
Received: 16 April 2023 Revised: 4 July 2023 Accepted: 5 July 2023

DOI: 10.1002/pmic.202300188

RA P I D COMMUN I C AT I ON

Tissue-based absolute quantification using large-scale TMT and
LFQ experiments

HongWang1 Chengxin Dai1,2 Julianus Pfeuffer3 Timo Sachsenberg4,5

Aniel Sanchez6 Mingze Bai1,2 Yasset Perez-Riverol7

1Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China

2State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China

3Algorithmic Bioinformatics, Freie Universität Berlin, Berlin, Germany

4Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany

5Institute for Biological andMedical Informatics, University of Tübingen, Tübingen, Germany

6Section for Clinical Chemistry, Department of TranslationalMedicine, Lund University, Skåne University Hospital Malmö,Malmö, Sweden

7EuropeanMolecular Biology Laboratory, European Bioinformatics Institute,WellcomeGenomeCampus, Hinxton, UK

Correspondence

Yasset Perez-Riverol, EuropeanMolecular

Biology Laboratory, European Bioinformatics

Institute,WellcomeGenomeCampus,

Hinxton, UK.

Email: yperez@ebi.ac.uk

Funding information

EMBL core funding;Wellcome grants,

Grant/Award Numbers: 208391/Z/17/Z,

223745/Z/21/Z; EUH2020 project EPIC-XS,

Grant/Award Number: 823839;

ForschungscampusMODAL, Grant/Award

Number: 3FO18501; National Key Research

andDevelopment Program of China,

Grant/Award Numbers: 2017YFC0908404,

2017YFC0908405; Natural Science

Foundation of Chongqing, China, Grant/Award

Number: cstc2018jcyjAX0225;Wellcome

Trust, Grant/Award Number: 208391/Z/17/Z

Abstract

Relative and absolute intensity-based protein quantification across cell lines, tissue

atlases and tumour datasets is increasingly available in public datasets. These atlases

enable researchers to explore fundamental biological questions, such as protein exis-

tence, expression location, quantity and correlationwithRNAexpression.Most studies

provide MS1 feature-based label-free quantitative (LFQ) datasets; however, growing

numbers of isobaric tandem mass tags (TMT) datasets remain unexplored. Here, we

compare traditional intensity-based absolute quantification (iBAQ) proteome abun-

dance ranking to ananalogousmethodusing reporter ionproteomeabundance ranking

with data from an experiment where LFQ and TMT were measured on the same

samples. This new TMT method substitutes reporter ion intensities for MS1 feature

intensities in the iBAQ framework. Additionally, we compared LFQ-iBAQ values to

TMT-iBAQ values from two independent large-scale tissue atlas datasets (one LFQ

and one TMT) using robust bottom-up proteomic identification, normalisation and

quantitation workflows.
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Proteomics is a powerful tool for understanding the underlying biol-

ogy of cells and tissues. Large-scale cell lines, tumour datasets or

tissue atlases enable researchers to ask fundamental questions about

the proteome, such as protein existence, expression location and

correlation with RNA expression [1–3]. The number of publicly avail-

able datasets continues to expand every year [4], facilitating their

reuse [5, 6] and integration into protein expression resources [7, 8].

Label-free intensity-based absolute quantification (iBAQ) is a robust

and common method to estimate the expression of proteins with-

out the need for a standard reference sample [9, 10]. This method

measures relative protein abundances within a sample and can be

converted to approximate absolute scales, like copy number when

certain assumptions are met. iBAQ protein expression has been only

explored for the label-free data-dependent (DDA) [9] and independent

acquisition (DIA) methods using MS1 [10]. riBAQ is similar to iBAQ

except that each protein’s iBAQ value was normalised to the sum of all

iBAQ values to obtain its riBAQ value [10, 11].

MS2 methods [12, 13], such as spectral counting, can serve as

a proxy for absolute quantification in bottom-up proteomics experi-

ments. Spectral-counting algorithms offer some advantages because

they can be applied directly to the data commonly collected for

identification purposes including tandem mass tags (TMT, multiplex)

experiments. In 2011, Colaert et al. [13] explored three MS2-based

quantitative methods: Exponentially modified Protein Abundance

Index (EmPAI) [14], Normalised Spectral Abundance Factor (NSAF)

[15] and normalised Spectral Index (SIn) [16]. Their findings indicated

that the NSAF method outperformed both EmPAI and SIn in terms of

accuracy and precision [13]. However, spectral counting-based quan-

tification has limitations because it does not use chromatography peak

attributes such as height or area potentially limiting its accuracy and

dynamic range [17, 18]. Ahrné et al. [19] undertook a distinct intensity-

based strategy to calculate iBAQvalues in TMTdatasets, treating them

as label-free datasets. This involved distributing MS1 intensities of all

TMT-labelled features among the individual samples based on the rel-

ative reporter ion intensities. However, this approach is more complex,

as the datasets need to be analysed as label-free experiments and pre-

cursor ion intensities must be extracted. Furthermore, this approach

has not been applied to a large-scale dataset or benchmarked across

different datasets.

Here, we explored an alternative approach to perform absolute pro-

tein expression analysis on TMT datasets using the direct reporter

ion intensities. To assess the accuracy of this method, we employed a

gold-standardmix-proteome dataset (PXD007683) [20] analysed with

both LFQ and TMT methods. We then calculated iBAQ values based

on either MS1 feature or reporter ion intensities (respectively) and

compared the correlation for all quantified proteins. Additionally, we

applied robust normalisation and quantitation workflows to analyse

two large-scale tissue datasets from Jian et al. (TMT – PXD016999) [1]

andWang et al. (LFQ – PXD010154) [2].

iBAQ values were estimated using the MS1 intensities for label-

free experiments, and the reporter ion intensities in the case of TMT

datasets. Feature intensity tables for all analysed datasets were gen-

erated using the quantms (https://quantms.readthedocs.io/) workflow

which enables the analysis of DDA, DIA label-free and TMT datasets

[21, 22]. quantms is a novel workflow that allows performing cloud and

HPC data analysis in a distributed manner [23] and has been already

benchmarkedwith popular tools such asMaxQuant and ProteomeDis-

cover [24]. Each generated feature was the combination of a peptide

sequence, modifications, charge state, sample, fraction, and technical

or biological replicate. Feature intensitieswere normalised using quan-

tile normalisation, the highest intensity for each feature was selected

across replicates (Supplementary Note 1). Then feature intensities

were added together across replicates of the same sample. Finally, fea-

ture intensities were averaged (median) at the peptide sequence level.

iBAQ is computed by dividing the sum of peptide intensities by the

number of theoretically observable peptides of the protein. Each iBAQ

value was normalised to the sum of all iBAQ values for the same sam-

ple (riBAQ) [11, 25]. All analysis steps are included in a Python package

(https://github.com/bigbio/ibaqpy , Supplementary Note 2).

We tested the TMT-iBAQ approach using a mix-proteome dataset

comprising both Human and Yeast samples in multiple concentrations

[20]. The primary objective of the dataset and the original study was

to evaluate the capability of TMT and LFQ approaches in accurately

quantifying fold changes of 3-, 2- and 1.5-fold across the entire dataset.

All parameters for the reanalysis were annotated using the SDRF file

format [26] (Supplementary Note 3). In the present study, we did

not explore the differential expression across samples (as originally

designed by O’Connell et al. [20]) but compared the expression of the

human proteins when using TMT-iBAQ or LFQ-iBAQ.

In the PXD007683 dataset, we quantified a total of 94,804 peptides

and 8401 proteins. There were 33,321 peptides and 6273 proteins

commonly identified using TMT and LFQ approaches; while 18,524

peptides from 392 proteins and 42,959 peptides from 1736 proteins

were quantified using only LFQ or TMT approaches, respectively. The

peptide intensity between both approaches is statistically significantly

correlated for all samples (R > 0.4, Lin’s concordance correlation coef-

ficient [CCC]> 0.02 – SupplementaryNote 4) and the protein intensity

between both approaches shows a correlation coefficient higher than

0.8 (R > 0.86, Lin’s CCC > 0.1 – Supplementary Note 5). The log-scale

iBAQ values for both TMT and LFQ approaches of the PXD007683

dataset were compared, as shown in Figure 1A,B. First, we evaluated

the reproducibility of the two methods across all 11 sample replicates

for both approaches (Figure 1A). Samples analysed with the label-free

method showed a higher coefficient of variation (average CV = 14%),

while TMT samples had an average CV = 10%. The iBAQ values dis-

played a similar distribution across the 11 samples, with a higher

median intensity observed for TMT experiments than LFQ in all sam-

ples (Figure 1A). The iBAQPearson correlation and Lin’s CCC between

the TMT and LFQ approaches is remarkably high (R > 0.84, Lin’s

CCC>0.74). These results demonstrate that the iBAQvalues obtained

from both LFQ and TMT approaches in this benchmark dataset are

highly consistent and reliable. In fact, this result is supported by the

long use of MS2 (based on fragment ion intensities) data for quan-

tification in proteomics experiments by using MRM, DIA or having

found good correlations between precursors and their reporters in

DDA experiments [27].
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F IGURE 1 (A) Boxplot of riBAQ Log-transformed for the 11 samples dataset PXD007683, for both TMT and LFQ approaches. (B) Correlation
between riBAQ values for all quantified proteins between the TMT and LFQ approaches, for dataset PXD007683. iBAQ, intensity-based absolute
quantification; LFQ, label-free quantitative; TMT, tandemmass tags.
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F IGURE 2 (A) Boxplot of riBAQ log-transformed for all tissues shared between datasets PXD016999 and PXD010154. (B) Correlation
between riBAQ values for all quantified proteins between PXD016999 and PXD010154 datasets. iBAQ, intensity-based absolute quantification.

While previous authors [17, 20, 28] have found that LFQ and

TMT methods offer similar performance in terms of accuracy when

analysing the same sample, comparisons of these methods for pro-

teome characterisation between different studies with similar tissue

remain unexplored. We tested this in the reanalysis of two large-

scale human tissue datasets from Jian et al. (TMT – PXD016999) [1]

and Wang et al. (LFQ – PXD010154) [2] (Supplementary Note 3).

Both datasets were analysed using the same database (UniProt human

Swiss-Prot 092022), the quantms workflow and the corresponding

datasets parameters (Supplementary Note 3). For PXD010154, a total
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number of 340,306 peptides and 14,602 proteins were quantified,

while the number of quantified peptides and proteins for PXD016999

were 173,678 and 10,351, respectively. Figure 2A shows the distri-

bution of iBAQ values for all shared tissues between both datasets

(adrenal gland, liver, lung, ovary, pancreas, prostate, spleen, stomach

and testis), while median intensity is higher for TMT experiments com-

pared with LFQ for all tissues except prostate. Figure 2B shows the

iBAQcorrelationbetweenbothexperiments for the shared tissues, and

all tissues show a correlation coefficient higher than 0.80 and a Lin’s

CCC higher than 0.7. The iBAQ values obtained by LFQ and TMT of

these nine tissues had a strong correlation and high consistency. Pre-

viously, Betancourt et al. [29] integrated TMT results with LFQ using

the three most abundant peptides for each protein quantified (TOP3),

but the reproducibility and the correlation between both technologies

were never explored. Using the transformed normalised intensities as

suggested by Jiang et al. [1], instead of the iBAQ values from reporter

ion intensities (as suggested in this research), could negatively affect

the correlation between relative proteome abundances obtained with

LFQ or TMT.

In summary, iBAQ, as previously reported, is a robust and common

method for estimating the relative/absolute expression of proteins.

This study explored and extended the capabilities of the LFQ-iBAQ

approach to perform proteome-wide quantification in TMT datasets

using direct reporter ion intensities. The results showed that the

iBAQ correlation between the TMT and LFQ approaches in different

datasets is high, indicating thepotential of thedirect reporter ion inten-

sity method for relative protein abundance analyses in TMT datasets.

This new approach can enable the future integration of public TMT

and LFQproteomics datasets using intensity-basedmethods instead of

less accurate spectral counting which could improve the accuracy and

reproducibility of proteomics meta-analyses.
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