a 3D approach.
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Figure A.2: Confusion matrix for the prediction of tumour response to nCRT in LARC patients for the

training and validation dataset at an optimal threshold of 0.42 combining clinical T stage and LoG features

from MRI and CT.

Figure A.3: Correlation plot of finally selected features in the best performing clinical-radiomic signature

for prediction of tumour response to nCRT. Selected features were independent predictors, as shown by

their low correlations, ρ<0.5.
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B External validation of published radiomics models for patient

prognosis in locally advanced rectal cancer

Table B.1: Clinical characteristics of included studies, NP: information not provided in manuscript.

Study
Patient

number

Field

strength
Sequence Dose (Gy)

In-plane voxel

dimension/

slice

thickness (mm)

Male/female

average or

median age

Responders/

non-responders
cT/cN

De Cecco

(2015)
15 3T

T2-w

FSE
50.4-54 NP/4.0

9/6

Average age

= 63.3

6/9

locally advanced

tumour stages II

(cT3-4, N0, M0) and

III (cT1-4, N+, M0)

De Cecco

(2016)
12 3T

T2-w

FSE
50.4-54 NP/4.0 4/8 NP 6/6

locally advanced

tumour stages II

(cT3-4, N0, M0) and

III (cT1-4, N+, M0)

Chidbaram

(2017)
78 1.5T, 3T

T2-w

FSE
45-50 0.7/4.0 NP

8/51

For 8 patients,

response was not

available

cT 2/3/4/Any=

20/44/6/8

cN 0/1/2/Any =

18/28/24/8

Caruso

(2018)
8 3T

T2-w

FSE
NP NP/4.0

6/2

Median age

= 65.5

NP

cT 2/3/4 =

16/120/62

cN 0/1/2 =

13/67/118

Casumano

(2018)

Total = 198

Train = 173

Valid = 25

NP
T2-w

FSE
50-55 NP

NP

Average age

train = 63

Train 47/126

Train cT 2/3/4=

15/100/58

Train cN 0/1/2=

10/60/103

DiNPpoli

(2018)

Total = 226

Train = 162

Valid_1 = 39

Valid_2 = 25

1.5T
T2-w

FSE
45-55 0.76/NP

NP

Median age

train = 65

Train 46/116

Train cT 2/3/4=

15/95/52

Train cN 0/1/2=

9/58/95

Meng

(2018)
59 3T

T2-w

SE
50 NP/3.0

39/20

Average age

= 54

30/29
cT 3/4 = 37

cN 0/+ = 22

Cui

(2019)

Total = 186

Train = 131

Valid = 55

3T NP 50 NP

Train 83/48

Average age

train = 53

Train 22/109

Train cT 3/4 =

94/37

Train cN 0/1/2 =

13/71/47

Antunes

(2020)

Total = 152

Train = 60

Valid = 44

1.5T,3T
T2-w

TSE
45-50.4

0.313-1.172/

3.0-6.0

Train 50/10

Average age

train = 63

Train 13/47

Train cT

1-2/3-4/Any=

10/46/4

Train

cN 0/+/Any =

13/43/4

Petkvoska

(2020)
102 1.5T,3T

T2-w

FSE
50.4 NP/2.0-4.0

60/42

Median age

= 61

19/83

cT 2/3/4 = 9/85/8

vascular invasion

Yes/No/Any =

20/81/1

Petresc

(2020)

Total = 67

Train = 44

Valid = 23

1.5T
T2-w

TSE
NP NP/3.0

Train 33/11

Average age

train = 57.4

Train 27/17
cT 2/3/4 = 6/32/6

cN 1/2 = 11/33
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rectal cancer

Table B.2: Details of validated studies. ROI: Region of interest for feature extraction, NA: not applicable,

NS: Not supported.

Study
Grading

scheme
ROI

Image

processing

in study

Image

processing applied

for validation

Feature IBSI synonyms Remarks

De Cecco

(2015)
AJCC

Larg-

est

SSF

filtering

LoG filter

at sigma

=4mm

(i) Kurtosis (i) stat_kurt

The feature extraction

pipeline can be

completely implemented.

De Cecco

(2016)
AJCC

Larg-

est

SSF

filtering

LoG filter

at sigma

=4mm

(i) Kurtosis

(ii) Ve from pMRI

(i) stat_kurt

(ii) NS

We validated only the

first feature.

Chidbaram

(2017)
AJCC 3D NA NA (i) Tumour volume (i) morph_volume Replicated completely.

Caruso

(2018)

Grading

system

was not

mentioned

in study.

2D NA NA

GLCM at 0ç, 45ç, 90ç, 135ç

(i) Energy

(ii) Contrast

(iii) Correlation

(iv) Inverse difference

momentum or homogeneity

(v) Entropy

(i) cm_energy

(ii) cm_contrast

(iii) cm_corr

(iv) cm_inv_diff

(v) cm_joint_entr

Features extracted using

average merge method

for all texture metrics,

thus including information

from all directions.

Meng

(2018)
Mandrad

Larg-

est

Voxel

intensities

were

discretized

Voxel intensities

were discretized

By fixed bin

number =25

(i) kurtosis (i) ih_kurtosis

The study did not mention

number of bins used for

discretization. We

discretized image

intensities to 25 bins.

Cusumano

(2018)
Mandard 2D

(i) Intensity

normalization by

99th percentile

within GTV

(ii) LoG filter

(i) Intensity

normalization by

99th percentile

within GTV

(ii) LoG filter

(i) cT

(ii) cN

(iii) Entropy (LoG =0.34)

(iv) Skewness (LoG =0.48)

(v) Max Fractal Dimension

(FD) (40-100)

(iii) ih_entropy

(LoG =0.34)

(iv) stat_skew

(LoG =0.48)

(v) NS

Feature (v) cannot be

extracted, clinical T

and N stage were also

included in validation

analysis, model

parameter used from

study for feature (i)–(iv).

Dinapoli

(2018)
Mandard 2D (i) LoG filter (i) LoG filter

(i) cT

(ii) cN

(iii) Entropy (LoG =0.344)

(iv) skewness (LoG =0.485)

(iii) ih_entropy

(LoG =0.344)

(iv) stat_skew

(LoG =0.485)

Clinical T and N stage

were also included in

validation analysis,

model parameter used

from study.

Cui

(2018)
Mandard NA

(i) Features

normalization

(i) Features

normalization

(i) kurtosis

(ii) ClusterProminence

_AllDirection_offset7_SD

(iii) InverseDifference

Moment_angle0_offset7

(iv) GLCMEnergy_angle45

_offset7

(v) HaralickCorrelation_

angle90_offset7

(vi) Correlation_angle135

_offset7

(vii) ClusterShade_angle

135_offset7

(viii) SphericalDisproportion

(i) stat_kurt

(ii) cm_clust_prom

(iii) cm_inv_diff_mom

(iv) cm_energy

(v) NA

(vi) cm_corr

(vii) cm_clust_shade

(viii) morph_sph_dispr

We validated T2-w signature

by extracting non-directional

features using 3D ROI using

fixed bin number discretizat-

ion= 32 bins and merge met-

hod = average. We excluded

‘HaralickCorrelation’ from

the signature, as by definition

Haralick features are no

different from non-directional

GLCM‘Correlation’ features.

Model parameters used

form study for validation.

Antunes

(2020)
Dworak

Larg-

est

(i) Interpolation=

0.781×0.781×

4.0 mm

(ii) N4 bias

correction

(iii) Intensity

normalization

reference

to the mean

intensity

of the obturator

internus muscle

(i) Interpolation=

0.781×0.781×

4.0mm

(ii) N4 bias

correction

(iii) Intensity

normalization

within

the range of

0.0-0.90

(i) Skewness-Laws

Wave-Ripple ws = 5

(ii)Kurtsosis-Haralick

SumEntropy ws = 9

(iii) Skewness-CoLlAGe

Correlation ws = 5

(iv)Kurtosis-CoLlAGe

InformationMetric1 ws = 3

(i) stat_skew

(on energy map

of the W5R5

Laws kernel)

(ii) NS

(iii) NS

(iv) NS

Our data does not contain

delineation for obturator

internus muscle. Therefore,

in order to replicate image

processing step

(iii), relative range

intensity normalization was

performed within masked.

Organization feature are not

IBSI compliant, therefore

none of organization

features could be validated.

Petkvoska

(2020)

Histopath-

ology
3D

(i) Interpolation

=1×1×1 mm

(ii) Normalized

voxel

intensities were

discretized

(normalization

was not

explained)

(ii) Gabor filter

(i) Interpolation=

1×1×1 mm

(ii) Standard

normalization

(iii) Voxel

intensities

were discretized

(ii) Gabor filter

(i) shape surface area

(ii) shape compactness

(iii) GLCM difference

variance

(iv) GLSZM size zone

low-gray level emphasis

(v) std of Gabor (sigma=2,

theta=30)

(vi) kurtosis of Gabor (

sigma=2sqrt2, theta=30)

(i) morph_area

(ii) morph_comp_1

(iii) cm_diff_var

(iv) szm_lgze

(v)
√

stat.var

(Gabor, σ=2, λ=4,

θ=30)

(vi) stat.kurt

(Gabor ,σ=

2sqrt2, λ=4, θ=30)

Normalization process was

not clearly mentioned in

study therefore we used

standard normalization of

MRI intensities before

feature extraction. The study

did not report lambda and/or

bandwidth for Gabor features.

Thus, to complete feature

extraction we used lambda=4

model parameters used

form study for validation.

Petresc

(2020)
Ryan 3D

(i) Image

normalization

(mean=0, std=100)

(ii) B-spline

interpolation

(x=y=z=2mm)

(iii) Resegmentation

of segmentation

mask

(iii) z-score

normalization of

extracted features

before feature

selection

(i) Image

normalization

(mean=0,

std=100)

(ii) B-spline

interpolation

(x=y=z=2mm)

(iii) Resegmentation

of segmentation

mask

(iii) z-score

normalization

of extracted

features before

feature selection.

(i) log_sigam_5.0_mm_3D

_glszm_SmallArea-

Emaphasis

(ii) wavelet_lhl_glcm_

correlation

(iii) wavelet_lhl_

firstorder_10Perecntile

(vi) wavelet_hhl_glcm_Imc1

(v) wavelet_hhl_

firstorder_kurtosis

(vi) wavelet_hhl_glszm_

SmallAreaHighGray-

LevelEmphasis

(vii) wavelet_hhl_glcm_MCC

(i) szm_sze

(LoG, σ=5.0)

(ii) cm_corr

(wavelet filter=lhl)

(iii) stat_p10

(wavelet filter=lhl)

(vi) cm_info_corr1

(wavelet filter=hhl)

(v) stat_kurt

(wavelet filter=hhl)

(vi) szm_szhge

(wavelet filter=hhl)

(vii) NS

Feature (vii) is not IBSI

standardized therefore

model was validated using

features (i)-(vi).

Model parameters used

form study for validation.
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9 Appendix

C Radiomics for the detection of tumour residuals after surgery of

glioblastoma based on [11C] methionine PET and T1c-w MRI

Table C.1: Image acquisition parameters of T1c-w MRI and MET-PET data for both training (N=85) and

test (N=47) cohort.

Imaging parameters MRI Imaging parameters PET

Voxel spacing / mm 1.0 Voxel spacing /mm 2.0

Slice thickness / mm 1.0 Slice thickness / mm 2.0

Flip angle / ° 8 Field of view [903,180]

Scanning sequence Gradient recalled Attenuation Correction MARC

Field strength / T 3 Reconstruction method LOR-RAMLA

Manufacturer Philips Medical Systems Manufacturer Philips Medical Systems

Table C.2: Feature classes extracted from MET-PET and T1c-w MRI. LoG transformations used for

intensity-based features. fbs: fixed bin size, fbn: fixed bin number, MET: [11C] methionine, PET: positron

emission tomography, IBSI: image biomarker standardization initiative, LoG: Laplacian of Gaussian.

Features
Number

of features
Modality IBSI Identifier

(i) Local intensity features 2 PET / MRI 9ST6

(ii) Intensity-based statistical features 18 PET/MRI UHIW

(iii) Intensity-volume histogram features 14 PET / MRI P88C

(iv) Intensity histogram features fbn = 16 23 PET / MRI ZVCW

(iv) Intensity histogram features fbs = 0.25 23 PET ZVCW

(v) Texture features fbs = 0.25, fbn = 16 PET (fbs,fbn) / MRI (fbn)

Grey level co-occurrence based

features
25 LFYI

Grey level run length based

features
16 TP0I

Grey level size zone based features 16 9SAK

Grey level distance zone based

features
16 VMDZ

Neighbourhood grey tone

difference based features
5 IPET

Neighbourhood grey level based

features
17 REK0

(vi) Log transformed features (i)-(iv) 57 PET / MRI

Total PET=327 MRI=209

Table C.3: Image preprocessing parameters for both PET and MRI data, as used in MIRP.

Parameters PET/MRI

Interpolated isotropic voxel spacing (mm) 2/1

Image interpolation method linear

ROI interpolation method linear

Merge method for texture matrices volume merge (IBSI: IAZD and KOBO)

Discretisation method: fixed bin number (bins) 16/32

Discretisation method: fixed bin size (bin width) 0.25/ –

Laplacian of Gaussian sigma 2mm/1mm
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C Radiomics for the detection of tumour residuals after surgery of glioblastoma based on [11C]

methionine PET and T1c-w MRI

Table C.4: Features selected on the training data after clustering (left) extracted from MET-PET (right).

These features showed highest mutual information (left) with residual tumor status, measured in terms

of AUC. Feature definitions can be found in the IBSI reference manual [5]. MET: [11C] methionine, PET:

Positron emission tomography.

MET-PET features AUC value MET-PET features AUC value

log_stat_min 0.90 log_ih_max_grad_fbn_n16 0.87

stat_rms 0.69 ih_max_grad_g_fbn_n16 0.71

stat_var 0.77 cm_info_corr2_d1_3d_v_mrg_fbn_n16 0.65

stat_skew 0.77 cm_info_corr1_d1_3d_v_mrg_fbn_n16 0.77

log_ih_kurt_fbn_n16 0.92 rlm_rl_entr_3d_v_mrg_fbn_n16 0.65

stat_min 0.55 szm_hgze_3d_fbn_n16 0.79

stat_p10 0.58 dzm_zdnu_norm_3d_fbn_n16 0.81

ivh_i90 0.81 dzm_sdhge_3d_fbn_n16 0.89

stat_qcod 0.53 dzm_ldlge_3d_fbn_n16 0.71

log_stat_energy 0.79 ngt_complexity_3d_fbn_n16 0.62

ivh_i75 0.87 ngl_dcnu_norm_d1_a0.0_3d_fbn_n16 0.75

ivh_v75 0.80 ngl_dc_var_d1_a0.0_3d_fbn_n16 0.85

ivh_v90 0.68 log_loc_peak_loc 0.67

rlm_srhge_3d_v_mrg_fbs_w0.25 0.76 log_stat_max 0.77

rlm_rl_entr_3d_v_mrg_fbs_w0.25 0.72 log_stat_mean 0.58

dzm_z_perc_3d_fbs_w0.25 0.73 log_stat_var 0.79

szm_glnu_3d_fbs_w0.25 0.62 log_stat_skew 0.89

dzm_ldlge_3d_fbs_w0.25 0.69 log_stat_median 0-61

ngl_ldhge_d1_a0.0_3d_fbs_w0.25 0.68 log_ih_cov_fbn_n16 0.89

ngl_dc_entr_d1_a0.0_3d_fbs_w0.25 0.56 log_ih_max_grad_fbn_n16 0.87

Table C.5: Median AUC for PET-status prediction based on MET-PET data using cross-validation of the

training data with logistic regression. Top 5 features ranked according to their occurrence are shown here.

Features with a repeated occurrence across at least 75% (3 out of 4) of the feature selection methods

are marked in bold. AUC: area under the curve, CV: cross-validation, EN: elastic-net, MRMR: minimum

redundancy maximum relevance, MIM: mutual information maximization, UR: Univariate regression.

Modality
Feature

selection

CV

training

AUC

CV

validation

AUC

Features Rank Selected features

PET

MRMR 0.94 0.90

stat_rms

log_ih_kurt_fbn_n16

ngl_dcnu_norm_d1_a0_0_3d_fbn_n16

log_loc_peak_loc

log_stat_skew

1

2

3

4

5

log_ih_kurt_fbn_n16

log_stat_skew

Remarks: Both features occurred

in at least 3 out of 4 (75%) feature

selection methods. These features

showed a correlation >0.5

(Appendix Figure C.1).

Finally, log_ih_kurt_fbn_n16

was selected as a signature due

to stronger association with

the endpoint compared to

log_stat_skew. log_ih_kurt_fbn_n16

was used to build final models

using logistic regression

(GLM_logistic), Xgboost linear

model (XGB_lm) and random

forest (RF) learners.

MIM 0.95 0.93

stat_rms

log_ih_kurt_fbn_n16

ngl_dcnu_norm_d1_a0_0_3d_fbn_n16

log_loc_peak_loc

log_stat_skew

1

2

3

4

5

UR 0.95 0.93

log_ih_kurt_fbn_n16

log_stat_min

log_ih_cov_fbn_n16

dzm_sdhge_3d_fbn_n16

log_stat_skew

1

2

3

4

5

EN 0.96 0.94

dzm_sdhge_3d_fbn_n16

ivh_v75

log_ih_kurt_fbn_n16

dzm_zdnu_norm_3d_fbn_n16

log_stat_skew

1

1

2

3

4

Average AUC 0.95 0.93
Average AUC is reported in

Table 5.4 for radiomics performance
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9 Appendix

Table C.6: Data augmentation parameters used for deep learning analysis. Augmentations were carried

out using the batchgenerators package, which is an open-source python package for data augmentations.

Augmentation Modality Parameters

Mirror PET/MRI Axes = (0, 1)

Gamma transform PET/MRI gamma range = (0.5, 2)

Gaussian noise PET/MRI Noise variance = (0, 0.05)

Gaussian blur PET/MRI Blur sigma = (0.5, 1.5)

brightness multiplicative transform MRI Range = (0.7, 1.5)

Contrast MRI Range = (1, 1.75)

Table C.7: Summary of the selected T1c-w MRI-based radiomics signature for MRI-status detection.

GLDZM: grey level size zone matrix, IH: intensity histogram.

Modality Features Identifier Feature type Definition

MRI
dzm_ldhge_3d_fbn_n32 KLTH GLDZM

This feature emphasizes runs in the lower

right quadrant of the GLDZM, where

large zone distances and high grey levels

are located. In essence, core regions with

high intensity.

Ih_rmad_fbn_n32 WRZB IH

The mean absolute deviation is a measure

of dispersion from the mean of discretized

intensities.

Table C.8: Final models for the PET-status and MRI-status prediction using radiomics. Training was per-

formed on the entire training data using multivariable logistic regression. In addition, transformation param-

eters from the Yeo-Johnson transformation and z-normalization, and optimal cutoff values from Youden’s

index are given.

Modality Feature Coefficient p-value Yeo-Johnson (λ)

z-score

normalization

(mean, sigma)

Cutoff

PET
log_ih_kurt_fbn_n16 2.65 <0.001 -0.3 (1.14, 0.52)

0.77
intercept 1.67 - - -

MRI

dzm_ldhge_3d_fbn_n32 1.15 0.001 -0.3 (3.14, 0.04)

0.38ih_rmad_fbn_n32 -0.64 0.05 -1.4 (0.52, 0.04)

intercept -0.39 - - -

Table C.9: Ensemble AUC values for training and internal validation CV folds for residual tumour status on

MET-PET and T1c-w MRI data using deep learning with and without data augmentation. Models trained

with data augmentation showed higher performance in internal validation, compared to models trained

without data augmentation. AUC: area under the curve, CV: cross validation, MET: [11C] methionine, PET:

positron emission tomography, MRI: magnetic resonance imaging.

Modality Model
CV train AUC CV valid AUC

Without augmentation With augmentation Without augmentation With augmentation

MET-PET

DenseNet 1.00 1.00 0.88 0.96

ResNet 1.00 1.00 0.86 0.92

VGGNet 1.00 1.00 0.96 0.95

T1c-w

MRI

DenseNet 0.87 1.00 0.61 0.77

ResNet 0.91 1.00 0.61 0.73

VGGNet 0.82 0.99 0.66 0.71
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C Radiomics for the detection of tumour residuals after surgery of glioblastoma based on [11C]

methionine PET and T1c-w MRI

Figure C.1: Correlation plot of features with a repeated occurrence across at least 75% (3 out of 4) of the

feature selection methods for prediction of PET status. All features were highly correlated (ρ>0.5 ).

Figure C.2: Confusion matrices for training and test data based on MET-PET and T1c-w MRI data (a)

using the final radiomics-based logistic regression model and (b) using the final 3D-CNN (DenseNet for

MET-PET and VGGNet for MRI) model.
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D Radiomics for patient outcome prediction in glioblastoma using [11C] methionine PET and

T1c-w MRI

D Radiomics for patient outcome prediction in glioblastoma using

[11C] methionine PET and T1c-w MRI

Table D.1: Features selected on the training data after clustering (left) extracted from MET-PET (right).

These features showed the highest mutual information (left) with residual TTR, measured in terms of

C-index. Feature definitions can be found in the IBSI reference manual. MET: [11C] methionine, PET:

Positron emission tomography.

MET-PET features
C-index

value
MET-PET features

C-index

value

log_stat_min 0.64 ngl_glnu_d1_a0.0_3d_fbn_n16 0.63

stat_rms 0.61 ih_max_grad_g_fbn_n16 0.53

stat_var 0.60 cm_info_corr2_d1_3d_v_mrg_fbn_n16 0.54

stat_skew 0.60 cm_info_corr1_d1_3d_v_mrg_fbn_n16 0.59

rlm_rl_var_3d_v_mrg_fbn_n16 0.62 rlm_rl_entr_3d_v_mrg_fbn_n16 0.56

stat_min 0.52 szm_hgze_3d_fbn_n16 0.59

stat_p10 0.58 dzm_zdnu_norm_3d_fbn_n16 0.60

rlm_lrlge_3d_v_mrg_fbn_n16 0.59 dzm_sdhge_3d_fbn_n16 0.65

stat_qcod 0.49 dzm_ldlge_3d_fbn_n16 0.53

log_stat_energy 0.61 ngt_complexity_3d_fbn_n16 0.49

ivh_diff_v25_v75 0.61 ngl_dcnu_norm_d1_a0.0_3d_fbn_n16 0.51

ivh_v75 0.58 ngl_dc_var_d1_a0.0_3d_fbn_n16 0.60

ivh_v90 0.49 log_loc_peak_loc 0.55

rlm_srhge_3d_v_mrg_fbs_w0.25 0.62 log_stat_max 0.57

rlm_rlnu_3d_v_mrg_fbs_w0.25 0.60 log_stat_mean 0.58

szm_z_perc_3d_fbs_w0.25 0.59 log_stat_rms 0.61

szm_glnu_3d_fbs_w0.25 0.57 log_ih_skew_fbn_n16 0.63

dzm_ldlge_3d_fbs_w0.25 0.56 log_stat_median 0.50

ngl_ldhge_d1_a0.0_3d_fbs_w0.25 0.60 log_ivh_i90 0.63

ngl_dc_entr_d1_a0.0_3d_fbs_w0.25 0.56
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9 Appendix

Table D.2: Median C-index for prognosis of TTR based on MET-PET data using cross-validation of the

training data with cox regression (Cox). Top 5 features ranked according to their occurrence are shown

here. Features with a repeated occurrence across at least 75% (3 out of 4) of the feature selection methods

are marked in bold. C-index: concordance index, CV: cross-validation, EN: elastic net, MRMR: minimum

redundancy maximum relevance, MIM: mutual information maximization, TTR: time to recurrence, UR:

Univariate regression.

Modality Feature selection
CV training

C-index

CV

validation

C-index

Features Rank

MET-PET

MRMR 0.66 0.59

dzm_sdhge_3d_fbn_n16

log_stat_mean

log_stat_min

ngl_glnu_d1_a0_0_3d_fbn_n16

log_ivh_i90

1

2

3

4

5

MIM 0.66 0.58

log_stat_min

dzm_sdhge_3d_fbn_n16

log_ivh_i90

ngl_glnu_d1_a0_0_3d_fbn_n16

log_ih_skew_fbn_n16

1

2

3

4

5

UR 0.67 0.62

log_stat_min

dzm_sdhge_3d_fbn_n16

log_ivh_i90

rlm_rl_var_3d_v_mrg_fbn_n16

log_ih_skew_fbn_n16

1

2

3

4

5

EN 0.66 0.60

dzm_sdhge_3d_fbn_n16

log_ivh_i90

log_stat_min

log_ih_skew_fbn_n16

stat_rms

1

1

2

3

4

-
Average

C-index
0.66 0.57 -

Table D.3: Wald-test p-values of 4 selected features. Among correlated features, the features with lowest

p-value was selected indicating its stronger association with end-point.

Feature Number of FS method in which feature occur p-value

log_stat_min 4/4 7.48 e-05

log_ih_skew_fbn_n16 3/4 0.0003

dzm_sdhge_3d_fbn_n16 4/4 0.0005

log_ivh_i90 4/4 0.0007

158



D Radiomics for patient outcome prediction in glioblastoma using [11C] methionine PET and

T1c-w MRI

Table D.4: Final model coefficients for the prognosis of TTR and OS using the clinical only, the

Clinical+MET-PET and the Clinical+MRI radiomics models. Training was performed on the entire training

data using multivariable logistic regression. In addition, transformation parameters from the Yeo-Johnson

transformation and z-normalization, and optimal cutoff values Kaplan Meier plots.

Endpoint Signature Features Coefficient p-value Yeo-Johnson (λ)
z-score

normalization (mean, sigma)
Cutoff

TTR

Clinical
MGMT 0.23 <0.001 - -

0.53
Age 1.32 0.015 1.9 1195.451, 489.816

Clinical

+

PET

MGMT 0.26 <0.001 - -

0.62Age 1.31 0.019 1.9 1195.451, 489.816

log_stat_min 0.70 0.004 10 -0.043, 0.018

Clinical

+

MRI

MGMT 0.22 <0.001 - -

0.40

Age 1.32 0.037 1.9 1195.451, 489.816

ivh_diff_i25_i75 0.76 0.031 -0.4 2.109, 0.039

dzm_zd_var_3d_fbn_n32 1.44 0.008 0 3.680,0.512

loc_peak_glob 1.12 0.354 0.2 1.163,0.272

OS

Clinical
MGMT 0.20 <0.001 - -

0.58
Age 1.61 <0.001 1.9 1195.451, 489.816

Clinical

+

PET

MGMT 0.21 <0.001

0.68Age 1.60 <0.001 1.9 1195.451, 489.816

stat_max 1.31 0.038 -4.4 0.140, 0.029

Clinical

+

MRI

MGMT 0.19 <0.001 - -

0.46
Age 1.72 <0.001 1.9 1195.451, 489.816

ivh_diff_i25_i75 0.79 0.046 -0.4 2.109, 0.039

dzm_zd_var_3d_fbn_n32 1.46 0.004 0 3.680, 0.512

Table D.5: Ensemble C-index values for training and internal validation CV splits for prognosis of TTR

and OS based on MET-PET imaging and T1c-w MRI data using deep learning with and without data

augmentation. Overall, models trained with data augmentation showed higher performance in internal

validation, compared to models trained without data augmentation. C-index: concordance index, CV:

cross validation, MET: 11C methionine, PET: positron emission tomography, MRI: magnetic resonance

imaging.

Modality Model
CV train C-index CV validation C-index

Without augmentation With augmentation Without augmentation With augmentation

MET-PET

DenseNet 0.75 0.84 0.68 0.68

ResNet 0.84 0.90 0.62 0.63

VGGNet 0.85 0.84 0.66 0.69

T1c-w

MRI

DenseNet 0.87 0.86 0.59 0.63

ResNet 0.82 0.82 0.57 0.60

VGGNet 0.55 0.66 0.60 0.53

MET-PET

DenseNet 0.63 0.82 0.59 0.61

ResNet 0.89 0.87 0.58 0.55

VGGNet 0.87 0.88 0.68 0.70

T1c-w

MRI

DenseNet 0.88 0.83 0.62 0.64

ResNet 0.87 0.87 0.59 0.58

VGGNet 0.72 0.59 0.53 0.49
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9 Appendix

Figure D.1: Correlation plot of features with a repeated occurrence across at least 75% (3 out of 4) of the

feature selection methods for prediction of PET status. All features were highly correlated (ρ>0.5).
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