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ABSTRACT

The aim of this paper is to investigate the use of Pyragas control on the stability of stationary, localized coherent structures in a general
class of two-component, singularly perturbed, reaction-diffusion systems. We use noninvasive Pyragas-like proportional feedback control to
stabilize a singular pulse solution to a two-component, singularly perturbed reaction-diffusion system. We show that in a significant region
of parameter space, the control can be adjusted to stabilize an otherwise unstable pulse.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0152695

Singularly perturbed pulses in two-component reaction-diffusion
equations are generally unstable in large regions of parameter
space. To address this instability, we utilize Pyragas control,
which was originally developed for periodic solutions of ordinary
differential equations, to create a noninvasive feedback control
for singularly perturbed pulses in reaction-diffusion systems. We
prove the effectiveness of this control technique by analyzing the
spectral stability of the controlled singular pulse in a toy model,
using Evans function techniques.

I. INTRODUCTION

Reaction-diffusion systems are mathematical models based
on semi-linear parabolic partial differential equations.1 One of
the most fascinating aspects of reaction-diffusion equations is the
plethora of patterns that can emerge from their solutions. These pat-
terns include such diverse phenomena spiral waves in a chemical
oscillator,2 the different animal coat patterns,3 Faraday waves,4 or
various patterns in Rayleigh–Bénard convection,5 geology,6 or fluid
dynamics.7

These patterns, of which some can be classified as Turing
patterns,8 exhibit a variety of behaviors, including the formation of

traveling waves and wave-like phenomena, as well as self-organized
structures such as stripes, hexagons, and dissipative solitons.9 The
study of these patterns has significant implications for understand-
ing natural phenomena and has led to new insights in various
fields.10

The focus of this article is on the analysis and control of a
specific spatially localized coherent structure in a two-component
reaction-diffusion equation: a symmetric singular pulse.11–13,27,29 An
illustration of this pulse is presented in Fig. 1. It is characterized by
a noticeable scale separation, which is evident in the difference in
pulse width between the two components.

It has been shown11,12 that such two-component pulses can
only be stable when the nonlinear interaction between the two
components is sufficiently strong. Even when this is the case, sin-
gular pulses are unstable for large regions in parameter space, see
Ref. 12 (Lemmas 5.11, 5.12, and 5.14). As such, singular pulses are
infrequently observed in nature or experiments. Often only the pro-
gression toward a stable steady state is observable, while unstable
steady states remain largely imperceptible.

It is, therefore, our goal to introduce a Pyragas-like control
term to make unstable pulses visible. Pyragas control14,15 is advan-
tageous as it is noninvasive on the pulses, i.e., the control term
vanishes and does not change the pulse itself. However, it changes
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FIG. 1. A typical profile of a singular symmetric pulse, bi-asymptotic to the trivial
background state. A spatial scale separation between the large scale component
u (red) and the small scale component v (blue) is clearly visible.

the nearby solutions and thereby the stability properties of the pulse.
Another benefit of this control approach is its model-independence
and low implementation cost, as it does not require expensive cal-
culations. Although originally designed for periodic solutions of
ordinary differential equations, we adapt it for controlling singularly
perturbed pulses in reaction-diffusion systems.

We aim to integrate control theory with the theory of pattern
existence and stability in singularly perturbed reaction-diffusion
systems. Specifically, we aim to control the stability of pulse solu-
tions and develop a novel methodology to regulate the stability of
diverse patterns in a broad class of singularly perturbed reaction-
diffusion systems.

This paper is organized as follows: In Sec. II, we discuss our
model system and introduce the singular pulse as the pattern of
interest; we also introduce noninvasive control terms. Next, in Sec.
III, we construct an Evans function to determine the spectral sta-
bility of the singular pulse. Our main result is presented in Sec. IV,
where we demonstrate that noninvasive feedback stabilization can
be achieved in a large region of parameter space. We provide a brief
summary of the stability proof in this section, with a complete and
detailed version of the proof available in the Appendix. We conclude
with a short discussion in Sec. V.

II. MODEL, PATTERNS AND CONTROL

A. Model

We consider the following general class of two-component,
singularly perturbed, reaction-diffusion equations:

ut = uxx − µu + F1(u)+ 1

ε
F2(u, v), (1a)

vt = ε2vxx − v + G(u, v), (1b)

with x ∈ R, µ > 0 and 0 < ε � 1 asymptotically small. The non-
linear functions F1,2 and G obey mild regularity assumptions;12 most
importantly, F2 and G converge superlinearly to 0 as V → 0.

All subsequent calculations will be carried out in the context of
the following toy model:

ut = uxx − u + 1

ε
f(u)2To(u)

v2

3
, (2a)

vt = ε2vxx − v + f(u)v2, (2b)

with f and T0 being smooth functions of u.
System (2) exhibits most defining qualities of the general model

class (1), while allowing for explicit computations. We emphasize,
however, that the methods and techniques used in this paper apply
to all systems of the general class (1).

B. Patterns

The spatially localized coherent structure to be studied in this
paper is a symmetric singular pulse, bi-asymptotic to the trivial
background state; see Fig. 1. The singularly perturbed nature of
(1), through the asymptotically small diffusion term ε2vxx, induces
a spatial scale separation in stationary pattern solutions to (1). For
singular pulses, this scale separation is visible in the difference in
pulse width between the u- and v-components, see again Fig. 1; to
this end, we introduce the short-scale spatial variable,

ξ = x

ε
. (3)

The presence of the asymptotically small parameter ε allows for
the application of geometric singular perturbation theory (GSPT) to
rigorously establish the existence—by a constructive proof—of sta-
tionary, symmetric singular pulse solutions.12 Hence, we state the
existence of a stationary, symmetric pulse solution

(

up(x), vp(ξ)
)

to (1), with
(

up(x), vp(ξ)
)

∼
(

e−|x|, e−|ξ |) as x → ±∞, provided an
algebraic condition in terms of F1,2 and G is satisfied.12 For the toy
model (2), this algebraic condition is

µu2 = To(u)
2. (4)

In addition,

(

up(x), vp(x/ε)
)

=
(

u∗e
−|x|,

3

2f(u∗)
sech2 x

2ε

)

+ O(ε), (5)

where u∗ > 0 is a nondegenerate solution to (4), for which we
assume that f(u∗) 6= 0. For more details on the pulse construction
and proof of existence, see Ref. 12.

C. Control

The aim of this paper is to investigate the use of Pyragas
control14–16 on the stability of stationary, localized coherent struc-
tures in (1). To that end, we introduce feedback control terms K and
L to (1), yielding

ut = uxx − µu + F1(u)+ 1

ε
F2(u, v)+ K[u, v], (6a)

vt = ε2vxx − v + G(u, v)+ L[u, v], (6b)

where K[up(x), vp(ξ)] = 0 = L[up(x), vp(ξ)]. As the feedback con-

trol terms vanish on the target pattern
(

up, vp

)

, this type of control is
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called non-invasive. For control of patterns in PDEs, a wide range
of possible control terms can be applied, including spatiotempo-
ral delay, proportional feedback, or combinations of these.17–20,28 In
this paper, we investigate one specific form of non-invasive control,
applied to the toy model (2). We leave the u-equation intact and add
proportional feedback control to the v-equation, yielding

ut = uxx − u + 1

ε
f(u)2To(u)

v2

3
, (7a)

vt = ε2vxx − v + f(u)v2 + `
(

v − vp(x)
)

, (7b)

with ` : R → R continuously differentiable at zero, and `(0) = 0.
Note that the latter condition ensures that

(

up, vp

)

(5) is a solution
to (7). We have opted for control solely on the variable v since it
exhibits a high degree of spatial localization, with the v-component
of the pulse essentially being zero beyond the spike region. This
offers advantages from an application standpoint, as implementing
localized controls is often simpler compared to extended controls
covering a larger area.

Note that, consequently, on the linear level, the control is not a
multiple of the identity matrix. Therefore, the influence of the con-
trol term ` is not as straightforward as shifting all eigenvalues to the
left. Our goal is to derive conditions on the control function ` such
that the singular pulse

(

up, vp

)

(5) is a stable solution to (7).

III. PULSE STABILITY AND THE EVANS FUNCTION

In order to be observable, a stationary pulse solution needs to
be stable as a solution to the PDE system (1). The (spectral) stability
of a singular pulse solution to (1) can be determined through con-
structing an Evans function E (λ), an analytic function whose roots
precisely coincide with the (discrete) spectrum of the linear operator
obtained by linearizing (1) at the singular pulse (up, vp).21,22 That is,
we consider the eigenvalue problem

L

(

u
v

)

= λ

(

u
v

)

, (8)

with

L =
(

∂2
x − 1 + F′

1 + 1
ε

∂F2
∂u

1
ε

∂F2
∂v

∂G
∂u

ε2∂2
x − 1 + ∂G

∂v

)

, (9)

where all (partial) derivatives of F1,2 and G are evaluated at (u, v)
= (up(x), vp(ξ)).

The essential spectrum of L (9) is real, negative, and bounded
away from the imaginary axis;12 hence, the pulse stability is deter-
mined by its discrete spectrum, i.e., the roots of the associated Evans
function E (λ). In Ref 12, it is shown that the singularly perturbed
structure of the pulse can be used to obtain an explicit characteriza-
tion of the roots of E (λ) to leading order in ε; moreover, these roots
perturb regularly in ε.

For sake of brevity, we omit further details and only state the
main outcome of the theory developed in Ref. 12 when applied to

FIG. 2. A typical configuration of the spectrum of the pulse (purple) in the complex
plane. Spectrum to the left of the imaginary axis is stable. The essential spectrum
is seen to be real, negative, and bounded away from the imaginary axis.

the toy model (2): the spectrum of the pulse (5) is to leading order in
ε determined by the roots of the function

ts(λ) :=:= T′
o(u∗)

To(u∗)
− 1

u∗

√
1 + λ

+ f ′(u∗)

f(u∗)

(

2 + 1

3

∫ ∞

−∞
v̂p(ξ)v̂in(ξ ; λ) dξ

)

, (10)

where v̂p(ξ) = f(u∗)vp(ξ) and v̂in is the unique bounded solution to

[

∂2
ξ − 1 − λ+ 2v̂p(ξ)

]

v̂in = −v̂p(ξ)
2, (11)

which does not depend on u∗.
A typical configuration of the spectrum of L (9) is shown in

Fig. 2. The pulse can lose stability when a pair of eigenvalues crosses
the imaginary axis (a Hopf bifurcation) or when a real eigenvalue
passes through the origin. Note that the pulse spectrum consists of
both discrete (point) spectrum and essential (continuous) spectrum,
as the spatial domain is unbounded.

IV. PULSE STABILIZATION THROUGH PROPORTIONAL

FEEDBACK CONTROL

The main research question that we address in this paper is:
Given a singular pulse solution (up, vp) to (1), can we find control
terms K, L such that this singular pulse is a stable solution to (6)?

As the introduction of control terms has a (potentially) signifi-
cant influence on the stability analysis of the singular pulse, we try to
answer the research question formulated above in the context of the
toy problem (2), with proportional feedback control in v—Eq. (7).
We first present the main outcome of our analysis in Theorem 1 and
describe the main ideas of the proof. The full proof of Theorem 1
can be found in the Appendix.

Theorem 1. Let 0 < ε � 1 be sufficiently small, and assume
that u∗ is a nondegenerate solution to (4). Consider the symmetric
singular pulse solution (up, vp) to (2), which is to leading order in ε

given by (5), and introduce ρ := 2
f ′(u∗)
f(u∗)

+ T′
o(u∗)

To(u∗)
.
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FIG. 3. The stability of the pulse (up, vp) as determined in Theorem 1, with ρ

= 2 f ′(u∗)
f(u∗)

+ T ′
o(u∗)

To(u∗)
. In the blue region (numerically determined), the pulse is sta-

ble without control; stability is lost either through a Hopf bifurcation (red curve) or
by a real eigenvalue passing through zero (blue curve). In the red region and on
the dashed lines, the pulse is unstable and cannot be controlled, see Theorem 1
(1) and (3a). In the remainder of the parameter space, the pulse is unstable but
can be stabilized by proportional control in the v-component, as implemented in
(7).

1. If f ′(u∗) = 0, then the singular pulse (up, vp) is always unsta-
ble for any choice of proportional control function `(v − vp) as
implemented in (7).

2. If f ′(u∗) < 0, then it is possible to choose a proportional control
function `(v − vp), as implemented in (7), such that the singular
pulse (up, vp) is stable.

3. Let f ′(u∗) > 0.
(a) If ρ > 1

u∗
, then the singular pulse (up, vp) is always unstable

for any choice of proportional control function `(v − vp) as
implemented in (7).

(b) If ρ < 1
u∗

, then it is possible to choose a proportional con-

trol function `(v − vp), as implemented in (7), such that the
pulse solution (up, vp) is stable.

A visual representation of the statement of Theorem 1 is given
in Fig. 3. A direct application of Theorem 1 for specific parameter
values is shown in Figs. 4 and 5.

It is worthwhile to note that control on one variable only
suffices to control both components of the pulse.

Specific conditions that the control function ` needs to satisfy
to stabilize the pulse can be found in the proof of Lemma 4 in the
Appendix. In particular, the essential spectrum is stable if and only
if `′(0) < 1 (A4).

FIG. 4. (a) The spectrum for (up, vp)(5) for the toy model (2), with parameter

choices ρ := 2 f ′(u∗)
f(u∗)

+ T ′
o(u∗)

To(u∗)
= 2

u∗
and f ′(u∗) = −3 f(u∗)

u∗
. For these parame-

ters, the pulse is unstable. (b) Application of proportional feedback control as in
(7), with `′(0) = −3 is (more than) sufficient to stabilize the pulse; this is a direct
consequence of Theorem 1, statement 2. (c) Proportional feedback control as in
in (7), with `′(0) = −2.1882 + O(ε) stabilizes the pulse through a Hopf bifur-
cation. The spectral configurations shown in this figure are numerically obtained
roots of the Evans function (13).
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FIG. 5. The real part of the complex eigenvalue pair shown in Fig. 4 as a func-
tion of the control strength `′(0), with proportional feedback control as in (7). A
sufficiently strong control will stabilize the pulse through a Hopf bifurcation.

Moreover, note that the controllability of the pulse strongly
depends on the quantity ρ = 2(f ′/f)+ (T′

0/T0), which corresponds
to the logarithmic derivative of f2(u)T0(u). This quantity represents
the u-dependent nonlinearity of (2)(a) at u = u∗.

Remark 2. While the purpose of this paper is to show the
stabilization of pulse that is unstable in the absence of control, it is
worthwhile to note that our control scheme can also destabilize an
otherwise stable pulse. For example, choosing `′(0) < 1 destabilizes
the pulse through a sideband instability, as the essential spectrum is
pushed through the imaginary axis (A4). We do not explore such
destabilization scenarios in the current paper; the desirability of
pulse destabilization through noninvasive control depends on the
model context and application.

The proof of Theorem 1 starts with the observation that the
linear stability of (up, vp) as a solution to (7) can be written as

[

L −
(

0 0
0 `′(0)

)](

u
v

)

= λ

(

u
v

)

, (12)

with L given in (9). This means that the procedure to construct an
Evans function, as presented in Ref. 12, can be applied to (12). The
singularly perturbed structure of the pulse again leads to the result
that the solutions to the eigenvalue problem (12) are, to leading
order in ε, determined by the roots of the function

t̂s(λ) := T′
o(u∗)

To(u∗)
− 1

u∗

√
1 + λ

+ f ′(u∗)

f(u∗)

(

2 + 1

3

∫ ∞

−∞
v̂p(ξ)v̂in(ξ ; λ− `′(0)) dξ

)

. (13)

The remainder of the proof is a detailed analysis of the meromorphic
complex function t̂s. The main difficulty lies in understanding the
λ-dependence of the integral term in (13), which is closely related
the λ-dependence of v̂in(λ− `′(0)), where v̂in is the unique bounded
solution to (11).

Next, we introduce λ̂ = λ− `′(0), and use Weyl–Titchmarsh–
Kodaira spectral theory23,24 to express the integral

∫ ∞

−∞
v̂p(ξ)v̂in(ξ ; λ̂) dξ =

〈

v̂in, v̂p

〉

2

in terms of projections onto eigenfunctions of the operator Lf

:= ∂2
ξ − 1 − λ̂+ 2v̂p(ξ), cf. (11). This allows us to obtain estimates

on
〈

v̂in, v̂p

〉

2
, from which the statements of the theorem follow.

V. CONCLUSION AND OUTLOOK

In conclusion, we have demonstrated the possibility of sta-
bilizing singularly perturbed pulses in two-component reaction-
diffusion equations across significant areas of the parameter plane.
Specifically, for the toy model (2), we have identified three regions
in the (ρ, f ′(u∗))-plane: a stable region where control is unnecessary,
an unstable region where control is always insufficient, and—our
main interest here—a large region where pulse stability can be
controlled through our proposed control term.

Several potential avenues for future investigation emerge. First,
it may be worthwhile to explore the use of a “true” Pyragas con-
trol, in which the control is not proportional but includes a delay
term, and as such does not rely on explicit pre-existing knowledge
of the pulse structure. This poses additional problems in the rigor-
ous stability analysis as difficulties may arise concerning nonlinear
stability. For the control scheme investigated in this paper, it was
not necessary to differentiate between spectral and nonlinear stabil-
ity. In the non-controlled eigenvalue problem (8), spectral stability
implies nonlinear stability; this follows from a classical result by
Henry1 because the operator L (9) is sectorial. The linear oper-
ator associated to the “controlled” eigenvalue problem (12) has
the same (sectorial) property. Hence, one can directly infer non-
linear stability from spectral stability. For other control strategies,
such as delayed feedback, the sectorial property is generally not
retained. In such a case, one needs to be more careful about deduc-
ing nonlinear stability; see, e.g., Ref. 25 for generalizations of Henry’s
result.

Second, investigating the impact of control on the large scale
component u in comparison to the current focus on the small
scale component v would provide valuable insights for this two-
component system. Additionally, exploring the potential of non-
diagonal controls would also be of interest.

Third, our current analysis has focused on relatively sim-
ple spatially localized coherent structures. It would be interest-
ing to investigate the potential extension of our control scheme
to more complex patterns, such as multi-circuit configurations11

and/or periodic pulse patterns,26 and to determine the conditions
under which stabilization can be achieved for these more intricate
situations.
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APPENDIX: PROOF OF THEOREM 1

1. Pulse stability and the Evans function

For the stability analysis of the pulse (up, vp), we follow the
approach of Ref. 12. The eigenvalue problem determining the linear
stability of (up, vp) is given by

λu = uxx − u + 1

3ε
v2

p

[

f(up)
2T′

o(up)+ 2f(up)f
′(up)To(up)

]

u

+ 2

3ε
f(up)

2vpTo(up)v, (A1a)

λv = ε2vxx − v + 2f(up)vpv + f ′(up)v
2
pu + `′(0)v. (A1b)

In the short scale spatial coordinate ξ = x/ε, system (A1) can be
reformulated as

ε2(λ+ 1)u = uξξ + ε

3
v2

p

[

f(up)
2T′

o(up)+ 2f(up)f
′(up)To(up)

]

u

+ 2ε

3
f(up)

2vpTo(up)v, (A2a)

λv = vξξ − v + 2f(up)vpv + f ′(up)v
2
pu + `′(0)v. (A2b)

We can write (A2) as a first order system for φ = (u, uξ , v, vξ ),

φξ = A (ξ ; λ, ε) φ. (A3)

This formulation allows us to use the theory presented in Ref. 22.
First, we observe that the matrix A is asymptotically con-
stant since (up(ξ), vp(ξ)) → (0, 0) as ξ → ±∞. The associated
asymptotic matrix A∞(λ, ε) := limξ→±∞ A (ξ ; λ, ε) has eigenval-

ues
{

±ε
√

1 + λ, ±
√

1 + λ− `′(0)
}

. Hence, A∞ is hyperbolic if and

only if λ > −1 + min(`′(0), 0). Since ∂ξ − A is a relatively com-
pact perturbation of the operator ∂ξ − A∞, the essential spectrum
of ∂ξ − A is given by

σess =
{

λ ∈ R : λ ≤ −1 + max(`′(0), 0)
}

. (A4)

We observe that the essential spectrum is stable if and only if `′(0)
< 1. Hence, from this point onward, we assume

`′(0) < 1, (A5)

as a necessary condition for the spectrum of ∂ξ − A to be stable.
The remainder of the spectrum is discrete; note that elements of this
point spectrum can (and generically will) have nonzero imaginary
parts.

The Evans function E (λ; ε) can now be defined for all λ /∈ σess,
as follows. Let N(λ, ε) ⊂ R

4 be the set of initial conditions such
that the associated solutions to (A3) decay exponentially as ξ → ∞;
analogously, let R(λ, ε) ⊂ R

4 be the set of initial conditions such that
the associated solutions to (A3) decay exponentially as ξ → −∞.
Because A∞ is hyperbolic for λ /∈ σess, system (A3) has an expo-
nential dichotomy, and the subsets N and R are subspaces of R

4

of dimension 2. Choosing an ordered basis
{

φ1,N,φ2,N

}

of N and an

ordered basis
{

φ1,R,φ2,R

}

of R, we define the Evans function as

E (λ; ε) = det
(

φ1,N,φ2,N,φ1,R,φ2,R

)

. (A6)

The Evans function is analytic on its domain. Most importantly,
E (λ) is zero if and only if λ is an eigenvalue of (A3); moreover, the
algebraic multiplicity of this eigenvalue is equal to the order of λ as
a zero of E (Ref. 22, Theorem 4.1).

2. An explicit expression for the Evans function

We can use the theory developed in Ref. 12 to determine
an explicit expression for the Evans function E . In particular, we
observe that the approach and resulting expressions from Ref. 12

(Sec. 4) can be applied directly for the shifted eigenvalue λ̂ = λ

− `′(0). Note that, although the eigenvalue system (A2) is superfi-
cially analogous to the equivalent system [Ref. 12, (3.2)] with param-
eterµ = 1 + `′(0), the underlying pulse solution itself depends onµ
as well through the existence condition [Ref. 12, (2.16)]. Therefore,
we cannot a priori apply the instability results from Ref. 12 (Sec. 5).
Moreover, as the stability of the controlled pulse is determined by
the real part of λ, the stability condition for the shifted eigenvalue

λ̂ := λ− `′(0) (A7)

is given by

Re λ̂ < −`′(0). (A8)

In terms of λ̂, the essential spectrum is given by

σ̂ess =
{

λ̂ ∈ R : λ̂ ≤ −1 + max(0, −`′(0))
}

. (A9)

From the analysis in Ref. 12, it follows that for all λ̂ /∈ σ̂ess, the Evans
function E can be written as

E (λ̂, ε) = 4ε tf(λ̂, ε) ts(λ̂, ε)

√

1 + λ̂

√

1 + `′(0)+ λ̂, (A10)

in terms of the so-called transmission functions tf(λ̂, ε) and ts(λ̂, ε).
These transmission functions are not necessarily analytic, but
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merely meromorphic on C \ σ̂ess. The structure of these transmis-
sion functions can be determined in more detail, as explained in
Ref. 12. For future reference, we summarize the most important
aspects of the analysis in Ref. 12 below.

Consider the Sturm–Liouville operator

Lf = ∂2
ξ − 1 + 2f(u∗)vp = ∂2

ξ − 1 + 3 sech2

(

ξ

2

)

, (A11)

cf. (5). Its spectrum is given by

σ̂f =
{

λ̂0, λ̂1, λ̂2

}

∪ (−∞, −1), (A12)

with λ̂0 = 5
4
, λ̂1 = 0 and λ̂2 = − 3

4
, see Ref. 13. The zeroes of the

“fast” transmission function tf(λ̂, ε) are to leading order in ε given
by the discrete spectrum of Lf; in addition, these zeroes are sim-

ple. Moreover, the “slow” transmission function ts(λ̂, ε) has a pole

of order 1 exactly where tf(λ̂, ε) has a zero, except for the zero asso-

ciated to λ̂1 = 0 – that is, ts has a pole for every discrete eigenvalue
associated to an even eigenfunction. Hence, the relevant informa-
tion about the zeroes of E (A10), i.e., the point spectrum of ∂ξ − A

(in λ̂), is entirely decoded in ts. Note that, although the concept of
zero-pole cancellation plays a central role in controllability and the
analysis of transfer functions, the occurrence of this phenomenon
in the decomposition of the Evans function is completely unrelated
to the method of Pyragas control that we employ in this paper; it
is solely related to the slow-fast structure of system (A2) and the
underlying pulse solution (up, vp).

The “slow” transmission function ts is, to leading order
in ε, given by the following expression according to Ref. 12
(Theorem 4.4):

ts(λ̂) = C(λ̂)
{

−2

√

1 + λ̂+ `′(0)

+
∫ ∞

−∞

∂

∂u

[

1

3
f(u)2vp(ξ)

2To(u)

]

+ 2

3
vin(ξ ; λ̂)vp(ξ)f(u)

2To(u) dξ
}

, (A13)

evaluated at u = up(0) = u∗ = To(u∗) by (4). Here, C(λ̂) can be
explicitly computed but is uniformly bounded away from zero,

and vin(λ̂) is the unique (bounded) solution to the inhomogeneous
Sturm–Liouville problem,

(

Lf − λ̂
)

vin = −f ′(u∗)vp(ξ)
2. (A14)

Using the explicit leading order expressions (5) for the pulse solution
(up, vp), we can further isolate the u∗-dependence and rewrite ts as

ts(λ̂) = C(λ̂)

{

−2

√

1 + λ̂+ `′(0)+ 2u∗

[

T′
o(u∗)

To(u∗)
+ 2

f ′(u∗)

f(u∗)

+ 1

3

f ′(u∗)

f(u∗)

∫ ∞

−∞
v̂p(ξ)v̂in(ξ ; λ̂) dξ

]}

, (A15)

where v̂p(ξ) = f(u∗)vp(ξ) and v̂in is the unique bounded solution to
(

Lf − λ̂
)

v̂in = −v̂p(ξ)
2, (A16)

which does not depend on u∗. The zeroes of ts are, therefore, the
(complex) solutions to the equation

− T′
o(u∗)

To(u∗)
+ 1

u∗

√

1 + λ̂+ `′(0)

= f ′(u∗)

f(u∗)

(

2 + 1

3

∫ ∞

−∞
v̂p(ξ)v̂in(ξ ; λ̂) dξ

)

. (A17)

Note that if f ′(u∗) = 0, then vin (A14) is trivial; hence no zero-pole
cancellation in the Evans function (A10) takes place, and therefore
λ0 > 0 is a zero of E , rendering the pulse unstable and not control-
lable. Hence, assuming the nondegenerate situation f ′(u∗) 6= 0, we
rewrite (A17) as

α + β

√

1 + λ̂+ `′(0) =
∫ ∞

−∞
v̂p(ξ)v̂in(ξ ; λ̂) dξ , (A18)

with α = −6 − 3
T′

o(u∗)
To(u∗)

f(u∗)
f ′(u∗)

and β = 3
f(u∗)
f ′(u∗)

1
u∗

; note that β can a

priori take any value except zero, and α can take any value in R,
depending on the properties of the model functions f and To. The
stability control question can now be phrased as follows:

Given α,β ∈ R, β 6= 0 fixed, can we choose the control

parameter `′(0) < 1 such, that the (complex) λ̂-solutions to (A18)
outside the essential spectrum σ̂ess (A9) all lie to the left of the line

Re λ̂ = −`′(0)?

3. Spectral decomposition in the presence of

essential spectrum

Although (A16) can, in principle, be solved by variation of
parameters/Green’s function methods, the result in terms of inte-
grals over special functions does not easily yield the required insight
into the functional behavior of the right-hand side of (A18). There-
fore, we use Weyl–Titchmarsh–Kodaira spectral theory to express
the integral

∫ ∞

−∞
v̂p(ξ)v̂in(ξ ; λ̂) dξ =

〈

v̂in, v̂p

〉

2
,

in terms of projections onto eigenfunctions of the operator Lf

(A11). We follow the treatment of Ref. 24 (Secs. 2.18 and 4.19).
We refer to Ref. 23 for a modern and highly accessible overview of
Weyl–Titchmarsh–Kodaira spectral theory.

First, we define θ(ξ ; λ̂) and φ(ξ ; λ̂) such that {θ ,φ} spans the

kernel of Lf − λ̂, and θ(0) = 1, ∂ξθ(0) = 0, φ(0) = 0 and ∂ξφ(0)
= −1. Since Lf is symmetric under the reflection ξ → −ξ , θ is even
and φ is odd as a function of ξ . Both θ and φ can be expressed as

a linear combination of associated Legendre functions P
−2

√
1+λ̂

3 (ζ )
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and Q
−2

√
1+λ̂

3 (ζ ), with ζ = tanh ξ

2
, yielding

θ(ξ ; λ̂) =
0
(

4 + 2
√

1 + λ̂
)

16 λ̂
√

1 + λ̂

[

P
−2

√
1+λ̂

3

(

tanh ξ

2

)

+ P
−2

√
1+λ̂

3

(

−tanh ξ

2

)

]

,

φ(ξ ; λ̂) =
0
(

4 + 2
√

1 + λ̂
)

16
(

λ̂− 5
4

) (

λ̂+ 3
4

)

[

P
−2

√
1+λ̂

3

(

tanh ξ

2

)

− P
−2

√
1+λ̂

3

(

−tanh ξ

2

)

]

.

Next, for λ̂ ∈ (−∞, −1), we determine m2(λ̂) such that the linear
combination θ(ξ ; λ̂)+ m2(λ̂)φ(ξ ; λ̂) ∈ L2(0, ∞); we find

m2(λ̂) = −

(

λ̂− 5
4

) (

λ̂+ 3
4

)

λ̂
√

1 + λ̂
= i

(

λ̂− 5
4

) (

λ̂+ 3
4

)

λ̂
√

−1 − λ̂
. (A19)

Following Ref. 24 (Sec. 4.19), we conclude that for f ∈ L2(R) with
f(ξ) = f(−ξ), we have the expansion

f(ξ) =
2
∑

i=0

〈

ψi, f
〉

2
ψi(ξ)

+
−1
∫

−∞

λ̂
√

−1 − λ̂

2
(

λ̂− 5
4

) (

λ̂+ 3
4

)

〈

θ(·, λ̂), f
〉

2
θ(ξ , λ̂) dλ̂, (A20)

where the (L2-normalized) eigenfunctions ψi(ξ) associated to the

eigenvalues λ̂i are given by

ψ0(ξ) = 1

4

√

15

2
sech3 ξ

2
= 1

4

√

15

2

(

1 − ζ 2
)3/2

,

ψ1(ξ) = 1

2

√

15

2
sech2 ξ

2
tanh

ξ

2
= 1

2

√

15

2
ζ
(

1 − ζ 2
)

,

ψ2(ξ) = 1

4

√

3

2

(

−3 + 2 coshξ
)

sech3 ξ

2

= 1

4

√

3

2

(

−1 + 5ζ 2
)
√

1 − ζ 2.

Note that
〈

f,ψ1

〉

2
= 0 since f(ξ) is assumed to be even and ψ1(ξ)

= −
√

5
6
∂ξ v̂p is odd. We apply the expansion (A20) to v̂p(ξ), and

subsequently consider the inner product

〈

v̂in(·, λ̂), v̂p

〉

2
=

2
∑

i=0

〈

ψi, v̂p

〉

2

〈

v̂in(·, λ̂),ψi

〉

2

+
−1
∫

−∞

µ̂
√

−1 − µ̂

2
(

µ̂− 5
4

) (

µ̂+ 3
4

)

〈

θ(·, µ̂), v̂p

〉

2

〈

v̂in(·, λ̂), θ(·, µ̂)
〉

2
dµ̂, (A21)

cf. Ref. 23 (Theorem 1.8). Now, because
〈

v̂2
p,ψi

〉

2
=
〈

−
[

Lf − λ̂
]

v̂in,ψi

〉

2
=
〈

v̂in, −
[

Lf − λ̂∗
]

ψi

〉

=
〈

v̂in, −(λ̂i − λ̂∗)ψi

〉

=
(

λ̂− λ̂i

)

〈

v̂in,ψi

〉

and equivalently
〈

v̂2
p, θ(·, µ̂)

〉

=
(

λ̂− µ̂
) 〈

v̂in(·, λ̂), θ(·, µ̂)
〉

,

we find

〈

v̂in(·, λ̂), v̂p

〉

2
=

2
∑

i=0

〈

ψi, v̂p

〉

2

〈

v̂2
p,ψi

〉

2

λ̂− λ̂i

+
−1
∫

−∞

µ̂
√

−1 − µ̂

2
(

µ̂− 5
4

) (

µ̂+ 3
4

)

〈

θ(·, µ̂), v̂p

〉

2

〈

v̂2
p, θ(·, µ̂)

〉

2

λ̂− µ̂
dµ̂.

(A22)

All inner products can be calculated explicitly,

〈

ψ0, v̂p

〉

2
= 9π

32

√

15

2
, (A23)

〈

ψ2, v̂p

〉

2
= 3π

32

√

3

2
, (A24)

〈

v̂2
p,ψ0

〉

2
= 45π

128

√

15

2
, (A25)

〈

v̂2
p,ψ2

〉

2
= − 9π

128

√

3

2
, (A26)

〈

θ(·, µ̂), v̂p

〉

2
= −3π

4

√

−1 − µ̂ cschπ
√

−1 − µ̂, (A27)

〈

v̂2
p, θ(·, µ̂)

〉

2
= −3π

4
µ̂
√

−1 − µ̂ cschπ
√

−1 − µ̂, (A28)

which can be used to write
〈

v̂in(·, λ̂), v̂p

〉

2
= 6075π 2

8192

1

λ̂− 5
4

− 81π 2

8192

1

λ̂+ 3
4

+
−1
∫

−∞

9π 2

32

µ̂2
(

−1 − µ̂
)3/2

(

µ̂− 5
4

) (

µ̂+ 3
4

)

csch2
π
√

−1 − µ̂

λ̂− µ̂
dµ̂

(A29)

= 6075π 2

8192

1

λ̂− 5
4

− 81π 2

8192

1

λ̂+ 3
4

+
∞
∫

1

9π 2

16

κ4(1 + κ2)
2

(

κ2 + 9
4

) (

κ2 + 1
4

)

csch2
πκ

λ̂+ κ2 + 1
dκ . (A30)
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We can use this information to investigate the solutions to (A18).
To this end, we formulate the following Lemma, which summarizes

relevant properties of the inner product
〈

v̂in(·, λ̂), v̂p

〉

2
(A29).

Lemma A.3. Let R(λ̂) =
〈

v̂in(·, λ̂), v̂p

〉

2
be as in (A29). Then

the following statements hold:

(I) sgn Im R(λ̂) = −sgn Im λ̂;

(II) There exists c > 0 such that, if Re λ̂ > c, then Re R(λ̂) > 0;

(III) For real λ̂ > λ̂0, R(λ̂) is positive and strictly monotonically
decreasing;

(IV) There exist d1,2 > 0 such that, if −d1 < Re λ̂ < d2, then

Re R(λ̂) < 0.

Proof. We define

Rd(λ̂) = 81π 2

8192

(

75

λ̂− 5
4

− 1

λ̂+ 3
4

)

,

Rc(λ̂) =
∞
∫

1

9π 2

16

κ4(1 + κ2)
2

(

κ2 + 9
4

) (

κ2 + 1
4

)

csch2
πκ

λ̂+ κ2 + 1
dκ ,

so R(λ̂) = Rd(λ̂)+ Rc(λ̂).

(I) Denoting λ̂ = a + ib, we have Im k

λ̂+m
= b k

(a+m)2+b2 for

k, m ∈ R. From this observation, it immediately follows

that sgn Im Rc(λ̂) = −sgn Im λ̂. For Rd, we estimate
75

(

a− 5
4

)2
+b2

− 1
(

a+ 3
4

)2
+b2

>

75−1

b2+max

(

(

a− 5
4

)2
,
(

a+ 3
4

)2
) > 0, from which it

follows that sgn Im Rd(λ̂) = −sgn Im λ̂.

(II) Using the same notation as in (I), we have Re k

λ̂+m
= k(a+m)

(a+m)2+b2

for k, m ∈ R. From this observation, it immediately fol-

lows that Re Rc(λ̂) > 0 for all a > 0. For Rd, we find that
75
(

a− 5
4

)

(

a− 5
4

)2
+b2

− a+ 3
4

(

a+ 3
4

)2
+b2
>0 for a >

75· 5
4 +1· 3

4
75−1

> 0 and any b ∈

R.
(III) If λ̂2 > λ̂1 > 0, then k

λ̂2+m
< k

λ̂1+m
for k, m > 0; hence,

it follows that Rc(λ̂) is strictly monotonically decreas-

ing for real λ̂ > 0. Moreover, from the proof of (II),

we know that Rc(λ̂) is positive for real λ̂ > 0. For

Rd(λ̂), we calculate
dRd

dλ̂
= 81π2

8192

(

−75
(

λ̂− 5
4

)2 + 1
(

λ̂+ 3
4

)2

)

< 0 for

λ̂ > λ̂0 = 5
4
. Moreover, limλ̂→∞ Rd(λ̂) = 0 and Rd(λ̂)

→ +∞ as λ̂ ↓ λ̂0 = 5
4
; we conclude that Rd is positive and

strictly monotonically decreasing for real λ̂ > λ̂0.

(IV) For Rd, we find that
75
(

a− 5
4

)

(

a− 5
4

)2
+b2

− a+ 3
4

(

a+ 3
4

)2
+b2

< 0 for − 3
4
< a

< 5
4

and any b ∈ R. For Rc, we use the estimates κ2 + 9
4

> κ2 + 1, κ2 + 1
4
> κ2 and Re 1

λ̂+κ2+1
= a+κ2+1

(a+κ2+1)
2+b2

≤ 1
κ2+1

when a ≥ 0, to obtain

ReRc(λ̂) ≤
∞
∫

1

9π 2

16
κ2csch2

πκ dκ

= 9π

16

[

3 + cothπ − 2

π
log

(

−1 + e2π
)

+ 1

π 2
Li2
(

e−2π
)

]

≈ 9.05 × 10−3.

The claim follows by continuity of Re R = Re Rd + Re Rc in
(a, b) for − 3

4
< a < 5

4
.

�

4. Results on proportional feedback control

Using the results obtained in the previous sections, we can
formulate the following lemma on solutions to Eq. (A18):

Lemma A.4. Consider Eq. (A18) for λ̂ ∈ C with α,β ∈ R and
`′(0) < 1, where v̂in is the unique bounded solution to (A16), and
v̂p(ξ) = 3

2
sech2 ξ

2
, cf. (5). Then the following statements hold:

1. If β > 0, then all solutions λ̂ to (A18) lie on the real axis.
2. If β > 0 and α ≤ 0, then there always exists a real, positive

solution λ̂ > λ̂0 to (A18) for any `′(0) ∈ R.
3. If −α ≥ β > 0, then for any `′(0) ∈ R, there exists a real, positive

solution λ̂ > −`′(0) to (A18).
4. If 0 ≤ −α < β, then there exists a value `′(0) < −λ̂0 such that

all solutions λ̂ to (A18) obey Re λ̂ < −`(0).
5. If β > 0 and α > 0, then there exists a value `′(0) < −(1 + λ̂0)

such that (A18) has no solutions.
6. If β < 0, then there exists 3̂ < 0 such that, when `′(0) < 3̂, all

solutions λ̂ to (A18) lie to the left of the vertical line
{

Re λ̂ = c
}

,

with c > 0 independent of α,β and `′(0).

Proof. We define

L(λ̂) := α + β

√

1 + λ̂+ `′(0),

so (A18) can be written as L(λ̂) = R(λ̂).
1. If β > 0, then all solutions to (A18) lie on the real axis. For

the principal complex square root
√

z, which is defined for all z away
from the negative real line, it holds that Re

√
z > 0 and sgn Im

√
z

= sgn Im z. It follows that, if β > 0, Im L(λ̂) can only equal Im R(λ̂)
if both are zero, by Lemma 3 (I).

2. If β > 0 and α ≤ 0, then there always exists a real, positive

solution λ̂ > λ̂0 for any `′(0) ∈ R. By statement 1, we take λ̂ ∈ R.

Both Rd and Rc are positive for sufficiently large λ̂ by Lemma 3 (II);

moreover, R(λ̂) → 0 as λ̂ → ∞. It follows that L(λ̂) > R(λ̂) for suf-
ficiently large λ̂, since β > 0. Moreover, from the observation that

R(λ̂) → +∞ as λ̂ ↓ λ̂0 = 5
4
, combined with the fact that L(λ̂) is con-

tinuous for λ̂ ≥ −1 − `′(0) and L(λ̂) → α ≤ 0 as λ̂ ↓ −1 − `′(0), it
follows by continuity of R(λ̂) for λ̂ > λ̂0 = 5

4
that there exists a real,

positive solution to (A18), that lies to the right of the point λ̂ = λ̂0

and to the right of the point λ̂ = −1 − `′(0).
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3. If −α ≥ β > 0, then for any `′(0) ∈ R, there exists a real,

positive solution λ̂ > −`′(0) to (A18). Since R(λ̂) is positive for real

λ̂ > λ̂0 by Lemma 3 (III), the intersection of the graphs R(λ̂) and

L(λ̂) lies above the horizontal λ̂ axis. Since β > 0 and α < 0, the
graph of L(λ̂) is strictly monotonically increasing on its domain and

intersects the horizontal axis before intersecting the graph of R(λ̂),

as λ̂ increases. Denote the λ̂-value for which the two graphs inter-

sect as λ̂∗. From the monotonicity of the graphs, it follows that λ̂∗
is the largest solution to (A18). Moreover, as L(λ̂) if and only if λ̂

= ( α
β
)2 − 1 − `′(0), we conclude that λ̂∗ > ( α

β
)2 − 1 − `′(0)

> −`′(0) since −α ≥ β .
4. If 0 ≤ −α < β , then there exists a value `′(0) < −λ̂0 such

that all solutions λ̂ to (A18) obey Re λ̂ < −`(0). We calculate
L(−1 − `′(0)) = α ≤ 0 and L(−`′(0))
= α + β > 0. Hence, the largest solution λ̂∗ to (A18) is contained
in the interval (−1 − `′(0), −`′(0)) if and only if R(−`′(0)) < α

+ β by the monotonicity and continuity of L(λ̂) and R(λ̂). From
Lemma 3 (III), it follows that R(−`′(0)) < α + β for sufficiently
large |`′(0)|.

5. If β > 0 and α > 0, then there exists a value `′(0) < −(1 + λ̂0)

such that (A18) has no solutions. By Lemma 3 (III), there exists

k̂ > λ̂0 such that R(λ̂) < α for all λ̂ > k̂. Choosing `′(0) = −1 − k̂,

so that L(k̂) = L(−1 − `′(0)) = α, we see that (A18) cannot have
any real solutions, which implies that (A18) does not have any
(complex) solutions by statement 1.

6. If β < 0, then there exists 3̂ < 0 such that, when
`′(0) < 3̂, all solutions to (A18) lie to the left of the ver-

tical line
{

Re λ̂ = c
}

, with c > 0 independent of α, β , and

`′(0).
Suppose α ≤ 0, and consider λ̂ ∈ R. We can choose `′(0)

< −(1 + λ̂0), making sure that the domain of L(λ̂) lies entirely

to the right of λ̂ = λ̂0. On this domain, we have L(λ̂) < 0, while

R(λ̂) > 0, from which we conclude that no real solutions to (A18)
exist. The same reasoning can be extended to complex solutions of
(A18), under the same assumption that α ≤ 0: because Re

√
z > 0

for all z away from the negative real line, we have that Re L(λ̂)

< 0 for all λ̂ on its domain, while there exists a c > 0 such

that Re R(λ̂) > 0 for all λ̂ to the right of the line
{

Re λ̂ = c
}

by

Lemma 3 (II).
Now suppose α > 0. For λ̂ ∈ R, the same reasoning as

in the case α ≤ 0 can be applied, choosing `′(0) < (− α

β
)2

− 1 − λ̂0. The reasoning for complex λ̂ is also analogous to
the case α ≤ 0, now with `′(0) < (− α

β
)2 − 1 − c, again using

Lemma 3 (II). �

5. Finishing the proof of Theorem 1

The results in Lemma 4 can now be used prove Theorem 1,
restated here for convenience:

Theorem A.5. Let 0 < ε � 1 be sufficiently small, and
assume that u∗ is a nondegenerate solution to (4). Consider the sym-
metric singular pulse solution (up, vp) to (2), which is to leading order

in ε given by (5), and introduce ν := 2
f ′(u∗)
f(u∗)

+ T′
o(u∗)

To(u∗)
.

1. If f ′(u∗) = 0, then the singular pulse (up, vp) is always unsta-
ble for any choice of proportional control function `(v − vp) as
implemented in (7).

2. If f ′(u∗) < 0, then it is possible to choose a proportional control
function `(v − vp), as implemented in (7), such that the singular
pulse (up, vp) is stable.

3. Let f ′(u∗) > 0.
(a) If ρ > 1

u∗
, then the singular pulse (up, vp) is always unstable

for any choice of proportional control function `(v − vp) as
implemented in (7).

(b) If ρ < 1
u∗

, then it is possible to choose a proportional con-

trol function `(v − vp), as implemented in (7), such that the
pulse solution (up, vp) is stable.

Proof. The pulse solution (up, vp) is spectrally stable if and

only if, for the shifted eigenvalue λ̂ = λ− `′(0) (A7), the condition

Re λ̂ < −`′(0) (A8) is satisfied. Eigenvalues λ̂ correspond to zeroes

of the Evans function E (λ̂, ε) (A10). These zeroes are, to leading
order in ε, given by the solutions to (A17).

Claim 1 follows from the observation that the only solution
vin to (A14) is the trivial solution when f ′(u∗) = 0. Hence, the slow

transmission function ts (A15) does not have a pole at λ̂ = λ̂0; there-
fore, no zero-pole cancellation in the Evans function (A10)—as
detailed in Ref. 12—takes place. It follows that the positive real zero

near λ̂0 of the fast transmission function tf is also a zero of the
full Evans function E , which means the pulse solution (up, vp) is
unstable.

If f ′(u∗) 6= 0, then (A17) is of the form (A18), with α = −6

− 3
T′

o(u∗)
To(u∗)

f(u∗)
f ′(u∗)

and β = 3
f(u∗)
f ′(u∗)

1
u∗

.

When β < 0, it follows from Lemma 4 (6) that there is a c > 0

such that all solutions of (A18) lie to the left of the line
{

Re λ̂ = c
}

.

Since c > 0 is, in particular, independent of `′(0), and the state-

ment holds for all `′(0) < 3̂ < 0, we can choose `′(0) < −c, which
implies that all solutions of (A18) obey the stability criterion Re λ̂
< −`′(0). Since β < 0 if and only if f ′(u∗) < 0, this proves claim 2.

When α > 0 and β > 0, it follows from Lemma 4 (5) that (A18)
does not have any solutions when `′(0) is negative and |`′(0)| is suf-

ficiently large. As f ′(u∗) 6= 0, the zeroes of tf(λ̂, ε) near λ̂0 and λ̂2 are

canceled by the poles of ts(λ̂, ε); the remaining zero λ̂1 = 0 is stable

for `′(0) < 0. It follows that all zeroes the Evans function E (λ̂, ε)
(A10) obey Re λ̂ < −`′(0), which implies that (up, vp) is spectrally

stable. The condition α > 0 is equivalent to
T′

o(u∗)
To(u∗)

f(u∗)
f ′(u∗)

> −2, while

β > 0 is equivalent to
f(u∗)
f ′(u∗)

1
u∗
> 0. Since both u∗ > 0 and f(u∗)

> 0) by assumption, the latter condition is equivalent to f ′(u∗) > 0.

This allows us to rewrite the α > 0-condition as
T′

o(u∗)
To(u∗)

< −2
f ′(u∗)
f(u∗)

,

thereby proving the second part of claim 3 for 2
f ′(u∗)
f(u∗)

+ T′
o(u∗)

To(u∗)
< 0.

When 0 ≤ −α < β , it follows from Lemma 4 (4) that all solu-
tions to (A18) obey the stability criterion Re λ̂ < −`′(0). As before,
the condition β > 0 is equivalent to f ′(u∗), while the condition

β > −α ≥ 0 can be rewritten as 0 ≤ 2
f ′(u∗)
f(u∗)

+ T′
o(u∗)

To(u∗)
< 1

u∗
, which

finalizes the proof of claim 3 b).
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When −α > β > 0, it follows from Lemma 4 (3) that there
always exists a solution to (A18) that does not satisfy the stabil-

ity criterion Re λ̂ < −`′(0), regardless of the value of `′(0). This
implies that, under the condition −α > β > 0, the pulse (up, vp)

is unstable for any choice of the control function `. The condition
β > 0 is equivalent to f ′(u∗) > 0, while the condition −α > β can

be rewritten as
f ′(u∗)
f(u∗)

+ T′
o(u∗)

To(u∗)
> 1

u∗
, which proves claim 3 a). �
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