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Abstract 

 The 96th Test Wing at Eglin Air Force Base manually schedules a fleet of 

approximately 26 aircraft to conduct a range of missions over a one-to-two-year planning 

period. This study automates the scheduling process, in a manner that optimizes multiple 

planning goals related to aircraft availability for training and provides the 96th Test Wing 

with a software tool for the implementation that can be used by operational analysts 

within the command. We formulate the scheduling problem as a multi-objective, 

nonlinear, binary integer math program that seeks to maximize both the lowest percent of 

time any aircraft is available for training and the lowest percent of aircraft available for 

training for any week.  Applying the Weighted Sum Method for multi-objective 

optimization, a conversion of nonlinear operations yields a binary integer program that is 

directly solvable via a commercial solver.  An examination of the multi-objective nature 

of the problem identified a lack of tension between the objectives, so empirical testing 

affixes equal weights to the well-scaled objective function components.  The 96th Test 

Wing directed the use of Excel as a modeling environment and What’sBest! by Lindo 

Systems, Inc. for their analysts to use.  Subsequent testing examined for increasing time 

horizons the ability of the model and solver combination to develop optimal or near-

optimal schedules for increasing levels of mission densities.  The required computational 

effort was not predictable by mission density level, but increasing levels did yield 

instances not solvable to optimality within four hours for each time horizon.  Optimal 

solutions can be readily identified within a few seconds for the current fleet and current 
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or higher mission densities for 8-, 26-, and 52-week schedules, using weekly granularity 

for mission scheduling. In contrast, 78-week schedules can only be solved for a lower 

mission density than currently addressed by the 96th Test Wing within a four-hour time 

limit. However, the 96th Test Wing’s current process is conducted manually over a period 

of hours, and the fragility of a such a long-term schedule to evolving mission 

requirements makes its merit subjective. In aggregate, this study shows an integer 

programming approach is feasible and has utility to the 96th Test Wing organization for 

their scheduling problem. 
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OPTIMAL SCHEDULING OF AIRCRAFT TEST AND EVALUATION FLEETS TO 

BALANCE AVAILABILITY FOR TESTING AND TRAINING 

 

I. Introduction 

1.1 Motivation and Background 

The Air Force conducts Developmental Test and Evaluation (DT&E), Operational 

Test and Evaluation (OT&E), and Integrated Developmental Test/Operational Test 

(Integrated DT/OT). Actions within DT&E evaluate design methodology, validate 

models, identify systemic problems, predict the operational performance of the integrated 

systems effectiveness and suitability, quantify manufacturing quality measures, and 

quantify contract technical performance [1]. In aggregate, DT&E seeks to minimize 

design risk. In contrast, OT&E determines system effectiveness and suitability after 

systems are procured and fielded, while simultaneously evaluating military utility. OT&E 

determines the effectiveness and suitability of weapons, equipment, or munitions for use 

in combat by typical military users, and it yields results to validate or modify the systems 

to improve their utility. In comparison, Integrated Developmental Test/Operational Test 

(Integrated DT/OT) is defined as  

An efficient approach to T&E, executed with the deliberate intent and 

planning to use specific test events and activities for both developmental 

test and operational test analysis and reporting, when there are clear cost 

and/or schedule advantages. The high cost or lack of sufficient test articles 

may provide an overall benefit for DT&E and OT&E teams to share test 
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resources and data. IDT/OT usually ends with a phase of dedicated 

OT&E. AFOTEC always considers doing IDT/OT for all programs. The 

restriction for contractor involvement in USC, Title 10 applies only to 

dedicated OT&E [1]. 

As a part of the ecosphere of US Air Force test and evaluation activities, the 96th 

Test Wing at Eglin AFB conducts a range of DT&E, OT&E, and IDT/OT [2]. Eglin AFB 

is a central hub for T&E due to its favorable climate and numerous available ranges. As a 

result, many testing units are co-located at Eglin AFB. The activities of a test wing 

include nonnuclear munitions testing and munitions ground testing; munitions seeker 

performance evaluation; aircraft stores integration; command, control, and information 

testing; computer network attack; aircraft systems and electronic countermeasure 

evaluation; munitions guidance systems; aircraft navigation and guidance systems; radar 

target signatures; unmanned aerial vehicles; and base intrusion and interdiction systems.  

The 96th Test Wing has 32 squadrons and divisions, and their test and evaluation 

activities support the largest of procurement programs in the US Air Force. The 96th Test 

Wing has two operational test partners: the Air Force Operational Test and Evaluation 

Center (AFOTEC) and the 53rd Test Wing, both having an organizational presence at 

Eglin AFB. AFOTEC conducts initial operational tests for newly purchased devices. 

Once that item is in the USAF inventory, responsibility for further testing lies with the 

appropriate Major Command (MAJCOM). For example, F-15C Eagles and F-15E Strike 

Eagles have been flying for over 30 years, and Air Combat Command (ACC) has the 

responsibility to oversee their maintenance and upgrades. Supporting ACC, the 53rd Test 

Wing conducts OT&E for these aircraft.  
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The 96th Test Wing’s partners are important because, in combination with the 

wing’s DT&E focus, their combined efforts yield a notable amount of IDT/OT. In doing 

so, they share devices and assets. In practice, sometimes Operational Test (OT) pilots will 

fly an IDT/OT mission, and sometimes the Developmental Test (DT) pilots will fly it. 

Thus, it is necessary to coordinate the use of aircraft, pilots, ranges, sensors, and related 

assets in a manner that effectively supports the test activities while making efficient use 

of resources.  

Relevant to the complexity of the coordination necessary to schedule testing 

activities at Eglin AFB, there is a natural competition for resources among three different 

squadrons:  the 40th Flight Test Squadron, the 85th Test and Evaluation Squadron, and the 

Operational Flight Program Combined Test Force (OFPCTF) squadron [3]. The 40th 

Flight Test Squadron is a DT&E squadron assigned to the 96th Test Wing, whereas the 

85th Test and Evaluation Squadron is assigned to the 53rd Test Wing. The 40th and 85th 

squadrons have the primary missions of flying DT&E and OT&E missions, primarily 

focused on variants of the F-15 Eagle and the F-16 Falcon [4]. The OFPCTF squadron 

conducts both DT&E and OT&E, and it is comprised of elements from and supports both 

the 96th and 53rd Test Wings. The OFPCTF squadron conducts testing related to the 

operating systems on the respective aircraft and their variants.  

The 96th Test Wing schedules the activities of these three squadrons, both at Eglin 

AFB and in support of off-site testing activities, and that scheduling problem is the focus 

of this research. These three squadrons have a combined fleet of 26 aircraft of various 

types. There are several demands for aircraft beyond test and evaluation activities. Other 

demands on the fleet include modifying and de-modifying aircraft for specific testing 
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activities, maintaining the aircraft, and supporting exercises and testing at other ranges 

(i.e., away from Eglin AFB). Moreover, readiness is always an important consideration 

for the 96th Test Wing; they want their pilots (and aircraft) to train routinely and remain 

proficient in fundamentals related to air combat. Such dedicated training should consider 

the fleet of pilots and aircraft as well as the amount of available ranges for training at 

Eglin AFB. There is a natural tension between test and evaluation mission execution and 

training to maintain readiness, so it is important to balance the mission demands within a 

schedule of activities. 

This research directly supports the 96th Test Wing and their efforts to schedule a 

fleet of different aircraft to conduct a range of missions over an extended time horizon. 

The 96th Test Wing currently develops a schedule of aircraft from the three squadrons to 

conduct the aforementioned activities over a schedule to meet test and evaluation; 

maintenance; and other exercise-related demands over a 6- to 18-month horizon, all while 

maximizing the availability of aircraft for training.  

From 2015 through 2021, the 96th Test Wing develops and/or refines this schedule 

manually using Microsoft Excel, and they refer to the Excel notebook and its schedule as 

the Iron Flow tool because it directs the flow (i.e., schedules) and the iron (i.e., aircraft) 

to their various missions and activities. Figure 1 depicts a screen capture of this tool and a 

representative schedule for non-specific aircraft (i.e., “Frogbats” and “Ratcats” in lieu of 

actual US Air Force aircraft) and a variety of letter-coded missions other than training. 

Table 1 characterizes the missions the 96th Test Wing schedules with the Iron Flow tool, 

as of 2021. Blank entries indicate an aircraft is available to conduct testing and training 

missions.  
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Figure 1. Screenshot of the Iron Flow Tool to Schedule Aircraft 

Table 1. Missions Scheduled via the Iron Flow Tool 

Letter 
Code Mission Description 

I 
Instrumentation Modification 

/ Demodification 

Test flights that can include a tiny high-speed camera, shock 
vibration strain gauge, thermometer, and data recorder. 
Typically lasts for 4 weeks. 

O Instrumentation Other 
Miscellaneous instrumentation, deconfliction, and upgrades to 
instrumentation 

S 
Phase/Scheduled Major 

Maintenance 

Local activity that includes stripping the plane but not as much 
as Program Depot Maintenance. Typically lasts 3 weeks; 
conducted after a certain number of flying hours 

G 
Off Station/Non-Supporting 

Status 
Temporary duty off station to support a test or exercise. 
Typically lasts 3 to 6 weeks. 

T 
TCTO (Time Critical Tech 

Orders) 

Maintenance including product recalls and must be completed 
as soon as possible. Not scheduled in advanced. A notice 
comes out, and individual aircraft are grounded until the TCTO 
is completed. 

R Radar Upgrades Self-explanatory. Typically lasts 12 to 20 weeks 

D 
Programmed Depot 

Maintenance 

Take aircraft to Warner Robins AFB and strip it completely 
down to inspect and conduct maintenance. As an example, this 
lasts about 17 weeks, every 6 years for F-15s. 

A 
ADCP-II Mod (Advanced 

Computer Processor) 
Major modifications and internal computer upgrades to replace 
graphics processor. Typically lasts 2 to 19 weeks. 

E 
EPAWSS Mod (Eagle 

Passive Active Warning 
Survivability System) 

Major modified receiver targeted at F-15 variant radars. 
Typically lasts 26-30 weeks. 

M Other Modification Typically lasts 4 to 7 weeks. 
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The Iron Flow tool depicted in Figure 1 illustrates the variety of demands, 

scheduled out for different aircraft and aircraft types to conducts over an extended 

duration of weeks. Within the Iron Flow tool are embedded Microsoft Visual Basic 

macros to calculate the number of available aircraft in each week and update the graphic 

depiction of the schedule. However, the actual schedule developed with the Iron Flow 

tool are created manually, without any direct attempt at optimizing any scheduling 

objectives other than satisfying demands. Another shortcoming to the Iron Flow tool is 

that, whenever information or assumptions change, the schedule must be manually edited. 

The 96th Test Wing did not articulate the exact duration to create or edit a schedule 

because it varies based on the nature of the changes, but they acknowledged that doing so 

is a slow, (cognitive) labor intensive process that requires notable subject matter 

expertise. Moreover, maintaining this tool requires a non-trivial effort as well.  

Reinforcing the nature of the scheduling challenge, personnel from the 96th Test 

Wing informed the author of additional procedural changes for developing and refining 

schedules. Of recent, the Iron Flow tool has fell out of use, and the 96th Test Wing has 

recently embraced a coarser solution technique involving the manual adjustment of 

colored blocks around on PowerPoint slides to schedule aircraft against demands. 

Due to the obvious disadvantages of using PowerPoint for this scheduling 

problem, the senior analyst from the 96th Test Wing wants to leverage an Excel-based 

tool similar to the Iron Flow tool, yet via an automated process that yields optimal or 

near-optimal outcomes with respect to readiness-related objectives. Such is the intended 

outcome of this research. 
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The 96th Test Wing’s Operations Group seeks an automated solution process that 

can be iteratively and repeatedly applied to effectively and efficiently solve the aircraft 

scheduling problem, saving personnel effort in the process. The elements of this process 

should include: 

1. The use of parametric data in a format familiar to the 96th Test Wing  

2. An appropriate mathematical programming model 

3. Either an exact solution method or heuristic approach, as appropriate to 

ensure computational tractability 

4. Implementation of these elements in a software platform usable by the 

operations group.  

1.2 Problem Statement 

This research seeks to model and efficiently solve the 96th Test Wing’s aircraft 

scheduling problem, attaining a solution that maximizes aircraft availability for testing 

and training while meeting testing, maintenance, and other selected demands for 

combined fleet of aircraft from the 40th Flight Test Squadron, the 85th Test and 

Evaluation Squadron, and the OFPCTF squadron over a 6- to 18-month time horizon [5].  

1.3 Research Questions 

The following research questions are sequentially answered to address the 

problem statement: 

1. Can the 96th Test Wing’s aircraft scheduling problem be modeled via a compact 

mathematical program that addresses nuanced, complicating formulation aspects 
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(e.g., nonlinearities, binary or integer-restricted decision variables), with the goal of 

optimizing multiple desired outcomes? 

2. When using the proposed model in combination with both a modeling environment 

and commercial solver directed by the 96th Test Wing, what are the limits of 

computational tractability for the proposed mathematical programming formulation, 

in terms of density of mission demands and duration of a schedule? 

3. Does the combination of the proposed model and demonstrated performance on 

realistically sized instances portend a practical tool for use by the 96th Test Wing that 

can be utilized within Microsoft Excel and identify optimal or near-optimal schedules 

without resorting to either manual or heuristically solution methods? 

1.4 Organization of the Thesis 

The remainder of the thesis is organized as follows. Chapter II reviews literature 

related to optimal scheduling and aircraft scheduling. Chapter III introduces the 

mathematical programming formulation for the underlying problem to address Research 

Question 1. Chapter IV conducts validation testing for the model and empirical testing to 

address Question 2. Chapter V concludes by addressing Research Question 3 as it 

summarizes the major outcomes of the research, ultimately identifying selected 

recommendations for both the research sponsor’s implementation of this work and future 

research to extend it.  
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II. Literature Review 

This chapter reviews relevant aspects of the technical literature from two threads 

of research. Section 2.1 reviews fundamental mathematical programming constructs 

necessary to formulate the mathematical programming formulation set forth in Chapter 

III. Section 2.2 reviews technical research related to scheduling problems, in general, 

whereas Section 2.3 reviews relevant work that addresses aircraft scheduling 

applications.  

2.1 Selected Fundamental Concepts from Mathematical Programming  

 Important for this research are the concepts of multi-objective optimization, 

integer programming, binary integer programming, and the branch-and-bound algorithm 

as a method to solve integer and binary-integer programs. 

Multi-Objective Optimization 

 Many real-world optimization problems have multiple conflicting objectives and 

would benefit from examining decisions within a multi-objective optimization 

framework, including the problem examined herein. Recall that the 96th Test Wing has 

more than one objective to optimize, as will be discussed in detail in Chapter III. As such, 

a multi-objective optimization framework will be appropriate to consider.  

Multi-objective optimization problems seek to find decision variable values that 

address more than one objective function, and those objectives are typically in tension 

[6]. Such a formulation is conventionally represented for a linear program having 𝑛 

objective functions as follows [7]. 
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𝑚𝑖𝑛 (𝑓 (𝒙), 𝑓 (𝒙), … 𝑓 (𝒙))
𝑠. 𝑡. 𝑨𝒙 ≥ 𝒃

𝒙 ≥ 𝟎

 

A “good decision” within multi-objective optimization is a non-dominated solution; one 

may not improve one objective function value without worsening the value(s) or one or 

more other objective functions. Such a solution is known also known as a Pareto optimal 

solution, and the set of such non-dominated solutions is known as the Pareto front, 

efficient front, or Pareto frontier. 

 There are multiple techniques to explore a Pareto front, the most prevalent within 

the literature being the Weighted Sum Method and the 𝜀-constraint Method. The 

Weighted Sum Method constructs a single objective function by adding the respective 

objective function values, each with a scaled weight and typically with the weights scaled 

such that their sum equals one. Such an approach for a linear program yields the 

following representation. 

𝑚𝑖𝑛 𝑤 𝑓 (𝒙) + 𝑤 𝑓 (𝒙) … + 𝑤 𝑓 (𝒙)

𝑠. 𝑡. 𝑨𝒙 ≥ 𝒃
𝒙 ≥ 𝟎

 

In contrast, the 𝜀-constraint Method optimizes one objective function while 

bounding any other objective functions, iteratively adjusting those bounds. For a given 

set of bounds and while optimizing the first objective function, the 𝜀-constraint Method 

formulation for the aforementioned linear program would be represented as follows. 

𝑚𝑖𝑛 𝑓 (𝒙)

𝑠. 𝑡. 𝑓 (𝒙) ≤ 𝜀 , 𝑖 = 2, … , 𝑛

𝑨𝒙 ≥ 𝒃
𝒙 ≥ 𝟎
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 The 𝜀-constraint Method is well-suited for problems in which most objective 

functions – preferably (𝑛 − 1) objective functions – can only take on integer values 

because there is only a finite number of readily discernible 𝜀-values to consider for the 

iterative exploration of the Pareto front. Alternatively, the Weighted Sum Method is 

versatile, but one must account for the scale of the relative objective function values. If a 

problem is not well scaled, the set of non-dominated solutions may not be identified 

across a uniformly distributed set of weights. In either case, the existence of multiple 

objectives does not require that they be in tension; a first step when examining a multi-

objective optimization problem is to ascertain whether tradeoffs exist between the 

different objectives. 

 This research will leverage the Weighted Sum Method for multi-objective 

optimization. As will be evident in Chapter III, the preferred criterion for using the 𝜀-

constraint Method is not present in the proposed mathematical programming formulation. 

Integer Programming (IP)  

 Integer programming (IP) is a subset of mathematical programming, related to 

linear programming (LP) with the additional constraint that at least a subset of decision 

variables must be integer-valued [6]. If all decision variables are integers, an integer 

program is said to be pure [8]; otherwise, it is known as a mixed-integer linear program. 

Scheduling problems are a class of integer programs because schedules naturally entail 

decisions that relate to integer-valued numbers, e.g., one cannot schedule half of an 

aircraft to conduct a mission, but one can schedule two aircraft to do so.  

Binary Integer Programming (BIP)  
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A binary integer programs is a special case of an IP in which decision variables 

are equal to either 1 or 0, typically representing a “yes” or “no” decision. Within the 

context of aircraft scheduling, a BIP is a logical framework to consider; a value of 1 may 

represent whether an aircraft is scheduled to conduct (or begin) a given mission in a 

given week.  

Teixeira, et al. [9] solved production scheduling problems by utilizing a binary 

integer programming formulation. The first decision variable defined is 𝑎 , which 

represents the selected production orders for the scheduling cycle.  

𝑎  =  
1 𝑜𝑟𝑑𝑒𝑟 𝑖 𝑖𝑠 𝑝𝑜𝑢𝑟𝑒𝑑 𝑖𝑛 𝑙𝑜𝑎𝑑 𝑐 𝑜𝑓 𝑓𝑢𝑟𝑛𝑎𝑐𝑒 𝑓 𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The second decision variable defined is 𝑏 , , ,  which represents which metal alloy will be 

in each furnace in each reactor.  

𝑏  =  
1 𝑎𝑙𝑙𝑜𝑦 𝑙 𝑖𝑠 𝑐𝑎𝑠𝑡 𝑖𝑛 𝑙𝑜𝑎𝑑 𝑐 𝑜𝑓 𝑓𝑢𝑟𝑛𝑎𝑐𝑒 𝑓 𝑟𝑒𝑎𝑐𝑡𝑜𝑟 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This work provides a BIP formulation example in which all decision variables are binary-

restricted. 

The Branch-and-Bound Algorithm 

Integer programs are commonly solved using the branch-and-bound algorithm [6]. 

This algorithmic procedure begins by relaxing all integer restrictions on decision 

variables and solving the corresponding math program having a continuous feasible 

region. For an IP, the relaxation yields an LP; for a minimization problem, and the value 

of the optimal objective function for the LP provides a lower bound on the optimal 

objective function value for the IP.  
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For this initial solution, which is identified as occurring at the root node in a 

branch-and-bound tree, if the LP relaxation yields an integer-valued solution, the 

algorithm terminates with an optimal solution to the original problem. Otherwise, the 

optimal solution to the LP relaxation yielded decimal-valued decision variable values. In 

this case, the algorithm branches by creating two (or more) subordinate nodes in the tree 

from a node for which the optimal solution to the LP relaxation did not yield an IP-

feasible solution. Each of these child nodes corresponds to the previous IP formulation in 

the parent node, except that the IP formulation in each of those child nodes is augmented 

with a constraint that bounds one (or more) of the decision variables that was decimal-

valued in the optimal solution to the parent node’s LP relaxation.  The bounding 

constraints prevent a decimal-valued solution for at least one of the decision variables 

from being feasible.   

This procedure continues to grow the branch-and-bound tree while leveraging 

user-determined procedures to both select the next parent node (i.e., branch) and identify 

augmenting constraints (i.e., bounds). If a node other than the root node yields an optimal 

solution to its LP relaxation that is integer-feasible, no further branching occurs from that 

node; it is fathomed. Fathoming also occurs when the value of a node’s LP-optimal 

objective function value is worse (or not 𝜖 better, for a user defined 𝜖 > 0) than the 

objective function value for the incumbent solution, i.e., the best IP-feasible objective 

function value found so far. 

Relevant to this research, the branch-and-bound algorithm is guaranteed to 

identify an optimal solution to an integer program [10], so any IP or BIP formulation for 

the 96th Test Wing’s scheduling problem can be solved optimally. However, it may not 
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find an optimal solution efficiently (e.g., see [11] and [12]). Practical implementation of 

this solution method may terminate it when it exceeds a certain run time. So long as the 

branch-and-bound tree upon termination has found an incumbent, IP-feasible solution, 

one can compute both an absolute and a relative optimality gap by comparing the IP-

feasible objective function value, for which the solution is feasible to the original 

problem, with the best LP-optimal lower bound at an active node, which indicates a best 

IP-feasible objective function value that might be attainable. Of importance, a relative 

optimality gap of 5% merely indicates that an IP-feasible solution’s objective function 

value is no more than 5% worse than the best LP-optimal objective function value upon 

termination of the algorithm. It is quite possible that the incumbent IP-feasible solution is 

optimal, and a continuation of the branch-and-bound algorithm might prove it by 

eventually fathoming all active branches without finding a better IP-feasible solution. Of 

note, a user-defined (absolute or relative) optimality gap may also serve as a termination 

criterion for the branch-and-bound algorithm. 

This research will seek optimal scheduling solutions, but it will also impose a 

time constraint on a branch-and-bound solution procedure. If the solution procedure fails 

to identify an optimal solution within the allotted time, testing will report the relative 

optimality gap of the incumbent solution if an IP-feasible solution was identified. 

Otherwise, testing will indicate that no feasible solution was identified within the allotted 

computational time.  
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2.2 Scheduling 

 Scheduling is widely used by manufacturing and service industries, taking on 

different resources and tasks. At its core, scheduling deals with the allocation of limited 

resources to tasks over time, with the goal of optimizing one or more objectives [13]. 

This research seeks to identify a schedule of aircraft to missions that considers two 

objectives to maximize. First, the 96th Test Wing wants all aircraft and assigned pilots to 

be highly trained. Across the scheduling time horizon, each aircraft has a percentage of 

time available for training, and the wing seeks to maximize the smallest such percentage 

over all aircraft. Second, the 96th Test Wing wants an efficient use of training ranges, 

without large outliers. Across the aircraft, every week within the schedule has a 

percentage of aircraft available for training, and the wing seeks to maximize the 

minimum such value over all weeks in the schedule. 

Optimal Job Scheduling 

The optimal job shop scheduling problem is the classical foundation for 

scheduling problems. Elmaghraby and Park [14] describe these scheduling problems, in 

which 𝑛 jobs are assigned to be completed on 𝑚 identical machines, and wherein each 

job has a set-up time, duration, and due date. Classical objectives include minimizing the 

make span of the set of jobs, minimizing the number of late jobs, minimizing the 

maximum lateness of any job, and maximizing the utilization of machines, given set-up 

times may depend upon the previous job completed on a given machine. In this 

framework, scheduling is the same as sequencing because a sequence defines the order 

for the set of jobs.  
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The optimal job shop scheduling problem is related to the 96th Test Wing’s 

aircraft scheduling problem. The aircraft are like machines and the missions an aircraft 

performs are like jobs. However, the 96th Test Wing’s scheduling problem differs from 

the aforementioned job shop scheduling problem in several key aspects. First, the wing’s 

problem considers discrete intervals of time (i.e., weeks) in which tasks may (or must) 

begin, and, for the sake of developing a simple model, missions are assumed to require 

integer increments of weeks to complete. Second, the aircraft are not homogenous. Given 

the mission-driven nature of the 96th Test Wing’s operations, we find it appropriate to 

embrace the alternative cognitive framework for scheduling: to schedule aircraft to 

accomplish time-affixed missions rather than assign missions to aircraft.  

Time and Resource-Constrained Scheduling 

 Time-Constrained Scheduling (TCS) refers to a type of scheduling problem that is 

constrained by time, whereas Resource-Constrained Scheduling (RCS) refers to a type of 

scheduling problem that is constrained by the limited number of resources available [15].  

The 96th Test Wing’s scheduling problem entails a combination of TCS and RCS. As an 

application of TCS, any model must consider assignments that align aircraft to missions 

and the time in which they begin. Moreover, the 96th Test Wing likely cannot, e.g., 

schedule all aircraft maintenance to occur during the same week within a time horizon; 

the organization has naturally occurring resource limitations on some missions, resulting 

from maintenance, equipment, personnel, and other capacities. Therefore, as application 

of RCS, any model for the 96th Test Wing’s scheduling problem must consider period-

specific capacities that may limit the number of aircraft-to-mission assignments during 

any given period.  
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2.3 Aircraft Mission Scheduling 

 Desaulniers, et al. [16] discussed a daily aircraft routing and scheduling problem. 

The authors’ research goal is to maximize profits from the assignment of flight paths to 

aircraft within a fleet, such that all flight legs are covered.  Each aircraft type has various 

performance metric requirements related to originating airport, departure times, and 

expected profit. They examined two alternative math programming formulations to solve 

the problem:  one based on set partitioning of the possible routes into flight paths and 

another based on a multicommodity network flow problem [16]. Among the various 

solution methods examined were a direct application of the branch-and-bound algorithm.  

Ultimately, the authors examined a routing and scheduling problem that was more 

complex than the 96th Test Wing’s scheduling-only problem, but their exploration of the 

branch-and-bound algorithm indicates it should be the first approach considered to solve 

any integer programs within this research. 

 In fact, there is a plethora of aircraft scheduling literature that examines 

specialized topics.  Tsai et al. [17] examined the problem of assigning aircraft to a time 

table for flights, and they leveraged genetic algorithms to solve the problem having 

binary decision variables in an effort to develop high quality solutions quickly. Samà et 

al. [18] studied the problem of both scheduling and, as necessary, rerouting aircraft to 

manage their assignments to busy airport terminals.  Formulating a nonlinear-integer 

program, the authors examined various metaheuristic performances.  Huo et al. [19] 

studied the assignment of arriving aircraft to terminals at the Paris Charles de Gaulle 

airport under conditions of uncertainty and with the desired outcome of a robust flight 

arrival schedule.   
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Ultimately, most of the literature related to aircraft scheduling differs from the 

problem-of-interest for the 96th Test Wing.  Most authors examine assigning aircraft to 

routes or terminals, all of which have spatial or temporal aspects, as well as 

interdependencies that are not present in the problem considered herein.  The 96th Test 

Wing’s problem is much closer in nature to a hybrid TCS/RCS job shop scheduling 

problem.  However, it is also worth reviewing related work conducted in support of US 

Air Force test wings.  Two recent theses completed at the Air Force Institute of 

Technology considered related aircraft scheduling problems. Schoenbeck [20] examined 

a developmental test scheduling problem in support of the 412th Test Wing at Edwards 

AFB, and Macias [21] addressed a scheduling problem in support of the 57th Wing at 

Nellis AFB. 

In his research, Schoenbeck [20] sought to schedule test aircraft to maximize the 

number of missions flown over a weekly period, decomposed into hours of each day. 

Similar to the research considered herein, he sought to replace a manual scheduling 

process that takes weeks with an automated process that, preferably, attains an optimal 

solution to a sponsor-informed objective function. The various demands on the aircraft 

include specific missions and sorties supporting each mission. Constraints on the problem 

were informed by both a limited number of aircraft, specific demands for types of aircraft 

(e.g., F-16s), and aircraft capabilities. Extended models considered aspects such as 

refueling and specific aircraft configurations. The scope of the problem addressed “more 

than 20 different Combined Task Forces requesting resources for roughly 300 flying 

missions each week” [20]. Figure 2 shows an example for defining mission-specific 

possibilities. The example mission shown has 29 tails, 1 sortie, and 115 time periods, 
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which is equivalent to 3,335 entries. This combinatorial complexity motivates the need 

for identifying to utilize a powerful (i.e. commercial) solver to address integer 

programming formulations herein.  To wit, Schoenbeck utilized the open-source solver 

Coin-OR Branch and Cut (CBC) to address one instance that sought to schedule 58 

aircraft and involving approximately 40,000 binary decision variables in the formulation; 

the solver required approximately five hours to identify a feasible solution satisfying a 

1% relative optimality gap termination criterion. Schoenbeck’s research differs from the 

96th Test Wing’s problem in several ways. Foremost, Schoenbeck’s model is granular at 

the sortie level; we instead schedule aircraft (i.e., ‘tails’) directly to missions. Second, 

Schoenbeck’s study examined a scheduling specific to hours within each day; herein, the 

model considers weekly missions, and it seeks to do so over a longer time horizon (i.e., 

months rather than days). Third, because of the hourly focus of Schoenbeck’s model, the 

previous work accounts for pre-flight preparation and post-flight maintenance. The 96th 

Test Wing’s problem sets routine maintenance considerations aside by limiting the 

duration of flights each day and assuming maintenance can support post-flight operations 

within the remaining workdays, be they regular or adjusted hours. 
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Figure 2. Possibilities for Specific Missions [20] 

In his scheduling research, Macias [21] sought to automate a mission scheduling 

problem using an integer programming approach. Macias decided against using heuristics 

due to the degree of complexity and the instance sizes for the underlying problem. The 

goal of Macias’ thesis was to save time with an automated scheduling approach as well as 

improve range scheduling efficiency. Macias formulated a problem to maximize the 

number of daily missions scheduled, subject to the following constraints: 1) Range 

resources are not used more than available, 2) Missions start within time frame, 3) All 

missions scheduled are active for the entire duration. Macias’ tool produced daily mission 

schedules for a scheduling horizon of 1 month. The tool Macias built to schedule each 

day is created by user inputs, from each organization and in the form of Microsoft Excel 

workbooks. The integer programming formulation considered 24-hour days, partitioned 

into 15-minute increments.  Macias modeled the problem by integrating the data in 

Microsoft Excel and, using Microsoft Visual Basic, passed the math programming 

formulation to MATLAB and invoked an MILP solver native to MATLAB. The run time 
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limit was set at 4 minutes to find the best feasible schedule for a month’s worth of 

missions. The majority of the daily schedules gave optimal solutions prior to the 4-minute 

time limit. Macias’ research differs from the current study in several ways. Macias 

captured data from user inputs; we expect to input general criteria and let the tool develop 

the schedule itself, subject to mission constraints. Macias model is granular at the 

contents of the sortie (e.g., enemy or friendly air participants and ordnance involved in 

flight). Additionally, missions in his work can use more than one facility/range area. 

2.4 Summary 

This chapter reviewed past relevant research regarding aircraft mission 

scheduling. Based upon a review of literature related to math programming, integer and 

binary-integer programming, the branch-and-bound algorithm, multi-objective 

optimization, scheduling, job shop scheduling, aircraft scheduling, and USAF test aircraft 

scheduling, it is apparent that the nature of the 96th Test Wing’s scheduling problem 

requires the development of a customized math programming model, which will be a 

binary integer program.  Based upon precedence in the literature and lessons learned from 

previous AFIT thesis, it is also relevant to first consider the use of the branch-and-bound 

algorithm to solve the customized math program, and to do so via a commercial solver. 
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III. Model Formulation and Solution Methodology 

The 96th Test Wing’s scheduling problem is solved by formulating an integer 

program and solving it via a commercial solver. If the solver identifies an optimal 

solution or a feasible solution within the time limit imposed upon the solver, a schedule is 

produced. The schedule determines when all missions, maintenance, temporary duty 

missions (TDYs), and testing/training will occur. In this chapter, we discuss the 

assumptions of the formulation, formulation of problem, as well as solution methodology. 

3.1 Model Assumptions 

Modeling assumptions attempt to simplify a complex process. Assumptions for 

this work include standardizing the mission length of each mission. Missions do not 

typically last the exact number of weeks each time the mission is performed. Moreover, 

we assumed that each maintenance would occur after an approximate number of weeks 

and not after a certain number of flight hours. This modeling assumption was adopted 

due to the intricacy of tracking flight hours within a scheduling model, given actual flight 

hours may differ from planned hours. All assumptions were approved by sponsor. 

3.2 Model Formulation 

We formulated this model to maximize two objectives: 𝛼, the lowest percent of 

weeks that a tail (i.e., aircraft) is available for training; and 𝛽, the lowest percent of tails 

that any week has available for training. The mathematical program uses sets of missions, 

aircraft tails, and weeks. To formulate our model, we have defined a list of sets, 

parameters, and decision variables. 

Sets: 
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 𝑀: {𝐼, 𝑂, 𝐷, … , 𝐺, 𝑂𝑡ℎ𝑒𝑟} is the set of missions, indexed by 𝑚 
 𝑀 : 𝑀 ∖ {𝑂, 𝐷, 𝐺, 𝑂𝑡ℎ𝑒𝑟} is the subset of missions that are tail-specific, 

and for which the timing is generally flexible, but determined by a 
scheduled set of aggregate requirements (e.g., because the upgrades like 
radar may be performed at a fixed rate of “5 tails/week over 4 specific 
weeks when a contractor is available”) 

 𝑀 : {𝑂, 𝐷} is the subset of missions that are tail-specific, but for which the 
start time may vary  

 𝑀 : {𝐺 − 1 𝑤𝑒𝑒𝑘, 𝐺 − 2 𝑤𝑒𝑒𝑘𝑠, 𝐺 − 3 𝑤𝑒𝑒𝑘𝑠 } is the subset of 
missions that can be accomplished by any tail 

 𝑀 : {𝑂𝑡ℎ𝑒𝑟} is the subset of missions where tails are not tasked out and 
are available for training  

 𝑇: {1,2, … , |𝑇|} are the aircraft tails, indexed by 𝑡. 
 𝑊: {1,2, … , |𝑊|} are the weeks, indexed by 𝑤, over which aircraft are scheduled 

to missions 

Parameters: 

 𝜔 : a non-negative parameter in the weighted sum objective function, indicating 
the relative importance on aircraft-specific availability for training over weeks 

 𝜔 : a non-negative parameter in the weighted sum objective function, indicating 
the relative importance on week-specific availability for training over aircraft 

 𝑑 :  the number of weeks to perform mission 𝑚 ∈ 𝑀 
 𝑎 : a binary parameter equal to 1 if tail 𝑡 is capable of performing mission 𝑚, 0 

otherwise 
 𝑏 :  a binary parameter equal to 1 if tail 𝑡 must perform mission 𝑚 ∈ {𝑀 ⋃𝑀 } 

once over the time horizon, 0 otherwise 
 𝑢 : the maximum number of tails that can perform mission 𝑚 ∈ {𝑀 ⋃𝑀 } in 

week 𝑤, a parameter informed by, e.g., maintenance capacity 
 𝑛 : the number of tails required to perform mission 𝑚 ∈ 𝑀  in week 𝑤 ∈ 𝑊, a 

parameter informed by projected mission and exercise demands 
 𝛿 : parameter indicates the number of weeks before and after the scheduled 

maintenance mission 𝑚 ∈ 𝑀  can be performed 
 𝑊 : a binary parameter equal to 1 if tail 𝑡 must perform mission 𝑚 ∈ 𝑀 , 0 

otherwise 

Decision Variables:  

 𝑥 : a binary decision variable equal to 1 if tail 𝑡 ∈ 𝑇 begins mission 𝑚 ∈ 𝑀 
during week 𝑤 ∈ 𝑊, 0 otherwise 

 𝛼: the minimum aircraft-specific availability for training, over all weeks 
 𝛽: the minimum week-specific availability for training, over all aircraft 
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Given the framework above, we set forth the following formulation: 

 maximize    (𝛼, 𝛽)  

 subject to:   𝛼 = min
𝑡∈𝑇,𝑚∈𝑀4

1

|𝑊|
𝑥

∈

 (1) 

                        𝛽 = min
𝑤∈𝑊,𝑚∈𝑀4

1

|𝑇|
𝑥

∈

 (2) 

                       𝑥

∈

= 𝑏  , ∀ 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀  (3) 

                       𝑥
{ , }

≥ 1 , ∀ 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀 , 𝑤 ∈ 𝑊  (4) 

          𝑥
{ , }

≥ 0 , ∀ 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀 , 𝑤 ∈ 𝑊\𝑊  (5) 

                      𝑥

∈

= |𝑊 | , ∀ 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀  (6) 

                        𝑥
{ ,( )}∈

≤ 𝑢  , ∀ 𝑚 ∈ {𝑀 ⋃𝑀 }, 𝑤 ∈ 𝑊 (7) 

                        𝑥

∈

= 𝑛  , ∀ 𝑚 ∈ 𝑀 , 𝑤 ∈ 𝑊 (8) 

 𝑥
{ ,( )}∈

= 1 , ∀ 𝑡 ∈ 𝑇, 𝑤 ∈ 𝑊 (9) 

                        𝑥 ≤ 𝑎  , ∀ 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀, 𝑤 ∈ 𝑊 (10) 

                        𝑥 ∈ {0,1}, ∀ 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀, 𝑤 ∈ 𝑊 (11) 

 

This formulation is a multi-objective, nonlinear, binary integer math 

programming formulation, with the nonlinearities manifest in Constraints (1) and (2). The 

objective function maximizes a multi-objective formulation comprised of two objective 

functions: the lowest percent of weeks available and the lowest percent of tails available 

to compel fairness across tail-specific training availability over the time horizon and 
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week-specific training availability of tails. Constraints (1) and (2) calculate the respective 

objective function terms. Constraint (3) ensures each tail 𝑡 conducts 𝑏  missions of type 

𝑚 ∈ 𝑀  during the time horizon, if required. Constraint (4) ensures mission type (𝑀 ) 

starts the correct number of times within a customer-specified time window (i.e., up to -

𝛿  weeks beforehand), imposed for weeks 𝑤 ∈ 𝑊  when that mission 𝑚 ∈ 𝑀  must be 

completed. Constraint (5) adopts an identical form to Constraint (4) for the remaining 

weeks, and it can be omitted from most modeling environments (e.g., GAMS, AMPL, 

Python/Pyomo) as a  redundant constraint set; we present it here and retain it as an 

artifact of implementing this model in Excel, an aspect of the solution method that will be 

discussed in Section 3.4. Constraint (6) ensures mission type (𝑀 ) is scheduled the 

correct number of times throughout the model’s duration. Constraint (7) prevents the 

scheduling of missions of type 𝑀  and type 𝑀  from exceeding the mission capacity 

(e.g., due to available maintenance equipment or personnel) for any week. Constraint (8) 

ensures, for all 𝑀  type missions starting in a given week, the correct number of aircraft 

tails are assigned. Constraint (9) ensures each tail is assigned to a mission each week by 

examining whether a tail is assigned to start a mission in week 𝑤 or was previously 

assigned to start a mission 𝑚 that requires 𝑑  weeks, and the tail is still busy conducting 

that mission. If the tail is not performing a tail-specific mission (𝑚 ∈ 𝑀 ), maintenance 

(𝑚 ∈ 𝑀 ), or a TDY (𝑚 ∈ 𝑀 ), it will be available for testing/training (i.e., 𝑚 ∈ 𝑀 ). 

Constraint (10) restrict assignment of tails to missions which an aircraft can perform, and 

Constraint (11) imposes binary restrictions on the decision variables.  

Applying the Weighted Sum Method, the objective function in (1) is replaced by 

the following objective function for a fixed set of weights (𝜔 , 𝜔 ).  
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𝜔 𝛼 + 𝜔 𝛽 

The weighted sum includes the decision variables 𝛼 and 𝛽. This technique for multi-

objective optimization allows the customer to place more importance on maximizing the 

minimum training availability of the tails, considering their respective schedules over all 

weeks (𝛼); or of week-specific training availability of aircraft, considering the week-

specific schedules for all tails (𝛽).  

To enable the identification of an optimal solution by a commercial solver, 

Constraints (1) and (2) are linearized by replacing them with the following constraints.  

1

|𝑊|
 𝑥 ≥ 𝛼,

∈

∀ 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀  

1

|𝑇|
 𝑥 ≥ 𝛽,

∈

∀ 𝑚 ∈ 𝑀 , 𝑤 ∈ 𝑊 

The modification to Constraint (1) ensures that the sum over the weeks is greater than or 

equal to 𝛼, and the modification to Constraint (2) does likewise by ensuring the sum over 

tails is greater than or equal to 𝛽. These representations are equivalent when each 

constraint is binding for at least one combination of indices over which each constraint is 

applied (i.e., at optimality). 

3.3 Solution Methodology 

With these minor transformations, the resulting formulation is a binary integer 

program and can readily be solved via a commercial solver, subject to the practical limits 

on computational tractability as instances sizes grow. 

Extended coordination with the 96th Test Group’s leadership indicated a desire for the 

model to be implemented using Microsoft Excel to be more accessible to GS-1515 

analysts who may not have a computer programming background. Such a modeling 
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environment compelled certain modeling and solution methodology decisions for testing 

herein. With regard to modeling, implementation retained and imposed Constraint (5) 

because the combined imposition of Constraints (4) and (5) can be accomplished 

automatically within a spreadsheet modeling environment, whereas imposing Constraint 

(4) while omitting Constraint (5) would induce extensive, manual effort that undermines 

the point of speeding up the modeling and solution identification process. 

With regard to solution methodology, it was obvious that Microsoft Excel’s build-in 

Solver cannot address realistic sizes of the formulation. It is limited to 200 decision 

variables [22]. Rather than resort to a heuristic solution method, the 96th Test Group 

evaluated alternative commercial solvers that can be leveraged from Microsoft Excel via 

an add-in. In late 2021, they selected What’sBest! by LINDO Systems Inc. [23]. 

What’sBest! can address large optimization instances of integer programs via the branch-

and-bound solution method, and it enhances that method with both customized and 

proprietary heuristics and range reduction techniques that that render it more capable than 

open-source software.  
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IV. Analysis & Results 

 In this chapter, an analysis of the model’s results is examined. Section 4.1 

describes the computational testing environment.  Section 4.2 validates the model for an 

illustrative instance. Section 4.2 explores the multi-objective nature of the formulation for 

the underlying instance.  Section 4.3 examines a synthetic instance of 8-week duration 

having mission densities that are relatively comparable to an example instance provided 

by the 96th Test Wing.  Subsequent testing in Section 4.4 considers an increasing 

durations of synthetic instances and, for each such duration, an increasing density of 

specified missions.   

4.1 Testing Environment 

All instances of the problem were solved from Microsoft Excel as a modeling 

environment and invoking What’sBest! version 17.0.1.2. A time limit of four hours 

(14,440 seconds) was imposed to What’sBest!. The justification for this time limit is the 

expected work schedule within the 96th Test Group; we seek to identify scheduling 

solutions within a reasonable amount of time, we consider “reasonable” to be 

approximately half of a workday. The relative optimality gap for What’sBest! was set at 

0.01 (i.e., a 1% optimality gap), meaning we are satisfied with a solution that is assuredly 

within 1% of the true optimal objective function value. No absolute optimality gap was 

imposed. All instances were solved on a computer having an Intel Core i7-10510U CPU 

2.30 GHz processer with 16 GB of random-access memory (RAM).  
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4.2 Validation Instance Introduction  

The validation instance contains a schedule with 9 missions, utilizing 3 tails, over 

8 weeks. The 9 missions are broken down into 4 mission sets as shown in Table 2.  

Sets for Validation Instance: 

 M={1,2, . . . ,9} 
 T={1,2,3} 
 W={1,2, . . . ,8} 

Table 2. Mission Details 

 

For each of the 9 missions, there were 3 tails able to be scheduled across a time 

horizon of 8 weeks. If a mission is scheduled to start maintenance MA2 in Week 3 with 

Tail 1000, there would be a 1 in that position and not immediately after, even though the 

maintenance takes more than one week to complete.  Figure 3 shows such a feasible 

assignment of three tails to accomplish maintenance mission MA2 (i.e., two-week-long 

maintenance). Tail 1000 starts mission MA2 in Week 3 and conducts it over Weeks 3 and 

4, even though the latter week’s activity is not shown explicitly in the decision variable 

values; it solely indicates when the mission starts, it does not indicate the duration of the 

mission. 



30 

 

Figure 3. Example Schedule for a Two-week-long Mission 

4.2.1 Examining the Multi-objective Nature of the Problem 

Of interest is whether the objective functions 𝛼 and 𝛽 are in tension within the 

multi-objective framework, and the validation instances is examined to assess this 

characteristic.  Leveraging the Weighted Sum Method, the validation instance was solved 

for (𝑤 ,𝑤 ) ∈ {(0.01,0.99), (0.5,0.5), (0.99,0.01)}.  Whereas (𝑤 ,𝑤 ) ∈ (0.01,0.99) 

and (𝑤 ,𝑤 ) ∈ (0.99,0.01) considered a preemptive priority on 𝛼 and 𝛽, respectively, 

(𝑤 ,𝑤 ) ∈ (0.5,0.5) weighted these relatively well-scaled objective functions equally.  

We did not consider (𝑤 ,𝑤 ) ∈ (1,0) or (𝑤 ,𝑤 ) ∈ (0,1) because it is important to retain 

the multi-objective optimization framework when assessing the relative nature of the two 

objectives; to do so would ignore one objective and not discriminate among any 

alternative optima that may exist.  Moreover, it is known that the problem is well-scaled, 

not because 𝛼 ∈ [0,1] and 𝛽 ∈ [0,1], but because we expect the missions can be 

relatively well-balanced across both tails and weeks, so the optimal 𝛼- and 𝛽-values 

should be close. 

Table 3 provides the optimal objective function values (𝛼∗, 𝛽∗) for the validation 

instances for each of these objective function weights.  For each of the various weights 

used (𝜔 ,𝜔 ) ∈ {(0.5,0.5), (0.99,0.01), (0.01,0.99)}, the solver identified an optimal 

schedule.  Each of the validation instances were solved in less than 1 second.  
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Table 3. Optimal Objective Function Values for Validation Instance for Varying 

Objective Function Weights 

𝝎𝜶,𝝎𝜷  𝜶∗ 𝜷∗  
(𝟎. 𝟎𝟏, 𝟎. 𝟗𝟗) 0.375 0.333 

(𝟎. 𝟓, 𝟎. 𝟓) 0.375 0.333 
(𝟎. 𝟗𝟗, 𝟎. 𝟎𝟏) 0.375 0.333 

 

As is visible in Table 3, the values for values (𝛼∗, 𝛽∗) do not vary with the 

different objective function weights (𝜔 ,𝜔 ).  The interpretation of the value for 𝛼∗, 

indicates the lowest number of aircraft training is 37.5% of the time or 3 out of the 8 

weeks. Similarly for 𝛽∗, indicating the lowest number of weeks training 33.3% of the 

time, which is 1 out of 3 tails.  Based on this testing, the objective functions are not in 

tension.  As such, we affix (𝜔 ,𝜔 ) = (0.5,0.5) for subsequent testing with Chapter 4. 

However, it is worth noting that the actual aircraft schedules are not identical. 

Figures 4-6 respectively illustrate the schedule for the three instances corresponding to 

the objective function weights  𝜔 ,𝜔 = (0.01,0.99),(0.5,0.5), and (0.99,0.01).  Of 

note, this graphic user output is not a function of What’sBest!.  It is part of a graphic 

output designed to convert the optimal (or feasible) scheduling solution into a schedule 

similar to what analysts in the 96th Test Wing have utilized for years. 

 

Figure 4. Validation Instance with 𝝎𝜶,𝝎𝜷) = (𝟎. 𝟎𝟏, 𝟎. 𝟗𝟗) 
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Figure 5. Validation Instance with (𝝎𝜶,𝝎𝜷) = (𝟎. 𝟓, 𝟎. 𝟓) 

 

Figure 6. Validation Instance with (𝝎𝜶,𝝎𝜷) = (𝟎. 𝟗𝟗, 𝟎. 𝟎𝟏) 

 Each of these schedules yields the same 𝛼- and 𝛽-values, indicating the existence 

of alternative optima for each of them.  Any of these schedules would be optimal for any 

of these objective function weights.   

4.3 Realistic Sized Instance Testing 

The 8-week validation instance was transitioned into the realistic-sized testing 

instance by adding the appropriate number of aircraft and missions to imitate the real-

world schedule. The validation instance consisted of 3 tails and 9 missions. The realistic 

number of tails associated with the Eglin AFB scheduling problem includes 26 tails and 

21 missions as seen in Figure 7. 

Sets for Full Instance: 

 M={1,2, . . . ,21} 
 T={1,2, . . . ,26} 
 W={1,2, . . . ,78} 
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Figure 7. Realistic Sized Instance Mission Breakdown 

4.3.1 Iron Flow’s 8-Week Instance 

 The Iron Flow tool had scheduled 26 tails over an 8-week duration manually. The 

8-week duration has 208 possible scheduling tail-weeks. During that 8-week duration, 

Iron Flow had 3 weeks of Instro Mod/Demod, which falls under Mission Type 𝑀 . Type 

𝑀  missions are tail-specific, but the time during which they are executed is generally 

flexible. 𝑀  represents 1.4% of the total number of missions in the example Iron Flow 

instance. The Iron Flow instance had 6 weeks of Scheduled Major Maintenance and 13 

weeks of Phase Depot Maintenance, which both fall under Mission Type 𝑀 . Type 𝑀  

missions are tail-specific but start times may vary within some tolerance. 𝑀  represents 

9.1% of the total number of missions in the Iron Flow instance. It also had 2 weeks of 

TDY missions, which fall under Mission Type 𝑀 . Type 𝑀  missions are not tail-

specific; the mission can be accomplished by any tail unless otherwise specified by 

setting 𝑎{ } = 0 to prevent such an assignment (e.g., if a TDY requires a certain type of 
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aircraft or an aircraft with specific capabilities). 𝑀  missions represent 0.96% of the total 

number of missions in the example Iron Flow instance. Collectively, these specified 

missions leave 88.54% of tail-weeks for mission type 𝑀 . 𝑀  type missions indicate the 

tails are not tasked out and they are available for training. 

4.3.2 8-Week Instance Using Iron Flow’s Mission Load 

 Testing considered a synthetic, 8-week instance having 2 missions of Type 𝑀  

(i.e., Tail 1009 had to complete “Mod 14”, and Tail 1025 had to complete “Mod 4”); 1 

mission of Type 𝑀  (i.e., each of the 26 tails of the “Ratcat” airframe needed to perform 

maintenance in or close to Week 7); and 1 mission of Type 𝑀  (i.e., a two-week TDY 

beginning in Week 2).  Relative to the example Iron Flow instance, these synthetic 

demands were relatively comparable. The synthetic instances contains 0.95% as Mission 

type 𝑀 , 12.5% as mission type 𝑀 , 0.48% as mission type 𝑀 , and the remaining 

86.07% is mission type 𝑀 .  

This instance entailed a combined workload of 𝑀 ∪ 𝑀 ∪ 𝑀  missions, 

comprising 13.93% of available tail-weeks.  Based on this aggregate workload, the best 

possible values of 𝛼 and 𝛽 would be 0.86. Table 4 reports the results from identifying the 

optimal solution to the 8-Week instance using What’sBest!, which it found in less than 1 

second.   

Table 4. Results of all duration instance input 

Decision Variables Constraints Iterations 
Solution Time 

(Seconds) 𝜶 𝜷 
4370 4895 214 <1 0.75 0.81 
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In this case 𝛼 was 0.11 units away from best possible value for 𝛼, and 𝛽 was 0.06 

units aways from the best possible value for 𝛽.  However, some post hoc analysis 

indicates that the best attainable 𝛼-value was indeed 0.75 because each tail’s schedule is 

based on one-week increments, and the highest possible fraction of an 8-week schedule 

that is less than 0.86 is 0.75.  Thus, this schedule is optimal for the minimum percentage 

of tail-specific training weeks.  With regard to 𝛽, the attainable values are increments of 

(1/26), the highest of which that does not exceed 0.86 is 0.85, followed by 0.81.  The 

optimal solution did not attain a value of 𝛽 = 0.85 because the maintenance window for 

all tails was identical, and the solution spread out those assignments, subject to the 

tolerance window for scheduling.  Thus, this result is also verifiably optimal.   

Most important is that the What’sBest! solver found an optimal solution to an 8-

week instance of the underlying problem, with the right number of tails, mission types, 

and tail-weeks or mission types in 1 second.  Should the 96th Test Wing seek to solve 

short-range scheduling problem instances, this model and solver combination works very 

well. 

4.4 Sensitivity Analysis 

 Sensitivity analysis is applied to examine the tractability of scheduling instances 

over increasing time durations and increased (tail-week) workload.  Relative to the 

validation instance examined in Section 4.2 and the 8-week instance examined in Section 

4.3, testing within Section 4.4 will consider realistically sized instances to examine how 

the limits of computational tractability as both the time horizon and the density of 

specified missions increases.  For time horizons of 8-, 26-, 52-, and 78-weeks, Section 

4.4.1 defines comparable mission density levels across all such time horizons.  The time 
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horizons were decided due to the 8-week instance correlating to 2 months, which was a 

small enough model to validate. The 26-week instance correlates to half-a-year; the 52-

week model correlates to a year; and the 78-week instance correlates to a year-and-a-half. 

Subsequent discussion presents and analyzes the results of examining increasing levels of 

mission density for each of these time horizons, and Section 4.4.2 summarizes the 

aggregate results. 

4.4.1 Testing Increasing Mission Densities for Four Schedule Durations 

To enable an equitable comparison of test results across instances having different 

durations, it is important to generate synthetic instances having relatively similar if not 

identical mission densities.  For time horizons of 8-, 26-, 52-, and 78-weeks, Table 5 

displays the percentage of mission density for mission types 𝑀 , 𝑀 , and 𝑀  and assigns 

common labels for the levels. The percentages shown indicate the total number of 𝑀 ∪

𝑀 ∪ 𝑀  missions scheduled and, for simplicity, assumes |𝑀 | = |𝑀 | = |𝑀 |.  

Table 5. Mission Density Levels and 𝑴𝟏 ∪ 𝑴𝟐 ∪ 𝑴𝟑 Mission Densities 

Level 8-Week 26-Week 52-Week 78-Week 
1 1.44% 1.32%  1.32% 1.32% 
2 2.88% 2.67%  2.67% 2.67% 
3 4.32% 4.44% 4.44% 4.44% 
4 5.76% 5.76% 5.76% 5.76% 
5 7.20% 7.11% * 7.11% 
6 8.64% 8.43%  8.43% 
7 10.11% 10.20%  * 
8 11.55% 11.55%   
9 12.99% *   

10 14.43%    
11 15.87%    
12 17.31%    
13 18.75%    

* Not tested due to tractability issues encountered; see subsequent discussion 
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The levels are roughly comparable. For time horizon-specific testing of the 

efficacy of our model and solver combination, the mission density level is incrementally 

increased until the solver cannot identify an optimal solution within a time limit of 4 

hours (14,400 seconds). It is important to note each new level of mission density was run 

from a blank schedule (i.e., a cold start).  

8-week Instance Results 

The 8-week instance results are shown in Table 6. The mission density levels are 

increased by increments of 0.0144 each time, ensuring each level is 0.0144 larger than 

the previous. What’sBest! successfully finds an optimal solution – technically, a solution 

within 1% of optimal – for the first 12 levels, running out of time only on Level 13, 

which has a mission density of 18.75%. For Level 13, the solver exhibits a slow 

convergence and identifies a feasible solution to the problem with an optimality gap of 

1.21%. As mentioned in Section 2.1, it is possible that this solution is indeed optimal, but 

we can only be assured that it is close to optimal. 

Table 6. Results of 8-week Instance with Increased Load 

Level 
Solution Time 

(Seconds) Iterations 
Objective 

Function Value 
Solution 
Status 𝜶 𝜷 

1 0 0 0.9183 Optimal 0.86 0.96 
2 0 14 0.9183 Optimal 0.86 0.96 
3 1 55,140 0.8365 Optimal 0.75 0.92 
4 0 4,325 0.7440 Optimal 0.63 0.92 
5 0 11,575 0.7440 Optimal 0.63 0.92 
6 0 3,012 0.7440 Optimal 0.63 0.92 
7 11 317,328 0.7548 Optimal 0.63 0.88 
8 1 35,105 0.7548 Optimal 0.63 0.88 
9 712 18,151,482 0.7548 Optimal 0.63 0.88 

10 100 2,322,676 0.7356 Optimal 0.63 0.85 
11 15 441,051 0.7356 Optimal 0.63 0.85 
12 12 401,072 0.7356 Optimal 0.63 0.85 
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Level 
Solution Time 

(Seconds) Iterations 
Objective 

Function Value 
Solution 
Status 𝜶 𝜷 

13 14,400 123,821,054 0.7163 Feasible 0.63 0.81 
 

An initial assumption would be, as the mission density increases, the number of 

iterations required by the branch-and-bound algorithm would also increase, but that is not 

the case. The number of iterations are not predictable. Iterations in What’sBest! indicate 

the number of branch-and-bound iterations used to solve an instance of the model. There 

is no identified correlation between the increase in mission density of the model and the 

increase in the number of iterations. While the solution time does not appear to be 

scalable to the number of iterations, it does increase as the number of iterations increase. 

At Level 12 we have a solution time of 12 seconds, at Level 13 the solution time abruptly 

goes to 4 hours. As expected, 𝛼 and 𝛽 follow the trend of either decreasing or staying the 

same. This trend holds true even when the model reaches its time limit. The values of 𝛼 

and 𝛽 at Level 13 follow the same pattern as the 𝛼 and 𝛽 values for optimal solutions. At 

Level 13, 𝛽 decreases, but 𝛽 is expected to degrade a bit due to the increased mission 

load, emulating the trend shown at previous levels. The trend of 𝛽 degrading by 0.03 or 

0.04 leads us to believe the feasible solution at Level 13 may have been optimal, but that 

can only be ascertained for certain if the algorithm is allowed to run until the branch-and-

bound tree’s branches are all fathomed. 

26-week Instance 

The 26-week instance results are shown below in Table 7. The mission density 

levels are increased by increments of about 0.01 each time, ensuring each level is 0.01 

larger than the previous. What’sBest! successfully finds an optimal solution for the first 7 
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levels, timing out on Level 8 with a mission density of 11.55%. The model reaches its run 

time limit of 4 hours at Level 8, identifying a feasible solution to the problem with an 

optimality gap of 5.28%.  

Table 7. Results of 26-week Instance with Increased Load 

Level 
Solution Time 

(Seconds) Iterations 
Objective 

Function Value 
Solution 
Status 𝜶 𝜷 

1 0 113 0.9231 Optimal 0.88 0.96 
2 0 361 0.9038 Optimal 0.88 0.96 
3 0 1637 0.9038 Optimal 0.88 0.92 
4 1 27,333 0.8654 Optimal 0.84 0.88 
5 14 230,522 0.8462 Optimal 0.84 0.84 
6 1 8,445 0.8462 Optimal 0.84 0.84 
7 2 18,131 0.8259 Optimal 0.84 0.80 
8 14,400 143,628,986 0.7692 Feasible 0.81 0.73 

 

There is still no identifiable correlation between the increase mission density of 

the model and the increasing number of branch-and-bound iterations, making the number 

of iterations unpredictable. Whereas the solution time does not appear to be scalable to 

the number of iterations, the number of iterations does increase when the solution time 

increases. This in turn means we also cannot predict the solution time. At Level 7 we 

have a solution time of 2 seconds, and at Level 8 the solution time abruptly goes to 4 

hours. As expected, 𝛼 and 𝛽 follow the trend of either decreasing or staying the same as 

mission density increases, an expected outcome. This trend holds, even when the model 

reaches its time limit. The values of 𝛼 and 𝛽 at Level 8 follow the same pattern as the 𝛼- 

and 𝛽- values for optimal solutions. That is, 𝛼 and 𝛽 are lower at Level 8 than Level 7, 

but they are expected to degrade due to the increased mission load, as occurs at previous 
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levels. The trend of 𝛼 degrading by 0.03 or 0.04 maintains at Level 8, but 𝛽 has a trend of 

decreasing by 0.04, although at Level 8 it decreases by 0.07.  

52-week Instance 

The 52-week Instance results are shown below in Table 8. The levels are 

increased by increments of about 0.01 each time, ensuring each level is 0.01 bigger than 

the previous. What’sBest! identifies an optimal solution for Levels 1-3 but terminates due 

to the time limit on Level 4, identifying a feasible solution and a corresponding 3.33% 

relative optimality gap.  

Table 8. Results of 52 Week Instance with Increased Load 

Level 
Solution Time 

(Seconds) Iterations 
Objective 

Function Value 
Solution 
Status 𝜶 𝜷 

1 1 906 0.9327 Optimal 0.94 0.92 
2 7 101,454 0.9135 Optimal 0.94 0.88 
3 2 8,325 0.8846 Optimal 0.92 0.84 
4 14,400 67,715,755 0.8365 Feasible 0.90 0.77 

 

As with previous schedule durations, the number of branch-and-bound iterations 

required by What’sBest! to solve increasing mission density levels are not predictable. 

There remains no identified correlation between the increase mission density of the 

model and the increasing number of iterations, making the number of iterations 

unpredictable. As before, the solution time is roughly correlated to the number of 

iterations, but not predictable by mission density level. At Level 3 we have a solution 

time of 2 seconds, which goes up abruptly to 4 hours at Level 4. As expected, 𝛼 and 𝛽 

follow the trend of either decreasing or staying the same, even when the model reaches its 

time limit for Level 4. The values of 𝛼 and 𝛽 at Level 8 follow the same pattern as the 𝛼- 
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and 𝛽-values for optimal solutions. At Level 4 both 𝛼 and 𝛽 gets worse, but they are 

expected to degrade a bit due to the increased load and follow the trend shown at 

previous levels. The trend of 𝛼 degrading by 0.02 maintains at Level 4, but 𝛽 has a trend 

of decreasing by 0.04 but at Level 4 it decreases by 0.07.  

78-week Instance 

The 78-week instance results are shown below in Table 9. As with the 26- and 52-

week instances, the levels are increased by increments of about 0.01 each time, ensuring 

each level is 0.01 bigger than the previous. What’sBest! finds an optimal solution for 

Levels 1-5, terminating due to the time limit for Level 6.  For the Level 6 instance with 

an 8.43% mission density, the solver identified a feasible solution and a relative 

optimality gap of 1.11%. 

Table 9. Results of 78-week Instance with Increased Load 

Level 
Solution Time 

(Seconds) Iterations 
Objective 

Function Value 
Solution 
Status 𝜶 𝜷 

1 2 1,823 0.9423 Optimal 0.96 0.92 
2 4 11,765 0.8974 Optimal 0.94 0.84 
3 128 862,405 0.8529 Optimal 0.94 0.77 
4 101 628,706 0.8077 Optimal 0.92 0.69 
5 101 280,011 0.7179 Optimal 0.92 0.62 
6 14,400 34521833 0.7179 Feasible 0.90 0.54 

 

Both the number of branch-and-bound iterations and the required solution time 

remain unpredictable. At Level 5 we have a solution time of 101 seconds, at Level 6 the 

solution time abruptly goes to 4 hours. Both 𝛼 and 𝛽 continue to follow the trend of 

either decreasing or staying the same as the level increases, for all optimal solutions. At 

Level 6 both 𝛼 and 𝛽 gets worse, but they are expected to degrade a bit due to the 

increased load and follow the trend shown at previous levels. At level 6 both 𝛼 and 𝛽 



42 

keep their trend: 𝛼 continues to degrade by 0.02 and 𝛽 continues to decrease by 0.07 or 

0.08. 

4.4.2 Aggregate Results 

From the testing results in Section 4.4.1, the model and solver combination 

encounter practical computational tractability limitations for lower levels of mission 

densities as the time horizon for the schedule increases, with a notable exception.  A 

natural assumption would be that if the model hits the time limit at a certain level, it will 

hit the time limit at every increasing level. Our 8-week instance reaches the time limit at 

Level 13, the 26-week instance reaches it at Level 8, the 52-week instance reaches it at 

Level 4, and 78-week instance reaches it at Level 6. Our 78-week model does not follow 

the natural assumption of reaching the time limit before Level 4.  This result is 

unexpected and requires further scrutiny.   

More specifically, it is important not to make premature conclusions, so this 

section will analyze increasing levels of mission density for the 52- and 78-week 

schedules. Testing will examine increasing mission density levels to ascertain whether 

What’sBest! can address greater levels of mission density, doing so until the next notable 

level is identified for which What’sBest! cannot find an optimal solution within 4 hours.  

Table 10 reports the solution times in seconds for increasing levels of mission density for 

each of the time horizons considered.  When What’sBest! does not identify an optimal 

(i.e., within 1% of optimal) solution, the identification of a feasible solution is indicated 

with a number of asterisks (*) and with the relative optimality gap upon termination 

indicate in the footnote of the table, whereas a failure to identify a feasible solution after 

four hours is identified with a dagger (†). 
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Table 10. Aggregate Run Times (seconds) 

 Level 
Weeks 1 2 3 4 5 6 7 8 9 10 11 12 13 

8  0 0 1 0 0 0 11 1 712 100 15 12 * 
26 0 0 0 1 14 1 2 ** -- -- -- -- -- 
52 1 7 2 *** **** 2 3 **** -- -- -- -- -- 
78 2 4 128 101 101 ***** 37 † -- -- -- -- -- 

* 1.21% optimality gap upon termination at 14,400 seconds  
** 5.28% optimality gap upon termination at 14,400 seconds 
*** 3.33% optimality gap upon termination at 14,400 seconds 
**** 2.12% optimality gap upon termination at 14,400 seconds 
***** 1.11% optimality gap upon termination at 14,400 seconds 
† No feasible solution identified upon termination at 14,400 seconds 

 

For the 52-week model, we hit the time limit first at Level 4 which gives us a 

feasible solution with an optimality gap of 3.33%. At Level 5 it also reaches the time 

limit and gives us a feasible solution with an optimality gap of 2.12%. At Levels 6 and 7, 

it does not hit the time limit; in fact, the run time only lasts a couple of seconds, and 

What’sBest! identifies an optimal solution for both instances. At Level 8, the model and 

solver combination once again hit the time limit and identify a feasible solution, this time 

with an optimality gap of 2.12%. There is no discernible pattern to these results, once 

again exhibiting that the number of iterations is not predictable by mission level. 

Similarly, with the 78-week model, Levels 1 through 5 produce low solution times with 

optimal solutions. The first level to reach the time limit is Level 6 which produces a 

feasible solution with an optimality gap of 1.11%. Level 7 produces a fast solution time 

as well as an optimal solution. Finally, Level 8 was unable to find even a feasible solution 

during the time limit. 

 The results show that the levels at which the model and solver combination 

terminate prematurely due to time limits are not deterministic. If we reach a time limit at 

a certain level, it does not mean higher levels of mission density will reach the limit as 
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well. Because solution time with an increasing mission load is not predictable, the ability 

to find an optimal solution is also difficult to predict.  

Aggregate 𝜶- and 𝜷-values 

 On a final note, it is worth examining any trends in the optimal 𝛼 and 𝛽 values for 

the comparable mission density levels across different schedule lengths.  Table 11 reports 

these values for Levels 1-4, for which What’sBest! identified optimal solutions.   

Table 11. Aggregate 𝜶- and 𝜷-values 

 8-Week 26-Week 52-Week 78-Week 
Level 𝜶 𝜷 𝜶 𝜷 𝜶 𝜷 𝜶 𝜷 

1 0.86 0.96 0.88 0.96 0.94 0.92 0.96 0.92 
2 0.86 0.96 0.88 0.96 0.94 0.88 0.94 0.84 
3 0.75 0.92 0.88 0.92 0.92 0.84 0.94 0.77 
4 0.63 0.92 0.84 0.88 0.90 0.77 0.92 0.69 

 

Of course, as the level of  mission density increases for a given duration of a 

schedule, both 𝛼 and 𝛽 stay the same or decrease. The optimal values of 𝛼 increase as the 

model increases in duration.  This occurs because the granularity of 𝛼 values is higher; it 

can occur in (1/78) increments for the longest scheduled considered, rather than (1/8) 

increments for the shortest duration schedule.  In practical terms, What’sBest! can 

“spread out” the demands better across the aircraft. 

Conversely, the values of 𝛽 stay the same or decrease as the duration of the 

schedule increases for comparable mission densities.  This result is counterintuitive.  

Although 𝛽-values will occur in increments of (1/26) for instances having 26 aircraft to 

schedule, the increase in the time horizon for a given mission density is accompanied by 

a proportional increase in the number of weeks in which to schedule the missions.  A post 
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hoc examination of the optimal solutions identified the reason for this unexpected 

behavior. Although Type 𝑀  missions can be spread out as necessary to maximize 𝛽, that 

is not the case for Type 𝑀  and 𝑀  missions.  The periodic nature of 𝑀  missions can 

induce surges in aircraft demand (i.e., drops in training availability) that can be 

compounded with concurrent TDY missions.  The significance of this result is that period 

maintenance demands should be spread across the calendar to reduce the potential for 

simultaneous or near-simultaneous demands. 

4.5 Summary  

 In this chapter, performance of the combination of the math programming model 

and the What’sBest! solver was analyzed by several measures. Through testing the multi-

objective nature of the problem by adjusting the weights associated with 𝛼 and 𝛽, we 

were able to show there is no tension between the objective functions in a representative 

example of the underlying problem. When increasing the time horizon as well as the 

mission density, it is clear the run time is not deterministic. This in turn makes it difficult 

to predict solution time. The increase in mission density for a given duration also caused 

both 𝛼 and 𝛽 to typically stay the same or decrease, as expected. The optimal values of 𝛼 

increase as the model increases in duration whereas the values of 𝛽 stay the same or 

decrease. We determined the decrease in 𝛽 was due to the non-randomization of 

maintenance missions, forcing all tails to perform maintenance in a small number of 

weeks.  
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V. Conclusions and Recommendations 

 This chapter summarizes the research within the context of the research questions 

and makes recommendations for future studies on mission scheduling. 

5.1 Conclusions 

A mathematical programming approach was successful for scheduling Eglin AFB 

aircraft while finding optimal solutions within acceptable tolerances and time limits. Due 

to the priorities of this problem, the weighted sum method was utilized to maximize a 

multi-objective formulation comprised of two objective functions: the lowest percent of 

weeks available and the lowest percent of tails available to compel fairness across tail-

specific training availability over the time horizon and week-specific training availability 

of tails. The 52-week instance was able to find a nearly optimal (i.e., 1.1% relative 

optimality gap) schedule within approximately 1 hour for a mission density comparable 

to an example schedule provided by the 96th Test Wing. Overall, this model has the 

equivalent utility as Iron Flow, while both decreasing the number of personnel hours 

needed to create a schedule and producing an optimal schedule automatically. 

A more specific examination is warranted.  Section 1.3 stipulated three research 

questions to address the problem statement in support of the 96th Test Wing.  This 

research addressed them as follows. 

Research Question 1:  Can the 96th Test Wing’s aircraft scheduling problem be 

modeled via a compact mathematical program that addresses nuanced, 

complicating formulation aspects (e.g., nonlinearities, binary or integer-restricted 

decision variables), with the goal of optimizing multiple desired outcomes? 
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The 96th Test Wing aircraft scheduling problem was modeled via a compact 

mathematical program by utilizing a binary integer formulation. The solution method was 

able to address the complex formulation aspects with a goal of optimizing multiple 

desired outcomes. Section 3.2 displays the model’s multi-objective, nonlinear, binary 

integer formulation as well as the reformulation into a binary integer problem, directly 

solvable using a solver. The objective function optimizes the multiple desired goals of the 

sponsor; it maximizes the minimum percentage of time that any tail is training and the 

minimum percentage of tails training for any week.  

Research Question 2: When using the proposed model in combination with both a 

modeling environment and commercial solver directed by the 96th Test Wing, what 

are the limits of computational tractability for the proposed mathematical 

programming formulation, in terms of density of mission demands and duration of 

a schedule? 

 In accordance with direction from the 96th Test Wing, computational testing used 

the modeling environment Microsoft Excel and the commercial solver What’sBest! by 

Lindo Systems, Inc. The What’sBest! add-in solver for Excel can address large 

optimization instances of integer programs via the branch-and-bound solution method, 

and it enhances that method with both customized and proprietary heuristics and range 

reduction techniques that render it more capable than open-source software.  Chapter IV 

analyzed different mission density loads and durations to determine the limits of 

computational tractability. The 52-week instance has the largest schedule duration for 

which What’sBest! can identify near-optimal instances having a mission density 

comparable to an 11.4% mission density in an example schedule provided by the 96th 
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Test Wing using their Iron Flow tool. The limit of mission density for the 52-week 

schedule is 15.75%. The 78-week instance handles a much lower mission density, 

making it less useful for the 96th Test Wing. If a 78-week model is necessary, the 4-hour 

time limit may be removed in order to handle a larger amount of mission density. 

Research Question 3:  Does the combination of the proposed model and 

demonstrated performance on realistically sized instances portend a practical tool 

for use by the 96th Test Wing that can be utilized within Microsoft Excel and 

identify optimal or near-optimal schedules without resorting to either manual or 

heuristically solution methods? 

The proposed model and demonstrated performance on realistically sized 

instances portend a practical tool for the use of the 96th Test Wing. The combination of 

model, modeling environment, and solver produce a working tool that identifies optimal 

or near-optimal solutions without the need to resort to either a heuristic or a manual 

approach.  

5.2 Recommendations for Future Research 

 Further studies with Eglin’s aircraft scheduling might investigate ways to reduce 

the solution time for difficult to solve instances. Possible ways to do this are to fix the 

mission type 𝑀 , also known as maintenance-specific missions, to prevent surges in 

maintenance workload. This measure would reduce the largest mission load implemented 

in this research. It would also reduce the number of constraints and decision variables 

that slow down the model.  
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Additionally, the computational challenges indicated for larger instances motivate 

the future examination of a heuristic scheduling approach.  Scheduling one tail at-a-time 

would be computationally efficient, although such a greedy approach could yield 

suboptimal solutions and it may unnecessarily favor whichever tail(s) are scheduled first.  

However, it should be fast and may not actually require a mathematical program, given 

sound scheduling rules to distribute missions across tails and weeks.  

Another worthy exploration is a different model that considers an existing 

schedule and develops refinements to it based upon changes to the anticipated missions in 

the future.  In doing so, the existing schedule would provide a warm start to a solver, and 

an additional objective would be to minimize the number of changes from the existing 

schedule. 
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