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ABSTRACT

GPS-Denied Navigation Using Synthetic Aperture Radar

by

Tucker Hathaway, Master of Science

Utah State University, 2023

Major Professor: Todd Moon, Ph.D.
Department: Electrical and Computer Engineering

GPS-denied (GPS-D) navigation is the process of determining the precise location of

an object without the use of GPS. Due to the ease with which GPS signals can be blocked,

spoofed, or jammed, GPS-D navigation is a very active area of research. Many methods of

performing GPS-D navigation have been proposed and explored, but this thesis presents a

novel approach using synthetic aperture radar (SAR). Whereas other SAR-based, GPS-D

methods assume point sources in the scene or the use of onboard data, the method presented

in this paper assumes only that the statistical structure of a well-formed SAR image differs

from that of a poorly formed image.

To measure the difference in the statistical structure of a SAR image, an image quality

measure is first determined. Image quality measure testing is performed using kurtosis

and entropy, and kurtosis is shown to be more promising than entropy. Next, a GPS-D

navigation algorithm is developed that uses the image quality measure. This algorithm is

tested on one simulated dataset and two real datasets, and the results are analyzed. The

algorithm is determined to have variable performance depending on the dataset used and

the parameters of the algorithm.

(62 pages)
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PUBLIC ABSTRACT

GPS-Denied Navigation Using Synthetic Aperture Radar

Tucker Hathaway

In most modern navigation systems, GPS is used to determine the precise location

of the vehicle; however, GPS signals can easily be blocked, jammed, or spoofed. These

signals can be blocked by canyons or tall buildings. Additionally, adversaries can transmit

signals that either make GPS signals difficult to interpret or that imitate real GPS signals

and cause a navigation system to think it is somewhere other than its true location. GPS-

denied (GPS-D) navigation is the process of navigating in the absence of GPS.

Many methods of performing GPS-D navigation have been proposed and explored.

One such method is to use synthetic aperture radar (SAR) to provide information lost in

the absence of GPS. SAR is a technique that uses radar to form images. To create high-

quality SAR images, precise location information must be used. This thesis explores using

the quality of SAR images to improve position accuracy. First, a method of measuring the

quality of a SAR image is determined and tested. Next, a GPS-D algorithm is developed

that uses this measure of SAR image quality. The algorithm is then tested on multiple sets

of SAR data. The results show that the algorithm performs variably depending on the data

set and the parameters of the algorithm.
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CHAPTER 1

INTRODUCTION

Many critical navigation systems largely rely on a global positioning system (GPS) to

determine the precise location of an object on Earth. However, GPS signals can easily be

blocked, jammed, or spoofed. The signals may be blocked by tall buildings (urban canyons),

natural canyons, or other tall objects that obstruct the view of the sky. Additionally, GPS

signals can easily be jammed or spoofed. Jamming prevents a navigation system from

using GPS signals by transmitting signals of much higher strength in the same frequency

spectrum. Spoofing allows an adversary to trick a navigation system into thinking it is in a

location other than its true location by transmitting signals that imitate those transmitted

by GPS satellites. For this reason, GPS-denied (GPS-D) navigation is a highly active area

of research.

GPS-D navigation is the process of navigating without the use of GPS. To successfully

navigate in the absence of GPS, the information conveyed by GPS must be replaced using

alternative sensors. An inertial measurement unit (IMU) is commonly used to provide

approximations of velocity; however, IMUs provide noisy measurements that may include

biases. This results in an accumulation of positional errors over time, which necessitates

additional sensors to correct these errors. Various sensors are being explored to augment

a GPS-D navigation system, such as radar, lidar, optical cameras, and range finders. This

paper explores the use of synthetic aperture radar (SAR) as an augmentation sensor.

SAR is a method of forming images using radar pulses. SAR has multiple advantages.

It is self-illuminating, meaning it can form images of equal quality regardless of the lighting

conditions. Also, SAR operates at frequencies that can penetrate obstructions such as

clouds, rain, and smoke.

Previous research on SAR-based GPS-D navigation has been performed by either iden-

tifying and tracking point sources in the scene being imaged or by comparing the SAR
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data to onboard reference data, such as a digital elevation model (DEM) [1–16]. This the-

sis presents a novel method of SAR-based GPS-D navigation that does not assume point

sources in the scene or use onboard reference data. Instead, the only assumption made is

that a well-formed SAR image has a different statistical structure than a poorly formed

SAR image.

SAR works by periodically sending pulses from a moving radar platform. The pulses

reflect off the scene, and the reflections are recorded for later processing. SAR image forma-

tion algorithms then use the received pulses and the relative motion of the platform between

pulses to construct an image. One SAR image formation algorithm is the backprojection

algorithm (BPA). BPA is a time-domain algorithm that is dependent on the position of the

radar platform at the time each pulse is transmitted and received.

This paper exploits the dependence of BPA on radar platform position to infer the best

position out of a number of candidate positions. The candidate positions are scored based

on the quality of the images formed over each candidate position. There are two objectives

of this research. The first objective is to determine a robust measure of SAR image quality.

The desired behavior of a good measure is one where a better score corresponds to the image

being formed with more accurate position data. The second objective is to develop and test

a GPS-D algorithm that uses the image quality measure to correct errors in position data.

This paper is organized as follows. Chapter 2 is a literature review, which highlights

how this research differs from previous research in the area. Chapter 3 provides background

on SAR and the BP algorithm, discusses the image quality measures considered, develops

the GPS-D SAR algorithm, and explains how testing was performed. Chapter 4 shows

the results of testing and a discussion of their implications. Finally, chapter 5 presents

conclusions.



CHAPTER 2

LITERATURE REVIEW

GPS-D navigation is a highly active area of research due to the ease with which GPS

can be blocked, spoofed, or jammed. Much work has been performed using SAR to replace

the information lost in a GPS-D environment.

Nitti et al. considered an amplitude approach and a phase approach [1]. The amplitude

approach compared SAR images with a terrain landmark database. Automatic target de-

tection and recognition was used to find landmarks in the SAR image, then the landmarks

were correlated with landmarks in the database. The phase approach used interferometric

SAR (InSAR) and comparison with a DEM to infer position information.

Greco et al. presented a similar approach as a part of the SARINA project in [2, 3].

They proposed comparing SAR images to a digital landmark database and using InSAR

and land topography when there are no prominent landmarks in the terrain. In [4], they

tested the SARINA system on simulated data and showed the system is able to outperform

a traditional inertial navigation system (INS) in a GPS-D environment.

In [5, 6], Kauffman et al. developed an algorithm for efficiently detecting and tracking

sparse targets using raw SAR data, and they tested the algorithm in simulated scenes.

In [7], they studied the feasibility of using this algorithm for navigation, and in [8], they

examined the performance when using an extended Kalman filter (EKF) to estimate 2D

location. In [9], IMU measurements were added as inputs to the EKF, and the system

was increased from 2D to 6D. The simulations performed well, showing that the SAR-aided

navigation system performs much better than a standard INS. This research relies on strong

point scatterers located uniformly throughout the scene. Next, [10] replaced the original

target tracking algorithm with an improved algorithm. The new algorithm has multiple

improvements including using an M/N detector that removes the need for tuning the noise

level to the specific scene. More testing was done in [11], which showed 1.2 meters of
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simulated drift over a 600 second flight using a tactical grade IMU.

Christensen et al. analyzed the effects of position and attitude errors on SAR images

using BPA [17]. They demonstrated that BPA-SAR images are sensitive to all types of

navigation errors tested. They attempted to characterize the type of error in the image

and then infer navigational errors based on the specific type of image error. Ambiguity

was found in the association between image error and navigational errors, but this work

suggests that formed BPA-SAR images could be used to determine errors in position data.

Lindstrom also explored radar-aided GPS-D navigation assuming prominent point tar-

gets [12]. They first developed and validated an INS and EKF that incorporates radar

telemetry as an input, showing that radar-aided GPS-D navigation is feasible. Next, they

surveyed the effect of different types of navigation errors on formed BPA-SAR images with

the hope of being able to use BPA-SAR image errors to infer navigation errors. They deter-

mined that the effects on the formed image are not unique to one type of navigation error.

Finally, they developed an algorithm that uses known locations of targets in the scene to

extract position data and correct for navigation errors. This method resulted in converging

and bounded position estimates.

In [13, 15], Quist and Beard used radar to improve navigational errors. They used

the Hough transform, which is a data association technique used to identify multiple point

scatterers in the terrain. Their research does not rely on known reflectors. Instead, they used

environmental point scatterers, like cars or buildings. These papers include successful results

from real test flights. Due to the computational complexity of the Hough transform, [14,16]

replaced the Hough transform with the recursive-random sample consensus (R-RANSAC)

algorithm.

Sjanic and Gustafsson tested a method of simultaneous navigation and auto-focusing

in [18]. They used a modified BPA called Fast Factorised Back-projection to form SAR

images. They then used two varieties of entropy along with a grid search algorithm to find

the minimum entropy value. This value is hypothesized to correspond to the true position

of the aircraft. They tested their algorithm on simulated SAR data made of point targets
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and showed favorable results.

Most of the previous work presented here focuses on point targets in the scene and

comparison with onboard reference data. By contrast, the research presented here does not

require any point targets in the scene or the use of reference data. Instead, this research

assumes simply that a well-formed SAR image has different statistics than a poorly formed

SAR image. This means that the method presented in this thesis may apply to more classes

of scenery, such as water, ice, and sand dunes, which lack point targets. This research

is most closely related to the research done in [18]; however, this research incorporates

different measures of image quality and a different search method. This paper also provides

the results of tests on real data.



CHAPTER 3

RESEARCH AND DESIGN METHODS

This chapter gives background information on SAR and BPA in Section 3.1. Then,

Section 3.2 describes the first objective of this research, which is to determine a measure of

SAR image quality. Section 3.3 describes the second objective of this research. The second

objective is to create a GPS-D SAR algorithm that uses the image quality measure to aid

in navigation in a GPS-D environment. Finally, Section 3.4 outlines how each objective was

tested.

The main difference between this research and other research in the area is that this

method of GPS-D navigation using SAR does not assume any point sources in the landscape

or the use of a DEM. Instead, this research assumes a well-formed SAR image will be either

less Gaussian or less uniform than a poorly formed SAR image.

3.1 Background

Fundamental to this research are the concepts of SAR and BPA. This section gives

background on each of these concepts. For more information on SAR and BPA, see [19].

3.1.1 SAR

SAR is a method of forming images using radar and relative motion of the radar

platform. SAR has the advantage of being able to form images through clouds or similar

impediments and in the dark. Traditionally, a SAR platform involves mounting an antenna

on a vehicle, generally an aircraft or a satellite. The antenna is mounted so that the beam

pattern is pointing downward and to the side. Fig. 3.1 shows an example of the antenna

geometry.
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Fig. 3.1: Side-looking SAR antenna geometry (copied from Fig. 2.1 of [19])

In this figure, the antenna is pointing along the arrow titled “slant-range,” and its beam

pattern produces the illumination footprint. The antenna points to the side, rather than

straight down, producing a larger illumination footprint. The flight path is often called the

azimuth direction or the along-track direction. The “ground-range” direction is often called

the cross-track direction or the range direction.

The platform transmits pulses periodically as it moves along the flight path. The pulse

travels through the air at the speed of light, which for typical operating scenarios is fast

enough that the motion of the platform is negligible. This allows the assumption that the

position of the platform when the pulse is transmitted is the same as the position when the

pulse is received. As the platform flies along the flight path and transmits periodic pulses,

the illumination footprint moves. The pulse repetition frequency is fast relative to the

motion of the platform, such that the illumination footprint of one pulse partially overlaps

with that of many other pulses. Since each received pulse corresponds to a different location
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of the platform, each pulse contains different information about the ground. This differing

information allows for images to be formed from the collected data.

In this paper, all pulses are linear frequency-modulated (LFM) chirps. An LFM chirp

is a sinusoid that increases in frequency linearly over time. In this paper, all chirps are

complex exponentials, and Fig 3.2a shows an example of the real part of an LFM chirp.

The data can be acquired using different geometries. For example, in spotlight mode,

the radar antenna can be rotated on a gimbal to focus on a single location as the platform

passes. The data are processed to form an image of the area of focus. In stripmap mode, the

antenna points in a fixed direction relative to the SAR platform, and an image is formed of

the strip of terrain that it passes by. Since the purpose of SAR in the present application is

to augment the navigational capability of a moving platform, the image formation algorithm

uses stripmap mode. It is possible, however, to adapt these ideas to other modes, such as

spotlight.

3.1.2 BPA

After the SAR data has been collected, it has to be processed to form an image. SAR

processing can be performed in the frequency domain or the time domain, and multiple

algorithms exist for each method. For this paper, time domain processing is used in the

form of BPA. Time domain processing is generally more computationally expensive than

frequency domain; however, it allows contributions to the SAR image to be added on a pulse-

by-pulse basis, which is ideal for this research. Additionally, BPA is highly parallelizable,

which can reduce the disadvantage of its computational complexity.

When images are formed using BPA, the first step is to matched-filter the data. This

is done by correlating the received pulse with the transmitted pulse. This is referred to as

the range compression step. Since each pulse reflects off the entire illumination region, the

received pulse will have multiple copies of the transmitted pulse overlaid at different time

offsets (corresponding to different distances from the platform) with different amplitudes

(corresponding to the reflectivity of the illumination footprint). The result of range com-

pression is the magnitude of the reflected signal can be better compared between various
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objects on the ground.

As an example of the effect of matched-filtering, consider the case where the transmitted

pulse reflects off a single point source and nothing else. The received signal will contain

one instance where it looks a lot like the transmitted signal at a delay corresponding to

the distance from the radar platform to the point source, so the matched-filtered signal will

have a single peak. Fig. 3.2 shows this situation.
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Fig. 3.2: Result of matched-filtering received signal from a point source

Since the transmitted pulse is a complex exponential with constant magnitude, only

the real part of the transmitted and received signals are shown. The magnitude of the range

compressed signal is shown because it best demonstrates the desired characteristics. The

received signal in Fig 3.2b shows a copy of the transmitted chirp, which is the reflection
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of the pulse off of the point source. Fig 3.2c shows a peak where the received signal looks

like the transmitted chirp. From this peak, the time difference between when the pulse was

transmitted and received can be calculated and used to find the distance from the platform

to the point source.

The next step in BPA is azimuth compression. First, the union of the illumination

footprint of each pulse is mapped to the pixels of an image, represented by a matrix I

where each pixel is indexed as I(i, j). Each pixel of the image corresponds to a location of

the physical region, which will be referred to as (x(i), y(j)). Each coordinate (x(i), y(j)) is

called a scattering cell. (Technically, a scattering cell is the smallest region of physical space

that can be differentiated given the characteristics of the transmitted pulse and the radar

system, but when using pixels that are larger than the minimum possible size, the entire

region corresponding to a pixel can be called a scattering cell.) It is assumed that when

each pulse was transmitted, the location of the platform at that time was also recorded.

Let the location of the radar platform at pulse n be represented by (rx(n), ry(n), rz(n)),

where rx(n) is the along-track position, ry(n) is the cross-track direction, and rz(n) is the

altitude above the ground.

For each received and range compressed pulse, the entire image is traversed, and contri-

butions from that pulse are added to each pixel. To do this for the nth pulse, the Euclidean

distance between the radar platform at pulse n and each scattering cell is calculated as

d(n, i, j, k) = ∥(rx(n), ry(n), rz(n))− (x(i), y(j), z(k))∥.

It is often assumed that any scattering cells are located on the ground, and the ground is

approximately level, meaning that z(k) = 0 ∀k. This reduces the equation to

d(n, i, j) = ∥(rx(n), ry(n), rz(n))− (x(i), y(j), 0)∥.

If additional information is known about the altitude of each scattering cell, such as from

a DEM, it can be incorporated in z(k).
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Each calculated distance corresponds to a time delay between the transmission of a

radar pulse and the reception of the reflection of that radar pulse off a scattering cell. This

time delay is calculated as

τ(n, i, j) =
2

c
d(n, i, j)

=
2

c
∥(rx(n), ry(n), rz(n))− (x(i), y(j), 0)∥

(3.1)

where c is the speed of light. The factor of 2
c arises from the pulse traveling at the speed

of light from the radar platform to the location of the scattering cell and back to the radar

platform.

The time delay τ is used to index into the range compressed pulse. The value of the

range compressed pulse at the calculated time delay is multiplied by a complex exponential

and accumulated into the corresponding pixel of the image. The reason for the multiplica-

tion with a complex exponential is discussed in [19]. Putting this together, for each pulse,

the value added to I(i, j) is

ejπf0τ(n,i,j)g(n, τ(n, i, j))

where f0 is the initial frequency of the LFM pulse, and g(n, τ) is the value of the nth range

compressed pulse at time τ .

After every pulse that covers the physical region of interest has been accumulated into

the image, the image formation process is complete. Pseudocode that implements BPA is

given in Algorithm 3.1.

BPA is able to account for any platform motion since it does not assume a fixed

trajectory. Instead, BPA uses the position of the platform at the time of each pulse to

generate the image. Because of this, BPA is very sensitive to radar platform motion, and if

the precise position of the platform is not known, the formed image will be inferior in some

regard to images formed when the true platform position is known. This means errors in

the image can be exploited to infer errors in position.
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Algorithm 3.1 BPA

Create zero image I
For each pulse n

Perform matched-filtering to create range compressed pulse g(τ)
For each pixel index i

For each pixel index j
τ = 2

c∥(rx(n), ry(n), rz(n))− (x(i), y(j), 0)∥
I(i, j)+ = exp(jπf0τ) ∗ g(τ)

End for j
End for i

End for n

BPA can be implemented in real-time (up to computational speed) as each pulse ar-

rives because no information about future pulses is necessary to accumulate the current

pulse information into the image. This is ideal for a navigation algorithm because it can

provide the most current position estimates. While BPA is computationally expensive, it

contains a high degree of parallelism because each pixel value is independent of all others.

This parallelism can be exploited to accelerate computation time in real-time applications.

Additionally, the computational speed can be increased by performing the matched-filtering

using frequency domain convolution.

3.2 SAR Image Quality Measure

The first objective of this research was to determine a robust measure of SAR image

quality. The desired behavior of a good measure is one where a better image score cor-

responds to the image being formed with more accurate position data. The two methods

tested were kurtosis and entropy.

3.2.1 Kurtosis

Kurtosis is a scaled version of the fourth moment of a probability distribution. It

is a measure of how well the tails of a probability distribution match that of a Gaussian

distribution. One important property of kurtosis is that the kurtosis of a Gaussian random

variable is zero. For a non-Gaussian random variable, the kurtosis may be greater than or
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less than zero. Thus, the absolute value of the kurtosis of a random variable is essentially

a measure of how closely the probability distribution of the random variable resembles a

Gaussian distribution.

The kurtosis of a zero-mean real random variable y is given by Equation (3.2), and the

kurtosis of a zero-mean complex random variable is given by Equation (3.3) [20].

Kr(y) = E[y4]− 3E[y2]2 (3.2)

Kc(y) = E[|y|4]− 2E[|y|2]2 − |E[y2]|2 (3.3)

For a sequence of N trials of a random variable denoted by y1, y2, . . . , yN , the expected

value may be approximated by averaging the trials.

K̂r(y) =
1

N

N∑
i=1

y4i − 3

[
1

N

N∑
i=1

y2i

]2

(3.4)

K̂c(y) =
1

N

n∑
i=1

|yi|4 − 2

[
1

N

N∑
i=1

|yi|2
]2

−

∣∣∣∣∣ 1N
N∑
i=1

y2i

∣∣∣∣∣
2

(3.5)

Kurtosis was chosen as a measure of image quality because of the relationship between

kurtosis and a Gaussian distribution. It is conjectured that the worse the image quality,

the more closely it resembles Gaussian noise. Conversely, the better the image quality, the

higher the magnitude of the kurtosis. For scoring purposes, (3.5) was used where the sums

are over the pixels in the formed SAR image.

The pixels of a SAR image are not necessarily zero-mean; however, the mean of the

pixels is very small when compared to each individual pixel (approximately three orders

of magnitude smaller). Thus, the zero-mean equation provides an accurate estimate of the

true kurtosis value. Plots supporting this fact are given in Section 4.1.

3.2.2 Entropy

Entropy is the average amount of information conveyed by the outcome of a random
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trial, and it is related to the level of surprise of the outcome of a random trial. The equation

for entropy is given in (3.6), where X is a discrete random variable with N outcomes, p is

the probability measure of X, and xi ∈ X [21].

H(X) = −
N∑
i=1

p(xi) log2(p(xi)) [bits]. (3.6)

An important characteristic of the entropy of a discrete random variable is that entropy is

highest for a uniform probability distribution.

As an example of the relation between entropy and surprisal, consider tossing a fair

coin in which the probability of heads is equal to the probability of tails, 0.5. The entropy

is

H(X) = −
2∑

i=1

p(xi) log2(p(xi))

= −
2∑

i=1

1

2
log2

(
1

2

)
= 1 [bit]

This may be interpreted as saying that every toss of the coin requires one bit of information

to convey the outcome.

Next, consider a coin where the probability of heads is 0.9, and the probability of tails

is 0.1. In the case where the coin is tossed and it lands on heads, there is little “surprise”

— the outcome is what was expected. On the other hand, if the coin lands on tails, the

outcome is unexpected. The entropy is the average of the logarithmic measure of “surprise,”

computed by

H(X) = −
2∑

i=1

p(xi) log2(p(xi))

= −0.9 log2(0.9)− 0.1 log2(0.1)

= 0.469 [bits]
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In this example, the entropy of the fair coin is higher than the entropy of the unfair coin.

This is because on average, the amount of information conveyed by the unfair coin is very

low. It is reasonable to expect the coin to always land on heads, and most of the time,

this assumption will be correct. Also, this supports the claim that entropy is highest for

uniform probability distributions. (Shannon’s source coding theorem relates the entropy

to the number of bits that would be required to store or transmit the series of outcomes,

showing that asymptotically the entropy determines the amount of storage required.)

A plot of the entropy of a coin with respect to the probability that the outcome is

heads is given in Fig. 3.3.

0 0.2 0.4 0.6 0.8 1
P(X = Heads)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
(X

)

Fig. 3.3: Entropy of an unfair coin

This figure shows that the entropy of a coin toss is highest when the coin is fair and the

probability distribution is uniform. As the distribution becomes less uniform, the entropy

decreases.

Entropy was considered as a measure of image quality based on the following hy-

potheses: A well-formed SAR image will have distinctly different pixel amplitudes due to
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structural features in the image. A SAR image that is poorly formed (due to inaccurate

position measurements) will appear more noise-like than a well-formed image, having a dis-

tribution of pixel amplitudes that is more uniform. The extent to which these hypotheses

hold depends on the image. An image formed from a uniform scene (e.g., water or sand)

may have a fairly uniform distribution.

Due to the equation for entropy requiring the probability of each outcome of a random

variable, the probability density function of the image must be estimated. This was done

using a histogram. First, the minimum and maximum pixel values of the image were found,

and the interval was split into N bins of even width. Then, the number of pixels landing

in each bin were counted, and this was used to calculate the probability of landing in each

bin. Since in a SAR image, each pixel is a complex number, the magnitude of this number

and the sum of the real and imaginary parts were tested.

3.3 GPS-D SAR Algorithm

The second objective of this research was to create and test an algorithm that uses

the SAR image quality measure to aid in GPS-D navigation. The GPS-D SAR algorithm

uses BPA-SAR images in addition to more traditional sensors, such as an IMU. Because

BPA is heavily dependent on the position of the radar platform at the time of each pulse

transmission, BPA can be used to help determine the relative location of the platform. This

concept is illustrated in Fig. 3.4.
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Fig. 3.4: Conceptual idea of SAR-based navigation

As the platform moves, it transmits and receives radar pulses at regular intervals. A

nominal flight path is measured using an IMU or other instrumentation. The true flight

path is considered to lie in a “tube” of candidate trajectories. Along each candidate flight

path, a SAR image is formed by hypothesizing that the radar pulses were emitted along that

path. These images are scored using the methods described in Section 3.2. The path used

to form the best-scoring image is considered to be the true path. This process is repeated

every Si pulses, where Si is one degree of freedom in the algorithm. This process is outlined

in Algorithm 3.2.

Algorithm 3.2 GPS-D navigation using SAR

Wait for Si pulses
Get nominal position from instrumentation
Create candidate positions around nominal position
Form BPA-SAR images using each candidate position
Score each image and select best
Update nominal position with position associated with best scoring image
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As the platform moves, the current scene area is built up by radar pulses. Simultane-

ously, old scene areas shift off the region of interest, so updating is only done on the portion

of current interest. The old scene areas can either be discarded or used for other purposes,

such as comparing with maps.

The hypothesized positions can be selected around the sample point on the nominal

trajectory. Variations can be in the x, y, or z direction. Quantizing the set of possibilities

would result in a large number of images to form and score; however, since velocity errors

can integrate into large changes in position, it is assumed that the most significant position

errors to compensate for lie in the along-track direction. For this reason, the majority of

the testing done was in the along-track direction.

3.4 Testing

This section describes how each objective was tested to determine if it was met. First,

Section 3.4.1 discusses the three datasets used for testing. Next, Section 3.4.2 outlines

how each potential image quality measure was tested for the desired behaviors. Lastly,

Section 3.4.3 gives a description of how the GPS-D SAR algorithm was tested on each

dataset. This section also describes the design decisions made when testing the GPS-D

SAR algorithm.

3.4.1 Data Sets

To test the GPS-D SAR algorithm effectiveness, three different datasets were used.

• The first data set, referred to as USU data, is artificial data created based on Fig. 3.5.

This data was used as a proof-of-concept. It has the advantage that the features are

distinct, and the position of the radar platform at each pulse is known exactly. It

has the disadvantage that no natural scenery would have features this clear, but this

clarity helps in debugging and establishing baseline performance.
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Fig. 3.5: Image from which USU data was created

To generate the data, a coordinate system was first determined for how the image

would map onto the simulated scene. Next, a vector of positions was created for

the simulated SAR platform to fly through. Each position was looped through, and

the pixels that overlapped with the radar beam were selected. Then, each pixel was

checked to see whether or not the pixel was illuminated. An illuminated pixel is a

pixel that is black in Fig. 3.5. If the pixel was illuminated, the time delay between

sending and receiving the pulse was calculated using (3.1). The delay was used to

create the simulated received signal from that pixel. This received signal was then

added to a vector of received data. After every position was looped through, the

received data and the parameters of the simulated SAR platform were exported to a

binary file.

• The second set of data came from the Space Dynamics Lab (SDL). Fig. 3.6 shows a

formed image from this data. This is real data that was acquired from a flight near

Logan, UT. This data has the advantage that it is real, so data collection artifacts

have to be handled. It has distinct linear features due to its semi-urban setting, which

helps evaluate the algorithm but may not be representative of data encountered in a

real-world application. Associated with this data is position data acquired by GPS.

These positions are assumed to be relatively accurate.
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Fig. 3.6: Formed image from the SDL data

• The third set of data is real data acquired from Brigham Young University (BYU) [22]

and is displayed in Fig. 3.7. This data was collected from a flight over Arctic sea ice

using BYU’s microASAR platform. This data also has data acquisition artifacts. It

has no artificial linear features, so it may be more typical of data encountered in a

real-world application. Associated with this data is position data acquired by GPS.
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Fig. 3.7: Formed image from the BYU data

3.4.2 Image Quality Measure Testing

The first objective of this research was to determine an effective measure of SAR image

quality. A desirable measure is one where a better score corresponds to an image being

formed with more accurate position data. To test each measure in Section 3.2, BP-SAR

images were formed from the data sets described in Section 3.4.1 using the exact positions

given. Then, BP-SAR images were formed by adding errors in either the along-track or

cross-track velocity of the platform. Kurtosis and entropy scores were computed at different

magnitudes of position error, and the scores were plotted against the velocity error. The

plots were examined for maximums at zero error in the kurtosis plots and minimums in the

entropy plots.

3.4.3 GPS-D SAR Algorithm Testing

The second objective of this research was to create and test a GPS-D SAR algorithm

that would utilize the image quality measure to correct for errors in position data. To do
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this, velocity deviations were only considered in one direction at a time, most frequently,

along-track velocity errors. In testing this algorithm, there were eight degrees of freedom:

• Direction of deviation (along-track vs. cross-track)

• Initial number of pulses to form the image over, S0

• Number of pulses per iteration of BPA, Si

• Number of candidate images to form, L

• Resolution of the images, N ×M

• Variance of noise added to velocity vectors

• Bias (mean) of noise added to velocity vectors

• Velocity spacing of the images around the nominal path

Algorithm 3.3 outlines how the algorithm was tested and the way each parameter was

used. With each run, the noisy position vector and the corrected position vector were saved

for comparison with the true position vector. The algorithm was run many times with

varying parameters. At the end of each run, the variance between the original position

vector and the noisy position vector was compared to the variance between the corrected

position vector and the original position vector. The corrected position vector is the position

vector corresponding to the best image at the end of the program run. Additionally, the

differences in ending positions were compared, and the position plots were inspected to see

if the result was desirable.

At step 1, the position vector was piecewise linearized Si samples at a time. This

is done to make the comparison with the corrected position vector more accurate. The

corrected position vector will always be piecewise linear, so if the variance and bias of the

noise added to the velocity vector are small, this algorithm could function almost like a

low-pass filter. This would result in a lower variance for the corrected position vector while

not necessarily improving position estimates.
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Algorithm 3.3 GPS-D SAR Algorithm Testing

Piecewise linearize the position vector with Si samples per linear chunk.
Calculate the vector of differences in position per sample. That is, calculate
v[t] = p[t]− p[t− 1] where p[t] is the position vector. This is referred to as the
velocity vector.

Add Gaussian noise to the velocity vector, starting with the S0 element, in the desired
direction (along-track or cross-track) with given variance and bias.

Calculate noisy position vector based on noisy velocity vector.
Piecewise linearize this noisy position vector in Si sample chucks.
Initialize L position vectors to the noisy position vector.
Run BPA on the first S0 pulses of the data using the true position vector, and initialize
L images to this image.

Loop through all pulses, Si at a time.
Loop through L position vectors and images.

Starting with the last sample used, create deviations in the position vectors
using the noisy velocity vector and the given velocity spacing.

Run BPA for Si pulses on L images with corresponding L position vectors
End loop.
Score all of the images using the image quality measures
Copy the best scoring image into all L images, and copy the corresponding position

vector into all L position vectors.
End loop.
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There are two main options for how the sample chunk could be linearized. One method

would be to use all the samples and linear regression to find the line of best fit. The

second option would be to take the starting and ending points and draw a line between the

two points, discarding all intermediate information. The second option was used because

of the assumption that the position information would be provided by an IMU. IMUs

provide measurement information at a much lower frequency than the SAR pulse repetition

frequency. This means that in a real-world application, the information between the starting

and ending points for a sample chunk would never have been provided in the first place.

At step 3, noise was added to the velocity vector starting with element S0 because it is

assumed that true positions are known up to a point. This simulates a platform beginning

a flight while having GPS signal. Then, at element S0, the platform loses GPS signal. This

is the same reason why the initial image is formed with true positions at step 7.



CHAPTER 4

RESULTS AND DISCUSSION

This chapter shows the results of testing the image quality measures according to

Section 3.4.2, along with the results of testing the GPS-D SAR algorithm according to

Section 3.4.3.

4.1 Image Quality Measure Results

The image quality measures were tested using the three data sets described in Sec-

tion 3.4.1. The results show that kurtosis is a robust measure of SAR image quality.

Entropy also shows promise, but less than kurtosis.

4.1.1 USU Data

An example of images formed from the USU data with no deviations and small devia-

tions in the along-track and cross-track directions are shown in Fig. 4.1. The images formed

with errors appear more blurred than the image formed with no errors. The image formed

with along-track velocity errors is also shifted down compared to the image formed with

no errors. The along-track velocity errors are shown as a percentage because a percentage

gives the most perspective. The cross-track velocity errors are shown as the number of

meters traveled in the cross-track direction per meter in the along-track direction. This was

done because the data were formed using zero cross-track velocity, so a percentage cannot

be calculated.
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(a) Nominal trajectory

(b) Along-track 0.2% velocity deviation (c) Cross-track 0.002 [m/m] velocity deviation

Fig. 4.1: Formed 100× 100 USU images

The following image quality measure testing plots were formed according to Sec-

tion 3.4.2. Images were formed using the true position vector and deviated position vector.

Each of the formed images was scored using kurtosis and entropy. When scoring the images

using entropy, the magnitude of each complex pixel was tested along with the sum of the

real and imaginary parts. These different methods are referred to as entropy magnitude

and entropy sum, respectively. Example plots of the image score vs. the amplitude of the

deviation are given in Fig 4.2, where the points are plotted as a scatter plot. In future plots,

the points are interpolated between because it better shows the trend of the data.
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(a) Kurtosis

(b) Entropy magnitude, N=10 (c) Entropy sum, N=10

Fig. 4.2: USU along-track velocity deviation, 100×100 image

The kurtosis plot, Fig 4.2a, shows a clear trend where the images formed with smaller

deviation have a higher score. This shows promise in kurtosis as a measure of image quality.

The entropy magnitude plot, Fig 4.2b, also shows desirable behavior, though it is less

desirable than the kurtosis plot. There is a trough in the plot near zero deviation, but

the data is more scattered surrounding this area. Additionally, the trough around zero is

not the global minimum for the data plotted. This suggests that entropy magnitude could

be a viable image quality measure as long as the amplitudes of the deviations tested are

small enough. The entropy sum plot, Fig 4.2c, has no clear trend and shows virtually zero

promise as an image quality measure.

In addition to the magnitude and direction of the velocity errors, other factors that

influence the score of the images are the resolution of the image in pixels and the number
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of bins used in the histogram for the calculation of entropy, as described in Section 3.2.2.

These parameters are considered in the following sections.

Image Resolution

When forming a SAR image, the image resolution in pixels must be chosen. A higher

resolution image contains more information about the scene, but it requires more compu-

tations, which leads to more time to produce the image. For computational efficiency, the

smallest image resolution that gives an easily discernible peak (in the case of kurtosis) or

trough (in the case of entropy) is desired. Resolutions from 10× 10 to 300× 300 are tested

in the following plots. All entropy plots use N = 1000 when calculating the histograms

because this number is high enough that it does not negatively impact the performance of

entropy as a measure of image quality (This is demonstrated in the section showing the

results of testing the value of N). Only the along-track deviation plots are shown because

the cross-track plots look very similar and provide no additional insight.
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(a) Kurtosis

(b) Entropy magnitude

(c) Entropy sum

Fig. 4.3: USU along-track velocity deviation,
10×10 image

(a) Kurtosis

(b) Entropy magnitude

(c) Entropy sum

Fig. 4.4: USU along-track velocity deviation,
50×50 image
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(a) Kurtosis

(b) Entropy magnitude

(c) Entropy sum

Fig. 4.5: USU along-track velocity devia-
tion, 100×100 image

(a) Kurtosis

(b) Entropy magnitude

(c) Entropy sum

Fig. 4.6: USU along-track velocity devia-
tion, 300×300 image

From Fig 4.3-4.6, it can be seen that higher-resolution images create smoother plots.
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10 × 10 images are not sufficient to determine any trend in the data, but when increasing

the resolution to 50 × 50, peaks and troughs become detectable. Further increasing the

image resolution makes the peaks and troughs more clear and accentuates the overall trend

of the data.

Number of Histogram Bins

Next, the number of bins used in the histogram calculations was considered. Plots of

N = 10, N = 100, and N = 1000 were formed. The plots were created using 100 × 100

images because this resolution was high enough to show the desired characteristics. Both

along-track and cross-track velocity deviation plots are shown because they contain different

information.
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(a) Entropy magnitude, N=10 (b) Entropy sum, N=10

(c) Entropy magnitude, N=100 (d) Entropy sum, N=100

(e) Entropy magnitude, N=1000 (f) Entropy sum, N=1000

Fig. 4.7: USU along-track velocity deviation, 100×100 image



33

(a) Entropy magnitude, N=10 (b) Entropy sum, N=10

(c) Entropy magnitude, N=100 (d) Entropy sum, N=100

(e) Entropy magnitude, N=1000 (f) Entropy sum, N=1000

Fig. 4.8: USU cross-track velocity deviation, 100×100 image

Fig. 4.7 shows that a value of N as low as 10 creates a distinct trough in the plot

of entropy magnitude. Increasing to N = 100 provides some benefit over 10, but going
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above 100 seems to provide no benefit. With entropy sum, a value of N = 10 is insufficient

to provide a trough in the plot. Increasing to N = 100 makes a trough apparent, and

increasing above 100 to 1000 provides no benefit. From Fig. 4.8, the significance of the N

value is equivalent to the along-track case. However, in the cross-track case, there is no

trough at a deviation of zero.

Overall, the results of the tests of image quality measures with the USU data are

promising, specifically with kurtosis. All of the plots of kurtosis (with high enough reso-

lution) show a large peak very close to zero error. There are some local maxima at large

deviations, but as long as the approximate position is close to accurate, these local maxima

should not be an issue. This trend applies to images of sufficient resolution tested, with the

higher resolution images creating smoother plots.

The entropy plots are less promising. Some of the plots show a local minimum near

zero error, but other local minima are present without deviating too far from zero error.

The entropy sum function seems to perform as well as the entropy magnitude function in

cases where the resolution or number of bins is high enough, but the sum function never

exceeds the performance of the entropy magnitude function. Increasing the number of bins

can create a more pronounced minimum at zero error, but this is not always the case.

Similar to kurtosis, higher resolution images create smoother entropy plots.

Overall, the testing with the USU data shows that kurtosis could be a viable measure

of image quality. Entropy shows some promise but much less than kurtosis. Additionally,

the results appear very similar between along-track and cross-track velocity deviations.

4.1.2 SDL Data

Images formed from the SDL data with -1.7% along-track velocity error, 0% velocity

error, and 1.7% velocity error are shown in Fig. 4.9. These images correspond to forming

the image assuming the platform was moving 1.7% slower than what GPS recorded, equal

to what GPS recorded, and 1.7% faster than what GPS recorded. With this data, only

along-track deviations were tested. Additionally, since the USU data showed that entropy

sum performs no better than entropy magnitude, only kurtosis and entropy magnitude were
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tested.

Fig. 4.10a shows the results of testing kurtosis and entropy at different along-track

velocity errors. Fig. 4.10b shows the same results but zoomed in. Additionally, Fig. 4.11

shows the results of testing kurtosis on the SDL data but subtracting the mean from every

pixel before computing the kutosis value. The resemblance between Fig. 4.10b and Fig. 4.11

supports the claim that the zero-mean kurtosis equation is an appropriate approximation

of the true kurtosis value.

(a) Error = 0%

(b) Error = -1.7% (c) Error = 1.7%

Fig. 4.9: Formed SDL images with along-track velocity errors
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(b) Zoomed

Fig. 4.10: SDL data scoring plots
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Fig. 4.11: Kurtosis of SDL data with mean removed

Like with the USU data, the images formed at velocity errors show a prominent blurring

effect and increased noise. The scoring results of the testing done with the SDL data are

very similar to the results with the USU data with two main differences. The first difference

is that entropy seems to perform better in the zoomed-out plot than it did with the USU

data. There is a more pronounced minimum near zero, and this minimum is the global

minimum over the range of values calculated. When looking at the zoomed-in plot, the

results seem unusable, though. The second difference is that the maximum of the kurtosis

plot and the minimum of the entropy plot are slightly offset from zero. Since this is real

data, it is impossible to know without any error what the true velocity of the SAR platform

was. These plots could imply that the GPS data was slightly inaccurate.

4.1.3 BYU Data

The last set of data to test was the BYU data. Images formed from this data with

velocity errors of -1.6%, 0%, and 3.5% are shown in Fig. 4.12-4.14. These error values were

chosen due to the characteristics of the kurtosis plot. Like with the SDL data, only along-

track velocity deviations were tested. Fig. 4.15 is a plot of kurtosis at different velocity

errors, and Fig. 4.16 is a zoomed-in version of this plot. Notice that the zoomed-in plot is

not centered at 0% error. Fig. 4.17 is a plot of kurtosis with the mean removed. Again, the

resemblance of Fig. 4.16 to Fig. 4.17 supports the claim that the mean is negligible in the

calculation of kurtosis. Finally, Fig. 4.18 is a plot of entropy at different velocity errors.
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Fig. 4.12: BYU image at error = -1.6%

Fig. 4.13: BYU image at error = 0%
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Fig. 4.14: BYU image at error = 3.5%
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Fig. 4.15: BYU kurtosis plot
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Fig. 4.16: BYU kurtosis plot zoomed
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Fig. 4.17: Kurtosis of BYU data with mean removed
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Fig. 4.18: BYU entropy plot

The results of the testing done with the BYU data are very similar to the SDL data.

There is a very prominent peak in the kurtosis plot. This peak is further offset from zero

error than the peak in the SDL plot, though. As with the SDL data, this offset could be due

to a bias in the GPS positions. Additionally, the zoomed kurtosis plot shows that there are

many peaks between -1.8% and -1.4% error. The entropy plot further verifies that entropy

does not work well as a measure of image quality. There is no pronounced minimum in the

plot. When looking at the formed images, it is very difficult to see much of a difference.

This shows that kurtosis is better than visual inspection at identifying differences in images.

Overall, kurtosis shows promise in being an effective measure of SAR image quality.

4.2 GPS-D SAR Algorithm Results

When testing the GPS-D SAR algorithm, the number of degrees of freedom had to be

narrowed down for computational expedience. Because of this, all testing was performed

in the along-track direction. This was done because along-track velocity errors could accu-

mulate into large position errors over time. The number of initial pulses to form the image
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over, S0, was set to 1000 for every test. This number was chosen because it is large enough

that the image has already started to form, but it is small enough that there are still a

large number of pulses left for the algorithm to run on. The resolution of the images was

set to 200× 200 because the image quality measure results showed this was a large enough

resolution to achieve good results. Additionally, the bias was held constant at 8.1641×10−6.

All testing was performed on the SDL data.

The number of pulses per iteration, Si, number of candidate images to form, L, velocity

spacing of the images around the nominal path, and the variance of the noise added to the

velocity vector were tested simultaneously.

A tactical and commercial grade IMU can be expected to have a velocity random

walk (VRW) value of approximately 0.02 [m/s/
√
hr] and 0.2 [m/s/

√
hr], respectively. The

standard deviation can be calculated from the VRW by

σ = VRW

√
1

3600 ∗ prf
[m/sample]

where prf is the pulse repetition frequency, and the factor 3600 converts from hours to

seconds. Since the SDL data has prf = 1667, the range of σ values corresponding to the

VRW range between tactical and commercial grade IMUs is [8.1641× 10−6, 8.1641× 10−5].

For this reason, ten evenly spaced standard deviations within that range were tested. Using

Matlab-style syntax, that is σ = linspace(8.1641e-6,8.1641e-5,10).

For each standard deviation, 30 velocity spacings were tested, beginning with the stan-

dard deviation divided by 10,000, and ending with the starting value multiplied by 30. In

Matlab-style syntax, that is spacings = linspace(σ/10000,σ*30/10000,30). For each

spacing, L images were formed. These images were formed with velocity deviations begin-

ning with −floor(L/2)∗spacing and incrementing by spacing until there are L elements.

If L is odd, this is equivalent to [-floor(L/2)*spacing:spacing:floor(L/2)*spacing],

and if L is even, this is equivalent to [-floor(L/2)*spacing:spacing:floor(L/2-1)*spacing].

These ranges of standard deviations and velocity spacings were tested using Si ∈

{100, 500, 1000}, and L ∈ {11, 22}. Table 4.1 summarizes the parameters tested.
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Parameter Range

Direction Along-track
S0 1000
Si {100, 500, 1000}
L {11, 22}

Resolution 200× 200
σ linspace(8.1641e-6,8.1641e-5,10)

Bias 8.1641× 10−6

Velocity Spacing linspace(σ(i)/10000,σ(i)*3/1000,30)

Table 4.1: GPS-D SAR Algorithm Testing Parameters

The testing program was written to test the entire range of standard deviations and

velocity spacings in one program run. Each program run corresponds to a single value

for Si and L. Thus, testing each combination of Si and L required six program runs.

One of the outputs of a program run is a log file that contains information including the

variance of the noise, the velocity spacing, the variance of the noisy position vector minus

the original position vector, and the variance of the corrected position vector minus the

original position vector. The variance corresponding to the corrected position vector was

divided by the variance corresponding to the noisy position vector to get a ratio. A ratio of

less than one means the algorithm reduced the variance in position because the corrected

position variance is smaller than the noisy position variance.

Whisker plots of the variance ratio were created from each program run and for each

variance. The red lines in the plots indicate the medians of the sets of variance ratios, the

edges of the dark blue boxes mark the 25th and 75th percentiles, and the ends of the black

dotted lines indicate the maximum and minimum values. The horizontal line y = 1, colored

in light blue, was added to each plot so it is easy to see what portion of the whisker plot lies

in the desirable range of variance ratios. Overall, having a majority of the dark blue box

below the light blue line means that on average the algorithm improved the position variance

for that noise variance. Plots from the six program runs are shown in Figs. 4.19-4.21.
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Fig. 4.19: Whisker plots of variance ratio with Si = 100
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Fig. 4.20: Whisker plots of variance ratio with Si = 500
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Fig. 4.21: Whisker plots of variance ratio with Si = 1000

When looking at the whisker plots, the scale of the y-axis has been left as the MATLAB
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default, so the scales are not the same from one plot to another. This was done because

using the same scale for all plots would result in some plots either being squished to the

point where no useful information can be seen or cut off without showing all the data.

Examination of the whisker plots shows no general relationship between the variance

of the noise and the behavior of the variance ratio. In Fig. 4.21, the algorithm seems to

perform better with lower noise variance; however, this is not a strong trend, and the trend

does not hold for the other figures. Overall, Figs. 4.19b and 4.20a seem to perform the

best across the range of variances tested. The majority of each box falls below the y = 1

line, and those that fall above the line are only slightly above. No conclusion can be drawn

from these plots alone, though.

To more thoroughly test the algorithm, the program was run ten times while holding

Si and L fixed at Si = 500 and L = 11. Each program run generates new random noise,

so running the program multiple times provides more insight into the effectiveness of the

GPS-D algorithm. Three whisker plots are shown in Figs. 4.22-4.24 representing the best

whisker plot of the ten runs, the most compact, and the most variable, respectively. The

y-axis on each plot has been scaled uniformly for easier comparison between plots.
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Fig. 4.22: Si = 500, L = 11 best whisker plot
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Fig. 4.23: Si = 500, L = 11 compact whisker plot
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Fig. 4.24: Si = 500, L = 11 variable whisker plot

From these whisker plots, it can be seen that the behavior of the algorithm is incon-

sistent across different samples of random noise. For one magnitude of noise variance, the

algorithm can either decrease the variance, leave the variance nearly unaffected, or increase

the variance. This is clearly shown with the variance equal to 3.266e-5, where Fig. 4.22

shows an improvement, Fig. 4.23 shows nearly no effect, and Fig. 4.24 shows a negative

effect.

When examining the particular noise added in an attempt to determine when the

algorithm works and when it does not, no trend can be seen. A natural conclusion to test

is whether the algorithm performs better or worse when the noise causes large deviations

from truth; however, there are times when large deviations cause the algorithm to perform

better, and there are times when the algorithm performs worse.

For example, Fig. 4.25a shows three runs using the same noise variance. In the first run,

the variance ratio is only minimally affected on average. In the second run, the variance

ratio is improved. In the third run, the variance ratio is made worse. Fig. 4.25b shows
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the noise corresponding to each run. The second and third runs show that when the noise

causes large deviations from truth, the algorithm may make position estimates better, or it

may make them worse.

Run 1 Run 2 Run 3

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

V
ar

ia
nc

e 
R

at
io

(a) Whisker plots

0 1000 2000 3000 4000 5000 6000 7000
Sample

-8

-6

-4

-2

0

2

4

6

P
os

iti
on

 D
ev

ia
tio

n 
[m

]

10 -3

Run 1
Run 2
Run 3

(b) Noise vector

Fig. 4.25: Three runs with constant noise variance
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When examining more of the data, the conclusion is the same. Sometimes the algorithm

works well, and other times it does not. When the algorithm performs at its best, it can

produce variance ratios as low as 0.2735; however, at its worst, the algorithm can produce

variance ratios of 2.7707. These numbers come from taking the minimum and maximum

variance ratios across every test. When comparing the average variance ratios for a specific

noise variance, the minimum variance ratio is 0.8110 and the maximum is 1.3918. Factors

that determine whether the GPS-D SAR algorithm provides improvements have not been

determined yet and are a topic of future research.



CHAPTER 5

SUMMARY AND CONCLUSION

In this thesis, a novel approach to GPS-D navigation using SAR was developed and

explored. The primary objective of this research was to address the challenge of navigating

in an environment where GPS signals are obscured or unavailable. Since current navigation

systems rely heavily on GPS, GPS-D navigation is a very active area of research. This thesis

explored a method of GPS-D navigation using SAR that does not rely on point sources in

the scene or comparison with onboard data.

First, kurtosis and entropy were tested as SAR image quality measures by forming

multiple images with varying positional errors, scoring the images, and comparing the scores.

Determining a robust image quality measure was critical to the performance of the GPS-D

SAR algorithm. Kurtosis was chosen as an image quality measure due to its relationship

to a Gaussian probability distribution, and entropy was chosen due to its relationship to a

uniform probability distribution. Through testing, it was determined that kurtosis showed

more promise as an image quality measure than entropy. The kurtosis testing plots have

prominent peaks near zero positional error, whereas the entropy results are inconsistent.

Next, the GPS-D SAR algorithm utilizing the image quality measure was developed,

and the design decisions of the algorithm were outlined. There are many degrees of freedom

in this algorithm, so restrictions were placed to make testing the algorithm more computa-

tionally feasible. The algorithm was tested by injecting noise into the known position data

and examining if the algorithm could correct for this noise and reduce positional variance.

A range of noise variances were tested corresponding to the variance range between tactical

and commercial grade IMUs. The algorithm was determined to have variable performance

results. There are times when the algorithm performs well and can produce a variance

ratio of 0.2735. This means the final variance in position after the algorithm was run was

0.2735 times the variance before using the algorithm. On the other hand, there are times
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when the algorithm performs poorly and can produce variance ratios of 2.7707, meaning

the positional variance was increased by a factor of 2.7707.

This thesis contributes to the field of GPS-D navigation by testing a novel method

that assumes only that a well-formed SAR image has a different statistical structure than a

poorly formed SAR image. While the results are variable, this research provides a stepping

stone for future research in a previously unexplored area.

Due to limited access to real SAR data, the ability to test the algorithm was limited.

Consequently, identifying the factors that influence the performance of the GPS-D SAR

algorithm is a topic of future research. Additionally, testing multiple degrees of positional

freedom is a natural progression of this research.

While the computational complexity would be dramatically increased, future research

could test using the Viterbi algorithm in conjunction with the algorithm developed in this

thesis. At each time step, the set of states would be the set of candidate positions around

the nominal position, and the path metric would be the image quality measure. From this

research, the best path metric would be kurtosis, but considering alternative image quality

measures would also be valuable.
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