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Adaptive Scheduling for Adaptive Sampling in pos Taggers Construction

Manuel Vilares Ferro∗,a, Vı́ctor M. Darriba Bilbaoa, Jesús Vilares Ferrob

aDepartment of Computer Science, University of Vigo
Campus As Lagoas s/n, 32004 – Ourense, Spain

bDepartment of Computer Science, University of A Coruña
Campus de Elviña, 15071 – A Coruña, Spain

Abstract

We introduce an adaptive scheduling for adaptive sampling as a novel way of machine learning in the
construction of part-of-speech taggers. The goal is to speed up the training on large data sets, without
significant loss of performance with regard to an optimal configuration. In contrast to previous methods
using a random, fixed or regularly rising spacing between the instances, ours analyzes the shape of the
learning curve geometrically in conjunction with a functional model to increase or decrease it at any time.
The algorithm proves to be formally correct regarding our working hypotheses. Namely, given a case, the
following one is the nearest ensuring a net gain of learning ability from the former, it being possible to
modulate the level of requirement for this condition. We also improve the robustness of sampling by paying
greater attention to those regions of the training data base subject to a temporary inflation in performance,
thus preventing the learning from stopping prematurely.

The proposal has been evaluated on the basis of its reliability to identify the convergence of models,
corroborating our expectations. While a concrete halting condition is used for testing, users can choose any
condition whatsoever to suit their own specific needs.

Key words: correctness, learning curve, pos tagging, robustness, sampling scheduling

1. Introduction

The possibility of accessing massive amounts of data and the decline in the cost of disk storage have
decisively contributed to the growing popularity of machine learning (ml) algorithms as the basis for mod-
elling tasks in both the classification [31] and clustering [38] domains. However, managing large amounts of
information is an expensive, time-consuming and non-trivial activity, especially when expert knowledge is
needed. Furthermore, having access to vast data bases does not imply that ml algorithms must use them
all and a subset is therefore preferred, provided it does not reduce the quality of the mined knowledge. Such
observations then supply the same learning power with far less computational cost and allow the training
process to be speeded up, whilst their nature and optimal size are rarely obvious. This justifies the interest
of developing efficient sampling techniques, which involves anticipating the link between performance and
experience regarding the accuracy of the system we are generating. At this point, correctness with respect
to the working hypotheses and robustness against changes to them should be guaranteed in order to supply
a practical solution. The former ensures the effectiveness of the proposed strategy in the framework consid-
ered, while the latter enables fluctuations in the learning conditions to be assimilated without compromising
correctness, thus providing reliability to our calculations.

An area of work that is particularly sensitive to these inconveniences is natural language processing (nlp),
the components of which are increasingly based on ml [3, 50]. This is due to the major effort required to
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create the labelled data sets used as a training basis to generate such tools, especially when they involve
new application domains where resources are scarce or even non-existent. The problem is especially delicate
in the case of part-of-speech (pos) tagging, the classification task that marks a word in a text (corpus) as
corresponding to a particular pos1, based on both its definition and its context. One reason for this is the
complexity of both the annotation task and the relations to be captured from learning, but another is that
it serves as a first step for other nlp functionalities such as parsing and semantic analysis, so errors at this
stage can lower their performance [49]. All this makes up a popular experimentation field for introducing
new ml facilities, particularly around sampling technology [4, 32, 43, 46, 56], as with the present work. In
this context, we first examine in Section 2 the methodologies serving as inspiration to solve the question
posed, as well as our contributions. Next, Section 3 reviews the mathematical basis necessary to support
our proposal, which we present in Section 4. In Section 5, we describe the testing frame for the experiments
illustrated in Section 6. Finally, Section 7 presents our final conclusions.

2. The state of the art

While the common goal is to choose a set of observations and determine whether it is large enough
to reach the desirable learning performance, we characterize a sampling strategy according to three labels
often compatible with each other. In light of the consideration or non-consideration of an expert opinion
for selecting the sample, whether human or not, the algorithm is identified [14, 44] as active or non-active.
Depending on the use or non-use of knowledge about the behaviour of the model to be generated, we
distinguish [27] between dynamic and static sampling. We can finally differentiate [10] between adaptive,
also called sequential [17] or progressive [57], and batch sampling when the size of the sample is determined
iteratively in an online fashion or prior to commencing the selection task. In order to mark the end of the
sequencing process, adaptive methods associate a halting condition. At all events, although these labels are
not mutually exclusive, the scheduling strategy applied to a great extent conditions the sampling approach.

2.1. Sampling scheduling

Active sampling often associates an adaptive architecture, recruiting for annotation at each cycle only
examples corresponding to near miss observations [59], i.e. negative ones that differ from the learned concept
in a small number of significant points. This results in a two-stage procedure in which a reduced set of labelled
cases is first collected to start a loop of selection and further reprocessing on the complete training data
base until a stopping condition verifies. Most of this research focuses on pool-based active sampling, in which
selection is made from a pool following two main schema: uncertainty [32] and query-by-committee [48]. The
former uses a single classifier to select the observation on which it has the lowest certainty. Committee-based
sampling converges to the optimal model more quickly [19] by considering a set of classifiers working on
the principle of maximal disagreement among them. Unfortunately, active sampling is windowing [41] so
its learning curves are notoriously ill-behaved on noisy data [40], increasing the amount of such random
fluctuations on subsequent samples. Accordingly, performance often decreases as the process progresses [21]
questioning, despite its apparent potential, its adoption [2]. For that reason we do not cover it in this work.

Focusing on non-active designs, static proposals determine the size of the sample from its representative-
ness of the training data base in terms of feature distributions. This can be done through simple procedures
such as consideration of the complete set when the cost is affordable, a technique commonly known as trivial
selection, or a part of this suggested by an omniscient oracle. The random selection of a fixed number or frac-
tion of observations can also be considered. All of these are batch techniques for which, with the exception
of the trivial approach, no formal interpretation for their correctness is possible. This justifies the recourse
to adaptive methods, where the simplest and most common way to pick instances is again randomly [1].

1A pos is a category of words which have similar grammatical properties. Words that are assigned to the same pos generally
display similar behaviour in terms of syntax, i.e. they play analogous roles within the grammatical structure of sentences. The
same applies in terms of morphology, in that they undergo inflection for similar properties. Commonly listed English pos labels
are noun, verb, adjective, adverb, pronoun, preposition, conjunction, interjection, and also numeral, article or determiner.
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Given an initial sample size and a schedule of sample size increments, new instances are then added until the
distributions of both the sample and the training data base, are sufficiently similar. Alternatively, a fixed
sequencing scheduling can be considered, typically by applying geometric [40] or arithmetic selection [27],
also referred to as uniform selection [58]. In either case, static sampling uses statistical inference [8] to
define the halting condition and, in fact, practitioners sometimes speak of statistically valid sampling to
refer to it [27]. This makes it possible to derive a theoretically guaranteed sample size, sufficient to achieve
a task with given confidence by using the so-called concentration bounds [11, 25], which provides a well-
founded basis to introduce these kinds of techniques. So, its correctness and robustness have been formally
demonstrated [17], its computational complexity analyzed [35], and its usefulness for scaling up learning
algorithms in data mining applications proved [57]. Sadly, the number of instances can be overestimated or
even unrealistic [33], making the static option less attractive.

All the above justifies the interest in the more flexible dynamic sampling. It is then possible to work
guided by a model for the shape of the learning curve [28], which we assume slows to an almost horizontal
slope at about the time when the true performance reaches its peak. This suggests a sequential scheduling
such as those previously commented, which results in an adaptive philosophy, where at each cycle a model
is built from the current sample and its performance evaluated. In this regard, arithmetic progressions
can require an unreasonable number of iterations when a large number of cases is needed. In contrast, a
geometric schedule quickly reach an appropriate sample size, while it may easily overfit local disruptions and
thus stop ahead of time due to a momentary increase in performance [30], resulting in a fragil robustness.

Regarding the halting condition, we envisage two approaches in accordance with the consideration of
predictive accuracy as an absolute stopping criterion [20] or as nothing more than a cost factor of an
optimization problem stated in decision theory [26]. The first scenario involves identifying the final plateau of
the learning curve in terms of functional convergence. Some procedures in this respect have become popular,
such as local detection and learning curve estimation [27], or linear regression with local sampling [40], even if
we have had to wait until recently [55] to dispose of a formally correct one. On the contrary, when sampling
performance is understood as the search for a proper cost/benefit trade-off, the authors have recourse to
statistically based strategies. Formally, they apply the principle of maximum expected utility (meu) [38].
This implies taking into account all effectiveness considerations, which depends on the degree of control
exercised by the user on the learning process. In its absence, i.e. using non-active techniques as we do,
the final cost is the sum of data acquisition, error and model induction charges [58]. Nonetheless, at best,
heuristic techniques are used to calculate the first two and there is thus no way of guaranteeing the location
of a global optimum [30], which often results in assuming fixed budgets [29]. That is why this kind of
stopping criterion is not advisable to define reliable testing frames on sampling scheduling.

In practice, the success of adaptive sampling depends heavily on prior knowledge about the underlying
model induction algorithm applied, which may be less than precise, thereby precipitating or delaying the
detection of convergence and increasing the associated operating costs. Since this expertise can be obtained
on the fly, the use of also adaptive scheduling seems to be better placed to achieve optimal results. It therefore
becomes a question of rationally adjusting the number of cases between successive cycles. Surprisingly, to
the best of our knowledge, the only action in this direction is due to Provost et al. [40]. From a set of
instances large enough to obtain reliable estimates, they iteratively build models for both the convergence
probability distribution and the run-time complexity of the underlying induction algorithm. At each cycle
the convergence is checked and, if it does not occur, the schedule is rebuilt from the latest information and
the process restarts. However, this proposal performs in practice much worse than the less complicated
geometric one, which seems to have discouraged further research on this topic, despite its vast potential.

2.2. Our contribution

We introduce an adaptive scheduling, baptized as colts2, with a view to reducing operating charges in
non-active adaptive sampling. The idea is to calculate, at each iteration, the smallest amount of training
data to be added for ensuring that the next case is relevant in learning terms. From a set of usual working

2After concavity limit scheduling.
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hypotheses in ml, the technique is described taking an exclusively geometrical point of view. Once a sequence
of observations has been set, a functional approximation to the associated partial learning curve is built.
The next instance from which a new observation to update our evaluation is mandatory, i.e. from which the
working hypotheses can no longer be guaranteed, is then located. We do this by calculating the case the
degree of concavity, namely the learning speed, which cannot be maintained over time on the real learning
curve. The correctness of the method is formally established and its robustness explored.

The proposal is evaluated within a uniform testing framework, in the sense that its standards of evidence
do not favour any particular sampling scheduling, taking the generation of pos taggers as a case study. Once
a learner, a halting condition and a training data base are fixed, the aim is to categorize a set of schedules
according to their efficiency to achieve a given level of accuracy in the model being generated. To that end,
predictive accuracy is taken as the stopping criterion, thereby avoiding the inconveniences associated with
meu-based halting conditions. We also introduce the metric used as an assessment basis, together with
its associated monitoring architecture for data collection. The latter captures the concept of testing round
(run), which serves to normalize the conditions under which the experiments take place. Thus, runs only
distinguishable by their scheduling strategy are grouped around an item acting as baseline, in what we call
a local testing frame. It then becomes possible to compare, within these structures, runs in terms of both
training resources used and overall learning costs. By doing so, we avoid recourse to cumbersome heuristics,
often highly dependent on the knowledge domain considered, endowing the tests with reliability and safety.

3. The formal framework

The aim is to introduce the mathematical basis that enables to prove the correctness of our proposal.
Most of these formal notions are taken from Vilares et al. [55], denoting the set of real numbers by R and
that of naturals by N, assuming that 0 6∈ N. Another preliminary question to be clarified, because the
generation of ml-based pos taggers serves as illustration guide, is the identification of the accuracy concept
usually accepted in that kind of model. We define it as the number of correctly tagged tokens divided by
the total ones, expressed as a percentage [54] and calculated following some generally admitted usages: all
tokens are counted, including punctuation marks, and it is supposed that only one tag per token is provided.

3.1. The working hypotheses

We start with a sequence of observations calculated from cases incrementally taken from a training data
base, meeting some conditions to ensure a predictable progression of the estimates over a virtually infinite
interval. So, they are assumed to be independently and identically distributed [17, 47, 50]. We then accept
that a learning curve is a positive definite and strictly increasing function on N, where numbers are the
positions of instances in the training data set, and upper bounded by 100. This results in a concave graph
with horizontal asymptote.

Such hypotheses make up an idealized working frame to support correctness, while real learners may
deviate from it, justifying a later study of robustness. These deviations translate into irregularities in both
concavity and increase of the learning curves, as shown in the left-most diagram of Fig. 1 for the training of
the fast transformation-based learning (fntbl) tagger [39] on the Freiburg-Brown (frown) corpus of American
English [36]. The cases are therefore indexed by the position of a word in the text.

3.2. The notational support

Having identified the working hypotheses, we need to formalize the data structures we are going to work
with, such as the progressive sequence of instances whose selection we want to optimize.

Definition 1. Let D be a training data base, K ( D a subset of initial items from D and σ∈Σ:= {ζ : N → N}
a function. We define a learning scheme for D with kernel K and step σ, as a triple DK

σ = [K, σ, {Di}i∈N]
with {Di}i∈N a cover of D verifying:

D1 := K and Di := Di−1 ∪ Ii, Ii ⊂ D \ Di−1, ‖Ii‖ = σ(i), ∀i ≥ 2 (1)

where ‖Ii‖ is the cardinality of Ii. We refer to Di as the individual of level i for DK
σ .
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Figure 1: Learning curve for fntbl on frown, and an accuracy pattern fitting it.

A learning scheme relates a level i with the position ‖Di‖ in the training data base, determining the
sequence of observations {[xi,A∞∞∞∞∞∞∞∞∞[D](xi)], xi := ‖Di‖}i∈N, where A∞∞∞∞∞∞∞∞∞[D](xi) is the accuracy achieved on
such instance by the learner. Thus, a level determines an iteration in the adaptive sampling whose learning
curve is A∞∞∞∞∞∞∞∞∞[D], whilst K delimits a portion of D we believe to be enough to initiate consistent evaluations
of the training. For its part, σ identifies the sampling scheduling. As we want to address the latter from
geometrical criteria, we need to extrapolate the partial learning curves according to a functional pattern
providing stability to the estimates. The focus is on curves that verify the working hypotheses, but are
also infinitely differentiable over the training domain. This supplies graphs without disruptions due to
instantaneous jumps while ensuring their regularity.

Definition 2. Let C∞
(0,∞) be the C-infinity functions in R+, we say that π : R+n → C∞

(0,∞) is an accuracy

pattern iff π(a1, . . . , an) is positive definite, upper bounded, concave and strictly increasing.

An example of accuracy pattern is the power family of curves π(a, b, c)(x) := −a∗x−b+ c, hereafter used
as running one. Its upper bound is the horizontal asymptote value lim

x→∞
π(a, b, c)(x) = c, and

π(a, b, c)′(x) = a ∗ b ∗ x−(b+1) > 0 π(a, b, c)′′(x) = −a ∗ b ∗ (b + 1) ∗ x−(b+2) < 0 (2)

which guarantees increase and concavity in R+, respectively. This is illustrated in the right-most diagram
of Fig. 1, whose goal is to fit the learning curve represented in the left-hand side. Here, the values a =
542.5451, b = 0.3838 and c = 99.2876 are provided by the trust region method [5], a regression technique
minimizing the summed square of residuals, i.e. the differences between the observed values and the fitted
ones. Furthermore, as it is intended to determine from the current case the next one ensuring significance
for learning, such a concept of usefulness must be formalized. To do it, we need to evaluate the progression
of accuracy during the training process, which results in studying the sequence of curves modelled from the
partial learning ones.

Definition 3. Let DK
σ be a learning scheme, π an accuracy pattern and ℓ ∈ N, ℓ ≥ 3 a position in the

training data base D. We define the learning trend of level ℓ for DK
σ using π, as a curve Aπ

ℓ [DK
σ ] ∈ π, fitting

the observations {[xi,A∞∞∞∞∞∞∞∞∞[D](xi)], xi := ‖Di‖}ℓi=1. A sequence of learning trends Aπ [DK
σ ] := {Aπ

ℓ [DK
σ ]}ℓ∈N

is called a learning trace. We refer to {αℓ}ℓ∈N as the asymptotic backbone of Aπ [DK
σ ], where y = αℓ :=

lim
x→∞

Aπ
ℓ [DK

σ ](x) is the asymptote of Aπ
ℓ [DK

σ ].

A learning trend Aπ
ℓ [DK

σ ] requires a level ℓ ≥ 3, because we need at least three observations to generate
a curve. Its value Aπ

ℓ [DK
σ ](xi) represents the prediction for accuracy on a case xi, using a model generated

from the first ℓ iterations of the learner. Accordingly, the asymptotic term αℓ is nothing other than the
estimate for the highest accuracy attainable. This way, a learning trace gives a comprehensive picture of the
increase in accuracy due to new observations, as well as future expectations in that respect. Continuing with
the tagger fntbl and the corpus frown, Fig. 2 shows (left) a portion of the learning trace with kernel and
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uniform step function 5∗103, also including the real learning curve and a zoom view (right). As our running
frame is the generation of pos taggers, levels are hereafter indicated by word positions in the training corpus.
At this point, we are ready to capture the notion of learning utility associated to a case.
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Figure 2: Learning trace for fntbl on frown.

Definition 4. Let Aπ[DK
σ ] be a learning trace and ℓ ∈ N, ℓ ≥ 3. We say that xℓ+1 is relevant for Aπ [DK

σ ]
iff Aπ

ℓ [DK
σ ]

′(xℓ) 6= Aπ
ℓ+1[DK

σ ]
′(xℓ+1), with xℓ := ‖Dℓ‖.

A case is relevant when the slope of its learning trend at that point varies with regard to what happens in
the previous instance. This reveals a change in the learning speed, i.e. in the degree of concavity, observed
on the learning curve we try to approximate. We are therefore talking about an effective step towards the
identification of convergence for training, providing a practical sense to the notion of relevance.

4. The abstract model

We lay the theoretical foundations of our proposal to later interpret them from an operational point of
view. The first objective is to establish its correctness, i.e. to formalize a sampling scheduling for which
the distance between two consecutive cases is the shortest one guaranteeing the relevance of the most recent
instance. All that is required for such a purpose is to state the adequate step function.

4.1. Correctness

Given D a training data base, the goal is to identify the step function σ under the terms outlined above,
taking into account that excessively short steps can unnecessarily overload the sampling procedure, as with
those regions in D on which the slope of the learning curve does not vary much.

Theorem 1. Let Aπ[DK
σ ] be a learning trace, then:

∀i ≥ 3, σ(i + 1) ≥ αi −Aπ
i [DK

σ ](xi)

Aπ
i [DK

σ ]
′(xi)

⇒ Aπ
i+1[DK

σ ]
′(xi+1) 6= Aπ

i [DK
σ ]

′(xi) (3)

with xi := ‖Di‖, and y = αi the horizontal asymptote for Aπ
i [DK

σ ].

Proof. Suppose a learning trend Aπ
i [DK

σ ] with i ≥ 3, as shown in Fig. 3. Given that it is monotonic
increasing (resp. concave), no point on it has an ordinate (resp. slope) greater than αi (resp. Aπ

i [DK
σ ]

′(xi))
in the interval (0,∞) (resp. (xi,∞)). Accordingly, the slope of Aπ

i [DK
σ ] on xi cannot be maintained beyond

6



the point indicated by the abscissa of si, the intersection point between its tangent line thorough ri and its
horizontal asymptote. Since this abscissa is calculated substituting y = αi in the tangent

y = Aπ
i [DK

σ ]
′(xi) ∗ (x − xi) +Aπ

i [DK
σ ](xi) (4)

we have that si = (
αi−A

π
i [D

K

σ ](xi)
Aπ

i
[DK

σ ]′(xi)
+ xi, αi), from which we conclude the thesis. �

y = Aπ
i [DK

σ ](xi)

y = αi

y = Aπ
i [DK

σ ](x)

ri = (xi,Aπ
i [DK

σ ](xi))

x = αi−Aπ
i [DK

σ ](xi)
Aπ

i [DK
σ ]

′(xi)
+ xi

case position in the training data base

fi
tt
ed

ac
cu
ra
cy

(%
) si = (αi−Aπ

i [DK
σ ](xi)

Aπ
i [DK

σ ]
′(xi)

+ xi, αi)

y = Aπ
i [DK

σ ]
′(xi) ∗ (x− xi) +Aπ

i [DK
σ ](xi)

x = xi := ‖Di‖

Figure 3: Computing dynamically the size of individuals in a learning trace.

We now have a sufficient condition to identify at each sampling cycle the closest instance from which
a real impact on learning capacity is ensured, because the step applied guarantees its relevance. However,
this does not exclude the possibility that smaller steps could eventually produce the same effect. Thus, the
probability of a case being relevant is proportional to the value proposed, an idea that is useful to formalize.

Definition 5. Let Aπ[DK
σ ] be a learning trace, its probability of relevant training (port) at level i ≥ 4 is

̺(i) :=

{

1 if σ(i) ≥ µ(i)
σ(i)/µ(i) otherwise

, µ(i) :=
αi −Aπ

i [DK
σ ](xi)

Aπ
i [DK

σ ]
′(xi)

, xi := ‖Di‖ (5)

Following Theorem 1, µ(i) is the shortest separation that guarantees the relevance of the case at level
i. Consequently, any step σ(i) ≥ µ(i) corresponds to a maximal port, whereas the low distances are
associated with proportional values. Since step functions are strictly positive definite, the port is defined
in the interval (0, 1] and provides a simple mechanism to regulate, in probabilistic terms, the interrelation
between the speed of learning and the training sequence in a learning trace. This allows us to immediately
prove the correctness of a sample with respect to a given port.

Theorem 2. (Correctness) Let Aπ [DK
σ[̺]] be a learning trace and σ[̺] the step function

σ[̺](i) :=

⌈

̺ ∗
αi −Aπ

i [DK
σ[̺]](xi)

Aπ
i [DK

σ[̺]]
′(xi)

⌉

, ̺ ∈ (0, 1], xi := ‖Di‖ , ∀i ≥ 4 (6)

with y = αi the horizontal asymptote for Aπ
i [DK

σ[̺]] and ⌈x⌉ the ceiling function mapping x ∈ R to the

supremum in [x,∞) ∩N. Then, Aπ[DK
σ[̺]] has the smallest port greater than or equal to ̺.

Proof. Trivial from Theorem 1. �

We can hence categorize the step functions according to their ability to minimize, with regard to a port

value, the amount of training data to be added in each iteration of a progressive sampling process. Thus,
7



once a port value ̺ has been determined, the step function we are looking for is given by σ[̺]. We turn again
to the running example to illustrate the potential of this outcome in Fig. 4, including both a general and a
zoom view. The learning curve is the same as that considered in Fig. 2, the observations of which we now
compare with two learning trends whose levels correspond approximately to the same position in the corpus
(∼ 4.95 ∗ 105), using identical kernel size (5 ∗ 103) and computed from different step functions: a uniform
spacing σ = 5 ∗ 103 and an adaptive one σ[0.01]. The latter provides a better use of the training process
by reducing the number of cases without appreciably affecting the quality of the estimates for accuracy. In
any event, it is important to note that the correctness has been stated from the working hypotheses, which
relate to an ideal conceptualization of the learning curves that may be subject to variations in practice. We
therefore need to analyze mechanisms for achieving robustness of sampling.
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Figure 4: Learning trends for fntbl on frown, using uniform and adaptive step functions.

4.2. Robustness

This study requires the review of our working hypotheses in order to accommodate the notion of irregular
observation in real-world ml. We then assume that learning curves are positive definite and upper bounded
by 100, conditions guaranteed, but only quasi-strictly increasing and concave. These are our testing hy-
potheses and, given that the questions to be addressed are common, we entrust the treatment of robustness
to the mechanisms intended to enhance it in the definition of the halting condition. On this point, although
any of the solutions in the state of the art could be applied, we raise the subject in the context of the layered
convergence criterion [55], which we briefly recall now. The choice is justified for reasons of both theoretical
and practical order, conjugating a formally correct proposal with a high level of performance and a simple
start-up. Furthermore, the approach is easy to interpret in terms of learning traces, thus facilitating rapid
understanding. In fact, because they are not part of our contributions but mere discussion tools, the reader
can leave out the formal definitions and results in the remainder of this Section to focus on the intuitive
interpretation accompanying them.

We identify two types of irregular observations according to their position in relation to the working level
(wlevel), i.e. the iteration from which they would have a small enough impact to work in their softening.
As this depends on unpredictable factors such as the magnitude, distribution and the very existence of these
disorders, a formal characterization is impossible and a heuristic is necessary. Assuming that the model
stabilizes as the training advances, a way of addressing the question is categorizing the variations induced
in the monotony of the asymptotic backbone, at the basis of the correctness for any halting condition, to
locate the level providing the first one below a given ceiling. Once the wlevel passed, we are interested
in estimates beyond the prediction level (plevel) marking the likely beginning to learn trends which could
feasibly predict the learning curve, therefore not exceeding its maximum (100).

8



Definition 6. Let Aπ [DK
σ ] be a learning trace with asymptotic backbone {αi}i∈N, ν ∈ (0, 1), ς ∈ N and

λ ∈ N∪{0}. We define the working level (wlevel) for Aπ[DK
σ ] with verticality threshold ν, slowdown ς and

look-ahead λ, as the smallest ω(ν, ς, λ) ∈ N verifying

ς
√
ν

1− ν
≥ | αi+1 − αi |

xi+1 − xi

, xi := ‖Di‖ , ∀i ∈ N such that ω(ν, ς, λ) ≤ i ≤ ω(ν, ς, λ) + λ (7)

while the smallest ℘(ν, ς, λ) ≥ ω(ν, ς, λ) with α℘(ν,ς,λ) ≤ 100 is the prediction level (plevel). Unless they are
necessary for understanding, we shall omit the parameters, referring to wlevel by ω (resp. plevel by ℘).

The wlevel is the first level for which the normalized absolute value of the slope of the line joining
consecutive points on the asymptotic backbone is less than the verticality threshold ν, which is corrected
by a factor 1/ς in order to slow down the normalization pace, thus helping to avoid the use of infinitely
small numerals for ν in real applications. Since those tangential values decrease together with the deviations
in the monotony studied, we use this correlation to categorize the latter, taking the look-ahead λ as our
verification window. We then place plevel on the first cycle with a learning trend below 100. In our example,
the differences of scale between disruptions in the monotony of the asymptotic backbone before and after
the wlevel are shown in the left-most diagram of Fig. 5 for the parameters ν = 2 ∗ 10−5, ς = 1 and λ = 5.
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Figure 5: Working and prediction levels for fntbl on frown.

4.2.1. Irregularities before the working level

The few observations available, combined with the steep slopes of the asymptotic backbone, have here a
multiplying effect on the fluctuations of its monotony. The use of large enough samples would mitigate the
problem, but identifying the optimal sampling size for such purpose is equivalent to estimate the wlevel.
So, the only effective strategy to avoid such alterations is to discard trends associated to pre-working levels,
as reflected in the left-most diagram of Fig. 5.

4.2.2. Irregularities after the working level

These should be below the verticality threshold, facilitating the restoration of the asymptotic backbone
by using an extra observation, called anchor, at the point of infinity of each learning trend. Since the sum
total of residuals in any of those curves is null, this may help to neutralize irregularities. Thus, anchoring
integrates naturally into the concept of learning trace as a mechanism to improve its robustness.

Definition 7. Let Aπ[DK
σ ] be a learning trace with wlevel ω, and the sequence {Âℓ(∞)}ℓ>ω in R+. A

learning trend of level ℓ > ω with anchor Âℓ(∞) for A∞∞∞∞∞∞∞∞∞[D] using the accuracy pattern π, is a curve
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Âπ
ℓ [DK

σ ] ∈ π fitting the observations {[xi,A∞∞∞∞∞∞∞∞∞[D](xi)], xi := ‖Di‖}ℓi=1 ∪ [∞, Âℓ(∞)], whose asymptote is
denoted by y = α̂ℓ. When {α̂ℓ}ℓ>ω is positive definite and converges monotonically to the asymptotic value
α∞∞∞∞∞∞∞∞∞ of A∞∞∞∞∞∞∞∞∞[D], we say that Âπ [DK

σ ] := {Âπ
ℓ [DK

σ ]}ℓ>ω is an anchoring learning trace of reference [Aπ [DK
σ ], ω].

Effectively, an anchor is treated as another observation and located as far as the computer memory
allows, which is why its use does not modify the properties of standard learning traces. In particular, the
correctness of the proximity condition determining the level from which the learning trends estimate the
accuracy below an error threshold [55], is extended in a natural way. It thus provides a simple criterion to
stop a training process, while the anchors give robustness. For ensuring its full practical implementation, the
condition is relaxed to define it in terms of the net contribution of each learning trend to the convergence.
We then characterize the level from which such an accuracy gain, baptized as layer of convergence, is lower
than a ceiling fixed by the user.

Theorem 3. (Layered Correctness) Let Aπ [DK
σ ] be a (resp. anchoring) learning trace with asymptotic

backbone {αi}i∈N. We then have that

∀ε > 0, ∃n ∈ N, such that [χ(Aπ
i [DK

σ ]) ≤ ε ⇔ i ≥ n] (8)

where χ(Aπ
i [DK

σ ]) :=| Aπ
i [DK

σ ](xi)− αi | is the layer of convergence for Aπ
i [DK

σ ], xi := ‖Di‖ , ∀ i ∈ N.

Proof. See in [55]. �

At this point, our sole outstanding issue is how to generate anchors and show their effect in practice.
Our thinking is based on the fact that, having fixed a learning trend, the degree of reduction applicable to
the irregularities correlates with its residual at the point of infinity. Extending this logic further, the closer
to the asymptote of the learning trend, the better its anchor. The problem is that to optimize the latter we
need to compute the former and vice versa, leading us into a vicious circle. A way to avoid this is to assign
the anchor at a given level to the asymptotic value of the previous learning trend, i.e. the last estimate
available for the accuracy resulting from a virtually infinite training process. In return for the surrender
of part of the correction potential, which gives the strategy a conservative character, the situation is thus
unblocked to inspire the notion of canonical anchoring.

Theorem 4. Let Aπ[DK
σ ] be a learning trace with asymptotic backbone {αi}i∈N and {Âi(∞)}i>ω the sequence

defined from its wlevel ω as

Âω+1(∞) := αω Âi+1(∞) := α̂i := lim
x→∞

Âπ
i [DK

σ ](x) (9)

with Âπ
i [DK

σ ] a curve fitting {[xj ,A∞∞∞∞∞∞∞∞∞[D](xj)], xj := ‖Dj‖}ij=1 ∪ [∞, Âi(∞)], ∀i > ω. Then αω+i ≤ α̂ω+i

(resp. αω+i ≥ α̂ω+i), ∀i ∈ N, when {αi}i∈N is decreasing (resp. increasing). Also, {Âπ
i [DK

σ ]}i>ω is an

anchoring learning trace of reference [Aπ [DK
σ ], ω], with {Âi(∞)}i>ω its canonical anchors.

Proof. See in [55]. �

The effect of canonical anchoring in smoothing irregularities after thewlevel is illustrated, on our running
example, in the right-most diagram of Fig. 5 versus its absence in the left-most one. It also shows how this
technique, due to its conservative nature, slows down the learning convergence.

5. The testing frame

The focus is now on providing evidence of the interest in using our proposal in a non-active adaptive
sampling context, from both points of view: training resources and learning costs. To support this, we
design a categorizing protocol for scheduling strategies from the performance observed to converge below
a given error threshold. The access to a proximity condition for marking the end of a learning process is
then mandatory, a task we entrust to the layered convergence criterion whose correctness was established
in Theorem 3. We also need quality metrics, which in turn require a specific monitoring architecture.
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5.1. The monitoring architecture

After setting a ml task for a learner on a training data base D, the goal is to standardize the conditions
under which testing takes place, with a view to allow for its objective assessment. Since we are talking about
sampling efficiency, the true location of the instance on which the intended effect fulfills, hereinafter called
convergence case (ccase), should play a key role in our proposal. This identifies our first objective.

Let us assume an accuracy pattern π, a kernel K and a convergence threshold τ . A way to approximate
ccase is by calculating the instance related to the convergence level (clevel) of Aπ[DK

η ], a learning trace
associated to the selected ml task, with η ∈ N held to be fine enough. Namely, the iteration in an arithmetic
scheduling with common difference defined by the uniform step function η, from which the error in the
estimates for accuracy is below τ . In the absence of learning malfunctions, the overvaluation of ccase is
then less than η. This provides the primary source of inspiration for our monitoring strategy.

5.1.1. The testing rounds

Given η ∈ N, our evaluation basis is the run, a tuple Eη
σ = [Aπ [DK

σ ], ℘η, τ ] characterized by the conver-
gence threshold τ , the plevel ℘η corresponding to Aπ [DK

η ] and a learning trace Aπ[DK
σ ] with step function

σ ∈ Ση := {ζ ∈ Σ, ζ(i) := η, ∀ 2 ≤ i < ℘η}. We can then naturally extend the notion of prediction (resp.
convergence) level to a run Eη

σ as the one of its learning trace and denoting it by plevel[Eη
σ ] (resp. clevel[Eη

σ)].
Runs can be grouped in what we call a local testing frame of tolerance η, a set L[Aπ [DK

Ξη
], ℘η, τ ] of these

sharing ℘η and τ , while the learning traces are taken from

Aπ[DK
Ξη

] := {Aπ[DK
σ ], σ ∈ Ξη ⊆ Ση, such that η ∈ Ξη} (10)

Thus, the testing round Eη
η := [Aπ[DK

η ], ℘η, τ ] used to approximate ccase with maximal overvaluation η,

belongs to L[Aπ[DK
Ξη

], ℘η, τ ] and is baptized as its baseline run. We are therefore talking about a package of
items only distinguishable by their sampling schedule, taken from Ξη, while the examples calculated before
the iteration ℘η are identical to those in the baseline Eη

η . Accordingly, as ℘η is the plevel of the latter, the
same applies for the rest of items. This provides a common starting point to measure, within a local testing
frame, the training data set and the cycles needed for halting, precisely the parameters that we later use to
quantify the converging effort. However, it is not enough to estimate costs to make sense of a performance
metric: we also need to balance the goodness of fit results regarding ccase. This is possible thanks to the
facility to visualize its interval of overvaluation from the baseline run, henceforth referred to as the interval
of tolerance η and expressed by

[ı(Eη
η ,clevel[Eη

η ])− η, ı(Eη
η ,clevel[Eη

η ])] (11)

with ı(Eη
σ , ℓ) := K +

∑ℓ

i=2 σ(ℓ) matching a level ℓ in a run Eη
σ ∈ L[Aπ [DK

Ξη
], ℘η, τ ] to the position of the

associated instance in the training data base D. So, with a view to adjust the degree of refinement in
estimating ccase, it is sufficient to shorten or lengthen η.

5.1.2. The testing scenarios

We study a family L := {Li[Ai,π [DK
i

Ξη
], ℘i

η, τ
i]}i∈I of local testing frames, one for each combination i ∈ I

of training data base and learner. In order to simplify the presentation, all of them share not only kernel Ki

and accuracy pattern π, but also the tolerance η fixed to locate the ccase and the collection Ξη of scheduling
schema to be compared. The robustness is entrusted to the use of canonical anchors located at sufficient
distance, in the case 10200. To explore the response against temporary increases in the learning curve, we
force their presence in the runs studied. For the purpose of raising expectations regarding their impact, the
idea is to generate them by increasing the accuracy observed at the last iteration (level) before exceeding
the case on which the corresponding baseline run converges. Taking into account that it is the benchmark
instance to estimate ccase, itself an essential reference to measure the sampling quality, any such inflation
puts the robustness of the scheduling strategy to the test. In this way, by applying increases of ι% in each
run we introduce collections L̂[ι], ι ∈ (0, 100] of local testing frames from the original L family.
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Formally, given a value ι ∈ (0, 100] called inflation index, we analyze a compilation of local testing frames

L̂[ι] := {L̂i[ι][Âi,π [DK
i

Ξη
], ℘̂i

η, τ
i]}i∈I built from L, in which

L̂i[ι][Âi,π [DK
i

Ξη
], ℘̂i

η, τ
i] := {Êη

σ}σ∈Ξη
:= {[Âi,π[DK

i

σ ], ℘̂i
η, τ

i]}σ∈Ξη
, i ∈ I (12)

is such that the learning trace Âi,π[DK
σ ] of each Êη

σ only differs from that of Eη
σ ∈ Li[Ai.π [DK

i

Ξη
], ℘i

η, τ
i] in

that it modifies the observation at the greatest level ℓ verifying

ı(Eη
σ , ℓ) < min{ı(Eη

σ ,clevel[Eη
σ ]), ı(Eη

η ,clevel[Eη
η ])} (13)

This applies by allocating the accuracy Âi
∞∞∞∞∞∞∞∞∞[D](ı(Êη

σ , ℓ)) observed at cycle ℓ, hereinafter referred to as the
inflated level, to the value

min{(1 + ι

100
) ∗ Ai

∞∞∞∞∞∞∞∞∞[D](ı(Eη
σ , ℓ)), αclevel[Eη

σ ]
}, ι ∈ (0, 100], αℓ := lim

x→∞
Ai,π

ℓ [DK
i

σ ](x), ∀ℓ ∈ N (14)

We thus increase the accuracy at the inflated level by ι%, as long as it does not surpass the one reached by a
hypothetically infinite training process, in order to keep these artificial transitory inflations realistic. More-
over, to make the comparison with runs in the starting local testing frame Li[Ai,π [DK

i

Ξη
], ℘i

η, τ
i] meaningful,

it is necessary that ℘̂i
η = ℘i

η, for which it is sufficient that the inflated level ℓ > ℘i
η. It is then said that

L̂i[ι][Âi,π [DK
i

Ξη
], ℘i

η, τ
i] is the inflated variant at a rate of ι% for Li[Ai,π [DK

i

Ξη
], ℘i

η, τ
i], the type of local testing

frame from which the collections L̂[ι] are effectively built. This enlarges our testing canvas in a relevant
manner, allowing appraisal of the effect of mismatches in the working hypotheses without compromising the
rest of the surrounding conditions.

5.2. The learning performance metrics

Sharing the plevel and a halting condition based on predictive accuracy allows the runs in a local
testing frame L[Aπ [DK

Ξη
], ℘η, τ ] or in any of its inflated variants L̂[ι][Âπ [DK

Ξη
], ℘η, τ ] to support a reliable

methodology to compare their learning performance. The first feature provides a common starting point
for the evaluation process, while the second determines its conclusion and associates it to a clevel. It is
therefore possible to identify the effective testing areas together with the iterations involved, from the same
departure position and without using heuristics. So, after having set a run, a quality metric simply needs
to focus on the cycles between a plevel of value ℘η shared in the local testing frame and its own clevel.

This way, data acquisition costs are proportional to the fraction of training data explored while, in the
absence of incremental ml mechanisms3, model induction ones depend on the iterations made to that end
and on the new cases added in each cycle. Since the use of a common proximity condition guarantees that
misclassification rates are the same within a local testing frame, error charges are irrelevant in comparative
terms. We can therefore assume, following Weiss and Tian [58] and for testing purposes, that overall learning
costs depend only on the data acquisition and induction ones. Moreover, as the intention is to study those
charges through different local testing frames, we are more interested in calculating ratios than providing
absolute values. To this effect, we normalize them taking into account that ı(Eη

η , ℘η) is the first instance on
which a run can converge, thus quantifying a benchmark for both settings.

Having discussed the quantitative side of our performance metrics, we need now to integrate the qual-
itative one. In this sense, and always in the context of a local testing frame and its inflated variants, we
positively evaluate any approximation for ccase, provided it is located from the start of the interval of
tolerance. Interpreted as an indication that training is less efficient, the increasing distance from the latter
is penalized to an extent proportional to the costs, and therefore also to the training resources, mentioned
above. On the other hand, a premature diagnosis is not acceptable because it necessarily entails an error in
terms of accuracy prediction. Given these premises, we formally introduce the performance metrics.

3A model is updated from new examples and a limited set of previous ones. The idea is that adding or removing small
amounts of data, it may not change much and the incrementality should reduce the learning effort. However, practice proves
that its applicability is doubtful: the use scenarios may significantly vary according to applications [9], it is not guaranteed to be
faster than re-training from scratch [52] and catastrophic forgetting [18] can arise [34] when the model at stake is connectionist.
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Definition 8. Let Eη
σ ∈ L[Aπ [DK

Ξη
], ℘η, τ ] be a run in a local testing frame with baseline Eη

η , and H an

halting condition. We define the data acquisition (resp. induction) cost saving ratio of Eη
σ for H as

dacsr(Eη
σ ,H) :=

{

ı(Eη
η ,℘η)

ı(Eη
σ ,clevel[Eη

σ ])
if δ(Eη

σ ,H) ∈ [−η,∞)

0 otherwise
(15)

(resp. icsr(Eη
σ ,H) :=

∑℘η

ℓ=1 ı(Eη
η , ℓ)

∑℘η−1
ℓ=1 ı(Eη

η , ℓ) +
∑clevel[Eη

σ ]
ℓ=℘η

ı(Eη
σ , ℓ)

) (16)

with δ(Eη
σ ,H) := ı(Eη

σ ,clevel[Eη
σ ])− ı(Eη

η ,clevel[Eη
η ]) the discrepancy distance of Eη

σ for H. From which, we
introduce the overall learning cost saving ratio of Eη

σ for H as

lcsr(Eη
σ ,H) := dacsr(Eη

σ ,H) ∗ icsr(Eη
σ ,H) (17)

In the context of a local testing frame, these metrics are null when the run Eη
σ converges before the

interval [ı(Eη
η ,clevel[Eη

η ])− η, ı(Eη
η ,clevel[Eη

η ])] of tolerance η for locating ccase. Otherwise, the greater the
discrepancy distance the lower their value, reaching a maximum of 1 if clevel[Eη

σ ] = ℘η, i.e. if clevel[Eη
σ ] =

plevel[Eη
σ ] = plevel[Eη

η ]. Namely, when the learning process halts at the same time as the predictions are
judged reliable, thereby signalling the least costly convergence process within such an interval of tolerance.
That way, we have not only a realistic saving quota for the overall learning cost (lcsr) but also for the
training resources used (dacsr), precisely the two magnitudes on which we focus our attention.

6. The experiments

As mentioned earlier, the focus here is on learners associated to ml-based tagger generation, a demanding
task in the domain of nlp. It is thus necessary to introduce the linguistic resources and the testing space.

6.1. The linguistics resources

Corpora and pos tagger generators are selected from the most popular ones, as training data and learners
respectively, the former together with their tag-sets are:

1. The Wall Street Journal section in the penn treebank [37], with over 1,170,000 words.

2. The Freiburg-Brown (frown) of American English [24], with over 1,165,000 words.

where penn is annotated with pos tags as well as syntactic structures. By stripping it of the latter, it can be
used to train pos tagging systems. In order to ensure well-balanced corpora, we also have scrambled them
at sentence level before testing.

In the case of taggers, we focus on systems built from supervised learning, which make it possible to
work with predefined tag-sets, thereby facilitating both the evaluation and the comprehension of the results
in contrast with unsupervised techniques:

1. In the category of stochastic methods and as a representative of the hidden Márkov models (hmms),
we chose tnt [6]. We also include the treetagger [45], which uses decision trees to generate the hmm,
and morfette [12], an averaged perceptron approach [15]. To illustrate the maximum entropy models
(mems), we work with mxpost [42] and opennlp maxent [51]. Finally, the stanford pos tagger [51]
combines features of hmms and mems using a conditional Márkov model.

2. Under the heading of other methods we take fntbl [39], an update of brill [7], as an example of
transformation-based learning. For memory-based strategies, the chosen representative is the memory-
based tagger (mbt) [16], while svmtool [23] illustrates behaviour with respect to support vector ma-
chines. Finally, we use a perceptron-based training method with look-ahead, through lapos [53].

This selection ensures good coverage of the linguistic resources with a view to test our proposal, thus
providing a solid and representative basis for our experiments.
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6.2. The testing space

Under our guidelines, we consider a local testing frame together with its inflated variant at a rate of 1%
for each combination i ∈ I of corpus and tagger, grouping them in the collections

L := {Li[Aπ [DK
i

Ξη
], ℘i

η, τ
i]}i∈I and L̂[1] := {L̂i[1][Âi,π[DK

i

Ξη
], ℘i

η, τ
i]}i∈I

where the tolerance η and the size of the kernels Ki are both fixed to 5 ∗ 103, while a power law family
parameterized by the trust region method [5] is chosen as accuracy pattern π. The set Ξη of adaptive
sampling schedules to be compared includes our own (colts), as well as the geometric and the arithmetic
ones, the latter indicating the baseline runs. The values for {℘i

η}i∈I (resp. {τ i}i∈I), i.e. the plevels of the
baselines (resp. the convergence thresholds), are calculated from the parameters ν = 2 ∗ 10−5, ς = 1 and
λ = 5 (resp. the same) used by Vilares et al. [55]. Hence each local testing frame and inflated variant is
composed of three runs, all of them operating under identical testing conditions. It is important to note
that geometric scheduling generally results in a reduction of induction costs, but at the price of increasing
data acquisition ones and relaxing the precision. Meanwhile, the arithmetic approach shows an opposite
behavior, allowing optimum setting for the training resources used, which justifies our decision to choose
it for defining the baseline runs. So, these two strategies represent the foreseeable extremes as regards
performance in practical adaptive sampling, thus justifying their inclusion in our experimental frame.

Having defined the main testing structure, we address three aspects supporting the significance of the
trials in our case study. The first relates to the appropriate exploitation of the training resources. Thus, as
phrases are the smallest grammatical units with concrete sense, samples should be aligned to the sentential
distribution of the text. The second concerns the practical utility of the generated models, which depends
on both the lcsr metric being well-defined within the scope of the corpora and the reduction of variability
phenomena. Finally, we tackle the model optimization, i.e. the refinement of schedule setting in each run.

6.2.1. Sampling fitting to sentence level

In order to guarantee the relevance of our experimental results, the best training conditions for pos

tagging should be provided. This includes avoiding dysfunctions resulting from sentence truncation, which
requires the use of a particular class of learning scheme specifically adapted to sentence level. So, given a
corpus D with kernel K and a step function σ, we build the individuals {Di}i∈N with Di := JWiK such that

W1 := K and Wi := Wi−1 ∪ Ii, Ii ⊂ D \Wi−1, ‖Ii‖ := σ(i), ∀i ≥ 2 (18)

where JWiK denotes the minimal set of sentences including the set of words Wi. Such a fit has no impact
on the foundations of the proposal and allows us to reap the maximum benefit from the training process.

6.2.2. Scope and stability of sampling

Since the corpora considered are finite, it only makes sense to study a local testing frame L[Aπ [DK
Ξη

], ℘η, τ ]
when ccase, i.e. the instance on which the testing condition verifies, is within their boundaries. That is
to say, when the alignment below the threshold τ occurs in that context. With the aim of adapting to this
practical constraint, we limit the scope in measuring the layer of convergence as introduced in Theorem 3
for a learning trend Aπ

i [DK
σ ]. Formally, the asymptotic value αi is replaced by the one reached at the last

case for which an observation is available in the corpus we are working on. So, if VℓW denotes the position
of the first sentence-ending beyond the ℓ-th word, the layer of convergence for Aπ

i [DK
σ ] is now expressed by

χℓ(Aπ
i [DK

σ ]) :=| Aπ
i [DK

σ ](‖Di‖)−Aπ
i [DK

σ ](VℓW)Aπ
i [DK

σ ](VℓW)Aπ
i [DK

σ ](VℓW) | (19)

with ℓ = 8∗105 and the updated term represented in bold font. In order to confer stability on our measures,
a k-fold cross validation [13] is applied with k=10, a commonly used value in pos tagging evaluation [16, 22].
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6.2.3. Parameter tuning

The performance of a sampling schedule relies heavily on the learning process being studied, in such a
way that it may even challenge our initial expectations. So, the uniform strategy generally outperforms the
geometric one in terms of training resources used because the efficiency in approximating the real learning
curve is higher. By contrast, since the number of cycles required to converge can be very large, it often entails
significant model induction costs unless an incremental learning facility prevents overlapping of training data
in successive iterations, which is a technology far from being operational. The same goes for error costs
when the issue is the learning utility [58].

Having fixed a local testing frame L[Aπ[DK
Ξη

], ℘η, τ ], we therefore need a protocol for tuning the step
function σ ∈ Ξη in each run Eη

σ when σ 6= η. With the aim of offering meaningful results, the starting
conditions should be as close as possible to those of the baseline run Eη

η , which associates a quasi-optimal
clevel. Since σ ∈ Ξη ⊆ Ση := {ζ ∈ Σ, ζ(i) := η, ∀ 2 ≤ i < ℘η}, this goes on to choose σ in such a way that

σ(℘η) = η. The settings thus calculated are also applied on the inflated variant L̂[1][Âπ[DK
Ξη

], ℘η, τ ].

Setting the geometric scheduling. The step function σ is defined from a common ratio ρ ∈ R+ \ (0, 1], which
is why we denote it as σ := σ[ρ], and the condition to be verified is expressed by

η = σ[ρ](℘η) := ı(Eη

σ[ρ], ℘η + 1)− ı(Eη

σ[ρ], ℘η) = ı(Eη

σ[ρ], ℘η) ∗ (ρ− 1) := ı(Eη
η , ℘η) ∗ (ρ− 1) (20)

while the common ratio we are looking for is

ρ :=
η + ı(Eη

η , ℘η)

ı(Eη
η , ℘η)

(21)

Setting the adaptive scheduling. The step function σ is defined from a port parameter ̺ ∈ (0, 1], so that we
denote it by σ := σ[̺]. The main problem in this respect is that we are talking about non-fixed sequencing
schedulings, for which the step at each level depends not only on the set of observations available at that
moment but also on the accuracy pattern π used for approximating the learning trends. Namely, unlike
geometric scheduling, it is not possible to statically solve for ̺ the equation σ[̺](℘η) = η. An approach that
is also adaptive, in accordance with the nature of this sampling strategy, is therefore necessary. So, having
taken an initial tentative port value ψ, we adjust it to a new one ̺[ψ] in such a way that σ[̺[ψ]](℘η) = η.
In principle, it would be sufficient for this to apply the transformation

̺[ψ] :=
η

σ[ψ](℘η)
, with ψ ∈ (0, 1] (22)

but we must take into account that σ[ψ](℘η) should not exceed the size of the remaining training data base
D from the level ℘η and that the port is defined in (0, 1]. The definitive transformation to be used is then

̺[ψ] := min{ η

min{σ[ψ](℘η),
∥

∥D −D℘η

∥

∥} , 1}, with ψ ∈ (0, 1] (23)

We choose the intermediate value ψ = 0.5 to start the approximation process. This allows us to obtain
an initial idea of the proposal’s potential, leaving the study of the impact on performance due to port

variations for later.

6.3. Analysis of the results

The detail of the monitoring can be found separately for each local testing frame in L and L̂[1], on
Tables 1 and 2 respectively. That includes the plevel, common to all its runs and expressed by both the
numeric value (#) and the position (ı) of the related instance (word) in the corpus, and also the results
for the quality metrics lcsr and dacsr on each one of those runs. The first indicator signals, as already
pointed out, and once an error convergence threshold has been fixed, the iteration from which performance
prediction on the learner is presumed realistic. Meanwhile, lcsr and dacsr give an objective view of the
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plevel τ Baseline Geometric olts

# ı η dasr lsr ρ dasr lsr ̺[0.5] dasr lsr

f

r
o
w
n

lapos 18 90,000 1.27 5,000 0.3913 0.0619 1.056 0.3765 0.0876 0.048 0.3487 0.1175

maxent 32 160,004 1.70 5,000 0.6400 0.2651 1.031 0.6304 0.2901 0.023 0.6171 0.3757

morfette 20 100,009 1.43 5,000 0.4166 0.0744 1.050 0.4162 0.1093 0.039 0.3851 0.1442

mxpost 22 110,017 2.84 5,000 0.7334 0.3991 1.045 0.7012 0.3783 0.039 0.7063 0.4925

stanford 29 145,014 1.91 5,000 0.7631 0.4480 1.034 0.7625 0.4698 0.024 0.7183 0.5100

svmtool 46 230,005 1.41 5,000 0.8679 0.6557 1.022 0.8788 0.6890 0.016 0.8449 0.7103

tnt 19 95,018 1.51 5,000 0.4419 0.0888 1.053 0.4188 0.1108 0.038 0.4080 0.1611

p

e
n
n

fntbl 19 95,007 0.58 5,000 0.3334 0.0383 1.053 0.3226 0.0622 0.058 0.3265 0.1045

lapos 13 65,003 0.93 5,000 0.4814 0.1159 1.077 0.4765 0.1491 0.086 0.4879 0.2301

maxent 19 95,007 0.60 5,000 0.3585 0.0476 1.053 0.3575 0.0780 0.062 0.3626 0.1292

mbt 15 75,035 1.66 5,000 0.4287 0.0817 1.066 0.4344 0.1200 0.054 0.4164 0.1673

morfette 15 75,035 0.52 5,000 0.3573 0.0475 1.066 0.3583 0.0778 0.094 0.3598 0.1265

mxpost 17 85,013 1.40 5,000 0.5862 0.2062 1.059 0.5635 0.2215 0.061 0.5739 0.3215

stanford 18 90,031 0.98 5,000 0.6001 0.2207 1.055 0.5841 0.2402 0.050 0.5311 0.2754

svmtool 26 130,008 1.25 5,000 0.7428 0.4139 1.039 0.7389 0.4334 0.028 0.6909 0.4716

tnt 12 60,015 0.51 5,000 0.2609 0.0188 1.083 0.2574 0.0379 0.087 0.2508 0.0593

treetagger 12 60,015 1.32 5,000 0.2728 0.0215 1.083 0.2574 0.0379 0.066 0.2500 0.0590

Table 1: Monitoring of local testing frames without inflation

plevel τ Baseline Geometric olts

# ı η dasr lsr ρ dasr lsr ̺[0.5] dasr lsr

f

r
o
w
n

lapos 18 90,000 1.27 5,000 0.3830 0.0581 1.056 0.3765 0.0876 0.048 0.3478 0.1172

maxent 32 160,004 1.70 5,000 0.6275 0.2499 1.031 0.6113 0.2691 0.023 0.5810 0.3326

morfette 20 100,009 1.43 5,000 0.4082 0.0700 1.050 0.3964 0.0979 0.039 0.3850 0.1442

mxpost 22 110,017 2.84 5,000 0.7098 0.3621 1.045 0.7012 0.3783 0.039 0.7063 0.4924

stanford 29 145,014 1.91 5,000 0.7250 0.3846 1.034 0.7125 0.3943 0.024 0.6300 0.3905

svmtool 46 230,005 1.41 5,000 0.8518 0.6201 1.022 0.8601 0.6492 0.016 0.8100 0.6522

tnt 19 95,018 1.51 5,000 0.4318 0.0829 1.053 0.4188 0.1108 0.038 0.3353 0.1081

p

e
n
n

fntbl 19 95,007 0.58 5,000 0.3220 0.0346 1.053 0.3226 0.0622 0.058 0.3258 0.1043

lapos 13 65,003 0.93 5,000 0.4333 0.0848 1.077 0.4425 0.1258 0.086 0.4193 0.1704

maxent 19 95,007 0.60 5,000 0.3393 0.0404 1.053 0.3575 0.0780 0.062 0.3617 0.1289

mbt 15 75,035 1.66 5,000 0.4287 0.0817 1.066 0.4344 0.1200 0.054 0.4165 0.1673

morfette 15 75,035 0.52 5,000 0.3410 0.0413 1.066 0.3361 0.0675 0.094 0.3585 0.1260

mxpost 17 85,013 1.40 5,000 0.5862 0.2062 1.059 0.5635 0.2215 0.061 0.5124 0.2560

stanford 18 90,031 0.98 5,000 0.5808 0.2003 1.055 0.5841 0.2402 0.050 0.5902 0.3411

svmtool 26 130,008 1.25 5,000 0.7222 0.3807 1.039 0.7115 0.3933 0.028 0.6415 0.4059

tnt 12 60,015 0.51 5,000 0.2449 0.0156 1.083 0.2377 0.0320 0.087 0.2131 0.0430

treetagger 12 60,015 1.32 5,000 0.2667 0.0201 1.083 0.2574 0.0379 0.066 0.2141 0.0432

Table 2: Monitoring of local testing frames with inflation
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saving effort with respect to overall learning cost and training resources used, respectively. We thus hope
that colts-based runs equal the results of the baselines for dacsr, while reaching the best ones for lcsr.

An optimized step function parameter, a common ratio ρ or the port ̺[0.5] depending on whether the
scheduling is geometric or adaptive, is also included to ensure the credibility of the results. For the case of
the (arithmetic) baselines, as already said, the common difference η matches the tolerance applied (5 ∗ 103),
which we believe is low enough to guarantee a good approximation of the real learning curve. All these
numerals are expressed to four decimal digits, using bold (resp. cursive) fonts to mark the best results
among all (resp. the baseline) runs in each local testing frame.

We discard non-viable local testing frames in L, i.e. those whose high plevel prevents us from evaluating
them with the observations available, which is why that of treetagger on frown is not included in Table 1.
Since the purpose of the collection L̂[1] is to illustrate the impact of unexpected irregularities in the runs
of L, we only include in Table 2 inflated variants associated to viable items. The local testing frames for
fntbl and mbt on frown are also discarded because their runs converge just one iteration after the plevel,
thus making it impossible to generate their inflated variants.

6.3.1. Results on the initial local testing frames

We now focus on the collection L, whose lcsrs (resp. dacsrs) are compiled in the left-hand (resp.
right-hand) diagram of Fig. 6. The former range from 0.0188 for tnt on penn using an arithmetic sampling
schedule to 0.7103 for svmtool on frown applying colts. In percentages, 43.14% of these values are greater
than 0.20, thus proving the adequacy of our parameter setting. Analyzing each selection approach, this ratio
grows to 47.06% for colts, while it drops to 41.18% for both the geometric and arithmetic schedules. In
more detail, the best performance associates to the adaptive approach in all local testing frames. Conversely,
the geometric schedule is the second best in 94.12% of cases, and the arithmetic one in the remaining 5.88%.
Such prevalence of colts over the geometric selection is mainly due to its increased precision, while with
regard to the arithmetic one it is a consequence of the lower number of iterations needed to converge. The
latter also explains the better results of the geometric approach against the arithmetic one. On average, the
difference with the baseline is 91.22% for the adaptive runs (from 1% to 215.43% with a standard deviation
of 65.51%) and 35.42% for the geometric ones (from 1% to 101.60% with a standard deviation of 29.43%),
which gives us an idea of the magnitude of the flexibility of colts.
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Figure 6: lcsrs and dacsrs for runs without inflations.

Regarding dacsr values, they range from 0.25 for treetagger on penn using adaptive sampling to 0.8788
for svmtool on frown with a geometric schedule. Percentage-wise, 62.75% of those values are greater than
0.4, rising to 64.71% for both arithmetic and geometric runs, while dropping to 58.82% for the adaptive
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ones, once again showing the adequacy of out experimental setup. Comparing the performances of the three
sampling schedules, we see that arithmetic sampling leads in 70.59% of all testing frames and is second best
in 23.53%. Next comes the geometric scheduling (resp. colts), outperforming the others 11.76% (resp.
17.65%) of the time and being second in 58.82% (resp. 17.65%) of tests.

In short and as has been noted above, the better approximation to the learning curve given by the
baseline (arithmetic scheduling) gives it an advantage in terms of data aquisition costs (dacsrs). Despite
this, differences between adaptive (resp. geometric) and baseline runs are very small, with an average of
4.87% (resp. 2.15%), ranging from 0.70% (resp. 0.08%) to 11.50% (resp. 5.65%), and a standard deviation
of 3.30% (resp. 1.81%). Once model induction (icsr) is taken into account, colts is shown to perform with
the best overall learning costs (lcsrs). However, it is too early to conclude the superiority of the adaptive
scheduling over the rest of schema compared. A good selection should also help to identify global rather
than local optima, avoiding premature interruptions of the training. In order to explore this ability, we
analyze the lcsr and dacsr metrics on the collection L̂[1] of inflated variants for L.

6.3.2. Results on the inflated variants

We now focus on the collection L̂[1], whose lcsrs (resp. dacsrs) are compiled in the left-hand (resp.
right-hand) diagram of Fig. 7. The former range from 0.0156 for tnt on penn with an arithmetic schedule
to 0.6522 for svmtool on frown applying colts. In contrast to what happens in L, 41.18% of the values
are greater than 0.20, which represents a decrease of 1.96% and reveals the impact of the irregularities
introduced. Looking into each strategy, results for the arithmetic and geometric ones are the same as those
in L, at 41.18%. Therefore, the overall decrease associates to adaptive runs, which drop 5.88% to 41.18%.
Regarding the best scores, they correspond to our adaptive approach in 88.24% of cases, with the remaining
11.76% favoring the geometric one. At no time does the arithmetic selection lead the results. Geometric
scheduling obtains the second best lcsr in 88.24% of trials, followed by the adaptive one with 11.76%. On
average, the difference with the baseline is 72.80% for the adaptive runs (from 0.53% to 172.32% with a
standard deviation of 72.80%) and 29.95% for the geometric ones (from 0.99% to 76.28% with a standard
deviation of 25.65%), while in the arithmetic case it is 9.34% (from 0% to 26.83% with a standard deviation
of 6.31%). All this further supports the capacity of colts to adapt to each learning process.
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Figure 7: lcsrs and dacsrs for runs with inflations.

Focusing on training resources, dacsrs range from 0.2131 for tnt on penn with an adaptive schedule to
0.8601 for svmtool on frown with a geometric one. Of those values, 58.82% are above 0.40, representing
a drop of 3.93% from the experiments in L, again due to the irregularities introduced. These losses are
not equally shared between all three strategies. While the percentage of arithmetic runs scoring above 0.40
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remains the same as in L, the one for geometric (resp. adaptive) runs drops 5.89% (resp. 5.89%) to 58.82%
(resp. 52.93%). Comparing performances, arithmetic sampling leads in 58.82% of testing frames and is
second best in another 23.53%, with geometric (resp. adaptive) sampling besting the others in 17.65%
(resp. 23.53%) of cases and running second in another 70.59% (resp. 5.88%). Finally, the difference with
the baseline is an average of 9.81% for colts (from 0.34% to 24.12% with an standard deviation of 7.28%),
4.38% for the geometric strategy (from 0.28% to 8.89% with an standard deviation of 2.26%) and 3.30% for
the arithmetic one (from 0% to 9.99% with an standard deviation of 2.33%).

In summary, as with the initial local testing frames, inflated arithmetic runs need less training resources
(dacsr) than the other ones. But the differences are small enough that, when model induction effort (icsr)
is taken into account, colts still comes on top most of the time regarding the overall learning cost (lcsr).

6.3.3. Stability against temporary inflations in performance

The goal is to study the difference between lcsrs (resp. dacsrs) on each run of the local testing frames
in the collection L and its corresponding ones in the associated inflated variant of L̂[1], as shown in the
left-hand (resp. right-hand) diagram of Fig. 8. With respect to lcsr values, geometric scheduling leads the
results, followed by arithmetic sampling with an average difference for the former (resp. the latter) of 5.48%
(resp. 9.34%) and a standard deviation of 6.37% (resp. 6.31%). Adaptive scheduling provides us with the
worst average (12.67%) and standard deviation (11.94%).

Results for dacsr are similar. Geometric runs show the best scores, followed by the arithmetic ones
with an average difference of 2.42% for the former (resp. 3.30% for the latter) and a standard deviation of
2.88% (resp. 2.33%). colts comes last again, with an average difference of 6.69% and standard deviation
of 6.32%, but those differences are even smaller that the ones between lcsr values.

In brief, colts shows a similar degree of stability against inflations to that of the other two selection
techniques even, as seen earlier, its overall learning cost (lcsr) is far superior.
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Figure 8: Differences between lcsrs (resp. dacsrs) for runs without and with inflations.

6.3.4. Stability against port variations

Although the above tests support the idea that colts performs better than its opponents, they were
obtained from a particular port parameter ̺[0.5]. The question that remains is whether such a conclusion
can be generalized, which involves surveying the evolution of performance regarding the port chosen. We
then extend the collection of step functions associated to each local testing frame with new adaptive schedules
corresponding to port parameters ̺[0.2] and ̺[0.8], thereby increasing the number of runs using this kind
of scheduling to three. As ψ ∈ (0, 1], ̺[0.5] is an intermediate value for ̺[ψ] while the other two are extreme
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ones, this provides a representative comparative framework on adaptive selection. Focusing on these runs,
we now review each local testing frame L[Aπ [DK

Ξη
], ℘η, τ ] ∈ L to study their variations with respect to lcsr

(resp. dacsr), as shown in the left-hand (resp. right-hand) diagram of Fig. 9. We also compare them with
their corresponding inflated variants in L̂[1][Âπ[DK

Ξη
], ℘η, τ ] ∈ L̂[1], as seen in Fig. 10.

The new experiments show that lcsr seems to be inversely proportional to the value ψ of ̺[ψ], reaching
the highest (resp. smallest) scores with ̺[0.2] (resp. ̺[0.8]). The average lcsr for the former (resp. the
latter) in L is 0.3015 (resp. 0.2285) with a standard deviation of 0.1820 (resp. 0.1777), while these rates are
0.2621 and 0.1838 for ̺[0.5], illustrating the reliability of the adaptive technique irrespective of the port

used. Regarding stability against irregularities in the working hypotheses, the average difference between
the lcsr for runs in L using ̺[0.2] (resp. ̺[0.8]) as port and their inflated variants in L̂[1] is 13.04% (resp.
5.49%), with a standard deviation of 17.92% (resp. 7.14%). For ̺[0.5] the percentages are 12.67% and
11.94% respectively.
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Figure 9: lcsrs and dacsrs for adaptive runs without inflations.
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Figure 10: Differences between lcsrs (resp. dacsrs) for adaptive runs without and with inflations.

Regarding training resources (dacsr), model induction savings (icsr) with low ψ values translate into
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lower efficiency in approximating the real learning curve. Thus, contrary to what has just been shown for
lcsrs, dacsr and ψ are directly correlated. So, runs using ̺[0.2] (resp. ̺[0.8]) have the worst (resp. best)
average dacsr of 0.4519 (resp. 0.4980) with a standard deviation of 0.1613 (resp. 0.1789), while runs
using ̺[0.5] represent a middle ground with an average dacsr of 0.4870 and standard deviation of 0.1728.
It is worth noticing that the differences between those averages are very small, underlying once again the
stability of colts with respect to port. Regarding the effect of irregularities in the learning curve, the
average difference between the dacsr for runs in L using ̺[0.2] (resp. ̺[0.8]) as port and their inflated
variants in L̂[1] is 8.10% (resp. 2.60%), with a standard deviation of 10.90% (resp. 3.45%). For ̺[0.5] these
percentages are 6.69% and 6.32% respectively, matching the behaviour previously observed for lcsr.

Briefly, even the performance is inversely (resp. directly) proportional to the parameter ψ of ̺[ψ] with
respect to overall learning (resp. data acquisition) costs, just as expected and reflected by the lcsr (resp.
dacsr) metric, the adaptive scheduling (colts) always maintains acceptable values.

7. Conclusions

We develop an adaptive scheduling (colts) for non-active adaptive sampling in order to reduce the train-
ing effort in the generation of ml-based pos taggers. Formally, the technique demonstrates its correctness
with respect to its working hypotheses. Namely, it provides the minimal spacing needed between consecu-
tive instances for ensuring that the next observation is relevant in learning terms. Based on a geometrical
criterion, the selection task is modeled from a sequence of learning trends which iteratively approximates
the learning curve. In every cycle, the algorithm calculates the distance to the next case as the minimal
one from where we are sure that the hypothesis of concavity can no longer be guaranteed. The selection
schedule described can also be configured according to a port parameter controlling the interaction between
the speed of learning and the size of samples. Regarding robustness, our analysis determines that the factors
at play are similar to those affecting the stability of the halting condition. Hence, we entrust its treatment
to the mechanisms then applied, which first entails having a tool to avoid potentially intractable distortions.

With a view to allow its practical value to be beyond doubt, a demanding and competitive testing
framework has been designed for our proposal. Given a learner, a halting condition and a training data
base, we categorize schedules according to their performance, seen in terms of both overall learning costs
and training resources needed to generate a model with a given level of accuracy. The normalization of
the experimental conditions, including a formally correct proximity criterion to measure and stabilize such
convergence, ensures that the standards of evidence do not favour any particular option, thus guarantying
their reliability.

The results corroborate the expectations established in the theoretical framework as well as its stability.
That way, since it does not depend on domain-specific requirements, the doors are open to exploit colts

for reducing the workload in ml uses other than the case study considered. The issue is then particularly
relevant to tasks in the nlp sphere, where the learning procedures are more and more challenging in a variety
of applications such as machine translation, text classification or parsing.
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