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Abstract 

Opioids are essential pharmaceuticals due to their analgesic properties, however, lethal side effects, addiction, 
and opioid tolerance are extremely challenging. The development of novel molecules targeting the µ-opioid recep-
tor (MOR) in inflamed, but not in healthy tissue, could significantly reduce these unwanted effects. Finding such novel 
molecules can be achieved by maximizing the binding affinity to the MOR at acidic pH while minimizing it at neu-
tral pH, thus combining two conflicting objectives. Here, this multi-objective optimal affinity approach is presented, 
together with a virtual drug discovery pipeline for its practical implementation. When applied to finding pH-specific 
drug candidates, it combines protonation state-dependent structure and ligand preparation with high-throughput 
virtual screening. We employ this pipeline to characterize a set of MOR agonists identifying a morphine-like opioid 
derivative with higher predicted binding affinities to the MOR at low pH compared to neutral pH. Our results also con-
firm existing experimental evidence that NFEPP, a previously described fentanyl derivative with reduced side effects, 
and recently reported β-fluorofentanyls and -morphines show an increased specificity for the MOR at acidic pH 
when compared to fentanyl and morphine. We further applied our approach to screen a >50K ligand library identi-
fying novel molecules with pH-specific predicted binding affinities to the MOR. The presented differential docking 
pipeline can be applied to perform multi-objective affinity optimization to identify safer and more specific drug 
candidates at large scale.

Introduction
The discovery of opium to treat severe pain has been one 
of the most important achievements in ancient medicine, 
although manufactured opium preparations in later his-
tory had often led to treatment failures due to the fluc-
tuating concentration of the active ingredient. Friedrich 
Sertürner conducted analytical experiments which in 
1804/1805 led to the discovery of the active ingredient of 
opium: morphine [1]. The pioneering discovery of mor-
phine paved the way for modern drug development. For 
the first time, the exact dosing of a single active ingredi-
ent - and thus a calculable effect on the patient - became 
possible. Unfortunately, Sertürer became addicted to 
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morphine due to his self-experimentation and ultimately 
died of his own discovery.

Morphine has lethal side effects. Most notably, it can 
cause respiratory depression. In order to reduce lethal 
effects and addiction, Bayer developed heroin with good 
hope: It is a derivative of morphine which needs a much 
smaller dose for the same pain relief effect. Heroin, first 
produced in 1898, was considered a legal drug for pain, 
cough and other ailments, and of course children were 
treated with it, too [2]. However, it quickly turned out 
that heroin is actually more addictive than morphine. The 
simple adage “the dose makes the poison” has not been a 
good rule of thumb in this case.

In view of this history, it is surprising why the paradigm 
of modern drug development, especially when looking 
for a lead compound (similar to how heroin was a lead 
compound), still optimizes towards the strongest possi-
ble effect, i.e. the lowest possible dose of active ingredient 
to be administered. In this questionable spirit, a strong 
affinity of the searched-for lead compound with regard to 
its target protein is the main goal of current drug screen-
ing approaches. In the case of pain relief, the target pro-
tein addressed by the active ingredients is the µ-opiod 
receptor (MOR). In the most simple model (for an in 
vitro experiment) let [P] be the equilibrium concentration 
of free target protein, [L] the respective concentration of 
unbound ligand (opioid), and [PL] the concentration of 
opioids which are bound to the MOR in equilibrium. The 
binding process can be expressed by a reaction equation

with association and dissociation rates. The affinity of the 
ligand with regard to the receptor is then defined as the 
ratio

This is usually the quantity to be maximized when look-
ing for an “optimal” lead compound in conventional drug 
screening.

Having identified a target protein, virtual drug screen-
ing methods can be used to find ligands with high affin-
ity to the target and are becoming increasingly important 
for efficient drug discovery [3, 4]. In order to estimate the 
affinity for experimentally untested pairs of ligands and 
target proteins, there exist some heuristic approaches. 
Instead of analyzing or computationally modeling the 
binding process itself in order to derive the rate con-
stants, often only the three-dimensional placement of 
the ligand inside the target protein (docking) is opti-
mized using a so-called scoring function f. This function 
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f depends on the coordinates of the atoms of the ligand 
molecule with regard to the atomic coordinates of the 
respective structure T(P) of the target protein. Estimating 
the affinity of a given ligand to a target protein is equiva-
lent to finding the global minimum of a scoring function

where the “=” sign means equality up to the approxima-
tions made. In the optimal affinity approach one then 
aims to find ligands L∗ maximizing the affinity, that is, for 
which

Since one often is not only interested in the optimal 
ligands but in a list of promising candidate ligands, one 
searches for ligands L∗ such that

where 0 ≤ θ ≪ 1 denotes a small parameter allowing for 
a minor relative deviation from the maximum.

One of the most often used scoring functions is given 
by the (Gibbs) free energy difference �FP(L) between 
the unbound and the bound state of the ligand-protein 
system. In this case, the scoring function is given by 
f = exp(−β|�FP |) with a system-dependent constant β 
such that ligands L that minimize f are the ones that max-
imize the free energy difference |�FP | . Then, the optimi-
zation criterion (1) is replaced by

The fact that the set of all chemically possible ligands 
includes about 1060 structures makes it - even with nowa-
days increased computer power - impossible to explore 
this huge “chemical space” (e.g. [5–7]). Several methods 
to systematically cope with this problem have been devel-
oped by either advanced search strategies or by confining 
the search space. Among the search strategies are frag-
ment-based methods. In these methods initial ligands are 
cut into rotatable or scalable fragments and these frag-
ments are then fitted into the binding pocket [8–11]. By 
these methods, not all molecules of the chemical space 
are screened but only those that geometrically fit into the 
pocket. Also, mathematically motivated search strategies 
such as (local and global) Monte-Carlo methods [12], 
multi-agent/ swarm intelligence-based methods [13] 
or genetic algorithm-based methods [14] can be found. 
Aside from these search strategies also different scoring 
functions are possible.
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The optimal affinity approach, however, does not lead 
to a solution to the problem of finding promising drug 
candidates with minimal side effects because large affin-
ity screenings in the first place do not take additional 
constraints into account. The nowadays widely used 
opioid fentanyl - discovered in the 1960s - shows strong 
(almost optimal) affinity to the MOR, and it is even more 
potent and cheaper to produce than heroin. However, it 
has the same lethal side effects and fentanyl is one of the 
causes of the opioid crisis in the USA [15]. Due to this 
crisis, there is a strong need to find better strong pain-
relieving drugs, which do not show severe side effects.

Summing up, the conventional drug screening 
approaches for finding a new lead compound are mainly 
based on maximizing the binding affinity of the protein-
ligand system. However, also other factors can influence 
the efficacy. We therefore propose a novel approach, 
broadening this view:

Instead of investigating AffinityP(L) we seek for novel 
lead compounds with respect to

where E represents the chemical environment of the 
system.

In the literature, several cases have been documented, 
where the environmental conditions can have an influ-
ence on the protein-ligand system. For instance, in [16] 
it has been observed, that the binding properties of the 
human serum albumin, which is critical for drug half-life 
and distribution, change with respect to the surrounding 
temperature. But also the composition of the surrounding 
solvent and its solubility can influence the binding affinity 
(e.g. [17]). In addition, other factors like the pH value of 
the environment can influence the binding affinity.

For example, in the context of the above-mentioned 
fentanyl, we previously exploited the surrounding pH 
value of the target protein to design a novel drug: Here, 
the wanted effect (pain relief ), as well as the unwanted, 
potentially lethal effects, are both caused by binding of 
the opioid to the MOR. A primarily high binding affin-
ity (thus, reducing the needed dose) of the searched-
for ligand with regard to the MOR is therefore not the 
solution. One solution could be given by the following 
new paradigm: The pain relief effect can be caused by 
an opioid that binds to the MOR in inflamed tissue, 
whereas the lethal side effects are primarily caused by 
opioids that bind to MOR in healthy tissue. The differ-
ence between inflamed and healthy tissue is e.g. given 
by the pH value of the chemical environment of the 
MOR. Inflamed tissue has a low (acidic) pH, healthy 
tissue has a neutral pH value. The three-dimensional 

AffinityP(L, E),

structure of the MOR has a different conformation 
at low pH than at neutral pH, i.e., the target struc-
ture also depends on pH. And also the opioid (ligand) 
may change its chemical properties and structure with 
changing pH.

On the basis of this knowledge we propose to change 
the paradigm in (virtual) drug screening by including 
the effect of the environment already in the primary 
search for a lead structure. Our approach proposed in 
this article represents the environment E by a param-
eter θ , in this case a scalar parameter given by the pH 
value, however, in general a parameter vector. Then, 
the decisive difference in the environment is repre-
sented by two parameter values, θ1 and θ2 , in our case 
low and, respectively, neutral pH values. The proposed 
multi-objective optimal affinity approach then seeks 
for ligands L∗ that solve the multi-criteria optimization 
problem

where L(θi) and T (θi) denote the ligand and target struc-
tures of environment parameter θi , i = 1, 2 . The minus 
sign in the second row means that we seek to minimize 
the affinity for θ2 (neutral pH, healthy tissue in our exam-
ple) while we seek to maximize the affinity for θ1 (low pH, 
inflamed tissue).

Solving multi-criteria optimization problems means 
exploring the set of possible ligands that satisfy (4). In 
general, this set, often called the Pareto set, contains 
many ligands, in particular all the ones that solve [18]

for one of the values of � between 0 and 1. When using 
the free energy difference as scoring function, we alterna-
tively may replace (5) by

The ligands satisfying (6) cannot be improved in any 
of the two objectives, |�FP(θ1)| and −|�FP(θ2)| with-
out degrading the other objective; these are called 
Pareto-optimal in the literature on multi-objective opti-
mization. The difference between this proposed multi-
objective affinity approach and the standard optimal 
affinity approach is illustrated in Fig. 1.

In this article, we will not go into the details of how 
to find algorithms for solving the multi-objective opti-
mization (4) in the entire chemical space; there is an 
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established literature on efficient algorithms, see, e.g., 
[19], but these algorithms would require extensive 
specifications for the problem at hand, which is not in 
the focus of this article. In contrast, we will discuss the 
new multi-objective optimal affinity approach by exem-
plifying it for use in virtual drug discovery.

Methods
Next, we describe how the multi-objective optimal 
affinity approach can be implemented in practice. 
We have built a flexible and high-throughput capable 

differential virtual screening and docking pipeline. The 
pipeline is general, i.e. it can handle diverse charac-
terizations of the environment by different parameters. 
However, it is herein explained for our guiding exam-
ple, the case of MOR-agonists at acidic and neutral 
pH, see Fig. 2 for a schematic overview. The pipeline is 
composed of six main steps: 

(1) Protonation state generation and Molecular dynam-
ics: The protonation state of the target structure is 
generated at neutral and acidic pH using PROPKA 
[20]. MD simulation is performed to generate the 
target structure of the MOR at acidic pH. For the 
neutral environment, the experimentally deter-
mined conformation is used (Fig. 2, right panel).

(2) Structure Preparation: The target structure is pre-
pared for docking and the target space is selected 
for ligand-target docking.

(3) Ligand Preparation: After a selection of appropriate 
ligand libraries, the virtual screening platform Vir-
tualFlow [21] is used to prepare the ligand libraries 
under pH-specific conditions (Fig. 2, left panel).

(4) Docking: Using VirtualFlow again, separate, paral-
lelized docking runs are performed (Fig. 2, middle 
panel), including calculation of the respective bind-
ing free energies �FP.

(5) Analysis: Results of binding free energy calculations 
are analyzed statistically and the respective binding 
free energy docking scores are computed.

Fig. 1 Illustration of the multi-objective optimal affinity approach 
proposed herein in contrast to the standard optimal affinity 
approach: Under the assumption that the binding free energy values 
FP(θ1) and FP(θ2) of all ligands of interest fill the grey shaded area 
including its boundaries, the standard optimal affinity approach (3) 
would identify the ligand indicated by the green ball, or, in its relaxed 
version (2), the green shaded area close to the ball. In contrast, 
the multi-objective optimal affinity approach (6) would identify 
the ligands in the red area of the boundary giving higher importance 
to the binding affinity at acidic pH

Fig. 2 Sketch of the differential docking pipeline for the identification of pH-specific MOR ligands. A ligand library was selected and prepared 
for docking at neutral pH (7.4) and acidic pH (5.0). Target MOR structures (without the G-protein complex) were derived from an experimentally 
determined structure (Protein Data Bank [22] (PDB): 8EF5 [23]) and side chain protonation states were generated at pH 7.4 and 5 according 
to pKa values determined by PROPKA. Docking studies were performed with ligands prepared at pH 7.4 to the neutral MOR (conformation 
of the experimental structure) and ligands at pH 5.0 to the protonated MOR (conformation after simulation in an acidic environment)
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(6) Optimization: Pareto-optimal ligands, that is, those 
that solve the multi-objective optimization problem 
(6), are identified.

Next, the methods used for the implementation of 
these six steps are described:

Step 1: Protonation state generation and molecular 
dynamics
For molecular modeling, a human MOR structure with 
fentanyl was procured from the PDB archive [22] (PDB: 
8EF5 [23]). The protonation states of the different 
amino acid residues of the MOR were determined using 
the PROPKA predictor tool [20, 24, 25], with respect 
to the system acidity values of pH 5.0 and pH 7.4, cor-
responding to the inflamed and healthy system states, 
respectively. The fentanyl was sketched and parameter-
ized using the CHARMM-GUI Ligand Reader & Mod-
eler [26].

For docking at neutral pH, the native conformation 
of the experimental structure (PDB: 8EF5) was used. To 
generate a target conformation at acidic pH, the pro-
tonated MOR-fentanyl complex was inserted into the 
1-palmitoyl-2-oleoyl-sn glycerol-3-phosphatidyl cho-
line (POPC) bilayer models using the CHARMM-GUI 
Membrane Builder [27]. Molecular dynamics (MD) sim-
ulation was performed with GROMACS 2022.5 [28], 
using the CHARMM36m force-field for the ligands 
[29], proteins [30] and lipids [31]. The CHARMM 
TIP3P water model [32] was used as an explicit solvent. 
Sodium and chloride counterions were added to neu-
tralize the excess charge and obtain a salt concentra-
tion of 0.15 M. The particle mesh Ewald (PME) method 
[33] was employed to calculate long-range Coulombic 
interactions, with a 1.2 nm cut-off for real-space inter-
actions. A force-switch function was implemented for 
the Lennard–Jones interactions, with a smooth cut-off 
from 1.0 to 1.2 nm. The temperature was maintained at 
310 K using the Nosé-Hoover thermostat [34, 35]. Sys-
tem pressure was kept at 1 bar with the Parrinello-Rah-
man barostat [36] using a semi-isotropic scheme, where 
pressure along x-y-directions and the z-direction were 
coupled separately. Coupling constant and compress-
ibility of the barostat were set to 5 ps and 4.5× 10−5 
bar, respectively. The LINCS algorithm [37] was used 
to constrain the covalent bonds between hydrogen and 
other heavy atoms, allowing a simulation time-step of 
2 fs.

The simulation system went through consecutive 
minimization, equilibration, and a production run using 
the GROMACS scripts generated by the CHARMM-
GUI [27]. First, the system was energy minimized with 
the steepest descent algorithms, followed by six-step 

equilibration runs. The first two runs were performed in 
the NVT (constant particle number, volume, and tem-
perature) ensemble, and the remaining runs in the NPT 
(constant particle number, pressure, and temperature) 
ensemble. Restraint forces were applied to the fentanyl, 
MOR, POPC, and water molecules, and z-axis positional 
restraints were placed on POPC atoms to restrict their 
motion along the x-y-plane. These restraints were gradu-
ally reduced during the equilibration process.

Additional restraints were applied throughout equi-
libration to keep the distance between the crucial ASP 
1493.32 and HIS 2996.52 residues of the MOR binding site 
[38, 39] and the fentanyl molecule to the minimum pos-
sible. This ensured a similar starting conformation com-
pared to the native structure for the simulation in an 
acidic environment.

Ultimately, an unrestrained NPT production run of 10 
ns was performed, with periodic boundary conditions 
along all three orthonormal directions. The produc-
tion run trajectory was saved every 10 ps, and processed 
with GROMACS analysis tools to generate the required 
information.

For Root Mean Square Deviation (RMSD) based con-
formational clustering, the last 50 trajectory frames 
(0.5 ns) from the production run were considered. The 
heavy (non-hydrogen) atoms of fentanyl were taken as 
a reference for the RMSD calculation and subsequent 
clustering with the gmx cluster tool using the “gromos” 
algorithm [40]. Based on the cluster number and pop-
ulation, an RMSD cut-off of 0.05 nm was chosen for 
selecting the central fentanyl conformer of the most 
populated cluster. The 3D coordinates of the central 
fentanyl conformer and the corresponding MOR were 
extracted from the relevant trajectory frames as a refer-
ence for further calculations.

Step 2: Structure preparation
Extracted structures from the trajectory (for the acidic 
scenario) or the native, experimental structure (for the 
neutral scenario) in the PDB file format were prepared 
for molecular docking using PyMOL [41] and Auto-
DockTools [42]. First, the ligand (fentanyl) and all water 
molecules were removed from the structures, non-polar 
hydrogens were removed and each of the structures was 
converted into PDBQT format. The neutral and acidic 
MOR structures were then aligned using the PyMOL 
align function to transfer both receptors into the same 
coordinate system. Using the aligned structures, a com-
mon search space for Autodock Vina [43] scoring func-
tions (“Gridbox”) was designed using AutoDockTools 
[42]. Therefore, a cuboid box with the size of 20 x 20 x 
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20 Å was centered on the position of the fentanyl binding 
site (Fig. 3).

Step 3: Ligand preparation
To identify novel structural analogs of morphine and fen-
tanyl with pH-specific binding to the MOR, we selected 
candidate molecules from the CHEMBL database [44, 
45]. Therefore, we searched the database with the key-
words “fentanyl” and “morphine” and extracted all mol-
ecules reported by the search engine. This resulted in the 
selection of 43 unique morphine- and fentanyl-related 
molecules. For validation of the approach, a fentanyl 
derivative previously shown to exhibit pH-specificity to 
the MOR at low pH (NFEPP) [46], six recently reported 
β-fluorofentanyls  [47–49], and a dissected morphine 
analog along with its fluorinated derivatives  [50] were 
also added to the library. This focused library of mor-
phine and fentanyl-related structures in total consisted 
of 55 molecules (ligand library A). As a larger chemi-
cal library of previously unknown MOR agonists, we 
selected the Enamine GPCR library, which consists of 
54.080 drug-like molecules [51] (ligand library B). To 
prepare the ligands for docking at neutral and acidic 
pH, we created a database of all ligands with each mol-
ecule’s SMILES (Fig. 2, Ligand Libraries). We then used 
VirtualFlow for Ligand Preparation (VFLP) [21] with the 
chemical toolbox Open Babel [52] to perform desalting 
and neutralization on the input molecules followed by 

protonation of the resulting SMILES at a neutral pH of 
7.4 and at an acidic pH of 5.0 using Chemaxon (https:// 
www. chema xon. com). For the reported fluorinated fen-
tanyl and morphine derivatives, their previously deter-
mined pKa values [38, 47, 50] were used to obtain the 
protonation states, respectively. For all other molecules, 
pKa values and protonation states were calculated using 
Chemaxon. Finally, the conformer generation function-
ality of VFLP and Chemaxon was used to generate the 
3D representations of the non-protonated and proto-
nated molecules in the  PDBQT format (Fig.  2, Ligand 
Preparation).

Step 4: Docking
Binding free energy calculations were performed using 
VirtualFlow for Virtual Screening (VFVS) [21] on a high-
performance computing cluster using the faster Auto-
dock Vina [43] implementation Quick Vina 2 [53]. The 
docking target region was selected as described above. 
For each pH scenario, three or six independent docking 
runs were performed for each ligand-target combination 
and the exhaustiveness of the docking program was set 
to 5. Consequently, in the docking runs, the ligands pre-
pared at pH 7.4 are docked to the neutral environment 
MOR (“neutral pH scenario”), and the ligands prepared 
at pH 5.0 to the target region of the acidic environment 
MOR with differentially protonated side chains (“acidic 
pH scenario”).

Fig. 3 MOR structures for pH-specific docking and target area. Overlay of MOR target structures in neutral (blue) and protonated (beige) state. Side 
chain protonation states at pH 7.4 and 5 were generated according to pKa values determined by PROPKA, respectively. Side chains in the binding 
cavity as well as histidine imidazole side chains are depicted. While the imidazole side chains of HIS173 and HIS225 are protonated at acidic pH, they 
remain neutral in the more buried HIS299 and HIS321. Additionally, the differentially protonated side chain of ASP149 in the binding cavity is shown. 
The docking target region (“Gridbox”, green lines) was selected based on the fentanyl binding site in the experimental structure (PDB: 8EF5). The left 
panel shows the MOR from the extracellular angle, and the right panel from the side (90 degrees rotated)

https://www.chemaxon.com
https://www.chemaxon.com
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Step 5: Analysis
Results of binding free energy calculations were analyzed 
and plotted using GraphPad Prism (version 9). To exclude 
docking scores from failed runs, systematic outlier elimi-
nation was performed using the ROUT method [54] 
before the mean docking scores in kcal/mol and standard 
errors of the mean were calculated. Docking scores for all 
ligands obtained at neutral pH were compared to docking 
scores obtained at acidic pH by an unpaired, two-tailed 
t-test. Docking scores of top hits were compared to fenta-
nyl using a two-way ANOVA with Šídák’s multiple com-
parisons test (Figs. 4A, 6A).

Step 6: Optimization
Step 5 results in the trimmed means |�Fp(L(θi),T (θi)| , 
i = 1, 2 , of the binding free energies for all ligand-target 
combinations for θ1 = pH 5.0 and θ2 = pH 7.4. Given 
these values, the multi-objective optimization problem 
(6) can be solved by simple enumeration for all � ∈ [0, 1] , 
resulting in a group of ligands that all are part of the 
Pareto front for the results of the ligand library under 
consideration.

Utilizing the differential docking pipeline
There are mainly three different strategies for using the 
pipeline:

• Find promising pH-specific ligands in a relatively 
small set of ligands that have been pre-selected 
because of their structural similarity to known ago-
nists for the target under consideration. For such 
small ligand libraries, the aim will be to identify 
the ligands with the best pH-selectivity and com-
pare them to ones with known effects; the set of all 
Pareto-optimal ligands is of less importance. We will 
illustrate this case based on the ligand library A.

• Select promising ligands from a large library of can-
didate molecules. In this case, the high-throughput 
screening option of our differential docking pipeline 
is required for computing the set of Pareto-optimal 
ligands that contains the most promising candidate 
molecules. We will illustrate this case based on the 
ligand library B.

• Explore the set of all chemically possible ligands 
(“chemical space”) in order to identify the Pareto 
front (the set of all Pareto-optimal ligands) without 
restricting the search to a pre-selected ligand library. 
Because of the immense size of the chemical space 
this task requires the development of novel search 
methods and will not be considered further herein.
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Fig. 4 Results of differential docking of morphine- and fentanyl-related ligands. A Distribution of docking scores, i.e., binding free 
energies �FP(pH = 7.4) and �FP(pH = 5.0) , for ligand library A at neutral and acidic pH. Paired t-test, two-tailed. B Docking scores 
of morphine- and fentanyl-related molecules to the MOR at neutral (x-axis) plotted against docking scores to the MOR at acidic pH (y-axis). 
Reference compounds [morphine (red), fentanyl (magenta), NFEPP (green), β-fluorofentanyls (neon green), β-fluoromorphines (orange)] 
and pH-specific hit compound [CHEMBL3139481 (blue)] are highlighted. Data points indicate mean docking scores, horizontal lines indicate 
standard error of the mean (SEM) of neutral pH scores, and vertical lines SEM of acidic pH scores. C Comparison of the MOR docking scores 
of fentanyl, NFEPP, morphine and CHEMBL3139481 obtained under neutral and acidic pH conditions. Individual data points show scores of replicate 
dockings, horizontal bars indicate mean values, and error bars indicate standard deviations (SD). Mean docking scores were analyzed by two-way 
ANOVA with Šídák’s multiple comparisons test



Page 8 of 14Secker et al. Journal of Cheminformatics           (2023) 15:85 

Results and discussion
Next, we present the results of the proposed multi-objec-
tive optimal affinity approach in application to the case of 
MOR-agonists at acidic and neutral pH. The results will 
first be discussed for our small ligand library A and then 
for the high-throughput case for library B.

Identifying pH‑specific morphine‑ and fentanyl‑related 
ligands
We first analyzed the overall docking scores of the neu-
tral and acidic MOR docking results from library A, the 
morphine- and fentanyl-related molecules selected from 
the CHEMBL library and the previously reported fluori-
nated fentanyl and morphine derivatives. Comparing 
the distribution of the docking scores between the neu-
tral and acidic scenarios, we observed slightly increased 
average scores for the neutral pH MOR compared to the 
acidic pH MOR docking (Fig. 4A, p = 0.03273). However, 
for both docking scenarios we identified morphine and 
fentanyl analogs with docking scores |�FP | > 9 kcal/mol 
(Fig. 4A), which indicates rather strong predicted binding 
affinities.

We plotted the docking scores at neutral pH (x-axis) 
against the docking scores at acidic pH (y-axis) (Fig. 4B). 
While the molecules to the very right (strongest pre-
dicted binding affinity at neutral pH) would be identified 
and potentially prioritized by most virtual (and experi-
mental) screenings, the molecules with preferential bind-
ing at acidic pH are located on the upper left side of the 
distribution of docking scores, (Fig. 1). Interestingly, we 
found that NFEPP, a fentanyl derivative, which was previ-
ously shown to preferentially bind the MOR at acidic pH 
and cause fewer side-effects in vivo [38], is predicted to 
bind to the MOR at neutral pH with lower affinity as fen-
tanyl (8.8 vs. 9.0 kcal/mol; p = 0.00006), but to bind the 
MOR at acidic pH with significantly higher affinity (9.0 
vs. 8.7 kcal/mol; p < 0.00001) (Fig. 4C). For the β-fluoro-
fentanyls that were recently reported to have an increased 
potency at acidic pH compared to fentanyl [47], we also 
found increased predicted binding affinities at acidic pH 
and similar, slightly higher or even lower predicted bind-
ing affinities at neutral pH (Fig.  4B, β-fluorofentanyls). 
Similar data were obtained for morphine and the recently 
reported β-fluoromorphines [50]: several fluorinated 
morphines are located to the upper left of morphine indi-
cating an increased preference for the MOR at acidic pH 
(Fig.  4B, β-fluoromorphines). Interestingly, within the 
ChEMBL molecules of morphine- and fentanyl-related 
structures, the morphine analog CHEMBL3139481 
strongly separated from the distribution of the scores 
and demonstrated the highest preference for the MOR at 
low pH compared to morphine, fentanyl and also NFEPP 
(Fig.  4B). Compared to fentanyl, this morphine-related 

molecule showed a reduced predicted binding affinity to 
the neutral MOR (8.6 vs. 9.0 kcal/mol, p < 0.00001), and a 
strongly increased predicted binding affinity to the acidic 
MOR (9.4 vs. 8.7 kcal/mol; p < 0.00001) (Fig. 4C).

We next analyzed the chemical structures of fentanyl, 
NFEPP, morphine, their fluorinated derivatives, and the 
CHEMBL3139481 molecule (Fig.  5). Compared to fen-
tanyl (Fig. 5A), NFEPP carries an additional fluorine on 
the piperidine moiety (Fig. 5B), which represents a strong 
electron-withdrawing group and can influence the proto-
nation state of the piperidine ring structure. The recently 
reported group of β-fluorofentanyls are designed simi-
larly: substitution of hydrogen with fluorine at various 
positions also influences the protonation state of the 
nitrogen in the piperidine ring structure. Notably, the β
-fluorofentanyl named RR-49 (or 12a), which experimen-
tally showed the strongest preference for the MOR in an 
acidic environment [47], also demonstrated the strongest 
pH specificity in our binding affinity predictions (Fig. 5C, 
β-fluorofentanyl 3). Additionally, the binding affinity esti-
mations obtained for morphine (Fig. 5D) compared to β
-fluoromorphines (Fig. 5E) also confirm previous results: 
the morphine analog Fluoromorphine β-C2, which previ-
ously demonstrated the strongest pH selectivity [50], also 
showed the highest predicted binding affinity to the acidic 
MOR over its affinity to the neutral MOR (7.8 vs. 7.1 
kcal/mol). Interestingly, the molecule CHEMBL3139481 
(Fig. 5F), which overall exhibited the strongest pH speci-
ficity, belongs to a group of aminothiazolomorphinans, a 
group of morphine-like opioids previously shown to be a 
potential pharmacotherapeutic approach to reduce drug 
abuse [55, 56]. CHEMBL3139481 (or MCL-742) was 
previously reported to bind with sub-nanomolar affin-
ity to all three, the MOR, the κ-opioid receptor (KOR), 
and the δ-opioid receptor (DOR) [57]. Interestingly, in 
comparison to morphine (Fig.  5D), it also harbors an 
electron-withdrawing moiety (cyclopropanyl) close to 
a carbon-nitrogen ring structure (Fig.  5F), which could 
exhibit a similar effect on CHEMBL3139481’s nitrogen 
ring structure as the fluorine in fluorofentanyls on the 
piperidine moiety. Our results suggest a potential pH-
specificity of this morphine analog, which should be fur-
ther investigated in experimental studies.

Pareto‑optimal pH‑specific ligands in the Enamine GPCR 
library
In contrast to rational drug design based on a small set 
of known chemical structures, our differential dock-
ing pipeline can also be used for ab initio drug discov-
ery. In order to enable this, we have implemented the 
method in VirtualFlow, which is capable of performing 
ultra-large virtual screens in a high-throughput man-
ner [21]. For an illustration of a multi-objective affinity 
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approach to the identification of previously unknown 
chemical structures with pH-specific binding to the 
MOR, we applied our differential docking pipeline to 
over 50K ligands from the Enamine GPCR Library. This 
library consists of drug-like molecules readily avail-
able at Enamine. Similarly as for the morphine- and 

fentanyl-related molecules, we performed neutral and 
acidic pH docking runs to the MOR and analyzed the 
results. Comparing the distribution of the docking 
scores between the neutral and acidic scenarios, we 
observed slightly higher maximal scores for the acidic 
pH MOR compared to the neutral pH MOR docking 

Fig. 5 Chemical structures of the highlighted molecules from library A: Chemical structures of fentanyl (A), NFEPP (B), β-fluorofentanyls (C), 
morphine (D), β-fluoromorphines (E) and CHEMBL3139481 (F). Docking scores in kcal/mol of neutral or acidic MOR docking scenarios are indicated 
below the structures, respectively. For the β-fluorofentanyls and -morphines the different screened derivatives are indicated by numbers 1–6 or 1–5, 
respectively. The docking scores of the derivative with the strongest pH specificity are shown. The potentially differently protonated nitrogen atoms 
in the compound structures are marked with [+]. The pKa values of fentanyl, morphine and its fluorinated derivatives are indicated as previously 
described [47, 50] and the experimentally determined value is shown, if available. For CHEMBL3139481, the calculated estimate of its pKa value 
is shown
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(Fig.  6A, 8.6. vs. 8.4 kcal/mol, p < 0.00001). However, 
we found a similar range of docking scores ( |�FP | ) for 
both scenarios, ranging from 11.6 to 5.0 kcal/mol for 
the neutral and 11.7 and 4.8 kcal/mol for acidic pH 
docking scenarios, respectively. To identify acidic pH-
specific binders, we again plotted the docking scores 
at neutral pH against the docking scores at acidic pH 
(Fig. 6B). The molecules with higher predicted binding 

affinities at acidic compared to neutral pH are located 
to the upper left of the bisector ( y = x in Fig.  6B). 
The top three molecules with a docking score at neu-
tral pH ≤ 8 kcal/mol and with the highest absolute 
value of the difference between its acidic and neu-
tral pH docking scores, i.e., the optimal ligands from 
(6) for � ≈ 1/2 , are the ones with labels Z223586954, 
Z223588104, and Z200049964; these are highlighted 

Fig. 6 Results of differential docking of ligand library B, extracted from the Enamine GPCR library. A Distribution of docking scores at neutral 
and acidic pH, binding free energies �FP(pH = 7.4) and �FP(pH = 5.0) , respectively. Paired t-test, two-tailed. B Docking scores of ligands 
to the MOR at neutral (x-axis) are plotted against docking scores to the MOR at acidic pH (y-axis). The best acidic pH-specific hit molecules are 
highlighted [Z223586954, Z223588104, Z200049964 (neon green)]. Individual data points in C show scores of replicate dockings, horizontal bars 
indicate mean values, and error bars indicate standard deviations (SD). Mean docking scores were analyzed by two-way ANOVA with Šídák’s 
multiple comparisons test

Fig. 7 Chemical structures of the highlighted molecules with the highest absolute value of the difference between its acidic and neutral pH 
docking scores, and a predicted binding affinity of ≤ 8 kcal/mol at neutral pH (green dots in Fig. 6B) from library B. The molecules Z223586954 
(A) and Z223588104 (B) are predicted to be protonated at pH 5.0 but to remain neutral at pH 7.4. Z223588104 (B) and Z200049964 (C) show 
the highest predicted binding affinity difference between the acidic and the neutral MOR docking scenarios. Docking scores of neutral or acidic 
MOR docking scenarios are indicated below the structures and calculated pKa values of the ionisable atoms are shown, respectively
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in Fig. 6B (green dots), while their chemical structures 
are shown in Fig.  7. The selected hits from the Enam-
ine GPCR Library each have a lower predicted bind-
ing affinity to the neutral pH MOR, but a significantly 
higher predicted binding affinity to the acidic pH MOR 
compared to fentanyl (Fig.  6C). Thus, these molecules 
represent interesting candidates for further investiga-
tion in identifying pH-specific MOR agonists. Interest-
ingly, similarly to fluorinated fentanyl and morphine 
derivatives, two of the molecules are also predicted to 
be protonated at pH 5.0 but to remain neutral at pH 7.4 
(Fig. 7A, B). Strikingly, the top two molecules (Fig. 7B, 
C) show a predicted binding affinity difference of 2.2 
kcal/mol between the acidic and the neutral MOR 
docking scenario indicating an even stronger pH speci-
ficity than previously identified ligands.

Generally, when solving the multi-objective optimiza-
tion problem to identify pH-specific MOR ligands (6) for 
all � ∈ [0, 1] , we get the Pareto-optimal ligands shown 
in Fig.  8, among them the three structures mentioned 
above. The size of the Pareto set can also be varied: the 
Pareto set can be extended by instead of only using the 
solutions (6) of the optimization problem, as shown in 
Fig.  1 by the red line and in Fig. 8 by the red dots, one 
might also take the second best, third best and so on. In 
Fig. 1 this would result in a thicker red line. We call this 
the ε-Pareto front. Alternatively, the Pareto set can be 
reduced: In addition to the desired pH specificity, which 
the molecules of the Pareto set fulfill, care must be taken 
that the overall binding affinity to the target in its desired 
environment is not too low. This can be achieved by set-
ting a threshold α for �FP such that |�FP | ≥ α . Such 
a  threshold can also be included in the multi-objective 
framework as an additional constraint. This flexibility of 
the Pareto set can be used as a starting point for further 

global optimization strategies in the chemical space to 
identify specific ligands with desired properties.

Conclusion
In most virtual screening methods, binding affinity to 
the target structure is the decisive measure. Accordingly, 
the search in the chemical space is for ligands that have 
the highest binding affinity. The strength of the binding 
affinity can be described with the help of scoring func-
tions, such that the ligand with the best score and thus 
best binding affinity is the result of an optimization prob-
lem. In the new approach presented herein, however, 
we do not only consider the binding affinity but also the 
chemical environment of the protein-ligand system in the 
search for the optimal ligand which leads to a different 
search strategy in the chemical space. This new strategy 
takes the form of a multi-objective optimization problem. 
In the case where the discriminative effect of the environ-
ment can be characterized by a single parameter θ with 
desired effects for a value θ1 and unwanted one for θ2 . In 
this scenario, the objective is to maximize the binding 
affinity for θ1 while minimizing it for θ2.

Using the µ-opioid receptor as an example, we could 
already show that taking pH as a discriminative param-
eter with θ1 = pH 5.0 and θ2 = pH 7.4 , side effects can be 
taken into account when searching for an optimal ligand. 
This lead to the identification of a fentanyl derivative 
(N-(3-fluoro-1-phenethylpiperidin-4-yl)-N-phenylpro-
pionamide, NFEPP) with a similar analgesic efficacy as 
fentanyl but less side effects in vivo [38] and the design 
of additional fluorinated fentanyl and morphine deriva-
tives [47–50]. If our virtual screening pipeline was built 
on the traditional optimal affinity approach, it would aim 
to maximize binding affinity to the µ-opioid receptor 
(MOR) and would prefer fentanyl over NFEPP, because 
fentanyl has a higher binding affinity at neutral pH than 
NFEPP (it is more right in Fig.  4B). However, NFEPP 
shows fewer side effects than fentanyl [38]. The conven-
tional approach would prefer fentanyl also to morphine 
and other molecules only due to its higher binding affin-
ity. In our new approach fentanyl is considered “worse” 
than NFEPP since it shows a higher binding affinity to the 
neutral MOR and a lower affinity to the acidic MOR.

The results obtained here using a multi-objective 
approach also seem to support a recent chemical idea 
of how to improve opioids for showing less side effects. 
In order to see this, let us compare the pair fentanyl/
NFEPP: the difference between the two structures is 
just given by replacing a hydrogen atom with a fluo-
rine atom in a “two C-atoms”-distance to the nitro-
gen atom (N) in the piperidine moiety. This N-atom 
can either be protonated or deprotonated according 
to the pH value of the environment. By the inductive 

Fig. 8 Pareto-optimal ligands (red) of all successfully screened 50.838 
molecules from the Enamine GPCR library B (blue)
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effect (-I) of the fluorine atom in NFEPP, the electron 
density at the nitrogen atom decreases compared to 
fentanyl. This reduces the ability of the N-atom to be 
protonated, which is important for efficient binding 
to the MOR. Thus, only in inflamed tissue (at low pH) 
NFEPP is mainly protonated and active, while fentanyl 
is active at low pH in inflamed but also at neutral pH in 
healthy tissue. The same principal was also applied to 
generate additional fluorinated fentanyl and morphine 
derivatives that, at least in part, have demonstrated 
similar pH specificity to the MOR as NFEPP ([47, 50]). 
Interestingly, the pair morphine/CHEMBL3139481 
in Fig.  5 (structures D and F) is of a similar kind: The 
chemical scaffold in which the nitrogen atom is placed 
is extended by an electron-withdrawing moiety (cyclo-
propanyl) located at a “two C-atoms”-distance from the 
nitrogen. In our differential docking approach aiming at 
pH-specificity the morphine analog CHEMBL3139481 
was identified and is considered a pH-specific, “better” 
than morphine, and even fentanyl and NFEPP. It would 
be interesting to further test this substance in labora-
tory experiments, because it is one of the “best” candi-
dates in the examined set of opioids from the CHEMBL 
library. This substance may also be favorable for clini-
cal use, because it is a morphine-related molecule but 
not a derivative of fentanyl, which is considered to be a 
major cause of the opioid crisis [58].

As one of the basic steps of the computational experi-
ment presented herein, we generated neutral and acidic 
environment MOR structures by neutralization or pro-
tonation of its side-chains. While we used the experi-
mentally determined conformation of the MOR for the 
neutral docking scenario, we performed subsequent MD 
simulation of the acidic protonation state so that the dif-
ferential protonation of the amino acid side chains can 
exert its effect on the conformation. Additionally, we pre-
pared ligands for pH-specific docking by predicting their 
protonation state in a neutral or acidic environment. 
While on the one hand this approach can yield pH-spe-
cific ligands by changes in binding affinity due to direct 
interactions between the (neutral or protonated) ligand 
and differentially protonated side-chains, also the proto-
nation state-related conformational changes to the bind-
ing cavity can affect pH-specific binding. It is important 
to note, however, that prediction of both the pKa of small 
molecule ligands and amino acid side chains in large 
macromolecules is challenging and may be error-prone. 
Thus, our results rely on experimental validation but can 
serve as an early prioritization strategy to identify pH-
specific binders.

The multi-objective optimal affinity approach and its 
implementation via a differential docking pipeline are 
general in the sense that can be utilized independent 

from the application to finding pH-specific agonists for 
the MOR presented. It will apply whenever drug design 
is based on several partially conflicting objectives. 
These objectives may result from desiring different 
ligand-target interactions at different environmental 
conditions (as discussed herein) but can also be used 
to describe other conflicting aims like maximizing 
binding affinity versus minimizing side effects or tox-
icity e.g. associated with binding to other targets, for 
example. Additionally, a multi-objective optimal affin-
ity approach can serve as a drug discovery pipeline in 
the search for dual inhibitors or polypharmacologi-
cal molecules, in which it is the goal to identify drugs 
that bind multiple targets with high affinity [59, 60]. 
By modifying the corresponding optimization problem 
accordingly (6), our method is also able to seek for such 
multivalent structures.

In current drug discovery, most molecules identi-
fied in primary screenings and prioritized after lead 
optimization studies fail at a later stage in the drug 
development process. One of the main reasons for this 
high drop-out rate are safety issues at the preclinical 
or even clinical stage, putting a huge financial risk on 
drug development programs. Thus, early identifica-
tion of chemical compounds and subclasses at risk to 
cause unwanted and severe side effects is key to pre-
vent such extremely expensive pitfalls. By performing 
multi-objective optimal affinity optimization in vir-
tual screening approaches, i.e. prioritizing molecules 
with a high binding affinity for the target structure(s) 
in the desired, diseased environment, while deprioritiz-
ing molecules with high binding affinity for the target 
structure(s) in the undesired, healthy environment, the 
selection of candidate molecules with a good safety 
profile can already be implemented at the initial screen-
ing process. With the expected increase in computing 
power and the development of faster search algorithms 
in predicting binding affinities, this approach can be 
further extended to multiple targets, e.g. key regula-
tory proteins or enzymes of essential cellular processes 
known to bear safety concerns. Ultimately, perform-
ing multi-objective affinity optimization in virtual drug 
discovery should contribute to the identification and 
development of safer, more specific drugs at higher 
pace.
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