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ABSTRACT

Virtual Structures Based Autonomous Formation Flying Control for Small Satellites

by

Tyson K. Smith, Doctor of Philosophy

Utah State University, 2023

Major Professor: Greg Droge, Ph.D.
Department: Electrical and Computer Engineering

Autonomous formation flying of small satellites is increasingly becoming a desire of

many space organizations. This research develops and evaluates a decentralized, optimization-

based control that can be used for autonomous formation flight of small satellites. This

architecture is based on a virtual structure approach within a model predictive control

framework to enable a decentralized control system. The architecture reduces fuel usage by

generating an optimized guidance trajectory that the MPC follows. The relative dynamics

used in MPC framework are represented by the Hill-Clohessy-Wiltshire equations and the

D’Amico relative orbital elements. One advantage to using MPC is the ability to define

constraints. As part of this work, switching surfaces are used as boundary constraints. The

boundaries are designed such that no two agents have overlapping regions. This allows the

vehicles to execute avoidance strategies without continually maintaining the trajectories of

other agents. The two types of switching surfaces used are a polytope approximation of a

sphere and state constraints based on the D’Amico ROEs. A performance comparison is

completed as part of this research, namely the ∆V and computation time is compared for

several objective norm functions, namely the L1, L2, and L∞ norms. The framework devel-

oped as part of this research allows for the desired formation of satellites to be maintained

while also allowing freedom to maneuver within allowable bounds. The virtual structure,



iv

MPC based framework combined with the switching surfaces enables a scalable method

that can support satellite formations to coordinate safely, while minimizing fuel usage.

(165 pages)
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PUBLIC ABSTRACT

Virtual Structures Based Autonomous Formation Flying Control for Small Satellites

Tyson K. Smith

Many space organizations have a growing need to fly several small satellites close to-

gether in order to collect and correlate data from different satellite sensors. To do this

requires teams of engineers monitoring the satellites orbits and planning maneuvers for the

satellites every time the satellite leaves its desired trajectory or formation. This task of

maintaining the satellites orbits quickly becomes an arduous and expensive feat for satellite

operations centers. This research develops and analyzes algorithms that allow satellites to

autonomously control their orbit and formation without human intervention. This goal is

accomplished by developing and evaluating a decentralized, optimization-based control that

can be used for autonomous formation flight of small satellites. To do this, virtual struc-

tures, model predictive control, and switching surfaces are used. An optimized guidance

trajectory is also develop to reduce fuel usage of the system. The Hill-Clohessy-Wiltshire

equations and the D’Amico relative orbital elements are used to describe the relative mo-

tion of the satellites. And a performance comparison of the L1, L2, and L∞ norms is

completed as part of this work. The virtual structure, MPC based framework combined

with the switching surfaces enables a scalable method that allows satellites to maneuver

safely within their formation, while also minimizing fuel usage.
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CHAPTER 1

INTRODUCTION

Society has had the need to correlate data collected from different satellites since the

late 1960’s when data from the U.S., Soviet, and European Space Research Organization

satellites was correlated to understand how large solar flares interacted with the Earth’s

magnetic field and ionosphere [1]. A decade later Labeyrie would propose the idea of a

stellar interferometer using free flying telescopes [2]. This was the first time the scientific

community had realized the advantages of having a group of satellites flying together, or in

formation, with the ability to collect and correlate data.

The idea of using multiple spacecraft for interferometer measurements was first studied

in 1977 by Sholomitsky [3]. In the 1980s several multiple-spacecraft interferometer mission

architectures were proposed. These formation flying studies focused on possible orbits and

∆V analysis for earth orbiting missions [4, 5]. In the late 1980s to early 1990s researchers

turned their focus to developing relative trajectories that were more fuel efficiency [6] and

aerodynamic drag compensation methods [7, 8]. It was in 1996 that the first study of a

formation flying control was presented by Wand and Hadaegh [9].

Today, there are dozens of missions that either have flown or are currently in develop-

ment that require some form of formation flying between two or more spacecraft [10–20].

The desire for small satellite formation flying missions continues to increase [21]. Of the

missions that have flown, varying levels of success were achieved. Of those that did success-

fully demonstrate formation flying capability, the majority required the maneuvers to be

calculated on the ground and uplinked to each of the spacecraft individually. In the con-

text of this work, formation flight is defined as a fully autonomous, networked system with

all vehicles working as one entity toward a shared goal. Specifically, we define formation

flight as a set of three or more spacecraft whose dynamic states are coupled through a com-

mon control law, such that they maintain a desired arraignment and spacing. But within
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the formation the amount of time the spacecraft dedicates to maintain the formation, i.e.

maneuvering, versus performing the primary mission objectives must be considered. The

formation control algorithm cannot command maneuvers at such a rate that the spacecraft

does not have the time or resources to perform its primary mission.

Manual coordination of satellite maneuvers becomes increasingly arduous with ever ris-

ing numbers of satellites due to the many factors that must be considered during planning.

These factors include, but are not limited to: fuel consumption, overcoming disturbances

or perturbing forces, data distribution between spacecraft, collision avoidance, mission op-

erational constraints, and computation feasibility. This work addresses various aspects of

these challenges by developing a novel control strategy to balance mission operations with

fuel consumption for maintaining the relative position of the satellite formation. Switching

strategies are developed to determine when the satellite can coast, allowing it to focus on

mission operations, and when the satellite must maneuver. When a satellite must maneu-

ver, an optimal guidance trajectory is determined that brings the vehicle back to its desired

relative position, with a model predictive controller used to move the vehicle along the

guidance trajectory. A virtual structure is introduced to reduce communication for relative

position maintenance.

Previous works have employed strategies to optimize fuel usage and overcome pertur-

bations [22–26]. While an optimal fuel saving maneuver may be found and is beneficial,

it is also important to have controller feedback to overcoming disturbances from erroneous

motion models. Model predictive control (MPC) is a method for using optimal control

techniques within a feedback loop to balance multiple desired outcomes [27]. An MPC

framework solves the optimization problem given the current state of the system, one or

more control inputs from the optimal control trajectory are executed, and the process is

repeated with the new state used as the initial condition. Several researchers have imple-

mented an MPC framework based on the Hill-Clohessy-Wiltshire (HCW) relative orbital

dynamic equations [28–32] and were able to maintain control of a spacecraft within their

desired tolerances.
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The HCW dynamics are attractive to use with MPC because they are a well understood,

linear, time-invariant model. Additionally, the use of Cartesian coordinates provides an

intuitive understanding of the spacecraft states. While the HCW equations are attractive to

use, using Cartesian coordinates to define a spacecraft’s state can result in some challenges.

For example, using a spacecrafts Cartesian position to define the distance between the

actual and desired spacecraft states may not produce the most meaningful results. A

spacecraft may have a position that perfectly matches a desired location but has a velocity

perpendicular to the desired velocity. This can cause the controller to believe that its

constraints are met and erroneously turn off. While an HCW based architecture is developed

and tested as part of this work, the difficulty of matching the full relative orbital elements

and velocities lead to the utilization of D’Amico’s relative orbital elements (ROEs) in this

work. Using an MPC and switching surface based on the ROEs accounts for the interplay

between the control inputs and the natural dynamic motion of the system that further

reduce fuel usage when compared to a framework based on the HCW equations. Modeling

the constraints and the control in ROE spaces allows the system to better match the desired

orbit, not just a position state at a given time.

Collision avoidance also needs to be considered when performing autonomous formation

control. Lim et al., [24], guaranteed collision avoidance by developing a framework that

held the eccentric and inclination vectors of the D’Amico ROEs parallel to each other.

Maintaining these vectors parallel to each other guarantees collision avoidance within a

formation, but it does not guarantee a collision free transfers nor does it guarantee the

formation is maintained. DiMauro et al., [26], used a six-sided box as a keep out volume for

the deputy spacecraft, but DiMauro found that the his approach increased the computation

time to a degree that it was deemed not suitable for flight. Tillerson et al., [25], also used

a six-sided Euclidean box as a switching condition, but postulated that using a higher

dimensional shape could reduce fuel costs. This work builds upon the previous work by

implementing a switching conditions based on a polytope approximation of a sphere, and

switching conditions based on ROE state constraints. This research also allows the ability
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to ensure the satellites honors safety constraints when following the guidance trajectory. An

evaluation of different objectives for linear (L1 and L∞) and quadratic (L2) programming

solutions is performed in terms of fuel usage and computation requirements. It is shown

that the L1 or L∞ maybe be more applicable given a spacecraft with a high thrust, non-

throttlable, on/off type propulsion system. The L2 norm is more applicable for a smaller

thrust, longer duration burning system, such as an electric propulsion system.

As previously mentioned, the challenges that exist in spacecraft formation flight are

addressed, namely; fuel consumption, overcoming disturbances or perturbing forces, data

distribution between spacecraft, collision avoidance, mission operational constraints, and

computation feasibility, by developing a decentralized, optimization-based control that can

be used for autonomous formation flight of small satellites. Through developing a switched,

model predictive control framework based on a virtual structure architecture.

The remainder of this dissertation is organized as follows: First a literature review of

the existing approaches and how they apply to spacecraft formation flying is presented in

Chapter 2. This is followed by background information on the relevant methods used for

this research, namely virtual structures, the relative dynamics, model predictive control,

and switching surfaces in Chapter 3. Chapter 4 presents the in-depth technical details

of the formulation and evaluation of the virtual structure-based MPC switching strategy

that can be implemented during flight of satellite formation. The formulation in Chapter 4

includes the use of the HCW equations to define the relative motion. Chapter 4 describes the

development of the polytope sphere approximation that is used as the switching surface. A

comparison of the computation time and fuel usage for L1, L2, and L∞ norm formulations

of the framework is presented. Chapter 5 builds upon the work presented in Chapter 4

by adding an optimized guidance trajectory to the formation flying framework. Chapter

5 performs an updated comparison of the different norms. Chapter 6 provides technical

detail for a an approach similar to what is presented in Chapter 5 but where the D’Amico

ROEs are used as relative dynamics, and state constraints based on the D’Amico ROEs

are used as the switching surfaces. Chapter 7 then provides some concluding statements
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and observations. Finally, Appendix A provides a more extensive literature survey of the

different formation control approaches in the literature to include those not selected to be

part of this research. Appendix B provides a derivation of the HCW equations.
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CHAPTER 2

Literature Review

This chapter discusses the relevance of this research and presents research previously

performed in this area of study. A more extensive literature survey of the work previously

performed in the area of spacecraft formation flying is presented in Appendix A.

2.1 Spacecraft Formation Flying

Formation flying continues to be an area of growing study. Their are several missions

that either have flown or are currently in development that require some form of formation

flying, between two or more spacecraft [10,11]. A few examples of recent or current missions

that require some form of coordination are: Prototype Research Instruments and Space Mis-

sion technology Advancement (PRISMA) [12], Canadian Advanced Nanospace eXperiment-

4 and 5 (CanX-4,-5) [13], Gravity Recovery and Climate Experiment (GRACE) [15,16], the

German Space Center’s phased array instramment, TerraSAR-X, and Digital Elevation

Measurement (TanDEM-X) [17, 18], and the NASA’s Magnetospheric Multi-Scale (MMS)

mission [19,20]. The ability to collect data using multiple satellites autonomously, has great

benefits to the scientific and defense communities.

Formation flying is a technology that organizations like the European Space Agency

(ESA) [12,33], National Aeronautics and Space Administration (NASA) [12,34,35], and the

Department of Defense [36], see as essential to the success of their missions. Formation flying

technology is critical for a wide rage of missions. Formation flying missions orbiting Earth

unlock the ability to perform sparse antenna array missions, distributed sensing missions,

advanced communications and internet access, or spatial sampling for applications such as

gravitational mapping, and interferometric synthetic aperture radar [11,37].

The idea of formation flying also allows for many lower cost spacecraft to fly multiply

different payloads that traditionally would have been flown on a single, much larger, and
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more expensive spacecraft [38].

A major hindrance for control of satellite constellations and formations largely consists

of developing control schedules for a single satellite at a time by a mission planning team

working on the ground. There is a growing desire to put hundreds and even thousands

of satellites in a formation [39]. Future desires to have hundreds and even thousands of

satellites in a constellation make the single-satellite planning approach infeasible. Satellites

that have the ability to autonomously fly in formation, can make this future desire a reality.

2.2 Formation Flying Architectures

Their are several formation control approaches that exist in the literature. This sec-

tion describes the different architectures, with the majority of the discussion being the

architecture selected for this work, virtual structures. Due to its close relationship to the

virtual structures architecture, the Leader/Follower approach is also discussed in detail in

this section. Other architecture types found in the literature are only briefly mentioned,

with a deeper discussion left to Appendix A. The Leader/Follower architecture is discussed

first, followed by virtual structures, since the virtual structure approach builds upon the

Leader/Follower framework.

2.2.1 Leader/Follower

The Leader/Follower architecture defines one spacecraft as the “Leader” and all other

spacecraft are considered “Followers”. In some literature the Leader/Follower approach

may also be referred to as Chief/Deputy [40], Master/Slave [41], or Target/Chaser [42]. The

Leader/Follower architecture uses a hierarchical arrangement of the individual spacecraft

controllers that reduces the formation control to an individual tracking problem. The leader

regulates its position based on a desired goal or objective. The followers monitor the position

of the leader and adjust accordingly to maintain their required relative location as prescribed

by the desired formation. There are several variations with regard to a Leader/Follower

architecture. A few examples are: assigning multiple leaders, forming a chain, or branch

like topologies. A Leader/Follower architecture requires that the followers feed forward the
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acceleration of the leader. Feeding forward the leaders acceleration guarantees convergence

of the follower spacecraft to the desired relative position [9]. One draw back to this approach

that is worth noting is that it requires frequent communication of the acceleration data

between the leaders and followers. The amount of data that needs to be shared may make

this architecture unfeasible for some missions.

The key advantage to a Leader/Follower architecture is the reduction in coordination

between the spacecraft with regard to the problems of regulations and tracking. Many

tracking techniques have been adapted to Leader/Follower control, such as model predica-

tive control to track the leaders motion [43]. Manikonda also applied feedback linearization

and addressed saturation through controller switching [43]. Mesbahi and Hadeagh combined

feedback linearization and linear matrix inequalities to design switch controllers to avoid

saturation. They also used linear matrix inequality theory to derive strategies for tracking

the motion of the leader, and allowing the leader and follower to change roles during a given

moment in the mission. [44,45].

A Leader/Follower architecture uses a control dependency directed graph approach. A

directed graph is made up of a set of vertices V , that are connected by edges ε that have a

direction associated with them, Figure 2.1. The edges are specified as ordered pairs (i, j),

where i, jεV . In the case of a set of spacecraft flying in formation, the spacecraft (vertex)

i is required to maintain a desired position with respect to spacecraft (vertex) j [46] [45].

The arrows (Figure 2.1) show the control dependency, i.e. vertex “1” is not dependent on

any other spacecraft and would be considered the leader, “2” is dependent only on “1” and

“3” is dependent on “1” and “2”.

There are three cases where an edges of the directed graph is added; 1) the control

action of spacecraft j is a function of the state of spacecraft i, e.g. the spacecraft j tracks the

relative state between i and j, 2) the reference trajectory of spacecraft j is dependent on the

state of spacecraft i, or 3) the controller of spacecraft j has a dependency on the feedback

control of spacecraft i. This third dependency has only been used in conjunction with

the other two [45] . In a Leader/Follower architecture j would be considered the follower
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Fig. 2.1: Directed Graph Example

while i would be classified as the leader. In a Leader/Follower architecture there is at least

one spacecraft (the leader) that does not have any dependencies on another spacecraft. A

spacecraft may have more then one leader, but in these cases it is critical that the tracking

problem is well understood [9, 11, 47]. A single-leader architecture is when each individual

spacecraft only has a single leader [45].

With regard to directed graphs, a “path” is defined as a sequence of vertices such

that each sequential pair is a directed edge, and the length of the path is defined by the

number of vertices in it. A “cycle” is a path that contains at least three vertices and where

none of the vertices are repeated. A directed graph is considered to be “acyclic” if it does

not contain a cycle. A Leader/Follower architecture is considered to be an acyclic control

dependency directed graph.

The Leader/Follower architecture was originally studied for applications tied to mobile

robot control laws [48]. These same strategies were later applied to spacecraft formations



10

by Wang and Hadaegh and applied to both deep space missions and earth centered mis-

sions [9]. Wang and Hadaegh developed control laws for formation maintenance and relative

attitude alignment based on nearest neighbor tracking. They discussed several Leader/Fol-

lower techniques; leader tracking, nearest neighbor tracking, barycenter tracking, and other

tree topologies [49]. They later built upon these ideas to include the implications due to

actuator saturation. An adaptive version of this architecture was later added that evalu-

ated the ability to reject space disturbances [50]. They showed that if the tracking control

law is stable for each of the followers then the entire formation is stable. They did not

address general sufficient conditions for Leader/Follower stability. They also simplified the

feedback linearized control laws from [9] and applied them to synchronized transnational

and rotational control of deep space missions [49]. [51] also looked at simultaneous rota-

tional and transnational control formation, with the modification of performing the control

in the leaders body frame as opposed to an inertial frame. This allows for the whole forma-

tion to be rotated by only rotating the attitude of the leader. Further research was done

to develop a rule-based control law for synchronizing the rotations of multiple spinning

spacecraft [52]. Hadaegh then developed a rule-based controller for synchronizing thruster

dead-bands across multiple spacecraft. They showed that it is necessary to synchronize im-

pulsive thrusters for MSIs. They found that vibration from the thruster firings can corrupt

the interferometric measurements [53]. Lurie designed a thruster synchronized algorithm for

rotational and transnational control using classical control theory with nonlinear dynamic

compensation [54]. A sliding mode control was implemented by [55]. LQR and H∞ methods

were applied to a combined translation and rotational controller by [56]. Robertson devel-

oped and compared several proportional derivative controllers. He also looked and time

optimal control and a mixed fuel-time optimal control [57, 58]. Olfati-Saber and Murray

used “node augmentation” to build a mission planner. A user is able to add spacecraft to

the simulation formation sequentially through specifying the required distance to two other

spacecraft in the formation. A feedback-linearized controller is used to maintain these dis-

tances. The controller of the new spacecraft is only dependent on the relative states of the
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two spacecraft it is anchored to [59]. Desai presents a similar method [46].

Advantages/Disadvantages to the Leader/Follower Architecture: The Leader/Follower ar-

chitecture reduces the data needs when compared to other architectures, since each space-

craft only needs to track the information of the leader, instead of tracking the entire forma-

tion. Because of this, formation coordination is typically simpler then other architectures.

A Formation can easily grow or shrink in size since only a locally stabilizing controller

and a leader assignment is required. The formation itself is easily specified or changed by

commanding the leader. Leader/Follower architecture is also more robust against failures,

when compared to other architectures. If a spacecraft fails, then only the followers of that

spacecraft are affected. These followers can easily be reassigned to a new leader, reduc-

ing the effects to the overall system. For a Leader/Follower architecture optimality is not

guaranteed. Connecting individual locally optimal tracking controllers does not guarantee

global optimality for the entire formation. Also, if a mesh stable system is required then

the data requirements can start to be significant, similar to the requirements of a MIMO

architecture [11].

2.2.2 Virtual Structures

In a virtual structure architecture the formation is treated as a ridged body. The

spacecraft act as ridged bodies within the larger virtual structure formation. A virtual

structure architecture is defined by states that correspond to the dynamics of the formation,

for example the dynamics can be made up by the position, orientation, and/or separation

distances between spacecraft. These states are allowed to change over time to map the

desired trajectories of the formation or each individual spacecraft within the formation.

The motion of the virtual structure and the motion of the dynamics within the virtual

structure are used to generate trajectories for the formation to follow. In a virtual structure

the controller of each individual spacecraft is responsible for generating and tracking a

reference trajectory, or virtual leader [11, 60]. In its most basic form the virtual structure

architecture is identical to the Leader/Follower architecture. In that if the virtual structure
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was to simply trace out the position and orientation of a given point within the formation,

this would be identical to a Leader/Follower architecture, the only difference would be that

their is no actual leader, but merely a pseudo leader that would reside only in simulation. It

is worth noting that since the virtual structure architecture is similar to the Leader/Follower

architecture, the analysis to show convergence is also identical.

Virtual structures architectures are commonly applied to mobile robots and unmanned

aerial vehicles (UAV) applications [61–66]. A key advantage to a virtual structure architec-

ture is that the trajectory information of the virtual leader is determined a priori by each of

the spacecraft and does not need to be shared, reducing communication loads. Also, since

the individual spacecraft follow a reference trajectory, an anomaly of one spacecraft would

not impact the entire formation.

The virtual structures architecture enables each individual vehicle to plan maneuvers

within a given operational envelope, allowing the planning of the formation to be decom-

posed from the planning of the individual. Virtual structures enables safe and reliable forma-

tion planning. Individual spacecraft exploit the structure to create guaranteed collision-free

maneuvers.

One drawback to virtual structures, like Leader/Follower is the requirement to share

acceleration information between spacecraft, this can potentially be a costly requirement

leveraged on the communication and processing systems of the formation. Because of this,

the trajectory of the virtual leader is traditionally centralized, and communicated out to the

other members of the formation. Lewis and Tan applied this approach to the formations

of mobile robots [66]. Applications to spacecraft formations were described in [67–70].

Tillerson, Berger, and How presented a procedure for calculating a virtual center for the

formation, that is used to determine the desired states for each of the spacecraft in the

formation [71]. Ren and Beard developed a decentralized approach that can be appropriate

when a large number of spacecraft are involved in the formation [72].

A less traditional approach to virtual structures that has advantages is to allow each

member of the formation to propagate the virtual leaders dynamic motion, thus not limiting
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the virtual structures to have a centralized virtual leader. A periodic comparison of the vir-

tual leaders trajectory shared between spacecraft could allow for any necessary corrections

to be made.

A key advantage to a virtual structure architecture is that the trajectory of the for-

mation can be shaped. In a Leader/Follower architecture the leader’s position and attitude

move independently. If spacecraft alignment is required, the spacecraft attitude and position

must be coupled. A virtual structure architecture allows for the virtual leader’s position and

attitude motion to be coupled. Each individual spacecraft propagates this coupled motion,

thus perfect tracking can guarantee spacecraft alignment. Virtual structures also allow for

feedback to the formation trajectory as a function of the current spacecraft states, which

allows the formation to not fall behind, [66,73], since more current information is available.

This can also lead to more up to date health and status of the formation vehicles including

fuel consumption [60,74].

For this work a virtual leader is used within the virtual structure to design a reference

orbit for each satellite in the formation. From the virtual leader, relative orbits are gener-

ated that define the nominal locations of each of the agents within the virtual structure.

This work uses two different sets of orbital relative dynamics, the HCW equations and the

D’Amico ROEs [42,75–77]. Figure 2.2 gives an example of a virtual structure formation.

2.2.3 Other Architectures

The other architectures studied as part of this research are now briefly presented.

Cyclic

A Cyclic architecture is similar to a Leader/Follower architecture, in that this archi-

tecture type consists of connecting individual spacecraft controllers. The difference lies in

the fact that for a Cyclic architecture the controller connections are not hierarchical. A

Cyclic formation flying control architecture is defined by an interconnection of individual

spacecraft controllers that result in a cyclic control dependency directed graph [11]. The
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Fig. 2.2: Example virtual structure formation.

dependency graph for a Cyclic architecture is completely connected, i.e. every spacecraft

depends on ever other spacecraft [11].

Behavioral

A behavioral architecture is one where each spacecraft has a control law with built

in specific objectives or “behaviors”. A behavioral architecture combines the outputs of

multiple controllers designed for achieving different and sometimes competing behaviors

[70,78]. Examples of possible behaviors are orbital maintenance, formation keeping, collision

avoidance, or move-to-goal. These behaviors can either be accomplished individually or

collectively.

2.3 Formation Flying Challenges

There are several challenges that arise in formation flying. These challenges include,

but are not limited to: fuel consumption, overcoming disturbances or perturbing forces,
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data distribution between spacecraft, collision avoidance, mission operational constraints,

and computation feasibility. Creating a formation flying framework becomes an act of

balancing priorities between meeting these different challenges or objectives.

A key constraint to any formation flying mission is the amount of spacecraft mass

that can be allocated to the propulsion system. The amount of fuel mass available directly

impacts the number of maneuvers that can be performed and ultimately the lifetime of the

mission. Over the last few decades, lowering fuel consumption for formation flying missions

has been an area of interest for several researchers. Previously, optimization strategies have

been employed to reduce fuel consumption while maintaining relative motion. Mazal and

Gurfil developed formation keeping algorithms that aimed to reduce fuel consumption by

using bi-impulsive maneuvers that enable desegregated satellite modules to attain relative

states satisfying both maximum and minimum distance keeping constraints while tracking a

desired reference orbit [79]. Rocco et al., studied low fuel consumption techniques where the

maneuver time was restricted [22]. Lim et al., [24], similarly developed an MPC approach

based on D’Amico’s eccentricity and inclination vectors to describe the relative motion.

Tillerson et al., [25], used linear programming (LP) to develop fuel-optimal control inputs

to move a satellite from the disturbed state back to the desired state or to maintain the

satellite within some tolerance of the desired state. DiMauro also looked at optimizing fuel

usage of a formation through the formulation of a mixed integer control problem [26].

While an optimal fuel saving maneuver may be desirable, feedback is essential for

overcoming disturbances from the erroneous motion models. Model predictive control is

an approach that repeatedly uses optimal control techniques within a feedback loop [27].

Several papers use some variant of a linear time-varying MPC [23, 25, 80–85]. Tillerson et

al., [25], designed an MPC scheme that used the HCW and Lawden equations to define the

relative motion. Breger and How, [23], used an MPC approach that was based on Gauss’

Variational Elements (GVEs) to describe the relative motion.

In conjunction with MPC, several relative dynamic sets have been used in the literature

for formation control, as knowledge of the relative states of the formation is often more
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accurate than knowledge of the formation’s absolute state. Generally, the control of the

relative state is more important than the control of the absolute state. In [23], an MPC

scheme was designed using GVEs to describe the relative motion between vehicles. Similarly,

[24] developed an MPC strategy using GVEs with constraints defined by maintaining the

eccentricity and inclination vectors of the D’Amico ROEs parallel to each other. GVEs are

convenient for specifying and controlling formations when the distances between spacecraft

are larger than 1000 km because they are linearized about the orbital elements. The orbital

elements are described in a curvilinear frame in which large rectilinear distances can be

captured by small element perturbations. However, the use of GVE dynamics can induce

error at smaller ranges and incur an additional computation cost when compared to the

HCW equations. Sevearl researchers have used the HCW equations to describe the relative

orbital dynamic equations [25,29–32] and were able to maintain control of a spacecraft within

their desired tolerances. The HCW dynamics are attractive to use with MPC because they

are a well understood, linear, time-invariant model. Additionally, the use of Cartesian

coordinates provides an intuitive understanding of the spacecraft states.

Another challenge that needs to be addressed in the area of spacecraft formation flight

is data distribution between satellites. Inter-satellite communication can become a restric-

tive burden on satellites as it requires the antenna of each satellite to be aligned and the

communication systems powered on. To reduce communication, [86–88] developed a strat-

egy for using triggering events to switch from a coasting behavior to a controlled behavior,

requiring communication only when vehicles pass some relative distance threshold. To lower

communication even further, virtual structure techniques define the desired motion for each

satellite based upon the ideal motion of a virtual satellite [23, 25]. The virtual satellite is

a computational artifact used solely to define desired relative trajectories for the constella-

tion [72]. As previously mentioned, a key advantage to a virtual structure architecture is

that the trajectory information of the virtual leader is determined a priori by each of the

spacecraft and does not need to be shared, reducing communication loads. Also, since the

individual spacecraft follow a reference trajectory, an anomaly of one spacecraft would not
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impact the entire formation.

A virtual structures architecture also enables each individual vehicle to plan maneu-

vers within a given operational envelope, allowing the planning of the formation to be

decomposed from the planning of the individual. Virtual structures enables safe and reli-

able formation planning. Individual spacecraft exploit the structure to create guaranteed

collision-free maneuvers. Due to perturbing forces there will be deviations from the desired

trajectory. These deviations must be bounded so that the vehicles do not collide with one

another. Lim et al., [24], guaranteed collision avoidance by developing a framework that

maintained the eccentric and inclination vectors of the D’Amico ROEs parallel to each other.

Maintaining the ROE eccentricity and inclination vectors parallel to each other guarantees

collision avoidance within an established formation, but it does not guarantee a collision

free transfer trajectory nor does it guarantee the formation itself is maintained. Tillerson

et al., [25], and Breger, [23] used a six-sided box as a keep-in volume, with a linear program

and no mixed integers, but postulated that using a higher dimensional shape could reduce

fuel costs. DiMauro et al., [26], also used a six-sided box but as a keep-out volume for

the deputy spacecraft, but DiMauro et al., found the their MILP approach increased the

computation time to a degree that it was deemed not suitable for flight.

This work develops a framework to address various aspects of these challenges through

a decentralized, optimization-based control that can be used for autonomous formation

flight of small satellites. To accomplish this goal, this work develops a formation flying

control algorithm using a virtual structure, MPC architecture where the HCW equations

and D’Amico ROEs are used to describe the relative motion.

2.4 Contributions

The major contributions of this work are the formulation and evaluation a decentral-

ized, optimization-based control that can be used for autonomous formation flight of small

satellites. This is accomplished through a virtual structure based MPC framework that

guarantees flight safety and formation control while saving fuel and reducing communica-

tion. The formulation includes the use of the HCW equations to define the relative motion,
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and the development of a polytope sphere approximation that is used as the switching

surface. A comparison of the computation time and fuel usage for L1, L2, and L∞ norm

formulations of the framework is also performed. These details are presented in Chapter 4.

An optimized guidance trajectory is then added to the framework in Chapter 5. Adding

this guidance trajectory to the framework proves to reduces the ∆V required by almost two

orders of magnitude.

While the HCW equations are attractive to use because they are a well understood,

linear, time-invariant model and provide an intuitive understanding of the spacecraft states,

using Cartesian coordinates, or the HCW equations, to define a spacecraft’s state can result

in some complications. For instance, given a Cartesian state, it is generally non-trivial

to determine the full relative orbit of the spacecraft or attempt to match some orbital

element of a second spacecraft. Additionally, using the standard Euclidean definition of

distance to define the distance between the actual and desired spacecraft states may not

produce the most meaningful results. Consider, for example, a spacecraft whose position

perfectly matches some desired location but has a velocity perpendicular to the desired

velocity. The distance would be considered “close” in a Euclidean sense, but because of

the direction of the velocity vector, these orbits are significantly different. This can cause

the controller to erroneously turn off if the constraints are based solely on a Euclidean

distance. While an HCW based architecture was developed and tested as part of this

work, the difficulty of matching the full relative orbital elements and velocities lead to the

utilization of D’Amico’s ROEs. Thus, this work also developments and implementations an

optimal guidance trajecotry and model predictive control framework where the switching

surfaces and relative dynamics are based on the D’Amico ROEs (Chapter 6). Using an MPC

and switching surface based on the ROEs accounts for the interplay between the control

inputs and the natural dynamic motion of the system, that further reduce fuel usage when

compared to a framework based on the HCW equations. Modeling the constraints and

the control in ROE spaces allows the system to better match the desired orbit, not just a

position state at a given time. As shown in Chapter 6, the ROE approach requires only
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33% of the fuel required by the HCW based architecture.
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CHAPTER 3

BACKGROUND

The purpose of this chapter is to familiarize the reader with several of the key ele-

ments that apply to this research, what foundations it builds on, and the approaches that

exist within the field, namely, background information on the relative dynamics and model

predictive control.

3.1 Relative Dynamics

For this work a virtual leader is used to design a reference orbit for each satellite

in the formation. From the virtual leader, relative orbits are generated that define the

nominal locations of each of the agents within the virtual structure. The relative orbits are

propagated using two different approaches, the HCW equations and the D’Amico ROEs.

[42,75–77].

3.1.1 Hill-Clohessy-Wiltshire Equations

The HCW equations were “first” published in 1960 by Clohessy and Wiltshire [42,76],

but it was later discovered that these equations were just another form of the previously

described equations produced by Hill in 1877 [75]. The HCW equations linearize the two-

body gravitational dynamic equations about a near circular orbit. An exact solution of the

HCW equations can be represented as:

ẍ− 3n2
cx− 2ncẏ = ux

ÿ + 2ncẋ = uy

z̈ + n2
cz = uz

(3.1)

where x, y, and z represent the relative position of the follower with respect to the leader

in Cartesian coordinates using a Local Vertical, Local Horizontal (LVLH) frame; ẋ, ẏ, and
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ż represent the relative velocities; ẍ, ÿ, and z̈ represent the relative accelerations; and nc is

the mean motion, or average angular velocity, of the reference orbit. The LVLH frame is

defined such that x is in the radial direction, z is along the angular momentum vector, and

y satisfies the right-hand rule.

If the state is defined as x = [x y z ẋ ẏ ż]T and the control as u = [ux uy uz]
T , Equation

3.1 can be written in the state space form

ẋ = Ax+Bu (3.2)

where

A =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2
c 0 0 0 2nc 0

0 0 0 −2nc 0 0

0 0 −n2
c 0 0 0




B =




0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




. (3.3)

An exact discrete solution can be found as

xk+1 = ADxk +BDuk, AD = eA∆t, BD =

(∫ ∆t

0
eA(∆t−τ) dτ

)
B. (3.4)

The resulting discretized HCW matrices are

AD =




4− 3 cosnc∆t 0 0 sinnc∆t
nc

2−2 cosnc∆t
n 0

6(sinnc∆t− nc∆t) 1 0 2 cosnc∆t−2
n

4 sinnc∆t−3nc∆t
n 0

0 0 cosnc∆t 0 0 sinnc∆t
nc

3nc sinnc∆t 0 0 cosnc∆t 2 sinnc∆t 0

6nc(cosnc∆t− 1) 0 0 −2 sinnc∆t 4 cosnc∆t− 3 0

0 0 −nc sinnc∆t 0 0 cosnc∆t




(3.5)
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BD =




2
n2
c
sin2 nc∆t

2 − 2
n2
c
(sinnc∆t− nc∆t) 0

2
n2
c
(sinnc∆t− nc∆t) − 1

2n2
c
(8 cosnc∆t+ 3n2

c∆t2 − 8) 0

0 0 2
n2
c
sin2 nc∆t

2

1
nc

sinnc∆t − 1
nc
(2 cosnc∆t− 2) 0

− 4
nc

sin2 nc∆t
2

4
nc

sinnc∆t− 3∆t 0

0 0 1
nc

sinnc∆t




(3.6)

Note that AD matches the discrete transition matrix in [42] while BD is derived using

Equations 3.3 and 3.4. A full derivation of the HCW equations can be found in Appendix

B.

3.1.2 Relative Orbital Elements

Traditionally, the HCW equations have been used to describe the relative orbital dy-

namics of spacecraft, [75,76]. More recently, however, relative orbital elements (ROEs) have

been developed to describe relative dynamics in the context of Keplerian orbital elements.

These are a set of states that define the orbit of a spacecraft relative to some reference

orbit. Various ROE formulations have been proposed, notably a set created by Lovell and

Spencer [89] and a set created by D’Amico [77]. For this work the D’Amico ROEs were cho-

sen as they are derived directly from the standard orbital elements and were more amenable

for the desired formation flying architecture. The ROEs assume two-body motion with no

perturbations, but can be adjusted to account for J2 disturbances [90]. Although the ROE

formulation used in this paper does not include the J2 formulation, the controller in this

work does account for, and overcome J2 perturbations.

Similar to Keplerian orbital elements, ROEs use six parameters to define the orbit of

an agent spacecraft relative to the virtual leader. The elements describe the relative semi-

major axis, mean latitude, a two element eccentricity vector, and a two element inclination

vector of the agent, relative to the virtual leader. Allowing for a range of values for each of

these elements creates a three-dimensional region that is used to define the relative space

for the agent.
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Given a set of standard orbital elements for the chief or reference orbit and a second

set of standard orbital elements of a deputy or agent satellite, the ROEs, which describe the

orbit of the deputy relative to the chief, can be determined. In the ROE states, the c and d

subscripts indicate the elements of the chief and deputy, respectively. The orbital elements

a, e, i, ω, Ω, and M are the semi-major axis, eccentricity, inclination, argument of perigee,

right ascension of ascending node, and mean anomaly, respectively, [42]. The dimensionless

ROEs, as defined by D’Amico [77], are given as

x =




δa

δλ

δex

δey

δix

δiy




=




(ad − ac)/ac

(fd − fc) + (Ωd − Ω) cos ic

ex,d − ex,c

ey,d − ey,c

id − ic

(Ωd − Ωc) sin ic




, (3.7)

with

f□ = ω□ +M□ , ex,□ = e□ cosω□ , ey,□ = e□ sinω□ , (3.8)

where the □ subscripts indicate the states correspond to either the deputy or chief states.

The δa term represents the relative difference in semi-major axis and the δλ term gives

the relative mean longitude between the two spacecraft. The δex and δey terms can be

composed into a single δe relative eccentricity vector where the magnitude gives the orbit

size along the radial direction. Similarly, the δix and δiy terms can create the δi relative

inclination vector where the magnitude defines the size of the orbit along the normal axis.

The δe and δi vectors can additionally be used to create passively safe orbits where the

agent does not pass through the relative orbital plane in front of the leader [24]. Note that

this relative state representation is nonsingular for circular orbits (ec = 0), whereas it is

singular for strictly equatorial orbits (ic = 0) [26].

Assuming two body motion with no perturbations, the orbital elements defined in Eq.

(3.8) are all constant except the mean argument of latitude, f , which increases at a constant
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rate, with µ representing the standard gravitation parameter, defined by

ḟ =
df

dt
=

√
µ

a3
. (3.9)

Defining ∆f = fd − fc, then ∆ḟ represents the drift in relative mean argument of latitude

that will occur when the spacecraft has a different semi-major axis than the reference orbit,

and we define ∆a = ad−ac. This can be approximated to the first order by the differencing

of Eq. (3.9) for the two orbits as

∆ḟ =
d(∆f)

dt
= −3

2

√
µ

a5
∆a = −3

2
n
∆a

a
= −3

2
nδa, (3.10)

where n is the mean orbit motion and with the reasonable assumption that ∆f and ∆a are

small compared to the inertial virtual leader orbit radius [77]. Assuming two body motion,

the remainder of the inertial orbital elements are constant over time, and as such the other

ROEs are also constant with respect to time. The full dynamics can then be represented as

ẋ =




0 0 0 0 0 0

−3n
2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0







δa

δλ

δex

δey

δix

δiy




= Ax. (3.11)

If fM represents the mean argument of latitude of any given maneuver and the prefix

∆ indicates the change in the specified ROE, the instantaneous changes of the ROEs (∆δa,

∆δλ, ∆δex, ∆δey, ∆δix, ∆δiy) as a result of impulsive ∆V applied along the tangential,
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radial, and normal axes (δvt, δvr, and δvn, respectively) is [77],

∆δa = +
2

na
δvt

∆δλ = − 2

na
δvr

∆δex =
sin fM
na

δvr +
2 cos fM

na
δvt

∆δey = −cos fM
na

δvr +
2 sin fM

na
δvt

∆δix = +
cos fM
na

δvn

∆δiy = +
sin fM
na

δvn

. (3.12)

as can be seen, these are linear, time-varying

As previously mentioned, Lovell and Spencer also developed a formulation of ROEs [89],

for this work it was determined to use D’Amico’s ROE formulation due to their ability to

include secular effects of dominant differential perturbations in closed-form, the fact that

they are not restricted to near-circular orbits, and their ability to be directly related to the

inertial orbital elements for both the virtual leader and agent spacecraft.

3.2 Model Predictive Control

As discussed in Chapter 2, an MPC scheme is implemented in conjunction with the

relative dynamics described in Section 3.1. This section presents a brief primer on MPC

to present the basic idea and notation used throughout this work. A general overview of

MPC with a linear system representation and a discussion of the closed-loop stability. The

interested reader is referred to [91] for a thorough development of MPC for linear systems.

3.2.1 General MPC Overview

There are two problems that often occur when using an optimization-based control so-

lution in practice. First, even with optimization algorithms taking advantage of linearities

and convexities, a horizon time that is sufficiently large enough to produce desirable con-

vergence characteristics may prove computationally prohibitive. Second, the model of the
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system is usually inaccurate and the system may be impacted by external disturbances that

can cause it to diverge from the predicted path. For this reason, the state is also measured

at xk+1 and the control problem is re-solved, where the measured state x(1) is considered

the new initial condition. This process is referred to as MPC.

While MPC generally loses any guarantee of optimality, it does provide the ability to

express constraints, which is not common in many feedback control solutions. Furthermore,

weights in the objective can provide intuitive “control knobs” for tuning to the desired

behavior.

Common objective functions for linear systems include the L2, L1, and L∞ norms, as

they can result in quadratic and linear programs. Given an initial state of x0, and a time

horizon of N intervals, the objective function can be written as:

J(x, u)p =
1

2
||u0||R,p +

1

2

N−1∑

k=1

[
||xe,k||Q,p + ||uk||R,p

]
+

1

2
||xe,N ||P,p (3.13)

where R, Q, and P are the weightings on control usage, state error, and terminal error,

respectively. And p represents the norm 1, 2, or ∞.

3.2.2 MPC Stability

For a receding horizon control (RHC) problem, when an optimization problem is solved

over a finite horizon repeatedly at each time step, the hope is that the controller results lead

to a closed-loop behavior that mimics that of the infinite horizon controller. The RHC is

preferred over the infinite horizon control, because constraints can be added to the control

formulation.

An issue that arises with the RHC is that the generated control inputs may not lead

to trajectories that converge to the origin, i.e. asymptotically stable. In general, stability

is not guaranteed by the receding horizon optimization, but is essential for developing a

quality control law. To guarantee stability, the terminal cost and constraint set must be

carefully chosen [91].

For the RHC implementation, consider the discrete-time linear time-invariant system
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x(t+ 1) = Ax(t) +Bu(t)

s.t. x(t) ∈ X,u(t) ∈ U,∀t ≥ 0,

(3.14)

where x(t) ∈ Rn, u(t) ∈ Rm, and the sets X ⊆ Rn and U ⊆ Rm. If we assume that a

measurement of the state x(t) is available at the current time t, then the finite time optimal

control problem can be written as

J∗
0 (x(t)) = min

U0

J0(x(t), U0) = p(xN ) +
N−1∑

k=0

q(xk, uk)

s.t. xk+1 = Axk +Buk k = 0, 1, . . . , N − 1

xk ∈ X,uk ∈ U k = 0, 1, . . . , N − 1

xN ∈ Xf

x0 = x(t)

(3.15)

where U0 = {u0, . . . , uN−1}. If we set p(xN ) = ||PxN ||p and q(xk, uk) = ||Qxk||p + ||Ruk||p,

given an initial state of x0, a time horizon of N intervals, and if we let p = 1, p = 2 or

p =∞ for the L1, L2, and L∞ norms, respectively, then the cost function can be written as

J0(x(0), U0) = ||PxN ||p +
N−1∑

k=0

||Qxk||p + ||Ruk||p, (3.16)

where the control law is

uk(t) = f0(x(t)) = u∗0(x(t)), (3.17)

for the closed loop system

x(k + 1) = Ax(k) +Bf0(x(k)) = fcl(x(k)), k ≥ 0. (3.18)

Given Q and R, the terminal cost of the system can be designed to ensure asymptotic

stability of the MPC problem. The objective is to find a Lyapunov function for the closed-

loop system. If the terminal cost and constraint are appropriately chosen, then the value
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function J∗
0 (·) is a Lyapunov function. The theorem below was developed by Borrelli and

proofs of this theorem can be found in [91]. If the closed loop system meets these conditions,

the system is an asymptotically stable system.

Theorem 3.2.1 Consider system 3.17, the RHC law (3.15-3.17) and the closed-loop system

(3.18). Assume that

• The stage cost q(x, u) and terminal cost p(x) are continuous and positive definite

functions.

• The sets X, Xf and U contain the origin in their interior and are closed.

• Xf is control invariant, Xf ⊆ X.

• minu ∈ U, Ax+Bu ∈ Xf
(−p(x) + q(x, u) + p(Ax+Bu)) ≤ 0, ∀x ∈ Xf .

Then, the origin of the closed-loop system (3.18) is asymptotically stable with domain of

attraction X0

The following sections present how this theorem can be met for the 2, 1, and ∞ norm

cases.

Stability for 2-Norm Case: For the case of the L2 norm, the terminal cost is chosen to

represent the cost-to-go of the unconstrained infinite horizon problem. The Discrete-time

Algebraic Riccati Equation (DARE) can be used to find the cost-to-go, XTP∞X. The

DARE is represented as:

0 = A′P∞A− P∞ +Q−A′P∞B(B′P∞B +R)−1B′P∞A (3.19)

where the positive definite solution for P∞ is used.

The P∞ found solving the DARE is then used as the matrix in the terminal cost, P ,

in the objective function, equation 3.13. This guarantees asymptotic stability of the system

for the L2 norm formulation [91]. Note that A and B must be completely controllable, R

must be positive definite, and Q must be positive semi-definite and completely observable.
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Stability for 1 and ∞-Norm Cases: For the L1 and L∞ cases, if the exact discrete

system (Equation 3.14) is asymptotically stable, then Xf can be chosen as the positively

invariant set of the autonomous system

x(k + 1) = Ax(k) s.t. x ∈ X (3.20)

Therefore, the input 0 is feasible in Xf and the Lyapunov inequality in Theorem 3.2.1 for

the L∞ and L1 cases becomes

|| Px ||p + || PAx ||p + || Qx ||p ≤ 0, ∀x ∈ Xf (3.21)

where p = 1 or p = ∞ for the L1 and L∞ norms, respectively. Equation 3.21 is satisfied if

a P is chosen that satisfies the Lyapunov function for the L1 and L∞ cases, equation 3.22.

V = || Px ||p (3.22)

The Pp found solving equation 3.22 is then used in the objective function, equation 3.16.

This guarantees asymptotic stability of the system [91].

If such a Xf can be computed, it can be used as a terminal constraint in Theorem

3.2.1. With this choice, equation 3.23 is satisfied by the infinite time unconstrained optimal

cost matrix P∞ in equation 3.24, the optimal infinite horizon cost function.

min
u ∈ U, Ax+Bu ∈ Xf

(p(x) + q(x, u) + p(Ax+Bu) ≤ 0, ∀x ∈ Xf (3.23)

J∗
∞(x(0)) = || P∞x(0) ||∞ (3.24)
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CHAPTER 4

Model Predictive Control Switching Strategy for Safe Small Satellite Cluster Formation

Flight
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Abstract
This paper presents the development and analysis of a spacecraft formation flying architecture. The desired state of each
spacecraft is maintained using a model predictive control-based control framework that is based on the Hill–Clohessy–
Wiltshire equations and a polytope boundary constraint as a switching surface. This framework can be used to maintain the
desired cluster formation while also guaranteeing internal cluster flight. The polytope boundaries are designed, such that no
two agents have overlapping regions, allowing the vehicles to execute avoidance strategies without continually maintaining
the trajectories of other agents. Themodel predictive control framework combined with the convex polytope boundary enables
a scalable method that can support clusters of satellites to coordinate to safely achieve mission objectives while minimizing
fuel usage. As part of the implementation of this control scheme, the authors created two spacecraft formation flying control
approaches. The first approach uses fewer, large maneuvers to control a spacecraft to the center of a keep-in-volume. The
second approach allows the spacecraft to perform many small maneuvers to stay just inside the boundary of the keep-in-
volume. This paper compares the fuel cost savings of these two approaches. The results presented in this paper demonstrate
that the first approach produces the lower total fuel usage, but if a lower amount of fuel per maneuver is required, then the
second approach should be used. This work also compares the computation requirements and fuel usage for L1, L2, and L∞
norms formulations of the framework, the L1 and L2 norms require the least amount of fuel usage, while the L2 requires the
least amount of computation time.

Keywords Formation flying · Model predictive control · Switching surfaces

1 Introduction

Spacecraft formation flying has been viewed as a key enabler
for organizations like the European Space Agency (ESA) [1,
2], National Aeronautics and Space Administration (NASA)
[1, 3, 4], and the Department of Defense (DoD) [5]. Forma-
tion flying technology is critical for a wide range ofmissions,
including sparse antenna array missions, distributed sens-

B Tyson Smith
tyson.smith@sdl.usu.edu

B John Akagi
john.akagi@sdl.usu.edu

B Greg Droge
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ing missions, advanced communications and internet access,
spatial sampling for applications such as gravitational map-
ping, interferometric synthetic aperture radar, and target
tracking, to name just a few [1, 6–16]. The idea of formation
flying also allows for many lower cost spacecraft to fly mul-
tiple different payloads that traditionally would have been
flown on a single larger and more expensive spacecraft [17].
Fundamental to space-based operations is the requirement
that vehicles limit their fuel usage to increase longevity of
their missions. Formations add the additional complexities
of maintaining relative motion characteristics which require
incorporating feedback for minor and major adjustments.
This must be done while respecting the computational capa-
bilities of the individual platforms and the communication
restrictions within the constellation. This work develops an
optimization-based feedback control strategy to allow each
satellite to fly within a safe region of operation and maintain
relative spacing with little-to-no inter-spacecraft communi-
cation required. Three different optimization objectives and
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two strategies for limiting thruster use are evaluated with
respect to overall fuel usage and computation requirements.

Previous work in the field of formation flying has devel-
oped techniques that employ optimization strategies to
reduce fuel usagewhile stillmaintaining relativemotion, e.g.,
[15, 18–33]. While an optimal fuel saving maneuver may be
desirable, feedback is essential for overcoming disturbances
from the invariably erroneous motion models. Model predic-
tive control (MPC) is a technique for using optimal control
techniques within a feedback loop [34]. The optimization
problem is solved given the current state of the system, one
or more control inputs from the resulting optimal control tra-
jectory are executed, and the process is repeated with the new
state used as the initial condition.

In conjunctionwithMPC, several different relative dynamic
sets have been used in the literature for formation control. In
[22], an MPC scheme was designed using Gauss Variational
Elements (GVE) to describe the relative motion between
vehicles with inter-satellite collision avoidance ensured by
defining an error box for each satellite. A related approach
was taken in [24], but used the Hill–Clohessy–Wiltshire
(HCW) and Lawden equations to define the relative motion,
making the definition of the error box take on a form closer
to a standard Cartesian frame. Similarly, Ref. [23] devel-
oped an MPC strategy using GVEs with constraints defined
directly on the D’Amico Relative Orbital Elements (ROEs).
However, likemanyoptimization-based spacecraft formation
techniques, e.g., [15, 19, 25, 27], Ref. [23] assumed central-
ized knowledge of all satellite states. In stark contrast to this,
Refs. [22, 24] developed decentralized approaches that rely
on a safety box constraint to allow each satellite to optimize
its own trajectory. As thrusters often cannot be run continu-
ously, an inner box is defined in [24] and the MPC controller
only turned on when the satellite exited the inner box, using
constraints in the optimization formulation to ensure that
the trajectory never left the original error box. A linear pro-
gram was developed to ensure that the optimization for each
satellite was computationally feasible. Reference [24] decen-
tralizes the problem by tying the center of the safety box to
a reference orbit in a Cartesian frame.

Communication between the satellites within the cluster
can often be a restricting requirement on satellites as the
antenna from the satellites need to be aligned and the com-
munication systems powered on. To reduce communication,
Refs. [35–38] developed strategies for using triggering events
to switch from a coasting behavior to a controlled behav-
ior, requiring communication only when vehicles pass some
relative distance threshold. To lower communication even
further, this work implements a virtual structure architecture.
Virtual structure techniques define the desired motion for
each satellite based on the ideal motion of a virtual satellite.
The virtual satellite is a computational artifact used solely to
define desired relative trajectories for the constellation [39].

By agreeing a-priori on the virtual satellite orbital charac-
teristics, all coordinated motion can be performed without
communication.

The major contributions of this work are the formulation
and evaluation of a virtual structure-based MPC switching
strategy that can be implemented during flight of spacecraft
clusters to guarantee flight safety and formation control. The
formulation includes the use of a virtual leader to define the
desired relative motion for each satellite using the HCW rel-
ative motion equations. Similar to [24], the MPC is used
as the feedback control with a switching control strategy
used to determine when the MPC control should be acti-
vated. Contributions beyond [24] include the definition of a
spherical polytope as a constraint and switching definitions,
a second switching surface to add hysteresis in the switch-
ing strategy (i.e., the control is not turned off using the same
switching surface used to turn it on), and the formulation
of different objectives for linear (L1 and L∞) and quadratic
(L2) programming solutions. Evaluations are performed on
the required fuel usage and computation requirements of the
MPC formulation. A comparison of two switching strategies
is also compered, the first using a double switching surface
and the second using a single switching surface.

The remainder of the paper is outlined as follows. In
Sect. 2, a background of the relative dynamics used in this
work is presented, as well as background on MPC, a discus-
sion aboutMPC stability, and a review of switching strategies
used in the literature. Section3 presents a detailed discussion
of the boundary constraints, theMPC formulation for the L2,
L1, and L∞ norms, as well as development of the switching
strategy used for this work. Section4 presents an overview
of the simulation developed to prove out these concepts and
the results and performance from the approach presented in
Sect. 3. Section5 gives a summary of the results as well as
some final comments and conclusions.

2 Background

This section presents background information of the relative
dynamics used with the control algorithm, preliminary infor-
mation needed for the development of the MPC, as well as
background information used in the switching strategy for-
mulation.

2.1 Hill–Clohessy–Wiltshire relative dynamics

In this paper, a virtual leader is used to design a reference
orbit for each satellite in the formation. There is no phys-
ical vehicle associated with the virtual leader; the virtual
leader represents a fictitious satellite where motion is propa-
gated through time according to a standard nonlinear motion
model. From the virtual leader, relative orbits can be gener-
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ated that define the nominal locations of each of the agents
within the virtual structure. The relative orbits are propagated
using the HCW equations [40–42].

The HCW dynamics are defined in the Local Vertical,
Local Horizontal (LVLH) frame with the origin defined to
be the location of the virtual leader. The x-axis of the LVLH
frame is defined to be along the position vector of the virtual
leader in the inertial frame, the z-axis is defined as the angular
momentum vector of the virtual leader, and the y-axis is used
to complete a right-handed coordinate system.

If the state is defined as x = [
x y z ẋ ẏ ż

]T
and the

control as u = [
ux uy uz

]T
, where the individual control

components represent the thrust accelerations of the system.
The HCW equations can be written in the state space form

ẋ = Ax + Bu, (1)

where

A =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3n2c 0 0 0 2nc 0
0 0 0 −2nc 0 0
0 0 −n2c 0 0 0

⎤

⎥⎥⎥⎥
⎥⎥
⎦

B =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, (2)

where nc is the mean motion of the virtual leader. An exact
discrete solution can be found as

xk+1 = ADxk + BDuk, AD = eA�t ,

BD = 0

(∫ �t

0
eA(�t−τ) dτ

)
B (3)

where �t is the discretized time-step, e is the matrix expo-
nential function, and uk is the control input, assumed to be
constant over the time-step. The resulting discretized HCW
matrices are

AD =
[
�rr �rv

�vr �vv

]
(4)

�rr =
⎡

⎣
4 − 3 cos nc�t 0 0

6(sin nc�t − nc�t) 1 0
0 0 cos nc�t

⎤

⎦ (5)

�rv =
⎡

⎢
⎣

1
nc

sin nc�t 2
n (1 − cos nc�t) 0

2
n (cos nc�t − 1) 1

n (4 sin nc�t − 3nc�t) 0
0 0 1

nc
sin nc�t

⎤

⎥
⎦ (6)

�vr =
⎡

⎣
3nc sin nc�t 0 0

6nc(cos nc�t − 1) 0 0
0 0 −nc sin nc�t

⎤

⎦ (7)

�vv =
⎡

⎣
cos nc�t 2 sin nc�t 0

−2 sin nc�t 4 cos nc�t − 3 0
0 0 cos nc�t

⎤

⎦ (8)

BD =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2
n2c

sin2 nc�t
2 − 2

n2c
(sin nc�t − nc�t) 0

2
n2c

(sin nc�t − nc�t) − 1
2n2c

(8 cos nc�t + 3n2c�t2 − 8) 0

0 0 2
n2c

sin2 nc�t
2

1
nc

sin nc�t − 1
nc

(2 cos nc�t − 2) 0

− 4
nc

sin2 nc�t
2

4
nc

sin nc�t − 3�t 0
0 0 1

nc
sin nc�t .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(9)

Note that AD matches the discrete transition matrix in
[42], while BD is derived using Eqs. (2) and (3)

2.2 Model predictive control

This section presents a brief primer on MPC to present the
basic idea and notation used throughout the sequel. A gen-
eral overview of MPC is given, followed by a linear system
representation and a discussion of the closed-loop stability.
The interested reader is referred to [43] for a thorough devel-
opment of MPC for linear systems.

2.2.1 General MPC overview

Optimal control is a tool often used within spaceflight design
to find the most fuel-efficient strategy to perform an in-space
maneuver. The basis for these dynamic optimization prob-
lems is a dynamic model that describes how the state x(k)
changes with time, assuming an initial condition x(0) and
control input u(k)

x(k + 1) = g(x(k), u(k)), x(0) = x0, (10)

where g(x, u) generally represents a nonlinear function.
The goal of the optimal control procedure is to find the

vector of inputs UN = [
u(0)T . . . u(N − 1)T

]T
, such that

the objective function is optimized over a time horizon. This
can be described by

min
UN

N−1∑

k=0

q(xk, uk) + p(xN )

s.t. xk+1 = g(x(k), u(k)), x(0) = x0

k = 1, 2, . . . , N

uk ∈ U k = 0, 1, 2, . . . , N − 1

xk ∈ X k = 1, 2, . . . , N ,

(11)

where the terms q(x, u) and p(x) represent the stage cost and
the terminal cost, respectively, the time horizon consists of
N steps, and the state and control at each step are constrained
to remain within some set of allowable values.

There are two problems that often occur when using
an optimal control solution in practice. First, even with
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optimization algorithms taking advantage of linearities and
convexities, a horizon time that is sufficiently large enough
to produce desirable convergence characteristics may prove
computationally prohibitive. Second, the model of the sys-
tem is usually inaccurate and the system may be impacted
by external disturbances that can cause it to diverge from
the predicted path. For this reason, the state is measured at a
future time-step, x(k + 1), and the optimal control problem
is solved again with the current measured state, x(k), set as
the initial condition. This process is referred to as MPC.

While MPC generally loses any guarantee of optimality,
it does provide the ability to express constraints, which is not
common in many feedback control solutions. Furthermore,
weights in the objective can provide intuitive “control knobs”
for tuning to the desired behavior.

2.2.2 Common objective functions for linear systemMPC

Common objective functions for linear systems include the
L2, L1, and L∞ norms as they can result in quadratic and lin-
ear programs. Given an initial state of x0, and a time horizon
of N intervals, the L2, or quadratic, objective function can
be written as

J (x, u) = 1

2
uT0 Ru0 + 1

2

N−1∑

k=1

[
xTk Qxk + uTk Ruk

]

+1

2
xTN PxN , (12)

where R, Q, and P are the weightings on control usage, state
error, and terminal error, respectively, and are described in
more detail in Appendix A.1. Similar formulations exist for
the L1 and L∞ objective functions.

The spacecraft control literature is flooded with control
strategies based on the L2 norm [44] where it appears that
there is an assumption that quadratic costs minimize propel-
lant consumption. This paper analyzes the L2, L1, and L∞
norms to evaluate if the L2 norm is indeed the lowest fuel
consuming approach and to evaluate the potential computa-
tional benefits in using the linear L1, or L∞ norms.

Further details on representing the L2 norm as a quadratic
programming problem, and the L1 and L∞ norms as linear
programming problems can be found in the Appendix.

2.2.3 A note on MPC stability

Like any feedback control technique, stability of the feed-
back can become a concern. Given Q and R, the terminal
cost of the system can be designed to ensure asymptotic sta-
bility of the MPC problem [43]. The terminal cost is chosen
to represent the cost-to-go of the unconstrained infinite hori-
zon problem for the L2 norm. The Discrete-time Algebraic

Riccati Equation (DARE) can be used to find the cost-to-go,
XT P∞X . The DARE is represented as

0 = A′P∞A − P∞ + Q

−A′P∞B(B ′P∞B + R)−1B ′P∞A, (13)

where the positive definite solution for P∞ is used.
The P∞ found solving theDARE is then used as thematrix

in the terminal cost, P , in the objective function, Eq. (12).
This guarantees asymptotic stability of the system for the L2

norm formulation [43].Note that A and Bmust be completely
controllable, R must be positive definite, and Q must be pos-
itive semi-definite and completely observable. For this work,
the weighting matrices Q and R are chosen using Bryson’s
Rule as described in Appendix A.1.

Similar formulations to represent the cost-to-go exist for
the L1 and L∞ cases [43].

2.3 Switching control

Switching controllers arise in many fields of applications
including spacecraft formation control [45]. Previous work
in the area of spacecraft formation flying switching strategies
was based on maintaining a maximum and minimum rela-
tive distances [19] or six-sided error boxes [24]. References
[35–38] developed an event-based system,where a corrective
maneuver was triggered when the position error of a space-
craft exceeded some threshold. Reference [24] used Linear
Programming (LP) to develop fuel-optimal control inputs
to maintain the satellite within some tolerance of the desired
state. To do this, Ref. [24] used three concentric boxes to gen-
erate the control. The error box limit was the largest box and
represented the position volume the spacecraft was required
to staywithin. The error box limit was not actually used in the
control design. A smaller box, the planning error box, was
used as a conservative constraint within the LP. The small-
est box was referred to as the planning trigger box. When
the state exceeded the planning trigger box, a plan would be
developed. The first half of the plan was then executed. If the
position still exceeded the planning error box after execut-
ing the first half of the plan, a new plan was made, the first
half executed, and the position reevaluated. This approach
is similar to a general MPC formulation, except that half of
the plan is executed and the system is allowed to drift if the
conditions are right.

Investigating the use of a sphere polygon as the constraint
in place of the six-side box was recommended in [24]. It is
possible that the six-sided error box constraint could give
initial conditions to the programming problem that result in
higher fuel costs, such as when a satellite is near the corner of
the error boxwith little room tomaneuver.Apolytope-shaped
constraint alleviates this concern. The current work presents
the development of two sphere-shaped polytope switching
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surfaces that are used to generate the switching conditions.
Adding a second switching surface also has the added benefit
of introducing hysteresis to the problem. The formulation of
these polytope constraints is discussed in detail in Sect. 3.1.
Further details on the switching strategies developed in this
work are presented in Sect. 3.3.

3 Approach

This section presents a detailed discussion of the polytope
boundary constraints, the objective functions, the MPC for-
mulations for the three different norm definitions, L1, L2,
and L∞, as well as the control switching scheme used for
this work. Change in velocity (�V ) is used as the metric to
compare the fuel savings of the different norms. These three
different norms are compared in terms of requisite compu-
tation time and total �V . A summary of the formulation of
the different norms is presented in this section with imple-
mentation details left to the Appendix. The results from the
comparison of these three norms are found in Sect. 4.

3.1 Convex polytope boundary constraints

Tomaintain a given satellite formation, operational boundary
constraints can be defined to force the state to stay within a
designated volume. This allows the spacecraft to drift while
also guaranteeing a given spacecraft stays in the required
location within the formation. At each time-step k, the des-
ignated volume is defined by a convex polytope consisting of
M faces where the position elements of the desired state xd,k

exist within the volume. The use of a convex polytope allows
for a high degree of freedom in the possible constraints and
for the formulation of the problem as a linear program. Each
of the M planes are defined by a point p and a normal vector
η̂ that is assumed to point toward the interior of the polytope.
Let r be any arbitrary point. If r is on the boarder or interior
of the polytope, then the dot product will satisfy

η̂ · (r − p) ≥ 0. (14)

A matrix constraint can be used to force the state xk , con-
sisting of three position and three velocity elements, to be
within the polytope defined at time k. This is formulated as

Apoly,kxk ≤ bpoly,k, (15)

where

Apoly,k =

⎡

⎢⎢⎢
⎣

−η̂T1,k 01×3

−η̂T2,k 01×3
...

...

−η̂TM,k 01×3

⎤

⎥⎥⎥
⎦

bpoly,k =

⎡

⎢⎢⎢
⎣

−η̂T1,kp1,k
−η̂T2,kp2,k

...

−η̂TM,kpM,k

⎤

⎥⎥⎥
⎦

(16)

with η̂i,k and pi,k being the normal and point associated with
the i th face of the polytope at time k. Note that this imple-
ments a zero-padded version of Eq. (14) which allows the
constraint to ignore the velocity.

For this work, the polytope is a close approximation of a
sphere, although the six-sided error box constraint used by
[24, 25] could also be accommodated. The spherical polytope
approximation is done by selecting points from a spherical
surface and using those for the vertices of the polytope. The
convex hull formed by these points is then found and each
face is used as a polytope face. At each simulation step, the
polytope is formed by adding the points pi,k to each position
along the desired trajectory of the agent.

3.2 Model predictive control formulation

This work implements a model predictive controller to cal-
culate the optimal control sequence for the case when the
agent reaches the polytope boundary. Previously, Ref. [22]
implemented an L2 norm, while [24] choose to implement
an L1 norm to the spacecraft formation flying problem. This
work implements L1, L2, and L∞ norm objective functions
with the goal of comparing the fuel savings.

If it is desired that the state, x , tracks a desired trajectory,
xd , then the error state xe = x − xd is driven to zero, and the
objective function described in Sect. 2.2 needs to be updated
to account for this. Note that, for this work, the desired trajec-
tory is the desired relative state of each agent and is initialized
using ROEs and converted to the LVLH frame using a pro-
cess discussed in [46]. The desired state for each agent is
updated using the HCW equations.

Using the desired state, the L2 objective function can be
written as

J (x, u) = 1

2
uT0 Ru0

+1

2

N−1∑

k=1

[
xTe,k Qxe,k − 2xTd,k Qxe,k + uTk Ruk

]

+1

2
xTe,N Pxe,N . (17)
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The optimization problem with the polytope constraint can
be written as

min
x,u

1

2
uT0 Ru0

+ 1

2

N−1∑

k=1

[
xTk Qxe,k − 2xTd,k Qxe,k + uTk Ruk

]

+ 1

2

(
xTe,N Pxe,N − 2xTd,N Pxe,N

)

s.t. xk+1 = ADxk + BDukk = 0, 1, . . . , N − 1

Apoly,kxk ≤ bpoly,kk = 1, 2, . . . , N

uk ≤ 1umaxk = 0, 1, 2, . . . , N − 1

uk ≥ −1umaxk = 0, 1, 2, . . . , N − 1. (18)

The constraints ensure that the dynamics are followed, keep
the spacecraft in the polytope, and limit the maximum and
minimum control accelerations.

The L1 objective function with xe is

J1 =
N−1∑

k=1

|Qxe,k |1 +
N−1∑

k=0

|Ruk |1 + |Pxe,N |1. (19)

The full optimization formulation with the polytope con-
straint for the L1 norm is then

min
x,u

N−1∑

k=1

|Qxe,k |1 +
N−1∑

k=0

|Ruk |1 + |Pxe,N |1

s.t. xk+1 = ADxk + BDuk k = 0, 1, . . . , N − 1

Apoly,kxk ≤ bpoly,k k = 1, 2, . . . , N

uk ≤ 1umax k = 0, 1, 2, . . . , N − 1

uk ≥ −1umax k = 0, 1, 2, . . . , N − 1.

(20)

The L∞ norm objective function with xe can be written as

J∞ =
N−1∑

k=1

|Qxe,k |∞ +
N−1∑

k=0

|Ruk |∞ + |Pxe,N |∞. (21)

The full optimization formulation with the polytope con-
straint for the L∞ norm is then

min
x,u

N−1∑

k=1

|Qxe,k |∞ +
N−1∑

k=0

|Ruk |∞ + |Pxe,N |∞

s.t. xk+1 = ADxk + BDuk k = 0, 1, . . . , N − 1

Apoly,kxk ≤ bpoly,k k = 1, 2, . . . , N

uk ≤ 1umax k = 0, 1, 2, . . . , N − 1

uk ≥ −1umax k = 0, 1, 2, . . . , N − 1.

(22)

Fig. 1 a Strategy 1:Using fewer largemaneuvers to control a spacecraft
to the center of a keep-in-volume; b Strategy 2: Using a large number
of smaller maneuvers to stay just inside the boundary of the keep-in-
volume

3.2.1 A comment on stability

As discussed in Sect. 2.2.3, the terminal cost is chosen to
represent the cost-to-go of the unconstrained infinite horizon
problem. This guarantees asymptotic stability of the system
[43]. For this work, the trajectory input is zero, the error state
is substituted for the normal state, and the error is driven to
zero. Thus, the same arguments for stability discussed in
Sect. 2.2.3 can be employed. The P∞ found from Eq. (13)
was used for each norm, and through simulation, the authors
found that it worked well for all norm cases.

3.3 Switching strategy

This paper creates and compares two formation flying oper-
ational control techniques with the goal of minimizing fuel
usage. The first strategy, Strategy 1, is designed to periodi-
cally uses large maneuvers to drive the position and velocity
error to near zero. The second strategy, Strategy 2, allows
the spacecraft to perform many small maneuvers to stay just
inside the boundary of the keep-in-volume. A depiction of
these two strategies is presented in Fig. 1.

A switching strategy is developed to determine when to
employ the MPC controller and when to allow the satel-
lite to coast. Fundamental to the switching conditions are
two spherical polytopes. A larger polytope, referred to as
the outer polytope, is used as the agent’s “keep-in-volume”.
If it is predicted that the spacecraft’s trajectory will leave
the outer polytope, then the control is turned on. A smaller
polytope, referred to as the inner polytope, is used as part
of the trigger that turns off the control when the spacecraft’s
predicted trajectory lies within it. For Strategy 2, the inner
polytope is set to have the same radius as the outer poly-
tope. This causes the control to only be on long enough to
keep the agent just inside the outer polytope. The outer and
inner polytope are depicted in Fig. 1. The inner polytope is
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also used in the design of the weighting matrix Q using the
radius for the first three elements in Bryson’s Method, as
described in Appendix A.1.

There are two advantages to using Bryson’s Method to
determine the Q and R weighting matrices. First, it provides
a balance, such that neither the state error nor control usage
is overly focused on to the detriment of the other. Second,
this method naturally guides the system to remain within the
state and control constraints. While explicit constraints are
still needed to guarantee that these bounds are not exceeded,
this does provide a way to link the dynamics and boundaries
to obtain more reasonable trajectories.

To determine if the spacecraft will leave a polytope, a drift
horizon Ndri f t is used. The spacecraft state is propagated
using the discrete form of the uncontrolled HCW equations
as

x̂k+1 = AD x̂k k = 0, . . . , Ndri f t − 1, (23)

where x̂k are the projected drift states of the spacecraft and x̂0
is the current estimate for the state of the spacecraft. Since
this propagation is used to determine the behavior of the
spacecraft once the controls are turned off, no control inputs
are used.

In each strategy, the information in Fig. 2 is used to deter-
minewhether to turn theMPCcontroller on or off. In addition
to the switching surfaces, a velocity check is used to com-
pare the velocity of the spacecraft at each point along the
drift trajectory with the desired trajectory. The velocity cut-
off condition is defined as

|v − vd |2 ≤ δv, (24)

where v is the current relative velocity, vd is the desired rel-
ative velocity, and δv is the allowable relative velocity error.
This velocity check causes the MPC to continue to operate
after the desired positional constraint is met to provide better
convergence to the desired trajectory. If a velocity check is
not desired, then δv can be set to∞ and is effectively ignored.
This is the case for Strategy 2 as the vehicle is far from the
desired state. When drifting, if any drift state is found to be
outside the outer polytope, the controller turns on. The con-
trol remains on until all the drift states are found to be within
the inner polytope and the velocity check is met. Note that in
Fig. 2, the variables with primes indicate the inner polytope.

This work presents two sphere-shaped convex polytope
switching surfaces that are used to develop switching condi-
tions. The use of a sphere-shaped switching surface avoids
the case where the spacecraft is near the corner of the error
box. Also by adding a second surface to the switching strat-
egy, hysteresis is added to the problem, adding robustness to
the system [47].

MPC ActiveNo Control

∃ k s.t. Apoly,kx̂ �≤ bpoly,k for k ∈ {0, 1, . . . , Ndrift}

A′
poly,kx̂ ≤ b′

poly,k ∀ k ∈ {0, 1, . . . , Ndrift}
|vk − vd|2 ≤ δv ∀ k ∈ {0, 1, . . . , Ndrift}

Fig. 2 Transitions between MPC control states. Primes indicate the
inner polytope variables

4 Numerical simulation

This section discusses the implementation of the MPC and
switching surfaces discussed in the previous sections. A
discussion of the simulation is discussed followed by an eval-
uation of the control trajectories, comparison of computation
time of the different norms, discussion of the control usage,
and a comparison of the �V usages.

4.1 Simulation overview

For each formation, the virtual leader’s initial state is defined
using Keplerian orbital elements and then converted to a
Cartesian Earth Centered Inertial (ECI) state. The actual and
desired location of the agent in the formation are initialized
using D’Amico’s ROEs [48]. The ROEs are first converted to
inertial orbital elements using the leader as a reference, and
then to ECI coordinates [46]. Those ECI coordinates are then
converted to LVLH coordinates, again using the leader as the
reference. The advantage to using ROEs to define the initial
states of the agent is that they offer a more intuitive under-
standing of the relative motion when compared to Cartesian
coordinates.

The true states for the leader and agents are propagated
using the nonlinear dynamics

Fd = −1

2
ρCd A|vrel |vrel 1

m
(25)

FJ2 = 3

2

J2μR2

r4

[
x

r

(
5
z2
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− 1

)
î

+ y

r

(
5
z2

r2
− 1

)
ĵ + z

r

(
5
z2

r2
− 3

)
k̂

]
(26)

ṙ = v (27)

v̇ = −μ
r

|r |32
+ FJ2 + Fd + u, (28)
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where Fd is the force due to drag, FJ2 is the force due to the J2
perturbation [42], and u is the calculated control acceleration,
applied as a zero-order hold.

The drag force is a simplified model where the air density,
ρ, is determined by interpolating the altitude against selected
values in the US Standard Atmosphere 1976model [49]. The
relative velocity of the spacecraft to the Earth’s atmosphere,
vrel is calculated as [42]

vrel = v − ω × r , (29)

where the Earth’s rotation, ω, is assumed to be entirely in
the k̂ direction. The coefficient of drag, Cd , and spacecraft
area, A, are parameters for the spacecraft and held constant
during the simulation. The virtual leader is assumed to only
be affected by the J2 perturbations and not by drag, while the
agent spacecraft are all affected by both J2 and drag. Note
that while the example given is for a circular orbit including
J2, this method can also be applied to elliptical orbits and
orbits with higher order perturbation terms.

The desired and drift trajectories are propagated using the
HCW equations. Since the desired trajectory is compared
against the drift trajectory and used in the MPC calcula-
tions, it is projected forward a number of steps equal to
max(Ndri f t , NMPC ). The drift trajectory is projected for-
ward Ndri f t steps using the HCW equations and each agent
spacecraft’s current relative LVLH state. At each time-step
of the desired trajectory, the inner and outer polytopes are
applied. The desired trajectory is centered on the desired
position at the time-step in question, and compared to the
corresponding time-step on the drift trajectory. The control
state is then changed as described in Sect. 3.3.

The control is calculated in the LVLH frame as an accel-
eration using one of the formulations described in Sect. 3.2
and then converted to the ECI frame where it is used to prop-
agate the state forward. This acceleration is converted to a
force using the current mass of the spacecraft to ensure that
it is within the limits of the available thrust and then applied
to the dynamics as indicated above. From the acceleration,
the mass flowrate is calculated as

ṁ = ||u||1m
g0 Isp

, (30)

where u ∈ R3 is the control acceleration, m is the current
mass, g0 is standard gravity, and Isp is the specific impulse.
The simulation then repeats, as seen in Algorithm 1, until a
predesignated cut-off time is reached.

An example of the desired and actual trajectories of the
agent spacecraft is shown in Fig. 3. Although the agent is
always near the desired trajectory, the actual trajectory shows
noticeable deviations as it drifts due to perturbations and
course corrects. A single moment from the simulation can

Algorithm 1 Simulation structure
Initialize spacecraft states
Compute relative LVLH states
control_on ← f alse
for Each Simulation Step do

Propagate drift trajectory, x̂k ,
Propagate polytopes
if ∃ x̂k is outside the Outer Polytope then

control_on ← true

if ∀ x̂k inside Inner Polytope and Velocity constraint met then
control_on ← f alse

if control_on then
Calculate u with MPC

Propagate true states

Fig. 3 Desired and actual spacecraft trajectories shown in the LVLH
frame

Fig. 4 The current inner and outer polytope volumes are shown with
the desired and predicted future trajectories in red and blue, respectively

be seen in Fig. 4. Figure4 shows the current inner and outer
polytopes as well as the current desired and actual positions,
shown as red and blue asterisks, respectively.

4.1.1 Simulation parameters

A scenario based on a standard 12U CubeSat design built
by the Space Dynamics Laboratory for formation flying mis-
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Table 1 Parameters for simulation

Parameter Value

Spacecraft mass 24kg

Spacecraft CD 2.2

Spacecraft area to mass 0.001m2/kg

Spacecraft thrust 0.5N

Simulation time-step 10s

Simulation time-steps 8640 (86,400s)

MPC horizon 60 steps (600s)

Drift horizon 15 steps (150s)

Table 2 Reference orbit of the virtual leader

Keplerian orbital element Value

Semi-major axis 6878km

Eccentricity 1 × 10−4

Inclination 25◦

RAAN 45◦

Argument of perigee 0◦

Initial true anomaly 100◦

sions was used to evaluate the MPC developed in Sect. 3.
umax is set as the maximum allowed acceleration based on
the values in Table 1. zmax is set as the radius of the inner
polytope for position terms and set as zero for velocity terms.
Each strategy was tested over multiple outer polytope sizes
which ranged in radius from 200 to 1000m in increments of
50m. An inner polytope radius of 100m and a velocity cutoff
of 0.06m/s was used for Strategy 1.

The virtual leader reference orbit is a near circular Low
Earth Orbit (LEO) orbit with the parameters shown in Table
2. The physical characteristics and the simulation parameters
used in thiswork are shown inTable 1. The propulsion system
modeled in this work is based on the hybrid system described
in [50]. It is assumed that the spacecraft propulsion system
is able to provide a thrust of up to 0.5N along any three
orthogonal axes and that the thrust is throttleable up to the
maximum thrust of 0.5N.

As shown in Table 1, the simulation uses a fixed time step
of 10s. The size of the time-step constrains the time the con-
trol must be on. And although, in many situations, a pure
impulsive maneuver is the optimal solution, in practice, any
maneuver that is≤ 12%of the orbit period is near identical in
performance to an impulsivemaneuver. In addition, the dura-
tion of this time-step can be adjusted to offer the spacecraft
operator a more refined maneuver if desired.

Table 3 Relative orbital elements for the desired agent trajectory

ROE element Spacecraft 1 Spacecraft 2 Spacecraft 3

δa 0 0 0

δλ 0 3 × 10−3 −3 × 10−3

δex 3 × 10−3 3 × 10−3 3 × 10−3

δey 3 × 10−4 3 × 10−4 3 × 10−4

δix 1 × 10−4 1 × 10−4 1 × 10−4

δiy 0 0 0

4.2 Computation time

The computation time for each of the three norms was evalu-
ated as the time horizon of theMPC increases. For each norm
definition, a series of trialswith the timehorizon ranging from
1 to 150 steps was performed. In each trial, the spacecraft
was initialized according to the parameters in Tables 1 and 3
with the exception that the simulations were only run for 120
steps, or 1200s, so that a broader range of horizons could
be tested in a reasonable time. Additionally, only an outer
polytope radius of 800m was employed. Data were only col-
lected when the MPC was active and so does not include any
computation times of 0 s when the controller was not used.

In the results for both Strategy 1, Fig. 5, and Strategy 2,
Fig. 6, the L2 computation time is much lower than either
the L1 or L∞ norm. This is, however, dependent on the
approach takenwith implementing the optimization. Initially,
the L2 time was higher, but scaling the optimization problem
showed a drastic decrease in computation time. As would
be expected, there is an increase in computation time for all
norm definitions as the length of the MPC horizon increases.
The minimum and maximum computation times for each of
the norms are shown in Table 4.

One thing to notice is that for L2, the Strategy 2 computa-
tion times are generally higher than Strategy 1 for a given
MPC horizon. This is due, in part, to the fact that Strat-
egy 2 cycles between the controller on and off states more
frequently than Strategy 1. For both strategies, when the con-
troller activated it does not have ameaningful initial solution.
However, for subsequent iterations, the controller can use
the previous solution to warm start the solver and reduce
the computation time. Since Strategy 2 cycles the controller
more often, it is frequently re-initializing the solver, while
the controller for Strategy 1 is generally active for several
consecutive simulation steps.

4.3 Strategy trajectory evaluation

Wenowshow that the switching strategies achieve the desired
behaviors depicted in Fig. 1. Figures7 and 8 show example
trajectories produced using the switching strategies with an
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Fig. 5 Computation time required for planning a single simulation step
for the various norm definitions when using Strategy 1

Fig. 6 Computation time required for planning a single simulation step
for the various norm definitions when using Strategy 2

outer radius of 800m using the L1 norm. The L2 and L∞
norms gave similar results but are not presented.

The figures are shown in an LVLH frame centered on the
desired trajectory, so the displayed line indicates the per-
turbed trajectory of the spacecraft, relative to the desired.
Each simulation is initializedwith a random initial state, indi-
cated by the blue dot with the outer polytope shown in blue
and the inner polytope shown in light green. For Strategy 2,
the inner and outer polytopes are identical, so only the inner
polytope is seen.

In Fig. 7, the spacecraft trajectory is shown using Strategy
1. It is initialized just outside the outer polytope, but, once it
guides itself within the polytope, it is able to remain inside.
It executes a number of loops where it returns to the center of
the polytope once it reaches the boundary and then turns off
the control until it nears the outer polytope as its drift becomes
too severe. As seen in the cross track, along track, and radial-
cross track plots (Fig. 7b, c, respectively), the motion exists
almost exclusively in the along track axis with only minor
deviations in the radial direction.

Contrastingly, with Strategy 2, the spacecraft initially
moves in a large loop in the along track-radial plane (Fig. 8a)
but eventually ends up maintaining a position just along the
edge of the outer polytope. As seen in Fig. 8b, c, the motion,
like with Strategy 1, is almost entirely in the radial and along
track dimensions.

The magnitude of the spacecraft position error is shown
in Fig. 9a for Strategy 1 and Fig. 9b for Strategy 2. In Strat-
egy 1, there is a dramatic drop in the error as the spacecraft
maneuvers back to the center of the inner polytope and the
controller turns off. The spacecraft continues to undergo a
cycle of drifting and correcting, although the period of the
cycles is not entirely consistent. The smaller oscillations are
a result of the dynamics slowing moving the spacecraft away
from the desired trajectory, while the sharp drops in error are
the result of the controls. Some of the steep drops in error,
due to the control, are followed by nearly equally steep rises
in error. This is a result of the spacecraft not matching the
desired trajectory and quickly drifting away from it, since the
closer the spacecraft is to the desired trajectory, the smaller
the perturbations are between the two.

Table 4 Computation time
comparisons

Norm Strategy Min computation time (s) Max computation time (s)

L1 1 0.016 ± 0.003 2.128 ± 1.029

2 0.019 ± 0.005 2.258 ± 0.916

L2 1 0.004 ± 0.001 0.293 ± 0.153

2 0.005 ± 0.002 0.466 ± 0.359

L∞ 1 0.016 ± 0.003 2.284 ± 5.979

2 0.018 ± 0.004 1.759 ± 0.573
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Fig. 7 Strategy 1 trajectory for the L1 norm

Fig. 8 Strategy 2 trajectory for the L1 norm

Fig. 9 Position error for Strategy 1 (a) and 2 (b) using the L1 norm
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Fig. 10 �V usage for Strategy 1 (a) and 2 (c) using the L1 norm with highlighted sections expanded in (b) and (d), respectively

With Strategy 2 (Fig. 9b), there is also a significant initial
drop in the position error where the control places the space-
craft on an unpowered course that passes near the desired
trajectory. However, Strategy 2 allows the spacecraft to con-
tinue to drift until it again reaches the boundary of the outer
polytope.However, after this, the error is roughly constant for
the remainder of the simulation, as the spacecraft stays near
the boundary. There continues to be variations in the error
but with much smaller magnitude and more regular periods
than seen in Strategy 1.

4.4 Control usage

An example of the control usage for both strategies is shown
in Fig. 10 where the �V usage over time is plotted for the
example trajectories shown in Figs. 7 and 8. The full time his-
tory is shown in Fig. 10a, c for Strategy 1 and 2, respectively,
while Fig. 10b, d expands the indicated time segments for a
more detailed examination of the control usage. With Strat-
egy 1 (Fig. 10a, b), the periods where the control is active are
relatively infrequent but can span several minutes. If these
plots are compared to the error plot (Fig. 9a), the correlation
between the �V usage and the drop in error can be seen.
While the small oscillations in error are due to the natural
dynamics of the spacecraft, the sharp drops that occur after
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Fig. 11 Number of maneuvers used in Strategy 1 (a) and 2 (b)

Fig. 12 Average �V per maneuver in Strategy 1 (a) and 2 (b)

the error exceeds roughly 750m are the direct result of the
control usage.

The �V usage for Strategy 2 (Fig. 10c, d) seems, at first
glance, to be continuous. However, when examining the
detailed section (Fig. 10d), it is clear that while the control
usage is quite regular, it is not constant. The instances of
control usage are approximately 1 simulation step in dura-
tion and separated by about 7–10 simulation steps where no
control is applied. As seen in the error plot (Fig. 9b), apart
from a sudden drop in error at the start of the simulation, the

control used is just enough to keep the error in the 700–800m
range.

4.5 Comparison analysis of varying polytope size

To examine the impact of the polytope sizes, simulations
were run with outer polytopes ranging from 200 to 1000m in
increments of 50m.Control usagewas tracked acrossmaneu-
vers where each maneuver is defined as a period beginning
when the control turns on and ending when it turns off, or
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Fig. 13 Total �V used in Strategy 1 (a) and 2 (b)

one loop through the state diagram in Fig. 2. Additionally, the
number of maneuvers for each simulation is tracked, as well
as the total�V used over the full simulation. Each simulation
was run for a duration of 1 day with the parameters indicated
previously (Tables 1, 2, and 3). Each simulation run has three
spacecraft in formation, all with identical parameters other
than the desired orbit. The results present the average of the
three spacecraft in each formation for each outer sphere size.

In Fig. 11a, b, the number of maneuvers for each simula-
tion is shown. In each case, simulations using Strategy 2 used
significantlymoremaneuvers than those using Strategy 1, for
an identical outer polytope size. For Strategy 1, the decrease
in number of maneuvers with polytope size is due to the fact
that it takes longer for the spacecraft to drift back out to the
polytope. The number of maneuvers needed for Strategy 2
generally increases as the polytope size increases for the L1

or L2 norms which is to be expected, since hovering at the
boundary requires a large number of small maneuvers.

The increasing number of maneuvers needed can be
explained by considering the relative dynamics of the agent
and virtual leader as a function of the distance between the
two. When the agent and leader are close, their dynamics
are very similar and the relative drift between them is small.
However, as they separate, the dynamics diverge and the drift
effects are magnified. Thus, when hovering at the boundary
of a larger polytope, the agent drifts out of bounds faster and
needs more frequent control usage. Further investigation is
required to understandwhy amonotonically increasing value
is not seen in the L∞ norm case.

Figure12a, b presents the average �V per maneuver as
a function of increasing polytope size. Strategy 1’s con-

trol usage increases as the polytope sizes increase primarily
because the larger keep-in volume requires a longer burn
duration to return to the center. Strategy 2 uses significantly
less control per maneuver, and while there is a slight increase
in control usage as the polytope size gets larger, it is signifi-
cantly less pronounced than what is seen in Strategy 1.While
the increase in Strategy 1 is primarily due to the lengthened
burn duration, the increase in Strategy 2’s�V usage is due to
the fact that as the spacecraft moves further from the desired
trajectory the magnitude of the relative perturbing forces
increases and requires an equivalent increase in the control.
For both strategies, the L1 and L2 norms show roughly equiv-
alent performance, while the L∞ norm is notably higher.

The average total �V used over the course of the sim-
ulation can be seen in Fig. 13a, b. This metric shows the
combined effect of the number of maneuvers and the �V
used on each maneuver. For Strategy 1, there is a small rise
in the total�V as the polytope size increase. However, there
is also a large degree of variability which makes understand-
ing individual trends difficult. Strategy 2 has a more defined
trend for the L1 and L2 norms where the total �V increases
with the polytope size. For the L∞ norm, there is not a clearly
defined trend and the control usage appears less predictable.
The results show that using the L1 or L2 norms result in lower
control usagewhen staying close to the desired trajectory and
changes consistently when increasing the allowable distance
from that trajectory.

When comparing the strategies, Strategy 1 shows notable
improvement over Strategy 2 in terms of overall �V usage,
especially as the outer polytope size increases. It should be
noted that many operational constraints seen in practice, but
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ignored for this analysis, would also favor using Strategy
1. For example, realistic engine throttling, required engine
cool-down periods, and mission requirements would limit
the applicability of Strategy 2 since continual minor thrust
impulses may not be practical.

Comparing the different norm definitions, the L1 norm
seems to provide the best performance when implementing
either of these strategies since it’s overall�V usage is lower,
and more consistent, than the other norms.

5 Conclusion

This paper presents an MPC-based control scheme that is
used in conjunction with two polytope switching surfaces,
and the HCW equations, to maintain a desired trajectory
while also allowing freedom to maneuver within the allow-
able bounds. The operational polytope switching surfaces
enable the predictive framework of the MPC to be used to
maintain flight safety and achieve mission formation. The
surfaces are designed, such that multiple agents can be flown
in a single formationwith nooverlapping regions.This allows
the vehicles to execute avoidance strategies without contin-
ually maintaining the trajectories of other agents. The MPC
framework combined with the polytope switching surfaces
enables a scalable method for clusters of satellites to coordi-
nate and safely achievemission objectives, whileminimizing
fuel usage.

Numerical simulations show that the control formulation
is able to maintain its position within the polytope volume.
This work shows a comparison of two operational control
strategies that can be implemented, without the sharing of
state information between spacecraft. A comparison of the
number of maneuvers required for the two control strategies
and the total �V usage is presented. This paper shows that,
in general, the lower total �V option is a strategy where
the controller commands the spacecraft to the center of the
keep-in-volume, Strategy 1. This paper also shows that if a
lower amount of fuel per maneuver is required, then a strat-
egy where the controller keeps the spacecraft just inside the
boundary, Strategy 2, is preferable. This paper also presents
and compares the formulation of using L1, L2, and L∞ norm
objective functions for the MPC where, in general, the L1

and L2 norms require the least amount of fuel usage.
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A Appendix

A.1 Bryson’s method

Bryson’s method is a simple method for getting a reasonable
choice of the Q and R matrices [51], where the diagonal
elements are selected as

Qi j =
⎧
⎨

⎩

1
z2i,max

i = j

0 i �= j
i, j ∈ 1, . . . , 
 (31)

Ri j =
⎧
⎨

⎩

1
u2i,max

i = j

0 i �= j
i, j ∈ 1, . . . , k, (32)

where zi,max is the maximum desired deviation for the i th

state element and ui,max is the maximum desired control for
the ith control element. This effectively normalizes or nondi-
mensionalizes the optimization problem, so that the states
and controls are equally balanced. The choice of Q and R
guide, but do not constrain, the evolution of the state error and
control usage, and without other constraints, there is no guar-
antee that the zi,max and ui,max values will not be exceeded.

For the L2 norm, the cost function is related to the square
of the control and error states, as shown in Eqs. (31) and (32).
For the L1 and L∞ norms, the cost functions are related to the
absolute value and so Bryson’s method as described above
will need to be modified. To normalize the cost function to
roughly match the L2 objective, the Q and R weights are set
as

Q∞,i j =
{

1
|zi,max| i = j

0 i �= j
i, j ∈ 1, . . . , 
 (33)

R∞,i j =
{

1
|ui,max| i = j

0 i �= j
i, j ∈ 1, . . . , 
. (34)

For this paper, Q∞,i j and R∞,i j are used to represent
the state error and control usage weights for the L∞ and L1

formulations.

A.2 L1 formulation

The L1 norm is based on work from Borrelli, Bemporad, and
Morari [43]. By introducing the variables εxk and εuk , such
that

εxk = [
εxk,1 εxk,2 . . . εxk,n

]T
(35)

εuk = [
εuk,1 εuk,2 . . . εuk,m

]T
(36)
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into the the objective function for the L1, the L1 objective
function can be written as

J1 =
N∑

k=1

n∑

j=1

εxk, j +
N−1∑

k=0

m∑

j=1

εuk, j (37)

with constraints formulated as

−εxk ≤ Qxe,k, k = 1, 2, . . . , N − 1

−εxk ≤ −Qxe,k, k = 1, 2, . . . , N − 1

−εxN ≤ Pxe,N
−εxN ≤ −Pxe,N
−εuk ≤ Ruk k = 0, 1, . . . , N − 1

−εuk ≤ −Ruk k = 0, 1, . . . , N − 1,

(38)

where each inequality is evaluated element-wise. The con-
straints allow each element of the ε vectors to be individually
adjusted to find the minimum possible value while not
decreasing any further than the weighted errors or controls
allow. The use of two constraints with each ε, one positive
and one negative, forces each ε value to be positive, consis-
tent with the L1 norm definition.

The full optimization formulation with the polytope con-
straint for the L1 norm is then

min
ε

N∑

k=1

n∑

j=1

εxk, j +
N−1∑

k=0

m∑

j=1

εuk, j

s.t. xk+1 = ADxk + BDuk k = 1, 2, . . . , N

Apoly,kxk ≤ bpoly,k k = 1, 2, . . . , N

εxk + Qxk ≥ Qxd,k k = 1, 2, . . . , N − 1

εxk − Qxk ≥ −Qxd,k k = 1, 2, . . . , N − 1

εxN + PxN ≥ Sxd,N

εxN − PxN ≥ −Sxd,N

εuk + Ruk ≥ 0 k = 0, 1, . . . , N − 1

εuk − Ruk ≥ 0 k = 0, 1, . . . , N − 1

uk ≤ 1umax k = 0, 1, 2, . . . , N − 1

uk ≥ −1umax k = 0, 1, 2, . . . , N − 1,

(39)

where the xe terms have been expanded using the relationship
xe = x − xd . To be implemented as a linear problem, the
following batch procession formulation is used. The L1 norm
optimal control has an objective function of

J1(ξ1) = qT1 ξ1 (40)

with

q1 = [
01×nN 01×mN 11×nN 11×mN

]
. (41)

The control variables are

ξ1 =
[
xT1 . . . xTN uT0 . . . uTN−1 (εx1)

T . . .

(εxN )T (εu0)
T . . . (εuN−1)

T
]T

. (42)

The overall constraint formulation

bx1,lb ≤ Ax
1ξ1 ≤ bx1,ub

bu1,lb ≤ Au
1ξ1 ≤ bu1,ub

(43)

is functionally identical to the L∞ norm but with thematrices
defined as

Ax
1 =

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

Q1 0n×n . . . 0n×n 0n×mN In×n 0n×n . . . 0n×n 0n×mN
−Q1 0n×n . . . 0n×n 0n×mN In×n 0n×n . . . 0n×n 0n×mN
0n×n Q1 . . . 0n×n 0n×mN 0n×n In×n . . . 0n×n 0n×mN
0n×n −Q1 . . . 0n×n 0n×mN 0n×n In×n . . . 0n×n 0n×mN

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0n×n 0n×n . . . P1 0n×mN 0n×n 0n×n . . . In×n 0n×mN
0n×n 0n×n . . . −P1 0n×mN 0n×n 0n×n . . . In×n 0n×mN

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

(44)

Au
1 =

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

0m×nN R1 0m×m . . . 0m×m 0m×nN Im×m 0m×m . . . 0m×m
0m×nN −R1 0m×m . . . 0m×m 0m×nN Im×m 0m×m . . . 0m×m
0m×nN 0m×m R1 . . . 0m×m 0m×nN 0m×m Im×m . . . 0m×m
0m×nN 0m×m −R1 . . . 0m×m 0m×nN 0m×m Im×m . . . 0m×m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0m×nN 0m×m 0m×m . . . R1 0m×nN 0m×m 0m×m . . . Im×m
0m×nN 0m×m 0m×m . . . −R 0m×nN 0m×m 0m×m . . . Im×m

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

(45)

bx1,ub = [∞ ∞ . . . ∞ ]T
(46)

bx1,lb =
[

(Q1xd,1)
T (−Q1xd,1)

T . . . (P1xd,N )T

(−P1xd,N )T

]T

(47)

bu1,ub = [∞ ∞ . . . ∞ ]T
(48)

bu1,lb = [
0 0 . . . 0

]T
. (49)

The weighting matrices Q1, R1, and P1 are initialized iden-
tically to the weighting matrices in the L∞ formulation.

The dynamic and boundary constraints are the same as
the L∞ matrices but with the final columns of zeros sized to
match the new input matrix.
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A1,dyn = [
A1,1 A1,2 A1,3 A1,4

]

A1,1 =

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

−In×n 0n×n . . . . . . 0n×n

A −In×n 0n×n . . .
.
.
.

0n×n
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0n×n
0n×n . . . 0n×n A −In×n

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

A1,2 =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

B 0n×m . . . . . . 0n×m

0n×m B
.
.
.

.

.

.
. . .

.

.

.

.

.

.
. . . 0n×m

0n×m . . . . . . 0n×m B

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

A1,3 =

⎡

⎢⎢
⎢
⎣

0n×nN
0n×nN

. . .

. . .

0n×nN

⎤

⎥⎥
⎥
⎦

A1,4 =

⎡

⎢⎢
⎢
⎣

0n×mN
0n×mN

. . .

. . .

0n×mN

⎤

⎥⎥
⎥
⎦

(50)

b1,dyn = [
(−Ax0)T 0Tn×1 . . . 0Tn×1

]T (51)

A1,bound

=

⎡

⎢⎢⎢
⎣

Apoly,1 0?×n . . . 0?×n 0?×n . . . 0?×n 0?×nN 0?×mN
0?×n Apoly,2 . . . 0?×n 0?×n . . . 0?×n 0?×nN 0?×mN

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0?×n 0?×n . . . Apoly,N 0?×n . . . 0?×n 0?×nN 0?×mN

⎤

⎥⎥⎥
⎦

(52)

b1,bound = [
b1 b2 . . . bN

]T
. (53)

Since eachApoly,k polytope boundary matrix can have a dif-
ferent number of rows, each matrix of zeros in A1,bound has
a variable number of rows, as indicated by the “?" subscript.

A.3 L2 norm formulation

The derivation and mathematical expression for propellant
usage is traditionally based on the L2 norm as shown below

ṁ = || T ||2
Ve

, (54)

where ṁ is the propellant mass flow rate, T is the thrust
vector, or the control input u shown in Eq. (1), and Ve is the
exhaust velocity of the engine [42]. The overall propellant

usage of the engine for a given maneuver can be calculated
by

�m =
∫ t f

t0
ṁ dt =

∫ t f

t0

|| T ||2
Ve

dt . (55)

Given an initial state of x0, and a time horizon of N intervals,
the quadratic objective function can be written as

J (x, u) = 1

2
uT0 Ru0

+1

2

N−1∑

k=1

[
xTk Qxk + uTk Ruk

]
+ 1

2
xTN PxN (56)

subject to

xk+1 = Axk + Buk, (57)

where R, Q, and P are the weightings on control usage, state
error, and terminal error, respectively. This objective function
will regulate x to zero. A small change to the standard for-
mulation used her in is driving the state to a desired value
instead of the origin. The error state is defined as

xe = x − xd . (58)

The desired trajectory xd is the relative state, converted to
the LVLH frame. The desired state for each agent is updated
using the HCWequations. Using the error state, the objective
function is updated to

J (x, u) = 1

2
uT0 Ru0

+1

2

N−1∑

k=1

[
xTe,k Qxe,k + uTk Ruk

]
+ 1

2
xTN Pxe,N ;

(59)

assuming that the cost matrices are symmetrical, Eq. (59) can
be expressed as

J (x, u) = 1

2
uT0 Ru0

+ 1

2

N−1∑

k=1

[
xTk Qxk − 2xTd,k Qxk + xTd,k Qxd,k + uTk Ruk

]

+ 1

2

(
xTN PxN − 2xTd,N PxN + xTd,N Pxd,N

)
.

(60)

Since any constant termswill only change the overallmag-
nitude of the objective function and not the location of the
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minimum, the constants can be ignored. This results in

J2(x, u) = 1

2
uT0 Ru0 + 1

2

N−1∑

k=1

[
xTk Qxk − 2xTd,k Qxk + uTk Ruk

]

+ 1

2

(
xTN PxN − 2xTd,N PxN

)
.

(61)

This results in the optimization problem with the polytope
constraint

min
x,u

1

2
uT0 Ru0 + 1

2

N−1∑

k=1

[
xTk Qxk − 2xTd,k Qxk + uTk Ruk

]

+ 1

2

(
xTN PxN − 2xTd,N PxN

)

s.t. xk+1 = ADxk + BDuk k = 1, 2, . . . , N

Apoly,kxk ≤ bpoly,k k = 1, 2, . . . , N

uk ≤ 1umax k = 0, 1, 2, . . . , N − 1

uk ≥ −1umax k = 0, 1, 2, . . . , N − 1.

(62)

The constraints ensure the dynamics are followed, keep the
spacecraft in the polytope, and limit the maximum and min-
imum control accelerations. If the state is modified to be a
combination ξ2 of the states and controls as

ξ2 = [
x1 x2 . . . xN u0 u1 . . . uN−1

]T
, (63)

where N is the number of steps in the MPC time horizon,
and then, the objective function can be rewritten as

J2(ξ2) = 1

2
ξ T2 Hξ2 + qT2 ξ2. (64)

The quadratic cost matrix H is defined to be

H =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

Hx,1 0 . . . . . . . . . . . . . . . 0

0 Hx,2
...

...
. . .

...
... Hx,N

...
... Hu,0

...
... Hu,1

...
...

. . .
...

0 . . . . . . . . . . . . . . . . . . Hu,N−1

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

, (65)

and the linear cost vector q2 is defined as

q2 = [
c1 . . . cN 0 . . . 0

]T
(66)

with

Hx,k = Q k = 1, . . . , N − 1

Hx,N = P

Hu,k = R k = 0, . . . , N − 1

ck = −Hx,kxd,k k = 1, . . . , N .

(67)

Given ξ2, the dynamic constraints can be formulated as

Aeqξ2 = beq (68)

with

Aeq =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

−I 0 . . . . . . 0 B 0 . . . . . . 0

A −I 0 . . .
... 0 B

...

0
. . .

. . .
...

...
. . .

...
...

. . .
. . . 0

...
. . . 0

0 . . . 0 A −I 0 . . . . . . 0 B

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

(69)

beq = [−Ax0 0 . . . 0
]T

, (70)

where A and B are the state transition and control matrices,
respectively, as described in Sect. 2.1, and x0 is the initial
state of the system.

A.4 L∞ norm formulation

The L∞ norm optimal control has an objective function of

J∞ = εx1,∞ + . . . + εxN ,∞ + . . . + εu0,∞ + . . . + εuN−1,∞
(71)

with the constraints

−1εxk,∞ ≤ Qxe,k, k = 1, 2, . . . , N − 1

−1εxk,∞ ≤ −Qxe,k, k = 1, 2, . . . , N − 1

−1εxN ,∞ ≤ Pxe,N

−1εxN ,∞ ≤ −Pxe,N

−1εuk,∞ ≤ Ruk k = 0, 1, . . . , N − 1

−1εuk,∞ ≤ −Ruk k = 0, 1, . . . , N − 1,

(72)

where 1 = [
1 1 . . . 1

]T
, all inequalities are evaluated

element-wise, and each ε∞ is a scalar value. This works
similarly to the L1 formulation except that since the ε values
are now scalars, only the weighted error or control with the
highestmagnitude is counted, in accordancewith theL∞ def-
inition. Substituting in the definition for xe and rearranging
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give

1εxk,∞ + Qxk ≥ Qxd,k k = 1, 2, . . . , N − 1

1εxk,∞ − Qxk ≥ −Qxd,k k = 1, 2, . . . , N − 1

1εxN ,∞ + SxN ≥ Sxd,N

1εxN ,∞ − SxN ≥ −Sxd,N

1εuk,∞ + Ruk ≥ 0 k = 0, 1, . . . , N − 1

1εuk,∞ − Ruk ≥ 0 k = 0, 1, . . . , N − 1.

(73)

The full optimization formulation with the polytope con-
straint for the L∞ norm is then

min
ε∞

εx1,∞ + . . . + εxN ,∞ + . . . + εu0,∞ + . . . + εuN−1,∞

s.t. xk+1 = ADxk + BDuk k = 1, 2, . . . , N

Apoly,kxk ≤ bpoly,k k = 1, 2, . . . , N

1εxk,∞ + Qxk ≥ Qxd,k k = 1, 2, . . . , N − 1

1εxk,∞ − Qxk ≥ −Qxd,k k = 1, 2, . . . , N − 1

1εxN ,∞ + SxN ≥ Sxd,N

1εxN ,∞ − SxN ≥ −Sxd,N

1εuk,∞ + Ruk ≥ 0 k = 0, 1, . . . , N − 1

1εuk,∞ − Ruk ≥ 0 k = 0, 1, . . . , N − 1

uk ≤ 1umax k = 0, 1, 2, . . . , N − 1

uk ≥ −1umax k = 0, 1, 2, . . . , N − 1.

(74)

The batch processing formulation becomes

J∞(ξ∞) = qT∞ξ∞, (75)

where

q∞ = [
01×nN 01×mN 11×N 11×N

]T
, (76)

and the control variables are

ξ∞ =
[
xT1 . . . xTN uT0 . . . uTN−1 (εx1 )T . . .

(εxN )T (εu0 )T . . . (εuN−1)
T

]T

.

(77)

The constraints for ε are formulated as

bx∞,lb ≤ Ax∞ξ∞ ≤ bx∞,ub

bu∞,lb ≤ Au∞ξ∞ ≤ bu∞,ub,
(78)

where

Ax∞ =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

Q∞ 0n×n . . . 0n×n 0n×mN 1 0n×1 . . . 0n×1 0n×N

−Q∞ 0n×n . . . 0n×n 0n×mN 1 0n×1 . . . 0n×1 0n×N

0n×n Q∞ . . . 0n×n 0n×mN 0n×1 1 . . . 0n×1 0n×N

0n×n −Q∞ . . . 0n×n 0n×mN 0n×1 1 . . . 0n×1 0n×N

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0n×n 0n×n . . . S∞ 0n×mN 0n×1 0n×1 . . . 1 0n×N

0n×n 0n×n . . . −S∞ 0n×mN 0n×1 0n×1 . . . 1 0n×N

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(79)

Au∞ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0m×nN R∞ 0m×m . . . 0m×m 0m×nN 1 0m×1 . . . 0m×1

0m×nN −R∞ 0m×m . . . 0m×m 0m×nN 1 0m×1 . . . 0m×1

0m×nN 0m×m R∞ . . . 0m×m 0m×nN 0m×1 1 . . . 0m×1

0m×nN 0m×m −R∞ . . . 0m×m 0m×nN 0m×1 1 . . . 0m×1

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0m×nN 0m×m 0m×m . . . R∞ 0m×nN 0m×1 0m×1 . . . 1
0m×nN 0m×m 0m×m . . . −R∞ 0m×nN 0m×1 0m×1 . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(80)

The state dimension is represented as n with m represent-
ing the dimension size of the control input with n = 6 and
m = 3 for this analysis. Additionally, the upper and lower
boundaries for the constraints are

bx∞,ub = [∞ ∞ . . . ∞]T
(81)

bx∞,lb

=
[
(Q∞xd,1)

T (−Q∞xd,1)
T . . .

(S∞xd,N )T (−S∞xd,N )T

]T

(82)

bu∞,ub = [∞ ∞ . . . ∞]T
(83)

bu∞,lb = [
0 0 . . . 0

]T
. (84)

The dynamic and boundary constraints are the same as previ-
ously stated but expanded with zeros to match the new input
vector ξ∞
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A∞,dyn =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

−In×n 0n×n . . . . . . 0n×n B 0n×m . . . . . . 0n×m 0n×N 0n×N

A −In×n 0n×n . . .
... 0n×m B

... 0n×N 0n×N

0n×n
. . .

. . .
...

...
. . .

...
...

...
...

. . .
. . . 0n×n

...
. . . 0n×m

...
...

0n×n . . . 0n×n A −In×n 0n×m . . . . . . 0n×m B 0n×N 0n×N

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

(85)

b∞,dyn = [−Ax0 0 . . . 0
]T (86)

A∞,bound

=

⎡

⎢⎢⎢
⎣

Apoly,1 0?×n . . . 0?×n 0?×n . . . 0?×n 0?×N 0?×N

0?×n Apoly,2 . . . 0?×n 0?×n . . . 0?×n 0?×N 0?×N

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0?×n 0?×n . . . Apoly,N 0?×n . . . 0?×n 0?×N 0?×N

⎤

⎥⎥⎥
⎦

(87)

b∞,bound = [
b1 b2 . . . bN

]T
. (88)

As previously mentioned, each Apoly,k polytope boundary
matrix can have a different number of rows, each matrix of
zeros inA∞,bound has a variable number of rows, as indicated
by the “?" subscript.

A.5 Polytope constraint

For each point along the desired trajectory a volume of space
is defined. The full boundary constraint is defined as

Aboundξ ≤ bbound , (89)

where

Abound =

⎡

⎢⎢⎢
⎣

Apoly,1 0 . . . 0 0 . . . 0
0 Apoly,2 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . Apoly,N 0 . . . 0

⎤

⎥⎥⎥
⎦

(90)

bbound =
[
bTpoly,1 bTpoly,2 . . . bTpoly,N

]T
(91)

withApoly,k andbpoly,k referring to the polytope correspond-
ing to the kth point along the desired trajectory. The Apoly,k

matrix is padded with zeros to properly match the dimen-
sions of ξ . Also, note that while each Apoly,k has the same

number of columns, the number of rows is free to vary as
long as each Apoly,k matches its corresponding bpoly,k . This
allows the polytope at each time-step k to vary with the only
requirement being that the polytope is convex.
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Abstract

This paper presents a model predictive control based framework that is
used in conjunction with a polytope boundary constraint and the Hill-
Clohessy-Wiltshire equations to maintain a desired formation of a cluster
of spacecraft while also allowing freedom to maneuver within the allow-
able bounds. A fuel optimal guidance trajectory is generated and the
model predictive control framework controls to this desired trajectory.
The operational polytope boundaries enable the predictive framework
of the model predictive control to be used to make small maneuvers
to correct perturbations from its desired trajectory. The boundaries are
designed such that no two agents have overlapping regions, allowing the
vehicles to execute avoidance strategies without continually maintaining
the trajectories of other agents. The model predictive control frame-
work combined with the convex polytope boundary enables a scalable
method that can support clusters of satellites in safely achieving mission
objectives while minimizing fuel usage. As part of the implementation
of this control scheme, this paper compares the fuel usage for a three
spacecraft system. This work also compares the computation and fuel
requirements for L1, L2, and L∞ norm formulations of the framework.

Keywords: Formation Flying, Model Predictive Control, Switching Surfaces,
Spacecraft Guidance



1 Introduction

The coordinated motion of satellites within a constellation or cluster, i.e.,
spacecraft formation flying, has been viewed as a key enabler for organiza-
tions like the European Space Agency (ESA) [1, 2], National Aeronautics
and Space Administration (NASA) [1, 3, 4], and the Department of Defense
(DoD) [5]. Formation flying technology is critical for a wide range of mis-
sions, including sparse antenna array missions, distributed sensing missions,
advanced communications and internet access, spatial sampling for applica-
tions such as gravitational mapping, interferometric synthetic aperture radar,
and target tracking [1, 6–15]. The idea of formation flying also allows for mis-
sions that are traditionally flown on a single large and expensive satellite, to be
completed by several smaller and less expensive SmallSats or CubeSats [16].
Fundamental to space-based operations is the requirement to maintain rela-
tive motion characteristics while also limiting fuel usage. These factors must
be considered while respecting the computational capabilities of the individual
platforms and the communication restrictions of the cluster. This work devel-
ops an optimization-based feedback control strategy to allow each satellite to
fly within a safe region of operation and maintain relative spacing with little
to no inter-spacecraft communication required.

There are several challenges that arise in formation flying. These challenges
include, but are not limited to: fuel consumption, overcoming disturbances or
perturbing forces, data distribution between spacecraft, collision avoidance,
mission operational constraints, and computation feasibility.

Creating a formation flying framework becomes an act of balancing pri-
orities between meeting these different challenges or objectives. Previously,
optimization strategies have been employed to reduce fuel consumption while
maintaining relative motion, e.g., [17–23]. But while an optimal fuel saving
maneuver may be desirable, feedback is essential for overcoming disturbances
from the invariably erroneous motion models. Model predictive control (MPC)
is an approach that repeatedly uses optimal control techniques within a feed-
back loop [24]. Tillerson et al., [23], designed an MPC scheme that used the
Hill-Clohessy-Whitshire (HCW) and Lawden equations to define the relative
motion. [23] used a six-sided error box as a keep-in volume constraint. Tiller-
son et al, found that, when using an error box as a constraint, it was possible
to get initial conditions for the programming problem that results in higher
fuel usage. This occurs when a satellite is near the corner of the error box with
little room to maneuver and could result in an infeasible solution where the
spacecraft requires more control than available to avoid leaving the error box.
To alleviate this feasibility problem discussed by [23], our previous work, devel-
oped an approach that implemented a polytope approximation of a sphere [25].
However, the ∆V required is not suitable for small satellites. [22] developed
an MPC strategy using Gauss Variational Equations (GVEs) with constraints
defined directly on the eccentricity and inclination vectors of the D’Amico
Relative Orbital Elements (ROEs). Constraining the ROE eccentricity and
inclination vectors parallel to each other guarantees collision avoidance within



an established formation, but it does not guarantee the formation is maintained
nor does it guarantee a collision free transfer trajectory.

Another challenge that needs to be addressed in the area of spacecraft
formation flight is data distribution between satellites. Inter-satellite commu-
nication can become a restrictive burden on satellites as it requires the antenna
of each satellite to be aligned and the communication systems powered on.
To reduce communication, [26–28] developed a strategy for using triggering
events to switch from a coasting behavior to a controlled behavior, requir-
ing communication only when vehicles pass some relative distance threshold.
To lower communication even further, virtual structure techniques define the
desired motion for each satellite based upon the ideal motion of a virtual satel-
lite [21, 23, 25, 29]. The virtual satellite is a computational artifact used solely
to define desired relative trajectories for the constellation [30]. By agreeing a-
priori on the virtual satellite orbital characteristics, coordinated motion can
be performed without communication.

The major contributions of this work are the formulation and evaluation
of a virtual structure based MPC framework that guarantees flight safety and
formation control while saving fuel and reducing communication. In particular,
the amount of ∆V required to maintain the formation is reduced by combin-
ing a new optimal guidance trajectory with an MPC feedback controller. The
formulation includes the use of a virtual leader to define the desired relative
motion for each satellite using the HCW relative motion equations. A novel
switching control strategy is used to determine when the MPC control should
be activated as well as when a guidance trajectory should be calculated. Con-
tributions beyond [23] include the use of the spherical polytopes implemented
by [25] as well as the ability to ensure the satellites honor safety constraints
when following the guidance trajectory. This work also performs an evaluation
of different objectives for linear (L1 and L∞) and quadratic (L2) programming
solutions in terms of fuel usage and computation requirements. It is shown
that the L1 or L∞ maybe be more applicable given a spacecraft with a high
thrust, non-throttlable, on/off type propulsion system. The L2 norm is more
applicable for a smaller thrust, longer duration burning system, such as an
electric propulsion system.

The remainder of the paper is outlined as follows. Section 2 provides back-
ground information about the relative dynamics and MPC. Section 3 presents
a discussion of the switching strategy, the guidance trajectory formulation,
and the MPC formulation for the L2, L1, and L∞ norms. Section 4 presents
simulation results. Concluding remarks are given in Section 5.

2 Background

This section presents background information of the relative dynamics used
with the control algorithm and preliminary information needed for the
development of the MPC.



2.1 Hill-Clohessy-Wiltshire Relative Dynamics

In this paper, a virtual leader is used to design a reference orbit for each
satellite in the formation. There is no physical vehicle associated with the
virtual leader; the virtual leader represents a fictitious satellite where motion
is propagated through time according to a standard nonlinear motion model.
Relative orbits can be generated from the virtual leader that define the nominal
locations of each of the agents over time within the virtual structure. The
relative orbits are propagated using the HCW equations [31–33].

The HCW dynamics are defined in the Local Vertical, Local Horizontal
(LVLH) frame with the origin defined to be the location of the virtual leader.
The x-axis of the LVLH frame is defined to be along the position vector of
the virtual leader in the inertial frame, the z-axis is defined as the angular
momentum vector of the virtual leader, and the y-axis is used to complete a
right-handed coordinate system.

The relative state dynamics of each agent compared to the leader is defined

as x =
[
x y z ẋ ẏ ż

]T
and the control as u =

[
ux uy uz

]T
, where the indi-

vidual control components represent the thrust accelerations of the system.
Using nc to represent the mean motion of the reference orbit [33], and ∆t to
be a discretization step, the dynamics can be expressed in discrete time as

xk+1 = ADxk +BDuk. (1)

Using the exact discretization from [25], the resulting state and input
matrices take the form

AD =

[
Φrr Φrv

Φvr Φvv

]
(2)

Φrr =




4− 3 cosnc∆t 0 0
6(sinnc∆t− nc∆t) 1 0

0 0 cosnc∆t


 (3)

Φrv =




1
nc

sinnc∆t 2
n (1− cosnc∆t) 0

2
n (cosnc∆t− 1) 1

n (4 sinnc∆t− 3nc∆t) 0
0 0 1

nc
sinnc∆t


 (4)

Φvr =




3nc sinnc∆t 0 0
6nc(cosnc∆t− 1) 0 0

0 0 −nc sinnc∆t


 (5)

Φvv =




cosnc∆t 2 sinnc∆t 0
−2 sinnc∆t 4 cosnc∆t− 3 0

0 0 cosnc∆t


 (6)



BD =




2
n2
c
sin2 nc∆t

2 − 2
n2
c
(sinnc∆t− nc∆t) 0

2
n2
c
(sinnc∆t− nc∆t) − 1

2n2
c
(8 cosnc∆t+ 3n2

c∆t2 − 8) 0

0 0 2
n2
c
sin2 nc∆t

2
1
nc

sinnc∆t − 1
nc

(2 cosnc∆t− 2) 0

− 4
nc

sin2 nc∆t
2

4
nc

sinnc∆t− 3∆t 0

0 0 1
nc

sinnc∆t




. (7)

2.2 Model Predictive Control

This section presents a brief primer on MPC to present the basic idea and
notation used throughout the sequel. A general overview of MPC is given,
followed by a linear system representation and a discussion of the closed-loop
stability. The interested reader is referred to [34] for a thorough development
of MPC for linear systems.

While MPC generally loses any guarantee of optimality, it does provide the
ability to express constraints, which is not common in many feedback control
solutions. Furthermore, weights in the objective function can provide intuitive
“control knobs” for tuning to the desired behavior.

2.2.1 Common Objective Functions for Linear System MPC

Common objective functions for linear systems include the L2, L1, and L∞
norms as they can result in quadratic and linear programs. Given an initial
state of x0, a time horizon of N intervals, and if we let p = 1, p = 2 or p =∞
for the L1, L2, and L∞ norms, respectively, a general objective function can
be written as

J(x, u)p =|| u0 ||R,p +

N−1∑

k=1

[
|| xk ||Q,p + || uk ||R,p

]
+ || xN ||P,p (8)

where R, Q, and P are the weightings on control usage, state error, and ter-
minal error, respectively. Where previous work did not include portions of the
cost function [17–21, 23], this approach allows the user to choose the relative
weights. If the state error is more heavily weighted, the spacecraft trajectory
is forced to stay close to the desired trajectory. This allows a greater degree of
control beyond just staying with a given keep-in-volume.

This paper analyzes the L2, L1, and L∞ norms to evaluate the lowest
fuel consuming approach and to evaluate the potential computational bene-
fits in using one norm over the others. Details on representing the L2 norm
as a quadratic programming problem, and the L1 and L∞ norms as linear
programming problems can be found in [25].

A Note on MPC Stability

Like any feedback control technique, stability of the feedback can become a
concern. Given Q and R, the terminal cost of the system can be designed to



ensure asymptotic stability of the MPC problem [34]. The terminal cost is
chosen to represent the cost-to-go of the unconstrained infinite horizon problem
for the L2 norm. The Discrete-time Algebraic Riccati Equation (DARE) can
be used to find the cost-to-go, XTP∞X. The DARE is represented as

0 = ATP∞A− P∞ +Q−ATP∞B(BTP∞B +R)−1BTP∞A, (9)

where the positive definite solution for P∞ is used.
The P∞ found solving the DARE is then used as the matrix in the terminal

cost, P , in the objective function, Eq. 8. This guarantees asymptotic stability
of the system for the L2 norm formulation [34]. Note that A and B must be
completely controllable, R must be positive definite, and Q must be positive
semi-definite and completely observable.

For the L1 and L∞ cases, if the exact discrete system is asymptotically
stable, then Xf can be chosen as the positively invariant set of the system

x(k + 1) = Ax(k) s.t. x ∈ X. (10)

Therefore, the input 0 is feasible in Xf and the Lyapunov inequality for the
L∞ and L1 cases is

−|| Px ||p + || PAx ||p + || Qx ||p ≤ 0, ∀x ∈ Xf , (11)

where p = 1 or p =∞ for the L1 and L∞ norms, respectively. Eq. 11 is satisfied
if a P is chosen that satisfies the Lyapunov function for the L1 and L∞ cases.

V = || Px ||p. (12)

The Pp found solving Eq. 12 is then used in the objective function. This
guarantees asymptotic stability of the system [34].

If such a Xf can be computed, it can be used as the terminal constraint.
Eq. 13 is now satisfied by the infinite time unconstrained optimal cost matrix
P∞ in Eq. 14. Eq. 14 represents the optimal infinite horizon cost function.

min
u ∈ U, Ax+Bu ∈ Xf

−p(x) + q(x, u) + p(Ax+Bu) ≤ 0, ∀x ∈ Xf (13)

J∗
∞(x(0)) = || P∞x(0) ||∞. (14)

3 Formation Flying Framework Development

The formation flying framework was developed with the objective of keeping an
agent spacecraft within a spherical “keep-in volume”, a time-varying volume
within which the spacecraft must remain. The three main components used
to maintain this constraint are a switching condition, a guidance law, and an
MPC control law.

For the switching condition, the spacecraft’s state is propagated forward
in time and compared to a second time-varying volume known as the inner



boundary. If any of these propagated states lie outside of the inner boundary
then the spacecraft enters the guidance and control loop. The guidance law
then calculates a fixed time, fuel optimal trajectory and control profile that is
computed to guide the spacecraft from its current state to the nominal, desired
orbit. This guidance trajectory is then given to the MPC control. The MPC
follows the guidance trajectory, using feedback to reject any perturbations
that may occur. Once the guidance trajectory is fully executed, the spacecraft
returns to its drifting state and again begins comparing its propagated states
to the inner boundary.

The full framework is outlined in Algorithm 1 and the remainder of this
section presents the details of the switching strategy, guidance law, and MPC
control law.

Algorithm 1 Guidance and control structure

x̂0 ← x (Initialize From Current State)
x̂k+1 = ADx̂k k = 0, . . . , Ndrift − 1 (Propagate Drift Trajectory)
if not control on and ∃ || x̂k − xd,k ||2≥ rinner, k = 0, . . . , Ndrift then

control on← true
min

xg,unom

1
2

∑Ng−1
k=0 || unom,k ||R,p + 1

2 || xe,Ng
||P,p (Guidance Trajectory)

mpc step← 1

if control on then
if mpc step > Ng then

control on← false

else
Pk = Pnom + xd,k k = 0, . . . , Ndrift (Translate Sphere Points)
Lk ← convhull(Pk) k = 0, . . . , Ndrift (Generate Polytope Faces)
Apoly,k,bpoly,k ← face2mat(Lk), k = 0, . . . , Ndrift−1

(Formulate Constraints as Matrices)

min
xk,uk

1
2 || u0 ||R,p + 1

2

∑N−1
k=1

(
|| xe,k ||Q,p + || uk ||R,p

)

+ 1
2 || xe,N ||P,p (MPC Control Law)

uECI ← lvlh2eci(u0) (Convert Control from LVLH to ECI Frame)
mpc step = mpc step+ 1

else
uECI = 01×3

3.1 Switching Strategy

Since it is unreasonable, due to mission objectives or operating constraints, for
the spacecraft to be constantly maneuvering, a switching strategy is developed



to define the periods when maneuvering is most effective. Central to this strat-
egy are two boundary constraints that define a volume of space centered on
the desired orbit of the spacecraft at each moment in time. The outer bound-
ary is the keep-in boundary and defines the volume of space the spacecraft is
not allowed to leave. The inner boundary is used to trigger the beginning of
a correction maneuver. A corrective maneuver begins when the spacecraft is
predicted to cross the inner boundary.

To determine if the guidance and control loop should begin, the desired
(xd,k) and drift (x̂k) trajectories are first updated over Ndrift steps of the drift
horizon using the linearized HCW dynamics, AD. With the current state, x,
used as the initial state for the drift trajectory, x̂0, and the current desired
state being used as the initial desired state, the full trajectories are found as

x̂k+1 = ADx̂k k = 0, . . . , Ndrift − 1 (15)

xd,k+1 = ADxd,k k = 0, . . . , Ndrift − 1. (16)

Each pair of desired and drift states are then compared to determine if the
spacecraft is predicted to cross the inner boundary at any point over the drift
horizon. The boundary is defined as a sphere with radius rinner. Crossing the
inner boundary is detected by comparing the Euclidean distance between the
desired and drift trajectories as

|| x̂k − xd,k ||2 ≥ rinner k = 0, . . . , Ndrift. (17)

If the drift trajectory is found to exceed the allowable bounds, then the
guidance and control law begins and continues until the guidance planned tra-
jectory is fully executed. Once fully executed, the MPC controller is turned off
and the evaluation of the drift trajectory is reinitiated.

3.2 The Guidance Trajectory Generation

The purpose of the guidance law is to compute a fixed time, fuel optimal
trajectory that guides the spacecraft from its current state back to the desired
orbit. Given the guidance time horizon,Ng, control cost, Rg, and terminal cost,
Pg, bounds on control inputs, umax and umin, and bounds on states xg,max

and xg,min, the guidance trajectory xg,k and nominal guidance control ug,k can
be calculated with the p norm objective function. Additionally, an error state,
xe,k is introduced to allow the tracking of a non-zero desired trajectory, xd,k.
From these, the trajectory is determined based on the following optimization



problem.

min
xg,k,ug,k

1

2

Ng−1∑

k=0

|| ug,k ||Rg,p +
1

2
|| xe,Ng

||Pg,p

s.t. xg,k+1 = ADxg,k +BDug,k k = 0, 1, . . . , Ng − 1

xg,0 = x(0)

xe,k ≤ xg,max

xe,k ≥ xg,min

xe,k = xg,k − xd,k k = 1, 2, . . . , Ng

ug,k ≤ umax k = 0, 1, 2, . . . , Ng − 1

ug,k ≥ umin k = 0, 1, 2, . . . , Ng − 1

. (18)

The initial state x0 is defined as the spacecraft’s state when the guidance law
is initialized. The desired orbit states, xd,k, are propagated and found at each
point along the time horizon and used as the desired states. The control limits,
umax, are set based on the maximum thrust available along each axis and the
current mass of the spacecraft.

One consequence of orbital dynamics is that there are points along an orbit
where a given maneuver is the most fuel efficient, for example, perigee, apogee,
and the intersection of two orbital planes. This has two major implications
in the generation of the guidance trajectory. First, a fuel optimal trajectory
can experience prolonged periods with significant state errors while it waits
for the optimal point to maneuver. This means that if the guidance law were
incentivized to minimize the transient state error via the Q weights, it would
maneuver too early, expending unnecessary control usage. Second, the time
horizon over which the guidance law optimizes must be sufficiently long to
encompass the fuel optimal points.

Since the guidance law optimizes over a longer time horizon, the full outer
polytope constraint can create a significant computation burden. To alleviate
this burden, a simpler cube volume is used to approximate the constraint.
This cube is inscribed within the outer spherical keep-in volume and allows
the constraint to be expressed as a pair of simpler state constraints,

xe,k ≤ xmax (19)

xe,k ≥ xmin. (20)

Simply solving the fuel optimal maneuver problem without constraints does
not guarantee that the spacecraft stays withing the desired region, e.g., [35, 36],
but with this approach any solution found by the guidance law is guaranteed
to remain within the outer keep-in volume since the simplified constraint is a
conservative approximation. Once a solution is found, the trajectory xg and
control profile ug are stored to be used by the control law.



3.3 MPC Control Law

The MPC control law is tasked with following the trajectory found by the
guidance law and rejecting any perturbations along the guidance trajectory.
The MPC is built on the optimization formulation shown below in Eq. 26,
which is similar to the guidance law. However, while the guidance law is only
run a single time when the spacecraft is predicted to leave the keep-in volume,
the MPC is repeatedly run over consecutive simulation steps in standard MPC
fashion.

Since an optimal trajectory has already been found by the guidance law,
the MPC is able to calculate deviations from the guidance trajectory over a
shorter time horizon, Nc. From the stored trajectory and control profile, the
MPC selects the period that corresponds to the current interval it is optimizing
over. Given the current step of the guidance trajectory that the MPC control
law is on, nc ∈ {1, . . . , Ng},

xgd,ℓ = xg,n ℓ = 1, . . . , Nc; n = nc + ℓ, (21)

unom,ℓ = ug,n ℓ = 0, . . . , Nc − 1; n = nc + ℓ. (22)

The trajectory is used as the desired states, xgd,ℓ, while the associated control
profile is used as the nominal control inputs, unom,ℓ. For n > Ng,

xgd,ℓ = A
n−Ng

D xd,Ng ℓ = 1, . . . , Nc; n = nc + ℓ, (23)

unom,ℓ = 03×1 ℓ = 0, . . . , Nc − 1; n = nc + ℓ, (24)

where the desired states and nominal controls correspond to the nominal,
desired uncontrolled orbit starting at the end of the guidance trajectory.

While the outer boundary is nominally a sphere, a convex polytope is used
as an approximation since that formulation can easily be integrated into the
MPC formulation as a linear constraint. This work leverages the polytope
formulated by Smith et al, [25], as the boundary constraints. Given the outer
boundary’s radius, router, a number of points, Nbound, are selected on the
surface of a sphere which is centered on the origin with a radius of router. At
each point along the desired trajectory over the time horizon of the MPC,
the samples are translated so that they are centered on the nominal desired
trajectory

Pℓ,j = Pnom,j + xd,ℓ, ℓ = 0, . . . , Nc, j = 1, . . . , Nbound. (25)

For each step ℓ, the polytope approximation is constructed by finding the
convex hull of the points in Pℓ to get a set of faces Lℓ. Using the normal and a
point on each face, the polytope constraint can be formulated as Apoly,ℓxℓ ≤
bpoly,ℓ. A summary of the formulation of these constraints can be found in
Appendix A.1.



The full polytope constraints, Apoly,ℓ, bpoly,ℓ, are calculated at each step
within the time horizon using the propagated desired orbit and the outer poly-
tope keep-in volume. Note that while the desired trajectory, xd,ℓ, comes from
the guidance solution, the polytope is centered on the nominal desired orbit.
Although the guidance trajectory is designed to stay within a conservative
approximation of the keep-in volume, perturbing forces, or model mismatch
can push the spacecraft off that trajectory. The full polytope constraint is
included here to assure that even if the spacecraft drifts, it will not violate the
boundary constraints.

The MPC then optimizes over its time horizon and at each step along the
guidance trajectory, a new solution is found as

min
x,u

1

2
|| u0 ||R,p +

1

2

Nc−1∑

ℓ=1

[
|| xe,ℓ ||Q,p + || uℓ ||R,p

]

+
1

2
|| xe,Nc

||P,p

s.t. xℓ+1 = ADxℓ +BDuℓ +BDunom,ℓ ℓ = 0, 1, . . . , Nc − 1

x0 = x(0)

Apoly,ℓxℓ ≤ bpoly,ℓ ℓ = 1, 2, . . . , Nc

xe,ℓ = xℓ − xgd,ℓ ℓ = 1, 2, . . . , Nc

uℓ ≤ umax − unom,ℓ ℓ = 0, 1, 2, . . . , Nc − 1

uℓ ≥ −umax − unom,ℓ ℓ = 0, 1, 2, . . . , Nc − 1

. (26)

Once the control law finds the solution of controls, uℓ, that solve the
optimization problem, the actual applied control input is determined as

uapply,ℓ = uℓ + unom,ℓ. (27)

The first control in the sequence, uapply,0, is applied to the system, the new
state is then measured, the control law is re-initialized, and the next optimal
control is found. The control law runs until the full guidance trajectory has
been executed.

4 Numerical Simulation

This section discusses the implementation of the switching condition, guidance
law, and control law discussed in the previous sections. The simulation used to
evaluate the framework is presented, followed by an assessment of the control
trajectories, comparison of computation time of the different norms, discussion
of the control usage, and a comparison of the ∆V usages.
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Fig. 1: Flowchart showing the simulation logic structuring and flow for a single
spacecraft. The dashed line indicates the guidance and control loop that each
spacecraft in the formation runs in parallel.

4.1 Simulation Overview

A flowchart of the framework used to test the guidance and control laws is
depicted, for a single spacecraft, in Fig. 1.

The virtual leader or reference orbit’s initial state is defined using Keplerian
orbital elements and then converted to a Cartesian Earth Centered Inertial
(ECI) state. The relative states and desired relative location of the agents
spacecraft in the formation are initialized using D’Amico’s ROEs [37]. The
ROEs are first converted to inertial orbital elements, using the leader as a
reference, and then to both the inertial ECI coordinates [38] and relative LVLH
coordinates. The advantage to using ROEs to define the initial states of the
agent is that they offer a more intuitive understanding of the relative motion
when compared to Cartesian coordinates.

Before entering the guidance and control loop, each spacecraft receives
its true LVLH states. While measurement noise and navigation uncertainties
would exist in an actual system, these are not included for these simulations
and the spacecraft all have perfect knowledge of their states.

Using the state, the guidance and control laws calculate the desired accel-
eration (Section 3). Since the control is calculated in the LVLH frame, it is
first converted to the ECI frame to match with the dynamics model.

The desired control acceleration is converted to a force using the current
mass of the spacecraft, bounded to ensure it is within the limits of the available
thrust, and then applied to the dynamics. From the acceleration, the mass flow



rate is calculated as

ṁ = −||u||1m
g0Isp

(28)

where u ∈ R3 is the control acceleration, m is the current mass, g0 is stan-
dard gravity, and Isp is the specific impulse. Before planning any trajectories
or controls, the spacecraft’s current mass is used with the maximum allowable
thrust to determine the upper bound on acceleration. Thus, while the guidance
and control laws assume an unchanging mass over each iteration of the plan-
ning cycle, any changes in mass due to previous control usage are accounted
for in the model dynamics. Since the decreasing fuel mass means the space-
craft will experience a higher acceleration for a given thrust, this provides a
conservative bound on the maximum allowable control.

The true states for the leader and agents are propagated using the nonlin-
ear dynamics. In the following equations, Fd is the force due to drag, FJ2

is
the force due to the J2 perturbation [33], and u is the calculated control accel-
eration, applied as a zero-order hold. The ECI state of the spacecraft is given
as r with the individual portions of the state indicated by the subscripts p, for
position, x, y, z, for individual position axes, and v for velocity.

Fd = −1

2
ρCdA|vrel|vrel (29)
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(30)

ṙp = rv (31)

ṙv = −µ rp
rp3

+
FJ2

m
+

Fd

m
+ u (32)

The drag force is a simplified model where the air density, ρ, is deter-
mined by interpolating the altitude against selected values in the US Standard
Atmosphere 1976 model [39].

The relative velocity of the spacecraft to the Earth’s atmosphere, vrel is
calculated as[33]

vrel = rv − ωE × rp. (33)

with the Earth’s rotation, ωE , assumed to be entirely in the k̂ direction. The
spacecraft coefficient of drag, Cd, and spacecraft area, A, are held constant
during the simulation. While the simulations all assume a near-circular orbit,
a similar approach could be applied to elliptical orbits by replacing the relative
motion HCW equations with the Yamanaka-Ankerson relative dynamic model
[40].



4.1.1 Simulation Parameters

A scenario based on a standard 12U CubeSat design built by the Space
Dynamics Laboratory for formation flying missions was used to evaluate the
architecture developed in Section 3. The simulation was performed on an Intel
Xeon W-1250P 4.10 GHz processor with 32 GB of RAM. The virtual leader
reference orbit is a near circular Low Earth Orbit (LEO) with the parameters
shown in Table 1. The physical characteristics and the simulation parameters
used in this work are shown in Table 2. The propulsion system modeled in
this work is based on the hybrid system described in [41]. It is assumed that
the spacecraft propulsion system is able to provide a thrust of up to 0.5N
along any three orthogonal axes and that the thrust is throttleable up to the
maximum thrust of 0.5N.

Table 1: Reference Orbit of the virtual leader

Keplerian Orbital Element Value
Semi-major Axis 6878 km
Eccentricity 1× 10−4

Inclination 25◦

RAAN 45◦

Argument of Perigee 0◦

Initial True Anomaly 100◦

Table 2: Parameters for simulation

Parameter Value
Spacecraft Wet Mass 24 kg
Spacecraft CD 2.2
Spacecraft Area to Mass 0.002m2/kg
Spacecraft Thrust 0.5N
Spacecraft ISP 160 s
Simulation Timestep 10 s
Total Simulation Timesteps 60 480 (7 days)
Guidance Horizon 820 Steps (2.28 hrs)
MPC Horizon 10 Steps (100 s)
Drift Horizon 600 Steps (1.67 hrs)
Inner Sphere Radius 289m
Outer Sphere Radius 500m
Guidance Cube Edge 577m

As shown in Table 2, the simulation uses a fixed time step of 10 seconds.
The size of the time step constrains the time that the control must be on. The
duration of this time step could be adjusted to offer the spacecraft operator a
more refined maneuver if desired.

The drift horizon is set to 600 steps or approximately 1.67 hrs, which is
longer than a single orbital period. The guidance horizon is longer still at 820



steps (2.28 hrs). The length of the guidance horizon is set to be both longer
than one orbital period and longer than the drift horizon. Setting these lengths
to be greater than one orbit allows for the spacecraft to detect when it may
leave the bounds and still have time to wait for the optimal moment to begin
maneuvering, which in many cases is at apogee, perigee, or a node crossing.
However, the exact length of the drift and guidance horizons presented here are
otherwise arbitrarily chosen. The controller horizon is much shorter, 10 steps
(100 sec), since its purpose is to reject short term disturbances. A longer time
horizon could be chosen for the controller which may improve performance at
the cost of additional computation time.

The outer polytope was set as a sphere with radius 500m with the inner,
trigger sphere given a radius 289m. For the guidance loop, the simplified keep-
in-boundary was modeled as a cube with each edge length being 577m long.
The size of the cube for the guidance loop is determined by the maximum size
that will fit within the outer polytope, and the size of the inner sphere is the
maximum sphere size that will fit within the cube, as depicted in Fig. 2.

Fig. 2: Boundary sizes, outer polytope (blue circle), inner sphere (green circle),
cube (red square).

With this geometry, the spacecraft will always be within the cube when
it triggers the start of the guidance and control portion by predicting it will
cross the inner sphere. If the inner sphere were larger than the cube used
for the guidance boundary, then situations could arise where the spacecraft
attempts to develop a guidance trajectory while being outside the allowable
volume. Similarly, if the cube is larger than the outer polytope, a guidance
trajectory could be planned which violates the outer keep-in constraint. While
smaller boundaries could be used, this geometry maximizes the volume the
guidance and control laws can use, relative to the overall keep-in volume, while
maintaining consistent keep-in constraints across the full control architecture.



For this paper, a three spacecraft formation is used to illustrate the
approach detailed above. Since no communication or tracking of other vehi-
cles is required between the spacecraft, a formation can be composed of as
many individual spacecraft as desired without increasing the complexity of the
approach. The main limitation of the approach is that all the spacecraft in
the formation must reference a single, common orbit,that the HCW equations
can approximate well. Additionally, each spacecraft orbit must be defined such
that none of the boundary volumes overlap.

The three spacecraft in the formation have desired orbits defined by Rel-
ative Orbital Elements (Table 3). The desired orbit for each spacecraft is
identical with regards to the shape and orientation of the orbit but they are
spread out along the reference orbit. Thus, the first spacecraft has its relative
orbit centered on the reference orbit with the second spacecraft ahead of it and
the third spacecraft behind it with the along track separation between each of
the spacecraft being approximately 6 km. Each spacecraft is in a non-drifting
natural motion circumnavigation (NMC) orbit with the maximum radial and
normal components creating a 1x2 km ellipse, as shown in Fig. 3. The algo-
rithm maintains this non-drifting NMC by keeping the agent spacecraft on the
desired trajectory. For this work, the relative orbits and keep-in volumes have
been defined such that the keep-in volumes of any two spacecraft never inter-
sect. This ensures that two spacecraft can never exist in the same space and
the formation is collision free.

Table 3: Relative Orbital Elements for the desired agent trajectory

ROE Element Spacecraft 1 (unitless) Spacecraft 2 (unitless) Spacecraft 3 (unitless)
δa 0 0 0
δλ 0 8.723× 10−4 −8.723× 10−3

δex 1.454× 10−4 1.454× 10−4 1.454× 10−4

δey 0 0 0
δix 1.454× 10−4 1.454× 10−4 1.454× 10−4

δiy 0 0 0

4.1.2 Controller Tuning

The controller calculates the control necessary to reject perturbations and
stay on the guidance trajectory. Thus, increasing the transient error weights,
relative to the control weights, will cause the controller to overcome more per-
turbations and stay closer to the guidance trajectory at the cost of additional
fuel usage. In contrast, if the controller state error weights are reduced to zero,
the controller will only execute the control inputs that were initially calculated
for the guidance trajectory. Effectively, this causes the full guidance and con-
trol law to run in an open-loop configuration whereas any non-zero state error
weightings close the loop.

The behavior of the spacecraft was observed through simulations and
the weights adjusted to minimize ∆V usage, maximize time between needed



Fig. 3: Configuration of agent spacecraft used for simulation.

maneuvers, and minimize deviation from the guidance trajectory. The con-
troller weights used as part of this work are seen in Table 4. It should be
noted that these values are not claimed to be optimal in any sense and merely
represent an acceptable blend of ∆V usage and spacecraft state error.

Although the weights are similar between the three norms, the different
norm definitions mean that the impact is not identical. For example, all of the
components of the L1 norm contribute linearly to the cost, the L2 norm squares
the vector under consideration, and the L∞ norm only accounts for the largest
scaled value. This means that even if identical weights are used, the resulting
behavior can be expected to be different between the norm definitions and,
similarly, one cannot define a common baseline between the norm definitions.
The weights given were chosen to try and have similar control characteristics
across each norm type in terms of how aggressive the perturbation rejection is.
Ultimately though, while the descriptive behavior of the controllers is unlikely
to change as a result of the weights, some variation is to be expected based on
how the baseline between the norms is determined.

4.2 Computation Time

An additional simulation was set up to evaluate the computation time for the
controller for each of the three norms as the time horizon of the MPC increased.
For each norm definition, a series of trials with the time horizon ranging from
1 to 150 steps was performed. In each trial, a single spacecraft was initialized
and run for a total simulation duration of 1,200 seconds. This time frame was
selected to allow for a broader range of horizons to be tested in a reasonable
amount of time. Data was only collected when the MPC was active and does
not include any computation times of 0 s when the controller was not used. The
solutions for all three of the norms were found using the Gurobi software [42].

The mean computation time for each norm over the various planning hori-
zons can be seen in Fig. 4. For short time horizons, the computation time
is approximately identical for all three norms. As the MPC optimizes over
longer time horizons, the necessary time increases, as expected, and differences



Table 4: Controller weights for the various norm types

Norm Transient Error Control Usage

L1




10.0 0 0 0 0 0
0 10.0 0 0 0 0
0 0 10.0 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1






0.01 0 0
0 0.01 0
0 0 0.01




L2




10.0 0 0 0 0 0
0 10.0 0 0 0 0
0 0 10.0 0 0 0
0 0 0 1.0 0 0
0 0 0 0 1.0 0
0 0 0 0 0 1.0






0.0001 0 0

0 0.0001 0
0 0 0.0001




L∞




10.0 0 0 0 0 0
0 10.0 0 0 0 0
0 0 10.0 0 0 0
0 0 0 0.01 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.01






0.01 0 0
0 0.01 0
0 0 0.01




between the norms become clearer. The time required for the L1 norm increases
faster than the other two that remain relatively comparable until a horizon
of about 125 steps. A summary of the results of just the MPC computation
time is shown in Table 5 where the minimum and maximum average times and
standard deviations are shown. From the simulation results (presented in full
in Section 4.6) the computation time of the full guidance and control law can
be found in Table 6. This is the time needed to calculate the control over a
time horizon of 10 steps as well as the time needed to compute the guidance
trajectory over the longer 820 step horizon. As can be seen, the computation
time requirements for the L1 norm and L∞ norms are comparable while the L2

norm is significantly faster which is likely due to differences between the opti-
mization solving techniques for linear programs (L1 and L∞) and quadratic
programs (L2) in Gurobi [42]. However, in all cases, the maximum computa-
tion time required was less than the 10 s simulation timestep. While no special
effort was taken to mimic flight hardware conditions or optimize for computa-
tion time these results do suggest that running the full guidance and control
law in real time is a feasible approach for all norms.

Table 5: MPC Computation time comparisons

Norm 1 Step Horizon 75 Step Horizon 150 Step Horizon
L1 0.013± 0.203 s 0.494± 0.191 s 1.589± 0.232 s
L2 0.006± 0.04 s 0.39± 0.099 s 1.028± 0.168 s
L∞ 0.011± 0.154 s 0.367± 0.147 s 1.248± 0.196 s



Fig. 4: Computation time required for planning a single simulation step for
the various norm definitions and receding horizons.

Table 6: Computation times for the MPC with guidance

Norm Mean Computation Time Max Computation Time
L1 3.123± 0.162 s 4.848 s
L2 0.705± 0.047 s 1.122 s
L∞ 2.236± 0.206 s 7.185 s

4.3 Control Approach Comparisons

Other control approaches can be used to maintain a spacecraft formation. This
section briefly explores the other approaches and compares them to the control
architecture described above.

4.3.1 Open vs Closed Loop Control

Since the MPC is designed to reject small perturbations it is, in a sense,
optional and the guidance trajectory can be used as an open-loop control. An
example can be seen in Fig. 5 where Fig. 5a shows the histogram of position
error at the end of each maneuver for the open-loop, guidance only control
and Fig. 5b shows the histogram for the closed-loop control using MPC. Note
that the x-axis is scaled differently between the two plots due to the disparity
in terminal maneuver error in the two methods. As expected, the closed-loop
control is able to drive the final position error much lower at the end of the
guidance law. On average, the open-loop control has 27.28m of error at the
end of the guidance trajectory while the closed-loop control has 4.79m of
error at the end of the guidance trajectory. However, this additional accuracy
comes at the cost of ∆V usage; the open-loop control only used 2.59m/s of
∆V over the week-long simulation while the closed loop control used 4.34m/s



over an identical period. This balance can be adjusted by the weightings in
the MPC where additional weight on the control cost will lean towards open-
loop performance and additional weights on the error will lean towards higher
rejection of state errors.

(a) (b)

Fig. 5: Histogram of position error at the end of each maneuver for the open
loop (5a) and the closed loop MPC control (5b).

4.3.2 MPC vs LQR Control

Another possibility is to use a linear-quadratic regulator (LQR) feedback con-
trol law in place of the MPC. For this analysis the LQR feedback control
was given the guidance trajectory, which was planned using the L1 norm, and
attempted to minimize the error between the spacecraft’s current state and
the state planned by the guidance trajectory. The ∆V results can be seen in
Fig. 6 and, superficially, look similar to the MPC results, where large spikes in
control usage dominate with smaller control inputs in-between. However, the
∆V usage is significantly higher. For the LQR case, a total of 25.95m/s of ∆V
was used for the full week-long simulation. This is three times larger than any
of the MPC simulations, which had a max total ∆V usage of 8.55m/s when
using the L∞ norm (Section 4.6).

4.3.3 Continuous Control

The final comparison performed as part of this work, is to have the control
always active with no drift periods. For this scenario the guidance and con-
trol loop would reinitialize immediately after the previous loop finished so



Fig. 6: ∆V usage for the guidance and control law using an LQR controller
in place of the MPC.

that there were no drifting periods. The results are shown in Fig. 7 where 7a
shows the position error over time and 7b shows the ∆V usage over time. For
the position errors, after the initial error is corrected, the position error never
increases above 25m. Additionally, since only minor corrections are needed to
correct these small position errors, the instantaneous ∆V usage is approxi-
mately an order of magnitude smaller than what is seen when the spacecraft
is allowed to drift before correcting errors.

However, this approach is undesirable for a number of reasons. First,
mission constraints and thruster parameters generally do not allow for con-
tinual thrusting. Often power constraints, thermal constraints, or pointing
requirements do not allow for the propulsion system to be on continuously.
Second, thrusters generally do not have the ability to infinitely throttle and
are restricted to some minimum thrust level that could make the control pro-
file shown in Fig. 7b infeasible. Third, although the instantaneous ∆V is low,
the total required ∆V is 7.90m/s which is roughly double the 4.34m/s used
when the spacecraft was allowed to drift with the closed loop control (Section
4.3.1). Thus, this approach is impractical for use on-orbit.

4.4 Simulation Trajectory Evaluation

Fig. 8 shows an example of the trajectory produced at a simulation time of
one day, using the switching strategies with an outer radius of 500m and the
L1 norm.

The figure is shown in an LVLH frame centered on the desired trajectory so
the displayed line indicates the perturbed trajectory of the spacecraft, relative
to the desired. The initial state is indicated by the blue dot with the outer
polytope shown in purple and the sphere shown in green.



(a) (b)

Fig. 7: Position error with the MPC constantly on (7a) and ∆V usage (7b)

(a) (b) (c)

Fig. 8: Trajectory for the L1 norm at a simulation time of one day, purple
circle represents the outer polytope, green circle represents the sphere, the blue
circle is the spacecraft, and the grey line represents the spacecraft trajectory.
8a shows the along track vs. radial direction, 8b shows the cross track vs. along
track, and 8c shows the radial vs. cross track orientation.

In Fig. 8, the spacecraft is initialized near the boundary of the sphere and
immediately begins maneuvering until it fully executes its guidance plan. Once
the control turns off, the spacecraft begins to drift. This is primarily seen in the
along-track direction but the cross track axis accumulates noticeable error as
well. Once the error accumulates to the point that the spacecraft is predicted
to leave the sphere, the control activates again and the process repeats.



As an additional point of comparison, the distance between the 1st and
2nd and 2nd and 3rd spacecraft are shown in Fig. 9 and 10. Fig. 9 shows a
simulation that uses the guidance and control algorithm as described in this
paper. As seen in Fig. 9, the separation distances between the spacecraft are
kept near the desired 6 km. In contrast, Fig. 10 shows the separation between
the three spacecraft if they were not being controlled. The separation distance
between vehicles one and two is unbounded in its growth and the two spacecraft
are shown to drift apart. In contrast, vehicles 1 and 3 drift towards each other
with a minimum separation distance of less than 15m, at 4.7 days into the
simulation, after which they pass each other and start drifting apart. This
is a dangerously close approach and represents a high probability of collision
for an actual system when accounting for measurement uncertainty in the
spacecraft’s positions. Note that both simulations have perturbed initial states.
The drift in both cases is due to the mismatched orbits as well as environmental
perturbations. It is clear from these figures that the guidance and control laws
are necessary and successful in maintaining the desired separation between
spacecraft.

Fig. 9: Spacecraft separation distances for a controlled simulation.

4.5 Control Usage

An example of the control usage for all norms is shown in Fig. 11, 12, and 13
where the ∆V usage over time is plotted. The full time history is shown in the
left plot of each pair while the right plot details the control usage indicated by
the gray bar and arrow in the left plot. Note that while these plots correspond
to the trajectories in Fig. 8, the trajectories shown in Fig. 8 only cover the first
day of the sim while these control usage plots represent a week long simulation.

Examining the left of each pair of plots (Fig. 11a, 13a, 12a), it can be
seen that each norm has approximately the same number of control events -
roughly two or three events per day. As will be shown later, this is reflective
of the overall control usage and remains generally consistent across all norms.
Another observation can be made that the L1 and L∞ norms have higher



Fig. 10: Spacecraft separation distances for an uncontrolled simulation.

(a) (b)

Fig. 11: ∆V usage with L1 norm (11a) and with the section indicated by the
arrow magnified (11b)

instantaneous control usage relative to the L2 norm, with the difference being
multiple orders of magnitude.

From the right hand plots (Fig. 11b, 13b, 12b), with higher time resolu-
tion, we can see the control usage over the course of a single maneuver. For the
L1 and L∞ simulations, the results are quite similar. In both instances there
are two peaks of high control usage with numerous smaller instances inter-
spersed throughout the full maneuver. The periods of notable control usage
tend to fall around multiples of half the orbital period. When compared with
a Hohmann transfer, roughly impulsive controls spaced half an orbital period
apart, intuitively this result makes sense as a low ∆V transfer trajectory.



(a) (b)

Fig. 12: ∆V usage with L∞ norm (12a) and with the section indicated by the
arrow magnified (12b)

(a) (b)

Fig. 13: ∆V usage with L2 norm (13a) and with the section indicated by the
arrow magnified (13b)

Looking at the L2 norm in Fig. 13, we see a very different control pattern.
Rather than impulsive type controls, the spacecraft uses a much smoother
continuous control that oscillates in time. As with the other norms, these



Table 7: Initial ROE state dispersion for the Monte Carlo simulations

ROE State Initial Dispersion (unitless)
δa U(−1.454× 10−4, 1.454× 10−4)
δλ U(−7.270× 10−4, 7.270× 10−4)
δex U(−2.056× 10−4, 2.056× 10−4)
δey U(−2.056× 10−4, 2.056× 10−4)
δix U(−2.056× 10−4, 2.056× 10−4)
δiy U(−2.056× 10−4, 2.056× 10−4)

oscillations tend to have a period of roughly half the orbital period. There are
some exceptions, particularly in what might be termed the transitory period
when the controller first actives, but in general the pattern holds.

These difference in control usage may be considered significant when
considering their application. If a given spacecraft has a high thrust, non-
throttlable, on/off type propulsion system, using the L1 or L∞ norm might be
more appropriate, whereas if the propulsion system is a smaller thrust, longer
duration burning system, such as an electric propulsion system, the L2 norm
formulation would be more applicable.

4.6 Cumulative Simulation Results

A series of Monte Carlo simulations were run to determine the overall char-
acteristics of the guidance and control law. In each individual trial, the initial
ROE states were randomly perturbed from the desired trajectory according to
the uniform distributions shown in Table 7 and then propagated until one of
the vehicles in the formation was about to exceed the inner sphere at which
point the data collection began. In Cartesian coordinates, the initial position
perturbations were found to range from a minimum of 1.85m to 251.10m with
a mean initial error of 115.46m. Each trial used one of the three norms, L1,
L2, L∞ and each norm type was run 100 times for a total of 300 trials.

The cumulative results of the Monte Carlo simulations are now pre-
sented. Each metric is broken down by both the norm definition used as well
as the spacecraft orbit and encapsulates the full week-long simulation. The
uncertainty bars on the data indicate a single standard deviation from the
mean.

In Fig. 14a, the number of times a vehicle needed to maneuver is given. In
this context, a maneuver is defined to be the period where the guidance and
control laws are operating. There may be periods of time where the control law
is active but determines that the optimal solution is to not apply any control,
but we do not consider these as separate maneuver events.

For all vehicles across all norms, the number of maneuvers is generally the
same except the second vehicle using the L2 norm that shows a significantly
higher number of maneuvers. With an average of 15 to 23 maneuvers over a
week-long period, the spacecraft are maneuvering between 2.14 and 3.3 times
a day. Since the number of maneuvers is linked to how far the spacecraft is
allowed to drift, increasing the size of the keep-in volume should decrease the



(a) (b) (c)

Fig. 14: 14a shows the number of maneuvers used to control the spacecraft,
14b shows the average ∆V used per maneuver, and 14c shows the total ∆V
used in each simulation of a seven day period.

number of maneuvers in any given time period. An evaluation of the number
of maneuvers required is important, as the time spent maneuvering often is
time that the spacecraft is unable to perform its primary mission.

The average ∆V used over the duration of each maneuver is shown in Fig.
14b. In other words, this is the amount of ∆V that is necessary to correct a
spacecraft’s trajectory once. The results show that the L1 and L2 norms use
about the same ∆V per maneuver with the L∞ using a greater amount. While
there is variability, the amount of variability seems to be consistent across all
norms and vehicles.

The total ∆V used over the course of each week-long simulation is shown
in Fig. 14c. This shows the combined effects of the two previous metrics and
encapsulates the total ∆V needed for station keeping operations. The L1 norm
has a relatively low and consistent ∆V usage for all vehicles. The L∞ norm
has the greatest ∆V usage. The L2 norm shows inconsistent results with the
first vehicle having usage comparable to the L1 norm and the other vehicles
having usage comparable to the L∞ norm. While these results are reasonable
for a CubeSat or small satellite mission, it is worth considering the implications
on the mission. The average ∆V for the L2 over the three spacecraft is a full
meter per second higher than the L1, and the L∞ norm is a full two meters
per second higher than the L1. Over the course of a week these numbers
may seem insignificant, but over the course of a mission lifetime of 1-3 years
this difference would amount to 50-300 m/s of additional required ∆V . For
CubeSat or small satellite missions an increase in a ∆V requirement of these
magnitudes is significant and most likely mission prohibitive. The selection of
norm used for a given mission should be considered during the concept and
development phase of the mission.

Comparing Figs. 11a and 12a with Fig. 13a shows that the instantaneous
∆V used by the L1 and L∞ norms is significantly higher than that of the L2

norm but only occur in brief spikes. Integrating these over the full duration of



each maneuver or simulation, as seen in Figs. 14b and 14c, respectively, show
the total ∆V usage. From these, it is clear that there is no overall difference
in ∆V usage between the impulsive and continuous behavior.

Overall, the L1 norm produces the lowest overall ∆V result. However, there
may be cases where the L2 norm should bear consideration. For example, due
to the continuous low thrust control profile the L2 norm generates, it may be
well suited for missions with low impulse electric propulsion systems.

4.7 Potential Future Work

During development of this method, it was seen that the multiple sphere-based
boundaries may be overly conservative and computationally intensive. An
alternative approach would be to use the ROE states and dynamics to define
the allowable boundaries. This would allow the boundaries for a repeating rel-
ative orbit to be described as a simple set of time-invariant state constraints.
Additionally, defining the formation and boundaries would be simplified due
to the time-invariant nature of the ROEs. These improvements are anticipated
for future work.

5 Conclusion

This paper presents an MPC-based architecture used in conjunction with
a sphere shaped polytope boundary constraint and the HCW equations to
maintain a desired trajectory of a cluster of small satellites. These boundary
constraints allow the satellites the freedom to drift and maneuver within the
allowable bounds, while still maintaining flight safety and the mission forma-
tion. The surfaces allow multiple agents to be flown in a single formation with
no overlapping regions. This allows the vehicles to execute avoidance strategies
and maintain flight safety without continually maintaining the trajectories of
other agents. The operational polytope boundaries enable the model predictive
control framework to be used to make small maneuvers to correct perturba-
tions from its desired trajectory. A fuel optimal guidance trajectory is also
presented. This trajectory is used as a guide for the MPC to follow, lowering
the overall fuel usage. The model predictive control framework combined with
the convex polytope boundary enables a scalable method that can support
clusters of satellites to safely achieve mission objectives while minimizing fuel
usage. This framework also requires less overall ∆V when compared to a con-
tinuous controlled system and an LQR framework. This approach also reduces
the terminal error when compared to an open-loop system.

This paper shows that if formation control is not performed the formation
is not maintained and potential collision events may occur.

This paper also presents and compares the formulation of using L1, L2,
and L∞ norm objective functions for the MPC. The simulations show that the
control formulation is able to maintain its position within the polytope volume
with reasonable computation time requirements for all three norm formations.
As would be expected, the computation time for solving the MPC problem



increase with the desired time horizon. However, the L2 norm showed the
slowest computation time growth while the L1 and L∞ norms grew at similar
rates. In the simulations, all the norms were able to run at near real-time rates
or better despite not optimizing for computation time. This paper also shows
that the L1 norm produces the lowest total ∆V , over a seven day period, with
the L2 norm requiring a meter per second more than the L1, and the L∞ norm
being a full two meters per second higher than the L1 norm.

Comparing the number of times that each spacecraft was required to
maneuver showed roughly equivalent performance between the three different
norms. However, the L1 norm required the lowest amount of ∆V , followed by
the L2 norm and then the L∞ norm.

A Appendix

A.1 Convex Polytope Keep-in Volume Development

The current work presents the development of a sphere-shaped polytope
switching surface that is used to generate the switching conditions. This
approach alleviates the concern presented by [23] that a six-sided error box
constraint could give initial conditions to the programming problem that result
in higher fuel costs, such as when a trajectory ends near the corner of the error
box with little room to maneuver.

Keep-in volumes can be leveraged to force the spacecraft to stay within
a given area, allowing the formation to maintained. The agent spacecraft are
able to drift and not required to constantly be maneuvering. The use of a
convex polytope as the boundary constraint allows for a high degree of freedom
in the possible constraints and for the formulation of the problem as a linear
program. This work leverages the polytope boundary constraint developed by
Smith et al., [25].

At each timestep k, the desired keep-in volume is defined by a convex
polytope made of M faces. The desired state, xd,k, lies within the volume. As
the desired state changes with time, the polytope must also be updated at
each timestep. The M planes are each defined by a normal vector η̂, that is
assumed to point towards the interior of the polytope, and by a point p. If
the vector r is considered an arbitrary point, and is on the border or interior
of the polytope then the dot product will satisfy

η̂ · (r− p) ≥ 0. (34)

A matrix constraint consisting of position and velocity vectors is used to main-
tain the spacecraft state, xk, inside the polytope at a given time k. This is
formulated as

Apoly,kxk ≤ bpoly,k (35)



where

Apoly,k =




−η̂T1,k 01×3

−η̂T2,k 01×3

...
...

−η̂TM,k 01×3


 bpoly,k =




−η̂T1,kp1,k

−η̂T2,kp2,k

...
−η̂TM,kpM,k


 (36)

with η̂i,k and pi,k being the normal and point associated with the ith face of
the polytope at time k.

As previously discussed, this work defines the polytope as a close approxi-
mation of a sphere, although any convex shape could be utilized.
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Abstract
The desire to fly small spacecraft close together has been a topic of increasing interest over the past several
years. This paper presents the development and analysis of a model predictive control based framework
that is used with the D’Amico relative orbital elements (ROEs) to maintain the desired trajectories of a
cluster of spacecraft while also allowing freedom to maneuver within some allowable bounds. Switching
surfaces based on the ROE constraints contain the full state of the system, allowing for fuel reduction over
other approaches that use the Hill-Clohessy-Wiltshire equations. The formation and boundary constraints
are designed such that no two agents have overlapping regions, allowing the vehicles to maintain safety of
flight without continuallymaintaining the trajectories of other agents. This framework allows for a scalable
method that can support clusters of satellites to safely achieve mission objectives while minimizing fuel
usage. This paper provides simulated results of the framework for a three spacecraft formation that
demonstrates a 67% fuel reduction when compared to previous approaches.

Keywords
Formation Flying · Model Predictive Control · Relative Orbital Elements · Switching Surfaces

Nomenclature

ωE Angular Velocity of the Earth (rad/s)
δλ Relative Mean Longitude
δa Relative Semi-major Axis
δex, δey x and y Relative Eccentricity Components
δix, δiy x and y Relative Inclination Components
δvr, δvt, δvn Velocity Changes in the Radial, Tangential, and Normal Axes (m/s)
x̂ Predicted ROE State
µ Standard Gravitational Parameter of the Earth (m3s−2)
Ω Right Ascension of Ascending Node (rad)
ω Argument of Perigee (rad)
ρ Air Density (kg/m3)
A Relative Orbital Element State Matrix
AD ROE State Transition Matrix
B ROE Input Matrix
v Control Vector of Radial, Tangential, and Normal Velocity Changes (m/s)
vrel Relative Velocity of the Spacecraft (m/s)
xd Desired ROE State
xe ROE State Error
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A Cross Sectional Area (m)
a Semi-Major Axis (m)
Cd Coefficient of Drag
e Eccentricity
f True Anomaly (rad)
g0 Standard Gravity (m/s2)
i Inclination (rad)
Isp Specific Impulse (s)
J2 J2 Coefficient of the Earth
M Mean Anomaly (rad)
m Mass (kg)
nc Mean Motion of Reference Orbit (rad/s2)
RE Radius of Earth
P Terminal Error Cost Matrix
Q State Error Cost Matrix
R Control Usage Cost Matrix

1 Introduction
Spacecraft formation flight operations have become a topic of interest in recent years. There are dozens
of missions that have flown or are currently in development that require some form of coordinated motion
between two or more spacecraft, e.g., [1–11]. Formation flying unlocks a wide range of applications,
such as various coordinated sensing and communication missions, e.g. [2, 12]. The coordinated flight
also allows for many lower cost, small spacecraft to fly varied payloads that traditionally would have been
flown on a single larger and more expensive spacecraft [13]. A key component to space formation flying
is the requirement that vehicles limit fuel usage to increase the lifetime of their missions. Formations also
require that the spacecraft’s relative states are maintained, which requires some type of control for orbital
adjustments. Thismust be donewhile respecting the computational capabilities of the individual platforms
and the communication restrictions within the constellation. This paper presents an optimization-based
feedback control strategy that allows each satellite in the formation to fly within a safe region of operation
to maintain relative spacing with little to no communication required. A model predictive control (MPC)
approach based on the D’Amico relative orbital elements (ROEs) is developed and analyzed with respect
to overall fuel usage and computation requirements.
Several considerations arise when developing a formation flying control framework. These include:

fuel usage, communication requirements between spacecraft, collision avoidance, overcoming distur-
bances, mission operational constraints, and computation time requirements. Creating a formation flying
framework becomes a balancing act between these different objectives.
Various techniques have been studied previously to employ optimization strategies in an effort to reduce

fuel consumption and overcomedisturbances fromperturbing forces [14–18].While an optimal fuel saving
maneuver may be found in theory, controller feedback is essential for overcoming disturbances from the
invariably erroneous motion models. MPC is one such method for using optimal control techniques
within a feedback loop to balance multiple desired outcomes [19]. The optimization problem is solved
given the current state of the system, one or more control inputs from the resulting optimal control
trajectory are executed, and the process is repeated with the new state used as the initial condition. Several
researchers have implemented an MPC framework based on the Hill-Clohessy-Wiltshire (HCW) relative
orbital dynamic equations [20–26] and were able to maintain control of a spacecraft within their desired
tolerances. The HCW dynamics are attractive to use with MPC because they are a well understood, linear,
time-invariant model. Additionally, the use of Cartesian coordinates provides an intuitive understanding
of the spacecraft states.
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However, using Cartesian coordinates, or the HCW equations, to define a spacecraft’s state can result in
some complications as well. For instance, given a Cartesian state, it is generally non-trivial to determine
the full relative orbit of the spacecraft or attempt to match some orbital element of a second spacecraft.
Additionally, using the standard Euclidean definition of distance between two states may not produce
the most meaningful results. Consider, for example, a spacecraft whose position perfectly matches
some desired location but has a velocity perpendicular to the desired velocity. The distance would be
considered “close" in a Euclidean sense, but because of the direction of the velocity vector, these orbits
are significantly different. The difficulty of matching the full relative orbital elements and velocities lead
to the utilization of D’Amico’s ROEs in this work.
Collision avoidance also needs to be considered when performing autonomous formation control. Lim

et al., [16], guaranteed collision avoidance by developing anMPC framework thatmaintained the eccentric
and inclination vectors of the D’Amico ROEs parallel to each other. Maintaining the ROE eccentricity and
inclination vectors parallel to each other guarantees collision avoidance within an established formation,
but it does not guarantee a collision free transfer trajectory nor does it guarantee the formation itself is
maintained. DiMauro et al., [18], used a mixed integer linear programming (MILP) framework with a
six-sided box as a keep out volume for the deputy spacecraft, but DiMauro found that the MILP approach
increased the computation time to a degree that it was deemed not suitable for flight. Tillerson et al.,
[17], also used a six-sided Euclidean box as a switching condition, but postulated that using a higher
dimensional shape could reduce fuel costs.
The authors of this paper developed several alternatives to reduce fuel costs due to the use of a six-sided

error box [24, 26, 27]. [24] develop a model based on Cartesian coordinates that used a nested sphere
based constraints to determine when to activate and deactivate the control. [26] built upon the work of
[24] by adding a guidance trajectory for the controller to follow that further reduced fuel usage. [27]
used a similar approach, but with the outer-most boundary being an approximation of ROE constraints in
local-vertical local-horizontal (LVLH) space. In both approaches, the controller was found to be overly
reactive to transient state errors and would immediately correct the error at the cost of fuel usage.
The major contributions of this work are the development and implementation of a guidance and model

predictive control framework with the switching surfaces and dynamics based on the D’Amico ROEs. The
amount of∆V required to maintain the formation is reduced by combining an optimal guidance trajectory
with an MPC feedback controller. The guidance trajectory finds a fuel-optimal trajectory that takes the
spacecraft from its current state to the desired orbit path. The MPC framework provides a feedback
control system with the ability to express constraints and weights in the objective that can provide for
intuitive tuning to a desired behavior, such as overcoming disturbances and reducing fuel usage. The
switching surface in this work is used as a boundary constraint. When the constraint is violated, a course
correction maneuver is performed. This switching surface allows for the formation to be maintained as
well as collision free flight within the formation. Using MPC and a switching surface based on the ROEs
accounts for the interplay between the control inputs and the natural dynamic motion of the system that
further reduce fuel usage when compared to a framework based on the HCW equations. Modeling the
constraints and the control in ROE spaces allows the system to better match the desired orbit, not just a
position state at a given time.
The remainder of the paper is outlined as follows. Section 2 gives an overview of the relative dynamics

used for this work, background information into the model predictive control approach developed, as
well as some discussion about switching control. Section 3 presents the control switching conditions,
the guidance and control approach, and the MPC formulation. Section 4 presents simulation results for
a three spacecraft formation executing the proposed guidance and control approach and compares it to
previous work using the HCW equations. A significant decrease in required ∆V is obtained by using
D’Amico’s ROEs. Section 5 provides concluding remarks.
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2 Background
This section presents background information relevant to the control scheme used for this work. The
D’Amico ROEs, used for the guidance and control dynamics, are introduced, as well as an explanation of
the general model predictive control framework. Finally, an explanation of the use of switching surfaces
in spacecraft control is given.

2.1 Relative Dynamics Overview
Traditionally, the HCW equations have been used to describe the relative orbital dynamics of spacecraft,
[28, 29]. More recently, however, relative orbital elements have been developed to describe relative
dynamics in the context of Keplerian orbital elements. These ROEs allow the system to take advantage of
the natural dynamics of the system. These are a set of states that define the orbit of a spacecraft relative
to some reference orbit. Various ROE formulations have been proposed, notably a set created by Lovell
and Spencer [30] and a set created by D’Amico [31]. For this work the D’Amico ROEs are chosen as they
are derived directly from the standard orbital elements and are more amenable for the desired formation
flying architecture as they alleviate the challenges of using Cartesian coordinates discussed in the previous
section. As presented in this paper, the ROEs assume two-body motion with no perturbations, but can be
adjusted to account for J2 disturbances [32]. Although the ROE formulation used in this paper does not
include the J2 formulation, Section 4 includes J2 perturbations in the simulated dynamics.
Given a set of standard orbital elements for the chief or reference orbit and a second set of standard

orbital elements of a deputy or agent satellite, the ROEs, which describe the orbit of the deputy relative to
the chief, can be determined. In the ROE states, the c and d subscripts indicate the elements of the chief
and deputy, respectively. The orbital elements a, e, i, ω, Ω, andM are the semi-major axis, eccentricity,
inclination, argument of perigee, right ascension of ascending node, and mean anomaly, respectively,
[33]. The dimensionless ROEs, as defined by D’Amico [31], are given as

x =




δa
δλ
δex
δey
δix
δiy




=




(ad − ac)/ac
(fd − fc) + (Ωd − Ω) cos ic

ex,d − ex,c
ey,d − ey,c
id − ic

(Ωd − Ωc) sin ic



, (1)

with
f� = ω� +M� , ex,� = e� cosω� , ey,� = e� sinω� , (2)

where the � subscripts indicate the states correspond to either the deputy or chief states.
The δa term represents the relative difference in semi-major axis and the δλ term gives the relative

mean longitude between the two spacecraft. The δex and δey terms can be composed into a single δe
relative eccentricity vector where the magnitude gives the orbit size along the radial direction. Similarly,
the δix and δiy terms can create the δi relative inclination vector where the magnitude defines the size of
the orbit along the normal axis. The δe and δi vectors can additionally be used to create passively safe
orbits where the agent does not pass through the relative orbital plane in front of the leader [16]. Note
that this relative state representation is nonsingular for circular orbits (ec = 0), whereas it is singular for
strictly equatorial orbits (ic = 0) [18].
Assuming two body motion with no perturbations, the orbital elements defined in Eq. (2) are all

constant except the mean argument of latitude, f , which increases at a constant rate, with µ representing
the standard gravitation parameter, defined by

ḟ =
df

dt
=

√
µ

a3
. (3)
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Defining ∆f = fd−fc, then ∆ḟ represents the drift in relative mean argument of latitude that will occur
when the spacecraft has a different semi-major axis than the reference orbit, and we define ∆a = ad−ac.
This can be approximated to the first order by the differencing of Eq. (3) for the two orbits as

∆ḟ =
d(∆f)

dt
= −3

2

√
µ

a5
∆a = −3

2
n

∆a

a
= −3

2
nδa, (4)

where n is the mean orbit motion and with the reasonable assumption that∆f and∆a are small compared
to the inertial virtual leader orbit radius [31]. Assuming two body motion, the remainder of the inertial
orbital elements are constant over time, and as such the other ROEs are also constant with respect to time.
The full dynamics can then be represented as

ẋ =




0 0 0 0 0 0
−3n

2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







δa
δλ
δex
δey
δix
δiy




= Ax. (5)

If fM represents the mean argument of latitude of any given maneuver and the prefix ∆ indicates the
change in the specified ROE, the instantaneous changes of the ROEs (∆δa, ∆δλ, ∆δex, ∆δey, ∆δix,
∆δiy) as a result of impulsive ∆V applied along the tangential, radial, and normal axes (δvt, δvr, and
δvn, respectively) is [31],

∆δa = +
2

na
δvt

∆δλ = − 2

na
δvr

∆δex =
sin fM
na

δvr +
2 cos fM
na

δvt

∆δey = −cos fM
na

δvr +
2 sin fM
na

δvt

∆δix = +
cos fM
na

δvn

∆δiy = +
sin fM
na

δvn

. (6)

As can be seen, these are linear, time-varying and fromEq. 6 the input matrix,B, whichmaps impulsive
δvr, δvt, and δvn velocity changes into instantaneous changes in the ROEs is found to be

B =




0 2
na 0

− 2
na 0 0

sinfM
na

2 cos fM
na 0

− cos fM
na

2 sin fM
na 0

0 0 cos fM
na

0 0 sin fM
na



. (7)

The state transition matrix for A is found as AD = eAdt where dt is the timestep. The control is
represented as v, with elements δvr, δvt, and δvn, representing the impulsive radial, tangential, and
normal velocity changes. An impulsive controls causes an instantaneous change in the ROE states and is
described as

x+
i = x−

i + Bvi, (8)
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where the “-" and “+" superscripts indicates the states before and after an instantaneous velocity change,
respectively. Once the control is applied the state is propagated to the next timestep using the drifting
dynamics

x−
i+1 = ADx

+
i . (9)

Combining these so that the original state and the ROE change due to the control are propagated
simultaneously gives

x−
i+1 = AD(x−

i + Bvi). (10)

The superscripts are now dropped since everything is in terms of the measured state at each timestep
before any maneuver is applied.

xi+1 = ADxi + ADBvi. (11)

The ROE model control inputs vi rely on impulsive ∆V maneuvers as the inputs, but the simulation
dynamics use a zero-order hold with accelerations applied from the thruster models. However, with the
dynamics being discretized with a sufficiently small time step, an impulsive ∆V can be approximated as
a constant acceleration by

vi = ai dt, (12)

at each time step. Thus, the acceleration limits are converted to∆V limits based on the thruster parameters
and discretization time step, the ∆V control vi at each step is solved for, and then each vi of the solution
is converted to an acceleration ai to be applied to the system.

2.2 Model Predictive Control
Optimal control is a tool often used within spaceflight design to find the most fuel-efficient strategy to
perform a correction maneuver. In general, there are two main limitations that often occur when using
an optimal control solution in practice. First, even with a favorable optimization formulation, a horizon
time that is long enough to produce desirable convergence characteristics may prove computationally
prohibitive. Second, the model of the system is usually inaccurate or incomplete and the system may be
impacted by external disturbances that can cause it to diverge from any calculated solution.
One approach to mitigate these concerns is to implement a feedback loop where the problem is

repeatedly solved over a short time horizon. Once a solution is obtained, the first control in the solution
is applied to the system and then the resulting state is measured. The problem can then be solved again,
using the new measurement as the initial condition, and the first step of the new solution is applied to
the system. This process of repeatedly solving the problem, implementing the first step of the solution,
measuring the output, and repeating is referred to as Model Predictive Control (MPC).
WhileMPCgenerally loses any guarantee of optimality, it does provide the ability to express constraints,

which is not common in many feedback control solutions. Furthermore, weights in the objective can
provide intuitive “control knobs” for tuning to the desired behavior.
The L1 norm is used for this work as it has previously been found to be more efficient for similar

applications, [26], but other norms could also be used with this framework. Given an initial state of x0,
and a time horizon of N intervals, the L1 objective function can be written as [34]

J =
N−1∑

k=1

||Qxk||1 +
N−1∑

k=0

||Ruk||1 + ||PxN ||1, (13)

where R, Q, and P are the weightings on control usage, state error, and terminal error, respectively.
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2.3 Control Approaches
In general, a spacecraft is not able to maneuver continuously due to thruster duration constraints or
mission requirements. This naturally lends itself to techniques for switched and hybrid systems where the
controller changes in response to some trigger [35, 36], for example the violation of a position boundary
constraint. For this work, a switching strategy is used to determine when to employ the MPC and when
to allow the satellite to coast.
A strength of switching controllers is their simplicity. The control can be as simple as switching

between two states, e.g., on/off. Another major advantage, specific to this work, is that the switching
surfaces can be leveraged as operational boundary constraints. These constraints force the state to stay
within a designated volume which, assuming non-overlapping boundaries for each spacecraft, guarantees
the formation stays collision free. This also allows the spacecraft to drift while guaranteeing the spacecraft
stays within the formation. This allows the spacecraft to stay within a safe region and be able to meet
operational constraints.
Previous work in the area of spacecraft formation flying switching strategies were based on maintaining

maximum and minimum relative distances [37] or six-sided error boxes [17]. Smith et al developed a
framework that leverage a sphere-shaped switching condition and a polytope constraint based on the
D’Amico ROEs, [24, 27], but found that in both cases the polytope formulation significantly impacted
computation requirements. This work builds upon these previous works by using D’Amico ROEs to
described the dynamics and the state constraints, alleviating the computation requirements in [24, 27].
This work also builds upon the work done in [26] by replacing the MPCmodel developed using the HCW
equations and replacing it with one that uses the D’Amico ROEs. Methods of using Cartesian coordinates
only accounted for position deviations while the ROE constraints contain the full state of the system. An
ROE based switching surface and controller allows for the algorithm to take advantage of the natural
dynamic motion of the system, further reducing fuel usage.

3 Control Framework Development
This work implements a guidance and control algorithm based on an MPC framework that keeps a
spacecraft within some desired boundary constraints by using periodic course correction maneuvers.
Within this, there are three key pieces that will be explained in this section: first, the boundary constraints
and switching surface used to determine when maneuvers are necessary; second, the guidance law that
finds a fuel optimal corrective trajectory; and third, the control law that follows the corrective trajectory.
To determine if a correction maneuver is required, the spacecraft’s propagated state is compared to the

switching surface. If the spacecraft is predicted to cross the surface, then the guidance trajectory plans a
maneuver that will return the spacecraft to the desired trajectory. This maneuver plan is then passed to
the MPC for execution, while correcting for any perturbations. Once the plan has been completed, the
spacecraft re-enters its drifting state and again begins checking its propagated state over the drift horizon.
Note that for this work a maneuver is define as the entire period required to return the spacecraft to

the desired trajectory and a single maneuver may consist of several thrust events. The structure of the
algorithm is depicted in Algorithm 1 and the individual elements are described further in the following
sections.

3.1 Switching Strategy
Smith et al. [26] developed a switching strategy based on the HCW equations. This work uses a similar
approach but is adapted to work with the D’Amico ROEs. Since the spacecraft is unable to maneuver
constantly, a strategy is required to select the periods where the spacecraft is drifting or maneuvering.
The strategy chosen for this work is a switching surface that activates the controller when the spacecraft
is predicted to reach the surface within some predetermined time frame, referred to as the drift horizon.
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Algorithm 1: Guidance and control structure
1 x̂0 ← x (Initialize From Current State)
2 x̂k+1 = ADx̂k k = 0, . . . , Ndrift − 1 (Propagate Drift Trajectory)
3 xerror,k = x̂k − xd,k, k = 0, . . . , Ndrift (Calculate Drift Error)
4 if not control_on and (∃xerror,k < xmin) or (∃xerror,k > xmax), k = 0, . . . , Ndrift then
5 control_on← true

6 min
xg ,vnom

1
2

∑Ng−1
k=0 || vnom,k ||, s.t. xg,Ng = xd,Ng (Create Guidance Trajectory)

7 mpc_step← 1

8 if control_on then
9 if mpc_step > Ng then

10 control_on← false (Turn Off Control)
11 else
12 min

xk,vk

1
2 || v0 ||R,p +1

2

∑N−1
k=1

(
|| xe,k ||Q,p + || vk ||R,p

)

13 + 1
2 || xe,N ||P,p (Calculate MPC Control Law)

14 v = vnom,mpc_step−1 + v0 (Get ∆V For Step)
15 u = v/dt (Convert to Acceleration)
16 uECI ← lvlh2eci(u) (Convert Control from LVLH to ECI Frame)
17 mpc_step = mpc_step+ 1

18 else
19 uECI = 01×3

The switching surface could be developed using any number of approaches such as, a six-sided error
box [17] in the LVLH position states or an approximation of a sphere[24, 26]. However, the use of ROE
state constraints is convenient for two main reasons. First, assuming a non-drifting relative orbit, the
desired ROE state and the ROE state constraints are constant. Thus, there is no need to recalculate these
bounds at each time step. In contrast, the LVLH states move over time as the spacecraft progresses along
its orbit and the state constraints are required to be updated at each time step. Second, the ROE state
constraints account for the full state of the spacecraft. State constraints in the LVLH frame account for
maximum allowable positions, but generally do not account for the spacecraft’s velocity vector. Since the
ROE states inherently reflect the dynamics of the system, they provide a more comprehensive boundary
between “acceptable" and “unacceptable" orbits.
Attempts were made to mitigate the LVLH velocity limitation in [24, 26] by comparing the spacecraft’s

predicted propagated trajectory against the switching surface. This allows the incorporation of both the
spacecraft velocity and orbital dynamics into the switching strategy as both will affect the propagated
trajectory. However, these methods that rely on Cartesian LVLH coordinates can only approximately
compare the “closeness" of two orbits. In contrast, the use of ROEs allows for direct measuring of this
closeness, which entirely negates the issue.
Since the ROEs do have a time-varying element (δλ), the spacecraft’s current state is still propagated

forward over some time-horizon so that corrections can be performed well before there is any immediate
risk of the spacecraft leaving the allowable boundaries. However, by using ROEs, the full relative orbit
can be quantified at each step and compared to the allowed boundaries.
During the drifting phase, the spacecraft state is propagated for Ndrift steps of the drift horizon using

the discrete form of the ROEs dynamics

x̂k+1 = ADx̂k k = 0, . . . , Ndrift − 1, (14)



Astrodynamics https://mc03.manuscriptcentral.com/astrod

where x̂0 is the current state of the spacecraft. The predicted error state is then compared to the allowable
boundaries as x̂k−xd,k ≤ xmax or x̂k−xd,k ≥ xmin, with element-wise comparison. If there is any step
k where either of these conditions fail, then a guidance trajectory is calculated and the MPC is activated.
Th drift horizon must be sufficiently long that a feasible guidance trajectory can be found which satisfies
the constraints. If the horizon is too short then by the time the switching condition triggers, there may not
be enough control authority to correct the spacecraft before it moves out of bounds. Furthermore, since
a longer drift horizon means the spacecraft is not in any immediate danger of leaving the boundaries, the
guidance trajectory has the opportunity to delay corrections until fuel optimal points.
Once the switching condition is activated and a guidance trajectory is found, the focus changes to

determining when the spacecraft should cease maneuvering and reenter the drifting state. This is triggered
by the spacecraft fully executing the plan associated with the guidance trajectory. Thus, the switching
surface activates the guidance and control law when the spacecraft is anticipated to breach the allowable
bounds and deactivates it when the spacecraft has finished its planned maneuver.

3.2 Guidance Trajectory
The guidance trajectory is tasked with finding a fuel-optimal trajectory that takes the spacecraft from the
current state to the desired orbit within some specified time horizon. When the spacecraft’s flight path
is predicted to leave the keep-in volume, a single guidance trajectory is generated and then used by the
control law.
The trajectory is bounded such that the nominal guidance trajectory, xnom must be within some

tolerance of the desired trajectory xd. Assuming a time-invariant boundary and a non-drifting desired
relative orbit, the boundary constraints do not need to be recalculated every time a guidance trajectory is
generated and can be expressed in terms of xmax and xmin This is a distinct contrast to the previous work
[24, 26, 27] where the boundaries needed to be recalculated each time a guidance trajectory was found.
The trajectory and nominal control inputs, vnom, overNg steps of the guidance trajectory are found as

min
xnom,vnom

Ng−1∑

k=0

|vnom,k|1

s.t. xnom,k+1 = ADxnom,k + ADBkvnom,k k = 0, 1, . . . , Ng − 1

xnom,Ng = xd,Ng

xnom,k ≤ xmax k = 1, 2, . . . , Ng

xnom,k ≥ xmin k = 1, 2, . . . , Ng

vnom,k ≤ vmax k = 0, 1, 2, . . . , Ng − 1

vnom,k ≥ vmin k = 0, 1, 2, . . . , Ng − 1

, (15)

where the initial state of the guidance trajectory, xnom,0, is assumed to be the current state of the
spacecraft. Note that the control input matrix Bk is time varying as a function of the mean argument of
latitude although the state transition matrix is time invariant.
With this formulation, there is no dependence on any transient state errors (xe,k, k = 1, . . . , N − 1)

except to ensure that the spacecraft does not leave the allowable boundaries. However, there is a terminal
constraint, xnom,Ng = xd,Ng , to ensure that the solution converges to the desired trajectory. This allows
the guidance trajectory the option to select the fuel optimal locations for orbital transfer, e.g., at apogee,
perigee, or the node line. If controls are applied at points besides these, successful orbital transfers are still
possible but at the cost of additional fuel usage. In general, conservation of spacecraft fuel is significantly
more important than convergence speed so adding the transient error and finding an appropriate weighting
may increase complexity while giving minimal benefit.
The state constraints apply a maximum allowable deviation from the desired trajectory. These con-

straints are analogous to a high-dimensional box where each state element is constrained, similar to the
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six-sided error boxes used to constrain position in [17, 18]. Note that the given ROE constraints constrain
the full state of the system. This reduces the concern about a spacecraft using large amounts of control if
it gets “stuck" in the corner of a box since the MPC constraint is able to account for the full state, both
position and velocity, of the system.

3.3 Model Predictive Control Law
The trajectory, xnom, and control profile, vg, calculated by the guidance trajectory are then passed to the
MPC. While these can act as an open-loop control law that drive the spacecraft to the desired trajectory,
an MPC is developed that tracks this nominal trajectory and rejects perturbations.
Once the guidance trajectory is found, the MPC tracks which step, ng, it is on, beginning with ng = 0.

The MPC then selects the portion of the trajectory to track xtrack over its Nc time horizon steps as

xtrack,k = xg,n, n = ng + k, k = 1, . . . , Nc, (16)
vguide,k = vnom,n, n = ng + k, k = 0, . . . , Nc, (17)

In the case when n > Ng and n > Ng − 1 for the trajectory and control, respectively, these are set as

xtrack,k = xd,k, k > Ng, (18)
vguide,k = 0, (19)

where xd,0 is the desired state of the spacecraft at the current moment.
The guidance trajectory and associated control inputs define the long-term fuel optimal correction

maneuver the spacecraft should follow while the MPC calculates any corrections needed to keep the
spacecraft close to the guidance trajectory in the face of perturbations which are not accounted for in the
model. Since the MPC is designed to reject short-term perturbations, its time horizon can be significantly
shorter than the guidance horizon which allows for decreased computation requirements.
A set of weighting parametersQ,P, andR are used to weight the MPC response to minimize transient

state error, terminal state error, and control usage, respectfully. By weighting the state errors more than
the control usage, the MPC tends to be more aggressive in rejecting perturbations at the cost of higher
control usage. In contrast, weighting the control usage higher will push the MPC closer to an open-loop
configuration where the guidance controls are followed with little change despite any deviations from the
guidance trajectory. However, the boundary constraints are still enforced, so the MPC will still correct
any deviations that would breach the boundary. The boundary constraints are identical to those used in
both the switching surface and the guidance trajectory since the purpose is to maintain a safe spacecraft
formation by enforcing the separation of the spacecraft in the formation.
TheMPCwhich chooses the optimal trajectory,xc, and control perturbations,vc, can nowbe formulated

as

min
xc,vc

Nc−1∑

k=0

|Rvc,k|1 +

Nc−1∑

k=1

|Qxe,k|1 + |Pxe,N |1

s.t. xc,k+1 = ADxc,k + ADBvc,k + ADBvguide,k k = 0, 1, . . . , Nc − 1

xe,k = xnom,k − xtrack,k k = 1, 2, . . . , Nc

xc,k ≤ xmax k = 1, 2, . . . , Nc

xc,k ≥ xmin k = 1, 2, . . . , Nc

vc,k ≤ vmax − vguide,k k = 0, 1, 2, . . . , Nc − 1

vc,k ≥ vmin − vguide,k k = 0, 1, 2, . . . , Nc − 1

. (20)

Once the optimal profiles have been chosen, the final combined control is found as

v = vguide,0 + vc,0, (21)
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where v is an impulsive ∆V since the ROE model used for both the guidance trajectory and MPC use
an impulsive ∆V as the inputs. However, it is assumed that the input to the system is acceleration. Over
a short time, dt, a constant acceleration, u, that approximates the impulsive v can be found as

u =
v

dt
, (22)

which can then be applied to the spacecraft simulation.
Once the guidance and control loop has been entered, the MPC runs once at each time step to find

the optimal input. This input is then applied to the system. The resulting spacecraft state is then used to
update the initial state of the MPC. This process continues until the final step of the guidance trajectory
has been completed at which point the guidance and control loop is exited and the spacecraft returns to
its initial drifting state.

4 Numerical Simulation
This section discusses the simulation and parameters used to test the guidance and control law outlined in
Section 3 and presents results from this simulation. A flowchart of the framework, for a single spacecraft,
is presented in Fig. 1 beginning with the spacecraft obtaining or measuring its own state. If the spacecraft
is in the drifting state with no control being applied, then the spacecraft propagates its state to determine if
a guidance trajectory is needed. Otherwise, if there is already an active guidance trajectory, the spacecraft
calculates the control needed to follow it. The control is then passed to the simulator to be applied to the
system in the environmental model.

Obtain
Spacecraft

State

Control Active?
Predicted
to Leave
Bounds?

Guidance
Trajectory
Finished?

Turn
Control On

Find
Guidance
Trajectory

Calculate
MPC
u

Propagate
Sim

Turn
Control Off

u = 0

u = 0

Guidance and
Control Loop

Y NY

N Y

N

Fig. 1 Flowchart showing the simulation logic structuring and flow for a single spacecraft. The dashed line
indicates the guidance and control loop that each spacecraft in the formation runs in parallel.
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4.1 Simulation Overview
For each formation, the virtual leader’s initial state is defined using Keplerian orbital elements and then
converted to a Cartesian Earth Centered Inertial (ECI) state. The actual and desired location of each agent
in the formation are initialized using D’Amico’s ROEs and then converted to an ECI representation, using
the leader as the reference.
To analyze the system, two-body dynamics with nonlinear perturbations in the ECI frame are used as

the true states for each spacecraft and the reference orbit. The nonlinear dynamics are applied in the ECI
frame as

Fd = −1

2
ρCdA|vrel|vrel, (23)

FJ2 =
3

2

J2µR
2
E

||rp||4
[
rx
||rp||

(
5

r2z
||rp||2

− 1

)
î+

ry
||rp||

(
5

r2z
||rp||2

− 1

)
ĵ +

rz
||rp||

(
5

r2z
||rp||2

− 3

)
k̂

]
,

(24)

ṁ = −||u||1m
g0Isp

, (25)

ṙp = rv, (26)

ṙv = −µ rp
||rp||3

+
FJ2

m
+
Fd

m
+ u, (27)

where Fd is the force due to drag, FJ2 is the force due to the J2 perturbation [33], and u is the calculated
control acceleration in the ECI frame, applied as a zero-order hold. The ECI state of the spacecraft is
represented by r where subscripts indicate the position vector (p), a specific position axis (x, y, or z), or
the velocity vector (v). The relative velocity of the spacecraft to the atmosphere is calculated as

vrel = rv − ωE × rp, (28)

where ωE is the angular velocity of the Earth. As described in Section 2.1, the MPC calculates an
impulsive ∆V maneuver in the LVLH frame, δvr, δvt, and δvn. The LVLH acceleration is approximated
as aLV LH = ∆VLV LH/dt and then converted to the ECI frame to be applied to the system.
The desired orbits are updated in the ROE frame and the true spacecraft ROEs are found from the

ECI states. The simulation then advances one time step and the process is repeated until the simulation
duration has been reached.

4.2 Simulation Parameters
The parameters for the simulation and guidance and control algorithms are presented in this section.

4.2.1 Spacecraft Parameters

The simulation and spacecraft parameters used for this work are shown in Table 1. The physical parameters
(mass, thrust, specific impulse (Isp), etc.) are based on a 12U CubeSat design built by Space Dynamics
Laboratory with a hybrid propulsion system [38]. The spacecraft is assumed to be able to independently
apply a 0.5 N thrust along any of its three orthogonal axes.
The reference orbit is shown in Table 2 and is a nearly circular Low Earth Orbit. The desired orbits for

each of the three spacecraft in the formation are shown in Table 3. Each spacecraft is in a non-drifting
natural motion circumnavigating (NMC) orbit with the maximum radial and normal components creating
a 1 km× 2 km ellipse. Additionally, each spacecraft is separated from its neighbors by 6 km with the
central spacecraft’s NMC centered on the reference orbit position.
The allowable deviations on each spacecraft are shown in Table 4 and each spacecraft is subject to

the same constraints. A rough understanding of these constraints in LVLH space can be obtained by
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Table 1 Parameters for simulation
Parameter Value
Spacecraft Wet Mass 24 kg
Spacecraft CD 2.2
Spacecraft Area to Mass 0.002 m2/kg
Spacecraft Thrust 0.5 N
Spacecraft Isp 160 s

Table 2 Reference Orbit of the virtual leader
Keplerian Orbital Element Value
Semi-major Axis 6 878 km
Eccentricity 1× 10−4

Inclination 25°
RAAN 45°
Argument of Perigee 0°
Initial True Anomaly 100°

Table 3 Relative Orbital Elements for the desired agent trajectory
ROE Element Spacecraft 1 Spacecraft 2 Spacecraft 3

δa 0 0 0
δλ 0 8.723× 10−4 −8.723× 10−3

δex 1.454× 10−4 1.454× 10−4 1.454× 10−4

δey 0 0 0
δix 1.454× 10−4 1.454× 10−4 1.454× 10−4

δiy 0 0 0

multiplying the values by the semi-major axis [31]. The δa constraints restricts the radial position error
of the center of the spacecraft’s relative orbit to around ±100 m. The δλ term constrains the along track
error of the relative orbit’s center to ±500 m. The δex and δey constraints can be combined to form a
δe2 = δe2x + δe2y value that gives the maximum radial deviation as ±200 m and the maximum along
track position deviation as ±400 m. The δi value can similarly be found and gives the maximum normal
position deviation as ±200 m.

Table 4 Relative Orbital Element Constraints for the desired trajectories
ROE Constraint Spacecraft 1 Spacecraft 2 Spacecraft 3

δa ±1.45× 10−5 ±1.45× 10−5 ±1.45× 10−5

δλ ±7.27× 10−5 ±7.27× 10−5 ±7.27× 10−5

δex ±2.06× 10−5 ±2.06× 10−5 ±2.06× 10−5

δey ±2.06× 10−5 ±2.06× 10−5 ±2.06× 10−5

δix ±2.06× 10−5 ±2.06× 10−5 ±2.06× 10−5

δiy ±2.06× 10−5 ±2.06× 10−5 ±2.06× 10−5

There is some interplay between the constraints that can be seen by both the δλ and δe terms affecting
the along track position of the spacecraft. Similarly, the δa and δe constraints both impact the radial
spacecraft position. Thus, there is no single set of LVLH distances that describe the constraints on the
spacecraft’s allowable orbits. However, the above descriptions should give some idea as to the constrained
space.

4.2.2 Monte Carlo Parameters

To obtain a better understanding of the efficacy of the system, the guidance and control laws were tested
using a Monte Carlo simulation where the initial states of the spacecraft were perturbed but all other
parameters, including the desired formation, remained the same. A total of 500 individual simulations
were run where the initial ROE state error of each spacecraft selected from a uniform distribution centered
on zero with the bounds equal to ±10% of the corresponding constraint. The parameters for the Monte
Carlo simulation is shown in Table 5
Once the spacecraft initial states were determined, they were then propagated forward in time until one

of the three spacecraft in the formation triggered the guidance and control law. This marked the point
where data began being recorded and the start time of the simulation. Each individual simulation then
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Table 5 Simulation and Monte Carlo Parameters
Parameter Value
Simulation Timestep 10 s
Simulation Duration 7 days
Monte Carlo Simulations 500
Distribution ±10%

ran for a total of 7 days with a 10 second time step.
Ignoring any data prior to the first maneuver helps to compare the simulations evenly. Depending on the

initialization, each the formation required different lengths of time to drift to the point where corrections
are needed. By beginning the data collection only once a correction is required, the guidance and control
laws have an impact over the full simulation time, for all simulations.

4.2.3 Guidance and Control Parameters

The parameters used for the guidance and control time horizons are shown in Table 6. The drift horizon
approximately covers, a full orbit while the guidance horizon is approximately an orbit and a half in
length. The length of the drift horizon is meant to give the spacecraft sufficient warning so that it is
able to maneuver at the fuel-optimal points. The length of the guidance horizon defines the maximum
convergence time for the spacecraft to return to the desired trajectory. The length (> 1 orbit) is designed
so that the optimization has the option of choosing the points along the orbit that are traditional the fuel
optimal locations to perform a maneuver (e.g., perigee, apogee, intersection of planes) although there
is no explicit requirement constraining maneuvers to these points. The control horizon is shorter and a
5 minute duration is used since it is only correcting the short term perturbations.

Table 6 Guidance and control parameters used in the simulations
Parameter Value
Guidance Horizon 820 Steps (2.28 hrs)
MPC Horizon 30 Steps (5 min)
Drift Horizon 600 Steps (1.67 hrs)
Boundary Margin 10%

Initial tests of the guidance and control loop showed that the guidance law generated trajectories that
would closely match the allowable bounds. This is most apparent in the relative semi-major axis (δa) since
changing this parameter also adjusts the relative argument of latitude (δλ) over time. Thus, maximizing
the change δa state allows for faster changes in the δλ state. However, when a state is close to the allowable
boundary, slight perturbations can push them out of bounds which the MPC attempts to correct. This can
result in the spacecraft continually oscillating about the allowable boundary. To avoid this, a margin is
applied to the boundaries so that they are decreased by 10% for the switching surface, guidance law, and
MPC.
Since the guidance trajectory uses a terminal constraint, no tuning is required within the guidance law.

For the MPC, the weights used for this work are

Q =




10 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, R =




0.01 0 0
0 0.01 0
0 0 0.01


 , S =




10 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, (29)

although additional tuning ofQ, R, and S may provide lower ∆V results. Since the relative difference in
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Fig. 2 Spacecraft separation distances using the guidance and control approach presented in the paper.

Fig. 3 Spacecraft separation distances when the spacecraft are uncontrolled.

semi-major axis (δa) drives the drift rate and along-track offset of the spacecraft (δλ), the δa element is
weighted higher in the Q and S matrices to minimize the drift due to error in the semi-major axis.

4.3 Alternate Approach Comparisons
A sampling of alternative approaches to the guidance and control loop are touched on in this section and
used as a point of comparison for the approach presented in Section 3.

4.3.1 Uncontrolled Formation

One approach maybe to simply place the spacecraft into their initial formation and then let them drift
with the expectation that each spacecraft in the formation will experience similar perturbations and not
experience any relative drift. However, the necessity of correctionmaneuvers can be seenwhen comparing
Fig. 2 with Fig. 3. In Fig. 2, the distance between the spacecraft is shownwhere the spacecraft are using the
guidance and control approach as presented above. With the formation defined according to Table 3, the
desired separation between the first and second spacecraft and the first and third spacecraft is 6 km. The
plot shows that the spacecraft maintain this separation within about 600 m. In contrast, Fig. 3 shows the
separation between the three spacecraft if they were not being controlled. The separation distance between
vehicles 1 and 2 is unbounded in its growth and the two spacecraft are shown to drift apart. Vehicles 1 and
3 drift towards each other. These vehicles experience a minimum separation distance of less than 15 m, at
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4.7 days into the simulation, after which they pass each other and start drifting apart. This is a dangerously
close approach and represents a high probability of collision for an actual system when accounting for
measurement uncertainty in the spacecraft’s positions. Note that both simulations have perturbed initial
states. The drift in both cases is due to the mismatched orbits as well as environmental perturbations. It
is clear from these figures that the guidance and control laws are necessary and successful in maintaining
the desired separation between spacecraft.

4.3.2 Open Loop Guidance Law

While the guidance and control law, as described above, is a closed-loop control, it can be run as an open-
loop control by applying the controls associated with the guidance trajectory with no MPC corrections.
In order to illustrate the differences, a single simulation was run where the two approaches were given
initial starting conditions.
In Fig. 4 and 5, the ∆V applied at each time step is shown for the first spacecraft maneuver for the

open and closed loop approaches, respectively. In both approaches, the guidance law generates identical
controls which can be seen as the three ∆V spikes the two plots have in common. However, the closed-
loop formulation has an additional number of small corrections that reject the perturbations that were not
accounted for in the guidance law model.

Fig. 4 ∆V using only the guidance portion of the
control in an open-loop formulation for the first ma-
neuver.

Fig. 5 ∆V usage over the first maneuver using the
closed-loop guidance and control laws.

Both approaches saw a total of 12 correction maneuvers used over the 7-day simulation. The ∆V
used per maneuver for both approaches is shown in Fig. 6 while the remaining position error after each
maneuver finishes is shown in Fig. 7. In Fig. 6 and 7, the middle line is the median value, the box shows the
span between the first and third quartile, the lines show the points within 1.5 times that range, and outliers
are shown as circles. The open-loop control uses less ∆V with a median value of 0.088 m/s used over the
course of each maneuver compared to the median value of 0.108 m/s used with the closed-loop control.
Similarly, the total ∆V usage over the full 7-day simulation was found to be 1.023 m/s and 1.279 for
the open- and closed-loops, respectively. This is an expected result since the closed-loop control uses
additional ∆V to correct perturbations that the open-loop control ignores. The result of these corrections
can be seen in Fig. 7 where the final position error of each maneuver is shown. The median terminal
error for the open loop is 60.53 m while the median error for the closed loop is 33.89 m. Thus, there is
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a trade-off between how much ∆V is used and how closely the spacecraft tracks the desired trajectory.
Within the architecture as presented, the control law is closed-loop. However, by adjusting the weightings
on the inner-loop controller so that the control usage is weighted significantly more than the state errors,
an open-loop like behavior can be obtained. This would limit the extent to which perturbations are rejected
but would keep the spacecraft within the allowable boundaries since the boundary constraint would be
enforced.

Fig. 6 A comparison of the ∆V used over each
maneuver for the open- and closed-loop approaches.

Fig. 7 Terminal position error of each maneuver
for open- and closed-loop approaches

4.3.3 Constant Control

A final point of comparison is to have the spacecraft control always on and constantly correcting errors in
its trajectory. In this case, as soon as the spacecraft finishes its guidance and control loop it immediately
calculates a new guidance trajectory and the cycle continues. Again, a single simulation is used to illustrate
the effects such a control approach has.
As seen in Fig. 8, the spacecraft is continually using control over the full simulation. However, in Fig.

9, which is a detailed portion of Fig. 8, the control usage is seen to be composed of individual, discrete
impulses rather than the spacecraft using control constantly.
The LVLH position error between the actual and desired trajectories is shown in Fig. 10 for the

constantly on control. Once the initial error is corrected, the spacecraft is always within 100 m of the
desired trajectory. This is larger than the distance seen in [26] but this is because, in that case, the
controller was trying to minimize the position error while in this case the controller is minimizing the
ROE error.
Overall, the spacecraft used a total of 2.81 m/s of ∆V , which is greater than the control usage of

1.5 m/s from using the control formulation from this work. Regardless, the constant control usage would
not be suitable for missions that require non-maneuvering periods to fulfill their objectives.

4.4 Individual Results
The results of an individual spacecraft are presented in this portion for a detailed explanation of the
spacecraft’s behavior. A more holistic review of the simulations is presented in the following section
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Fig. 8 ∆V usage with the guidance and control
loop always on.

Fig. 9 Zoomed in view of the indicated grey zone
in Fig. 8.

where the aggregate results for all simulations are presented. However, examining the results of a single
simulation can give valuable insight into its performance.
In Fig. 11, the ∆V usage at each timestep is given over the full simulation. The control usage is divided

into distinct periods of maneuvering and drifting, as would be expected from the switching surface. From
this plot, we can see that the spacecraft performed a total of 12 maneuvers over the full simulation.
The gray bar near t = 3 days indicates one period when the spacecraft was maneuvering back to the

desired trajectory. This section of Fig. 11 is shown in detail in Fig. 12. Here, we see that the control
is generally divided into distinct impulse-like segments with the largest controls being those planned
by the guidance law and the smaller controls being those deemed necessary by the control law to reject
perturbations. The exact behavior can be modified by adjusting the weights of the control law to determine
the extent that the control attempts to reject perturbations.
In Fig. 13, the ROE errors are shown with the allowable bound depicted with the dashed lines.

Additionally, the periods with the guidance trajectory and MPC active are shown by the gray bar. The
primary sources of error are seen to be in the δλ and δey components, although the control keeps them
within bounds. As could be expected from an examination of the ROE dynamics, the δa component
is used to correct the δλ error. The δey error is corrected with the direct application of control. The
accumulation of error in the δλ state can be seen to be due to the small oscillations in the δa term that,
due to a slight offset from zero, result in the spacecraft drifting along the δλ component.
By way of comparison, Fig. 14 shows the LVLH position error over time for the same simulation. From

the LVLH error, two observations can be made. First, there is no consistent LVLH error that triggers
the guidance and control algorithm. While the maximum error across each maneuver and drift cycle
roughly falls between 500 and 600 meters there is no hard bound in the LVLH error. Second, the LVLH
error is not monotonically decreasing during the periods when the guidance and control is active. This
results from the fact that the guidance trajectory waits for the fuel optimal points rather than immediately
attempt to minimize errors. While both of these are understandable when viewed from an orbital dynamics
perspective, they demonstrate the somewhat counter-intuitive nature of attempting to understand the ROE
guidance and control laws in an LVLH frame.
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Fig. 10 LVLH position error with the guidance and control loop always on.

Fig. 11 ∆V usage for the spacecraft. The single
maneuver indicated is detailed in Fig. 12 Fig. 12 Zoomed in view, grey zone, of Fig. 11.

4.5 Cumulative Results
This section provides the cumulative results that summarize the performance of the ROE based framework
outlined in the previous sections. The results in this section represent Monte Carlo analysis of 500
simulations.
Examining the computation time required, the guidance and control law averaged 3.246 ± 0.168 s to

run the initial step of each maneuver where the guidance trajectory is calculated with a maximum run
time of 4.457 s. On the subsequent steps of the guidance and control law, where only the control law is
run, the mean computation time was found to be 0.009± 0.001 s with a maximum computation time of
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Fig. 13 ROE error over the simulation with the allowable bounds marked with the dashed lines. Gray zones
indicate when the spacecraft guidance and control loop was active.

Fig. 14 LVLH error over the simulation. Gray zones indicate when the spacecraft guidance and control loop was
active.
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1.775 s observed. These were all run using the Gurobi [39] solver.
In Fig. 15, the average number of maneuvers used by each vehicle is shown. A maneuver is defined

to be the period that the control and guidance loop is active, regardless of whether the spacecraft is
commanding a non-zero control input at every time during that period. The average number of maneuvers
per vehicle were found to be 11.37 ± 0.48, 11.91 ± 0.29, and 12.10 ± 0.37, for the first, second, and
third vehicles, respectively. This means that the spacecraft are maneuvering roughly 1.7 times per day
and suggests that there is ample opportunity for the spacecraft to perform its primary mission during the
drifting periods, note that each maneuver time is ∼ 2.3 hours. However, the number of maneuvers used
over any given period of time is a function of the allowable error on each spacecraft’s trajectory since a
larger keep-in volume allows the spacecraft to drift longer before needed a correction maneuver.
Fig. 16 shows the mean ∆V used during each error correction maneuver while Fig. 17 shows the total

∆V used over the full simulation. The per maneuver ∆V shows the spacecraft using 0.112± 0.012 m/s,
0.113 ± 0.014 m/s and 0.124 ± 0.014 m/s for each trajectory correction for the first, second, and third
spacecraft, respectively. Additionally, the total ∆V for each vehicle was found to be 1.272± 0.033 m/s,
1.349 ± 0.058 m/s, and 1.497 ± 0.042 m/s for the first, second, and third vehicle, respectively. This
indicates that it would take between 68 and 78 m/s to maintain this formation for a year-long mission.
These numbers are well within the capability of a small satellite, which can hold between 100-200 m/s,
depending on available volume [38].

Fig. 15 Total number ofmaneuvers over the course
of the simulation with the line indicating the 1− σ
standard deviation.

Fig. 16 Total ∆V used per maneuver for the three
different desired orbits

4.6 HCW Comparison
The control architecture in this paper was also compared to the previous work done in [26] which used a
similar approach based on the HCW equations. The two approaches attempt to mirror each other with the
only difference being the model used for relative motion and boundary dynamics. For both approaches,
the randomization of the initial states are the same, the same norm definition is used, and the formation is
identical. However, there are some key differences that cannot be reconciled. With regard to the keep-in
boundaries, a direct conversion between a spherical boundary and the ROE defined boundaries is not
possible. However, the HCW model uses a boundary with radius 500 m, which roughly correlates to
the ROE boundaries shown in Table 4 and is demonstrated by the allowable LVLH errors seen in Fig.
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Fig. 17 Total ∆V used over the course of the simulation.

Table 7 Average number ofmaneuvers per vehicle
over the 7-day simulations using ROEs and HCW
algorithms.

Vehicle ROE HCW
1 11.37± 0.48 16.55± 2.19
2 11.91± 0.29 20.28± 1.32
3 12.10± 0.37 20.18± 2.24

Table 8 Average ∆V per maneuver for each ve-
hicle over the 7-day simulations using ROEs and
HCW algorithms.
Vehicle ROE HCW

1 0.112± 0.012 m/s 0.245± 0.069 m/s
2 0.113± 0.014 m/s 0.237± 0.042 m/s
3 0.124± 0.014 m/s 0.247± 0.070 m/s

14. Additionally, the weights on the MPC do not directly correlate due to the difference in error state
dimensions, but the authors believe that the weights used for both formulations represent a near optimal
result. The authors of this paper believe that while a perfect comparison of the two approaches may not
be possible, the comparison presented in this section gives good insight into the performance of the two
approaches.
The computation time difference between the two approaches is negligible. In Tables 7, 8, and 9, the

number of maneuvers, ∆V per maneuver, and total ∆V are compared for the two approaches. For each
metric, the ROE approach shows more favorable behavior. In Table 7, the HCW approach has roughly 1.5
times more maneuvers than the corresponding vehicle using the ROE approach. Since each maneuver is
designed with an identical, fixed convergence duration, a vehicle using the ROE approach is able to devote
a greater amount of its time to the actual mission. Moreover, the vehicles with the ROE approach use
roughly half the amount of ∆V during each of their maneuvers (Table 8). Combining these two effects,
the ROE approach shows a significant improvement in the total ∆V used over the course of the full seven
day simulations (Table 9) and uses approximately a third of the ∆V used by the HCW approach.

Table 9 Average ∆V comparison for 7-day simulations using ROEs and HCW algorithms.
Vehicle ROE HCW

1 1.272± 0.033 m/s 4.062± 0.223 m/s
2 1.349± 0.058 m/s 4.815± 0.201 m/s
3 1.497± 0.042 m/s 4.994± 0.273 m/s
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Fig. 18 2-norm of the ROE element-wise error for both approaches comparing the pre- and post-maneuver states.
Outliers are removed for clarity.

Fig. 19 ROE error magnitude distribution for both
the HCW and ROE approaches at the end of maneu-
vers. Outliers are removed from the plot for clarity.

Fig. 20 ROE error magnitude distribution for both
the HCW and ROE approaches at the beginning of
maneuvers. Outliers are removed from the plot for
clarity.

Figure 18 shows the 2-norm error of the different approaches in ROE state space immediately before
and after maneuvers. In general, the errors are comparable for both approaches with the initial error being
around 3× 10−5, although the distribution of initial error for the ROE model is larger than for the HCW
model. The final errors are likewise similar although roughly an order of magnitude smaller at 3× 10−6.
This shows that the ROE based approach is able to handle a larger range of errors than the HCW based
approach, but uses significantly less fuel.
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In Figures 19 and 20, the error magnitudes for the pre- and post-maneuver states, respectively, are
shown. Of particular note is that the error is primarily dominated by the δλ term, which is analogous to
the along-track error. There is also noticeably higher error in the ROE model in the δey term although
there is no obvious cause.
Overall though, the ROE approach presented in this paper gives comparable, or better, results than the

HCW comparison. It is able to match the terminal error of the HCW approach despite a larger range of
initial errors and notably less control usage.

5 Conclusions
This work presents a guidance and control architecture that uses the D’Amico ROEs to constrain a
spacecraft to a given orbit relative to a reference. When the spacecraft predicts it will leave the allowable
ROE constraints it enters a guidance and control loop and calculates the fuel-optimal trajectory that
will return it to the desired orbit within some given time horizon. The spacecraft then uses a model
predictive control to repeatedly solve for solutions, over a shorter horizon, that will balance deviations
from the guidance trajectory with total control usage. Once the spacecraft has fully executed the guidance
trajectory, it returns to a drifting state until it again determines if it will drift beyond the allowable bounds
and the process repeats.
As presented in this paper, this framework requires less overall ∆V when compared to a continuous

controlled system. This approach also reduces the terminal error when compared to an open-loop system.
This work also shows that if formation control is not performed, the formation is not maintained, and
potential collision events may occur.
The ROE based model predictive control framework presented as part of this work was analyzed

through Monte Carlo simulation with a total of 500 1-week simulations with formations of three vehicles.
The simulations showed that the spacecraft were able to stay within the allowable constraints without
excessive propellant usage. The simulations also showed that the ROE formulation developed as part of
this work requires fewer maneuvers and 33% the ∆V of previously published architectures based on the
HCW equations.
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CHAPTER 7

CONCLUSION

The current command and control of satellite constellations largely consists of develop-

ing control schedules for a single satellite at a time by a mission planning team working on

the ground. Future desires to have hundreds and even thousands of satellites in a constella-

tion make the single-satellite planning approach infeasible. Satellites that have the ability

to autonomously formation fly, can make this future desire a reality. But certain chal-

lenges exist when trying to solve the problem of autonomous formation flight, they include;

fuel consumption, overcoming disturbances or perturbing forces, data distribution between

spacecraft, collision avoidance, mission operational constraints, and computation feasibility.

This research addresses these challenges through providing a decentralized, optimization-

based control that can be used for autonomous formation flight of small satellites. Through

developing a switched, model predictive control framework based on a virtual structure

architecture. This architecture uses both the HCW equations and the D’Amico ROEs to

describe the relative motion of the system. This framework allows for minimal commu-

nication from operators and between satellites while conserving fuel consumption. It also

enables required operational drift while staying within safe regions of operation for coordi-

nated flight

The major contributions of this research are; the development of a virtual structure,

model predictive control architecture based on the Hill-Clohessey-Wiltshire equations con-

trol. Development of a virtual structure, model predictive control architecture based on the

D’Amico relative orbital elements. Development of switching control strategies based on a

spherical polytope approximation that is centered on each satellite, and a switching strat-

egy that is based on the D’Amico ROEs. These architectures were analysed and compared

and contrasted to identity advantages and disadvantages regarding fuel usage and control

computation time.
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This framework requires less overall ∆V when compared to a continuous controlled

system and an LQR framework. This approach also reduces the terminal error when com-

pared to an open-loop system. This work shows that if formation control is not performed,

the formation is not maintained, and potential collision events may occur.

This research presents and compares the formulation of using L1, L2, and L∞ norm

objective functions for the MPC. The simulations show that the control formulation is

able to maintain its position within the polytope volume with reasonable computation time

requirements for all three norm formations. As would be expected, the computation time

for solving the MPC problem increase with the desired time horizon. However, the L2 norm

showed the slowest computation time growth while the L1 and L∞ norms grew at similar

rates. In the simulations, all the norms were able to run at near real-time rates or better

despite not optimizing for computation time. This research also shows that the L1 norm

produces the lowers total ∆V , over a seven day period, with the L2 norm requiring a meter

per second more than the L1, and the L∞ norm being a full two meters per second higher

than the L1 norm.

Comparing the number of times that each spacecraft was required to maneuver showed

roughly equivalent performance between the three different norms. However, the L1 norm

required the lowest number of manuvevers, followed by the L2 norm and then the L∞ norm.

This research also shows that the ROE formulation developed as part of this work requires

1/3 the ∆V of architecture based on the HCW equations.
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APPENDIX A

Extended Formation Flying Literature Survey

At the onset of this research a literature survey of the different formation flying control

architectures was conducted. This Appendix presents the additional information of that

survey not found in Chapter 2.

A.1 Formation Flying Control Architecture

In the literature their are five basic formation architectures; Leader/Follower, Cyclic,

Behavioral, Multiple-Input Multiple-Output (MIMO), and Virtual Structures. Additional

literature, not discussed in Chapter 2 is now presented in this section, including details

about architecture stability.

Leader/Follower

Other studies, not mentioned in Chapter 2, that implemented a Leader/Follower ar-

chitecture in the mobile robotics community are; Sugar and Kumar used a Leader/Follower

architecture control a group of robots to cooperatively move a box [92]. Desai used feedback

linaerization techniques to derive tracking control laws for non-holonomic robots [46].

A Discussion on Leader/Follower Stability: Recall that a Leader/Follower system is built

off of a hierarchically connected system, which is considered to be “mesh stable” if it is

asymptotically Lyapunov stable and if any perturbations to the leader do not grow as they

filter threw each of the followers. In other words, the peak tracking errors of all the followers

are uniformly bounded by the peak tracker error of the first follower. Mesh stability is

derived from string stability. Lyapunov stability is considered to be less restrictive then

both mesh and string stability.
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Let us consider a dynamic system that has the form shown in Equation A.1. where xi is

a state of the ith subsystem, and the state is given by Equation A.2. For a Leader/Follower

system xi represents the tracking error of the follower.

ẋi = fi (xi, xi−1, ..., x1) (A.1)

x =




x1
T

x2
T

x3
T




(A.2)

Asymptotic String Stability: Asymptotic string stability originated with the auto-

mated highway system [93]. Asymptotic string stability requires that there exits δ > 0 such

that supi || xi(0) ||< δ =⇒ supi supt || xi(t) ||< ε for all ε > 0 and that || xi(t) ||→ 0

for all i. The stability condition states that the infinite chain of subsystem must be uni-

formly bounded. The peak error must not grow as you go through the system. Given

an infinite number of subsystems the state would become unbounded. Darbha did derive

sufficient conditions for asymptotic string stability. The function fi can be nonlinear and

non-autonomous but must also be identical. The subsystem is required to be exponentially

stable and the subsystem connections must be sufficiently weak in terms of the constraints

associated with the Lyapunov function and the Lipschitz constants of fi [93].

Spatial Asymptotic String Stability: Spatial asymptotic string stability requires that

the subsystem errors go to zero as you move through the system spatially, Equation A.3

lim
i→∞

sup
t
|| xi(0) ||= 0 =⇒ lim

i→∞
sup
t
|| xi(t) ||= 0 (A.3)

Spatial asymptotic string stability requires the uniformity to be bounded. Although

where an asymptotic string stable system is only required for uniformity in the L∞ norm,

spatial asymptotic string stability requires uniformity in an Lp norm. Darbha did derive

sufficient conditions for spatial asymptotic string stability for systems with function fi that
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is linear and identical. The subsystem connections must be sufficiently weak [94]. Spatial

asymptotic string stability assumes that the dynamics are time-invariant.

Monotonic String Stability: Monotonic string stability is a hierarchically connected

system with an infinite number of subsystems. Where a spatial asymptotic string stability

requires that the error goes to zero, a monotonic string stable system is required for the

peak errors to decay monotonically as it moves through the system, Equation A.4

sup
t
|| xi(t) ||≤ sup

t
|| xi−1(t) || (A.4)

There is always a uniform bound on the system states, even if the peak error increases

from one subsystem to the next. A monotonic string stable system dynamics does not need

to be identical. The idea of monotonic string stability comes from the concept of line vehicles

following each other and are treated as systems with a finite hierarchically connected systems

where the subsystems are arranged in a two-dimensional grid [55] [95] [96]. Monotonic string

stability assumes that the dynamics are time-invariant.

Pant defined that mesh systems and hierarchically connected systems are the same

through a change in variables in the subsystem indices. And that a finite hierarchically con-

nected system is mesh stable if it is asymptotically Lyapunov stable and if supt || xi(t) ||≤

maxk<i−1 supt || xk(t) ||. Note that for monotonic string stability the current subsystems

peak error must be less than the previous subsystems peak error. Mesh stability simply just

requires the peak error to be less than the max peak error of all the previous subsystems.

Mesh stability is considered recursive. The peak tracking error of all the followers must be

bounded by the leader [97].

Cyclic

Wang presented a strategies called Multi-neighbor where each spacecraft control is

designed to operate with respect to the center of mass of a subset of the neighboring

spacecraft. The cycle dependency directed graph is built when two spacecraft are neighbors
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with one another. Each spacecraft controls itself with respect to the center of mass created

between him and his neighbor [48]. [78] and [98] studied what is referred to as a centroid

strategy, which is where a controller is set to control itself with respect to the center of mass

of the entire formation. It is worth noting that centroid strategies have only been studied

through simulation.

Sugihara and Suzuki studied cyclic algorithms for taking robots in random locations

and having them form regular geometric shapes. They used a rule-based controller to

have the robots form lines, circles, and polygons. The methodology used for setting up

the circles are that the robot moves toward or away from the robot farthest away until it

gets to some distance away, then move away from the closest robot [99]. This approach

is similar to the theory of flocking or schooling in animals, which is the idea that they

are attracted to their most distant neighbors, repulsed by the closes neighbor, and align

their velocity with the velocities of their neighbors [100]. Yun built upon this work by

modifying the algorithm to handle data from actuators, sensors, and collision avoidance

algorithms [101]. [102] used a similar technique that used two Cyclic algorithms where

potential fields are constructed using rules similar to the farthest/nearest neighbor approach.

If the spacecraft is more than a given distance away from another spacecraft, the spacecraft

is attracted to the neighbor, if it is less than some distance than it is driven away from the

neighbor. Wang presented a stability proof for this approach with the formation equilibria

characterized for four spacecraft. McInnes also used this potential field approach to space

out the spacecraft in a circular orbit, stability analysis was provided [103]. Palmerini built

off of McInnes work and looked at different potential functions to form the spacecraft

arrangements [104]. Yamaguchi and Burdick used potential strategies where robots were

attracted to two assigned neighbors [105]. Young and Beard developed a Cyclic algorithm

that is similar to a virtual structure type architecture, the difference being that a goal state

is prescribed instead of the motion of the robot/spacecraft, and the feedback gain the control

law is dependent on the tracking errors of the spacecraft control laws. When a spacecraft

falls out of formation the control gain decreases, which slows the virtual structure, allowing
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the spacecraft to reduce their tracking errors and reconstruct the formation [73] [106].

Cyclic Architecture Stability: Most Cyclic algorithms have only been studied through sim-

ulation due to the fact the the stability analysis is difficult. This difficulty comes because

the cycles in the dependency directed graph add higher levels of feedback to the individ-

ual spacecraft feedback controllers. That being said, potential field-based cyclic algorithms

usually have an associated stability proof since the potential function is the basis for the

Lyapunov function [98], [101].

Advantages/Disadvantages to a Cyclic Architecture: Cyclic algorithms typically perform

better than a Leader/Follower architecture since non-hierarchical connections between indi-

vidual spacecraft controllers are allowed [78,106] and the control effort is distributed more

evenly [60]. Cyclic architecture do not have a coordinating agent nor instability that results

from single point failures and thus the algorithm can be completely decentralized [103]. Sim-

ilar to a Behavioral architecture the formation geometry is formed by the interactions of the

individual controllers. A disadvantage to the Cyclic architecture is that the data require-

ments are similar to a Minimum Input Minimum Output (MIMO) architecture, although

Cyclic architectures are typically more robust than MIMO architectures as the polygon

algorithm allows the formation to adjust as the formation size changes without needing to

redesigning the entire controller. Also the stability of these types of architectures is poorly

understood [11].

Behavioral

Anderson and Robbins [98] give a great example of a behavioral architecture using a ve-

locity commanded aircraft that uses a behavioral approach to perform collision avoidance,

obstacle avoidance, formation maintenance, and move-to-goal behaviors. They include a

specific velocity vector and weighting for each of the behaviors, the velocity of each aircraft

is set to the summed value of its behavioral velocities. A Leader/Follower algorithm with

a repulsive potential field centered on each spacecraft is a behavioral algorithm consisting
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of formation maintenance and collision avoidance as a behavior. A Formation maintenance

behavior could be made up of lower level actions, but is still considered a single behav-

ior. Control laws for individual behaviors can be considered to be formation flying control

algorithms [11]. The control action for each vehicle is set up as a weighted average of

the control strategies to achieve each behavior. To achieve convergence, behavioral control

laws feedback the relative position between the spacecraft, compared to other strategies

that feed forward the acceleration of the leader. When compared to other architectures

behavioral architectures typically require less information passed between the spacecraft in

the formation. Convergence analysis and bounds on the formation keeping errors for this

architecture is lacking in the literature [60]. For a behavioral architecture with a formation,

the formation maintenance behavior is required [78,98].

McInnes used a behavioral architecture to maintain a constellation of satellites evenly

distributed in the same orbit around earth. Lyapunov control functions were used for col-

lision avoidance and to maintain the satellites separation distance [103]. The majority of

the behavioral architecture literature is based on formation flying aircraft or mobile robots.

Anderson and Robbins developed control laws that mimic the instinctive behavior of birds

and applied it to aircraft [98]. Balch and Arkin derived formation keeping control strategies

for mobile robots that are based on an a weighted average approach for several behaviors;

formation maintenance, goal seeking, and collision avoidance. For the formation main-

tenance behavior they used Leader/Follower and cyclic strategies similar to the centroid

strategies developed by [48], To this behavior they added obstacle avoidance and collision

avoidance [78]. [99] took robots aligned in random locations and developed a simple cyclic

algorithm to cause them to form different geometric shapes. [101] and [107] used a behav-

ioral architecture to have robots create circle and line formations. A critical piece to the

development of a behavioral architecture is analysis proving that the behavioral controls

do not interfere with one another. [108] applied the same control laws from [101] to con-

trol a formation of robots to transport objects. Zhang and Gurfil use consensus theory to

characterize the properties of the control objective of a multi-agent system [109].
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Behavioral Architecture Stability: Lawton, Young, and Beard introduced the idea of the

potential for coupled dynamics. Lawton et. al. state that their is a coupling between

the formation maintenance behavior and the move-to-goal behavior. They determined that

formation maintenance behavior can be achieved by coupling goal state tracking errors,

i.e, if all the robots have the same tracking error value with respect to their goal states,

then the robots are in formation. Each robot uses a feedback linearized controller to track

its move-to-goal and to track the error state of its two nearest neighbors. It is worth

mentioning that by itself the idea of tracking the error of two nearest neighbors is considered

a Cyclic centroid strategy, for which a general stability proof does not exist. But interesting

enough Lawton et. al. stabilize the Cyclic algorithm through coupling it with the move-

to-goal behavior [110]. Lawton, Young, and Beard applied the idea of coupled dynamics to

rotation motion as well, using rate feedback and passivity based controllers [111], compared

Leader/Follower coupled dynamics in terms of control effort and tracking errors [60], and

performed decomposition of an individual spacecraft current attitudes into eigenaxis and

off eigenaxis components [112]. Stability proofs can be found in [60].

Multiple-Input Multiple-Output

A Multiple-Input, Multiple-Output (MIMO) architecture is when the formation is

treated like a multiple-input, multiple-out put plant in a traditional control algorithm.

In other words the controller is built around the dynamics of the entire formation instead

of being based on a single spacecraft.

Hadaegh, Ghavimi, Singh, and Quadrelli formulated a minimal state space realization

for the relative error states for a formation where all the relative spacecraft positions are

constant, this type of formation is considered to be a rigid formation. They also designed

an LQR controller for this formation [113]. [114] went on to develop an algebraic method

for deriving control topologies based on linear dependencies to relative position specifica-

tions. And looked at controlling the inertial position and velocity of the formation and the

unobservable states to minimize fuel usage. Speyer looked at a decentralized LQR problem,

where the resulting state feedback gain matrix is equivalent to a standard, centralized LQR
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controller. Each spacecraft is required to estimate the state of the entire formation, using

an estimator that operates on a reduced set of measurement, a locally-optimal estimator,

and information communicated from other spacecraft from the formation. The data passed

between spacecraft is compressed using an augmented local estimator [115]. Folta et. al.

use this same decentralized LQR algorithm to fly formations at the Lagrange points [116].

Directed graphs have been used with MIMO architectures, to specify the desired for-

mation geometry and to enforce a given spacecraft control interdependency, where the

spacecraft are in circular orbits with the same semi-major axis. The directed graph directs

the constant angular offsets that are to be maintained between the spacecraft [117].

Rigid and unfoldable directed graphs are used to specify the geometry of a formation.

Algebraic constraints on the spacecraft locations in the directed graphs are used to gen-

erate a potential function. The gradient of this potential function constitutes the basis

of the formation controller. This approach requires interdependecies in the control as the

spacecraft involved in the algebraic constraint enforce it. This directed graph approach is

considered to be MIMO because in order to design the formation controller a directed graph

must specifies the entire formation [118]. Olfati-Saber and Murry present ideas for merging,

separating and constructing rigid and unfoldable directed graphs of formations [119].

Advantages/Disadvantages to the MIMO Architecture: There are two key advantages to

the MIMO architecture, these are that optimality can be guaranteed and that stability

follows directly from MIMO synthesis techniques. For a MIMO architecture, the entire

formation state is available for controller synthesis, this guarantees the optimality conditions

are met. Since each spacecraft in the formation needs to know the state of the whole

formation, MIMO architectures also have the highest data requirements. MIMO algorithms

are not robust against local failures, a local failure can have a global effect. If one spacecraft

fails the entire formation can go unstable. Also in order to change the size of the formation,

i.e. add or subtract spacecraft, the entire controller must be redesigned [11].
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Virtual Structures

Scharf, Hadaegh, and Ploen, split virtual structures into two categories; Iterated Vir-

tual Structures (IVS) and Guidance Virtual Structures (GVS). IVS fits a formation template

or structure to current spacecraft positions at each time step. Each spacecraft then tracks

desired states with respect to this template. Coupling of spacecraft states happens through

the template fitting step [11]. A Walker constellation formation fitting template was con-

sidered by [120, 121]. Several papers in the literature looked at different fitting algorithms

for non-holonomically constrained robots and perturbed the fitted template to meet the

formation desired states [66, 104, 122]. Using a Least-squares fit has been investigated to

find the virtual center of the formation. This virtual center is considered as the virtual

“leader” spacecraft and minimizes the tracking errors of all the spacecraft in the formation.

This algorithm is not considered Leader/Follower since all the states are coupled through

the fitting template step [71]. GVS contains an initial formation temple or structure fitting

step, but then a prescribed motion of the structure is used to generate the desired trajec-

tories. An adaptive controller with saturation constraints for a GVS design was presented

in [123]. [69] and [74] used GVS to plan optimal formation rotations. [124] used a pattern

matching methodology. Scharf, Hadaegh, and Ploen, make the claim that GVS by itself

is not a formation flying control, due to the fact that the states are not coupled. But if

the virtual structure is referenced to a real spacecraft then GVS is a type of Leader/Fol-

lower formation flying algorithm where the reference trajectories are provided by the virtual

structure. They also state that GVS is the basis for a Cyclic architecture [11]. [125] looked

at a spacecraft formation flying control problem using a virtual structure algorithm, mod-

eling the effects of external disturbances, model uncertainties, sensor noises, and actuator

saturation. A controller based on µ-synthesis is used to overcome the environmental dis-

turbances. An H∞ based linear matrix inequality controller is used to obtain a control law

with lower order, using the linearized model with uncertainties. Also they used an adaptive

controller, based on the Lyapunov stability theorem, to overcome a broader range of model

uncertainties, which also guarantees the stability.
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A.2 Relative Motion Models and Their Respective Control Approaches

HCW Equations

Formations that are required to orbit the earth, will need to consider additional dis-

turbances, such as; gravitation spherical harmonics, atmospheric drag, and solar radiation

pressure. Leader/Follower architectures have been applied to earth orbiting missions. Their

are several different approaches that have been used in the past. The majority of the lit-

erature use some form of linear quadratic (LQ) control for the follower tracking. These

controllers use a variation of the Hill-Clohessy-Wiltshire (HCW) equations. The HCW

equations linearize the two-body gravitational dynamic equations. These equations were

“first” published in 1960 by Clohessy and Wiltshire [76] [42], but it was later discovered

that these equations were just another form of the previously described equations produced

by Hill in 1877 [75]. These equations were later updated to account for effects due to the

oblateness of the earth, also known as J2 effects [126]. Sparks designed a decoupled LQ

controller that included angular velocity of the reference frame, using the modified version

of the HCW equations that include J2 effects [127]. Sparks also designed an LQ controller

that looks at the frequency of thruster firings with respect to the ∆V required to overcome

disturbances. Redding developed a trajectory planer that uses a feed-forward controller

and gives a non-equilibrium point control offset. The discrete LQ controller also performs

disturbance rejection. Zhoa, et. al. [128] investigated the problem of adaptive finite time at-

titude containment control for multiple spacecrafts in formation with an unknown external

disturbance.

Leonard, Hollister, and Bergman used differential drag combined with switching curves

such that the follower tracks the motion of the leader [129]. Kapila discretized the dynamics

and derived a discrete-time LQ pulse based control law [130]. Yan added a periodic gain

to this controller [131]. Chao and Vassar both developed discrete-time LQ controllers for

in-plane and out-of-plane motion, Vassar for Low earth orbits (LEO) and Chao for Geo-

stationary orbits (GEO) [132, 133]. Chao also designed an LQ controller that does not use

radial thrusting [133]. Starin did similar work [134]. Xing designed an LQG controller using
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GPS data [135]. Capenter [136] built an LQ controller that used the decentralized estima-

tor of Speyer [115]. Yan and De Queiroz derived adaptive control laws to coordinate the

motion of the spacecraft based on the nonlinear dynamic equations [137] [131]. Mazal and

Gurfil looked at using a Leader/Follower method to develop a flight algorithm for cluster

management using Lambert targeting [79]. They later looked at maintaining max and min

distances with this same approach [138]. Mazal et. al. also implemented a similar LQR

controller to demonstrate spacecraft rendezvous using differential drag [139]. [140] looked

at developing a Leader/Follower architecture for formations of 100s to 1,000s of 100 gram

spacecraft, for Swarm applications. [88] used a Leader/Follower architecture to control a

formation under limited communication, where the information that needs to be shared

between spacecraft for the controller only happens after a specified control event.

Keplerian Orbital Elements

Several papers use Keplerian orbital elements as opposed to Cartesian coordinates.

Schaub et al. developed a control law using mean orbital elements where the reference

trajectory is the leaders orbital elements with some given offest. Schaub et al compared the

mean orbital element controller to a controller that uses Cartesian coordinates in an inertial

reference frame [141]. Tan, Bainum, and Strong developed a similar controller that uses the

osculating orbital elements. They considered a formation in an elliptical orbit [142]. [143]

took a similar approach using osculating orbital element difference, but it was then mapped

to the desired Cartesian position and velocity vector through a linearized transformation.

When compared to a control law using mean orbital elements this controller gave a 20 meter

increase in tracking accuracy from using mean orbital elements. [40] develops a method to

control an individual osculating orbital elements without affecting the other elements.

Gauss’ Variation Equations

Gauss’ Variation Equations (GVE) have also been used to implement Leader/Follower

architectures. Berger and How developed a linear time varying model for the GVEs and

used these equations in a model predictive controller [23]. They later built on this model



140

to take into account J2 perturbation [144]. BenLarbi and Stoll derived a control concept

for far range formation flying applications based on GVEs [145]

Relative Orbital Elements

Additional research has implemented Leader/Follower approaches using relative orbital

elements (ROEs). D’Amico developed the Guidance, Navigation and Control algorithms

for the PRISMA spacecraft based on ROEs [77]. Leomanni, Rogers and Gabriel applied

techniques to improve computationally efficiency of model predictive control when applied

to a low thrust rendezvous problem [146]. Spence developed a methodology for automated

trajectory control of a spacecraft about a non-maneuvering target using ROEs [147].
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APPENDIX B

Hill-Clohessy Wiltshire Equations Derivation

This appendix presents a derivation of the HCW equations.

B.1 HCW Equations Background

If we assume that we have two spacecraft in orbit around the earth, it is advantages to

view the relative motion of this system. This motions is typically viewed in a rotating and

translating reference frame. This frame is referred to as the local-vertical local horizontal

(LVLH) frame. And is describe by having its origin at the center of one of the spacecraft,

we will referred to this spacecraft as the Target. The x-axis of this frame is along the

targets radial axis, the z-axis is aligned with the velocity direction and orthogonal to the

orbit plane, and the y-axis is in the orbit plane in the direction of the local horizontal.

î =
r̄T
rT

(B.1)

ĵ = k̂ × î (B.2)

k̂ =
r̄T × v̄T
rT vT

(B.3)

The transformation matrix to rotate from the initial frame to the LVLH frame then becomes

TLV LH
I =




îT

ĵT

k̂T




(B.4)

The angular velocity in the inertial frame is the angular velocity of the target position vector

r̄T
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Ω̄ =
r̄T × v̄T

r2T
(B.5)

and from this we can see that the angular acceleration is

˙̄Ω =
2 (r̄T • v̄T )

r2T
Ω̄ (B.6)

Since the rotating frame is centered at the target vehicle and the frame rotates with angular

velocity and angular acceleration we know that

r̄C = r̄T + r̄rel (B.7)

v̄C = v̄T + Ω̄× r̄rel + v̄rel (B.8)

āC = āT + Ω̄× Ω̄× r̄rel +
˙̄Ω× r̄rel + 2Ω̄× v̄rel + ārel (B.9)

The relative position, velocity, and acceleration in the LVLH frame can now be calculated

by

r̄relLV LH = TLV LH
I r̄relI (B.10)

v̄relLV LH = TLV LH
I v̄relI (B.11)

ārelLV LH = TLV LH
I ārelI . (B.12)

Linearization of the Equations of Relative Motion

Recall that the relative motion of two bodies are
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r̈ = − µ

r3/2
r (B.13)

If we re-write this equation with respect to our Target/Chaser problem the equation becomes

r̈T = − µ

rT 3/2
rT (B.14)

r̈C = − µ

rC3/2
rC . (B.15)

If the chaser position is

r̄C = r̄T + r̄rel (B.16)

then from the two-body dynamics equation we get

¨̄rT + ¨̄rrel = −
µ

rC3/2
rC (B.17)

¨̄rT + ¨̄rrel = −
µ

[(r̄T + r̄rel) • (r̄T + r̄rel)]
3/2

(r̄T + r̄rel) (B.18)

and if we assume the relative position is small,i.e.

rrel
rT

<< 1 (B.19)

we can linearize this equation about

F (rT , rrel) = [(r̄T + r̄rel) • (r̄T + r̄rel)]
−3/2 |rrel=0 (B.20)

using Taylor series expansion, which gives us

[(r̄T + r̄rel) • (r̄T + r̄rel)]
−3/2 = [(r̄T • r̄T ) + 2(r̄T • r̄rel) + (r̄rel • r̄rel)]−3/2 (B.21)
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=
1

rT
− 3x

r4T
+

6x2

r5T
− 3y2

r5T
− 3z2

2r5T
− 10x3

r6T
+

15xy2

2r6T
+

15xz2

r6T
+ ... (B.22)

plugging this back into the equation above

¨̄rT + ¨̄rrel = −µ
(

1

rT
− 3x

r4T
+

6x2

r5T
− 3y2

r5T
− 3z2

2r5T
− 10x3

r6T
+

15xy2

2r6T
+

15xz2

r6T
+ ...

)
(r̄T + r̄rel)

(B.23)

and then if we neglect the terms with order greater then one, we get

¨̄rT + ¨̄rrel = −
µr̄T
r3T
− µ

r3T

(
r̄rel −

3

r2T
(r̄T • r̄rel) r̄T

)
(B.24)

or

¨̄rT + ¨̄rrel = −
µ

(r̄T + r̄T )
3
2

r̄T −
µ

rT 3

[
I3×3 − 3

r̄T r
T
T

r2T

]
r̄rel. (B.25)

Then if we use the two-body dynamics equation of the target, we can simplify the above

equation to

¨̄rrel = −
µ

r3T

[
I3×3 − 3

r̄T r
T
T

r2T

]
r̄rel (B.26)

Or

āC = − µ

rT

3
[
I3×3 − 3

r̄T r
T
T

r2T

]
r̄rel. (B.27)

These equations describe the relative motion in the inertial frame not the rotation LVLH

frame.

B.2 Hill-Clohessey-Whiltshire Equations

As mentioned in the previous section, the acceleration for the chaser vehicle can be

described by
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āC = āT + Ω̄× Ω̄× r̄rel +
˙̄Ω× r̄rel + 2Ω̄× v̄rel + ārel. (B.28)

If we change the left hand side of this equation to the linearized form presented in the last

section,

− µ

rT 3

[
I3×3 − 3

r̄T r
T
T

r2T

]
r̄rel = āT + Ω̄× Ω̄× r̄rel +

˙̄Ω× r̄rel + 2Ω̄× v̄rel + ārel. (B.29)

Now if we assume that the above Target is in a circular orbit, then that means

˙̄Ω = 0 (B.30)

µ

rT 3
= Ω̄2. (B.31)

That means the equation above becomes

−Ω̄2

[
I3×3 − 3

r̄T r
T
T

r2T

]
r̄rel = āT + Ω̄× Ω̄× r̄rel + 0× r̄rel + 2Ω̄× v̄rel + ārel (B.32)

Or

−Ω̄2

[
I3×3 − 3

r̄T r
T
T

r2T

]
r̄rel = āT + Ω̄× Ω̄× r̄rel + 2Ω̄× v̄rel + ārel. (B.33)

Recall that the these vectors in the LVLV frame are described as

r̄rel =




x

y

z




(B.34)
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v̄rel =




ẋ

ẏ

ż




(B.35)

ārel =




ẍ

ÿ

z̈




(B.36)

Ω̄ =




0

0

Ω




(B.37)

r̄T =




rT

0

0




. (B.38)

Substituting these vector forms into the equation above we end up with

−




0

0

Ω




2

[
I3×3 − 3

r̄T r
T
T

r2T

]



x

y

z




= āT+




0

0

Ω



×




0

0

Ω



×




x

y

z



+2




0

0

Ω



×




ẋ

ẏ

ż



+




ẍ

ÿ

z̈




(B.39)

−




0

0

Ω




2

[
I3×3 − 3

r̄T r
T
T

r2T

]



x

y

z




= − µ



rT

0

0




3/2




rT

0

0



+




0

0

Ω



×




0

0

Ω



×




x

y

z



+2




0

0

Ω



×




ẋ

ẏ

ż



+




ẍ

ÿ

z̈




(B.40)

Or
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ẍ− 3Ω2x− 2Ωẏ = 0 (B.41)

ÿ + 2Ωẋ = 0 (B.42)

z̈ +Ω2z = 0 (B.43)

The HCW equations are linear constant coefficient differential equations, thus their

solutions can be obtained in closed form. The in-plane motion (x/y) is coupled, but the out

of plane motion (z) is clearly decoupled with the in plane motion. The differential equation

of the out of plane motion is a second order harmonic oscillator.

If we write the HCW equations in the state space form

ẋ = Ax+Bu (B.44)

where

x =




x

y

z

ẋ

ẏ

ż




(B.45)

and
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ẋ =




ẋ

ẏ

ż

ẍ

ÿ

z̈




. (B.46)

The Jacobian matrices for the HCW equations can be written as

A =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3Ω2 0 0 0 2Ω 0

0 0 0 −2Ω 0 0

0 0 −Ω2 0 0 0




(B.47)

B =




0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




. (B.48)

The closed form of the HCW equations can be described by

x(t) = x0(4− 3 cosΩt) +
ẋ0
Ω

sinΩt+
2ẏ0
Ω

(1− cosΩt) (B.49)

y(t) = 6x0(sinΩt− Ωt) + y0 +
2ẋ0
Ω

(cosΩt− 1) +
ẏ0
Ω
(4 sinΩt− 3Ωt) (B.50)
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z(t) = z0 cosΩt+
ż0
Ω

sinΩt (B.51)

ẋ(t) = 3x0ΩsinΩt+ ẋ0 cosΩt+ 2ẏ0 sinΩt (B.52)

ẏ(t) = 6x0Ω (cosΩt− 1)− 2x0 sinΩt+ ẏ0(4 cosΩt− 3) (B.53)

ż(t) = ż0 cosΩt− z0ΩsinΩt. (B.54)

When in matrix form, the HCW equations can be written in the state space form




x(t)

y(t)

z(t)

ẋ(t)

ẏ(t)

ż(t)




= Φ6×6




x0

y0

z0

ẋ0

ẏ0

ż0




(B.55)

where the state transition matrix becomes

Φ6×6 =




4− 3 cosΩt 0 0 1
Ω sinΩt 2

Ω(1− cosΩt) 0

6 (sinΩt− Ωt) 1 0 2
Ω(cosΩt− 1) 1

Ω(4 sinΩt− 3Ωt) 0

0 0 cosΩt 0 0 1
Ω sinΩt

3Ω sinΩt 0 0 cosΩt 2 sinΩt 0

6Ω (cosΩt− 1) 0 0 −2 sinΩt 4 cosΩt− 3 0

0 0 −ΩsinΩt 0 0 cosΩt




(B.56)

or in block form
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r̄rel(t)

v̄rel(t)


 =



Φrr Φrv

Φvr Φvv






r̄rel(t0)

v̄rel(t0)


 (B.57)

ẋ =



Φrr Φrv

Φvr Φvv






r̄rel(t0)

v̄rel(t0)


+ a. (B.58)

These equations are named Hill-Clohessey-Wiltshire (HCW) equations. The HCW equa-

tions can be written with the control inputs ux, uy, uz

ẍ− 3Ω2x− 2Ωẏ = ux (B.59)

ÿ + 2Ωẋ = uy (B.60)

z̈ +Ω2z = uz (B.61)



151

CURRICULUM VITAE

Tyson K. Smith

Published Journal Articles

• Smith, T., Akagi, J., Droge, G. “Model Predictive Control Switching Strategy For

Safe Small Satellite Cluster Formation Flying.”, Journal of Aerospace Systems, July

2023

• Shoop, T., Munoz, J., Gunther, J., Geller, D., Smith, T. “Formation Design for Opti-

mal Relative Navigation in GPS Denied Environments.”, The Journal of Astronautical

Sciences, Vol. 70, No. 2, February 2023

• Smith, T., Lewis, Z., Olsen, K., Bulcher, A. M., Whitmore, S. A. “Test Results of a

Miniaturized Green End-Burning Hybrid Propulsion System for CubeSats.”, AIAA

Journal of Propulsion and Power, Vol. 38, No. 5, May 2022

• Whitmore, Stephen A., Smith, Tyson K., “Interim Access to the International Space

Station”, AIAA Journal of Spacecraft and Rockets, Vol. 47, No. 3, May-June 2010

• Whitmore, S A., Smith, T. K., “Launch and Deployment Analysis for a Small, MEO,

Technology Demonstration Satellite”, AIAA Journal of Spacecraft and Rockets, Vol.

46, No. 2, March-April 2009

Published Conference Papers

• Martineau, R., Smith, T., Felt, M., Weston, C., Rusch, B., Fowler, R., Brown, E.,

Farmer, A., Neilsen, T., Thompson, C., Kirkman, A., Fluckiger, P., Morrison, S.,

Wittner, D., Picha, F., Weiss, J., Daniel, N., Wood, S., Glaser, M. “Lessons Learned



152

During the Implementation of a Cold Gas Propulsion System for the SunRISE Mis-

sion.” Small Satellite Conference 2023, SSC23-VI–04.

• Smith, T., Akagi, J., Droge, G. “Spacecraft Formation Flying Control Switching Sur-

face Based on Relative Orbital Elements.” 2022 AAS/AIAA Astrodynamics Specialist

Conference, 1–19.

• Smith, T. K., Lewis, Z., Olsen, K., Thibaudeau, R., Whitmore, S. A. “A Miniatur-

ized Hydrogen Peroxide/ABS Based Hybrid Propulsion Systems for CubeSats” Small

Satellite Conference 2022, SSC22–X–02.

• Shoop, T., Munoz, J., Gunther, J., Geller, D., Smith, T. “Formation Design For Opti-

mal Relative Navigation in GPS Denied Environments.” 45th Annual AAS Guidance

and Controls Conference, Breckenridge, CO, February 2022

• Whitmore, S. A., Smith T. K. “3-D Printing of High-Performance Green Hybrid

Propulsion (HPGHP) Solutions.” AIAA Wasatch Aerospace and Systems Engineering

Mini-Conference April 2021

• Smith, T., Lewis, Z., Olsen, K., Bulcher, A. M., Whitmore, S. A. “End-Burning

Hybrid Propulsion System for CubeSats.” September 2020 NASA In-Space Chemi-

cal Propulsion TIM and JANNAF LPS AMP Additive Manufacturing for Propulsion

Applications TIM.

• Cox, S., Smith, T., Jones, T. L., Droge, G., Jones, A. S. “Power-Optimal Slew Ma-

neuvers in Support of Small Satellite Earth Imaging Missions”. AIAA Small Satellite

Conference 2020, SSC20-P3-1.

• Smith, T., Lewis, Z., Olsen, K., Bulcher, A. M., Whitmore, S. A. “A Miniaturized

Green End-Burning Hybrid Propulsion System for CubeSats.” AIAA Small Satellite

Conference 2020, SSC20-IX-09.



153

• Shuster, S., Geller, D., Smith, T., “A Performance Analysis of On-Board Numerical

Propagators”, 41st Annual AAS Guidance and Controls Conference, Breckenridge,

CO, February 2018

• Whitmore, Stephen A., Smith, Tyson K., “Interim Access to the International Space

Station”, AIAA Space 2009 Conference and Exposition, Pasadena, CA, September

2009

• Whitmore, S A., Smith, T. K., “Launch and Deployment Analysis for a Small, MEO,

Technology Demonstration Satellite”, 46th AIAA Aerospace Sciences Meeting and

Exhibit Conference, Reno, NV, January 2008

Published Peer Reviewed Technical Reports

• Smith T., Skulsky, E., “State of the Art Small Spacecraft Technology: GNC Chapter”,

NASA/TP—2020, Small Spacecraft Systems Virtual Institute, Ames Research Center,

Moffit Field, CA

• Marshall W., el al., “State of the Art Small Spacecraft Technology: Propulsion Chap-

ter”, NASA/TP—2020, Small Spacecraft Systems Virtual Institute, Ames Research

Center, Moffit Field, CA

Thesis

• Smith, Tyson Karl, “Interim Access to the International Space Station” (2009). Mas-

ter’s Thesis, Utah State University.

Patents

• Smith, T., Lewis, Z., Olsen, K., Bulcher, A. M., Whitmore, S. A. Miniaturized Green

End-Burning Hybrid Propulsion System for CubeSats, No.: US 11,724,829 B2, Date

Aug 15, 2023



154

• Smith, T., Lewis, Z., Olsen, K., Bulcher, A. M., Whitmore, S. A. Miniaturized Green

End-Burning Hybrid Propulsion System for CubeSats, Patenet No.: US 11,407,531

B2, Date Aug 9, 2022

Patents Pending

• Smith, T., Akagi J., Droge G., 2022, Model Predictive Control for Spacecraft Forma-

tion, 17/891,968

• Smith, T., Akagi J., Droge G., 2022, Model Predictive Control for Spacecraft Forma-

tion, 17/689,038

• Smith, T., Lewis, Z., Olsen, K., Bulcher, A. M., Whitmore, S. A. 2021, Miniaturized

Green End-Burning Hybrid Propulsion System for CubeSats, 17/391,843

• Cox, S., Smith, T., Jones, T. L., 2021, Power Enhanced Slew Maneuvers, 17/389,246


	Virtual Structures Based Autonomous Formation Flying Control for Small Satellites
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	INTRODUCTION
	Literature Review
	Spacecraft Formation Flying
	Formation Flying Architectures
	Leader/Follower
	Virtual Structures
	Other Architectures

	Formation Flying Challenges
	Contributions

	BACKGROUND
	Relative Dynamics
	Hill-Clohessy-Wiltshire Equations
	Relative Orbital Elements

	Model Predictive Control
	General MPC Overview
	MPC Stability


	Model Predictive Control Switching Strategy for Safe Small Satellite Cluster Formation Flight
	Satellite Cluster Flight Using Guidance Trajectory and Model Predictive Control
	Model Predictive Control For Formation Flying Based on D’Amico Relative Orbital Elements
	CONCLUSION
	REFERENCES
	APPENDICES
	A  Extended Formation Flying Literature Survey
	Formation Flying Control Architecture
	Relative Motion Models and Their Respective Control Approaches

	B  Hill-Clohessy Wiltshire Equations Derivation
	HCW Equations Background
	Hill-Clohessey-Whiltshire Equations


	CURRICULUM VITAE

