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Abstract: Crop yield is related to household food security and community resilience, especially in
smallholder agricultural systems. As such, it is crucial to accurately estimate within-season yield
in order to provide critical information for farm management and decision making. Therefore, the
primary objective of this paper is to assess the most appropriate method, indices, and growth stage
for predicting the groundnut yield in smallholder agricultural systems in northern Malawi. We have
estimated the yield of groundnut in two smallholder farms using the observed yield and vegetation
indices (VIs), which were derived from multitemporal PlanetScope satellite data. Simple linear,
multiple linear (MLR), and random forest (RF) regressions were applied for the prediction. The
leave-one-out cross-validation method was used to validate the models. The results showed that
(i) of the modelling approaches, the RF model using the five most important variables (RF5) was
the best approach for predicting the groundnut yield, with a coefficient of determination (R2) of
0.96 and a root mean square error (RMSE) of 0.29 kg/ha, followed by the MLR model (R2 = 0.84,
RMSE = 0.84 kg/ha); in addition, (ii) the best within-season stage to accurately predict groundnut
yield is during the R5/beginning seed stage. The RF5 model was used to estimate the yield for four
different farms. The estimated yields were compared with the total reported yields from the farms.
The results revealed that the RF5 model generally accurately estimated the groundnut yields, with
the margins of error ranging between 0.85% and 11%. The errors are within the post-harvest loss
margins in Malawi. The results indicate that the observed yield and VIs, which were derived from
open-source remote sensing data, can be applied to estimate yield in order to facilitate farming and
food security planning.

Keywords: food security; yield prediction; Malawi; random forest regression; PlanetScope; vegetation
indices

1. Introduction

Groundnuts, or peanuts (Arachis hypogaea L.), which are commonly called the poor
man’s nut, are an important oilseed and food crop for the majority of the global population.
The global yield of groundnuts was estimated to be 47.09 million metric tons in 2019 [1].
Although they are native to South America, China and India together produce most of
the world’s groundnuts, accounting for about 60% of the production and 52% of the crop
area [2]. Recent data show that more than half of the groundnuts that are produced
globally are processed into oil, but a substantial quantity of groundnuts that are produced
in developing countries are marketed domestically [1]. Groundnuts also play a crucial role
in smallholder agricultural systems, including crop rotation, intercropping, and soil health
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through nitrogen fixation [3]. International trade in groundnuts is mainly in the form of
in-shell (pods), shelled (kernels), and meal (cake) [4].

In sub-Saharan Africa (SSA), groundnut yields are generally low, at about 964 kg/ha,
which is far less than the potential yield of up to 3500 kg/ha [5]. The low yield levels of
groundnuts among smallholder farmers in SSA are attributable to various factors, including
abiotic factors (drought and low soil fertility) and biotic factors (including pests, such as
aphids and termites, and diseases, such as groundnut rosette disease, leaf spot, and rust [6]).
In Malawi, as in other countries in SSA, groundnuts are mostly cultivated on a smallholder
basis and account for up to 25% of household agricultural income [7]. The AICC (2016)
reports that in the last decade, groundnut production has been increasing, even though
recent trends show decreasing yield trends. Additionally, during periods of increasing
yield (e.g., from 2009 to 2012 production increased from 985 kg/ha to 1083 kg/ha), the rate
of increase remained significantly below the realizable potential yield of 2500 kg/ha [8].
The underperformance of the groundnut subsector in Malawi is attributable to several
factors, including frequent droughts, low soil fertility, the unavailability of ready markets
for groundnuts and their products, and poor insect, pest, and disease control [7].

In the context of low yields resulting from multiple factors, which are compounded
by increasing food and nutrition insecurity in SSA in general, and in Malawi in particular,
monitoring and estimating groundnut yields is important for making effective farming
decisions [9], for predicting market behavior, and for formulating government policies in
order to help to improve income and address food insecurity [10]. Groundnuts contain high
amounts of protein, which makes them an essential component in the diet of households,
especially in places such as Malawi where the nutrition insecurity rate is about 37% among
children [11]. There is, thus, an increasing need for adopting techniques that allow for
effective monitoring of groundnuts on small farms and the timely forecasting of their
yield for effective farm management, food security planning, and marketing decisions.
Remote sensing has emerged as a cost-effective effective tool for predicting crop yield in a
timely and accurate manner [12,13]. Remote sensing techniques have been used in several
studies in order to predict the yield of various crops, including wheat [9,14], maize [15,16],
rice [17,18], soybean [10,19], and potato [20,21].

These prediction analyses are often conducted using vegetation indices (VIs) that
are derived from either satellite images or unmanned aerial vehicles (UAVs). VIs are
mathematical models that are widely used to evaluate canopy characteristics, such as vigor,
growth dynamics, nutrient levels, and chlorophyll content in vegetation [22,23]. The study
of [24] describes VIs as transformations of spectral bands and wavelengths to allow for the
interpretation of variations in the canopy structure and photosynthetic activities. Since
crop yield is a function of such canopy characteristics, VIs can be used to estimate their
yield [25]. Several studies have taken advantage of the relationship between different VIs
and crop canopy characteristics in order to estimate crop yield. For instance, [14] found
good predictive ability between the soil adjusted vegetation index (SAVI), the normalized
difference vegetation index (NDVI), and soybean grain yield in Brazil, while [26] found a
positive linear relationship between the NDVI and cotton yield. The study of [27] also found
a strong positive correlation between the green normalized vegetation index (GNDVI) and
sugar cane crop. The leaf area index (LAI), which corresponds to one half of the total
green leaf area per unit horizontal ground surface area [28], has been widely used in order
to estimate crop yield. Indeed, [29] concluded that the LAI is a better measurement for
plant density and growth compared to the other VIs. As such, it is an important parameter
reflecting the biochemical status and physical processes of the crop [30]. The LAI can
provide crucial theoretical indicators for crop management, water and fertilizer regulation,
growth and health monitoring, and yield estimation. Several studies have, thus, used the
LAI as a variable in order to estimate crop yield. For instance, [31] monitored and estimated
the yield of wheat using the LAI in Jiangsu Province, China, whereas [32] used the LAI
to predict maize yield with high accuracy in China. In terms of the prediction methods, a
variety of statistical analysis methods, including simple linear regression, multiple linear
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regression, and non-linear regression, have been used [31,33]; however, machine learning
methods, such as the random forest regression, support vector regression, deep learning,
and neural networks, have gained importance [34–37].

While these studies have generally shown a good predictive capacity for crop yield,
it is important to highlight that variations exist in the behavior of the computed indices
based on the location, the climatic conditions (e.g., rainfall, temperature, and illumination),
and the farm management practices. These factors could likely affect the relationship
between the index values and the crop yield. For instance, [38] found that there is a strong
correlation between the illumination conditions and the enhanced vegetation index (EVI)
when they are observed temporally. The study of [39] found spatio-temporal variations
of the NDVI, the SAVI, and the EVI in response to rainfall and temperature in semi-arid
regions, whereas [40] found spatial differences in responses of forests to the El Niño–
Southern Oscillation (ENSO). Furthermore, different soil enhancement methods affect the
crop phenological stages [41,42]. In this case, VIs would likely vary depending on the
management practices on the farm, such as the manure application, the weed control, and
the disease and pest control. In addition, in SSA, where farms are generally small [43],
it is important to understand the characteristics of VIs for their potential for estimating
crop yield. There is, however, a paucity of literature on the use of such VIs for estimating
groundnut yield, especially in the sub-tropical region of SSA, despite the significance of
groundnuts to household nutrition. Present studies have not exhaustively explored the
conditions within the sub-tropical climatic zone.

Consequently, there is a need for yield prediction analysis for farming systems in
SSA. Understanding crop productivity in SSA will allow for a deeper understanding of the
behavior of VIs for developing models that are context-specific and can more accurately
predict the groundnut yield. This study aims to demonstrate the potential for using satellite-
derived VIs in order to conduct a pre-harvest yield prediction in smallholder agricultural
systems in the sub-tropical climatic zone of SSA, such as in northern Malawi. Our goal is
to identify the ideal growth stage and the appropriate method to predict the groundnut
yield within the season in northern Malawi. While some studies have predicted the yield
of other crops using UAVs and Sentinel-2 data in large-scale commercial farming systems
in SSA [44,45], similar studies in smallholder contexts using PlanetScope data to predict
yield are lacking in smallholder agricultural systems. Yet, such studies are needed in
order to guide smallholder farmers and local agriculture officers to plan for perennial
food challenges. This present study contributes to the literature on the application of
geospatial techniques for supporting smallholder food security planning and building
community resilience.

2. Materials and Methods
2.1. Study Sites

The study was conducted on two farmlands located ~25 km apart in the Mzimba
district in northern Malawi (Figure 1). Site 1 is located on latitude −11◦23′41.63′′ S and
longitude 33◦45′56.11′′ E. Site 2 is located on latitude −11◦15′58.24′′ S and longitude
33◦50′53.46′′ E. The soils in the district are uniformly moderately fertile, with gener-
ally medium to light texture, mostly sandy-loam, and loamy, with moderate to good
drainage [46,47]. The sub-tropical climate type prevails in the area and is characterized
by average monthly maximum summer temperatures ranging from 27 ◦C to 33 ◦C. Such
temperatures are suitable for groundnut cultivation [7]. In the winter months, the tempera-
tures drop to between 0 ◦C and 10 ◦C, with June and July being the coldest months. The
unimodal rainfall pattern in the area starts in November/December and ends in April/May,
with an annual range from 650 mm to 1300 mm [48]. The agriculture in the district is
primarily small scale and is highly dependent on the unimodal rainfall pattern, making it
persistently vulnerable to seasonal food insecurity resulting from rainfall variability. The
farmers in the district primarily cultivate on small farms (i.e., farms with an average size of
two hectares). As such, smallholder farming is crucial for local food supply and nutrition
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in the districts and other rural areas in Malawi, where households essentially eat what they
produce. Generally, most crops are planted in early to late December and are harvested
in April/May [46]. The government’s Farm Input Subsidy Program (FISP) has increased
the reliance on chemical fertilizers to enhance soil fertility, even though most smallholder
farmers have difficulty affording it [49]. The heavy reliance on fertilizer has not led to
increased crop yield because fertilizers do not address underlying issues with soil erosion,
deteriorating soil organic matter, and declining soil microorganisms, which all influence
soil health and, ultimately, crop productivity [50,51].
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2.2. Study Design

The two farms on which the yield was measured were selected from two rural com-
munities in the Mzimba district. The farms were small, with areas of 0.78 ha and 0.83 ha
for Sites 1 and 2, respectively. The farm sizes were measured by walking around the
boundaries of the farms with a handheld global positioning system (GPS) device and the
.gpx files were converted to feature polygons. Each field was planted with 20 kg of CG 7
groundnut variety. CG 7 is a high-performing variety that is being promoted for cultivation
in Malawi because of its high yield returns [7]. Both farmers were provided with the same
seed variety for uniformity so that any variation in the yield could be explained by other
factors, including the soils or the behavior of VIs. Six sampling points were identified and
geolocated on each field, with pegs placed at the locations for easy identification. The
number of sampling points was decided based on the size of the farms and the spatial
resolution of the satellite image that was to be used. Since VIs are computed on a per-pixel
basis [52] sampling more than one point in the same pixel would be redundant. The soil on
the farms in both locations was similar [47], therefore, any variation in the yield may be
explained by factors other than the soil. The locations of the sampling points on the fields
were determined by the width and length of the fields.

The planting was carried out on 8–9 December 2019 on Sites 1 and 2, respectively,
during the 2019/2020 planting season. A planting distance of 50 cm by 50 cm was used in
both fields, although the spacing on Site 1 was more erratic. A 5 m2 area was delineated
around each sample point, within which hemispherical photographs were captured during
the fieldwork. Figure 2 shows portions of the field that were captured on the specified dates.
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3. Data Collection and Processing
3.1. Digital Hemispherical Photographs’ Capture and Processing

Between 24 December and 27 February 2020, nine field campaigns were conducted in
order to capture the crop canopy characteristics. By 27 February the crops had passed the
flowering stage and the peak LAI was attained. The peak LAI has been used to accurately
predict crop yield in prior studies [53,54]. During each field visit, downward viewing
digital hemispherical photographs (DHPs) were captured using a NIKON D500 camera
that was fitted with an AF DX Fisheye-Nikkor lens. Fourteen DHPs were captured within
each of the 5 m2 areas around each geolocated sample point. The field campaigns were
scheduled every seven days, and whenever there was cloud-free weather, in order to
facilitate the selection of satellite images for analysis. The photographs were captured
early in the morning or late in the afternoon, under diffuse light conditions, in order to
avoid shadow effects. In addition to the DHPs, from each field, three pictures were taken
from the above-head perspective, across, and along the row in order to allow for a visual
inspection and documentation of the crop characteristics and to observe the phenological
stages of the crops. Weeds are common on farms in the area and can reduce the yield,
conflate with vegetation index values, and affect the accuracy of the LAI and VIs that are
extracted from the remote sensing images. Farmers were, therefore, encouraged to weed
the farms biweekly in order to remove all of the weeds. At each field visit, management
practices, such as pest/disease control and manure or fertilizer application, were recorded
in a fieldwork book.

The DHPs were processed using the CAN-EYE software version 6.4.9 [55]. The
software allows for up to twenty hemispherical photographs to be processed at the same
time. The photographs were analyzed iteratively in the red, green, and blue color space.
The data processing was limited to view zenith angles that were smaller than 60◦ in order
to minimize the number of mixed pixels [56]. We maintained the default values that were
set by the CAN-EYE software for the zenith (2.5◦) and azimuthal (5◦) angle resolutions
because those angles produced the best results. The CAN-EYE software estimates the
LAI using the measures of the gap fraction, which is the transmission of light through
the canopy when considering the vegetation elements as opaque [57]. The software uses
a look-up table (LUT) in order to estimate the LAI from the gap fraction, assuming a
random distribution of phyto-elements within the canopy that is without clumping [58].
The CAN-EYE software allows for the computation of an effective LAI (LAIeff) from the
gap fraction that is estimated from the hemispherical photographs by averaging the gap
fraction across the azimuth and the photographs for each zenithal ring. The true LAI that
was measured using a planimeter was derived from the LAIeff in the following function:

LAI =
LAIe f f

λo
(1)
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where λo is the aggregation or dispersion parameter [58] or the clumping index [28].

3.2. Groundnut Yield Data

The harvesting of the groundnuts was carried out on 6 May 2020, at Site 1 and 4 May
2020, at Site 2. The harvesting was performed when the farmers were ready to harvest the
whole field. In order to assess the yield, all of the crops within the 5 m2 area around each
sampling point were harvested by digging them up with a hoe or pulling the entire plant
out. The number of plants in each 5 m2 area was counted and the pods were hand plucked.
Both the pods and the crop residue were weighed (in kilograms, kg). The pods and the
residue were weighed again after being sun-dried for 10 to 14 days on farmers’ property.
The dried pods were shelled, their moisture content was measured, and both the shelled
nut and the dried shells were weighed. The unshelled weight was used for the modelling,
as has been carried out in other studies [45]. The crops were returned to the farmers after
the yield assessment.

3.3. Satellite Image Acquisition and Vegetation Index Selection

High spatial resolution (3-m resolution) multispectral surface reflectance images were
downloaded freely under the Education and Research programme of Planet Labs. The Plan-
etScope constellation of satellites presently has about 130+ CubeSats (4-kg satellites) that
are operated by Planet Labs [59] The majority of these CubeSats are in a sun-synchronous
orbit, and cross the equator, between 9:30 and 11:30 (local solar time) [60]. The PlanetScope
images have the following four spectral bands: blue (455–515 nm), green (500–590 nm),
red (590–670 nm), and near-infrared (NIR, 780–860 nm). The Level-3B surface reflectance
products that have been atmospherically corrected by Planet Labs using the 6S radiative
transfer model with ancillary data from moderate resolution imaging spectroradiometer
(MODIS) [60,61] were used for this study. Such high temporal and high spatial resolution
data are useful for computing plant biomass and crop biophysical characteristics for preci-
sion agriculture purposes [62,63]. The 10 PlanetScope images that have been used for this
analysis (Table 1) were selected based on the availability of the images, as there was dense
cloud cover in the study location [64]. The images that were captured on dates that were
closer to the harvest date were not included because of our goal of forecasting the yield
before harvest. Moreover, the images at the start of the germination period were excluded
because of the high reflectance from the exposed soil during the inchoate stages of crop
growth. High soil reflectance affects the computed VI values [65,66]. The goal was to extract
the Vis from a combination of all of the images and to use the model that was developed to
predict the yield by using a single image that was captured within the growing season. The
images were, therefore, co-registered using the geoscience extended flow optical Lucas–
Kanade iterative [67] method in the sentinel application platform (SNAP) toolbox. The
GeFolki algorithm allows the registration of images in a nonparametric and dense way.
The images were then stacked into a single multi-band image using the collocation tool
in the SNAP. After stacking all of the images into a multi-band image, a subset was taken
using a defined polygon covering the location of the farmlands. The subset images were
then used for deriving the VIs.

Table 1. Satellite data used for the analysis. All images were at 3-m spatial resolution; they had
4 bands each. All image dates were in 2020.

Site 1 Site 2 Testing Data Yield Prediction

February 22 January 2 February 23 March 7
March 15 February 4 March 31
April 1 February 23

March 7
March 31
April 7
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A total of eight spectral VIs and the in situ LAI were explored in order to determine
their potential for predicting the groundnut yield. These indices were chosen based on the
capacity of the images that were available to compute them, therefore, only the indices
that can be derived from the visible band and the NIR band were chosen for the analysis.
Table 2 presents a description and the authorship of the VIs.

Table 2. Details of selected vegetation indices used to predict groundnut yields.

Index Equation Reference Description

Green Normalized Difference
Vegetation Index (GNDVI)

nir − green
nir + green [68] More sensitive than NDVI to identifying

different concentration rates of chlorophyll.

Normalized Difference Vegetation
Index (NDVI)

nir − red
nir + red [69]

Has the capacity for assessing regional and
global vegetation fluctuations. It is more

sensitive to reflectance from soil background and
tends to saturate for high biomass canopies.

Soil Adjusted Vegetation
Index (SAVI)

(nir − red)
(nir + red + L) × (1 + L) [70] Used to correct NDVI for the influence of soil

brightness in areas with low vegetative cover.

Modified Soil Adjusted
Vegetation Index 2 (MSAVI2)

2 × nir + 1 −
√

(2nir + 1)2 − 8 × (nir − red)
2

[71]
Does not rely on a soil line principle and has a
simpler algorithm. It is mainly applied in plant

growth analysis.

Ratio Vegetation Index (RVI) nir
red [72] Sensitive to green vegetation and is highly

correlated with LAI and leaf biomass.

Difference Vegetation Index (DVI) nir − red [69] Very sensitive to the amount of vegetation and
changes in the soil background.

Transformed Normalized
Difference Vegetation

Index (TNDVI)

√[
nir − red
nir + red

]
+ 0.5 [73] Indicates a better correlation between the

amount of green biomass that is found in a pixel.

Weighted Difference Vegetation
Index (WDVI) nir − λ × red [74] Very sensitive to atmospheric variations and has

a correction factor on the slope of the soil line.

L is the soil brightness correction factor, which was set at 0.5 because of the intermedi-
ate vegetation cover [71] that was provided by the groundnut plants, λ is the slope of the
soil line set at 1.5.

4. Analytical Approach

Three modelling methods were used in order to identify the best approach for predict-
ing the within-season groundnut yield. First, simple linear regressions (SLR) were used to
fit the yield data with the individual VIs and the in situ LAI. Previous studies have shown
that VIs, including the NDVI, the RVI, the GNDVI, the SAVI, and the MSAVI2, are good
predictors of the yields for various crops [10,14,75,76]. The in situ LAI has also been found
to be a good predictor of crop yields in several studies using SLR [54,77,78]. Secondly, a
random forest (RF) machine learning regressions method was used in order to explore the
possible non-linear relationships between the yield, the in situ LAI, and the VIs. The RF
regression is a bagging method that is based on CART (classification and regression tree)
that employs recursive partitioning in order to divide data into many homogenous subsets
(the regression trees) [79]. The algorithm then averages the results of all of the trees. Each
tree is independently grown to its maximum size based on a bootstrap sample from the
training data set (about 70%) without any pruning. In each tree, RF uses randomness in the
regression process by selecting a random subset of variables in order to determine the split
(the random selection of the variables) at each node [80]. In each tree, the ensemble predicts
the data that are not in the tree (the out-of-bag, OOB data, approximately 30%), and by
calculating the difference in the mean square errors between the OOB data and the data
that are used to grow the regression trees, the RF algorithm gives an error of prediction that
is called the OOB error of estimate for each variable [79,80]. The OOB error measures the
importance of the variables by comparing how much the OOB error of estimate increases
when a variable is permuted while all of the others are left unchanged [81]. According



Land 2022, 11, 1752 8 of 19

to [79], the variable importance is evaluated based on how much worse the prediction
would be if the data for that variable were permuted randomly. In this study, the variable
importance plot has been used in order to determine the most influential variables for
predicting the groundnut yields. Two RF models were fitted, one with all of the VIs (RF All
model) and the second with only the five most influential VIs (RF5 model), which were
ranked by the variance importance plot in the varImplot() function in R. Random forests
are easy to train; they have a low sensibility to outliers, a high computational efficiency,
and a robustness against over-fitting [82]. RF regression modelling was performed using
the “randomForest” package. In the RF models, the ntree was set at 500 and the mtry was
set to 3. Tuning the ntree and the mtry parameters did not change the results in any way,
therefore, these default values were maintained for the RF All and RF5 models.

Finally, a multiple linear regression (MLR) was fitted in order to determine the linear
relationship between the observed yield data and multiple variables. In order to address
the problem of multicollinearity, the Pearson correlation coefficient (PCC) of the relation-
ship between the VIs was examined in order to determine the strength of the correlation
among them. The PCCs that were higher than 0.70 showed possible collinearity with other
predictors [83]. The predictors with PCC > 0.70 were eliminated from the MLR. All of
the analyses were performed using the R statistical package, version 4.0.2 [84]. The linear
regression models were built using the lm() function.

The leave-one-out cross-validation (LOOCV) method [85] was used in order to evalu-
ate the model accuracy. The LOOCV is an effective technique for evaluating the general-
izability of regression models and is especially useful in situations with a low amount of
field-measured data [86,87]. The LOOCV allows for the use of the same data for calibration
and validation. In the LOOCV method, the data are divided into k samples (k = total
number of samples that were used for the analysis), and the samples are then removed
one by one. The models were calibrated k times using all of the k samples, except for the
omitted one, and were used to predict the excluded sample. The R2 (Equation (2)) and root
mean square error (RMSE) (Equation (3)) metrics were used to evaluate the model accuracy.
Mathematically, a higher R2 and a lower RMSE represent better model accuracy [88]. The R2

metric represents the proportion of the variance for a dependent variable that is explained
by a predictor variable or the variables that are in a regression model, while the RMSE
characterizes the mean differences between the observed and the estimated values. The R2

and RMSE values were computed as follows:

R2 = 1− ∑(yi − ŷi)
2

∑(yi − y)2 (2)

where yi is the associated observed value in the dataset or is formed in a vector as y =

[y1, ....yn]
T , ŷ is the predicted value of the associated yi, and y is the mean value of the

observed data.

RMSE =

√
∑N

i=1(Predictedi − Actuali)
2

N
(3)

where N is the number of samples and Predictedi is the predicted value for the ith sample
point. Actuali is the actual value of the ith sample point. The RMSE can be interpreted
more precisely when it is compared to the overall value range of the input variables.

The model generating the lowest RMSE from the cross-validation process was used
to generate the yield prediction maps for two growth stages of groundnuts. These were
proposed by [89] to be the R3/beginning pod stage and the R5/beginning seed stage, or
codes 71 and 79 in the development of the fruit and seed phenological stages, respectively
of the BBCH-scale [90]. The two stages are critical points in the phenological cycle of
groundnuts that eventually determine the final yield. The raster:predict() function in R
Studio was applied in order to predict the yield per pixel for the two stages using the
satellite images that are described in Table 2. The writeRaster() function was used to
generate the prediction maps in the .tif format. The final maps were visualized, and the
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cartographic elements were added using ArcGIS 10.7. The sampling points were used to
extract the yield values and the results were compared with the observed yields. The R2

and RMSE metrics were used to assess the accuracy of the prediction.
Additionally, in order to test the usefulness of the model in providing critical informa-

tion for household yields, the model was used to estimate the yield of four farms (labelled
A, B, C, and D) near the study site. The zonal statistics tool in ArcGIS 10.7 was used to
extract the total yield per farm and the results were compared with the total yields that
were reported by the farmers of the four fields. The differences between the two values
were computed in order to determine the degree of accuracy of the model that was used.

5. Results
5.1. Descriptive Statistics for Yield and In Situ LAI Data

There were variations in the groundnut yield for the respective sampling locations
on the two fields. The average yield from all of the sample points was 1.96 ± 0.50 kg/ha
(minimum = 1.28 kg/ha, maximum = 2.56 kg/ha) for Site 1 and 4.25 ± 1.66 kg/ha (min-
imum = 1.78 kg/ha, maximum = 6.61 kg/ha) for Site 2. Figure 3 shows the within-field
yield variations, with sample point B recording the lowest and sample point F recording
the highest yield of the assessed groundnut.
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The in situ LAI for both of the fields showed similar variations. The average in situ LAI
for the period from 24 December 2019, to 27 February 2020, for Site 1 was 0.15 ± 0.02 m2/m2

(minimum = 0.12 m2/m2, maximum = 0.17 m2/m2) whereas that of Site 2 was 0.48 ± 0.10
m2/m2 (minimum = 0.34 m2/m2, maximum = 0.56 m2/m2).

5.2. Relationship between Average Observed Yield and Predictor Variables

Table 3 presents the results of the simple linear regression analysis between the sea-
sonal average groundnut yield and the nine predictor variables. For Site 1, the results show
R2 values ranging between 0.21 and 0.45, with the in situ LAI generating the highest R2 of
0.45 and the GNDVI producing the lowest R2 of 0.21. The results were not significant at the
95% confidence level, indicating a poor predictive power for the data on Site 1.

On the other hand, all of the VIs showed a strong relationship with the groundnut
yield for Site 2. The R2 values ranged from 0.56 (DVI) to 0.89 (WNDVI). The relationship
between the yield and the VIs varied for the two sites, likely because the number of images
that were combined in order to compute the VIs for Site 1 were only three, compared
to six images for Site 2. Figure 4 shows the relationship between the observed and the
predicted groundnut yield for each of the nine variables based on the SLR, using data for
only Site 2. The RMSE values that were derived from comparing the observed yield with
the predicted yield ranged from 0.32 kg/ha for the GNDVI to 0.82 kg/ha (LAI). Since low
RMSE values represent a better accuracy, the results suggest the GNDVI is the best single
VI for predicting the groundnut yields in such smallholder settings. Generally, the result
suggests that all of the indices can predict the yield to a reasonable degree of accuracy. All
of the coefficients for Site 2 were significant at the 95% confidence level.



Land 2022, 11, 1752 10 of 19

Table 3. R2 indicating the relationship between yield (kg/ha) and the predictor variables.

Site 1 Site 2

Variable R2 R2

LAI 0.45 0.70
GNDVI 0.21 0.70
NDVI 0.26 0.65
SAVI 0.26 0.79
DVI 0.26 0.56

MSAVI2 0.25 0.69
RVI 0.27 0.73

TNDVI 0.26 0.59
WNDVI 0.27 0.89
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Figure 4. Groundnut yield (kg/ha) was predicted from the observed groundnut yield and the nine
predictor variables for Site 2.

Only three of the VIs fitted the MLR model due to multicollinearity. The results in
Table 4 show a good relationship between the yield and the TNDVI, the NDVI, and the
RVI (R2 = 0.98, RMSE of 0.18 kg/ha). The variable importance plot (Figure 5), which
was computed in order to identify the most important variables, showed that the TNDVI
was the most influential variable for predicting the groundnut yield, while the DVI was
the least influential variable. Table 4 shows that the RF5 model resulting from the five
most influential variables (TNDVI, NDVI, RVI, MSAVI2, and SAVI) from the variance
importance plot produced a higher R2 (0.82) and a lower RMSE (1.00 kg/ha) and was
statistically significant (p < 0.01, α < 0.05). On the other hand, the RF All model with all nine
of the predictors had a relatively higher RMSE (1.23 kg/ha), a lower R2 (0.35), and was not
statistically significant (p = 0.22, α < 0.05), implying the less important variables degraded
the RF All model. The RF regression results suggest that the models that were fitted with
only the most influential variables were more accurate for predicting the groundnut yield.
Overall, the results suggest that the MLR model outperformed the RF All and RF5 models
in the calibration process, even though it used fewer variables.
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Table 4. Statistics of model calibration using MLR and RF for Site 2.

Variables Model R2 RMSE p-Value

All variables RF All 0.35 1.23 0.22
TNDVI, NDVI, RVI, MSAVI2, and SAVI RF5 0.82 1.00 0.01 **

TNDVI, NDVI, and RVI MLR 0.98 0.18 0.02 **
** Model is significant at the 95% confidence level.
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Table 5 shows the results of the LOOCV validation for the MLR and RF models. The
results show the RF5 model to have an R2 of 0.96 (p < 0.001, α < 0.05) and an RMSE of
0.29 kg/ha. The results for the MLR model produced an R2 of 0.84 and the RMSE was
0.84 kg/ha. Additionally, the coefficients for the variables were statistically significant
(p = 0.02, α < 0.05). The RF All model in Table 4 was not validated because it produced
insignificant coefficients during the calibration stage. The results suggest that the RF5
model outperformed the MLR during the validation.

Table 5. Statistics for the LOOCV of the statistically significant models for Site.

Variables Method R2 RMSE p-Value

TNDVI, NDVI, RVI, MSAVI2, and SAVI RF5 0.96 0.29 0.001 **
TNDVI, NDVI, and RVI MLR 0.84 0.84 0.02 **

** Model is significant at 95% confidence level.

Table 6 shows the results of the application of the two models on different PlanetScope
images that were chosen to coincide with the R3/beginning pod and the R5/beginning
seed growth stage. The results from this test were compared with the observed yield from
experimental Site 2. Only the RF5 model produced significant results (p < 0.001, α < 0.05);
the highest R2 was 0.95 and lowest RMSE was 0.35 kg/ha during the R5 growth stage/code
79 on the BBCH-scale phenological stage. The models were not statistically significant
for the R3 growth stage, and they had high RMSEs and low R2 values compared to the
R5 stage (Table 6). The results suggest that the best stage of growth for the within-season
prediction of the groundnut yield in the study location, in order to obtain accurate results,
is during the beginning seed/R5 stage when using a random forest regression model with
relevant VIs.
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Table 6. Statistics of the relationship between observed yield and predicted yield for Site 2.

Date Growth Stage Model R2 RMSE (kg/ha) p-Value

7 March 2020 R3/beginning pod stage MLR 0.57 0.99 0.08
RF5 0.59 0.97 0.070

31 March 2020 R5/beginning seed stage MLR 0.70 0.66 0.370
RF5 0.95 0.35 0.001 **

** Model is significant at 95% confidence level.

Figure 6 presents the distribution of the predicted groundnut yield per pixel for the
two growth stages for which there were cloud-free satellite images. Similar to the observed
yield, the predicted results have revealed variations at different parts of Site 2. Note the
relationship between the sampling points in Figures 6b,c and 3b above. The sampling
locations where the observed yields were low also appeared to be low on the prediction
maps, indicating a significant correlation between the predictions and the observed yield
during the R5 stage. The areas of high yield also coincide with the areas with high predicted
values. Taken together, Table 6 and Figure 6 explain the potential of using satellite-based
remote sensing data from PlanetScope for predicting the groundnut yield on small farms in
northern Malawi.
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Figure 6. Yield prediction maps using the final MLR models during the (a) R3/beginning pod stage
and the (b) R5/beginning seed stage (7 March 2020, image for Site 2), and the final RF5 models for
the (c) R3/beginning pod stage and the (d) R5/beginning seed stage (31 March 2020, image for Site 2).
The letters on the maps represent sampling points where the LAI and yield were measured.
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Finally, Table 7 presents the results of the comparison between the estimated yield
from the RF5 model using an image that was captured on 23 February 2020, and the total
field reported yield from the four farms. The yield per pixel from the prediction map ranged
from 1.22 kg/ha to 4.56 kg/ha. The results show varying degrees of accuracy between the
estimates and the field reported yield. The model slightly overestimated field A by about
1.44%, B by 0.85%, C by 2.55%, and D by about 11.46%.

Table 7. Comparison of yield collected from the field and the predicted yield based on the RF5 model.
The negatives represent the amount of overestimation by the model compared to the field reported
yields from the four farms.

Farm Reported Yield
(kg/ha)

Predicted Yield
(kg/ha)

Difference
(kg/ha) % Difference

Farm A 3180.72 3226.46 −45.74 −1.44
Farm B 1180.33 1190.31 −9.98 −0.85
Farm C 2400.56 2461.79 −61.23 −2.55
Farm D 140.75 156.88 −16.13 −11.46

6. Discussion

Crop yield prediction using satellite imagery has become a popular method for pro-
viding near-real-time prediction of crop yield for varying degrees of farm size and crop
types, with our findings being consistent with the results of these findings [10,45,91,92].
Overall, the RF5 model, which was based on the five most important variables, outper-
formed the SLR and the MLR models in predicting the groundnut yield in smallholder
farms in the sub-tropical climate zone. Other studies in different climatic zones have found
similar results [10,35,44]. The RF and the MLR models produced accurate results during
the modelling and validation stages, but the RF5 was more robust, with a lower RMSE
and a higher R2 (Tables 4 and 5). The random forest regressions generally more accurately
predicted the crop yields, even with the small sample sizes, as has been found in several
studies [93,94], which likely explains why the RF5 model produced superior results. The
evidence suggests that there are trade-offs between the model accuracy and the time of
growth when the yield prediction is made [16,95]. As such, we predicted the groundnut
yields for two growth stages. The predicted yields in the two growth stages showed that the
R5/beginning seed/development of seed growth stage emerged as the best time to predict
the groundnut yield in the study location. This finding is consistent with the work of [96],
who used OptRX and GreenSeeker sensors to establish that the best period to measure
the groundnut yield variability in Brazil was between 45 days and 75 days after planting,
which coincides with the R5 growth stage. This finding provides important information
that can be used by the agricultural extension officers who deal with smallholder farmers to
non-destructively predict the yield ahead of harvest and to help them to plan for household
food needs and market dynamics. There was no relationship found between the yield
and the variables on Site 1. This may be explained by the lower number of time-series
PlanetScope images (three images) that were combined in order to compute the VIs for the
analysis, compared to the six images on Site 2. There is evidence that combining time-series
satellite data can produce more accurate analysis results [97,98].

The variable importance analysis has identified the TNDVI, the NDVI, the RVI, the
MSAVI2, and the SAVI as the most important variables for predicting the groundnut yield.
When all of the variables were added to the RF model, the R2 was lower, and the model
was not statistically significant at the 95% confidence level. Using the ranking function in
RF reduces the redundancy in the number of variables, which likely explains the failure of
the RF All model to produce statistically significant results. This observation demonstrates
the utility of the RF model as a feature-selection method to identify the best variables for
accurate prediction [99]. The difference in response of the VIs to the groundnut yields likely
explains how different environmental factors, such as soil structure and soil slope, affect the
performance of the spectral indices, which in turn may determine the relationship between
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the VIs and the observed groundnut yield. For instance, [100] have shown that the RVI is the
best index for measuring the vegetation biophysical parameters in low-density vegetation
areas, such as with groundnut plants. The RF model has identified the important context-
specific VIs that were relevant to this study and the general approach that is described in
this manuscript can be applied to other locations in Malawi if a reasonable amount of yield
data is available for building a reliable crop prediction model. This approach could be a
handy decision support tool for agricultural decisions in smallholder contexts on how to
manage and plan for risks in the farming system. It is also worth noting that the data for
Site 1 produced a weak and statistically insignificant correlation between the yield and the
VIs, therefore, they were not used for further analysis. The number of cloud-free images
that were combined in order to generate the VI was lower (three images) compared to
those that were combined for Site 2 (six images). Multitemporal images perform better
in determining crop phenology [101,102], therefore, it is likely that the many images that
were used for Site 2 more accurately captured the full season spectrum of the VI, which
produced higher and more significant correlations with the yield data.

The results from applying the RF5 model onto an independent set of data generated
varying degrees of accuracies for the four farms. One possible explanation of the discrep-
ancy between the field reported yield data by the farmers and the RF5 predicted yield data
could be that the model’s errors resulted in the overestimation, as has been reported in
prior studies [34,103]. It is also likely that the reported yield may have been underestimated
due to post-harvest losses. Harvesting groundnuts in the study context was carried out
by pulling the plants out or digging them up with a hoe. Either way, some pods are likely
to have remained in the ground. Additional losses are also often generated by the hand
plucking of the groundnuts by the farmers. Besides, harvesting crops in the study context is
often carried out by employing communal or extended family labor. The laborers are often
paid using part of the harvested groundnuts rather than with money. These losses could
have affected the final collected yield and may partly explain the discrepancies between
the model’s estimated yields and the field reported yield. Studies by [104] in Malawi have
revealed that farm-level post-harvest losses averaged between 5% and 12% of the farmer’s
total harvest, which is consistent with the findings of this study.

The study results demonstrate the potential for predicting groundnut yield in small-
holder contexts using high resolution satellite-derived VIs. Groundnuts are highly nutri-
tious and in a country such as Malawi where nutrition insecurity is high [11], understanding
the interannual yield patterns is important for planning for household nutrition needs and
farm-level management. Furthermore, being able to predict the crop yields can provide
early warning information of either yield deficits or excesses, which supports advanced
planning. Even though the models have been developed based on a single site in rural
Malawi, the approach that has been described here can be applied to other smallholder
farms in the sub-tropical region and other areas in SSA. The sample size for this study is
relatively small compared to other studies using similar methods in other contexts. This
could have led to false positives or false negatives, which may affect the generalizability
of the results [104]. Given the small farm sizes and the spatial resolution of the satellite
data, however, the sample that was used is representative of the crop conditions on the
farm and the results are, therefore, applicable in such resource-poor contexts. Remote
sensing analysis does not account for the post-harvest losses resulting from the mishan-
dling of the harvested yield. Therefore, the predicted yield may slightly deviate from
reality due to the losses that may occur; however, in the resource-poor smallholder contexts
such results provide important information for planning purposes when trying to address
food insecurity.

7. Conclusions

In this study, we used different methods in order to make a within-season ground-
nut yield prediction in smallholder contexts in SSA. The results suggest that groundnut
yields can be better predicted at the R5 stage of growth using vegetation indices that are
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computed from multitemporal, multispectral remote sensing data and a random forest
regression modelling approach. These findings have practical implications for both public
and private sector policies. First, The Ministry of Agriculture of the Republic of Malawi, in
partnership with local organizations, such as the Soils, Food, and Healthy Communities
(SFHC) organization, can build the capacity of extension officers to predict the yield to a rea-
sonable degree of accuracy in advance of harvesting using publicly available satellite data.
Second, our findings demonstrate the practicality of using high-resolution remote sensing
data and machine learning methods in order to predict yield in smallholder agricultural
systems, which can increase the use of precision agricultural practices among smallholder
farmers in northern Malawi. Employing precision agricultural practices, such as crop yield
prediction, would aid smallholder farmers and other agri-food system stakeholders to
plan and mitigate low yields and crop failures. In addition, integrating this paper’s results
with climate and household health data could provide vital information on household
nutrition and food needs and enable the policymakers to address the food insecurity in
rural Malawi better.

Despite the usefulness of the findings, future studies could improve the generalizability
of the current results by incorporating weather data and soil analysis in order to better
understand the behavior of the predictors. Moreover, images with higher spectral resolution
containing spectral bands, such as the red-edge and the shortwave infrared, could be used
in order to explore a wider range of VIs that can better predict the yield of groundnuts
and other crops. In addition, in the study context, farmlands tend to be small. As such,
using UAVs for more detailed spatio-temporal analysis in order to compare them with the
satellite data models would improve the generalizability of the models. Another limitation
is the use of a relatively small sample (i.e., two smallholder farms) in this study, which may
limit the generalizability of the yield estimation approaches. However, given that ecological
and climatic factors in northern Malawi do not significantly vary from the sampled farms,
the study findings are generalizable across northern Malawi.
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