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Abstract

Predation impacts development, behavior and morphology of prey species thereby shaping

their abundances, distribution and community structure. Non-lethal threat of predation, spe-

cifically, can have a strong influence on prey lifehistory characteristics. While investigations

often focus on the impact of predation threat on prey in isolation, tests of its interactive

effects with food availability and resource competition on prey survival and fitness can

improve understanding of costs, benefits and trade-offs of anti-predator strategies. This

study, involving Aedes aegypti mosquitoes as a model organism, investigates both simple

and interactive effects of predation threat during the larval stage on survival, size at and time

to maturity, stored teneral reserves of glycogen, protein and lipid in adults, and adult longev-

ity. Our results show that development times of mosquito larvae were increased (by 14.84%

in males and by 97.63% in females), and size of eclosing adults decreased (by 62.30% in

males and by 58.33% in females) when exposed to lowered nutrition and elevated intraspe-

cific competition, but that predation had no detectable effect on these simple traits. Teneral

reserves of glycogen, protein and lipid and adult longevity were positively correlated with

adult body size. Non-lethal predation threat had significant interactive effects with nutrition

and larval competition on teneral reserves in males and adult longevity in males and

females. The sexes responded differently to conditions encountered as larvae, with the lar-

val environment affecting development and adult characteristics more acutely for females

than for males. The outcome of this study shows how threat of predation on juveniles can

have long-lasting effects on adults that are likely to impact mosquito population dynamics

and that may impact disease transmission.
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Introduction

Ecology plays a crucial role in shaping life history characteristics. Both biotic (e.g., predators,

competitors, parasites) and abiotic (e.g., temperature, humidity) components of the environ-

ment drive adaptations in organisms, resulting in environment-specific phenotypes [1–4]. Pre-

dation in particular has major effects on fitness of prey by impacting their survival, growth and

reproduction [5–8]. These fitness effects select for individuals that invest in adaptive plastic

traits that enable them to avoid predation [9,10]. Predation impacts prey organisms via both

lethal or non-lethal effects [11–13]. While the lethal effect of predation results in prey mortal-

ity, non-lethal effects of predation trigger a suite of morphological, physiological and behav-

ioral responses in prey [14–17]. Both lethal and non-lethal effects of predation can affect prey

distribution and abundance and prey population dynamics, thus producing long-term evolu-

tionary changes in animal communities [5,18,19].

Morphological and physiological responses to non-lethal predation threat are evident in

aquatic organisms with complex life cycles [10,13,15,20,21]. For such organisms, metamor-

phosis may be an opportunity to escape predators of the larval habitat. Well-studied examples

occur among anuran tadpoles. When exposed to risk of predation, tadpoles exhibit altered

body shape and reduced development time [22,23]. While altered body shape can enhance

swimming speed of tadpoles, faster development facilitates escape from the threat-laden envi-

ronment [24–26]. However, these defense strategies have their own costs to prey. Greater

development rate reduces the time spent feeding and growing by tadpoles, resulting in anurans

that are smaller at metamorphosis, thus impacting survival and overall fitness [27,28]. A broad

range of other environmental effects (e.g., food availability, competition, disease) also influ-

ence lifehistory traits [29–32]. Altering development rates or responding to enemies in a nutri-

tion-limited or crowded environment are likely to be physiologically more challenging than in

a nutrition-abundant environment devoid of competition. For instance, organisms metamor-

phosing in crowded or nutrient-limiting larval environments have slower growth and develop-

ment rates and emerge as smaller adults [18,33–35] that are expected to suffer survival and

reproductive costs. Slow growth rates can be a consequence of reduced feeding and selection

of low-food habitats low in predation risk, and such habitat selection can increase inter- and

intra-specific competition [36–39]. Because predation can affect so many aspects of organisms’

lives it seems likely that predation will interact with other ecological factors, making the opti-

mal phenotype context dependent [5,40–42]. In that case, the costs of evading predation under

different conditions are expected to be different and their influence on adult characteristics is

likely context dependent [43,44]. Despite this expectation of multifaceted and context depen-

dent effects of threat of predation, most studies investigating effects of predation threat on

prey focus on behavioral effects and more rarely on prey traits, typically development time,

adult size, and survival, in isolation [5,8,45]. Testing for multifaceted, interactive effects of pre-

dation and other ecological factors could provide a more complete understanding of the costs,

benefits, and trade-offs of antipredator responses. Because we expect responses to predation

threat to be costly, the most interesting potentially interacting factors are those that are related

to the organism’s ability to pay those costs: food availability and population density.

We use a model system of mosquitoes: developing Aedes aegypti larvae exposed to threat of

predation from Toxorhynchites rutilus larvae. Mosquitoes have short but complex life cycles,

rendering them an ideal model system for this study [46,47]. Mosquito larvae often show

behavioral changes on exposure to chemical cues from predation [48–56]. As is true for most

aquatic systems, these chemical cues originate either from injured prey or directly from the

predator [57–60]. Effects of predation threat on larval growth and adult traits of mosquitoes

have been infrequently examined [61–64]. Two-way interactions between nutrition
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availability, competition for resources and larval predation affect development and survival of

mosquito larvae [61,65]. These effects on larvae could subsequently influence adult physiologi-

cal and demographic traits (e.g., energy reserves, size, longevity), and because mosquitoes like

A. aegypti are vectors of human pathogens, these effects may impact the ability of the adult

mosquito to act as a vector [39,66–68].

The aim of this study is to test the hypothesis that nutrition availability and intraspecific

competition for resources interact with non-lethal predation threat to shape life history. We

specifically postulate that impacts of predation threat on adult traits will be more severe when

food is scarce or population density is high. We address this objective using a factorial experi-

ment with three levels of nutrition, two levels of conspecific larval density, and three levels of

non-lethal exposure to predator cues. We analyzed how survival to adulthood, development

rate, adult body size, teneral reserves (glycogen, protein, lipid), and adult longevity were

impacted by these factors. We employ methods derived from existing protocols [69–71] to

quantify stored glycogen, lipid and protein as indicators of adult lifehistory traits and to learn

how complex interactive effects of the larval environmental drive investments in adult body

size and nutritional reserves, and ultimately longevity.

Materials and methods

Eggs of the yellow fever mosquito (Aedes aegypti) from a colony originating from New Orleans

LA, USA, were hatched in deionized (DI) water 24 hours prior to the start of the experiment.

A stock suspension of larval nutrient medium was prepared by adding 1g of freshly powdered

mixture of dog biscuit (Ol’ Roy, Doane Pet food, Brentwood TN, USA: 24% protein, 11% lipid,

57% carbohydrate by dry weight) and yeast (3:2) per 300ml of DI water. The nutrient medium

was then incubated at 25˚C for 24 hours, then passed through a 1.5 mm mesh to remove large

particulates, and dilutions of 30%, 15% and 10% in DI water were used as high, medium and

low nutrition treatments, respectively.

First instar larvae were randomly added to experimental units (0.5 L plastic containers

11.94 cm in diameter and 7.37cm tall, filled with 300 ml of larval nutrient medium; see below)

assigned a combination of 3 nutrition treatments, 3 predator treatments and 2 levels of compe-

tition. In each experimental unit, a PVC pipe enclosure 3.5 cm in diameter containing the

predator treatment was immersed into the nutrient medium. The submerged end of the pipe

was sealed with two layers of nylon mesh (0.6 mm and 0.3 mm) on the inside and outside,

respectively. The mesh ensured that nutrient medium passed freely in and out of the pipe but

prevented mosquito larvae from entering the predator enclosure. The outer 0.3 mm mesh was

removed after all larvae in the container reached the third instar.

Two levels of larval competition (low and high) consisted of initial densities of 26 and 78

first instar larvae per experimental container. The 3 predator treatments were control, simu-

lated predation, and live predation. For live predation, a 3rd or 4th instar T. rutilus larva was

added to the PVC enclosure and offered 10 fourth instar A. aegypti larvae daily. For simulated

predation, fourth instar A. aegypti larvae were crushed with forceps and added to the PVC

enclosure daily. The number of crushed A. aegypti larvae per enclosure was the mean number

of A. aegypti larvae eaten by the T. rutilus larvae across the live predator treatment. In controls,

nothing was added into the PVC enclosure. Two replicate containers were assigned per treat-

ment combination and this experiment (referred to as a ‘block’) was repeated thrice, thus

bringing the total of number of individual containers (experimental units) to 108 (= 2 densities

x 3 predation treatments x 3 nutrition levels x 6 replicate containers). Experimental containers

were housed in an incubator at 25˚C and 80% RH with a 14:10 h day-night cycle. Mosquito lar-

vae were monitored daily at 0000, 0600, 1200 and 1800 hours until adult eclosion. Pupae were

Chronic effects of non-lethal predation
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transferred to individually labelled, mesh-covered glass vials. On eclosion, sex was determined

and wet adult body mass (±1.0 μg) was determined for every second individual using a Cahn

C31 microbalance. Post weighing, individuals were flash frozen in liquid nitrogen and stored

at -80˚C for assays of stored reserves of glycogen, protein and lipids (see below). Remaining

adults were kept alive in individually labelled glass vials, provided with only water, and survival

was monitored every 2 hours until all had died. Post death, wings were dissected and lengths

(from anal lobe to wing tip) were measured to the nearest 0.1 mm.

Biochemical assays

Sample preparation. A frozen mosquito was thawed on ice prior to homogenization in

50 μl of 2% sodium sulfate solution in a 2.0 ml centrifuge tube, and 450μl of chloroform-meth-

anol (1:2 v/v) solution was then added to the homogenized sample. Aliquots of 275μl, 75 μl,

and 150 μl of the homogenate were set aside for glycogen, protein and lipid assays, respectively.

The assays described below were adapted from [71,72].

Glycogen estimation. The homogenate (275μl) was vortexed and centrifuged for 2 min-

utes at 13000 rpm and 4˚C. The supernatant was discarded and the pellet was re-suspended in

100μl of 2% sodium sulfate solution. Care was taken to ensure the pellet disintegrated

completely. In case of very small/loose pellets, the resuspension was heated at 90˚C to let the

supernatant evaporate until it was reduced to 100μl. Following this, 100μl of 2% sodium sulfate

solution was added and the mixture was heated at 90˚C in a dry bath to evaporate remaining

solvent. The dried pellet was then cooled on ice and 1 ml of anthrone was added. The mixture

was vortexed until the pellet completely disintegrated and the mixture was incubated in a 90˚C

water bath for 90 seconds. The mixture was cooled on ice to stop the reaction and absorbance

was measured at 625 nm using D-glucose as the standard. This and all other spectrophotomet-

ric assays were done on a 96-well plate reader (3370; Corning™, USA)

Protein estimation. The homogenate (75μl) was mixed with 600μl of Thermo Scientific™
Micro BCA™ protein assay reagent (23225; Thermo Scientific™, USA) and vortexed for 30 sec-

onds. The mixture was incubated at room temperature for 2 hours and absorbance was mea-

sured at 562 nm using a dilution-series of BSA (611910100; Thermo Scientific™, USA) as

standard. The end product is stable for 15–20 minutes.

Lipid estimation. The homogenate (150μl) was heated at 90˚C in a dry bath until com-

plete evaporation of the solvent. The pellet was then cooled on ice, mixed with 20 μl of sulfuric

acid, heated in a 90˚C water bath for 2 minutes and cooled on ice. Vanillin reagent (480 μl)

was added to the mixture and vortexed. After incubation for 10 minutes at room temperature,

absorbance was measured at 525 nm using dilutions of commercial vegetable oil in chloroform

as a standard. The end product is stable for 30 minutes.

Statistical analysis

In all the analyses except survival to adulthood we analyze responses of males and females sep-

arately, because of the well-known sexual dimorphism in development time, body size, and

adult physiology [73–75]. We thus expect different effects of manipulated variables on the

sexes. This separation also limits the design to only 3 manipulated factors plus their interac-

tions. MANOVA was used to test for effects of nutrition, intraspecific competition and preda-

tion treatments on development time and adult body mass. MANCOVA yielded tests for

effects of three independent variables on stored nutrient reserves with adult body mass as a

covariate. Given the positive correlation between adult body size and longevity, Cox’s propor-

tional hazard model was used to analyze adult longevity with wing length as a covariate to esti-

mate the hazard of death [76]. ANOVA was used to analyze proportion of larvae surviving to

Chronic effects of non-lethal predation
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adulthood across treatment categories. All variables including any covariates were log-trans-

formed in MANCOVA and survival analysis. All the above analyses were performed using

mixed model with the three independent variables being treated as fixed effects and individual

container nested within block-competition-nutrition-predation combination being treated as

random effect. This last random effect represents random variation among individual experi-

mental units receiving the same treatment combinations. It is thus appropriate as the error

term for analysis of effects of manipulated variables and interactions. The assumptions of nor-

mality, homogeneity of variances, and linearity were met in all analyses, and the assumption of

homogeneity of slopes relative to the covariate was tested whenever required using interactions

of experimental factors and covariates. When slopes did not differ significantly, those interac-

tions were omitted from analysis resulting in ANCOVA or MANCOVA. When the slopes

were significantly inhomogeneous, we focus further testing on the differences among treat-

ment groups in slopes relative to the covariate. For MANOVA and MANCOVA we used F sta-

tistics derived from Pillai’s Trace [77,78]. All significant MANOVA and MANCOVA effects

were followed up with multivariate pairwise contrasts [78], with sequential Bonferroni correc-

tion for multiple tests within each MANOVA and MANCOVA at experimentwise α = 0.05

[79]. The contributions of individual dependent variables to significant multivariate effects

were interpreted using standardized canonical coefficients [78]. SAS PROC GLM was used for

all MANOVAs; SAS PROC PHREG was used for longevity analyses; SAS PROC GLIMMIX

was used for analysis of survival to adulthood [77].

Results

Larva–adult transition

Aedes aegypti survivorship to adulthood was significantly affected by intraspecific competition,

nutrition availability, and their interaction, but not by predation treatment, or any of its inter-

actions (Table 1). Proportion of larvae surviving to adulthood decreased significantly with

decreasing nutrition levels at high larval density but was unaffected by varying nutrition avail-

ability at low larval density (Fig 1 and Table 1).

Females

MANOVA yielded significant effects of larval competition, nutrition availability and their

interaction on development time and body mass of female mosquitoes (Fig 2 and Table 2).

None of the main effects or interactions involving predation treatment was significant

Table 1. Survival to adulthood.

Source df F value P
Competition 1,88 471.02 <0.0001

Nutrition 2,88 28.04 <0.0001

Predation 2,88 0.74 0.4808

Comp. × Nut. 2,88 46.70 <0.0001

Comp. × Pred. 2,88 0.76 0.4695

Nut. × Pred. 4,88 0.62 0.6516

Comp. × Nut. × Pred. 4,88 0.23 0.9222

ANOVA results for proportion of Aedes aegypti larvae surviving to adulthood (data pooled across both the sexes,

arcsine (square root) transformed). Significant main effects and interactions are indicated in boldface. Pairwise

contrasts between treatment categories are not included for brevity.

https://doi.org/10.1371/journal.pone.0192104.t001
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(Table 2). Multivariate pairwise contrasts revealed significant differences for nine of the pair-

wise comparisons for effects of nutrition and competition (Table 2). Standardized canonical

coefficients (SCC) for time to eclosion and adult body mass were of opposite signs for most

significant effects, indicating that larval competition and nutrition treatments that decreased

time to eclosion also increased adult body mass (Table 2). Increased nutrition and decreased

intraspecific competition resulted individuals eclosing significantly earlier at significantly

greater adult weight. For females, SCCs for competition-nutrition interaction were both posi-

tive indicating that some combinations yielded positive associations of female development

time and adult size (See Fig 2, compare means for females at high competition-low nutrition

to females at high competition-medium nutrition).

MANCOVA showed that none of the main effects or interactions significantly affected ten-

eral reserve components glycogen, protein and lipid after scaling these components to body

mass, which had a significant effect on reserve components (Table 3). Bigger mosquitoes had

proportionally greater teneral reserves. Standardized canonical coefficients indicated that lipid

contributed the most and glycogen the least to the observed relationship between reserve com-

ponents and adult body mass. The absence of any significant effect of interactions between

independent variables and body mass implies that composition of reserve components is

strongly and consistently related to adult body mass for females (Slopes ± SE for each of three

teneral reserves vs body mass: Glycogen, 0.6511±0.067; Protein, 0.7568±0.078; Lipid, 0.6647

±0.044).

Wing length was strongly and positively related to adult longevity (Table 4) with a hazard

ratio <1.0 (Table 4) indicating that hazard of death decreased significantly per mm increase of

wing length. Nutrition and the interaction of nutrition and competition significantly impacted

adult female longevity; the hazard of death decreased significantly with decreasing intraspecific

competition in ‘low’ and ‘high’ nutrition treatments. Female longevity was further significantly

affected by competition, and two-way interactions of nutrition or competition and predation

Fig 1. Survival to adulthood. Proportion survivorship to eclosion of Aedes aegypti larvae exposed to intraspecific

competition and nutrition treatments. Values plotted are least squares means ± SE pooled across three predation

treatments. Data were statistically tested using ANOVA and significant effects are described in Table 1. Treatment

means associated with the same letters are not significantly different.

https://doi.org/10.1371/journal.pone.0192104.g001
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threat (Fig 3 and Table 4). The hazard of death decreased significantly with an increase in larval

nutrition across all three predator treatments. While the hazard of death for females developing

in nutrition treatments ‘low’ and ‘medium’ are both greater than that in ‘high’, and not different

from each other across the three predator treatments, the magnitudes of the differences are not

consistent. In controls, the differences are larger and the difference in hazard of death between

nutrition treatments ‘medium’ and ‘high’ is relatively small when compared to the other two

predator treatments. No effect of intraspecific competition on hazard of death was observed in

females exposed to live predator treatment (Fig 3). These observed effects of manipulated vari-

ables on longevity of adult females went beyond the significant effect of wing length.

Males

The effects of manipulated variables on development time and adult body mass of males

were similar to those for females. However, the effect of treatments, in general, were rela-

tively more pronounced on females than males; particularly, the effect of treatments on

eclosion time of males was small when compared to that on females (Fig 2 and refer SCCs

in Table 2). Impact of larval competition (SCCs: Male, -0.2550; Female, -0.6267) was rela-

tively greater for development time of females compared to males. Similarly, the effect of

nutrition availability was greater for development time for females than for males (SCCs:

Male, -0.2033; Female, -0.4407 & 1.2982). Effects of predation and all its interactions were

not statistically significant (Table 2).

Fig 2. Time to eclosion and adult body mass. Bivariate plot of least squares means (±SE) for mean adult body mass and mean of median time to

adult eclosion for larval nutrition × intraspecific competition across replicate containers. Data have been presented separately for male and female

mosquitoes across three predation treatments. Data were statistically tested using a mixed model MANOVA and significant effects are described in

Table 2.

https://doi.org/10.1371/journal.pone.0192104.g002
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Body mass of males, as was true for females, had a strong positive relationship to teneral

reserve components. In contrast to females, the interaction of nutrition and predation treat-

ments, and interactions between each of the main effects and body mass had significant

impacts on reserve components in males (Fig 4 and Table 3). This suggests that the slopes for

the relationships of glycogen, protein, and lipid to adult body mass were different for males in

each of the treatment groups (SCCs in Table 3). In Fig 4, several of the panels show that for

combinations of high competition and low or medium nutrition the slope of the reserve vs.

body mass relationship is conspicuously shallower than those for other combinations (e.g.,

control-lipid panel).

The strong positive relationship between wing length and adult longevity was present for

male mosquitoes, and as with females the hazard of death decreased significantly per mm

increase of wing length. This effect of size on male longevity differed significantly among the

18 different treatment combinations (Table 4, interactions with wing length) and generally

Table 2. Time to eclosion and adult body mass.

Source MALE FEMALE

Pillai’s trace

(F)

df P Standardized canonical

coefficients

Pillai’s trace

(F)

df P Standardized canonical

coefficients

Time to

eclosion

Adult body

mass

Time to

eclosion

Adult body

mass

Competition 0.8456 2,65 <0.0001 -0.2550 3.3886 0.7203 2,50 <0.0001 -0.6267 2.4183

Nutrition 0.8837 4,132 <0.0001 -0.2033 3.3954 1.1060 4,102 <0.0001 -0.4407 2.5719

1.2982 0.8553

Predation 0.0563 4,132 0.4339 0.0833 4,102 0.3569

Comp. × Nut. 0.4982 4.132 <0.0001 -0.1556 3.3926 0.6846 4,102 <0.0001 0.8545 2.1090

Comp. H vs. L in Nut.

L

0.4605 2,65 <0.0001 -0.3930 3.3162 0.4719 2,50 <0.0001 1.3385 -0.6033

Comp. H vs. L in Nut.

M

0.5068 2,65 <0.0001 -0.1926 3.3955 0.3817 2,50 <0.0001 -0.2272 2.6756

Comp. H vs. L in Nut.

H

0.8209 2,65 <0.0001 -0.2222 3.3941 0.7920 2,50 <0.0001 -0.0460 2.7093

Nut. L vs. M in Comp.

L

0.1864 2,65 0.0012 -0.2214 3.3942 0.1831 2, 50 0.0064 -0.3257 2.6367

Nut. L vs. H in Comp.

L

0.8436 2,65 <0.0001 -0.1858 3.3954 0.8241 2, 50 <0.0001 -0.0688 2.7077

Nut. M vs. H in

Comp. L

0.7727 2,65 <0.0001 -0.1765 3.3949 0.7496 2, 50 <0.0001 -0.0019 2.7103

Nut. L vs. M in Comp.

H

0.1518 2,65 0.0047 -0.6403 2.9404 0.3988 2, 50 <0.0001 1.3554 0.3897

Nut. L vs. H in Comp.

H

0.5226 2,65 <0.0001 -0.2968 3.3752 0.5101 2, 50 <0.0001 1.2831 3.3752

Nut. M vs. H in

Comp. H

0.3244 2,65 <0.0001 -0.0582 3.3606 0.2698 2,50 0.0004 -0.1739 2.6905

Comp. × Pred. 0.0495 4,132 0.5038 0.0471 4,102 0.6532

Nut. × Pred. 0.0429 8,132 0.9390 0.0733 8,102 0.8642

Comp. × Nut. × Pred. 0.0547 8,132 0.8796 0.2073 8,102 0.1757

MANOVA results and standardized canonical coefficients for time to eclosion and adult body mass of male and female Aedes aegypti mosquitoes. For significant main

effects and interactions, multivariate pairwise contrasts of factor levels are included. Significant effects in MANOVA (significant pairwise comparaisons at

experimentwise α = 0.05; sequential Bonferroni correction) are highlighted in boldface. For significant effects, standardised canonical coefficients for the first and

second (if any) canonical variates are included; the magnitude of standardised canonical coefficients indicate the magnitude of the variable’s contribution to the

significant effects in MANOVA (Scheiner, 1993).

https://doi.org/10.1371/journal.pone.0192104.t002
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(15/18 cases) decreased with size more rapidly than that for females (i.e., the hazard ratio is far-

ther 1.0, Table 4). The best estimate of the overall average wing length hazard ratio for males is

given in Table 4, but this value obscures the significant variation among treatment groups. Pre-

dation treatments interacted with nutrition treatments and wing length to affect male longev-

ity (Table 4, Fig 5). With high nutrition, male size-dependent survival curves were similar for

all predation treatments (Fig 5, High), but with medium and low nutrition, these curves dif-

fered among predation treatments, with simulated predation producing the steepest size-

dependent survival curves (Fig 5, Low, Medium).

Discussion

Our results suggest that interactions between non-lethal effects of predation, larval nutrition

and intraspecific competition reduced longevity of adult females and altered the biochemical

composition of stored nutrients in adult males. Specifically, the interaction between the three

manipulated variables decreased stored glycogen and increased protein and lipid contents in

male mosquitoes. No marked differences were observed between simulated and live predation

treatments. Mosquito larvae exposed to reduced nutrition levels and elevated intraspecific

competition had slowed larval development. They eclosed as smaller adult mosquitoes with

reduced body mass and shorter wing lengths. Longer-winged mosquitoes lived longer and

lighter individuals contained reduced levels of protein, glycogen and lipid. Male and female

mosquitoes responded differently to the conditions they encountered as larvae. The quality of

larval environment affected the development and adult characteristics of females more severely

than those of males.

Table 3. Stored teneral reserves.

Source MALE FEMALE

Pillai’s trace

(F)

df P Standardized canonical

coefficients

Pillai’s trace

(F)

df P Standardized canonical

coefficients

Glycogen Protein Lipid Glycogen Protein Lipid

Body mass 0.2987 3,461 <

0.0001

0.1880 0.6688 1.1385 0.4760 3,313 <0.0001 0.1226 0.5064 1.4514

Competition 0.0171 3,64 0.7735 0.0557 3,49 0.4179

Nutrition 0.1248 6,130 0.2033 0.2240 6,100 0.0596

Predation 0.1639 6,130 0.0801 0.0703 6,100 0.7238

Comp. × Nut. 0.1243 6,130 0.2057 0.1606 6,100 0.2015

Comp. × Pred. 0.1554 6,130 0.0990 0.1451 6,100 0.2625

Nut. × Pred. 0.3302 12,198 0.0226 -4.2610 4.0306 1.4779 0.3202 12,153 0.1211

Comp. × Nut. × Pred. 0.2948 12,198 0.0505 0.2045 12,153 0.5159

B.mass × Comp. 0.0462 3,461 <0.0001 5.4899 -4.9868 0.6345

B.mass × Nut. 0.0798 6,924 <0.0001 5.4174 -5.1631 0.7946

B.mass × Pred. 0.0457 6,924 0.0015 3.7711 -2.9511 0.8267

B.mass × Comp. × Nut. 0.0353 6,924 0.0114 3.4129 -2.2055 -0.0941

B.mass × Comp. × Pred. 0.0113 6,924 0.5137

B.mass × Nut. × Pred. 0.0304 12,1389 0.2886

B.mass × Comp. × Nut. ×
Pred.

0.0807 12,1389 0.0002 -1.9586 1.9082 1.5171

MANCOVA results and standardized canonical coefficients for stored glycogen, protein and lipid content in male and female Aedes aegypti mosquitoes. Significant

effects in MANCOVA are highlighted in boldface. For significant effects, standardised canonical coefficients for the first canonical variate are included; the magnitude

of standardised canonical coefficients indicate the magnitude of the variable’s contribution to the significant effects in MANCOVA (Scheiner, 1993).

https://doi.org/10.1371/journal.pone.0192104.t003
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Studies on larvae of mosquitoes show that survival to adulthood, time to adulthood, and

adult body size are food and density-dependent [39,65,80]. Results from this study are consis-

tent with those findings. Larvae took longer to metamorphose with reduced per capita food

availability, which, in turn, depended on the initial amount of food added to experimental con-

tainers (i.e., nutrition treatments) and density of larvae (Table 2). Food levels across treatments

were not likely a limiting factor early in development and larvae progressed through 1st and

2nd instars synchronously. As larvae consumed the available food, resource depletion gradually

Table 4. Survival analysis.

Source MALE FEMALE

χ2 df P Hazard ratio χ2 df P Hazard ratio

Wing length (WL) 41.2691 1 <0.0001 0.011 48.0419 1 <0.0001 0.136

Competition 9.8957 1 0.0017 17.5327 1 <0.0001

Nutrition 1.7036 2 0.4266 85.4208 2 <0.0001

Predation 3.4656 2 0.1768 3.2561 2 0.1963

Comp. × Nut. 7.7694 2 0.0206 7.2452 2 0.0267

Comp. × Pred. 4.3354 2 0.1144 9.5702 2 0.0084

Nut. × Pred. 10.5986 4 0.0315 9.7766 4 0.0444

Comp. × Nut. × Pred. 3.9103 4 0.4183 3.3134 4 0.5068

WL × Comp. 8.5251 1 0.0035

WL × Nut. 0.4501 2 0.7985

WL × Pred. 4.2570 2 0.1190

WL × Comp. × Nut. 6.5910 2 0.0370

WL × Comp. × Pred. 4.8184 2 0.0899

WL × Nut. × Pred. 10.5450 4 0.0322

WL × Comp. × Nut. × Pred. 4.0026 4 0.4056

Results for the Cox proportional hazards regression analysis of survival data of male and female Aedes aegypti mosquitoes. Significant main effects and interactions

(significant at α = 0.05) are indicated in boldface. Pairwise contrasts between treatment categories are not included for brevity. For the continuous variable wing length,

the hazard ratio is the ratio of hazard rate for a 1 mm increase of wing length. The hazard ratio below 1.0 indicates hazard declines with wing length. Because of

significant differences among treatment combinations in the relationship of longevity to wing length, the wing length hazard ratio for males is merely an overall average

that hides much variation.

https://doi.org/10.1371/journal.pone.0192104.t004

Fig 3. Survival analysis for female mosquitoes. Survival analysis describing predicted survivorship of Aedes aegypti
for intraspecific competition × predation treatments across replicate containers for female mosquitoes exposed to

‘medium’ nutrition treatment. Panels along the Y and X axes represent intraspecific competition and predation

treatments respectively. Data were statistically tested using Cox proportional hazard regression and significant effects

are described in Table 4.

https://doi.org/10.1371/journal.pone.0192104.g003
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intensified competition for food. At low larval densities, different levels of nutrition availability

influenced time to metamorphosis but not survival to adulthood (Fig 1 and Table 1). Nutrition

treatments ‘low’ and ‘medium’ with high density of larvae had reduced per capita food avail-

ability thus resulting in earlier onset of nutrition limitation. Few larvae in these nutrition treat-

ments managed to survive to adulthood (Fig 1 and Table 1), with most dying between 2nd and

4th instars (K.C., personal observations during the study). Density-dependent competition did

not influence survival in high-nutrition treatments as enough food was available for the devel-

oping larvae.

Fig 4. Stored teneral reserves in male mosquitoes. Predicted lines for log (stored teneral reserves–glycogen, protein

and lipid) ~ log (adult body mass) for larval nutrition × intraspecific competition × predation treatments across

replicate containers for male mosquitoes. All variables are log transformed. Data were statistically tested using a mixed

model MANCOVA and significant effects are described in Table 3.

https://doi.org/10.1371/journal.pone.0192104.g004

Fig 5. Survival analysis for male mosquitoes. Survival analysis describing predicted survivorship of Aedes aegypti for

wing length × larval nutrition × predation treatments across replicate containers for male mosquitoes subjected to

‘high’ intraspecific competition. Panels along the Y and X axes represent nutrition and predation treatments

respectively. Data were statistically tested using Cox proportional hazard regression and significant effects are

described in Table 4.

https://doi.org/10.1371/journal.pone.0192104.g005
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Much of the nutrition assimilated in early stages of larval development is allocated towards

structural growth [81]. For metamorphosing insects, such allocations are crucial as they need

to surpass certain physiological checkpoints to progress through each stage of development

[74]. Though little is known about these checkpoints, they seem to be influenced by a suite of

factors like growth rate, nutritional status of developing larvae, body size, temperature, and

noticeably sex of the individual. Male larvae develop and emerge ahead of female larvae—this

gender-specific difference in development rate (protandry), occurs in several insects and other

arthropods where females are monogamous [82]. Theories on sexual and natural selection pre-

dict differential adaptive benefits of protandry for both males and females; males benefit by

mating multiple times and females by enhanced fecundity [68,73]. Previous studies have

shown sex-specific responses to biological interactions in protandrous insects [75,83,84].

Development time for males was not strongly affected by nutrition and density, but adult size

and size-dependent body composition changed dramatically as evident in larvae exposed to

‘low’ and ‘medium’ nutrition and ‘high’ intraspecific competition (Figs 2 and 4). In contrast

female development time and body size both changed dramatically in response to nutrition

and density (Fig 2), but female body composition was very consistently related to adult size

independent of any manipulated variable (Table 3). Being exposed longer to their larval habi-

tats, females bear the brunt of unfavorable conditions relatively more and on average suffer

higher cumulative larval mortality than males. These sex-specific effects could account for the

male-biased sex ratios observed in mosquito populations in the wild [85].

Analyzing the way developing males and females utilize assimilated nutrition is a good

representation of how life history characteristics are shaped by larval conditions in both the

sexes. Body size of adult mosquitoes at emergence increased with food availability in the larval

environment; the magnitude of increase, however, was negatively correlated with the level of

larval competition. In mosquitoes, females are almost always larger as adults than males [86].

Adult males had teneral reserve masses comparable to those in females that are larger in size

(compare nutrient reserves in males and females at any body size). For females, none of the

manipulated variables affected teneral reserve composition relative to body size. In contrast for

males, the relationship between teneral reserve components and body size depended heavily

on the treatment combinations they were exposed to as larvae (Table 3). Of the three reserve

components, lipid is most responsive to larval environmental conditions, followed by protein

and glycogen (SCCs). Lipid reserves are indispensable in structural growth, regulating metabo-

lism and reproduction [87,88]. Quantity of lipid in an individual also indicates the overall

quality of the mosquito’s nutrition reserve. Protein being a structural component contributes

to overall development, increase in biomass and production of seminal fluids [89]. Glycogen

reserves are essential for flight activity [90].

The relationship between adult body size, nutrient reserves and fitness in mosquitoes is well

known [62]. Larger male mosquitoes are successful at acquiring mates early, transfer more

sperm during mating and therefore achieve greater reproductive success [91,92]. Larger female

mosquitoes are better at seeking hosts and using blood meals for production of a clutch of eggs

[93–95]. This largely minimizes the use of teneral reserves for reproductive needs which other-

wise could be used by female mosquitoes in oviposition site selection, immune function, etc.

[96–98]. Moreover, females are efficient in supplementing their teneral reserves with nutrients

extracted from blood meals [99]. Also, adult mosquitoes supplement the need for more

reserves via other mechanisms–glycogenesis and lipogenesis from carbohydrate sources. The

ability to perform these syntheses has a strong positive correlation with body size [100].

Likewise, adult longevity in mosquitoes is positively correlated with amount and quality of

nutritional reserves and body size [66]. Living longer enables male and female mosquitoes to

have multiple reproductive cycles and increases their potential lifetime fitness. Likelihood of
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females becoming vector competent increases with age. Greater longevity therefore enhances

vectorial capacity of the population, although smaller females may in some cases be more sus-

ceptible to infection given exposure [68,101–103]. While nutrient reserves and longevity scaled

consistently with body size in females, the scaling relationship between these dependent vari-

ables and body size differed with treatment combination in males (Figs 3 and 5 and Tables 3

and 4). Thus, because the larval environment impacts body size and nutrient reserves, the lar-

val environment indirectly determines potential for individuals and populations to transmit

pathogens, in addition to affecting fitness of resulting adults.

Main effects of predation threat on ontogeny and lifehistory traits of A. aegypti were not sig-

nificant. Predation threat had significant interactive effects on adult female longevity and adult

male body composition and size-dependent survival, suggesting that non-lethal effects of pre-

dation are dependent on the environmental context in which larvae develop, and are manifest

in adult traits. Predation threat impacts adults to a greater extent when larval food is scarce

and larval densities are high. A few other studies investigating predator-prey interactions in

Aedes albopictus, Aedes triseriatus and Aedes notoscriptus have reported a direct effect of preda-

tion threat on larval survivorship, time to metamorphosis, body size and starvation resistance

of adult mosquitoes [43,62,104,105]. Most Aedes larvae inhabit small ephemeral aquatic habi-

tats such as tree holes and man-made containers, and they need to make the most out of the

available conditions to survive, metamorphose and escape the uncertainties associated with

their habitat. As anti-predatory responses, such as altered behavior, are costly, selection would

favor larvae that stringently assess the habitat using available chemical, visual and tactile cues

to predation risk and respond only when benefits of responses outweigh costs [106,107]. In

this experiment, the Aedes aegypti larvae could detect the caged Toxorhynchites larva chemi-

cally, visually, and perhaps tactilely (via water currents) but could not directly encounter the

predator. However, the larvae were free to contact the physical remnants of predation (e.g.,

predator faeces, victim corpses). Previous work suggests that Aedes larvae respond most

strongly to solid residues of predation [60,108]. Direct predator encounters may elicit a stron-

ger response in A. aegypti, but it is impossible to assess the non-consumptive effects of preda-

tion if freely swimming Toxorhynchites are allowed to have lethal effects on prey.

In summary, the observed effects of non-lethal predation threat are subtle and context

dependent on food and intraspecific larval density. The observed predator effects impinge on

adult body composition (in males) and adult longevity (in females and males), rather than on

the more obvious outcomes of larval development, such as adult size, development time, and

survivorship to adulthood. The effects on female longevity are particularly intriguing as lon-

gevity is directly linked to demography and vectorial capacity. The findings from this study

show clearly how the environments encountered by juveniles can have long-term effects on

adult biology. Such effects are likely to be important for basic understanding of population

and community-level consequences of interactions between organisms and their environment,

and, for mosquitoes, applied understanding of how larval environments impact the disease-

transmitting stage.
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