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ABSTRACT

Deep Learning with Effective Hierarchical Attention Mechanisms in Perception of

Autonomous Vehicles

by

Qiuxiao Chen, Doctor of Philosophy

Utah State University, 2023

Major Professor: Xiaojun Qi, Ph.D.
Department: Computer Science

Sensing and interpreting information from the environment are essential for autonomous

vehicles. To operate safely, autonomous vehicles must be able to effectively perceive a wide

range of dynamic objects including other vehicles, pedestrians, and bicyclists, and static

streets including pedestrian crossing, dividers, stop lines, and more.

In this dissertation, we aim to explore how to utilize the input information effectively

in the 3D object detection task and map segmentation task with the help of hierarchical

attention modules. Specifically, we introduce two networks utilizing hierarchical attention

modules. One of these networks is for 3D object detection, and the other one is for map

segmentation. Each of them utilizes the hierarchical attention modules and achieves com-

parable results with state-of-the-art methods on challenging benchmarks.

We name the 3D object detection network as Point Cloud Detection Network (PCDet),

which utilizes LiDAR sensors to obtain the point cloud inputs with accurate depth infor-

mation. To solve the problem of lacking multi-scale features and using the high-semantic

features ineffectively, the proposed PCDet utilizes Hierarchical Double-branch Spatial At-

tention (HDSA)to capture high-semantic and fine-grained features at the same time. PCDet

applies the Double-branch Spatial Attention (DSA) at the early stage and the late stage of
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the network, which helps to use the high-semantic features at the beginning of the network

and obtain the multi-scale features. However, HDSA does not consider global relational

information. This limitation is solved by Hierarchical Residual Graph Convolutional At-

tention (HRGCA). PCDet applies the HRGCA module, which contains both graph and

coordinate information, to not only effectively acquire the global information but also ef-

ficiently estimate contextual relationships of the global information in the 3D point cloud

domain.

We name the map segmentation network as Multi-View Segmentation in Bird’s-Eye-

View (BEVSeg), which utilizes multiple camera sensors to obtain multi-view image inputs

with dense semantic information. BEVSeg incorporates an Aligned BEV domain data Aug-

mentation (ABA) module to augment the coherent BEV feature map and align its ground

truths to address overfitting issues. It further incorporates the HDSA to effectively capture

high-semantic and fine-grained features. It can also incorporate HRGCA to more accurately

estimate global semantic relational features to address the ineffective high-semantic feature

issues.

In general, the proposed HDSA is able to capture the high-level features and help utilize

the high-level features effectively in both LiDAR-based 3D object detection and multiple

camera-based map segmentation tasks, i.e. PCDet and BEVSeg. In addition, we propose

a new effective HRGCA to further capture global relationships between different regions in

the map segmentation task to improve the segmentation performance.

(78 pages)
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PUBLIC ABSTRACT

Deep Learning with Effective Hierarchical Attention Mechanisms in Perception of

Autonomous Vehicles

Qiuxiao Chen

Autonomous vehicles need to gather and understand information from their surround-

ings to drive safely. Just like how we look around and understand what’s happening on

the road, these vehicles need to see and make sense of dynamic objects like other cars,

pedestrians, and cyclists, and static objects like crosswalks, road barriers, and stop lines.

In this dissertation, we aim to figure out better ways for computers to understand

their surroundings in the 3D object detection task and map segmentation task. The 3D

object detection task automatically spots objects in 3D (like cars or cyclists) and the map

segmentation task automatically divides maps into different sections. To do this, we use

attention modules to help the computer focus on important items. We create one network

to find 3D objects such as cars on a highway, and one network to divide different parts

of a map into different regions. Each of the networks utilizes the attention module and

its hierarchical attention module to achieve comparable results with the best methods on

challenging benchmarks.

We name the 3D object detection network as Point Cloud Detection Network (PCDet),

which utilizes LiDAR sensors to obtain the point cloud inputs with accurate depth infor-

mation. To solve the problem of lacking multi-scale features and using the high-semantic

features ineffectively, the proposed PCDet utilizes Hierarchical Double-branch Spatial At-

tention (HDSA) to capture high-level and low-level features at the same time. PCDet

applies the Double-branch Spatial Attention (DSA) at the early stage and the late stage of

the network, which helps to use the high-level features at the beginning of the network and
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obtain the multiple-scale features. However, HDSA does not consider global relational infor-

mation. This limitation is solved by Hierarchical Residual Graph Convolutional Attention

(HRGCA). PCDet applies the HRGCA module, which contains both graph and coordi-

nate information, to not only effectively acquire the global information but also efficiently

estimate contextual relationships of the global information in the 3D point cloud.

We name the map segmentation network as Multi-View Segmentation in Bird’s-Eye-

View (BEVSeg), which utilizes multiple cameras to obtain multi-view image inputs with

plenty of colorful and textured information. The proposed BEVSeg aims to utilize high-level

features effectively and solve the common overfitting problems in map segmentation tasks.

Specifically, BEVSeg utilizes an Aligned BEV domain data Augmentation (ABA) module to

flip, rotate, and scale the BEV feature map and repeat the same process on its ground truths

to address overfitting issues. It further incorporates the hierarchical attention mechanisms,

namely, HDSA and HRGCA, to effectively capture high-level and low-level features and to

estimate global relationships between different regions in both the early stage and the late

stage of the network, respectively.

In general, the proposed HDSA is able to capture the high-level features and help utilize

the high-level features effectively in both LiDAR-based 3D object detection and multiple

camera-based map segmentation tasks, i.e. PCDet and BEVSeg. In addition, we proposed

a new effective HRGCA to further capture global relationships between different regions to

improve both 3D object detection accuracy and map segmentation performance.
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CHAPTER 1

INTRODUCTION

Autonomous vehicles, also known as self-driving cars or driverless cars, are vehicles that

are capable of operating and navigating without human intervention. They have generated

a lot of interest and excitement in recent years. The main reasons are their potential to

significantly reduce accidents caused by human error, make transportation more convenient

for people who cannot drive, and improve traffic flow. Driven by their immense potential,

both academia and industry have shown a growing interest in the design and implementa-

tion of efficient and effective self-driving vehicle systems. Following the modern industrial

principle (i.e., problem decomposition), academia and industry divide the self-driving vehi-

cle system into four subsystems, including perception, prediction, planning, and control [5].

The perception subsystem senses and interprets information from the environment, which

is essential for autonomous vehicles to operate safely and effectively. The prediction subsys-

tem predicts the future states of the nearby vehicles based on current and past observations

of the surrounding environment. The planning subsystem makes decisions about how to

move through the world. The control subsystem controls maneuvers to track the planned

trajectory autonomously.

In this dissertation, we focus on perception, which is one of the most important parts

of autonomous vehicles. Specifically, autonomous vehicles must be able to perceive a wide

range of dynamic objects (e.g., other vehicles, pedestrians, and cyclists) and static streets

(e.g., drivable areas, pedestrian crossings, walkways, carpark areas, dividers, stop lines,

and so on). To satisfy the requirements of autonomous vehicles, the perception utilizes a

camera, radar, or LiDAR sensor to sense the surroundings and exploit 3D object detection,

map segmentation, and object tracking techniques to interpret the environments. In this

dissertation, we focus on designing a 3D objection technique to identify cars, pedestrians,

and cyclists and designing a map segmentation technique to segment six crucial static
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semantic classes.

1.1 Sensors

First, we introduce common sensors including cameras, radar, and LiDAR, utilized in

3D object detection and map segmentation to sense the surroundings. The raw outputs of

the sensors are shown in Figure 1.1. Each sensor has its advantages and limitations. The

choice of the sensor depends on the specific requirements of the application.

• Camera sensors use the lens to bring light to a fixed focal point and create a 2D high-

resolution image of one view, which provides color and texture information of objects

in a scene. To get the surrounding information, most people utilize multiple camera

sensors with complete 360° coverage in autonomous vehicles. However, camera sensors

have limitations in low-light conditions, and their depth perception capabilities are

limited.

• Radar sensors use radio wave transmitters to measure the distance to objects and

create a 3D representation of the environment, which operates well in all weather

conditions and is resistant to interference from other sensors. However, radar has

limitations in detecting small objects and cannot provide detailed information about

the shape and texture of objects. In addition, the semantics of radar is so sparse that

severely reduces the accuracy of semantic-oriented tasks.

• LiDAR sensors use laser beams to measure the distance to objects and create a 3D

representation of the environment, which provides accurate depth information and

detects objects in low-light conditions. Since one LiDAR sensor is able to get the sur-

rounding information, most people utilize one LiDAR sensor in autonomous vehicles.

However, LiDAR sensors are expensive and can be affected by weather conditions

such as rain and fog. Furthermore, its sparse semantics lead to decreased accuracy on

semantic-oriented tasks [4].
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Fig. 1.1: Illustrations of three common sensors utilized in 3D object detection and map
segmentation: a) the raw outputs of multiple camera sensors (from the nuScenes dataset [1])
b) the raw output of the radar sensor (from NVIDIA) c) the raw output of the LiDAR
sensor [2]
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1.2 3D Object Detection

3D object detection techniques help autonomous vehicles detect and recognize dynamic

objects, such as other vehicles, pedestrians, and cyclists, in the 3D environment in terms of

their shape (length, width, and height) and location (x, y, and z coordinates). 3D object

detection is different from 2D object detection. 2D object detection focuses on identifying

objects’ 2D bounding boxes, while 3D object detection aims to estimate the objects’ 3D

positions and orientations in the physical world, which includes depth information. The

development of 3D object detection has been a progressive journey, which could be roughly

divided into two stages: traditional feature-based and deep learning-based 3D object detec-

tion.

Fig. 1.2: The block diagram of traditional feature-based object detection techniques

Figure 1.2 demonstrates the block diagram of traditional feature-based object detection

techniques, where informative region selection, feature extraction, and object classification

are three major components. The first component, informative region selection, aims to find

the locations of objects by graph-based segmentation [6], voxel-based clustering methods [7],

and other methods. The second component, feature extraction, extracts the feature to get

the important information by Scale Invariant Feature Transform (SIFT) [8], Histogram of
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Oriented Gradients (HOG) [9], voxel’s probabilistic features [7] or other traditional hand-

engineered feature extraction methods. The last component, object classification, classifies

the target objects from all possible categories, by Support Vector Machines (SVMs) [10], a

mixture of bag-of-words classifiers [11], or other traditional algorithms.

Fig. 1.3: The block diagram of deep learning-based 3D object detection techniques: (a)
single-stage 3D object detection; (b) two-stage 3D object detection

Deep learning-based 3D object detection techniques can be classified into two cate-

gories: single-stage 3D object detection and two-stage 3D object detection. Figure 1.3

(a) demonstrates the block diagram of single-stage 3D object detection techniques, where

feature extractor module, classification module, and regression module are three major

components. The first component, deep learning feature extractor module, automatically

extracts features from the input data by deep convolution feature extractor [12, 13], deep

transformer extractor [14], or other methods. The second component, multiple layer clas-

sification, assigns a class label to each default box by different multiple layer classification

heads [15]. The last component, regression, predicts the offsets (i.e., the difference in coordi-

nates) between default bounding boxes and the ground-truth objects, allowing the detector

to refine the locations of predicted bounding boxes by different multiple layer detection
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heads [15].

Figure 1.3 (b) demonstrates the block diagram of two-stage 3D object detection tech-

niques, where the feature extractor module, object proposal module, classification module,

and regression module are four major components. The first component, the deep learning

feature extractor module [16], is the same as the feature extractor of single-stage 3D object

detection. The second component, object proposal module [17], generates a set of region

proposals, which are potential bounding box locations likely to contain objects. The third

component, multiple layer classification, assigns a class label to each region proposal by dif-

ferent multiple layer classification heads [18]. The last component, regression, predicts the

offsets between region proposals and the ground-truth objects, by different multiple-layer

detection heads [18].

Compared to the traditional models, the deep learning models’ feature extractors have

the ability to extract feature maps from input data automatically. This eliminates the re-

quirement of manual feature extraction, allowing the models to capture more complex and

abstract representations. In addition, the deep learning models enable end-to-end train-

ing, which eliminates the need for multiple steps and leads to improved integration and

performance. The main difference is that the traditional pipeline optimizes every mod-

ule individually, while the deep learning pipeline optimizes the whole network end-to-end.

Therefore, in this dissertation, we focus on deep learning-based methods. Compared to

the two-stage methods, the single-stage methods have a simpler and more straightforward

architecture. Specifically, the single-stage methods predict object bounding boxes and class

labels directly, while the two-stage methods need a separate region proposal stage. The sim-

plicity of the single-stage methods leads to more efficient inference and faster speed, which

makes single-stage methods more suitable for real-time applications, such as autonomous

driving systems. Therefore, we focus on single-stage methods in this dissertation.

Nowadays, 3D object detection researchers tend to utilize the expensive LiDAR sensors

[16,19] to gain accurate depth information, or utilize camera sensors [20,21] to decrease the

cost of autonomous vehicles to obtain the color and texture information of objects in a
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scene. Since radar cannot detect small objects nor provide detailed information about

objects, researchers rarely use radar sensors these days. In the industry, there is still much

discussion about which autonomous vehicle sensor—LiDAR or cameras—is more useful.

Figure 1.4.a) presents one sample LiDAR-based 3D object detection result and Figure 1.4.

b) presents one sample multi-view 3D object detection result.

1.3 Map Segmentation

Map segmentation helps the autonomous vehicles make a map of static streets, includ-

ing drivable areas, dividers, walkways, carpark areas, stop lines, pedestrian crossings, and

so on.

Different from 3D object detection, research in map segmentation is relatively new. The

pioneering work of map segmentation [22] utilizes deep learning network structure, which

lays the foundations of all Bird’s-Eye-View (BEV) map segmentation methods to be deep

learning-based. Figure 1.5 illustrates the block diagram of map segmentation techniques,

where feature extractor and classification modules are the two major components. The first

component, the feature extractor module, extracts high-level features from the input image

through convolutional neural network architectures [23], transformer architectures [14], or

other methods. The second component, pixel-wise classification, assigns a class label or

generates a probability distribution for each pixel [4], indicating the segmentation class it

belongs to.

Nowadays, radar and LiDAR sensors are rarely applied in map segmentation tasks

since their sparse semantics lead to decreased accuracy on semantic-oriented tasks. Camera

sensors are the most popular sensors used in map segmentation tasks thanks to their dense

semantics [4]. Generally, map segmentation refers to BEV map segmentation. To get the

complete BEV maps, multiple horizon cameras (e.g. six cameras) are utilized. Figure 1.4.c)

presents one sample multi-view BEV map segmentation result.

1.4 Attention

To enhance the performance of models, attention mechanisms are applied in 3D object
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Fig. 1.4: Illustrations of the LiDAR-based 3D object detection, multi-view 3D object detec-
tion, and multi-view map segmentation: a) 3D object detection results on LiDAR images;
b) 3D object detection results on multiple images (adapted from BEVFormer [3]); c) Multi-
view images and their BEV map segmentation results (adapted from BEVFusion [4]), where
drivable area is shown in blue, land divider is shown in purple, walkway is shown in red,
and crossing is shown in pink).
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Fig. 1.5: The block diagram of deep learning-based map segmentation

detection and map segmentation, which help the models focus on relevant information

and assign varying weights to different parts of the input data. Three kinds of attention

mechanisms have been used.

Spatial attention is employed to selectively attend to specific points or pixels in the 3D

point cloud data and images. By applying weights to different points or pixels, the models

are able to focus on the important regions and filter out noises [24]. Channel attention is

employed to emphasize important features or channels in the feature maps. By applying

weights to different channels, the models are able to focus on the most informative features

or channels and suppress redundant ones [25]. Graph attention is employed to capture

dependencies and relationships between elements in point clouds or images. By applying

weights to the edges between elements, the models are able to learn the useful relationships

and contextual information between elements [26].

1.5 Organization of Dissertation

In this dissertation, we aim to explore how to effectively utilize accurate input infor-

mation for 3D object detection and map segmentation without considering economic costs.

Specifically, we explore how to utilize the accurate depth information captured by LiDAR

sensors in 3D object detection tasks and the dense semantic information captured by cam-

era sensors in map segmentation tasks. Chapter 2 provides the background knowledge of

deep learning methods and attention mechanisms and introduces the related work in 3D

object detection and BEV map segmentation. Chapter 3 describes the proposed attention
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modules utilized in our methods. Chapter 4 presents the proposed 3D object detection and

map segmentation frameworks. Chapter 5 presents the details of our experiments, includ-

ing the experiment datasets, experiment setup, evaluation metrics, and experiment results.

Chapter 6 concludes the dissertation and discusses future research directions.



CHAPTER 2

RELATED WORK

We briefly review representative works that are directly related to the proposed meth-

ods. Specifically, we review related works in deep learning, attention mechanisms, 3D object

detection, and map segmentation in BEV.

2.1 Deep Learning

Deep learning is a subfield of Artificial Intelligence (AI) and Machine Learning (ML),

both of which are based on artificial neural networks to perform cognition tasks. Artificial

neural networks are inspired by the structure and function of biological brains, where in-

formation processing occurs through interconnected neurons. The ”deep” in deep learning

refers to the depth of the neural networks, which means the utilization of multiple layers of

interconnected nodes, known as artificial neurons or units, in the network. Every layer pro-

cesses the input data, extracting higher-level semantic features when the network becomes

deeper. These multiple layers enable the deep learning model to learn complex represen-

tations of the input data and to solve more complex tasks in computer vision, machine

translation, natural language processing, drug design, bioinformatics, autonomous vehicles,

and so on.

There are four main types of learning in deep learning: supervised learning, semi-

supervised learning, unsupervised learning, and reinforcement learning. Supervised learning

methods learn from labeled data to make predictions or classify new instances. Unsuper-

vised learning methods learn patterns, information, and structure from unlabeled data

without explicit guidance. Semi-supervised learning falls between supervised and unsuper-

vised learning, which is trained on a dataset that contains both labeled and unlabeled data.

Reinforcement learning methods learn to make decisions by receiving rewards or penalties

via interaction with the environment.
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In the dissertation, we focus on supervised learning-based object detection and BEV

map segmentation.

2.2 Attention Mechanisms

Attention mechanisms have recently been widely employed in the Deep Neural Network

(DNN) to focus on important parts of the input data to capture sufficient outstanding

features. Three kinds of representative attention mechanisms include channel attention

[27–29], spatial attention [30–32], and graph attention [33–36].

Channel attention [27–29] usually utilizes average-pooling and max-pooling operations

to aggregate spatial information of a feature map and utilizes a shared network composed

of a 1-D convolution layer and a softmax layer to exploit the inter-channel relationship of

features. For example, SENet [27] utilizes a Squeeze-and-Excitation (SE) block to capture

channel-wise relationships and improve representation ability.

Spatial attention [31, 37] usually applies average-pooling and max-pooling operations

along the channel axis and concatenates them to generate an efficient feature descriptor

across the spatial domain to capture the inter-spatial relationship of features and select the

most relevant spatial regions. Some spatial attentions tend to have a high time complex-

ity, which limits their applications. For example, non-local network [31] first uses spatial

attention to model non-local relationships, but it has a high time complexity.

Graph attention [33–36] understands attention from a graph learning perspective. For

example, GloRe [34] utilizes graph convolutional networks to build attention mechanisms.

It first collects N input features into M nodes by multiplying matrices and then learns an

adjacency matrix of global interactions between nodes. Finally, the nodes distribute global

information to input features. However, the low-dimension matrix projection might cause

information loss.

2.3 3D Object Detection

The industry mainly utilizes LiDAR and camera sensors to solve the object detection

task, due to their complementary strengths and ability to provide rich and accurate data
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about the environment. Specifically, LiDAR sensors directly measure distances to objects

by emitting laser pulses. This produces a dense and accurate 3D point cloud representa-

tion of the environment, which makes it well-suited for object detection and localization.

On the other hand, cameras provide high-resolution RGB images that carry a lot of visual

information about the objects and the scene. This information is useful for object recog-

nition, classification, and contextual understanding. Depending on the number of cameras

employed, 3D object detection is roughly divided into two categories including single-view

3D object detection and multi-view 3D object detection. Multi-view 3D object detection

has better performance and provides more information for safe autonomous driving since

single-view images are unable to convey perspectives of the immediate surroundings. Here,

we provide the related work of LiDAR-based 3D object detection and multi-view 3D object

detection.

2.3.1 LiDAR-based 3D Object Detection

The LiDAR 3D object detectors can be divided into voxel-based and point-based detec-

tors based on data preprocessing methods. The voxel-based detectors transform the LiDAR

point clouds to grid representations such as 3D voxels [13, 16, 19, 38]. We could utilize 3D

Convolutional Neural Networks (CNN) to process the voxels effectively. The point-based

detectors [17,18,39] directly process raw LiDAR point clouds to extract features. Generally

speaking, the voxel-based detectors are more efficient, while the point-based detectors have

more expensive computations [16].

Due to the importance of high efficiency for autonomous vehicles, we focus on voxel-

based detectors [13,19,38] in this dissertation.

Here, we briefly review several influential works in voxel-based single-shot 3D object

detection. VoxelNet [13] is a pioneer work in voxel-based 3D object detection. To improve

the detection accuracy of LiDAR datasets, it divides a raw point cloud into equal 3D voxels

and applies the voxel feature encoding layer to transform a group of points within each voxel

into a feature representation. SECOND [38] improves VoxelNet by employing an improved

sparse convolution method to increase both training and inference speed and significantly
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reduce the detection time. It also introduces a new form of angle loss regression to improve

the orientation estimation performance and a new data augmentation approach to enhance

the convergence speed and performance. TANet [40] improves SECOND by utilizing a Triple

Attention (TA) module, which consists of channel, point, and voxel-level soft attentions,

to capture fine-grained features and increase module robustness. However, the lack of

multi-scale features and ineffective use of high-semantic features hinder the performance of

effective single-shot voxel-based detectors.

2.3.2 Multi-view 3D Object Detection

The input data of multi-view 3D object detection is multiple-view images taken from

multiple cameras in the ego car. Compared to the traditional monocular-based 3D ob-

ject detection and stereo-based 3D object detection, multi-view 3D object detection has

the superiority of generating a BEV feature map containing all ego surrounding informa-

tion. Multi-view 3D object detection could be roughly divided into two categories including

transformer-based and CNN-based multi-view 3D object detection.

Recently, transformer-based BEV models have shown outstanding performance, which

does not require Non-Maximum Suppression (NMS) processing. BEVFormer [3] generates

BEV feature maps to contain useful environment information. To make full use of the

BEV feature and introduce more information, BEVFormer proposes BEV query, spatial

cross-attention, and temporal self-attention to combine temporary and spatial information.

Detr3d [41] proposes a method that generates prediction directly in 3D space. Specifically,

it processes multiple view input images to get 2D features and then utilizes the sparse

3D object query to index the 2D features. Finally, it projects 3D positions back to the

multi-view image domain using the camera transformation matrices. Another state-of-

the-art multi-view 3D object detector, PETR [21], proposes a new position embedding

module called the 3D position embedding, which generates the position information of 3D

coordinates and adds it into image features to get the 3D position-aware features. In that

way, object query is able to process 3D position-aware features, perform end-to-end 3D

object detection, and obtain 3D detection results directly.
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CNN-based 3D object detectors also receive widespread attention due to their outstand-

ing performance. BEVDet [20] substantially improves the existing modules’ performance

by proposing a data augmentation strategy and improving the NMS strategy. It gains a

good balance between accuracy and efficiency. M2BEV [42] proposes four designs including

efficient BEV encoder design, dynamic box assignment, BEV center-based re-weighting,

and large-scale 2D detection auxiliary supervision to further improve the detection results.

Specifically, M2BEV achieves state-of-the-art results in 3D object detection on the nuScenes

dataset.

2.4 Map Segmentation in BEV

The industry mainly utilizes camera sensors to solve the map segmentation task. Radar

and LiDAR sensors are rarely applied in map segmentation tasks since their sparse semantics

lead to decreased accuracy on semantic-oriented tasks. Therefore, we only introduce the

related work of the camera-based multi-view BEV map segmentation.

2.4.1 Multi-view BEV Map Segmentation

BEV map segmentation has two common backbones, deep CNN [5, 22, 42] and trans-

formers [3, 43–45].

CNN-based BEV map segmentation utilizes intrinsic and extrinsic matrices of the cam-

eras to translate multi-view autonomous vehicle images into the BEV features and applies

CNN to further process the transformed BEV features and obtain the output maps. Lift,

Splat, Shoot (LSS) [22] is a pioneer work of CNN-based BEV intermediate representation

structure techniques. It builds a BEV transform network to yield better BEV segmenta-

tion results. Specifically, it utilizes CNN to get a feature map frustum in each view and

combines all frustums into a unified BEV intermediate representation containing the geo-

metric connection of each camera. The BEV representation is then further processed by

CNN to get the final outputs. BEVerse [5] utilizes CNN to process multi-camera videos and

get spatiotemporal BEV representations. The spatiotemporal BEV representations contain

both spatial and temporal information, which are further processed by CNN-based decoders
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to get the outputs. However, CNN-based BEV map segmentation networks require plenty

of convolutional layers to gain semantic relationships of the whole BEV features due to

the limited receptive field of each convolutional layer. In addition, they tend to have an

overfitting issue and a lack of flexibility in the BEV feature domain [20].

On the other hand, transformer-based models employ transformers, which concentrate

on local patches or part of the global information rather than the overall region relation-

ship, to directly analyze multi-view image features. Cross-View Transformer (CVT) [43]

is one representative transformer-based segmentation technique. It uses a camera-aware

transformer together with the intrinsic and extrinsic matrices of cameras to obtain BEV

segmentation from multi-view monocular images. Specifically, it uses position embeddings

to encode input patches from different cameras and allow the transformer to gain implicit

cross-view information. They pay attention to the local patches but ignore the importance of

global information and high-semantic information. CoBEVT [44] is one of the state-of-the-

art transformers that focuses on both local and global information. Specifically, CoBEVT

designs a Fused AXial (FAX) attention module, which captures sparsely local and global

spatial interactions across views and agents. However, it cannot obtain global semantic

relationships using the sparsely sampled attention mechanism.

In summary, traditional BEV semantic segmentation does not consider contextual re-

lationships of the global features or the high-semantic features at the early stage of the

network. This leads to inaccurate segmentation, especially at the border of the objects and

the regions. In addition, the overfitting issue is also a common problem in traditional BEV

semantic segmentation.

2.5 Proposed Method

In this dissertation, we introduce two perception networks, which aim to simultaneously

address the aforementioned drawbacks of their peers and improve the performance of their

peers. One of these networks is for 3D object detection utilizing LiDAR sensors and the

other one is for map segmentation utilizing camera sensors.

We name the 3D object detection network as Point Cloud Detection Network (PCDet),
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which utilizes LiDAR sensors to obtain the point cloud inputs with accurate depth infor-

mation. To solve the problem of lacking multi-scale features and using the high-semantic

features ineffectively, the proposed PCDet individually utilizes Hierarchical Double-branch

Spatial Attention (HDSA) and Hierarchical Residual Graph Convolutional Attention (HRGCA)

to detect 3D objects. HDSA captures high-semantic and fine-grained features at the same

time. HDSA applies the double-branch spatial attention at the early stage and the late

stage of the network, which helps use the high-semantic features at the beginning of the

network and obtains the multi-scale features. HRGCA is an effective attention mechanism,

consisting of a spatial fully connected graph and a channel fully connected graph, to esti-

mate global semantic relational features to solve the ineffective utilization of high-semantic

features.

We name the map segmentation network as Multi-View Segmentation in Bird’s-Eye-

View (BEVSeg), which utilizes multiple camera sensors to obtain multi-view image inputs

with dense semantic information. The proposed BEVSeg aims to utilize high-semantic

features effectively and solve the common overfitting problems in map segmentation tasks.

Specifically, BEVSeg individually incorporates the same attention mechanisms used in the

PCDet, namely, HDSA and HRGCA, to capture high-semantic and fine-grained features

at the early stage and the late stage of the network. In addition, BEVSeg incorporates an

Aligned BEV domain data Augmentation (ABA) module to align the augmented object

and segmentation ground truths and align the augmented BEV map and its augmented

ground truths to address overfitting issues.
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CHAPTER 3

ATTENTION

In this chapter, we introduce two effective attention mechanisms, namely, Double-

branch Spatial Attention (DSA) and Residual Graph Convolutional Attention (RGCA), and

their corresponding hierarchical structures HDSA and HRGCA. Both HDSA and HRGCA

are utilized in our proposed 3D object detection framework and multi-view segmentation in

the Bird’s-Eye-View framework. The two attentions are proposed to utilize high-semantic

features in an effective way. DSA enlarges the receptive field in spatial attention to get

high-semantic information. RGCA utilizes graph convolution to estimate global semantic

relational features. Because of the structure difference, both attentions have different ad-

vantages and disadvantages. DSA has low complexity and high flexibility. However, it lacks

consideration of global relational information. RGCA is able to estimate global semantic

relational information, which solves the limitation of DSA. However, it is not as flexible as

DSA, due to its requirements of the graph space projection (i.e., the attention kernel size

must be divisible by the node number).

3.1 Double-branch Spatial Attention (DSA) and its Two Variants

To capture high-semantic and fine-grained features at the same time, we propose a

DSA module to automatically choose significant regions of the input features. Figure 3.1

illustrates the structure of DSA.

To simplify the complicated matrix calculation and reduce the computational complex-

ity of spatial attention, we replace the matrix multiplication with a double-branch convolu-

tion. DSA consists of two control gate mask branches: one going through two convolutional

layers and one going through one convolutional layer. Here, we use W to represent the

2D convolutional layer weights and the subscript of W to represent specific convolutional

layers. Specifically, WX , WXY , and WY represent convolutional layer weights of the con-
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Fig. 3.1: Structure of the Double-branch Spatial Attention.

volutional layer connecting feature X and its convolved feature (i.e., Xconv), features X

and Y , and feature Y and its convolved feature (i.e., Yconv), respectively. For the input of

the 2D convolutional networks (e.g., a given BEV feature map X), we use two branches

of 1× 1 convolutions WX and WXY to transform X into two new feature maps Xconv and

Y with the same dimension, respectively. We then employ another d × d convolution WY

to transform Y into Yconv with the same dimensions and enlarge the receptive field at the

same time. We combine Xconv and Yconv via the elementwise addition and apply another

1 × 1 convolution WS , which represents convolutional layer weights of the convolutional

layer after the addition operation, to transform the combined feature map into a new fea-

ture map. The sigmoid operation is then employed on the new feature map to normalize it

into a new weighted feature map ASpatial. The feature map Y is elementwisely multiplied

with ASpatial, added with itself, and concatenated with input X to obtain the final weighted

feature map XSpatialOut.

The proposed DSA module allows the control gate to perform pixel-to-pixel modeling

(i.e., voxel-wise addition or element-wise addition of local features) to make the focused

and related resources be assigned to the most intrinsic and informative areas. In other

words, the control gate branches function as a masking mechanism to recalibrate local

features from multiple scales selectively strengthen valuable and informative areas, and

suppress useless and non-informative features such as noise and background. As a result,

the values in the attention mask represent the weights of corresponding pixels on the original

feature maps of point clouds, which makes the attention mask more suitable for pixel-wise

classification than global pooling. In summary, the proposed DSA module not only selects

the most intrinsic and discriminative features toward the classification objective in the
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feed-forward process but also prevents the updating of parameters with incorrect gradients

during backpropagation [46]. It further makes our network more expressive, robust, and

informative.

We also design two variant attentions for comparison.

1. Variant 1 intuitively applies attention to the original input feature map X to enhance

target objects and filter out irrelevant areas in X. Its final weighted feature map is

obtained by adding X and its multiplication with the weighted feature map ASpatial,

i.e. X +ASpatial ×X.

2. Variant 2 applies the soft attention on the high-level feature map Y to enhance target

objects, filter out irrelevant areas in Y , and learn more deformations of target objects.

Its final weighted feature map is obtained by adding Y and its multiplication with

ASpatial, i.e. Y +ASpatial × Y .

The proposed DSA takes advantage of both variants to simultaneously consider both low and

high-level feature maps, which contain rich and fine context information, by concatenating

X with the final feature map obtained from variant 2.

3.2 Design and Mathematical Formulation of DSA

We treat X and Yconv shown in Figure 3.1 as low-level features of layer L and high-

level features of layer L+2 in the encoding stage, respectively. Xconv and Y are considered

as high-level features of layer L + 1. To improve the network sensitivity, we design our

DSA block based on additive attention since it experimentally has higher accuracy than

multiplicative attention [47]. To this end, we calculate the attention mask ASpatial at layer

L by performing an elementwise addition operation betweenXconv and Yconv to learn critical

features of objects. This attention mask ASpatial integrates the relationship between features

from multiple scales or layers at different regions, focuses on useful regions, and indicates the

significance of different regions. We then perform an elementwise multiplication operation

between ASpatial and Y to identify relevant regions containing objects. Finally, we employ

the addition [46] to retain original features, so the final output of the DSA block is defined
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as Y + Y ◦ ASpatial, where ◦ represents the elementwise multiplication. The following

equation summarizes the steps to compute the attention mask ASpatial at layer L, where

concatenation is not involved:

AL
Spatial = Sigmoid(Ws ⋆ (WX ⋆ XL +WY ⋆ WXY ⋆ XL))

Here, XL ∈ RHL∗WL∗ChL
are features at layer L with H, W , and Ch being its respective

height, width, and channel number, ⋆ represents the conventional convolution operation,

and WX ,WY ,WXY , and WS ∈ RChL∗ChL∗k∗k are convolutional filters, whose kernel size

is k × k, used at different layers L to generate features at the next layers. The proposed

DSA block functions as a feature selector to automatically augment useful structure features

during the forward process by replacing XL with the weighted attention features XSpatialOut

concatenating with XL. In summary, the final output of the variant 1, the variant 2, and

the proposed DSA block are X +X ◦A, Y +Y ◦A, and concatenation of X and Y +Y ◦A,

respectively.

3.3 Residual Graph Convolutional Attention (RGCA)

To utilize high-semantic features effectively, we propose an RGCA module to estimate

global semantic relational features.

The RGCA module aims to learn the relationship between each region along both

spatial and channel dimensions while maintaining the coordinate information. It consists of

three sub-modules: graph space projection, RGC layers, and coordinate space reprojection.

Figure 3.2 illustrates the structure of RGCA.

Graph Space Projection: To project coordinate features into the graph space, we

utilize the stride convolution operation φ to convert input features X ∈ RC×H×W to down-

sampled features VD ∈ RC×H
d
×W

d : VD = φ(X) where d represents the stride size. Since the

filters have a kernel size of d × d and are not overlapping, the convolution operation φ is

able to efficiently gather the complete feature information.

RGC Layers: We obtain downsampled features VD after the graph space projection.
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Fig. 3.2: Illustration of the Residual Graph Convolutional Attention

With the reshaping process, we transform VD to graph node features VN ∈ RC×HW
d2 , where

HW
d2

represents the node number DN and C represents the channel number for each node.

In order to get the relationship between every region from both the spatial and channel di-

mensions, we build two completely linked graphs, namely the spatial graph and the channel

graph, in the RGC module. The spatial graph learns the relationship between each node,

where a node represents multi-channel node features and an edge represents the relation-

ships between node features. The channel graph learns the interdependency between each

channel, where a node represents node features along one channel and an edge represents

the relationships between channels of each node feature. The two graphs contain the node

adjacency matrix AG ∈ RDN×DN and the channel-specific weights WG ∈ RC×C for each

node. They are used to compute interactive features VG ∈ RC×HW
d2 of the RGC layer by

VG = WG × VN ×AG (3.1)

During the training process, AG and WG are randomly initialized and optimized along

with other network parameters by the Stochastic Gradient Descent (SGD) method. It is

worth noting that VG has the same dimension as VN . However, it not only captures the

relationship of the nodes but also the relationship of the channels within each node. We

further reshape VG to YG to have the same dimension as VD. To seamlessly combine the

low-resolution coordinate features and graph features, we propose a downsample residual

process to obtain combined features Y by

Y = YG + σ(X) (3.2)
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where σ represents a downsampling convolution operation to transformX to VC ∈ RC×H
d
×W

d

with the same dimension of YG.

Coordinate Space Reprojection: After the graph interaction, we utilize the up-

sampling operation to reproject Y back to the original coordinate space RC×H×W to be

consistent with the network architecture. Specifically, the bilinear interpolation Fbilinear is

adopted to upsample Y by d times to obtain residual graph features XG:

XG = Fbilinear(Y, scale = d) (3.3)

After reprojection, the residual graph features XG are finally concatenated with input

features X to maintain both original information and processed information inputs as

(Concat(X,XG)). Figure 3.2 illustrates all the operations involved in the RGCA module.

3.4 Hierarchical Attention Modules

The two proposed attention modules could be applied in the early stage and the late

stage of both 3D object detection and map segmentation tasks to form a hierarchical at-

tention module, which accurately captures multi-scale features and effectively uses these

features to better represent the objects. On the one hand, we utilize the HDSA module

in PCDet, the 3D object detection network, to obtain the high-semantic features at the

beginning of the network and obtain multi-scale features at the late stage of the network.

In addition, we utilize the HDSA module in BEVSeg, the map segmentation network, to

capture high-semantic and fine-grained features and utilize them effectively. In general, the

HDSA enables the DNN to focus on useful areas and salient features. On the other hand,

we utilize the HRGCA module in PCDet, the 3D object detection network, to obtain the

global semantic relational 3D object features at both the early and late stages of the net-

work. Besides, we utilize the HRGCA module in BEVSeg, the map segmentation network,

to capture the global semantic relational BEV features from different scales. Generally

speaking, the HRGCA provides the global semantic information for the DNN to highlight

the useful areas and salient features.
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CHAPTER 4

THE PROPOSED NETWORKS

In this chapter, we present the overall structure of the proposed 3D object detection

network PCDet and the proposed map segmentation network BEVSeg. In addition, we

introduce the application of the two proposed hierarchical attention modules HDSA and

HRGCA to the two proposed networks.

4.1 Proposed 3D Object Detection Network PCDet

The proposed 3D object detection network, Point Cloud Detection Network (PCDet),

utilizes LiDAR sensors to acquire input point clouds with precise depth data. PCDet

individually uses the proposed Hierarchical Double-branch Spatial Attention (HDSA) and

Hierarchical Residual Graph Convolutional Attention (HRGCA) to build two frameworks

PCDet HDSA and PCDet HRGCA to address the issues of a lack of multi-scale features

and the poor use of high-semantic data. High-semantic and fine-grained characteristics are

simultaneously captured by HDSA. In order to leverage high-semantic characteristics at

the beginning of the network and acquire multi-scale features, HDSA applies the double-

branch spatial attention at both the early and late stages of the network. As a solution to

the inefficient use of high-semantic features, HRGCA estimates global semantic relational

characteristics using a spatial fully connected network and a channel fully connected graph.

The contributions of four versions of PCDet are summarized as follows:

• Proposing a 3D object framework PCDet that can easily incorporate different atten-

tion modules at different stages of the DNN to capture features at multiple scales and

improve the detection accuracy of the SECOND network.

• Utilizing the features generated from the HDSA module to build PCDet HDSA to

learn and find the most important locations to focus on and filter out the irrelevant

parts of the input point cloud.
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• Incorporating the HRGCA module that contains both graph and coordinate informa-

tion in the deep CNNs to build PCDet HRGCA to not only effectively acquire the

global information but also efficiently estimate contextual relationships of the global

information in the 3D point cloud domain.

• Incorporating DSA and RGCA at either the early stage or the late stage to build

PCDet DSA+RGCA and PCDet RGCA+DSA to respectively capture multi-scale

high-semantic and fine-grained features and estimate global semantic relational char-

acteristics to improve the detection accuracy.

• Improving the baseline network and achieving similar accuracy and inference speed

compared with one-stage state-of-the-art systems on the KITTI validation dataset.

4.1.1 PCDet Overall Structure

Figure 4.1 shows the overall architecture of the proposed PCDet, which uses the widely

used small SECOND network as its backbone to maintain the detection accuracy with

a faster speed. SECOND is an effective 3D object detection system that achieves high

accuracy at a fast speed. It first divides the input point cloud data into voxels of the same

size for pre-processing. It then converts a certain number of points in each voxel into a

vector of voxel features and coordinates to maintain geometric and spatial information.

These vectors are next sent to 3D convolution blocks to expand their receptive fields. The

3D voxel features are reshaped into a BEV shape and sent to a 2D convolution block to

obtain 2D features. Finally, the 2D features are put into box regression and classification

branches to localize and classify detected objects, respectively.

To improve the efficiency and accuracy of SECOND, we use its small network as a

backbone and modify this simple network structure from two perspectives. First, we cut

50% of the parameters of the last layer of 3D sparse convolutional layers to simplify the

3D convolutional block, speed up the training, and maintain efficiency. Second, we include

the hierarchical attention modules in 2D convolutional blocks to improve the accuracy of

SECOND. Specifically, we build the PCDet HDSA framework by incorporating the HDSA
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Fig. 4.1: The overall architecture of the proposed PCDet. The upper part demonstrates its
block diagram, where hierarchical attention modules reside in the blue-shaded block titled
”2D Convolution with Attention”. The lower part presents the flowchart of employing the
hierarchical attention modules in the 2D backbone network, where Layer 1 represents the
results from the attention module at the early stage and Layer 2 represents the results
from the attention module at the late stage. The DSA and RGCA attention can be inter-
changeably applied at either the early stage or the late stage to build a different 3D object
detection framework.
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module at both the early and late stages of the SECOND network, where the HDSA module

learns the most important positions in the point cloud data, filters out the irrelevant parts,

and combines feature maps of different scales to more accurately represent objects. We

build the PCDet HRGCA framework by incorporating the HRGCA module at both the

early and late stages of the SECOND network, where the HRGCA module obtains the

global relational information in the point cloud data, clusters the similar semantic regions,

and reasons the relationships of different regions to get more connect information.

The section below the block diagram of Figure 4.1 presents the details of employing

the proposed hierarchical attention modules at two places in the 2D backbone network,

which consists of two layers of encoding and decoding blocks. The encoding block at each

layer contains six convolutional layers and the decoding block at each layer contains one

deconvolutional layer. We use X to denote SECOND’s 2D BEV features, which is the

input of the 2D backbone network. We first employ the attention module on X to calculate

semantic relationships among voxels and obtain its weighted feature map Y1 at the first

layer. This weighted feature map Y1 then goes through the encoding block of the first layer

to obtain EY1, whose channel number is reduced by half from Ch to Ch/2. EY1 goes

through two branches: one branch is to go through the decoding block of the first layer to

obtainDY1, which has the same dimension asX; the other branch is to employ the attention

module on EY1 to calculate semantic relationships among voxels and obtain its weighted

feature map Y2 at the second layer. This weighted feature map Y2 goes through the encoding

block of the second layer to obtain EY2, whose channel is doubled from Ch/2 to Ch and

whose height and width are reduced from H to H/2 and from W to W/2, respectively. EY2

finally goes through the decoding block of the second layer to obtain DY2, which has the

same dimension as X. Lastly, DY1 and DY2 are concatenated together as the output of

the 2D backbone network. This hierarchical structure combines features at different scales,

enhances semantic information, and broadens the receptive field.
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4.2 Proposed Map Segmentation Network BEVSeg

In this section, we propose a map segmentation framework, i.e., Multi-View Segmenta-

tion in Bird’s-Eye-View (BEVSeg), to solve map segmentation tasks utilizing dense semantic

information from multiple camera sensors. BEVSeg proposes three new modules, namely,

data augmentation, Segmentation Head (SH), and a hierarchical attention module to ad-

dress issues of overfitting, misalignment, overlapping, the lack of multi-scale features, and

the poor usage of high-semantic data. Specifically, the proposed data augmentation, i.e.,

Aligned BEV domain data Augmentation (ABA), addresses overfitting and misalignment

issues. The proposed SH individually segments each category, which solves the overlap-

ping issues in map segmentation. Two proposed hierarchical attention modules, HDSA and

HRGCA, address the issues of the lack of multi-scale features and the poor usage of high-

semantic data. However, BEVSeg with different attention mechanisms leads to different

advantages and disadvantages. For example, BEVSeg HDSA, which incorporates DSA at

both the early and late stages of the network, is efficient and flexible because of the structure

of DSA. However, it lacks consideration of global relational information. BEVSeg HRGCA,

which incorporates RGCA at both the early and late stages of the network, solves the limi-

tation of BEVSeg HDSA by using an HRGCA module to estimate global semantic relational

information. However, it is not as flexible as BEVSeg HDSA due to its requirements that

the attention kernel size must be divisible by the node number.

The contributions of four versions of BEVSeg are as follows:

• Proposing a new network architecture BEVSeg to perform semantic segmentation of

a scene with multi-view images and achieve state-of-the-art results.

• Incorporating ABA in the geometry module to augment the coherent BEV map, align

the augmented object and segmentation ground truths, and align the augmented BEV

map and its augmented ground truths to address overfitting and misalignment issues.

• Extending the SH to individually process each semantic category to address the pos-

sible overlapping among semantic categories.
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• Incorporating low-complexity HDSA in the data-driven module to build BEVSeg HDSA

to learn multi-scale BEV features flexibly by enlarging the feature receptive field and

learning interest regions.

• Incorporating the HRGCAmodule in the data-driven module to build BEVSeg HRGCA

to gather the global semantic relationship from different scales.

• Incorporating DSA and RGCA in the data-driven module at either the early stage or

the late stage to build BEVSeg DSA+RGCA and BEVSeg RGCA+DSA to respec-

tively capture multi-scale high-semantic and fine-grained features and estimate global

semantic relational characteristics to improve the segmentation accuracy.

• Improving the baseline network in terms of segmentation accuracy for six major se-

mantic categories.

BEVSeg HRGCA improves BEVSeg HDSA by utilizing an effective HRGCA attention

mechanism to obtain the global information at the early and late stages of the network. Its

contributions are as follows:

• Proposing a novel RGCA module consisting of two interconnected graphs (i.e., the

spatial graph and the channel graph), where the spatial graph extracts spatial infor-

mation between each node and the channel graph extracts channel information within

each node. The RGC module employs a downsample residual process to enhance

the coordinate feature reuse to maintain the global information. It also employs a

non-overlapping graph space projection to efficiently project the complete BEV infor-

mation into graph space.

• Incorporating the RGCA module that contains both graph and coordinate informa-

tion in the deep CNNs to enable BEV semantic segmentation networks to not only

effectively acquire the global information but also efficiently estimate contextual rela-

tionships of the global information in the BEV map domain produced by multi-view

images.
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In Section 4.2.1, we introduce the overall architecture of BEVSeg. In Section 4.2.2, we

introduce the basic modules of BEVSeg. In Section 4.2.3, we introduce three proposed mod-

ules in BEVSeg. The structure of hierarchical attention modules is introduced in Chapter 3.

Interested readers may refer to Chapter 3 for more details.

4.2.1 Overall Architecture of BEVSeg

Fig. 4.2: Illustration of BEVSeg’s overall architecture: 1) image encoder extracts multi-
camera features; 2) Image-to-BEV view transform converts multi-camera features to the
BEV domain; 3) ABA shown in the light blue shaded block is the proposed geometry
module that augments and aligns BEV features and ground truths; 4) hierarchical attention
modules & BEV encoder shown in the dark blue shaded block is the proposed data-driven
module that encodes BEV feature to obtain high-semantic information from different scales;
5) BEV SH shown in the light blue shaded block is proposed to replace the detection head
in BEVDet and predict BEV binary maps for six categories.

We propose a new network architecture BEVSeg, which uses multi-view camera images

to produce better segmentation results in a BEV map. Figure 4.2 illustrates the overall

architecture of the proposed BEVSeg framework, which consists of five modules including

image encoder, image-to-BEV view transform, Aligned BEV domain data Augmentation
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(ABA), Hierarchical Attention modules & BEV encoder, and BEV map Segmentation Head

(SH). Image encoder and Image-to-BEV view transform are directly adopted from the

conventional BEV network [20], which is introduced in Section 4.2.2. ABA (the geometry

module) is the proposed module, which is shown in the light blue shaded block. Hierarchical

Attention modules combining DSA and RGCA in the data-driven module at the early stage

or the late stage of the network are the proposed modules shown in the dark blue shaded

block. The lower part presents the flowchart of employing the hierarchical attention modules

in the BEV encoder. SH is the last proposed module, which is shown in the light blue shaded

block. All the proposed modules are introduced in Section 4.2.3.

BEVSeg projects camera features into the unified BEV intermediate representation via

ABA in the geometry module. It also utilizes the combination of DSA and RGCA at the

early stage or the late stage of the network to construct a hierarchical attention module

to process the BEV features. BEVSeg HDSA, which utilizes DSA at both early and late

stages, learns low-complexity HDSA in the data-driven module to optimize the implicit

geometric information in BEV feature maps and learn multi-scale BEV features flexibly

via enlarged feature respective field and learned interest regions. HDSA utilizes the DSAs

(mentioned in Section 3.1, Section 3.2) in the hierarchy. However, HDSA has one limitation

it does not consider the global relational information, which will be solved by HRGCA.

BEVSeg HRGCA, which utilizes RGCA at both early and late stages, utilizes multi-view

image inputs to generate graph-based BEV features and produce BEV segmentation re-

sults. In different scales, the HRGCA module effectively combines the region interaction

information and the BEV coordinate information to increase segmentation accuracy, which

solves HDSA’s problem. HRGCA utilizes the RGCA modules (mentioned in Section 3.3)

in the hierarchy. The RGCA module estimates relationships between each region in spatial

and channel dimensions while maintaining the coordinate information using its residuals.

4.2.2 Basic Architectures

We build our network, BEVSeg, based on the modular 3D object detector, BEVDet [20],

a multi-view 3D object detector consisting of a simpler modular structure compared with
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other networks. In this section, we introduce the three basic modules used in our map

segmentation network:

Image Encoder: The image encoder aims to efficiently represent multi-view cam-

era images to facilitate the later learning process. It usually uses a backbone to convert

multi-view camera images to multi-scale feature maps containing both high-level semantic

information and low-level texture information. It then uses a neck structure to aggregate

feature maps of various resolutions to obtain a compact representation of multi-review cam-

era images. In the proposed system, we use the most recent SwinTransformer [14] as our

backbone due to its outstanding multi-task performance and use the traditional LSS-based

neck structure [22] as our neck.

Image-to-BEV View Transform: The image-to-BEV view transform [20,22] aims to

project multi-view image features into the BEV domain to create BEV map features, which

are a coherent representation of the surrounding environment at the same ego-direction. It

also predicts the depth of each view and renders the unified 3D point cloud, which can be

further utilized in later modules to achieve better segmentation results.

BEV Encoder: The BEV encoder aims to further process BEV features to facilitate

segmentation by combining high-level semantic and low-level texture information in a pyra-

mid structure. Similar to the image encoder, the BEV encoder consists of a backbone and

a neck, which are constructed by traditional residual blocks [23].

4.2.3 Proposed Modules in BEVSeg

In this section, we introduce the proposed modules of BEVSeg, which are uniquely

incorporated to improve segmentation accuracy. The structure of hierarchical attention

modules is introduced in Chapter 3.

Aligned BEV Domain Data Augmentation (ABA)

In order to improve network performance and address the overfitting and misalignment

problem in the BEV domain, we propose an ABA technique to simultaneously augment

and align BEV feature maps and the ground truths, including 3D object and segmentation
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ground truths. By aligning three augmented counterparts, ABA ensures that most 3D object

ground truths are located in the drivable area (e.g. the 3D vehicles are in the drivable area),

which increases the model interpretability. Specifically, we apply rotation, flipping, and

scaling operations on the BEV feature maps and their corresponding ground truths. Unlike

the augmentation in BEVFormer, BEVFusion, CVT, and BEVDet, our module preserves

semantic alignment between the augmented object and segmentation ground truths and

semantic alignment between the augmented BEV map and its augmented ground truths.

Given 3×3 rotation and flipping transformation matrices TRot and TFlip and the scaling

transformation parameter S, the augmented BEV feature map MAUG−BEV is generated by:

MAUG−BEV = S × TFlip × TRot ×MBEV (4.1)

where MBEV is the BEV feature map.

In order to align ground truth with augmented BEV feature maps, the corresponding

rotation angle is computed by the Euler angle formula [48]:

angle = arctan

(
T−1
Rot(2, 1)

T−1
Rot(1, 1)

)
(4.2)

where T−1
Rot(x, y) denotes the element at the coordinate of (x, y) of the inverse rotation

matrix. The augmented ground truth segmentation results GAUG are estimated by:

GAUG = S × TFlip ×G(loc, angle, size) (4.3)

where G(loc, angle, size) is the ground truth segmentation result rotated by angle at loca-

tion loc with a size of size, which is a predefined value directly adopted from BEVFusion [4].

We adopt the data augmentation idea in [20] to estimate the augmented 3D object ground

truths. We finally align the augmented BEV feature map, augmented segmentation ground

truths, and augmented 3D object ground truths.
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Fig. 4.3: Illustration of two categories in BEV map, where overlap regions are shown in red.
Left to right: non-overlap between drivable area (brown) and walkway (purple); non-overlap
between drivable area (brown) and ped crossing (purple); non-overlap between ped crossing
(brown) and stop line (purple).

BEV Map Segmentation Head (SH)

For multi-view images, one category may cross over into another category in the BEV

representation. Figure 4.3 illustrates three scenarios, where areas in red represent the

overlapping of two categories. To address the aforementioned overlapping issue, we utilize

one binary mask to store segmentation results for one category. Since there are six major

3D object categories, we generate six binary masks to store their respective segmentation

results.

The structure of the proposed BEV SH contains eight 3 × 3 convolutions and one

1× 1 convolution due to the unified BEV representation. To further reduce the number of

parameters, we reduce output channels by half. The BEV SH result is RHs×Ws×Nt , where

Hs and Ws are the height and width of the segmentation mask and Nt is the total number

of categories. The loss is the sigmoid focal loss [49].
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CHAPTER 5

EXPERIMENTS

In this chapter, we first introduce the datasets utilized in our two tasks. Then we

introduce the metrics utilized to evaluate our networks. In the last section, we introduce

the performance, ablation study, and qualitative results of our networks.

5.1 Datasets and Experimental Setup

KITTI and nuScenes are both large-scale datasets used in the field of computer vision

and autonomous vehicles, which play an important role in advancing research nowadays.

We utilize the KITTI dataset in our LiDAR-based 3D object detection task. Since the

KITTI dataset does not have multi-view images, we utilize another popular autonomous

vehicle dataset, the nuScenes dataset, in our multiple camera-based map segmentation task.

KITTI dataset [50] is a novel challenging real-world computer vision benchmark cap-

tured by driving around the mid-size city Karlsruhe, its rural areas, and its highways.

The dataset contains images, videos, 3D point clouds, and their Global Positioning System

(GPS) locations. In this research, we focus on the KITTI 3D point cloud dataset, which

has 7,481 training and 7,518 testing point clouds in three categories (e.g., cars, pedestrians,

and cyclists). Each category has point clouds with three difficulty levels including easy,

moderate, and hard based on bounding box height, occlusion, and truncation levels. The

height of the bounding box of objects at easy, moderate, and hard difficulty levels is at least

40, 25, and 25 pixels, respectively. The occlusion of the objects at easy, moderate, and hard

difficulty levels is fully visible, partly occluded, and hard to see, respectively. The truncated

percentage of objects at easy, moderate, and hard difficulty levels is at most 15%, 30%, and

50%, respectively. Objects that do not satisfy the above requirements (e.g., 6,473 cars, 170

pedestrians, and 165 cyclists) are not used for training and validation. In total, the KITTI

dataset contains 17,823 easy objects including 13,067 cars, 3,694 pedestrians, and 1,062
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cyclists, 9,547 moderate objects including 8,602 cars, 563 pedestrians, and 382 cyclists, and

678 hard objects including 600 cars, 60 pedestrians, and 18 cyclists. We divide the training

data into training and validation split with 3,712 and 3,769 point clouds, respectively.

NuScenes [1] is the most recent and popular benchmark for 3D object detection, track-

ing, and BEV semantic segmentation in autonomous driving. It is an extensive outdoor

dataset consisting of 1,000 driving scenes collected in Boston Seaport and Singapore’s One

North, Queenstown, and Holland Village districts. Each scene is 20 seconds long and con-

tains a LiDAR scan and RGB images from six horizon monocular cameras. Each scene is

also labeled with semantic mask annotations for 11 semantic classes and additional bitmaps.

We utilize the ego-motion measurements to produce the fixed-size ground truths of the cor-

responding area in the same ego direction. We also use BEVFusion’s experimental setup to

choose six crucial BEV semantic classes for all evaluations. The training, validation, and

testing splits of the nuScenes dataset contain 700, 150, and 150 scenes, respectively.

5.2 Metrics

Average Precision (AP) and mean Average Precision (mAP) are the most popular

metrics used to evaluate 3D object detection models. AP is calculated as the weighted

mean of precision at each threshold. mAP is the average of AP of all classes. The higher

AP and mAP values indicate better 3D object detection performance. We employ AP over

11 recall positions as the metric to evaluate the 3D object detection results in the validation

split. Different IoU thresholds are empirically determined by other researchers to compute

AP. An IoU of 0.7 is commonly used for cars and an IoU of 0.5 is commonly used for

cyclists and pedestrians. The leaderboard rank is based on the results of the dataset at the

moderate level.

Intersection-over-Union (IoU) and mean IoU (mIoU) are the two most common metrics

to evaluate how well a map segmentation model performs. IoU is calculated by dividing

the overlap between the predicted and ground truth annotation by the union of these.

mIoU is the average of IoU of all classes. Higher IoU and mIoU values indicate better map

segmentation performance. We use these two metrics to evaluate the performance of all
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Attention
3D BEV (2D)

Easy Moderate Hard Easy Moderate Hard

no attention 85.5 75.04 68.78 89.79 86.2 79.55

N-L 87.4 78.11 75.39 91.57 87.82 86.86

SE 87.83 78.17 74.67 91.74 87.72 85.66

GCNet 88.16 78.14 74.6 92.61 87.91 86.14

TA 87.57 78.1 73.97 92.1 87.83 85.74

DSA Variant 1 (ours) 87.45 77.30 73.24 91.53 87.48 84.97

DSA Variant 2 (ours) 88.59 77.88 73.35 92.15 87.55 84.92

DSA (ours) 87.84 78.26 73.35 91.57 87.86 85.12

RGCA (ours) 88.46 78.32 74.97 92.2 87.94 85.17

Table 5.1: Comparison of car detection results at three difficulty levels
of different attention-based small SECOND networks.

compared methods. We first calculate different IoU scores using thresholds ranging from

0.35 to 0.65 with a stepsize of 0.05. We then report the highest IoU score for each of the six

crucial semantic classes (e.g., drivable area, ped crossing, walkway, stop line, carpark area,

and divider). At last, we use the mIoU of six semantic classes as the major ranking metric

to evaluate the overall segmentation performance of each method [20].

5.3 Results

We report the experimental results of the 3D object detection and map segmentation

in Section 5.3.1 and Section 5.3.2

5.3.1 3D Object Detection Results

The proposed DSA and RGCA attention can be easily incorporated in any stage of the

object detection baseline SECOND. Table 5.1 lists 3D and 2D car detection results in terms

of AP at three difficulty levels (easy, moderate, and hard) of the baseline SECOND (without

any attention), PCDet DSA and its two variants, PCDet RGCA, and baseline SECOND

with four commonly used attention modules (e.g., Non-Local, SE, GCNet, and TA). To

use the smallest computer resources, we use a small SECOND network as a backbone for

all networks and implement all attention modules at the early stage. Specifically, N-L

represents the Non-Local attention module [31], SE represents the Squeeze-and-Excitation



38

Attention
3D BEV (2D)

Easy Moderate Hard Easy Moderate Hard

no attention 85.5 75.04 68.78 89.79 86.2 79.55

DSA 87.84 78.26 73.35 91.57 87.86 85.12

RGCA 88.46 78.32 74.97 92.2 87.94 85.17

HDSA 88.36 78.49 76.05 91.04 87.86 86.1

DSA+RGCA 87.76 78.56 75.69 91.59 87.73 86.90

RGCA+DSA 88.19 78.76 75.15 91.97 88.08 86.41

HRGCA 88.16 78.92 75.68 92.04 88.04 86.77

Table 5.2: Comparison of car detection results at three difficulty levels of different hierar-
chical attention-based small SECOND networks.

attention module [27], GCNet represents Global Context attention module [51] and TA

represents Triplet Attention module [52]. In the KITTI dataset, leaderboards are ranked

based on the 3D object detection results at the moderate difficulty level. Table 5.1 shows

that the proposed DSA and RGCA modules respectively improve the baseline network

SECOND by 3.22% and 3.28% for cars of the moderate difficulty level. They also achieve

better 3D car detection accuracy at the moderate difficulty level than all four commonly

used attention modules. The DSA module outperforms its two variants in detecting 3D cars

of the moderate difficulty level. In general, our RGCA-based SECOND network achieves

the best 3D car detection accuracy and our DSA-based SECOND network achieves the

second best 3D car detection accuracy. As a result, DSA and RGCA are utilized in the

hierarchical structure for further experiments.

In order to demonstrate the effectiveness of the hierarchical structure, we compare the

baseline (e.g., a small SECOND), the proposed DSA at the early stage with a small SEC-

OND (e.g., PCDet DSA), the proposed RGCA at the early stage with a small SECOND

(e.g., PCDet RGCA), and four hierarchical attention modules with a small SECOND (e.g.,

PCDet DSA+RGCA, PCDet HDSA, PCDet RGCA+DSA, and PCDet HRGCA) built by

the four combinations of DSA and RGCA. Table 5.2 shows that RGCA performs bet-

ter than DSA at the early stage and all hierarchical attention-based networks outperform

single-attention networks (e.g., PCDet DSA and PCDet RGCA). Specifically, the proposed

PCDet HDSA, PCDet DSA+RGCA, PCDet RGCA+DSA, and PCDet HRGCA respec-
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tively improve SECOND by 3.45%, 3.52%, 3.72%, and 3.88%. They respectively improve

PCDet DSA by 0.23%, 0.3%, 0.5%, and 0.66% and improve PCDet RGCA by 0.17%, 0.24%,

0.44%, and 0.6%. We conclude that a hierarchical attention structure is effective for the

3D object detection task. Comparing the four hierarchical attention-based SECOND net-

works, we observe that PCDet HRGCA performs the best and PCDet HDSA performs the

worst in detecting 3D cars at a moderate difficulty level. Replacing the DSA with RGCA

at the early stage or the late stage of the network improves the car detection accuracy. For

example, PCDet DSA+RGCA performs better than PCDet HDSA and PCDet HRGCA

performs better than PCDet RGCA+DSA. On the other hand, PCDet DSA+RGCA and

PCDet RGCA+DSA achieve similar 3D car detection accuracy.

Table 5.3 lists the AP of the proposed PCDet HDSA with a small SECOND network,

the proposed PCDet HDSA with a large SECOND network, the proposed PCDet HRGCA

with a small SECOND network, the proposed PCDet HRGCA with a large SECOND net-

work, and ten peer one-stage voxel-based 3D object detectors, namely, SECOND with a

small network, SECOND with a large network, TANet [40], Voxel-FPN [19], SA-SSD [53],

SE-SSD [54], CenterNet3D-SL1 [55], Pointpillars [56], SCNet [57], and AFDet [58], on the

KITTI car validation dataset. It shows that PCDet HDSA with a large SECOND network

achieves better car detection results than PCDet HDSA with a small SECOND network at

three difficulty levels. It ranks the best in detecting cars at easy and hard levels and fifth

in detecting cars at the moderate level. PCDet HRGCA with a large SECOND network

achieves better car detection results than PCDet HRGCA with a small SECOND network

at moderate and hard difficulty levels. It ranks third in detecting cars at the moderate level.

In Table 5.3, we compare the performance of PCDet HDSA with peer one-stage voxel-based

3D object detectors due to its simple structure and fast speed. We compare the performance

of PCDet HRGCA with peer one-stage voxel-based 3D object detectors due to its good per-

formance at the moderate level. We expect other hierarchical structures on both small and

large SECOND networks (e.g., PCDet DSA+RGCA, and PCDet RGCA+DSA) will achieve

better 3D car detection results than PCDet HDSA on both small and large SECOND net-
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works, and worse 3D car detection results than PCDet HRGCA on both small and large

SECOND networks at the moderate level.

In the following, we will compare the car detection performance of the simple and

fast network PCDet HDSA and several detectors in terms of detection accuracy, detection

speed, and ablation studies.

3D Detector Easy Moderate Hard FPS

SECOND (small network) 85.5 75.04 68.78 40

SECOND (large network) 87.43 76.48 69.1 25

TANet 88.21 77.85 75.62 29

Voxel-FPN 88.27 77.86 75.84 50

SA-SSD 88.75 79.79 74.16 25

SE-SSD N/A 85.71 N/A 32

CenterNet3D-SL1 87.92 76.84 75.74 25

Pointpillars 86.13 77.03 72.43 62

SCNet 87.83 77.77 75.97 25

AFDet 85.68 75.57 69.31 N/A

PCDet HDSA (Proposed, small network) 88.36 78.49 76.05 40

PCDet HDSA (Proposed, large network) 88.98 78.77 77.27 25

PCDet HRGCA (Proposed, small network) 88.16 78.92 75.68 38

PCDet HRGCA (Proposed, large network) 87.98 79.05 75.82 23

Table 5.3: Comparison of AP(%) and FPS of the proposed PCDet HDSA and
PCDet HRGCA (using a small SECOND network and using a large SECOND network
as the backbone respectively) with AP(%) and FPS of ten peer one-stage voxel-based 3D
object detectors on cars.

Detection Accuracy Comparison: Table 5.3 shows that SE-SSD, SA-SSD, PCDet HDSA

with a large SECOND network, and PCDet HDSA with a small SECOND network rank

the top four 3D car detectors at the moderate level with detection rates of 85.71%, 79.79%,

78.77%, and 78.49%, respectively. PCDet HDSA with a large SECOND network has the

highest 3D car detection rate of 88.98% and 77.27% for easy and hard levels, respectively. It

improves the second best car detectors SA-SSD at the easy level by 0.26% and PCDet HDSA

with a small SECOND network at the hard level by 1.55%. However, SE-SSD has a more

complex training process than PCDet HDSA. Its training process iteratively updates the

teacher and student SSDs, while PCDet HDSA’s training process is straightforward. SA-
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SSD has a more complex network structure than PCDet HDSA since it maintains an auxil-

iary network and involves a partial-sensitive deformation operation. Overall, the proposed

PCDet HDSA with a large SECOND network achieves the best detection accuracy for cars

at easy and hard levels and the third best detection accuracy for cars at the moderate level

when compared with ten state-of-the-art networks.

Detection Speed Comparison: Table 5.3 shows that Pointpillars, Voxel-FPN, and

PCDet HDSA with a small SECOND network are the three fastest detectors with an infer-

ence speed of 62, 50, and 40 FPS, respectively. Pointpillars treat voxels in the same (x, y)

coordinates as a whole to accelerate speed. Voxel-FPN uses the multi-scale voxel features

fusion module to accelerate speed. However, both lead to information loss, which degrades

their detection accuracy. PCDet HDSA with a small SECOND network improves the detec-

tion accuracy of Pointpillars by 2.59%, 1.90%, and 5.00% and Voxel-FPN by 0.10%, 0.81%,

and 0.28% for cars at easy, moderate, and hard levels, respectively. Overall, PCDet HDSA

with a small SECOND network is an excellent trade-off between performance and efficiency.

Ablation Studies: In Table 5.3, PCDet HDSA improves the detection accuracy of its

corresponding baseline SECOND. Specifically, PCDet HDSA with a large SECOND net-

work improves the large SECOND by 1.77%, 2.99%, and 11.82% and PCDet HDSA with

a small SECOND network improves the small SECOND by 3.35%, 4.60%, and 10.57% to

detect cars at easy, moderate, and hard levels, respectively. The improvement is mainly

achieved by the HDSA model. First, HDSA considers input as low-level features and pro-

cesses them with convolutional layers to learn high-level features for abstract semantics.

Second, it combines input with high-level convolved features to capture both abstract se-

mantics and detailed information to represent an object. PCDet HDSA and SECOND have

a similar network structure and the same settings including a learning rate of 0.003, the

Adam one-cycle optimizer, and the loss function of SmoothL1. However, PCDet HDSA’s

network parameters (e.g., 4.5 and 9.6 million respectively for the small and large SECOND

network) are 18.4% and 24.0% less than their baseline SECOND (e.g., 5.33 and 11.9 million

respectively for the small and large network) due to the removal of 50% of the parameters of
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the last 3D convolutional layer. As a result, PCDet HDSA is a little faster than SECOND.

Network Easy Moderate Hard

VoxelNet 67.17 47.65 45.11

TANet 85.98 64.95 60.40

Voxel-FPN 68.77 61.86 56.40

PCDet HDSA (Proposed, small network) 79.58 67.28 63.35

PCDet HDSA (Proposed, large network) 83.59 68.46 63.66

Table 5.4: Comparison of AP (%) of the proposed PCDet HDSA (using a small SECOND
network and using a large SECOND network as the backbone) with AP(%) of three peer
one-stage voxel-based 3D object detectors on cyclists.

Table 5.4 lists the AP of PCDet HDSA with a small SECOND network, PCDet HDSA

with a large SECOND network, and three peer 3D object detectors (e.g., VoxelNet [13],

TANet [40], and Voxel-FPN [19]) on the KITTI cyclist validation dataset. Since seven peer

detectors listed in Table 5.3 do not provide the cyclist AP on the KITTI validation dataset,

we only compare the cyclist detection results of three peer systems in Table 5.4. This table

shows that PCDet HDSA with a large SECOND network achieves the best performance on

cyclists at moderate and hard levels and the second best performance at the easy level.

In summary, our extensive experimental results as shown in Table 5.1, and Table 5.2

demonstrate the following:

1. applying attention to a network tends to lead a better detection accuracy than a

network without attention;

2. concatenating the original input with the attention-based weighted features tends to

lead a better detection accuracy than directly using the attention-based weighted

features;

3. RGCA tends to achieve better detection results than DSA.

4. hierarchically applying attention mechanisms at the early and late stages of a network

leads to a better detection accuracy than applying attention at early or late stages of

a network;
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Fig. 5.1: Three sample car detection results of baseline and six proposed networks (from
top to bottom): SECOND, PCDet DSA variant 1, PCDet DSA variant 2, PCDet DSA,
PCDet RGCA, PCDet HDSA and PCDet HRGCA.
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Fig. 5.2: Three sample cyclist detection results of baseline and six proposed networks (from
top to bottom): SECOND, PCDet DSA variant 1, PCDet DSA variant 2, PCDet DSA,
PCDet RGCA, PCDet HDSA, and PCDet HRGCA.
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Qualitative Results: Figure 5.1 and Figure 5.2 demonstrate three sample 3D car

detection results and three sample 3D cyclist detection results of the baseline (SECOND),

PCDet DSA Variant 1, PCDet DSA Variant 2, PCDet DSA, PCDet RGCA, PCDet HDSA,

and PCDet HRGCA, respectively, where ground truths are shown in green bounding boxes

and predicted results are shown in red bounding boxes. In Figure 5.1, the first column

presents a scenario in which SECOND detects eight cars with two of them being a false

positive. PCDet DSA, its two variants, PCDet RGCA, PCDet HDSA, and PCDet HRGCA

accurately detect six true cars without any false positives. The second column presents a

scenario in which SECOND, PCDet DSA, its two variants, and PCDet RGCA detect two

true cars and one false positive car and fail to detect one true car. PCDet HDSA and

PCDet HRGCA obtain the same predicted results as SECOND except that they do not have

false positives. The last column presents a scenario in which SECOND and PCDet DSA’s

Variant 2 detect three true cars and one false positive car and fail to detect one true car.

PCDet DSA and its first variant obtain the same detection results as SECOND except

that they do not have false positives. PCDet RGCA, PCDet HDSA, and PCDet HRGCA

correctly detect four true cars only. In general, PCDet HRGCA has the best performance

among all the compared methods, which matches our previous quantitative results.

In Figure 5.2, the first column shows that SECOND detects four cyclists, while three of

them are false positives. PCDet DSA, its two variants, PCDet RGCA, PCDet HDSA, and

PCDet HRGCA detect one cyclist target object precisely. The second column shows that

SECOND detects six cyclists, while one of them is a false positive. PCDet DSA, its two

variants, PCDet RGCA, PCDet HDSA, and PCDet HRGCA precisely detect five cyclist

target objects. The last column shows that SECOND detects one true cyclist and one false

positive cyclist and fails to detect one true cyclist. PCDet DSA variant 2 obtains the same

detection results as SECOND except that it does not have a false positive. PCDet DSA

Variant 1, PCDet DSA, PCDet RGCA, PCDet HDSA, and PCDet HRGCA correctly de-

tect two true cyclists only. In general, Figure 5.2 shows the proposed single attention-based

networks and the proposed hierarchical attention-based networks achieve great 3D cyclist
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variant attention driv. ped walkway stop carpark divider mIoU

A 80.5 54.0 58.2 47.7 52.3 51.3 57.3
B N-L 80.4 53.0 57.8 46.5 52.5 50.6 56.8
C SE 81.0 54.0 58.7 48.2 50.0 51.8 57.3
D GCNet 80.9 54.5 58.5 48.3 50.7 51.9 57.5
E TA 81.4 54.8 59.4 49.1 50.7 52.5 58.0
F DSA 81.5 56.2 60.1 51.1 51.5 54.0 59.0
G RGCA 81.7 57.1 60.5 51.7 53.8 53.5 59.7

Table 5.5: Comparison of map segmentation results of different single attention-based net-
works.

detection performance, while the baseline SECOND achieves moderate 3D cyclist detection

accuracy.

In general, the qualitative results show that the proposed PCDet DSA, its two vari-

ants, and the proposed PCDet RGCA outperform their baseline SECOND in detecting 3D

cars and cyclists. Furthermore, the hierarchical attention-based networks PCDet HDSA

and PCDet HRGCA outperform single attention-based networks including PCDet DSA and

PCDet RGCA in detecting 3D cars and cyclists.

5.3.2 Map Segmentation Results

In this subsection, we evaluate the proposed map segmentation network BEVSeg on

the NuScenes dataset [1].

Single Attention Comparison: Table 5.5 compares the performance of the baseline,

the two proposed attention modules DSA and RGCA, and four commonly used attention

modules in terms of IoU in each category and mIoU. Variant A is the baseline network, i.e.,

BEVDet [20] network incorporated with the proposed SH and ABA modules. Variants B, C,

D, and E are the baseline network adding the commonly used attentions including N-L [31],

SE [27], GCNet [51], and TA [52], respectively. Variants F and G are the baseline network

that is added with the proposed attention mechanisms DSA and RGCA, respectively. In

order to have a fair comparison, all the attention modules are added at the early stage.

Table 5.5 shows that variant B decreases the baseline network by 0.5% in mIoU. Variant C

and the baseline network have the same segmentation accuracy in terms of mIoU. Although
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variant augment attention driv. ped walkway stop carpark divider mean
A 67.0 32.8 36.9 29.1 31.9 31.2 38.2
B ✓ 80.5 54.0 58.2 47.7 52.3 51.3 57.3
C ✓ DSA 81.5 56.2 60.1 51.1 51.5 54.0 59.0
D ✓ RGCA (4 × 4 nodes) 81.4 56.1 59.6 50.8 53.7 53.0 59.1
E ✓ RGCA 81.7 57.1 60.5 51.7 53.8 53.5 59.7
F ✓ HDSA 81.9 57.2 60.7 52.9 54.5 54.1 60.2
G ✓ RGCA + DSA 82.0 58.1 61.0 53.4 53.1 54.1 60.3
H ✓ DSA + RGCA 82.8 57.6 61.2 52.9 54.5 54.0 60.5
I ✓ HRGCA 83.4 58.7 62.6 54.5 51.4 55.2 61.0

Table 5.6: Comparison of map segmentation results of different hierarchical attention-based
networks.

N-L and SE modules have great performance in the single-view image domain, they do not

seem to be suited to extract information in the BEV domain. Variants D and E respectively

improve the baseline network by 0.2% and 0.7% in mIoU. However, our proposed DSA and

RGCA modules (variant F and variant G) significantly outperform the baseline network

with higher mIoUs of 1.7% and 2.4%, respectively. In general, our proposed attention

modules perform better than current commonly used attention modules.

Hierarchical Attention Comparison: Table 5.6 compares the performance of the

baseline, the baseline with the ABA module, the two proposed attention modules DSA

and RGCA with the ABA module, and four hierarchical attention modules (e.g., HDSA,

DSA+RGCA, RGCA+DSA, and HRGCA) with the ABA module in terms of IoU in each

category and mIoU. Variant A is the baseline network, i.e., BEVDet [20] network incorpo-

rated with the proposed SH module. Variant B is the baseline network adding the proposed

SH and ABA modules. Variants C, D, and E are variant B adding the proposed attentions

DSA, RGCA with 16 graph nodes, and RGCA with 64 graph nodes (default). The feature

size in RGCA needs to be divisible by the node number in RGCA. Since the feature size is

128 × 128, the node number could be 1 × 1, 2 × 2, 4 × 4, and 8 × 8. We choose 4 × 4

and 8 × 8 nodes to obtain more relational information in more detail. Variants F, G, H,

and I are variant B adding the hierarchical attention module built by four combinations of

DSA and RGCA including HDSA, RGCA+DSA, DSA+RGCA, and HRGCA, respectively.

We observe the following from Table 5.6:

1. ABA is the most contributing module since augmented geometry information improves
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the variety of ground truth segmentation maps and avoids the overfitting issue, which

leads to the significant performance boost of a higher mIoU of 19.1% from variant A

to variant B.

2. DSA helps to find the inherent structure of augmented geometry information to high-

light relevant regions to gather more usable information, which leads to a segmentation

accuracy improvement of a higher mIoU of 1.7% and 1.2% from variant B to variant

C and from variant C to variant F, respectively.

3. The graph attention structure RGCA works better than DSA by helping to gather

useful information at both textural and semantic levels, which leads to a higher mIoU

of 0.7% from variant C to variant E.

4. Increasing the graph node numbers provides more relational information, which leads

to a better segmentation accuracy of a higher mIoU of 0.6% from variant D to variant

E.

5. The hierarchical homogenous attention (i.e., the same attention applied at the early

and the late stages) helps to get more high-level semantic information, which leads

to an improved segmentation accuracy of 1.2% from variant C to variant F and an

improved segmentation accuracy of 0.8% from variant E to variant I.

6. The hierarchical heterogeneous attention (i.e., one attention applied at the early stage

and another attention applied at the late stage) helps to get more high-level semantic

information, which leads to an improved segmentation accuracy of 0.6% and 1.5%

from variant E to variant G and from variant C to variant H, respectively.

In summary, the proposed hierarchical attention-based networks achieve better segmen-

tation accuracy than the proposed single attention-based networks. Specifically, among the

four hierarchical attention-based networks, BEVSeg HRGCA network (variant I) achieves

the best segmentation accuracy of mIoU of 61.0% and BEVSeg HDSA network (variant F)

achieves the worst segmentation accuracy of mIoU of 60.2%. Among the single attention-

based networks, BEVSeg RGCA improves BEVSeg DSA by a higher mIoU of 0.7% due to
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Networks Driv. Ped Walkway Stop Carpark Divider mIoU
OFT [59] 74.0 35.3 45.9 27.5 35.9 33.9 42.1
LSS [22] 75.4 38.8 46.3 30.3 39.1 36.5 44.4
CVT [43] 74.3 36.8 39.9 25.8 35.0 29.4 40.2

M2BEV [42] 77.2 - - - - 40.5 -
BEVFormer [3] 80.7 - - - - 21.3 -
BEVFusion [4] 81.7 54.8 58.4 47.4 50.7 46.4 56.6

BEVSeg HDSA (Ours) 81.9 57.2 60.7 52.9 54.5 54.1 60.2
BEVSeg DSA+RGCA (Ours) 82.8 57.6 61.2 52.9 54.5 54.0 60.5
BEVSeg RGCA+DSA (Ours) 82.0 58.1 61.0 53.4 53.1 54.1 60.3

BEVSeg HRGCA (ours) 83.4 58.7 62.6 54.5 51.4 55.2 61.0

Table 5.7: Comparison of segmentation results of ten state-of-the-art methods for six classes
on the nuScenes in terms of IoU.

its superior ability to extract useful semantic information and capture global relationships

between different regions at different scales.

We compare the proposed BEVSeg HDSA, BEVSeg DSA+RGCA, BEVSeg RGCA+DSA,

and BEVSeg HRGCA methods with six state-of-the-art BEV segmentation methods includ-

ing Orthographic Feature Transform (OFT) [59], LSS [22], CVT [43], Multi-Camera Joint

3D Detection and Segmentation with Unified Bird’s-Eye View Representation (M2BEV) [42],

BEVFormer [3], and BEVFusion [4]. To the best of our knowledge, BEVFusion [4] achieves

the best BEV segmentation performance in terms of mIoU. Table 5.7 lists the IoU scores of

all ten compared methods for each of the six semantic categories and mIoU for all six cat-

egories. However, M2BEV and BEVFormer only report their segmentation results on driv-

able roads and dividers. To achieve a fair comparison, we report segmentation results of the

multi-task network (e.g. M2BEV) and report segmentation results of the temporal-model-

based network (e.g., BEVFormer) at a single timestamp. We also report segmentation

results of the multi-sensor-model-based network (e.g., BEVFusion) using images captured

by cameras and report segmentation results of some early methods like OFT, LSS, and CVT

on the nuScene dataset by copying IoU values from the published results in [4]. Table 5.7

clearly shows that BEVSeg HRGCA and BEVSeg HDSA improve the mIoU of BEVFu-

sion by 4.4% and 3.6% for six semantic classes, respectively. Specifically, BEVSeg HRGCA

achieves a higher IoU of at least 1.7%, 3.9%, 4.2%, 7.1%, 0.7%, and 8.8% than BEVFu-

sion for semantic classes of drivable area, ped-crossing, walkway, stop-line, carpark-area,
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and divider, respectively. BEVSeg HDSA achieves a higher IoU of 0.2%, 2.4%, 2.3%, 5.5%,

3.8%, and 7.7% than BEVFusion on drivable area, ped crossing, walkway, stop line, carpark

area, and divider, respectively. We conclude that BEVSeg HRGCA outperforms the peer

methods on all six semantic classes containing large or small regions and achieves a higher

mIoU of 0.8% than BEVSeg HDSA for all six semantic classes. BEVSeg HDSA also per-

forms better than the leading method, BEVFusion, especially when the category contains

small and delicate regions. In summary, both BEVSeg HRGCA and BEVSeg HDSA de-

liver cutting-edge accuracy across most semantic classes, while BEVSeg HRGCA achieves

the best performance.

Qualitative Results: Figure 5.3 presents four sample scenes in the daytime along

with their ground truth and predicted segmentation results for six categories. Each scene

has six multi-view input images, where the first two rows present input images from front

and back views in the directions of left, center, and right. The third row presents the ground

truth for six categories including drivable area, ped crossing, walkway, stop line, parking

area, and divider, as shown from the left to the right. The fourth row to the eighth row

respectively present the predicted segmentation results of the baseline (BEVDet with SH

only), BEVSeg DSA, BEVSeg RGCA, BEVSeg HDSA, and BEVSeg HRGCA for the six

categories in the same order. Figure 5.3 (A) and (B) demonstrate all the compared methods

perform well when the vehicle drives along the road in the daytime. Figure 5.3 (C) and

(D) show that the baseline (no ABA module) performs much worse than other compared

methods with the ABA module when the vehicle makes a turn in the daytime.

Figure 5.4 presents four sample scenes at night along with their ground truth and

predicted segmentation results for six categories. Its layout is the same as the layout of

Figure 5.3. Figure 5.4 (A), (B), (C), and (D) show that no methods perform well at night

and the baseline (no ABA module) performs the worst. In general, the night scenes are

difficult to segment due to their dark background.

To demonstrate the effectiveness of the ABA module, we present the ground truths of

two scenes and the augmented ground truth in Figure 5.5 and demonstrate segmentation
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results of baseline (BEVDet with SH only) and baseline adding the ABA module for one

scene from the side-forward view in Figure 5.6. In Figure 5.5, we show the front-view input

image in the first row, the side-view input image in the second row, and the augmented

ground truth results in the third row. We observe that augmented ground truth results are

significantly different from the two ground truths. This indicates that our ABA module

is able to generate a wider range of ”ground truth” images in the same domain and help

the network learn the side-forward images more effectively. In Figure 5.6, we show the

ground truth of six semantic classes on the 1st row and their corresponding segmentation

results of the baseline and the ABA-enabled baseline on the next two rows. We observe

that the ABA-enabled baseline produces segmentation results that have a higher similarity

to the ground truth than the baseline without the ABA module, which seems to produce

distorted segmentation results. Both the augmented ground truth results in Figure 5.5 and

the segmentation results in Figure 5.6 produced by the ABA-enabled network show ABA

plays an important role in improving the network’s performance on side-forward scenes.

Figure 5.7 presents the qualitative segmentation results of a traditional deep CNN-

based segmentation network without the proposed HRGCA module (i.e., BEVDet with

ABA and SH modules) and the proposed BEVSeg HRGCA network on one sample scene.

We observe that the traditional deep CNN-based segmentation network cannot accurately

segment the border of a delicate region as circled in red and the BEVSeg HRGCA net-

work produces more accurate segmentation results due to its accurate estimation of global

contextual relationships.
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Fig. 5.3: Illustration of four sample scenes in the daytime along with their ground truth
and predicted segmentation results for six categories. For each scene, the first two rows
present multi-view input images, the third row presents the ground truth for six categories,
and the fourth to the eighth row respectively presents the predicted segmentation results of
the baseline (variant A in Table 5.6), BEVSeg DSA, BEVSeg RGCA, BEVSeg HDSA, and
BEVSeg HRGCA for six categories.
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Fig. 5.4: Illustration of four sample scenes at night along with their ground truth and
predicted segmentation results for six categories. For each scene, the first two rows present
multi-view input images, the third row presents the ground truth for six categories, and
the fourth to the eighth row respectively presents the predicted segmentation results of
the baseline (variant A in Table 5.6), BEVSeg DSA, BEVSeg RGCA, BEVSeg HDSA, and
BEVSeg HRGCA for six categories.
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Fig. 5.5: Illustration of two BEV map ground truth (the first two rows) and one augmented
BEV map ground truth generated by the ABA module (the last row)

Fig. 5.6: Illustration of the ground truth of one scene and the segmentation results of
baseline (BEVDet with SH) and variant B (baseline with ABA) shown from the top to the
bottom.
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Fig. 5.7: Illustration of one sample scene of six views (first two rows), segmentation result
of BEVDet with ABA and SH modules (third row), segmentation results of the proposed
BEVSeg HRGCA network (fourth row), and the ground-truth (fifth row). The inaccurate
segmentation results are circled in red.
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CHAPTER 6

CONCLUSIONS

In this dissertation, we introduce two perception networks. One of these networks is

for 3D object detection utilizing LiDAR sensors, and the other one is for map segmentation

utilizing camera sensors. We compare their performance with state-of-the-art methods.

Specifically, we summarize the strategy and performance of each proposed method as follows:

• We propose a PCDet network for 3D object detection utilizing LiDAR sensors with

two hierarchical attention modules, i.e., HDSA and HRGCA. PCDet HDSA incorpo-

rates multi-resolution features, focuses on the important locations, and filters out the

irrelevant parts to improve detection accuracy. HDSA improves the baseline network

and achieves similar accuracy and inference speed compared with one-stage state-of-

the-art systems on the KITTI dataset. PCDet HRGCA incorporates multi-resolution

features and captures global semantic relational features to improve detection accu-

racy. PCDet HRGCA improves the baseline network and achieves better performance

than PCDet HSA on the KITTI dataset.

• We propose a novel BEVSeg network for map segmentation utilizing camera sensors

with two hierarchical attention modules, i.e., HDSA and HRGCA. BEVSeg incorpo-

rates ABA to augment the BEV feature map and the segmentation ground truths

correspondingly, which solves the overfitting issue. BEVSeg HDSA enlarges the re-

ceptive field in spatial attention to get high-semantic information in different scales.

BEVSeg HRGCA combines graph and coordinate information in the deep CNNs to

effectively estimate global contextual relationships. Specifically, the RGCA module

consists of the spatial graph to extract spatial information between nodes and the

channel graph to extract channel information within each node. BEVSeg HDSA and
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BEVSeg HRGCA networks outperform six state-of-the-art methods on the nuScenes

dataset.

The contributions of the PCDet network include:

• Proposing a 3D object framework PCDet that can easily incorporate different atten-

tion modules at different stages of the DNN to capture features at multiple scales and

improve the detection accuracy of the SECOND network.

• Utilizing the features generated from the HDSA module to build PCDet HDSA to

learn and find the most important locations to focus on and filter out the irrelevant

parts of the input point cloud.

• Incorporating the HRGCA module that contains both graph and coordinate informa-

tion in the deep CNNs to build PCDet HRGCA to not only effectively acquire the

global information but also efficiently estimate contextual relationships of the global

information in the 3D point cloud domain.

• Incorporating DSA and RGCA at either the early stage or the late stage to build

PCDet DSA+RGCA and PCDet RGCA+DSA to respectively capture multi-scale

high-semantic and fine-grained features and estimate global semantic relational char-

acteristics to improve the detection accuracy.

• Improving the baseline network and achieving similar accuracy and inference speed

compared with one-stage state-of-the-art systems on the KITTI validation dataset.

The contributions of the BEVSeg network include:

• Proposing a new network architecture BEVSeg to perform semantic segmentation of

a scene with multi-view images and achieve state-of-the-art results.

• Incorporating ABA in the geometry module to augment the coherent BEV map, align

the augmented object and segmentation ground truths, and align the augmented BEV

map and its augmented ground truths to address overfitting and misalignment issues.



58

• Extending the SH to individually process each semantic category to address the pos-

sible overlapping among semantic categories.

• Incorporating low-complexity HDSA in the data-driven module to build BEVSeg HDSA

to learn multi-scale BEV features flexibly by enlarging the feature receptive field and

learning interest regions.

• Incorporating the HRGCAmodule in the data-driven module to build BEVSeg HRGCA

to gather the global semantic relationship from different scales.

• Incorporating DSA and RGCA in the data-driven module at either the early stage or

the late stage to build BEVSeg DSA+RGCA and BEVSeg RGCA+DSA to respec-

tively capture multi-scale high-semantic and fine-grained features and estimate global

semantic relational characteristics to improve the segmentation accuracy.

• Improving the baseline network in terms of segmentation accuracy for six major se-

mantic categories.

In the future, we will test the two proposed approaches on bigger autonomous driving

datasets and investigate other structures to enhance their generalizability. Additionally, in

order to test the proposed HDSA and HRGCA modules’ effectiveness and discover fresh

ideas for improvement, we will compare them to more commonly used spatial, channel, and

graph attention modules.
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