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Abstract: Background: Endocannabinoids and related N-acylethanolamines (NAEs) are bioactive
lipids with important physiological functions and putative roles in mental health and addictions.
Although chronic cannabis use is associated with endocannabinoid system changes, the status of circu-
lating endocannabinoids and related NAEs in people with cannabis use disorder (CUD) is uncertain.
Methods: Eleven individuals with CUD and 54 healthy non-cannabis using control participants (HC)
provided plasma for measurement by high-performance liquid chromatography–mass spectrome-
try of endocannabinoids (2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA))
and related NAE fatty acids (N-docosahexaenoylethanolamine (DHEA) and N-oleoylethanolamine
(OEA)). Participants were genotyped for the functional gene variant of FAAH (rs324420, C385A)
which may affect concentrations of AEA as well as other NAEs (OEA, DHEA). Results: In overnight
abstinent CUD, AEA, OEA and DHEA concentrations were significantly higher (31–40%; p < 0.05) and
concentrations of the endocannabinoid 2-AG were marginally elevated (55%, p = 0.13) relative to HC.
There were no significant correlations between endocannabinoids/NAE concentrations and cannabis
analytes, self-reported cannabis use frequency or withdrawal symptoms. DHEA concentration was
inversely related with marijuana craving (r = −0.86; p = 0.001). Genotype had no significant effect on
plasma endocannabinoids/NAE concentrations. Conclusions: Our preliminary findings, requiring
replication, might suggest that activity of the endocannabinoid system is elevated in chronic cannabis
users. It is unclear whether this elevation is a compensatory response or a predating state. Studies
examining endocannabinoids and NAEs during prolonged abstinence as well as the potential role of
DHEA in craving are warranted.
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1. Introduction

Cannabis is one of the most widely abused drugs globally and its use is associated with
notable adverse mental health outcomes including psychosis and schizophrenia [1–3]. Cannabis
use also increases the risk of developing cannabis use disorder (CUD) for which no ap-
proved pharmacotherapy exists [4–6]. There is growing concern that the legalization of
cannabis use for medical and recreational purposes might increase the use of high-potency
cannabis [7,8] and thus amplify the consequences of cannabis use on mental health [9].

Cannabis exerts its characteristic psychoactive effects through tetrahydrocannabinol
(THC), a partial agonist at widely expressed cannabinoid receptor 1 (CB1R) [10–12]. The
endogenous neurotransmitters for the CB1R are endocannabinoids: lipid mediators that
are prevalent in the brain (and body) [13–15] and function as made-on-demand retrograde
messengers that exert modulatory control over neurotransmitter release from axon ter-
minals [16]. Endocannabinoids have important physiological roles in neural signaling,
immune function, pain processing, cardiovascular function, homeostasis following stress,
fertility, and are implicated in several diseases [17–19]. The two most studied endocannabi-
noids are the arachidonate-derived lipid molecules N-arachidonoylethanolamine (anan-
damide, AEA) and 2-arachidonoylglycerol (2-AG) [20,21]. 2-AG is a mono-acylglycerol
lipid endocannabinoid and a full CB1R agonist; whereas AEA is a fatty acid amide that
is also classified as an n-acylethanolamine (NAE) and is a partial agonist at CB1R [22].
The role of 2-AG and AEA on phasic and tonic synaptic signaling is believed to be com-
plementary [23]. AEA is also an agonist at the transient receptor potential cation channel
subfamily V member 1 receptor (TRPV1) [24] and it is broken down by the membrane-
bound serine hydrolase, fatty acid amide hydrolase (FAAH); whereas 2-AG is metabolized
by monoacylglycerol lipase (MAGL) [23,25,26]. The degradation pathway of 2-AG and
AEA were well studied and are the focus of intense drug development [27]. For example,
preclinical and clinical studies suggest that inhibiting the breakdown of NAEs (e.g., FAAH
or cyclooxygenase-2 (COX-2) inhibitors) may reduce cannabis use and craving symptoms
during cannabis withdrawal [28–32].

In addition to AEA, several other fatty acids, NAEs metabolized by FAAH, were
discovered in the search for cannabinoid ligands. These include the anorexigenic lipid
oleoylethanolamide (OEA) [33,34] and DHEA (N-docosahexaenoylethanolamine), (also
known as synaptamide), which is known for its anti-inflammatory and neurogenic ef-
fects [35]. These NAEs are peroxisome proliferator-activated receptor-α (PPAR-α) agonists
that, despite having membership in the “endocannabinoidome”, do not for the most part
selectively bind CB1R at physiological concentrations [36]; although DHEA was shown to
activate CB1R with significant potency in vitro [37].

Prolonged cannabis use is linked with notable adaptations in the endocannabinoid
system [19,38,39]. This includes findings, from both the preclinical and clinical imaging
literature, of temporary CB1 downregulation following chronic THC exposure [38,40]. We
have also reported lower brain levels of the major endocannabinoid and NAE metabo-
lizing enzyme FAAH, as measured by positron emission tomography of the radioligand
[11C]CURB in overnight abstinent individuals with CUD. There are, however, inconsistent
data on the effects of cannabis or THC on endocannabinoid and related NAEs [41].

In rodents, repeated exposure to THC or to the CB1/CB2 receptor agonist (WIN 55,212-
2) increase plasma and brain concentrations of AEA in male and female mice [42] but the
effects on 2-AG are inconsistent [40,43,44]. Similarly, in humans, studies of circulating
concentrations of endocannabinoids and NAEs in regular cannabis users or following
acute cannabis administration are limited and conflicting [45]. For example, acute THC
administration (20 mg; Dronabinol) but not cannabis [46] administration in cannabis users,
elevates concentrations of NAEs but significance is restricted to OEA [47]. In cannabis
users with psychosis, both elevated [48] and decreased [49] AEA (with no change in 2-AG)
is reported. Studies in cerebrospinal fluid of frequent cannabis users (defined as people
who have used at least 20 times in their life) vs. controls (using cannabis < 5 times lifetime)
find a trend for lower concentrations of AEA (but higher 2-AG) [50,51]. Thus far, no study
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has reported endocannabinoid and NAEs concentrations in cannabis users diagnosed with
CUD without a co-morbidity.

Whether or not exposure to cannabis in humans alters endogenous fatty acid (NAEs
and endocannabinoids) concentration is still uncertain. A better understanding of the status
of circulating endocannabinoids and NAEs and their relationship to symptomatology may
help develop a better understanding of their role in CUD and inform therapeutics. The aim
of this study was to investigate plasma endocannabinoid and NAE concentrations in CUD
using liquid chromatography–tandem mass spectrometry in CUD and healthy controls
(HC). We tentatively hypothesized, based on preclinical findings and on our earlier FAAH
findings in the brain, that in CUD participants, FAAH substrates (AEA, OEA and DHEA)
but not 2-AG would be elevated.

2. Methods
2.1. Participants

All study procedures were approved by the Research Ethics Board at the Centre
for Addiction and Mental Health. Some participant data were published elsewhere [41].
Participants were recruited from the local community in Toronto, Ontario, Canada through
internet advertisements. After obtaining written informed consent, participants completed
a comprehensive intake session to assess eligibility according to inclusion and exclusion
criteria. All participants, HC and CUD, reporting past or present significant medical
conditions, neurologic illnesses, head trauma, Axis I psychiatric disorders other than CUD
in cannabis users and nicotine dependence in both groups, medication use that may affect
the central nervous system, or positive drug toxicology for drugs of abuse other than
cannabis in CUD were excluded.

Participants with CUD were required to abstain from cannabis for 12 h (overnight)
before the study session, and HC and CUD were required to abstain from tobacco smoking
overnight. Participants were asked not to drink caffeinated beverages on the morning
of the scan. On the day of the scan, participants were given a standard meal. Overnight
abstinence was verified as intake assessments included: a breath alcohol concentration
measurement to ensure abstinence from alcohol; urine toxicology to rule out medication and
illicit drug use (other than cannabis in CUD); a urine pregnancy test in female participants
only; expired carbon monoxide (<10 ppm to rule out recent tobacco or cannabis smoking,
8–10 parts per million (ppm) for CO as a viable cut off to determine abstinence) [52]; the
time line follow back to assess cannabis use over the previous 90 days [53]; and craving and
withdrawal questionnaires for cannabis users. These included the severity of dependence
scale, obsessive compulsive smoking scale [54], marijuana craving questionnaire-short
form [55], Beck depression inventory [56] and marijuana withdrawal checklist [57]. The
presence of any other psychiatric condition not assessed with these questionnaires was
assessed using the structured clinical interview for DSM-IV-5 (SCID-IV-5) [58]. Biological
samples for the quantification of NAE and endocannabinoids were collected once before a
PET scan in the morning. PET scan methods are previously published [59]. Blood THC and
metabolites quantifications were collected at two separate time points 5–6 h apart (upon
arrival and at discharge) to distinguish residual from recent cannabis use [60].

2.2. Extractions of NAEs and Arachidonoylglycerols

Stock solutions of OEA, AEA, DHEA, 1, 2-arachidonoylglycerols (1- and 2-AGs) as
well as [2H2]OEA, [2H8]AEA, [2H4]DHE, [2H5]2-AG were reconstituted in acetonitrile
and stored at −80 ◦C before further dilution in acetonitrile on ice. Calibration curves
were performed using various dilutions of the stock solution containing the mixture of all
targeted NAE and AGs and the mixture of deuterated NAE and AGs as internal standards.
Each point on the standard curve contained the same amount of internal standards as
that added to the samples prior to sample processing. Results demonstrated a linear
response range of 0.1–200 ng/mL for individual standards. The peak area ratios of each
compound relative to the internal standard were used for calculations. The coefficient of
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determination (R2) of the calibration curve was ≥0.9910 for all fatty acid ethanolamide
(FAE) species. Method accuracy and precision for each NAE were assessed in eight quality
control replicates. These results indicate the high degree of reproducibility of the HPLC/MS
system. All compounds were reproduced with equal to or less than 5% precision error
between runs and over 95% accuracy of each targeted compounds. Specifically in this study,
the accuracy range of each targeted compounds was 85–117% [61].

Solid-phase extraction was employed for human plasma samples according to pre-
viously published methods [59,61] with minor modifications. Each plasma sample was
coded and labeled to maintain blinding during extraction. Distilled water (750 µL) was
added to the plasma (200 µL/sample) internal standard (50 µL) mix to total 1 mL. The
mixture was centrifuged at 490 g for 10 min at 4 ◦C. The mixture was extracted using a
vacuum manifold with the Oasis HLB 1CC, 30 mg cartridge (Waters Limited, Mississauga,
ON, Canada). The final eluted samples were dried under N2 gas and then dissolved in
100 µL of acetonitrile. All samples were stored in gas chromatography vials at −80 ◦C until
liquid chromatography tandem–mass spectrometry (LC-MS/MS) analysis.

2.3. Identification and Separation Using LC-MS/MS Analysis

Extracted human plasma NAEs and 2-AG samples were analyzed on a SCIEX QTrap5500
LC-MS/MS (Framingham, MA, USA) with an Agilent 1290 HPLC system (Agilent Technolo-
gies: Santa Clara, CA, USA). Chromatography was performed on a Phenomenex Kinetex
XB-C18 column, 50 × 4.6 mm, 2.6 µm (Phenomenex, Torrance, CA, USA) at a flow rate of
600 µL/min described previously [59]. The chromatography was optimized to identify
the target compounds in plasma. The 2-AG standard from Cayman contains 10% 1-AG
(Supplemental Figure S1A). We observed conversion from 2-AG to 1-AG (Supplemental
Figure S1B,C) when 2-AG standard or plasma samples were processed and stored in −80 ◦C
before being analyzed in the LC-MS system. In our report, 2-AG and 1-AG were combined
in our analysis.

2.4. Analysis of Cannabinoids and Metabolites

Urine and blood samples were collected from participants upon arrival at the site
(T1) and before discharge (T2) approximately 5–6 h apart to measure cannabis metabo-
lites and phytocannabinoids. Venous blood was collected in gray-topped (potassium
oxalate and sodium fluoride) vacutainers. All samples were transferred to polypropylene
cryotubes, frozen on dry ice, stored at –80 ◦C. Blood THC, 11-hydroxy-THC (11-OH-
THC), THC-glucuronide (THCgluc), THCCOOH, THCCOOH-glucuronide (THCCOOH-
gluc), cannabidiol (CBD), and cannabinol (CBN) concentrations were quantified by LC-
MS/MS [42,62–64] with limits of quantification (LOQs) of 1 µg/L for THC, 11-OH-THC,
THCCOOH, CBD, and CBN; 0.5 µg/L for THC-gluc; and 5 µg/L for THCCOOH-gluc. In
urine, THC, 11-OH-THC, THCCOOH, CBD, and CBN were quantified by two-dimensional
(2D) gas chromatography-mass spectrometry with LOQs of 2.5 µg/L for THC, 11-OH-THC,
CBD, and CBN and 5 mg/L for THCCOOH [60].

2.5. FAAH Genotyping

All participants were genotyped for a known FAAH Single Nucleotide Polymorphism
(SNP; rs324420, C385A). The FAAH genotype (rs324420) was determined using the Taq-
man SNP genotyping assay set performed on a ViiA7 thermal cycler (Life Technologies,
Burlington, ON, Canada) with appropriate controls. Briefly, 5µL of 2× GTXpress Master
mix (cat#4401892, Life Technologies) was mixed with 10 ng of DNA and the 40 × probe
(cat#C_1897306_10, Life Technologies) in a final volume of 10µL and run for 50 cycles
of 95 ◦C for 1 s and 60 ◦C for 20 s. This SNP reduces protein and steady-state activity of
FAAH [65] and elevated plasma AEA concentrations [65–68].
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2.6. Statistical Analysis

An unpaired t-test evaluated group differences in demographic information as well as
peripheral endocannabinoids/NAE concentrations. Levene’s test for equality of variances
determined whether the equal variance assumption was violated. Z-scores were used to
determine outliers. Values three standard deviations above the mean were excluded from
the analysis (where indicated). Absolute and percent differences in mean concentrations
of peripheral endocannabinoids and NAEs were calculated between HC and CU. Pearson
Chi-square tests determined if there were significant group differences in the frequencies of
sex, ethnicity, FAAH polymorphism, and smoking status. Analysis of covariance (ANCO-
VAs) was used where necessary to control for age, sex, body mass index (BMI), smoking
status and FAAH C385A genotype. Pearson product–moment correlations and Spearman’s
rank–order correlations assessed the correlation between endocannabinoids/NAEs con-
centrations and cannabis craving, cannabis withdrawal, cannabis-use measures as well
as cannabis metabolites. Partial correlations controlled for potential nuisance variables in
assessing the relationship between concentrations of endocannabinoids/NAEs and craving
and withdrawal measures. We also investigated with partial correlation whether endo-
cannabinoids and NAE concentration correlated with FAAH concentrations ([11C]CURB
binding) collected as part of our published PET study [41]. The level of significance was set
at p < 0.05.

3. Results
3.1. Demographics

Participants’ demographic information is reported in Table 1. In total, 54 HC par-
ticipants and 11 CUD participants as per SCID-IV-5 completed all aspects of the study.
Demographic data from all but one cannabis user (CUD; n = 10) and some HC were previ-
ously reported [41]. Groups did not significantly differ in age, sex, BMI, and FAAH C385A
genotype. Education tended to be slightly higher in control participants vs. cannabis
users. A higher proportion of cannabis users (n = 6, 54.5%) reported smoking tobacco
daily compared to HC (n = 10, 18.5%). HC and CUD who smoked cigarettes did not
differ significantly with regard to number of cigarettes per day and nicotine dependence
severity, as measured by the Fagerstrom test for nicotine dependence (Table 1). Cannabis
users and controls did not have current or previous Axis I disorders (excluding CUD in
cannabis users).

Table 1. Demographic and Clinical Characteristics of Healthy Controls and Cannabis Users.

Characteristic

Healthy Controls
(n = 54)

Frequencies/Mean ± SD
(Range)

Cannabis Users
(n = 11)

Frequencies/Mean ± SD
(Range)

p Value
x2

Sex (Females/Males), n 28/26 4/7 0.35
x2 = 0.88

Age, Years 28.7 ± 11.5
(19–58)

33.4 ± 9.2
(20–44) 0.21

Racial, Ethnic Categories
(White/Asian/Black/Hispanic), n (30/10/12/2) (8/0/3/0) 0.56

x2 = 3.006

Body mass Index 24.3 ± 3.1
(18.7–32.9)

24.6 ± 4.7
(19.0–30.5) 0.79

FAAH Genotype
(rs324420, C385A), n 34(CC), 16(AC), 4(AA) 8(CC), 2(AC), 1(AA) 0.74

x2 = 0.60

Education, Years 15.3 ± 2.0
(11–22)

13.9 ± 3.8
(9–19) 0.077
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Table 1. Cont.

Characteristic

Healthy Controls
(n = 54)

Frequencies/Mean ± SD
(Range)

Cannabis Users
(n = 11)

Frequencies/Mean ± SD
(Range)

p Value
x2

Tobacco Cig Smokers
(>1 cigarette/day), n 10 6 0.01 **

x2 = 6.392

Tobacco Cig Per Day (in smokers) 10.6 ± 9.7
(1.0–25.0)

14.8 ± 12.5
(2–35) 0.50

Alcoholic Drinks Per Week 4.7 ± 5.7
(0–24.8)

2.5 ± 2.9
(0–7.8) 0.065

Fagerstrom Test for Nicotine
Dependence,

3.6 ± 3.2
(0–8)

3.8 ± 3.3
(1–9) 0.93

Cannabis Ever Used, n 32 11 0.01 **
x2 = 6.20

Values represent mean ± SD unless otherwise indicated. ** p ≤ 0.01.

The average life-time cannabis use in the CUD group was 18 years (range: 5–33 years)
with age of onset at around 16 years old (range: 10–22 years old). Cannabis users reported
using an average of 7.72 g/week (range: 3.5–14) and were abstinent for approximately 21 h
before the blood draws (range: 17–48 h) (Table 2). Scores from scales measuring cannabis
dependence and withdrawal are reported in Table 2.

Table 2. Cannabis Use Characteristics.

Characteristic Mean (SD) Range (Min–Max)

Cannabis Age of Onset, Years 15.73 (3.88) 10.00–22.00

Current Cannabis Use/Week (Grams) 7.72 (4.29) 3.50–14.00

Average Cannabis Use Joints/Week 19.83 (9.92) 2.10–35.00

Cannabis Total Years Used 18.00 (10.35) 5.00–33.0

Severity of Dependence Scale 3.27 (2.24) 0.00–7.00

Marijuana Checklist (n = 10) 6.00 (3.92) 1.00–12.00

Obsessive compulsive smoking scale (n = 10) 14.20 (7.11) 5.00–25.00

Marijuana Craving Questionnaire

Compulsivity 1.58 (0.67) 1.00–3.00

Emotionality 3.06 (1.26) 1.00–5.30

Expectancy 4.18 (1.27) 2.00–6.30

Purposefulness 4.33 (1.56) 1.00–6.30

Total 13.15 (4.04) 5.00–19.30

3.2. Peripheral Concentrations of AEA, OEA, DHEA, and 2-AG in Cannabis Users and
Healthy Controls

Relative to HC, CUD had an elevated plasma concentration of AEA (absolute differ-
ence: 0.422 pmol/mL, 25%, p = 0.015), DHEA (absolute difference: 1.04 pmol/mL, 39%,
p = 0.031), and OEA (absolute difference: 1.63 pmol/mL, 40%, p = 0.016). 2-AG concen-
trations were also elevated though non-significantly (absolute difference: 1.35 pmol/mL,
55%, p = 0.13) (Figure 1). One HC had plasma concentrations of AEA three standard devia-
tions above the mean and was therefore considered an outlier. Results remain significant
when this outlier was removed (AEA—absolute difference in mean: 0.502 pmol/mL, 31%,
p = 0.001).



Brain Sci. 2023, 13, 1375 7 of 14
Brain Sci. 2023, 13, x FOR PEER REVIEW 7 of 15 
 

 
Figure 1. Peripheral Endocannabinoids and N-acylethanolamines in cannabis user and healthy con-
trols. Anandamide (AEA), 2- arachidonoylglycerol (2-AG), N-docosahexaenoylethanolamine 
(DHEA) and N-oleoylethanolamine (OEA) in cannabis users (squares) and healthy controls (circles). 
One healthy control had AEA concentrations three standard deviations above the mean (white circle 
with cross). Removing this point resulted in a lower p value (p < 0.001). The black filled in symbols 
represent individuals with the FAAH C385A genotype AC and AA (black square and black circles) 
and open symbols represent with the CC (white square, white circle) variant. p values for independ-
ent samples t-test are given on the graph. 

Univariate ANCOVAs suggested that elevated OEA, AEA, and DHEA in cannabis 
users relative to controls were not accounted for by BMI, FAAH C385A genotype, and 
smoking status; none of these variables were significant moderators of the effect (p > 0.05). 
Males and females showed no statistically significant difference in OEA, DHEA, AEA and 
2-AG in either CU or HC, or in the whole group (CUD + HC). In the whole group, age 
correlated with AEA (r = 0.45, p < 0.0001), OEA (r = 0.35, p = 0.004), and DHEA (r = 0.42, p 
= 0.001), and marginally with 2-AG (r = 0.23, p = 0.065) (Supplementary Figure S2). This 
effect did not exist in cannabis users alone but was present or marginally present in HC 
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Figure 1. Peripheral Endocannabinoids and N-acylethanolamines in cannabis user and healthy
controls. Anandamide (AEA), 2- arachidonoylglycerol (2-AG), N-docosahexaenoylethanolamine
(DHEA) and N-oleoylethanolamine (OEA) in cannabis users (squares) and healthy controls (circles).
One healthy control had AEA concentrations three standard deviations above the mean (white circle
with cross). Removing this point resulted in a lower p value (p < 0.001). The black filled in symbols
represent individuals with the FAAH C385A genotype AC and AA (black square and black circles)
and open symbols represent with the CC (white square, white circle) variant. p values for independent
samples t-test are given on the graph.

Univariate ANCOVAs suggested that elevated OEA, AEA, and DHEA in cannabis
users relative to controls were not accounted for by BMI, FAAH C385A genotype, and
smoking status; none of these variables were significant moderators of the effect (p > 0.05).
Males and females showed no statistically significant difference in OEA, DHEA, AEA and
2-AG in either CU or HC, or in the whole group (CUD + HC). In the whole group, age
correlated with AEA (r = 0.45, p < 0.0001), OEA (r = 0.35, p = 0.004), and DHEA (r = 0.42,
p = 0.001), and marginally with 2-AG (r = 0.23, p = 0.065) (Supplementary Figure S2). This
effect did not exist in cannabis users alone but was present or marginally present in HC
alone (DHEA: r = 0.42, p < 0.01; OEA: r = 0.34, p = 0.13; AEA: r = 0.25, p = 0.07). In the whole
group (CUD + HC), BMI correlated with 2-AG (r = 0.25, p = 0.04) (Supplementary Figure S2)
but not with AEA (r = −0.05, p = 0.71, OEA (r = −0.026, p = 0.84) or DHEA (r = 0.001,
p = 0.991). BMI did not correlate with other measures of peripheral ECs and NAEs
(p > 0.05) in CUD or HC alone.

An independent samples t-test was conducted (without the outlier described above) to
investigate whether plasma concentrations of circulating AEA, DHEA and OEA were higher
in individuals with the C385A genotypes associated with lower FAAH enzymatic activity
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(i.e., higher in AC + AA vs. lower in CC). The test revealed that in HC, the differences
were in the direction expected, but not statistically significant. OEA, DHEA and AEA were,
respectively, 20% (absolute difference: 0.31 pmol/mL; p = 0.12), 21% (absolute difference:
0.17 pmol/mL; p = 0.43) and 14% (absolute difference in means: 0.04 pmol/mL; p = 0.18)
higher in the AC + AA genotype group. Whereas in the CU, OEA, DHEA and AEA they
showed no difference or showed lower concentrations of these FAAH substrates in the AC
+ AA genotype group (OEA—absolute difference: 0.60 pmol/mL, −10%, p = 0.55; DHEA-
absolute difference: 0.20 pmol/mL, 5%; p = 0.80; AEA- absolute difference: 0.14 pmol/mL,
−6%, p = 0.32).

There were no significant differences between men vs. women in plasma concentra-
tions of OEA (5.54 vs. 6.09, p = 0.64|4.11 vs. 4.11, p = 0.99), AEA (2.10 vs. 2.12, p = 0.87|1.76
vs. 1.62, p = 0.52), DHEA (4.08 vs. 2.94, p = 0.06|2.54 vs. 2.71, p = 0.79) and 2-AG (4.76 vs.
2.16, p = 0.07|2.54 vs. 2.39, p = 0.73) in CUD and HC, respectively. In a secondary analysis
of healthy daily tobacco smokers (at least 1 cigarette per day) (n = 10) and non-smokers
(n = 44) concentrations of OEA (47.6%; p = 0.08), DHEA (78.0%; p = 0.13), and AEA (26.1%;
p = 0.09) (and to some extent 2-AG (15.4%; p = 0.48)) were non-significantly elevated in HC
smokers vs. non-smokers.

In people with CUD, Pearson’s product–moment correlations were assessed relation-
ships between clinical features of cannabis use and concentrations of peripheral endo-
cannabinoids and NAEs. We did not find any significant correlations between the amount
of cannabis used, frequency of use, number of years used, age of first use, withdrawal
symptoms and peripheral concentrations of endocannabinoids and NAEs. However, there
was a significant negative correlation between peripheral concentration of DHEA and
marijuana craving questionnaire (MCQ) total score (r = −0.86; p < 0.01).

We did not find any significant relationship between concentrations of endocannabi-
noids/NAEs and concentrations of THC and metabolites (THC-gluc, THCCOOH and
11-OH-THC) and minor phytocannabinoids (CBD, CBN) (p > 0.05).

Data pertaining to regional FAAH concentrations in the brains ([11C]CURB) of people
with CUD, in which we find a global 14–20% reduction in [11C]CURB/FAAH binding were
published elsewhere [41]. We found no significant correlation between FAAH concentra-
tions in whole brain (average brain [11C]CURB) and plasma concentrations of OEA, AEA,
DHEA and 2-AG (p = 0.89, p = 0.48, p = 0.29, p = 0.27, respectively).

4. Discussion

Our major finding is that peripheral plasma concentrations of AEA, OEA and DHEA
are elevated, with a trend for increased concentrations of 2-AG in a pilot sample of individ-
uals with CUD during early abstinence from cannabis. To our knowledge, this is the first
study reporting plasma concentration of endocannabinoids and NAEs in individuals with
CUD without another co-morbid psychiatric disorder.

Endocannabinoids and related NAEs are bioactive lipids which impact multiple
systems of the human body but relatively little is known about whether cannabis (i.e., THC)
alters their signaling. Whereas preclinical evidence suggests that THC exposure might lead
to adaptive changes in endocannabinoid signaling [69–72] and brain concentrations [29,42]
only a few studies in humans reported plasma concentrations of endocannabinoids and
NAEs after cannabis exposure and none were in individuals with a single diagnosis of
CUD. Our preliminary results are partially in line with two of these studies. The first
showed elevated AEA concentrations in individuals who abuse cannabis with a diagnosis of
psychosis [48] and the second demonstrated elevated AEA, PEA and OEA in HC two hours
after acute THC administration [47]. Our findings are, however, at odds with another study
reporting persistently low plasma concentration of AEA and OEA in detoxified individuals
with polysubstance use disorder, most of which concurrently abused cannabis [73]. The
discrepancy between the later finding and our study could be due to the effects of other
drugs not directly interacting with the CB1 receptor (i.e., stimulants and/or alcohol) or to
the timing of the study (i.e., early vs. protracted abstinence).
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It is unclear whether cannabis-induced alterations in endocannabinoids and NAEs are
associated with central disturbances as suggested by limited preclinical studies [43,69,70].
We have previously reported a global decrease in brain concentrations of the NAE metabo-
lizing enzyme FAAH ([11C]CURB) in CUD, suggesting the possibility that brain concentra-
tions might be increased. However, despite showing here that plasma concentrations of
endocannabinoids and NAEs are elevated in the same cohort, we did not find that reduc-
tions in brain FAAH correlated with elevations in peripheral endocannabinoids. While this
may be an issue of insufficient power, it is nonetheless possible that different regulatory
mechanisms are at play in the periphery and brain. This in fact was suggested by some stud-
ies showing that THC exposure exerts opposing regulatory effects on endocannabinoids
and NAEs peripherally and centrally (i.e., feedforward vs. feedback) [47,69]. This might
explain some discrepant findings in plasma vs. cerebrospinal fluid reported in the cannabis
literature [48,51]. Despite this, given that endocannabinoids and NAE are highly lipophilic
ligands freely diffusing across the blood–brain barrier, we cannot rule out the possibility
that concentrations of NAE and endocannabinoids concentrations are also elevated in brain
of individuals with CUD.

Unlike previous studies, we did not find that individuals with the FAAH C385A
genotype associated with lower FAAH enzymatic activity (i.e., AC + AA) had significantly
higher concentrations of AEA or NAE. Our results in HC are, however, in line with literature
studies in that we find a comparable magnitude of difference. For example, our results
are similar in magnitude to those of Spagnolo et al. who find a robust effect of the FAAH
genotype (~15–20%) in a small sample of participants with co-morbid posttraumatic stress
disorder and alcohol use disorder [74]; with those of Mayo et al. who report 19% (p = 0.04)
higher AEA in AC + AA [75] and with those of Sipe et al. who find 11% (p = 0.04) higher
FAAH substrates in HC participants (n = 144; including participants with obesity) [66].

The mechanism behind elevated plasma NAEs and endocannabinoids in CUD is largely
undefined. While it is clear that cannabis (i.e., THC) has a direct effect on brain and body
CB1/CB2 receptors leading to their downregulation (shown in post-mortem studies and
PET [38,76]) and to tolerance, it is unknown whether cannabis exerts direct regulatory control
over biosynthesis or release of endocannabinoids and NAEs or whether it reduces FAAH
activity in brain and body (through a CB1 or PPARα mechanism) to cause their elevation.
Previous preclinical studies and our own PET study [41] together with the data shown
here suggest the co-occurrence of decreased FAAH and increased NAE/endocannabinoid.
Without necessarily proving causality, this may indicate that elevations in endocannabinoids
and NAEs could be in part be due to a downregulation (through an unknown mechanism)
of FAAH in response to chronic CB1 stimulation [38]. Thus, cannabis-induced increases in
NAE/endocannabinoid tone may be a homeostatic effort to restore CB1/CB2 activity, which
is known to be downregulated (or the transient receptor potential cation channel subfamily
V member 1 (TRPV 1) and member 2 (TRPV 2) activity).

The clinical significance of our finding (in the periphery) is difficult to establish. It is
not entirely clear how endocannabinoids are affected after acute cessation of cannabis (i.e.,
THC). It is unclear how cessation affects brain function and behavior. We found that AEA
OEA and DHEA metabolized by FAAH and to a lesser extent, 2-AG metabolized by MAGL
are elevated upon acute cannabis cessation. We also found that higher concentrations of
DHEA concentrations were associated with lower self-reported craving. Our findings may
suggest, on the one hand, a compensatory response to low CB1 activity. There are no studies
linking DHEA with cannabis withdrawal; however, findings are in general agreement with
the preclinical finding that dual FAAH/MAGL blockade produced THC-like responses
that potentially mask withdrawal [29]. Importantly this is also in line with the finding
that administration of the FAAH inhibitor PF-04457845 reduces symptoms of cannabis
withdrawal and subsequent use [28]. On the other hand, elevated concentrations of 2-AG, a
full CB1/CB2 agonist, could also perpetuate beyond THC effects, such as agonist mediated
CB1 receptor desensitization, and thereby THC tolerance. Plasma endocannabinoids and
NAEs concentration increases could also have effects on inflammation, metabolic functions
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and hypothalamic pituitary adrenal axis activity, which may be altered during acute
drug cessation.

This study has several limitations. For one the sample size of the experimental group
was small, yielding potentially optimistic effect sizes. Additionally, the small n was a mix of
males and females, and this further reduced its power if differences exist between the sexes.
Tobacco, which could influence NAE and endocannabinoid concentrations, is often co-used
with cannabis [28]. Despite our effort to also include tobacco smokers in the HC sample,
smoking was more prevalent in cannabis users. Additionally, factors such as nutrition,
hydration and exercise frequency and intensity also influence endocannabinoid and NAE
concentrations [77–79]. As mentioned in the methods, participants were given a standard
meal in attempts to mitigate some of the short-term effects of diet. There are limitations that
still exists because diet and exercise outside the parameters of the study were not monitored.
The present study included individuals with high BMI, and this could add variability in
the preliminary data reported [80]. BMI was taken into consideration and included in basic
correlational analyses and univariate ANCOVA and showed elevated OEA, AEA, and
DHEA in cannabis users, relative to controls, which were not accounted for by BMI. Despite
this, a follow up study would greatly benefit from the inclusion of more participants over
a broad range of BMIs. Nevertheless, our findings remained significant after statistically
controlling for smoking status. Future studies should include a broader range of tobacco
smokers. Factors other than cannabis use in cannabis users, for example variability in diet
and sleep could affect endocannabinoid and NAE concentrations [81–83]. Importantly
our study captures early abstinence in which it is difficult to disentangle the residual
effects of cannabis from CUD. Further research should be undertaken to better capture
the endocannabinoid system profile—both centrally and peripherally and longitudinally
during abstinence.

There was a range of patterns of cannabis use and periods of abstinence before blood
collection among the cannabis users. This may explain why endocannabinoid and NAEs
did not significantly correlate with clinical features of cannabis use as measured by SDS,
MWC and MCQ.

5. Conclusions

In conclusion, we report here, for the first time, elevated concentrations of plasma
endocannabinoid and NAE together with lower self-reported craving in early abstinence in
cannabis users. In light of the recent trial showing the efficacy of an inhibitor of the FAAH
enzyme responsible for the metabolism of endocannabinoid in people with CUD [28], our
findings suggest the need to continue characterizing endocannabinoids and NAEs and
their relationship with withdrawal symptoms.
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