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Abstract
Streamflow missing data rises to a real challenge for calibration and validation of hydrological models as well as for statisti‑
cally based methods of streamflow prediction. Although several algorithms have been developed thus far to impute missing 
values of hydro(geo)logical time series, the effectiveness of methods in imputation when the time series are influenced by 
different seasonalities and variances have remained largely unexplored. Therefore, we evaluated the efficacy of five different 
statistical algorithms in imputation of streamflow and groundwater level missing data under variegated periodicities and vari‑
ances. Our performance evaluation is based on the streamflow data, procured from a hydrological model, and the observed 
groundwater data from the federal state of Brandenburg in Northeast Germany. Our findings revealed that imputations meth‑
ods embodying the time series nature of the data (i.e., preceding value, autoregressive integrated moving average (ARIMA), 
and autoregressive conditional heteroscedasticity model (ARCH)) resulted in MSEs (Mean Squared Error) that are between 
20 and 40 times smaller than the MSEs obtained from the Ordinary least squares (OLS) regression, which do not consider this 
quality. ARCH and ARIMA excelled in imputing missing values for hydrological time series, specifically for the streamflow 
and groundwater level data. ARCH outperformed ARIMA in both the streamflow and groundwater imputation under various 
conditions, such as without seasonality, with seasonality, low and high variance, and high variance (white noise) conditions. 
For the streamflow data, ARCH achieved average MSEs of 0.0000704 and 0.0003487 and average NSEs of 0.9957710 and 
0.9965222 under without seasonality and high variance conditions, respectively. Similarly, for the groundwater level data, 
ARCH demonstrated its capability with average MSEs of 0.000635040 and average NSEs of 0.9971351 under GWBR1 
condition. The effectiveness of ARCH, originated from econometric time series methods, should be further assessed by other 
hydro(geo)logical time series obtained from different climate zones.

Keywords Streamflow discharge · Hydrological modeling · Missing data · Imputation · Autoregressive conditional 
heteroscedasticity model · Germany

Introduction

One of the essential prerequisites for statistical analysis in 
hydrology is to have a complete time series data (Hamzah 
et al. 2022). For instance, methods such as autocorrela‑
tion function, spectrum analysis and extreme value analy‑
sis based on the generalized extreme value distribution of 
annual blocks or principal component analysis all can be 
applied only to datasets without missing values (Kim and 
Pachepsky 2010; Tencaliec et al. 2015). Typically, data are 
usually collected in observation stations over a given period 
of time (hence time series data) and stored in databases that 
can subsequently be accessed for research purposes.
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However, numerous hydrological and research databases 
contain missing values (Elshorbagy et al. 2002; Yilmaz and 
Onoz 2019; Mesta et al. 2021; Luna et al. 2020) and are 
therefore only of limited use to researchers seeking to apply 
state‑of‑the‑art statistical methods. The reasons behind miss‑
ing data are multiple and often idiosyncratic. They include 
failure of observation station, incomparable measurements, 
manual data entry procedures that are prone to errors, lack of 
financial resources, and also equipment errors (Gyauboakye 
and Schultz 1994; Adeloye 1996; Teegavarapu et al. 2009; 
Johnston 1999; Khampuengson and Wang 2023). To address 
this issue, an important data preprocessing operation—the 
so‑called missing value imputation—should be performed 
(Adeloye 1996; Adeloye et al. 2011; Mwale et al. 2012; Taie 
Semiromi and Koch 2019).

A time series comprising gap/missing data was formerly 
either removed or its missing values were simply substi‑
tuted with mean or zero numbers. As a consequence, a lot of 
information can be lost, thus necessitating to impute missing 
values meticulously (Gill et al. 2007; Oyerinde et al. 2021), 
although it is an unenviable task (Gill et al. 2007). Therefore, 
it is of paramount importance to impute missing data cau‑
tiously and properly, because an impoverished imputation of 
missing data, especially for streamflow time series, would 
result in a poor watershed simulation and therefore, an inef‑
fective water resources management (Bardossy and Pegram 
2014; Benzvi and Kesler 1986).

In dealing with incomplete data, researchers have to find 
a solution to missing data problems as all of the approaches 
listed above can be applied properly only using complete 
data where less information is missing (Dembélé et al. 2019; 
Luna et al. 2020). In this endeavour, researchers often resort 
to imputation methods where missing values are replaced 
with a numerical value that is obtained from a more or less 
sophisticated statistical method and seeks to approximate 
missing values by some predictions.

Over the last decades, imputation methods which attempt 
to ‘fix’ datasets characterized by missing data by replac‑
ing them with inserting numerical values have improved 
dramatically (Peugh and Enders 2004). The rise of more 
sophisticated imputation methods led many researchers to 
prefer replacing missing values with imputed values over 
excluding them from the analysis entirely (Saunders et al. 
2006; Arriagada et al. 2021).

In hydrological settings, the choice of an appropriate 
imputation method needs to take into account the most 
important features of hydrological data (Haile et al. 2023). 
Hydrological data are time series data that is often charac‑
terized by stable trends over time and a high autocorrela‑
tion of the observations. Moreover, hydrological time series 
often display random deviations from these trends and these 

deviations are not constant over time (Guzman et al. 2013). 
Given these features of the data generating process underly‑
ing hydrological data, imputation of missing values should 
be based on statistical time series methods that take into 
account the time series nature of hydrological data.

While thus far several studies have been conducted to 
assess variegated approaches including advanced statistical 
algorithms for imputation of missing values, in particular for 
streamflow data (Elshorbagy et al. 2002; Yilmaz and Onoz 
2019; Mesta et al. 2021; de Souza et al. 2020; Tencaliec et al. 
2015; Khampuengson and Wang 2023; Weilisi and Kojima 
2022; Oyerinde et al. 2021; Chapon et al. 2023), impacts of 
seasonality and periodicity of streamflow discharge on the effi‑
cacy of the imputation methods have been poorly documented.

Imputation of missing values in streamflow data is essen‑
tial for various reasons, especially when dealing with data 
of different periodicities (e.g., daily, monthly, annual). The 
importance of imputation lies in ensuring the accuracy and 
reliability of hydrological analyses, water resources man‑
agement, and environmental decision‑making (Arriagada 
et al. 2021; Haile et al. 2023). Overall, the imputation of 
missing values in streamflow data is crucial for maintain‑
ing data integrity, supporting hydrological analyses, and 
aiding informed decision‑making in various water‑related 
sectors. It enables us to gain a better understanding of water 
resources, adapt to changing hydrological conditions, and 
mitigate the impacts of water‑related hazards (Chapon et al. 
2023; Baddoo et al. 2021).

Thus, in the present study, we assess the efficacy of sim‑
ple and advanced statistical approaches in the imputation of 
streamflow time series imparted by artificially variegated 
variances and seasonalities. To that end, we employ impu‑
tation techniques that are widespread and easy to use, but 
ignore the time series nature of the data in comparison with 
imputation techniques exploiting the time series nature of 
hydrological data. In particular, we are interested in the per‑
formance of advanced statistical techniques such as Autore‑
gressive Moving Average/Autoregressive Integrated Moving 
Average (ARMA/ARIMA) and Autoregressive Conditional 
Heteroscedasticity (ARCH). Although the former has been 
widely used in hydrological studies (e.g., Zhang et al. 2011), 
the application of the latter in hydrological studies and in 
particular for imputation of streamflow/groundwater missing 
values has not been reported as of yet. Indeed, ARCH has 
originated from finance and econometrics and thus its suit‑
ability in hydrological studies should be appraised.

The remainder of the paper proceeds as follows: first, 
we describe Materials and methods including Study area, 
second, in the Results and Discussion section, we evalu‑
ate how different imputation techniques perform under 
different conditions and discuss our findings. The paper 
concludes with a summary of the key findings and a short 
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presentation of the most important implications of this 
study.

Materials and methods

Study area

The spatial scope of this study is the federal state of Branden‑
burg located in Northeast Germany (Fig. 1). Brandenburg is 
located within the Northeast German lowlands between the 
rivers Elbe and Oder draining to the Northern Sea and Bal‑
tic Sea, respectively. According to climate projections, it is 
located in the transition zone between increasing streamflow 
in northern Europe and decreasing streamflow in southern 
Europe.

Time series of observed precipitation, evapotranspira‑
tion, temperature spanning from November 2001 to October 
2006 from the Karthane catchment at the gauging station 
in Bad Wilsnack region were chosen (Fig. 1). The whole 
area, excluding Berlin in its center, is 29,479  km2 and has a 
population of 2.5 million.

In this region, forest area constitutes 35% of the landuse. 
Agricultural land is another main landuse type with 34% 
cropland and 9% pasture. With a mean annual precipitation 
of 557 mm and a mean annual temperature of 8.7 °C (period: 
1960–1990; German Weather Service 2012), it is one of the 
areas with the lowest climatic water balance in Germany. 
Due to high climatic water demand, the evapotranspira‑
tion here is approximately 510 mm per year, only leaving 
100 mm per year as runoff (Lischeid and Nathkin 2011).

The runoff exhibits substantial spatial variability, depend‑
ing on local meteorological conditions. Groundwater flow 
and groundwater discharge into rivers and channels are the 
dominating hydrological components of the regional water 
cycle. About 80% of total annual streamflow discharge 
occurs as baseflow, whereas surface runoff contributes only 
a minor fraction, accounting for less than 20% of the total 
streamflow discharge (Merz and Pekdeger 2011).

The whole region is part of a postglacial landscape, 
formed since the last Pleistocene glaciations. Low gradi‑
ents across the land surface accompanied by large number 
of closed postglacial depressions, i.e., kettle holes (Kal‑
ettka and Rudat 2006) and periglacial channels that expose 
locally raised relative relief. These hummocky terrains form 
a hydrogeologically complex interplay between groundwater 
and water bodies, including streams and kettle holes (Vyse 
et al. 2020).

Moreover, the region exhibits a wide array of anthropo‑
genic impacts on the fresh systems. These include weirs, 
dams, and flood protection, resulting in extensive use and 

alteration of regional freshwater quantity and quality. Due to 
these specific characteristics, observed discharge time series 
are disturbed by anthropogenic influences.

Thus, to assess different imputation methods relying on 
more representative reference data and more importantly to 
appraise the impacts of artificial seasonalities and variances 
imparted to the streamflow data on the performance of impu‑
tation methods, we construct discharge time series using a 
hydrological model. This allows us to simulate discharge as 
the reference data that is more likely to reflect common char‑
acteristics as hydrological time series. For a more detailed 
description and overview on hydrological changes within 
this landscape, we refer to Merz and Pekdeger (2011) and 
Germer et al. (2011).

Methodology

Researchers can replace missing values by applying impu‑
tation methods that yield approximations for the missing 
values derived from the observed data points. There is a 
multitude of imputation methods available for this purpose 
and it is not always clear which of the different methods will 
deliver more satisfactory results in specific applications. We 
propose a simple research design that allows us to evalu‑
ate the performance of different imputation techniques in 
hydrological settings.

The basic idea of our research design is to use discharge 
time series data that can be found typically in hydrological 
applications as reference data. To evaluate different impu‑
tation methods, we randomly replace a certain fraction of 
the observations of the reference data with missing values. 
These missing values will then be replaced by approxima‑
tions obtained from different imputation methods. Compar‑
ing the reference time series data with the imputed time 
series will allow us to draw conclusions regarding the per‑
formance of different imputation methods.

Despite this clear structure, it is hard to directly imple‑
ment this research design for one simple reason: for most 
of our study regions complete discharge time series for 
variables of interest hardly exists. The available data often 
are either characterized by some missing values or with 
specific values that keep repeating for consecutive days or 
even weeks, which are used as substitute for missing values. 
Therefore, we adjust the basic idea of our research method‑
ology slightly.

To obtain reference data that does not suffer from miss‑
ing values itself, we resort to using output discharge data 
obtained from a hydrological model. This simulated dis‑
charge data is likely to reflect common characteristics of 
hydrological data found in typical applications. In the fol‑
lowing, we detail the single steps of our research design, 
which is also summarized in Fig. 2.
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Fig. 1  a The geographical location of the Brandenburg State on the 
Germany map; b the position of the Karthane catchment, its gauging 
station (Bad Wilsnack), and the observation well (GW23) for which 

the imputation of streamflow and groundwater missing data was con‑
ducted, respectively
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Data

To simulate discharge data, we  rely on time series of evapo‑
transpiration, observed precipitation, temperature, collected 
from the gaging stations in Bad Wilsnack region (Fig. 1) 
for 5 years (from November 2001 to October 2006). The 
dataset was provided by the Leibniz Centre for Agricultural 
Landscape Research (ZALF).

Moreover, to learn more about the performance of various 
imputation methods, we  vary the characteristics of the input 
data to simulate reference data with different features. In 
particular, we vary the variance of the original precipitation 
data (P_seasonal) and generate three different precipitation 
time series: (1) one with low variance (P_low); (2) one with 
high variance (P_high); and (3) one time series whose vari‑
ance is preserved, but white noise is added (P_noise). Simi‑
larly, we remove seasonality from the original precipitation 
time series (P_seasonal) and obtain precipitation time series 
without clear seasonality (P_nonseasonal). Therefore, we 

force the hydrological model with five sets of inputs, which 
have been subject to artificial nuances.

We use the Byråns Vattenbalansavdelning (HBV) model 
to simulate a time series of daily discharge Qt

s
 , which serves 

as a reference data for the evaluation of different imputation 
methods. The HBV model requires daily precipitation, tem‑
perature, and evapotranspiration as input data. The datasets 
have been obtained for the study region described above for 
a period of 5 years (November 2001 to October 2006).

Figure 3 presents the time series of the evapotranspira‑
tion and observed temperature over the observational time 
period. As illustrated, both time series are characterized by 
typical seasonality patterns with low temperatures and low 
evaporation during winter months.

Figure 4 presents the time series of the observed precipi‑
tation between November 2001 and October 2006. It should 
be noted that Fig. 4 contains two time series. First, P_sea‑
sonal is the original time series of precipitation. Second, 
we de‑trended P_seasonal by removing seasonal effects on 

Fig. 2  The methodological steps designed for assessment of 5 algorithms for imputation of missing values
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a monthly basis, yielding P_nonseasonal. We de‑trend the 
time series to simulate discharge time series with different 
structural characteristics using the HBV model. This allows 
us to gain insights into performance differences of the impu‑
tation methods, depending on structural characteristics of 
the time series to be imputed.

Since, in this study, we use data from only one catch‑
ment, i.e., the Karthane catchment, we further manipulate 
the original precipitation data with regard to its volatility to 
gain further insights how the different imputation methods 
perform under different conditions.

Figure 5 indicates additional manipulations of the origi‑
nal precipitation data which differ according to the variance. 
The first manipulation consists of replacing all values of 
the original time series that are higher than 10 mm by zero 
to generate a novel time series with low variance (P_low). 
Second, and departing from the derived P_low, we increase 
its variance (and mean) by multiplying P_low with a con‑
stant multiplier and obtain an additional time series P_high. 
Finally, we preserve P_high’s variance but add white noise.

White noise here refers to an error term or shock which 
is drawn from a normal distribution with zero mean and 
finite variance. Adding independent draws from such a 
normal distribution to each daily observation yields an 
additional time series P_noise having the same mean as 
P_high, but higher variance due to the addition of the ran‑
dom component. Note that Fig. 5 displays P_low, P_high 
and P_noise over the full 5‑years period (upper half), but 
also contains a presentation over only 3 months (Janu‑
ary 2002 to March 2002) (lower half). The latter makes 
typical precipitation patterns and the differences between 
the three time series visible in a clearer way. Using these 
different time series as input data for the HBV model 
described below allows us to simulate discharge data that 
reflects different characteristics despite the fact that we 
work with data from only one catchment (the Karthane 
catchment). To further evaluate the effectiveness of the 
imputation method, we employ groundwater time series, 
which observed in the vicinity of Lake Bötzsee (Fig. 1). 
The region is about 20 km northeast of Berlin, also in 

Fig. 3  Time series of temperature and evapotranspiration input. Note that the left vertical axis contains the temperature scale in degree Celsius, 
whereas the right vertical axis contains the scale for evapotranspiration in mm/day

Fig. 4  Precipitation input data 
with/without seasonality
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Brandenburg in Northeast Germany in the time period 
from January 2012 to May 2014.

Simulation of the streamflow discharge

We use the observed temperature, evapotranspiration and 
the five different patterns of the precipitation time series 
described above to simulate discharge data using the HBV 
hydrological model (Fig. 6). The use of the different pre‑
cipitation time series allows us to generate reference data 
exhibiting different patterns of variance and seasonality. 
These differences help us to identify under which conditions 
imputation methods might perform differently.

The HBV hydrological model has a long history and the 
model has found applications in more than 30 countries. 
Its first application dates back to the early 1970s (Berg‑
ström and Forsman 1973). Originally, the HBV model was 
developed at the Swedish Meteorological and Hydrological 

Institute (SMHI) for runoff simulation and hydrological fore‑
casting, but the scope of applications has increased steadily 
(Bergström and Singh 1995; Li et al. 2014; Killingtveit and 
Sand 1990; Renner and Braun 1990; Osuch et al. 2019).

The model simulates daily discharge using daily precipi‑
tation, temperature and potential evaporation as input. Pre‑
cipitation is simulated to be either snow or rain depending on 
whether the temperature is above or below a threshold tem‑
perature, TT (°C). All precipitation simulated to be snow, i.e., 
falling when the temperature is bellow TT (°C), is multiplied 
by a snowfall correction factor, SFCF. Snowmelt is calculated 
with the degree‑day method according to Eq. 1:

Melt water and rainfall are retained within the snowpack 
until it exceeds a certain fraction, CWH, of the water equiva‑
lent of the snow. Liquid water within the snowpack refreezes 
according to Eq. 2:

(1)melt = CFMAX(T(t) − TT).

Fig. 5  Generated precipitation input data with variegated variances
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Rainfall and snowmelt (P) are divided into water filling 
the soil box and groundwater recharge depending on the 
relation between water content of the soil box (SM (mm)) 
and its largest value (FC (mm)) following Eq. 3:

Actual evaporation from the soil box equals the potential 
evaporation if SM/FC is above LP, while a linear reduction 
is used when SM/FC is below LP (Eq. 4):

Groundwater recharge is added to the upper groundwa‑
ter box and to the water percolates from upper to the lower 
groundwater box. Runoff from the groundwater boxes is 
computed as the sum of two linear outflows by linear reser‑
voir function (Eq. 5):

(2)refreezing = CFR ⋅ CFMAX(TT − T(t)).

(3)
recharge

P(t)
=

(
SM(t)

FC

)BEAT

.

(4)Eact= Epot ⋅min

(
SM(T)

FC ⋅ LP
, 1

)

.

The recession components threshold of upper groundwa‑
ter box is defined by a linear drainage equation. The runoff 
is finally transformed by a triangular weighting function to 
give the simulated runoff according to Eq. 6:

where P(t), T(t), SM(t), QGW(t) and Qsim(t) are precipita‑
tion, temperature, soil moisture, groundwater discharge and 
simulated discharge at time t. CFMAX, CFR, FC, LP, K1, 
K2, � and MAXBAS are model parameters.

For both snow and soil routine, calculations are per‑
formed for each different elevation zone, but the response 
routine is a lumped representation of the catchment. The list 
of the model parameters are given in Table 1.

(5)QGW (t)
= Q1 + Q2 = K1 ⋅ UZ

1+� + K2 ⋅ LZ.

(6)
Qsim(t) =

MAXBAS∑

i=1

(

∫
i

i−1

2

MAXBAS

−
||
||
u −

MAXBAS

2

||
||

4

MAXBAS2
du

)

⋅ QGW(t−i+1),

Fig. 6  The Architecture of the 
HBV model
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Application of imputation methods

We randomly delete a given fraction of the simulated dis‑
charge time series obtained from the HBV model. In par‑
ticular, in different steps we delete 5%, 10%, 20%, 30% 
and 40% of the data. Subsequently, we impute the missing 
values applying five different imputation techniques to fill 
the missing values with approximations. We apply impu‑
tation techniques commonly used in hydrology, including 
arithmetic mean, ordinary least squares (OLS) and preced‑
ing value (PV), but also more advanced imputation tech‑
niques, including autoregressive integrated moving average 
(ARIMA) and autoregressive conditional heteroscedasticity 
(ARCH) models. It should be noted that we used R and 
STATA to apply the imputation methods that we had con‑
sidered in this study.

Overview of the applied imputation methods

Before applying different imputation methods to the simu‑
lated discharge time series Qt

s
 obtained from applying the 

HBV model to the observed data, we briefly discuss different 
imputation methods. As described above, we  apply these 
methods to impute different shares of missing values (5%, 
10%, 20%, 30%, and 40%) to obtain a time series Qt

i
 includ‑

ing imputed values. For the following notation, we denote 
with Qt

m
 the time series of including missing values, which 

is treated as the basis for our imputation exercises. After 
the discussion of the different imputation methods used, 
we assess their performance using the Mean Squared Error 
(MSE) and the Nash–Sutcliffe Efficiency (NSE) criteria, 
which we also introduce below.

Arithmetic mean imputation

A commonly used and simple  imputation method for the 
approximation of missing values is the so‑called arithmetic 
mean imputation. It replaces missing values in a variable 
with the arithmetic mean of the observed values of the same 
variable (Roth 1994). In our context, the missing values 
are replaced with the arithmetic mean of the non‑missing 
observed values, which is Qt

i
=

1

T

∑T

i=1
Qt

m
 with T being the 

number of non‑missing observations here.

Preceding value

An alternative approach to replace missing values is using 
the last observed preceding value as best predictor for a 
missing values. Missing values in that case sequentially 
replaced according to Qt

i
= Qt−k

m
 where k is the difference 

in the number of periods between a missing value and the 
last observed value of Q. If, for instance, two missing values 
occur subsequently, the second missing value is replaced 
with Qt

i
= Qt−2

m
 as Qt−2

m
 is the last previously observed value.

Table 1  The hydrological 
model parameters and their 
feasible range

Parameter (unit) Explanation Feasible ranges

Snow routine
 TT (°C) Threshold temperature (− 2, 0)
 CFMAX (mm/°C/d) Degree‑day factor (0.2, 1)
 SFCF Snowfall correction factor (1, 4)
 CFR Refreezing coefficient 0.05
 CWH Water holding capacity 0.1

Soil routine
 FC (mm) Maximum of storage in the soil (200, 850)
 LP (mm) Threshold for reduction of evaporation (0.2, 1)
 BETA Shape coefficient (1, 4)

Response routine
 Alpha Response box parameter (0, 0.5)
 K1 (1/d) Recession coefficient (upper storage) (0.07, 0.2)
 K2 (1/d) Recession coefficient (lower storage) (0.005, 0.07)
 PERC (mm/d) Percolation from upper to lower response box (1, 2.5)

Routing routine
 MAXBAS (d) Transformation function parameter (2, 5)
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Ordinary least squares (OLS) regression imputation

Regression‑based imputation replaces missing data with 
predicted values from a regression estimation (Greenland 
and Finkle 1995). The basic idea behind this method is using 
information from all observations with complete values in 
the variables of interest to fill in the incomplete values, 
which is intuitively appealingly (Frane 1976). While dif‑
ferent regression models can be applied to impute missing 
values, we start with the most basic regression model—the 
linear regression.

The first step of the imputation process is to estimate 
regression equations that relates the variable that contains 
missing data (the dependent variable of the regression) to 
a set of variables which have complete information across 
all observations in the dataset (independent variables of the 
regression). In our context, we estimate how the non‑missing 
values Qt

m
 are related to the observed precipitation data on 

the same day Pt
o
 . The regression function we are estimating 

is then given by Qt
m
= �0 + �1P

t
m
+ �t , where �0 accounts 

for measurement errors and other unobserved influences on 
discharge. The regression parameter �0 and �1 are estimated 
only for the subset of the data that contains all observations 
that have complete information both for the dependent vari‑
able and the independent variables using the ordinary least 
square estimator yielding the estimates �̂0 and �̂1.

The second step uses the regression results from the first 
step and missing values for the observations that could not 
have been included in the regression are replaced by predic‑
tions obtained from combining the observed values precipi‑
tation and the estimates from the first step of how it is related 
to the discharge. These predicted values fill in the missing 
values and produce a complete dataset in which the missing 
values are replaced according to Qt

i
= �̂0 + �̂1P

t
o
 for all t with 

missing data.
While regression‑based imputations most frequently rely 

on simple linear regressions, it is worth noting that more 
flexible regression approaches can equally be used and 
might even be more advantageous depending on the appli‑
cation. We  discuss more advanced time series regression 
approaches below.

Auto regressive integrated moving average model

Similar to the linear regression framework introduced above, 
time series regressions can equally be employed for impu‑
tations purposes. Imputed values are then derived from a 
prediction based on time series regression instead of a linear 
regression.

A time series—such as hydrological data—can be inter‑
preted as a stochastic process where yt and yt–j are correlated 
over time, i.e., autocorrelation between different measures of y 

exists. One possible specification is an autoregressive process 
AR (p) of pth order with

In Eq. 7 epsilon is a random error term that follows a stand‑
ard normal distribution and is independent over time with E(�t
,�t−i) = 0 for all i ≠ t.

p here denotes the number of lagged values of yt that enter 
the process. �t is an identically distributed (iid) error term with 
zero mean and constant variance. An alternative specification 
of a stochastic process that generates autocorrelation in a time 
series is moving average (MA) processes in which the contem‑
porary value of yt is a function of its mean µ and a sequence 
of random shocks with

The commonly used ARMA model fits an observed autore‑
gressive (AR) time series by combining it with a moving‑aver‑
age (MA) component consisting of a sum of weighted lags 
of the error term εt (Box et al. 2015). The resulting ARMA 
model is written as

Equation 9 is often referred to as an ARMA (p, q) model as 
it contains a pth order autoregressive component in the observ‑
able time series, yt , and a qth order moving average component 
of the unobservable random shocks εt . It is generally assumed 
that εt follows a so‑called white‑noise process with zero mean 
E(εt ) and constant variance E(ε2

t
) = σ2.

It is important to highlight that ARMA models can be fitted 
to data only if the underlying time series yt is weakly stationary 
(Gao et al. 2018). In case a time series yt is not stationary, sta‑
tionarity can often be achieved by differencing the time series 
one or more times (Box and Jenkins 1976). If differencing is 
required, the ARMA (p, q) model (Autoregressive Moving 
Average) becomes an ARIMA (p, d, q) model (Autoregres‑
sive Integrated Moving Average) where d denotes the order 
of differencing, i.e., the number of time yt is differenced to 
achieve stationarity.

In our application, we fit an ARIMA (p, d, q) model to the 
data and use the estimates obtained as the basis for predictions 
used to impute missing values as described for the linear OLS 
regression above.

Autoregressive conditional heteroscedasticity 
model

ARMA and ARIMA models are based on the assumption 
of constant variance of the error terms E(�2

t
) = σ2 over time. 

This assumption often is too restrictive. In hydrology, the 
local climate might be characterized by a period of stable 

(7)yt = a1 + a1yt−1 + a2yt−2 +⋯ + apyt−p + �t.

(8)yt = μ + �t + �1�t−1 + �2�t−2 + �p�t−q.

(9)
yt = �0 + �1yt−1 + �2yt−2 +⋯ + �pyt−p + εt − �1εt−1 −… �p�t−q.
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conditions followed by change in weather that drastically 
alters relevant outcomes (Hughes et al. 2011). The assump‑
tion of constant autocorrelation is then too narrow. More 
realistic would be an assumption of changing variance and 
hence changing autocorrelation of the observed outcomes 
over time (heteroscedasticity).

Auto Regressive Conditional Heteroscedasticity (ARCH) 
models originating from finance and econometrics are 
regression models that in addition to past values of yt also 
captures time varying volatility within the structure of stand‑
ard time series models described above. ARCH models hold 
the unconditional variance of εt constant with E(ε2

t
) = σ2, but 

allow its conditional variance to follow an AR process of 
its own with

where �t is a new white noise process.
Based on this specification, the ARCH model extends the 

standard ARMA/ARIMA model to incorporate time varying 
volatility. The estimation of ARCH is again possible relying 
on standard statistical software packages and predictions can 
be used to impute missing values in a time series. In our 
case, we fit an ARCH model that extends  ARIMA (p, d, q) 
model by a first‑order autoregressive process for the variance 
of the error term ε2

t
.

Evaluation of imputation performance

We  evaluate the performance of the two different imputation 
methods by comparing the imputed time series with the ref‑
erence time series obtained from the HBV model described 
above. In particular, we use the Mean Squared Error (MSE) 
and the Nash–Sutcliffe efficiency (NSE) measure for this 
purpose. The description of the two evaluation metrics is 
given below.

Mean Squared Error (MSE)

The Mean Squared Error is a commonly used measure in 
statistics to assess the quality of an estimator or—as in the 
case of imputation—a predictor (Harville and Jeske 1992). 
The MSE measures the average of the squares of the errors 
or deviations, i.e., the difference between the predictions and 
the observed values (Schunn and Wallach 2005). Note that 
the MSE can be compared across different models to assess 
which one performs better.

Formally, let Qt
s
 be the simulated discharge time series 

(our reference data) and Qt
i
 be the time series of discharge 

including imputed values from one of the imputation meth‑
ods for the periods t = 1,… , T  . The MSE is then defined as

(10)�2 = � + �1�
2

t−1
+⋯ + �m�

2

t−m
+ �t,

A MSE of zero would indicate error‑free prediction 
(imputation) of missing values, but is in reality not to 
achieve.

Nash–Sutcliffe efficiency (NSE)

Nash and Sutcliffe (1970) proposed an efficiency measure 
for hydrological models. The Nash–Sutcliffe efficiency is 
defined as one minus the sum of the squared differences 
between the predicted Qt

i
 and observed values Qt

s
 , normal‑

ized by the variance of the observed values during the period 
under investigation with:

The range of the NSE lies between 1.0 (perfect fit) 
and − ∞. An efficiency of lower than zero indicates that the 
mean value of the observed time series would have been a 
better predictor than the model. In this case, the imputation 
method performs worse than a simple imputation based on 
the mean of the observed data.

Note that the NSE is related to the MSE. It can be inter‑
preted as dividing MSE by the variance of the observations 
and subtracting that ratio from 1 with

Results and discussion

Streamflow simulation obtained from the HBV 
model

In the context of hydrological settings, selecting an appropri‑
ate imputation method requires careful consideration of the 
key characteristics of hydrological data (Haile et al. 2023). 
Hydrological data consist of time series that typically exhibit 
stable trends over time and high autocorrelation of observa‑
tions. Additionally, these time series often manifest random 
fluctuations around the trends, and these fluctuations are not 
constant over time (Guzman et al. 2013). Given these under‑
lying data features in hydrology, imputing missing values 
should rely on statistical time series methods that account 
for the temporal nature of hydrological data.

(11)MSE =
1

T

T∑

i=1

(Qt
i
− Qt

s
)
2
.

(12)NSE = 1 −

∑T

t=1

�
Qt

s
− Qt

i

�2

∑T

t=1

�
Qt

s
− Qs

�2
.

(13)NSE = 1 −

∑T

t=1

�
Qt

s
− Qt

i

�2

∑T

t=1

�
Qt

s
− Qs

�2
= 1 −

MSE

�2

Qs

.
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Several studies have been conducted to evaluate differ‑
ent approaches, including advanced statistical algorithms, 
for imputing missing values, particularly in streamflow data 
(Yilmaz and Onoz 2019; Mesta et al. 2021; de Souza et al. 
2020; Tencaliec et al. 2015; Khampuengson and Wang 2023; 
Weilisi and Kojima 2022; Oyerinde et al. 2021; Chapon 
et al. 2023). However, the impact of seasonality and perio‑
dicity of streamflow discharge on the effectiveness of these 
imputation methods has not been well‑documented.

Below, we briefly summarize the simulated time series 
Qt

s
 we obtained from applying the HBV model to the 

original input data obtained from Brandenburg and the 
derived precipitation time series. In total, we simulated five 

different discharge time series. Figure 7 presents Qt
seasonal

 
as well as Qt

non−seasonal
 based on the original as well as the 

de‑trended precipitation data. Note, that Qt
non−seasonal

 unsur‑
prisingly displays much less pronounced seasonality pat‑
terns than Qt

seasonal
 . Remaining seasonality effects are due 

to seasonality in the other input variables, temperature and 
evapotranspiration.

Figure 8 presents the time series of the simulated dis‑
charge data which are based on precipitation inputs with 
manipulated variance, i.e., Qt

low
 , Qt

high
 and Qt

noise
 . Note, that 

Qt
low

 displays much less variance than Qt
high

 and Qt
noise

 . Since 
white noise is added to the input data P_high for creating 

Fig. 7  Simulated discharge output data with/without seasonality

Fig. 8  Simulated discharge output data with different variances
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P_noisy, Qt
noise

 is characterized by higher fluctuations than 
Qt

high
 but preserves its mean.

Mean Squared Error

In a first step, we evaluate how the different imputation 
mechanisms perform by applying the MSE criterion dis‑
cussed above before moving on to the NSE results. All 
results are presented both graphically (see Figs. 9 and 10) 
and in tables (see Table 2).

Independently of which of the five reference time series 
Qt

s
 we focus, clear patterns from the imputation simulations 

emerge. First, the MSE monotonously increase in the share 
of data points that are missing from a data set, irrespectively 
of the imputation technique applied. This is unsurprising, 
as by definition, a smaller share of missing values implies 
a higher share of identical values in both the reference time 
series Qt

s
 and the imputed time series Qt

i
 and hence a smaller 

MSE. Moreover, most imputation methods perform better 
in cases where only few observations are missing as the 
approximations for the missing values will be based on a 
relatively larger number of complete observations.

Second, we observe clear performance differences in the 
different types of imputation techniques used. Most impor‑
tantly, imputation techniques that ignore the time series 
character of the data to be imputed perform significantly 
worse than imputation methods that explicitly take the time 
series nature of the data into account. In particular, both 
the results from arithmetic mean imputations as well as the 
results from OLS‑based imputations are characterized by 
similarly high MSEs relative to the other methods.

Imputations techniques that account for the time series 
nature of the data (preceding value, ARIMA and ARCH) 
perform significantly better in terms of MSE. In fact, their 
MSEs are by a factor of 20–40 times smaller than the MSEs 
observed for mean imputation and OLS‑based imputation 
(see Table 2). Within the approaches that exploit the time 
series structure of the data, the flexible ARCH model per‑
forms best with its MSEs being clearly smaller than those of 
the ARIMA model. While the preceding value imputation 
clearly is superior mean value or OLS‑based imputations, it 
is outperformed by the more sophisticated time series mod‑
els. Moreover, the outperformance of ARIMA/ARCH mod‑
els over the preceding value technique is more pronounced 

Fig. 9  Mean Squared Error of the imputation methods for seasonality
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in situations where a large fraction of observations is char‑
acterized by missing values (see Fig. 10).

It is worth noting that the performance differences across 
the different imputation methods are independent of the par‑
ticular characteristics of the reference time series. As dis‑
cussed above, we evaluated the performance of the different 
imputation techniques using five reference time series which 
differ regarding the existence of seasonal trends and their 
variance. The ranking and the relative difference between 
the five tested imputation methods are similar across all five 
reference time series.

Not surprisingly, however, comparisons of the results 
within the different imputation methods reveal that their 
performance depends significantly on the characteristics of 
the reference time series. The higher the variance of the 
reference time series is, the more challenging imputation 

becomes and MSEs within a given imputation technique 
increase for reference time series with higher volatility. We 
also observe that MSEs are higher if seasonal trends are pre‑
sent compared to the MSEs obtained for the reference time 
series where we removed seasonality. Moreover, one cannot 
notice a clear difference between MSEs obtained from the 
imputation methods in response to varying missing data per‑
centage (i.e., 5–40%) (Table 2). For instance, MSEs of OLS 
obtained under no seasonality differ from 0.0003 to 0.004. 
It should be, however, noted that the MSEs obtained from 
ARIMA and ARCH are much smaller; for example they 
change from 0.000006 to 0.0001 as resulted from ARCH 
under no seasonality. Shi et al. (2017) found that even with a 
high missing ratio (90%), the calculated Root Mean Squared 
Error (RMSE) remains small, corroborating our findings.

Fig. 10  Mean Squared Error of the imputation methods for different scenarios
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Nash–Sutcliffe efficiency

In addition to using the MSE criterion, we also evaluate the 
performance of the different imputation methods by apply‑
ing the NSE criterion. Note that given the NSE is a function 
of the MSE (with NSE = 1 −

MSE

�2

Qs

 ), the patterns discussed 

above hold also when the NSE criterion is applied.
Indeed, and most importantly, imputation methods that 

acknowledge the time series nature of the reference data 
(preceding value, ARIMA and ARCH) perform signifi‑
cantly better than the other methods (mean imputation and 
OLS) with the flexible ARCH model achieving NSEs that 
are closest to the maximum possible (see Figs. 11, 12 and 
Table 3). Supporting our findings, Tencaliec et al. (2015) 

found that their dynamic regression model, which is a com‑
bination of ARIMA and regression models, demonstrated 
its capability to provide reliable estimates for missing data 
in eight daily streamflow datasets of the Durance river 
watershed. The effect of an increasing variance/seasonality 
on the performance is different when the NSE criterion is 
applied in comparison with the MSE criterion because the 
NSE criterion uses the reference time series’ volatility as 
normalizing denominator in its definition. As a result, the 
observed NSE values across different volatility scenarios 
are less sensitive to changes in the volatility of the underly‑
ing reference data than the MSE.

Table 2  Results of Mean 
Squared Error for the different 
imputation methods

Percentage of 
missing data

Mean OLS PV ARIMA ARCH

Discharge time series without seasonality
 5% 0.0003577 0.000359 0.00000849 0.00000723 0.00000684
 10% 0.0012255 0.0012259 0.0000374 0.0000221 0.000025
 20% 0.0022057 0.0022057 0.0000745 0.0000522 0.0000521
 30% 0.0035975 0.0036016 0.0001572 0.0001341 0.0001118
 40% 0.0047898 0.0047931 0.0002206 0.0001986 0.0001563

Discharge time series with seasonality
 5% 0.0044804 0.004323 0.0001144 0.0000557 0.0000673
 10% 0.0085036 0.0082393 0.0003291 0.0003285 0.0002284
 20% 0.0126121 0.0123604 0.0005526 0.0004846 0.0003295
 30% 0.0197831 0.0195575 0.0007608 0.0007701 0.0004553
 40% 0.0272618 0.0271163 0.0011978 0.0012013 0.0006632

Discharge time series with low variance
 5% 0.001749 0.001722 0.0000242 0.0000103 0.0000127
 10% 0.003411 0.003353 0.0000754 0.0000576 0.0000371
 20% 0.004907 0.004878 0.0001185 0.0000971 0.0000607
 30% 0.008447 0.008487 0.0002104 0.0001717 0.000098
 40% 0.01211 0.012192 0.0003174 0.0002345 0.0001229

Discharge time series with high variance
 5% 0.020374 0.019866 0.000466 0.0002425 0.0002638
 10% 0.040362 0.039306 0.0014872 0.0011103 0.0007758
 20% 0.062926 0.061977 0.002835 0.0023882 0.0014156
 30% 0.105893 0.105609 0.00536 0.0045369 0.0023538
 40% 0.149217 0.148793 0.0077527 0.0061337 0.0030243

Discharge time series with high variance (white noise)
 5% 0.038408 0.03814 0.000786 0.0005245 0.0004662
 10% 0.077214 0.07692 0.0021273 0.0016116 0.0010543
 20% 0.130489 0.129087 0.0047824 0.0036678 0.0025088
 30% 0.213196 0.212178 0.0103301 0.0084402 0.0045192
 40% 0.300566 0.299929 0.0148317 0.0108452 0.0056754
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Application of ARIMA and ARCH models 
for groundwater time series

We found that ARIMA and ARCH models perform signifi‑
cantly better in imputing missing hydrological data than 
alternative and widely used methods that do not consider 
the characteristic of time series data. In this section, we addi‑
tionally apply ARIMA and ARCH models to groundwater 
time series which observed in the vicinity of Lake Bötzsee 
(Fig. 1).

The region is about 20 km northeast of Berlin, also 
in Brandenburg in Northeast Germany in the time period 
from January 2012 to May 2014. We do so to validate the 
performance advantage of time series models in an addi‑
tional context beyond the streamflow discharge used in this 
study. In this endeavor, we not only model the observed 
groundwater time series (GWBR1) to impute missing val‑
ues following the identical approach described above, we 
also model artificially smoothed versions of the observed 
groundwater time series to analyze how different degrees 
of volatility in a time series affect the relative performance 
of ARIMA and ARCH models.

We have three additional time series that have been 
smoothed by Moving Average (MA) processes by three 
different levels (MA101, MA501, MA1001). Figure 13 

shows the four different groundwater time series. The 
results from this exercise are relatively clear and can be 
summarized as follows: ARCH models consistently out‑
perform ARIMA models in their imputation performance 
also in this setting. Additionally, the performance differ‑
ences between ARIMA and ARCH models seem to be rela‑
tively unaffected by the applied smoothing.

The detailed results for comparisons according to 
the MSE can be found in Table 4, whereas comparisons 
according to the NSE criterion can be found in Table 5.

Figure 14 clearly demonstrates that ARCH models are 
characterized by lower MSEs than ARIMA models. While 
the relative advantage of using ARCH models for imputa‑
tion in the context of groundwater data is relatively small 
for low shares of missing data. Figure 14 shows that with 
increasing share of missing data, ARCH models outper‑
form ARIMA models more significantly. This reflects the 
findings that we presented with respect to the simulated 
discharge data. The pattern of a bigger relative advantage 
of ARCH models can also be found in the smoothed time 
series (MA101, MA501 and MA1001).

As before, higher shares of missing values are accompa‑
nied by a bigger relative advantage of ARCH models (see 
Fig. 14 and Table 4).

Fig. 11  Nash‑Sutcliffe efficiency of the imputation methods for seasonality
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Regarding the NSE, we report similar results (see 
Table 5). For low shares of missing values the imputation 
performance of both ARCH and ARIMA is very similar. For 
increasing shares of missing data, however, ARCH models 
achieve significantly higher NSEs than comparable ARIMA 
models. Again, this pattern does not affect the degree of 
smoothing applied to the time series as can easily be seen 
in Fig. 15.

Not surprisingly, the performance of both ARIMA and 
ARCH models increases with higher levels of autocorrela‑
tion in the time‑series data to be modeled. This is intuitive 
as an increase in autocorrelation makes the behavior of the 
time series more “predictable”: the value of y if period t has 
a stronger link to past values and can therefore be approx‑
imated with higher precision. In Table 6 and Fig. 16 we 
report detailed findings comparing the performance of not 
only ARIMA and ARCH models but also relatively simple 
methods in the case of 40% of the observations are missing 
for different levels of autocorrelation.

Note that the original time series GWBR1 is character‑
ized by modest levels of autocorrelation, while the smoothed 
time series MA101, MA501 and MA1001 are characterized 
by increasing levels of autocorrelation. It can be clearly 
seen that the performance of these methods increases 
with increasing levels of autocorrelation and is highest for 
MA1001—which is the time series with the highest levels 
of autocorrelation.

Taie Semiromi et  al. (2019) used Singular Spectrum 
Analysis (SSA) and Multichannel Singular Spectrum Analy‑
sis (MSSA) to fill gaps in groundwater level data from 25 
piezometric stations in Ardabil Plain, Iran. Both methods 
effectively imputed missing groundwater levels. MSSA per‑
formed better for piezometers showing strong spatial cor‑
relation with groundwater level data from other stations, as 
it takes advantage of this correlation. On can draw a con‑
clusion that as both ARIMA and ARCH are not dependent 
on the spatial correlation, they can be used effectively to 
impute the missing values of groundwater level in remote 

Fig. 12  Nash‑Sutcliffe efficiency of the imputation methods for different scenarios
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areas, where a sparse network of piezometers/observation 
wells is established.

Assessment of the imputation methods considering 
the nature of time series

ARMA and ARCH as two methods take into account char‑
acteristics of time series when being used for imputation 
of missing values of time series. Results show that ARCH 
and ARIMA with the average of MSEs 0.0000704 and 
0.0000828, respectively yielded the best performance in fill‑
ing the gap data of  the streamflow under without seasonality 
condition. Similarly, in comparison with ARIMA, ARCH 
could demonstrate its capability in imputation of the stream‑
flow missing data with the average of MSEs 0.0003487, 
0.0000663, 0.0015667, and 0.0028448 under seasonality, 
low and high variance, and high variance (white noise) con‑
ditions, respectively.

Regarding the other evaluation metric, i.e. NSE, ARCH 
outperformed ARIMA with the average of NSEs 0.9957710, 
0.9947722, 0.9982036, 0.9965222, 0.9966348, which were 
obtained under without seasonality, seasonality, low and 
high variance, and high variance (white noise) conditions, 
respectively. Nonetheless, it should be noted that the differ‑
ence between ARCH and ARIMA in terms of performance 
is subtle, with the biggest difference noticed under high 
variance condition with the average of NSEs 0.9965222 
and 0.9936020 for ARCH and ARIMA, respectively. The 
outperformance of ARCH could be associated with captur‑
ing and incorporating the volatility of the streamflow time 
series, leading to improved accuracy in imputing missing 
data (Modarres and Ouarda 2013).

In the same vain, ARCH and ARIMA exceled their capa‑
bility to impute the missing values of the other hydrological 
time series, i.e., the groundwater level data. Results showed 

Table 3  Results of Nash–Sutcliffe efficiency for the different imputa‑
tion methods

Percentage 
of missing 
data

Mean OLS PV ARIMA ARCH

Discharge time series seasonality
 5% 0.945629 0.94754 0.998611 0.999324 0.999184
 10% 0.896806 0.900014 0.996007 0.996014 0.997229
 20% 0.846949 0.850004 0.993298 0.994123 0.996003
 30% 0.759927 0.762665 0.990773 0.99066 0.994478
 40% 0.669172 0.670938 0.985481 0.985438 0.991961

Discharge time series without seasonality
 5% 0.973422 0.973326 0.999369 0.999463 0.999492
 10% 0.908954 0.908921 0.997223 0.998356 0.998146
 20% 0.83613 0.836125 0.994468 0.996124 0.996128
 30% 0.732721 0.732416 0.988324 0.990039 0.991697
 40% 0.644144 0.643896 0.983626 0.985259 0.988398

Discharge time series with low variance
 5% 0.952574 0.953309 0.999345 0.99972 0.999655
 10% 0.907507 0.909079 0.997956 0.998437 0.998994
 20% 0.866936 0.867724 0.996788 0.997369 0.998355
 30% 0.770948 0.769844 0.994298 0.995347 0.997343
 40% 0.671605 0.669394 0.991401 0.993647 0.996671

Discharge time series with high variance
 5% 0.954741 0.955869 0.998965 0.999461 0.999414
 10% 0.910341 0.912687 0.996696 0.997534 0.998277
 20% 0.860217 0.862324 0.993706 0.994698 0.996857
 30% 0.76477 0.765401 0.9881 0.989927 0.994774
 40% 0.668529 0.669472 0.982797 0.98639 0.993289

Discharge time series with high variance (white noise)
 5% 0.954533 0.954851 0.99907 0.999379 0.999448
 10% 0.908596 0.908944 0.997482 0.998092 0.998752
 20% 0.845531 0.84719 0.994342 0.995661 0.997032
 30% 0.747625 0.748829 0.987778 0.990014 0.994653
 40% 0.644198 0.644952 0.982462 0.987176 0.993289

Fig. 13  Observed groundwater 
time series from a piezometer in 
the vicinity of Lake Bötzsee and 
three smoothed time series
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that ARCH could produce the best performance with the 
average of MSEs 0.000635040, 0.000001120, 0.000000052, 
and 0.000000021, which were resulted under GWBR1, 
MA101, MA501, and MA1001 conditions, respectively.

The same holds true according to the average of NSEs 
resulted from applying ARCH for the imputation of the 
groundwater missing data. To that respect, the average of 
NSEs tend to 1 and are 0.9971351, 0.9999932, 0.9999996, 
and 0.9999998 under GWBR1, MA101, MA501, and 
MA1001 conditions, respectively.

According to our best knowledge, there is only one study, 
conducted by Wang et al. (2005), in which both ARIMA 
and ARCH have been tested in modelling the streamflow 
processes. They showed that the primary cause of the ARCH 
effect is the seasonal variability in the residual series’ vari‑
ance. However, this seasonal variance can fully explain the 
ARCH effect in monthly streamflow data but only partially 
explains it for daily flow data. Moreover, while the Periodic 
Autoregressive Moving Average (PARMA) model suffices 

for modelling monthly flows, none of the conventional time 
series models are suitable for capturing daily streamflow 
processes due to their failure to consider both the seasonal 
variation in variance and the ARCH effect in the residuals.

To address these limitations and accurately capture 
the complexities of daily streamflow data, they proposed 
a new approach, called the ARMA–GARCH (General‑
ized Auto Regressive Conditional Heteroscedasticity) 
error model. This model aims to account for the presence 
of the ARCH effect in daily streamflow series while pre‑
serving the seasonal variation in variance in the residuals. 
The ARMA–GARCH error model combines an ARMA 
model to handle the mean behavior and a GARCH model 
to address the variance behavior of the residuals derived 
from the ARMA model. By incorporating both elements, 
the ARMA–GARCH model presents a more comprehen‑
sive solution for effectively analyzing and modelling daily 
streamflow data.

Table 4  Mean Squared Error 
of imputation application for 
groundwater time series

 Missing data 
percentage

PV MEAN ARIMA ARCH

GWBR1
 5% 0.0002336 0.0117218 0.000113 0.0000907
 10% 0.0005580 0.0236105 0.0002852 0.0001996
 20% 0.0014165 0.0456175 0.0009068 0.0004847
 30% 0.0028212 0.0680301 0.0019897 0.0009014
 40% 0.0053913 0.0900509 0.0042155 0.0014988

MA101
 5% 0.0000008 0.0087982 0.0000002 0.0000001
 10% 0.0000021 0.0173178 0.0000006 0.0000003
 20% 0.0000057 0.0337417 0.0000027 0.0000007
 30% 0.0000129 0.0499565 0.0000076 0.0000015
 40% 0.0000251 0.0659279 0.0000176 0.0000030

MA501
 5% 0.0000000501 0.0075034 0.0000000117 0.0000000064
 10% 0.0000001110 0.0147836 0.0000000327 0.0000000140
 20% 0.0000002650 0.0293236 0.0000001190 0.0000000334
 30% 0.0000005760 0.0433287 0.0000003260 0.0000000714
 40% 0.0000010900 0.0569117 0.0000007330 0.0000001340

MA1001
 5% 0.0000000183 0.0067645 0.00000000369 0.00000000228
 10% 0.0000000416 0.0132053 0.00000001190 0.00000000509
 20% 0.0000001110 0.0261488 0.00000005270 0.00000001360
 30% 0.0000002370 0.0389997 0.00000013800 0.00000002890
 40% 0.0000004340 0.0515033 0.00000028700 0.00000005310
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Summary and conclusion

Complete time series data are a necessary precondition for 
most statistical and hydrological modelling in hydrology, 
including model calibration/validation, determination of 
the flow duration curve, autocorrelation function, spectrum 
analysis, hydroclimate extreme value analysis based on the 
generalized extreme value distribution of annual blocks, 
principal component analysis, etc. In these cases, research‑
ers need to resort to imputation methods to replace missing 
values with approximations as these statistical approaches 
require gap‑free dataset.

In this paper, we evaluated the performance of five dif‑
ferent imputation methods. To that end, we created five 
time series of discharge data that exhibit different patterns 
of volatility using the HBV model. From these reference 
time series, we randomly deleted a given share of obser‑
vations to be imputed by the different approaches whose 
performance has been evaluated by the MSE and the NSE 
criteria. Our findings reveal that imputation methods that 

neglect the time series nature of the underlying reference 
data perform significantly worse than imputation methods 
that exploit this feature of the data. Moreover, advanced 
time series methods such as ARCH significantly outperform 
relatively simple time series method such as the preceding 
value imputation.

ARMA and ARCH are two methods that consider the 
characteristics of time series when used to impute miss‑
ing values. The results indicate that when filling the gap 
data of streamflow without seasonality, ARCH and ARIMA 
achieved the best performance with average MSEs of 
0.0000704 and 0.0000828, respectively.

In scenarios with seasonality, low and high variance, and 
high variance (white noise), ARCH showed its capability 
in imputing the streamflow missing data, outperforming 
ARIMA. The average MSEs for ARCH were 0.0003487, 
0.0000663, 0.0015667, and 0.0028448 under these respec‑
tive conditions.

Regarding another evaluation metric, NSE, ARCH con‑
sistently outperformed the other imputation methods. The 
average NSEs for ARCH were 0.9957710, 0.9947722, 
0.9982036, and 0.9966348 for scenarios without seasonality, 
with seasonality, low and high variance, and high variance 
(white noise), respectively.

It is worth noting that the performance difference between 
ARCH and ARIMA is generally subtle, with the most notice‑
able disparity observed under the high variance condition, 
where ARCH achieved an average NSE of 0.9965222, com‑
pared to 0.9936020 for ARIMA.

Similarly, in the case of imputing missing values in the 
groundwater level data, both ARCH and ARIMA demon‑
strated their proficiency. However, ARCH exhibited supe‑
rior performance with average MSEs of 0.000635040, 
0.000001120, 0.000000052, and 0.000000021 under 
GWBR1, MA101, MA501, and MA1001 conditions, 
respectively.

Moreover, when considering NSE as the evaluation met‑
ric, ARCH consistently outperformed other imputation meth‑
ods for the groundwater data. The average NSEs approached 
1, with values of 0.9971351, 0.9999932, 0.9999996, and 
0.9999998 recorded under GWBR1, MA101, MA501, and 
MA1001 conditions, respectively. These high NSE values 
indicate the effectiveness of ARCH in accurately imputing 
the missing groundwater level data.

These findings are important for number of reasons: first, 
hydrological data are by their definition time series data that 
are typically characterized by typical feature such as auto‑
correlation and seasonality. In the presence of these features, 
the results obtained from commonly used imputation meth‑
ods such as the wide‑spread mean‑value imputation can be 
improved significantly. As our study clearly reveals, even a 

Table 5  Nash–Sutcliffe Efficiency of imputation application for 
groundwater time series

 Missing data 
percentage

PV MEAN ARIMA ARCH

GWBR1
 5% 0.9989458 0.947113 0.9994901 0.9995909
 10% 0.9974824 0.8934727 0.9987132 0.9990997
 20% 0.9936091 0.7941807 0.9959089 0.9978132
 30% 0.9872716 0.6930581 0.991023 0.9959332
 40% 0.9756778 0.5937035 0.9809821 0.9932385

MA101
 5% 0.9999949 0.9460056 0.999999 0.9999993
 10% 0.9999871 0.8937207 0.9999962 0.9999985
 20% 0.9999648 0.7929273 0.9999837 0.9999958
 30% 0.9999206 0.6934167 0.9999535 0.9999908
 40% 0.9998457 0.5954004 0.9998921 0.9999816

MA501
 5% 0.9999996 0.9470227 0.9999999 0.9999999
 10% 0.9999992 0.8956217 0.9999998 0.9999999
 20% 0.9999982 0.7929629 0.9999992 0.9999998
 30% 0.9999959 0.6940811 0.9999977 0.9999995
 40% 0.9999923 0.5981796 0.9999948 0.999999

MA1001
 5% 0.9999999 0.9471743 1 1
 10% 0.9999997 0.8968773 0.9999999 0.9999999
 20% 0.9999991 0.7957992 0.9999996 0.9999999
 30% 0.9999982 0.6954434 0.9999989 0.9999998
 40% 0.9999966 0.5978003 0.9999977 0.9999996
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relatively simple imputation algorithm that exploits the time 
series nature of the data—the preceding value approach—
performs significantly better.

Second, we were also able to demonstrate that advanced 
regression‑based time series imputation method such as 
ARIMA and ARCH models yield better results than the 
relatively simple preceding value imputation. While the 
latter is easy to implement and still performs much better 
than mean‑value or OLS imputation techniques, imputation 
results can be optimized by relying on advanced econometric 
techniques. This is true in particular in situations where a 
large fraction of observations is characterized by missing 
values. The larger the share of missing values the higher 
the performance advantage of advanced time series meth‑
ods. The performance advantage of econometric time series 
methods is noteworthy as—as of now—their application in 
hydrological settings still is.

As hydrological data often exhibit autocorrelation, sta‑
ble trends, and varying variances over time, the ARCH 
model is designed to account for time‑dependent changes in 
variance, making it well‑suited for capturing the volatility 

and fluctuations present in hydrological time series data. 
Normally, streamflow and other variables may display dif‑
ferent levels of volatility and exhibit heteroscedasticity, 
which means that the variance of observations is not con‑
stant over time, especially in response to changing weather 
patterns and seasonal effects. Thus, the ARCH model can 
help in capturing such volatility, enabling more accurate 
imputations and making it more appropriate for handling 
data with varying levels of uncertainty. Overall, the ARCH 
model's ability to capture time series characteristics and 
handle varying variances makes it a valuable tool for 
imputing missing values in hydrological studies, enhanc‑
ing the reliability of data analysis and decision‑making in 
this field.

Despite the overall encouraging findings there are, how‑
ever, some caveats to be mentioned. On the conceptual 
level, our results have been obtained using data from only 
one application area (Brandenburg) and the results might 
differ for data obtained from other catchments. To ame‑
liorate concerns regarding the broader applicability of our 
results, we varied the original data to obtain four additional 

Fig. 14  Graphical results of Mean Squared Error of ARIMA/ARCH
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time series that exhibit different volatility/seasonality char‑
acteristics. The results obtained are robust towards these 
variations. On the practical level, the implementation of 
the advanced econometric models (ARIMA and ARCH) 
requires statistical software packages such as R or STATA 
as these model typically are not implemented in standard 
hydrological software packages.

In addition, despite the fact that ARCH assumes that the 
data exhibit conditional heteroscedasticity, meaning that 
the variance of the data is related to past values, stream‑
flow data may not always exhibit such volatility patterns, 
leading to potential inaccuracies in imputations. Estimat‑
ing the parameters of the ARCH model can be compu‑
tationally demanding, especially for large and complex 

datasets. This complexity may make the model less prac‑
tical for routine imputation tasks.

As ARIMA assumes that the data are stationary, stream‑
flow data often exhibit trends and seasonality, violating the 
stationarity assumption. In such cases, the ARIMA model 
may not provide accurate imputations. ARIMA can handle 
simple seasonal patterns, thus struggling with complex 
seasonal variations and irregularities that are common in 
streamflow data. This can lead to suboptimal imputations 
in cases of highly seasonal streamflow patterns. Choos‑
ing the appropriate orders (p, d, q) of the ARIMA model 
requires expertise and careful analysis of the data. An 
incorrect choice of parameters can result in poor imputa‑
tions and misleading conclusions.

Fig. 15  Graphical results of Nash‑Sutcliffe Efficiency of ARIMA/ARCH

Table 6  Mean Squared Error 
of imputation application when 
data have 40% missing

MSE 40% Missing data percentage

MEAN PV ARIMA ARCH

GWBR1 0.0900509 0.0053913 0.0042155 0.0014988
MA101 0.0659279 0.0000251 0.0000176 0.0000030
MA501 0.0569117 0.0000010900 0.0000007330 0.0000001340
MA1001 0.0515033 0.0000004340 0.00000028700 0.00000005310
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