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Simple Summary: Myelodysplastic neoplasms (MDS) are a group of hematologic malignancies
with an increased risk of transformation to acute myeloid leukemia. Non-coding RNAs are RNA
molecules of variable size that do not translate into proteins but regulate gene expression during
multiple cellular processes. These RNAs have been found deregulated in several cancers, including
MDS. In this review, we aim to summarize research findings on the biological role of different non-
coding RNAs in MDS development and progression, with emphasis on molecules that have exhibited
prognostic or predictive value and could, hence, guide decision-making in clinical practice.

Abstract: Myelodysplastic syndromes or neoplasms (MDS) are a heterogeneous group of myeloid
clonal disorders characterized by peripheral blood cytopenias, blood and marrow cell dysplasia,
and increased risk of evolution to acute myeloid leukemia (AML). Non-coding RNAs, especially
microRNAs and long non-coding RNAs, serve as regulators of normal and malignant hematopoiesis
and have been implicated in carcinogenesis. This review presents a comprehensive summary of
the biology and role of non-coding RNAs, including the less studied circRNA, siRNA, piRNA, and
snoRNA as potential prognostic and/or predictive biomarkers or therapeutic targets in MDS.

Keywords: myelodysplastic syndromes; non-coding RNA; microRNA; lncRNA; circRNA; piRNA;
tRNA; snoRNA

1. Introduction

Myelodysplastic neoplasms (MDS) are a group of myeloid neoplasms characterized
by clonal proliferation of hematopoietic stem cells (HSCs) and genetic and epigenetic
abnormalities leading to ineffective hematopoiesis, peripheral cytopenias, and a propensity
to the development of acute myeloid leukemia (AML) [1,2]. Diagnosis is based on full
blood count parameters, bone marrow morphology and blast count, and the presence of
cytogenetic and molecular abnormalities, mainly mutations [2]. The most recent World
Health Organization (WHO) classification, the fifth edition, recognizes two main groups:
a. MDS with defining genetic abnormalities and b. MDS, morphologically defined [3].
Following correct diagnosis and accurate classification, prognosis estimation and risk
stratification are crucial to tailor therapy. The revised International Prognostic Scoring
System (IPSS-R) is widely used for the risk stratification of MDS patients considering the
number and depth of cytopenias and cytogenetic abnormalities [4]; while most recently the
molecular IPSS (IPSS-M) combined genomic aberrations with hematologic and cytogenetic
abnormalities and provided improved risk stratification of patients with MDS [5]. In
general, low-risk patients are managed either expectantly or with recombinant human
erythropoietin or luspatercept [6], whereas high-risk patients are offered hypomethylating
agents (HMAs) and/or allogeneic hematopoietic stem transplantation (AlloSCT), which
remains the only curative modality. Despite all this progress, there is currently no widely
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accepted predictive model nor a serviceable biomarker of response that can offer a timely
and valid estimation of the expected benefit from these available treatment options.

In terms of pathophysiology, genes regulating epigenetic modifications seem to be
the most commonly mutated in patients with MDS [7]. Among epigenetic modifiers, non-
coding RNA molecules, especially microRNAs (miRNAs) and long non-coding RNAs
(lncRNAs) have recently attracted research interest. Until recently, it was believed that
the molecules important for the functioning of a cell are those described by the “Central
Dogma” of biology, namely messenger RNAs and proteins. However, almost three decades
ago, the discovery of microRNAs (miRNAs) in plants [8] and animals [9,10] changed this
perception. Subsequent research efforts have demonstrated that large parts of an organism’s
genome are transcribed into RNA at one time point or another but are not translated into
an amino acid sequence. These RNA transcripts have been referred to as non-coding RNAs
(ncRNAs). There are many recognizable classes of ncRNA, each having a distinct function.
These include the abovementioned miRNAs, transfer RNAs (tRNAs) [11], ribosomal RNAs
(rRNAs) [12], PIWI-interacting RNAs (piRNAs) [13], small nucleolar RNAs (snoRNAs) [14],
long intergenic ncRNAs (lincRNAs) [15], etc. The full extent of distinct classes of ncRNAs
that are encoded within the human genome is currently unknown but is believed to
be numerous.

Functionally, ncRNAs are divided into two main categories: housekeeping ncRNAs,
which are involved in generic cellular functions, and regulatory ncRNAs, which primarily
regulate gene expression in multiple levels. Hence, their regulatory role in cellular physiol-
ogy, including normal hematopoiesis, is important, as is their participation in initiation and
progression of neoplasia. Indeed, several studies have demonstrated the role of ncRNAs in
solid and hematological malignancies, either from a pathophysiologic point of view or as
prognostic biomarkers [16,17].

In this review, we present a comprehensive summary of findings regarding the emerg-
ing role of various ncRNAs in MDS biology, patients’ prognosis and response to therapy.
The concept of this manuscript is depicted in Figure 1.
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Figure 1. Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and
circular RNAs (circRNAs) can be extracted directly from plasma or serum or from mononuclear
cells derived from either the peripheral blood or the bone marrow and can serve as prognostic or
predictive biomarkers.

1.1. miRNAs in Hematopoiesis and MDS Pathogenesis

MiRNAs belong to a large family of naturally occurring, endogenous, single-stranded
~22-nucleotide-long non-coding RNAs that interact with their target RNA in a sequence-
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dependent manner, leading to their degradation or translational repression, rendering them
significant regulators of posttranscriptional gene expression [18,19]. More specifically, the
mature miRNA (derived from pri- and pre-miRNA) binds to the Ago2 protein to form the
RNA-induced silencing complex (RISC), which directly suppresses translation of the target
mRNA [20]. Each specific miRNA can target multiple mRNAs, while each mRNA may be
targeted by several miRNAs. To date, more than 3700 human miRNAs have been identi-
fied [21]. MiRNAs are crucial regulators in normal and malignant hematopoiesis [22,23].

HSCs are multipotent, self-renewing progenitors that generate all blood cells [24].
Many genetic and epigenetic regulatory mechanisms are involved in the homeostasis and
differentiation of the normal hematopoietic system, including various miRNAs [20,25].
Chen et al. were among the first researchers to identify three miRNAs, namely miR-
181, miR-223, and miR-142 that were specifically expressed in hematopoietic cells with a
dynamic regulation during the early stages of hematopoiesis. MiRNAs implicated in the
self-renewal of HSC in mouse models were miR-33 [26], miR-99 [27], and miR-125a [28]. In
addition, at least 33 different miRNAs were found to be expressed in CD34+ HSC playing a
role in many different cellular processes and blocking differentiation into mature cells [29].
On the other hand, oncogenic miRNAs (oncomiRs) negatively regulate the expression of
tumor suppressor genes, whereas tumor suppressor miRNAs are negative regulators of
oncogenes [30–32]. The first two oncomiRs that were found to be implicated in cancer were
miR-15a and miR-16a in chronic lymphocytic leukemia with deletion 13q14 [33].

Abnormal expression of miRNAs has also been implicated in MDS in various dif-
ferently prepared samples and using different techniques and statistical methods [34].
For instance, miR-150 plays an important role in the regulation of erythropoiesis and
megakaryocytopoiesis and its deregulation has been linked to MDS development [35,36].
The main target of miR-150 is MYB. MYB or c-Myb is a regulatory transcription factor
of the hematopoietic system and gastrointestinal tract preserving the balance between
cell division, differentiation, and survival [37]. Deregulation of MYB activity has been
associated with several hematologic disorders [38]. In a zebrafish model, hyperactivity of
MYB led to MDS [38]. In another study, investigators found that MYB was a direct target
of miR-150-5p in MDS cells [36]. In these cells, MYB was increased, and its knockdown
significantly inhibited cellular proliferation and diminished the proliferation-promoting
effect of the inhibitor miR-150-5p [36].

Moreover, miR-145 affects megakaryocyte and erythroid differentiation by targeting
Fli-1, a megakaryocyte and erythroid regulatory transcription factor [39]. The miR-17-92 is
a polycistronic miR cluster, consisting of miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and
miR-92a, which is often overexpressed in certain malignancies. This cluster targets the tu-
mor suppressor PTEN and the proapoptotic protein Bim by inhibiting their expression [40].
By targeting the proapoptotic protein Bim, miR-17-92 cluster ensures survival of hematopoi-
etic stem and progenitor cells, playing a crucial role in hematopoiesis [41]. Moreover, two
other members of miR-17-92 cluster namely miR-17-5p and miR-20a that downregulate
E2F1 were found to be underexpressed in high-risk MDS patients constituting favorable
prognostic markers associated with increased overall survival (OS) [42]. In the same
study, investigators found that let-7a, which downregulates KRAS, was underexpressed in
patients with intermediate- or high-risk karyotype [42].

MiR-143/145 differentially modulate HSCs and progenitor activity via suppression
of canonical tumor growth factor (TGF)-β signaling and loss of expression of these miR-
NAs can lead to MDS development [43]. The interaction between HSCs, progenitor cells,
and bone marrow stromal cells is modulated by CXCL12, a chemokine that is regulated
by several different miRNAs [44]. Among them, miR-23a may have a critical role in
MDS pathogenesis by regulating the functional properties of the hematopoietic niche [44].
MiR-10a and miR-10b were found to be overexpressed in CD34+ cells, leading to the upreg-
ulation of TWIST-1 leading to reduced sensitivity to apoptosis [45]. High levels of miR-21
expression in MDS have been reported to mediate hematopoietic suppression by overacti-
vation of TGF-β signaling [46]. Several tumor suppressor miRNAs, including several let-7
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family members, miR-423, and miR-103a, were downregulated in MDS samples with SF3B1,
SRSF2, and U2AF1 (U2AF35) mutations compared to wild type samples, indicating their
role in MDS development [47]. In another study, it was shown that upregulation of miR-
125a in MDS CD34+ cells modulates NF-kB activation and inhibits erythroid differentiation,
rendering miR-125a a potential therapeutic target [48]. This miRNA is supposed to control
the size of the stem cells’ pool by modulating their apoptosis [28]. Finally, mutations in the
epigenetic modifier TET2 are involved in the development of myeloid malignancies [49]
and are a target of miR-22, a miRNA that is upregulated in MDS [50].

1.2. miRNA Deregulation and Cytogenetic Abnormalities in MDS

Cytogenetic abnormalities are very common in both de novo and secondary MDS [7,51].
The deregulation of several miRNAs has been associated with specific cytogenetic ab-
normalities. In particular, miR-595 is localized in chromosome 7 and targets RPL27A. It
has been found to be downregulated in MDS patients with monosomy 7/isolated loss
of 7q (7q-) leading to RPL27A downregulation, p53 activation, apoptosis, and inhibition
of proliferation [52]. MiR-205-5p is encoded by chromosome 1, and its upregulation con-
tributes to MDS development via PTEN suppression, causing MDS cells proliferation [53].
Another miRNA that is located in chromosome 1 with its deregulation involved in MDS
pathogenesis is miR-194-5p, in MDS patients with trisomy 1 [54].

MDS with isolated del(5q) is characterized by anemia and thrombocytosis [39]. Investi-
gators examined the role of miRNAs that are in this region of chromosome 5 and found that
the knockdown of miR-145 and miR-146a resulted in thrombocytosis, mild neutropenia,
and megakaryocytic dysplasia [55]. As discussed above, miR-145 affects megakaryocyte
and erythroid differentiation by targeting Fli-1, a megakaryocyte and erythroid regulatory
transcription factor [39]. Patients with del(5q) MDS were found to have decreased expres-
sion of miR-145 and increased expression of Fli-1 [39]. Overexpression of miR-150 was
also associated with del(5q) MDS contributing to thrombocytosis [56,57]. In another study,
investigators identified 21 different miRNAs that had aberrant expression in del(5q) MDS
patients including miR-34a (upregulated), miR-378, and miR-146a (downregulated) [58].

The t(2;11)(p21;q23) translocation has been associated with the overexpression of miR-
125b, while trisomy 8 was correlated to miR-383 overexpression in MDS patients [59,60].
Kang et al. reported increased expression of miR-661, which is encoded by chromosome
8, in MDS patients via p53 activation [61]. Based on the central role of this protein in
tumorigenesis and its potential pharmaceutical targeting, researchers have recently de-
veloped molecules capable of stabilizing the oncogenic mutant Y220C of p53 in an effort
to overcome its premature degradation and prolong its tumor-suppressive effect, with
promising results for clinical use [62]. Another miRNA located on the same chromosome,
miR-597, induces apoptosis through downregulation of FOS-like 2 (FOSL2) and was found
to be overexpressed in patients with MDS compared to controls, indicating a possible role
in MDS pathogenesis [63].

1.3. miRNAs as Potential Prognostic Biomarkers in MDS

Many studies have investigated the potential prognostic value of several miRNAs
in MDS (Table 1). In one of the first relevant studies, Sokol et al. identified a miRNA
signature of ten different miRNAs that was associated with the IPSS risk category and noted
the prognostic significance of miR-181 family members in lower-risk MDS patients [64].
Recently, miR-181a-2-3p was shown to be an independent prognostic biomarker in MDS
patients in terms of OS [65]. Overexpression of miR-125a was associated with shorter OS
and it was found to inhibit erythroid differentiation in leukemia and MDS cell lines [48].
Additionally, miR-22, which targets the TET2 tumor suppressor gene and its overexpression
both in plasma and in CD34+ progenitor cells, was associated with high-risk subtypes of
MDS, and decreased OS [50,66].

Deregulation of many miRNAs is associated with the progression of MDS and transfor-
mation to AML, which is a synonym for poor prognosis [67]. Specifically, the upregulation
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of miR-196b-5p and downregulation of miR-29b have been associated with increased risk
of AML transformation [68,69]. Similarly, Kirimura et al. found that the downregulation of
miR-29b in MDS bone marrow cells could play a role in the transformation to AML via the
upregulation of the antiapoptotic protein myeloid cell leukemia 1 (MCL-1) [69]. Expression
levels of miR-422a and miR-617 have also been correlated with disease progression in MDS
patients [70]. All members of the miR-320 family (miR-320a, miR-320b, miR-320c, miR-320d,
and miR-320e) have been reported to be overexpressed in MDS patients, and in a series of
82 patients, high levels of miR-320c and miR-320d were related to shorter OS, while the
upregulation of miR-320d was found to be an independent prognostic factor [71].

Furthermore, low levels of miR-194-5p and miR-661 expression have been associated
with decreased OS in MDS patients [54,61]. In a cohort of 41 patients, miR-125b-5p, miR-155-
5p, and miR-181a-2-3p bone marrow transcript levels were found elevated in higher-risk
patients [72] and, likewise, low expression levels of miR-21, miR-126, and miR-146b-5p
have been detected in lower-risk compared to higher-risk MDS patients. Among them,
elevated levels of miR-126 and miR-155 were associated with shorter OS and leukemia-free
survival (LFS), while elevated levels of miR-124a tended to be associated with reduced
survival rates [73].

Peripheral blood-circulating microRNA profiles have also emerged as useful diag-
nostic and prognostic biomarkers for MDS patients [74,75]. In particular, the expression
levels of miR-27a-3p, miR-150-5p, miR-199a-5p, miR-223-3p, and miR-451a were found
reduced in higher-risk MDS patients and the decreased levels of miR-451a and miR-223-3p
were independently associated with a lower progression-free survival (PFS) and OS, re-
spectively [75]. Zuo et al. identified and validated a 7-microRNA plasma signature (let-7a,
miR-144, miR-16, miR-25, miR-451, miR-651, and miR-655) as an independent predictor
of survival in patients with MDS and normal karyotype [74]. Finally, Hrustincova et al.
incorporated the expression levels of miR-1237-3p and miR-548av-5p from extracellular
vesicles in a prognostic risk score, based on data from 42 patients, as they exhibited the
strongest prognostic value in terms of OS [76].

1.4. miRNAs as Potential Predictive Biomarkers of Response in MDS

Several studies have attempted to investigate the potential role of miRNAs as predic-
tors of treatment response in patients with MDS (Table 2). Lenalidomide is an immunomod-
ulatory agent that selectively suppresses the del(5q) clone and is used for the treatment
of lower-risk MDS with del(5q) [6,77]. Downregulation of miR-145 and miR-146, which
are encoded by chromosome 5, plays a crucial role in the development of del(5q) MDS
via increased expression of their target genes, TIRAP and TRAF6, respectively, leading to
inappropriate activation of innate immune signaling [78]. In a phase II single-arm study in
lower-risk MDS patients with anemia, miR-145 and miR-146 were decreased at baseline in
patients with del(5q) MDS and significantly upregulated after 3 and 6 months of treatment
with lenalidomide [79]. In another study, investigators found that the expression levels
of miR-143 and miR-145 were increased during treatment and lenalidomide selectively
abrogated progenitor activity in cells depleted of miR-143 and miR-145, rendering them
potential predictive biomarkers [80]. Similarly, expression of miRNAs clustering to the
14q32 region and proapoptotic miR-34a and miR-34a* was reduced following lenalidomide
administration [81,82].

HMAs are nucleoside analogs used for the treatment of higher-risk MDS and the
prediction of HMA responsiveness is deemed of critical importance [6]. In a study of
27 patients with higher-risk MDS or AML with myelodysplasia-related changes, the investi-
gators examined the predictive value of specific miRNAs, expressed in bone marrow CD34+

cells before and after the administration of azacytidine [83]. Upregulation of miR-17-3p
and downregulation of miR-100-5p and miR-133b at baseline was associated with higher
overall response rate (ORR) while increased levels of miR-100-5p were associated with
shorter OS [83]. Furthermore, deregulation of 30 different miRNAs was observed after the
administration of azacytidine in responders. Specifically, miR-10b-5p, miR-15a-5p/b-5p,
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miR-24-3p, and miR-148b-3p were downregulated in responders after azacytidine treatment
while they remained at the same levels in nonresponders, thus rendering them potential
predictive biomarkers [83]. Mongiorgi et al. recently showed that miR-192-5p specifically
targets and inhibits BCL2 and its overexpression in bone marrow mononuclear cells was
correlated to increased OS and leukemia-free survival (LFS) in MDS patients responding to
combination of azacytidine and lenalidomide [84]. In a recent study, investigators evaluated
the predictive value of miR-22 in MDS patients after HMAs; however, they concluded that
it is not an appropriate predictive biomarker [85].

Regarding circulating miRNAs in the peripheral blood, miR-21 is a potential predictive
biomarker for response to HMA therapy in patients with MDS, since the baseline level of
serum miR-21 was found significantly decreased in responders compared to nonrespon-
ders [86]. MiR-124 is involved in MDS pathogenesis via targeting the cyclin-dependent
kinase 6 (CDK6) gene and was upregulated in response to epigenetic treatments, azacy-
tidine, or the histone deacetylase inhibitor panobinostat in peripheral blood and bone
marrow mononuclear cells [87,88]. In another study of 42 MDS patients, investigators
identified five circulating miRNAs, namely miR-423-5p, miR-126-3p, miR-151a-3p, miR-
125a-5p, and miR-199a-3p, whose combined expression levels in plasma could predict
response to azacytidine therapy [76]. Finally, beyond HMAs, in a recent study, investigators
found that overexpression of exosomal miR-92a (member of miR17-92 cluster) in plasma
promoted cytarabine resistance in MDS/AML by activating the Wnt/β-catenin signaling
pathway, rendering miR-92a both a potential predictive biomarker and a therapeutic target
for patients with MDS [89].

2. Circular RNAs

Circular RNAs (circRNAs) are closed-loop single-stranded RNA molecules that have
proved to be important regulators of gene expression at multiple levels although initially
considered transcriptional byproducts [90]. CircRNAs function as miRNA sponges or traps
that indirectly modulate transcription, interact with intracellular proteins, regulate splicing,
and travel in extracellular vehicles called exosomes, enabling intercellular communica-
tion [91,92]. In the context of normal hematopoiesis, circRNAs show cell-type specificity
and are considered as regulators of blood cell differentiation and maturation [93].

The hypothesis of circRNAs interfering with MDS pathophysiology was supported
by the observation that exogenous inhibition of the spliceosome components, commonly
affected by MDS mutated genes, can cause an imbalance between circular and linear RNA
concentrations within affected cells towards overexpression of the circular molecules [94,95].
Wedge et al. recently reported that specific cancer-associated circRNAs, such as circZNF609
and circCSNK1G3, are upregulated in MDS patients with U2AF1 mutations compared to
unmutated controls [96]. Additionally, global circRNA expression has been found to be
upregulated in the continuum from normal hematopoiesis to clonal cytopenias of unde-
termined significance (CCUS) and further to MDS. Even among MDS patients, a higher
risk group was correlated with increased global circRNA expression and a “Myeloid
Circ Score” was developed based on 14 specific circRNAs with potential prognostic
value to stratify patients in terms of risk and disease outcomes [97]. Another research
group found 145 circRNAs to be upregulated and 224 downregulated in MDS patients
compared to healthy controls. Researchers also suggested that of all these circRNAs,
hsa_circRNA_100352, hsa_circRNA_104056, and hsa_circRNA_102817 could be used as
MDS prognostic biomarkers, since their increased expression was significantly correlated
with poorer OS. Bioinformatics network analysis indicated that these three circRNAs are
probably associated with multiple cancer-related molecular pathways, including Wnt/β-
catenin and PTEN/Akt/mTOR [98,99]. Additionally, circ-ANAPC7 might be another
promising circRNA biomarker, as its expression in MDS patients has recently been shown
to be upregulated, along with the increasing risk group, by IPSS-R [100]. Finally, several
circRNAs are differentially expressed between responders and nonresponders to azacyti-
dine, although only one circRNA, hsa_circ_0006595, is considered a potential predictor for
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response to azacytidine treatment [101]. Whether circRNAs will soon be used in clinical
practice for diagnostic, prognostic, or predictive purposes remains to be answered, given
the need for bone marrow sampling, since the reproducibility of findings in peripheral
blood has not been proven yet.

3. Long Non-Coding RNAs

Long non-coding RNAs (lncRNAs) are a functionally heterogeneous class of thousands
of RNA molecules, each containing more than 200 nucleotides, which are not translated
into functional proteins. They are produced through DNA transcription, either from
genes or intergenic regions (lincRNAs), and have multiple functions including epigenetic
chromatin modifications, regulation of neighboring and distant gene transcription, RNA
splicing, response to DNA damage, sponging miRNAs, and participation in signaling
pathways [102,103]. In the field of normal hematopoiesis, from murine models to humans,
it is known that lncRNAs are expressed in a stage-specific and lineage-specific pattern from
hematopoietic stem cells (HSCs) to mature blood cells in a way that they enable self-renewal
of HSCs, such as H19 lncRNA, but also determine lineage commitment of progenitor
cells, e.g., EGOT lncRNA for eosinophil maturation, in cooperation with transcription
factors [104–110].

After the identification of MEG3 (maternally expressed gene 3) lncRNA hyperme-
thylation in many MDS patients, evidence that linked aberrant expression of lncRNAs
with multiple hematological malignancies, including MDS, began to accumulate. The
aforementioned lncRNA is considered a tumor suppressor whose downregulation has been
associated with poor OS in several solid neoplasms [111–116]. While scientific interest
in lncRNAs was increasing, researchers identified a positive feedback loop in MDS cells
involving lncRNA bc200-miR-150-5P-MYB, which resulted in sustained cell proliferation.
On the other hand, the inhibition of this axis seemed to suppress neoplastic growth of bone
marrow MDS cells, implying potential therapeutic targeting of BC200 [36]. Additionally,
increased expression of the lncRNAs KCNQ10T1 and HOXB-AS3 has been associated with
adverse prognosis in MDS, with the latter pertaining to only lower-risk patients [117,118].
Further basic research and computational analysis revealed a vast number of differentially
expressed lncRNAs between MDS patients and healthy controls, with functions including
cell adhesion, differentiation, and chromatin modifications, mainly through functional
interaction with DNA methylation processes [119,120]. Of these lncRNAs, H19 emerged
as one of the most promising prognostic biomarkers in MDS patients. Interestingly, a set
of 14 lncRNAs were considered as reliable predictive biomarkers to inform about poten-
tial patients’ response to azacytidine [101,120,121]. To improve MDS risk stratification
by connecting laboratory research with clinical practice, Yao et al. developed a scoring
system based on the expression of four lncRNAs with the highest prognostic potential
(TC07000551.hg.1, TC08000489.hg.1, TC02004770.hg.1, TC03000701.hg.1). A higher lncRNA
score was significantly associated with higher bone marrow blast percentage, higher-risk
subtypes by WHO, complex karyotypes, high-risk gene mutations (RUNX1, ASXL1, TP53,
SRSF2, and ZRSR2), as well as shorter OS [122]. Consequently, lncRNAs overall appear
to be promising prognostic and predictive biomarkers for patients with MDS, probably
awaiting their future incorporation in widely accepted prognostic scoring systems to assist
in decision-making.

4. PIWI-Interacting RNAs

PIWI-interacting RNAs (piRNAs), the third major class of small non-coding RNAs, are
single-strand 26–31 nucleotide-long RNA molecules. Their main function, apart from epi-
genetic modifications, was first believed to be the maintenance of germline DNA integrity
through the guidance of PIWI proteins (P-element-induced wimpy testis proteins) towards
silencing transposons, which are mobile parasitic genomic elements [123,124]. Further
research indicated that aberrant expression of specific piRNAs is associated with the de-
velopment and progression of several solid and hematological cancers, as these molecules
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are considered to play a role in continuous proliferative signaling, resistance to apoptosis,
tumor invasion, angiogenesis of malignant tissues, and even resistance to antineoplastic
treatment [125,126]. On the other hand, though, there has been increasing evidence that
aberrant expression of piRNA pathway genes alone might not be adequate for the formation
of piRNA–PIWI silencing complexes with biological impact on tumorigenesis [127].

Although the importance of piRNAs in other hematological malignancies such as
multiple myeloma and classic Hodgkin lymphoma has gathered research interest, data
on MDS have been scarce. The first study of piRNAs in bone marrow cells of patients
with MDS demonstrated a higher expression (9%) of piRNAs in patients with MDS with
refractory anemia (low-risk MDS) compared to patients with MDS with refractory anemia
and excess of blasts—2 (high-risk MDS) and healthy controls (2% and 1%, respectively),
assuming a DNA-protective role of piRNAs in lower-risk MDS [128,129]. Small non-coding
RNA analysis from plasma and extracellular vesicles also showed an upregulation of
specific piRNAs (hsa_piR_019914/gb/DQ597347 and hsa_piR_020450/gb/DQ598104) in
MDS patients compared to controls. Two other piRNAs, hsa_piR_000805/gb/DQ571003
and hsa_piR_019420/gb/DQ596670, were differentially expressed between patients with
low- and increased blasts—MDS. The latter piRNA was also shown to be correlated with
OS with a protective role, but no piRNAs were found to have predictive value about
patients’ response to azacytidine [76]. The biologic interpretation of these findings as well
as the extent to which they can be incorporated in everyday clinical practice remain to be
further elucidated.

5. Ribosomal RNAs

Ribosomal RNAs (rRNAs) are indispensable components of ribosomes, the cell’s
protein-producing machinery. Ribosomes in human cells comprise four rRNAs (28S,
5S, 5.8S, and 18S) and approximately 80 proteins that are assembled into a small (40S)
and a large (60S) subunit through a multilevel process, which mainly takes place in the
nucleolus [130–133].

The dependence of highly proliferative cells, such as the hematopoietic cells, upon
protein synthesis has provided the rationale for extensive research on the role of aber-
rant ribosomal synthesis in several human diseases including hematopoietic neoplasms.
In this context, mutation of Nol9 a ribosomal biogenesis protein required for 28S rRNA
processing was found to affect hematopoiesis in animal models by reducing proliferation
of hematopoietic stem and progenitor cells [134]. Moreover, DNAJC21 mutations were
associated with bone marrow failure with increased tendency to malignancy, attributed
to impaired biosynthesis and cytoplasmic maturation of the 60S ribosomal subunit [135].
Similarly, a whole group of diseases termed “ribosomopathies” arising from congenital or
acquired genetic abnormalities that lead to impaired ribosomal construction and function
have been associated with bone marrow failure and increased risk of hematological ma-
lignancies, such as Shwachman–Diamond syndrome or congenital dyskeratosis [136,137].
Further data supporting the correlation of rRNA deregulation with myeloid neoplasms
indicate the potential role of DDX41, whose germline mutations predispose to myeloid
malignancies, in the processing of pre-ribosomal rRNA to mature rRNA [138]. U2AF1
somatic mutations, commonly detected in MDS patients, apart from altered splicing, are
also believed to cause aberrant ribosomal synthesis, mediated by NPM1, which is consid-
ered a ribosomal biogenesis factor [139]. Finally, bone marrow CD34+ cells from patients
with MDS show decreased rRNA expression compared to controls, which is probably
driven by increased promoters’ methylation of DNA loci coding for these rRNAs (rDNA).
Interestingly, this hypermethylation can be reversed by hypomethylating agents such as
azacytidine and it is therefore implied that methylation status of rDNA could be used as a
predictor of response to treatment with such agents, instead of genome-wide methylation
status, although this hypothesis is yet to be proven [140,141]. Researchers have recently
focused on the study of short RNA fragments cleaved from rRNA, called rRNA-derived
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fragments (rRFs), as they are believed to regulate cellular functions and show sequence
overlap with miRNAs and piRNAs [142,143].

6. Small Nuclear and Small Nucleolar RNAs

Small nucleolar (snoRNAs) RNAs are 60–300 nucleotide-long RNA molecules derived
from coding and non-coding genes and are in the nucleolus of eukaryotic cells. Their
main function is processing of other RNA molecules such as ribosomal RNAs and small
nuclear RNAs (snRNAs) via pseudouridylation and 2′-O-methylation. In turn, snRNAs are
vital components of the spliceosome, the cell machinery that catalyzes pre-mRNA splicing
through intron excision and joining of exons, to form functional mature mRNAs [144].
Additionally, snoRNAs are involved in regulation of alternate splicing and also act like
miRNAs to selectively suppress gene expression [145,146].

In HSCs, snoRNAs expression is supposed to be cell-type-specific and play an im-
portant role in cell homeostasis, self-renewal, and stress response, while their aberrant
expression has been linked to several hematological malignancies, MDS included [147–149].
For example, DDX41 regulates snoRNA processing, ribosomal biogenesis, and protein
synthesis in hematopoietic stem and progenitor cells (HSPCs) and its germline mutation
is known to confer predisposition to clonal myeloid disorders. More specifically, monoal-
lelic DDX41 mutations, as in germline predisposition, increase the risk for age-dependent
hematopoietic defects and confer competitive proliferation advantage to HSPCs. On the
other hand, biallelic DDX41 mutations deregulate snoRNA processing, causing intracellular
accumulation of inappropriately processed snoRNAs; impair protein synthesis; and finally
result in cell cycle arrest. Most of the affected snoRNAs belong to the SNORA family and
are typically involved in RNA pseudouridylation [150]. Similarly, snoRNA U33, which is a
mediator of cell metabolic stress, has been found to be upregulated in MDS patients. More
importantly, this snoRNA was shown to be significantly associated with OS of patients,
albeit no relevant biological explanation is provided [76,151].

Table 1. ncRNAs with prognostic value in MDS.

Class of ncRNAs ncRNA Sample Prognostic Value Reference

miRNAs

miR-125a BM Decreased survival Gañán-Gómez 2014 [48]
miR-22 BM and PB (plasma) Decreased survival Ma 2020 [66]

miR-196b-5p BM Increased risk of
transformation to leukemia Wen 2017 [68]

miR-29b BM Increased risk of
transformation to leukemia Kirimura 2016 [69]

miR-320c, miR-320d BM Decreased survival Wan 2021 [71]
miR-194-5p BM Decreased survival Choi 2015 [54]

miR-661 BM Decreased survival Kang 2019 [61]
miR-126, miR-155, miR-124a BM Decreased survival Choi 2019 [73]

miR-181a-2-3p BM Decreased survival
Liang 2022 [65]

Kontandreopoulou
2022 [72]

miR-125b-5p, miR-155-5p BM Higher risk MDS Kontandreopoulou
2022 [72]

miR-451a, miR-223-3p PB (plasma) Decreased progression-free
survival, decreased survival Dostalova-Merkerova 2017 [75]

let-7a, miR-144, miR-16, miR-25, miR-451,
miR-651, and miR-655 PB (plasma) Association of clusters with

overall survival Zuo 2015 [74]

miR-1237-3p,
miR-548av-5p PB (extracellular vesicles) Decreased survival Hrustincova 2020

circRNAs
hsa_circRNA_100352
hsa_circRNA_104056
hsa_circRNA_102817

BM and PB (MNCs) Wu 2020 [99]

lncRNAs

KCNQ10T1 PB (serum) Zhang 2020 [117]
HOXB-AS3 BM Huang 2019 [118]

H19, WT1-AS, LEF1-AS, TCL6 BM Szikszai 2020 [121]
TC07000551.hg.1 TC08000489.hg.1
TC02004770.hg.1 TC03000701.hg.1 BM Yao 2017 [122]

piRNAs hsa_piR_019420 PB (EVs) Hrustincova 2020 [76]
snoRNAs U33 PB (EVs) Hrustincova 2020 [76]

tDRs tDR-Asp family FFPE preparations Guo 2017 [152]

BM: bone marrow; PB: peripheral blood; MNCs: mononuclear cells; EVs: extracellular vesicles; FFPE: formalin-
fixed paraffin-embedded.
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7. Transfer RNAs and Their Derived Fragments

Transfer RNAs (tRNAs), with their unique stem–loop pattern formed by internal base
pairing, are essentially the carriers of amino acids to the growing polypeptide chain at
the ribosome during translation but are also believed to have additional functions such as
modulation of gene expression and control of cell death. Cleavage of pre- or mature tRNAs
produces the tRNA-derived fragments (tRFs) or tRNA-derived small RNAs (tsRNAs) or
tRNA-derived RNAs (tDRs), which are involved in multiple biological processes including
translational regulation with gene silencing, intercellular communication, cellular stress
response, and immune cell activation, rather than being useless byproducts of tRNA
degradation [153–156].

Specific tRNAs (chr2.tRNA27-GlyCCC, chr.18Trna4-LysCTT) as well as overall tRNA
to rRNA ratio have been found upregulated in marrow cells from MDS patients compared
to controls, and it was assumed that this increase might contribute to decreased pro-
grammed cell death and increased leukemic transformation, since tRNAs are known to in-
hibit cytochrome c activated apoptosis [76,107,128,157]. On the other hand, the SF3B1K700E

mutation commonly seen in MDS seems to reduce translational machinery components,
primarily tRNA synthetases [158]. Another somatic mutation in the mitochondrial tRNA
repertoire, MtRNALeu(UUR), in bone marrow cells is suspected to contribute to ineffective
hematopoiesis [159].

When it comes to tRFs, some of them show enhanced expression while others are downreg-
ulated in MDS cells. Interestingly, the combined expression of 4 tRFs (chr6.tRNA157.ValCAC,
chr11.tRNA17.ValTAC, chrM.tRNA12.TS1, and chrX.tRNA4.ValTAC) in treatment-naïve pa-
tients was found to have predictive value regarding the likelihood of response to treatment,
and this is also the case with one mitochondrial tRNA (MT-TSI), while it is suggested that
tDR-Asp family members could be used as predictors for progression to AML [152,160].

Even posttranscriptional modifications of these non-coding RNAs are suspected to
interfere with MDS pathophysiology. Pseudouridylation by PUS enzymes, for instance,
of mini tRFs containing 5-terminal oligoguanine, was found to regulate the renewal of
human embryonic stem cells and also promote the differentiation of impaired HSPCs in
MDS, indicating a potential therapeutic approach [161–163].

8. Short Interfering RNAs

Short or small interfering RNAs (siRNAs) are 21–25 nucleotide-long RNA molecules
with a crucial role in gene silencing, primarily through mRNA degradation and by promot-
ing heterochromatin formation. These interfering RNAs are produced via the procession
of long double-stranded RNAs or short hairpin RNAs by the DICER endoribonuclease.
The produced double-stranded siRNA is then packed with proteins to form the RISC. One
strand of the RNA is discarded, and the remaining strand guides the RISC towards the
targeted mRNA, which is recognized with perfect complementarity with the siRNA and is
finally cleaved by Ago2 protein of the RISC [164–166].

The well-established way of action of RNA interference has not only made it possible
for researchers to better understand its implications in cancer pathogenesis but also pro-
vided the possibility to utilize siRNAs towards gene expression knockdown with research
and therapeutic purposes. For instance, siRNAs have been used in basic research as tools
to knockdown expression of genes that are commonly mutated in MDS patients, such as
ZRSR2 and antiapoptotic “survivin”, so as to better investigate their role in MDS patho-
physiology [167,168]. Additionally, Mackin et al. showed that compared with azacytidine,
which is a hypomethylating pharmacologic agent, siRNAs targeting DNMT expression
(DNA methyltransferase) proved more efficient at overall demethylation within the ge-
nomic transcription units [169]. Another clue to the potential therapeutic role of siRNAs
came when the siRNA-mediated inhibition of p38a MAP kinase, a mediator of apoptosis
that is constitutively activated in low-risk MDS bone marrow cells, led to in vitro improve-
ment of hematopoiesis from MDS myeloid and erythroid progenitors [170]. It is therefore
implied that siRNAs could provide a means of therapeutically targeting multiple genes
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that are aberrantly expressed in MDS patients, although no such agents have been tested in
MDS patients to date.

Table 2. ncRNAs with predictive value of treatment response in MDS.

Class of ncRNAs ncRNA/Gene Sample Reference

miRNAs

miR-143, miR-145 BM Venner 2013 [80]
miR-145, miR-146 BM Oliva 2013 [79]

miR-34a, and miR-34a* PB (MNCs) Merkerova 2015 [82]
miR-17-3p, miR-100-5p, miR-133b

miR-10b-5p,
miR-15a-5p/b-5p,

miR-24-3p, miR-148b-3p

BM Krejcik 2018 [83]

miR-124 BM Wang 2017 [87]
miR-21 PB (serum) Kim, 2014 [86]

miR-423-5p, miR-126-3p, miR-151a-3p,
miR-125a-5p, miR-199a-3p PB (plasma) Hrustincova 2020 [76]

miR-192-5p BM and PB (MNCs) Mongiorgi 2023 [84]
miR-92a PB (plasma) Li 2022 [89]

circRNAs hsa_circ_0006595 BM Merkerova 2022 [101]

lncRNAs

AC010127.5, CTC-482H14.5,
RP11-557C18.3, RP4-580N22.1,

RP11-419K12.2, MIR4512, MIR3164,
RF00019, RPS6P16, RP11-478C6.2,

RP11-177A2.5, RP4-740C4.7,
AC097382.5, RP11-736I24.4

BM Merkerova 2022 [101]

tRNA/tDRs

chr6.tRNA157.ValCAC
chr11.tRNA17.ValTAC

chrM.tRNA12.TS1 chrX.tRNA4.ValTAC
MT-TS1

chr1.tRNA35.GlyGCC
chr21.tRNA2.GlyGCC

chr19.tRNA9.PseudoTTT

BM Guo 2015 [160]

BM: bone marrow; PB: peripheral blood; MNCs: mononuclear cells.

9. Conclusions

Myelodysplastic neoplasms are very heterogenous in terms of genetic and epigenetic
background, clinical presentation, and prognosis. Treatment decisions are mainly based on
the risk stratification of the patients with the use of validated prognostic scoring systems
such as IPSS-R and most recently IPSS-M. Yet, more biomarkers are needed not only to as-
sess prognosis but also to predict response to therapy. Non-coding RNAs, mostly miRNAs,
have been found to be implicated in normal and malignant hematopoiesis including MDS.
Their role as prognostic and predictive biomarkers is beginning to emerge and deserves
to be further evaluated in large number of patients. Moreover, it is important that experi-
ments are performed in well-preserved and well-defined samples so that reliable data are
generated and safe conclusions drawn.
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