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Abstract. In this paper, we consider, from both analytical and numerical viewpoints, a thermoelastic problem. The so-called
MGT model, with two different relaxation parameters, is used for both the displacements and the thermal displacement,
leading to a linear coupled system made by two third-order in time partial differential equations. Then, using the theory of
linear semi-groups the existence and uniqueness to this problem is proved. If we restrict ourselves to the one-dimensional
case, the exponential decay of the energy is obtained assuming some conditions on the constitutive parameters. Then, using
the classical finite element method and the implicit Euler scheme, we introduce a fully discrete approximation of a variational
formulation of the thermomechanical problem. A main a priori error estimates result is shown, from which we conclude
the linear convergence under suitable additional regularity conditions. Finally, we present some one-dimensional numerical
simulations to demonstrate the convergence of the fully discrete approximation, the behavior of the discrete energy decay
and the dependence on a coupling parameter.
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1. Introduction

The study of the thermoviscoelastic theories has deserved much interest in the recent years. This is
because, in many elastic materials, we can observe viscous mechanical aspects as well as the sensitivity
to the thermal effects. We can see that the most general way to propose both aspects can be given by
the Kelvin–Voigt dissipation mechanism for the viscosity and the Fourier heat conduction constitutive
theory. Unfortunately, both aspects have a relevant drawback. The mechanical (thermal) waves for the
theories based on the Kelvin–Voigt (Fourier) theory propagate instantaneously. That is, a mechanical
(thermal) deformation imposed in a point in space is felt immediately at any other point in space. This
fact violates in a relevant way the so-called causality principle.

This has been the reason why several alternatives theories have been proposed for the heat conduction.
However, it is surprising that, although we have a similar effect when we consider the Kelvin–Voigt theory,
this fact has not received particular attention.

The most known way to overcome the paradox of the infinite speed of propagation for the thermal
waves is the Cattaneo–Maxwell proposition [6], which suggests the introduction of a relaxation parameter.
This idea brings to Lord and Shulmann to propose their famous thermoelastic theory [19]. After some
time, many other theories were considered. In particular, we can recall the works of Green and Naghdi
[12,13], who presented three new theories that they called type I, II and III, respectively. The difference
among them comes from the choice of the independent constitutive variables. Linear version of type I
recovers the classical theory of heat conduction, but types II and III became new theories which have
deserved much attention over the last twenty-five years. The most general one is the type III theory, which
contains the other two theories as limit cases. Unfortunately, type III theory has the same drawback as the
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classical Fourier law: the thermal waves also propagate instantaneously. For this reason, using a similar
idea to the one proposed by Cattaneo and Maxwell, it is natural to introduce a relaxation parameter to
bring hyperbolic the equation. Then, we obtain the Moore–Gibson–Thompson equation [21] and so, it is
natural to consider the Moore–Gibson–Thompson thermoelasticity.

If we look for the viscous mechanical effect proposed by Kelvin and Voigt, we are in front of an equation
(system) which is similar to the type III heat conduction (although with other physical meaning). Then,
we also recover the paradox of the infinite speed of propagation of the mechanical waves. It is worth saying
that few criticism has deserved this theory, if we compare with the one received by the Fourier or Green–
Naghdi theories, but it is also natural to try to overcome the paradox by introducing a new relaxation
parameter. This has been done recently in several mechanical situations [1–4,9–11,15–17,20,22,23].

In this paper, we want to propose a thermoviscoelastic theory written (only) as partial differential
equations in such a way that the thermomechanical waves propagate with finite speed. It is worth noting
that this fact was previously proposed in the paper by Conti et al. [8], but, in this case, the authors
modified both effects by means of the same parameter. This assumption is consistent, but we can agree
that it is also very restrictive. For this reason, in this work we assume that (in the general case) the
time relaxation for the thermal and mechanical effects are different. This assumption proposes a new
mathematical difficulty since we have to handle with the coupling terms which introduce big mathematical
problems. That is, from the mathematical point of view, we are in front of two equations (or systems)
of the MGT-type, with different time relaxation parameters, which bring to new coupling terms. In
this situation, we are going to be able to prove the existence and uniqueness of solutions, as well as
the exponential stability (for the one-dimensional case) whenever the difference between the relaxation
parameters is not very large in comparison with the remaining parameters proposed in the problem (see
condition (4.1)).

The plan of this paper is the following. The model equations and the assumptions required on the
constitutive tensors are presented in Sect. 2. The one-dimensional version of this problem is also recalled.
Then, in Sect. 3 the existence and uniqueness of solution to the multi-dimensional problem is proved by
using the theory of linear semigroups. The exponential decay of the solutions is shown in Sect. 4 when the
problem is assumed one-dimensional. Later, by using the classical finite element method and the implicit
Euler scheme, a fully discrete approximation is introduced in Sect. 5. A priori error estimates are obtained,
and the linear convergence is derived under some additional regularity conditions on the continuous
solution. Finally, some one-dimensional numerical simulations are presented in Sect. 6 to demonstrate the
numerical convergence, the behavior of the discrete energy decay and the dependence on the coupling
parameter.

2. Basic equations

The aim of this section is to propose the basic equations governing the general theory of MGT-
thermoviscoelasticity. We are going to consider a bounded region B ⊂ R

d, d = 1, 2, 3, with bound-
ary smooth enough to apply the divergence theorem. In this sense, it is worth recalling that the evolution
equations are

ρüi = tij,j ,
ρT0η̇ = qi,i.

Here, ui is the displacement, ρ is the mass density, tij is the stress tensor, T0 is the temperature (assumed
to be uniform) in the reference configuration but, from now on, we will assume equal to one, η is the
entropy and qi is the heat flux vector.
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The constitutive equations are given by

tij =

t∫

−∞
Gijrs(t − s)u̇r,s(s) ds + βijθ,

η = cθ − βijui,j ,

τ2q̇i + qi = K∗
ijα,j + Kijθ,j ,

where

Gijrs(s) = C∗
ijrs + e−s/τ1

(Cijrs

τ1
− C∗

ijrs

)
,

α is the thermal displacement, θ = α̇ is the temperature, τ1 and τ2 are two positive constants, Kij is the
thermal conductivity, C∗

ijrs is the elasticity tensor and Cijkl is the viscosity, c is the thermal capacity and
K∗

ij is a tensor which is typical of the works related with the Green and Naghdi thermoelastic theories
[12,13].

We impose the following symmetries on the previous tensors:

Cijrs = Crsij , C∗
ijrs = C∗

rsij , Kij = Kji, K∗
ij = K∗

ji.

After substitution of the constitutive equations into the evolution equations, we obtain the following
system1:

ρ(τ1
...
u i + üi) =

(
Cijrsu̇r,s + C∗

ijrsur,s

)
,j

+
(
βij(θ + τ1θ̇)

)
,j
,

c(τ2
...
α + α̈) =

(
Kijα̇,j + K∗

ijα,j

)
,i

+ βij(u̇i,j + τ2üi,j).
(2.1)

We note that this coupling is new in the mathematical studies.
We will consider this system of equations with homogeneous Dirichlet boundary conditions

ui(x, t) = α(x, t) = 0 for a.e. x ∈ ∂B, (2.2)

and imposing the initial conditions, for a.e. x ∈ B,

ui(x, 0) = u0
i (x), u̇i(x, 0) = v0

i (x), üi(x, 0) = a0
i (x),

α(x, 0) = α0(x), α̇(x, 0) = θ0(x), α̈(x, 0) = φ0(x). (2.3)

Sometimes, it is useful working with the homogeneous one-dimensional case. In this situation, our system
of equations becomes:

ρ(τ1
...
u + ü) = Cu̇xx + C∗uxx + β(θx + τ1θ̇x),

c(τ2
...
α + α̈) = Kα̇xx + K∗αxx + β(u̇x + τ2üx).

(2.4)

In order to make the calculations easier, in this case we assume that the boundary conditions are:

u(x, t) = αx(x, t) = 0 for x ∈ {0, π},

where now the one-dimensional domain is taken as B = (0, π).
We note that the last equation in the system of equations (2.1) can be written as

c(τ1
...
α + α̈) +

τ1
τ2

c

(
1 − τ2

τ1

)
α̈ =

τ1
τ2

(
Kijα̇,j + K∗

ijα,j

)
,i

+βij(u̇i,j + τ1üi,j) + βij
τ1
τ2

(
1 − τ2

τ1

)
u̇i,j .

(2.5)

1It is worth noting that we could obtain the same system of equations by considering appropriate relaxation functions
for the thermoviscoelastic theory proposed by Gurtin [14]. A similar procedure was developed in the appendix of the paper
[8], but here we consider more general assumptions.
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Therefore, the one-dimensional case becomes:

c(τ1
...
α + α̈) +

τ1
τ2

c

(
1 − τ2

τ1

)
α̈ =

τ1
τ2

(Kα̇xx + K∗αxx)

+β(u̇x + τ1üx) + β
τ1
τ2

(
1 − τ2

τ1

)
u̇x.

We note that we can write the following equality:

E(t) +

t∫

0

D(s) ds = E(0), (2.6)

where

E(t) =
1
2

∫

B

[
ρ(τ1üi + u̇i)(τ1üi + u̇i) + c(τ1α̈ + α̇)2 +

τ1
τ2

c

(
1 − τ2

τ1

)
|α̇|2

+C∗
ijrs(ui,j + τ1u̇i,j)(ur,s + τ1u̇r,s) +

τ1
τ2

K∗
ij(α,i + τ1α̇,i)(α,j + τ1α̇,j)

+τ1Cijrsu̇i,j u̇r,s +
τ2
1

τ2
Kijα̇,iα̇,j

]
dv,

D(t) =
∫

B

[
Cijrsu̇i,j u̇r,s +

τ1
τ2

Kijα̇,iα̇,j +
τ2
1

τ2
c

(
1 − τ2

τ1

)
|α̈|2

+βij
τ1
τ2

(
1 − τ2

τ1

)
u̇i,j(τ1α̈ + α̇)

]
dv,

with Cijrs = Cijrs − τ1C
∗
ijrs and Kij = Kij − τ1K

∗
ij .

In view of equality (2.6), it will be natural to assume that

(i) ρ(x) ≥ ρ0 > 0 and c(x) ≥ c0 > 0.
(ii) C∗

ijrs and K∗
ij are positive definite tensors. That is, there exist two positive constants C and K such

that

C∗
ijrsξijξrs ≥ Cξijξij and K∗

ijηiηj ≥ Kηiηi

for every tensor ξij and vector ηi.
(iii) Cijrs and Kij are positive definite tensors. That is, there exist two positive constants C1 and K1

such that

Cijrsξijξrs ≥ C1ξijξij and Kijηiηj ≥ K1ηiηi

for every tensor ξij and vector ηi.

We also assume that τ1 ≥ τ2.
We note that, for the one-dimensional homogeneous case, we can write the above assumptions as

follows:

(i∗) ρ > 0, c > 0, C∗ > 0, C > 0, K∗ > 0, K > 0.

The meaning of condition (i) is obvious. Condition (ii) can be interpreted in the context of the
mathematical theory of thermoelastic stability. They are usually imposed. Condition (iii) guarantees that
we will have mechanical and thermal dissipation.
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3. Existence of solutions

In this section, we propose an existence and uniqueness result for the solutions to the problem defined by
system (2.1) with the modified equation (2.5), the boundary conditions (2.2) and the initial conditions
(2.3).

We will work on the Hilbert space:

H = W 1,2
0 (B) × W 1,2

0 (B) × L2(B) × W 1,2
0 (B) × W 1,2

0 (B) × L2(B).

Here, W 1,2
0 (B) and L2(B) are the usual Sobolev spaces, and L2(B) = [L2(B)]d and W 1,2

0 (B) = [W 1,2
0 (B)]d

In this space H, we will consider the inner product defined as

〈U,U∗〉 =
1
2

∫

B

[
ρ(τ1ai + vi)(τ1a∗

i + v∗
i ) + c(τ1φ + θ)(τ1φ∗ + θ∗)

+
τ1
τ2

c

(
1 − τ2

τ1

)
θθ∗ + C∗

ijrs(ui,j + τ1vi,j)(u∗
r,s + τ1v∗

r,s)

+
τ1
τ2

K∗
ij(α,i + τ1θ,i)(α∗

,j + τ1θ∗
,j) + τ1Cijrsvi,jv∗

r,s +
τ2
1

τ2
Kijθ,iθ∗

,j

]
dv,

where U = (ui, vi, ai, α, θ, φ), U∗ = (u∗
i , v

∗
i , a∗

i , α
∗, θ∗, φ∗) and the bar over an element of the Hilbert space

represents its complex conjugated.
In this situation, we can write our problem defined by system (2.1) with the modified equation (2.5),

the boundary conditions (2.2) and the initial conditions (2.3) as the following Cauchy problem:

dU

dt
= AU, U(0) = (u0,v0,a0, α0, θ0, φ0), (3.1)

where the matrix operator A is defined as

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 I 0 0 0 0
0 0 I 0 0 0

A31 A32 A33 0 A35 A36

0 0 0 0 I 0
0 0 0 0 0 I
0 A62 A63 A64 A65 A66

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In this matrix operator, the elements are given by

A31u =
1

ρτ1

(
C∗

ijrsur,s

)
,j

,

A32v =
1

ρτ1
(Cijrsvr,s),j ,

A33a = − 1
τ1

ai,

A35θ =
1

ρτ1
(βijθ),j ,

A36φ =
1
ρ

(βijφ),j ,

A62v =
1

cτ2
βijvi,j ,

A63a =
1
c
βijai,j ,

A64α =
1

cτ2

(
K∗

ijα,j

)
,i

,
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A65θ =
1

cτ2
(Kijθ,j),i ,

A66φ = − 1
τ2

φ.

The domain of the operator A is made by the elements U ∈ H satisfying AU ∈ H. In fact, we note that
it is subspace of elements U ∈ H such that

a ∈ W 1,2
0 (B), φ ∈ W 1,2

0 (B),(
C∗

ijrsur,s + Cijrsvr,s

)
,j

∈ L2(B),(
K∗

ijα,j + Kijθ,j

)
,i

∈ L2(B).

It is clear that it is a dense subspace of the Hilbert space H. At the same time, we can obtain the
following properties.

Lemma 3.1. There exists a positive constant L such that

Re〈AU,U〉 ≤ L‖U‖2 (3.2)

for every U ∈ Dom(A).

Proof. If we recall the energy equality (2.6), it is straightforward to see that the relation (3.2) holds. �

Lemma 3.2. Zero belongs to the resolvent of operator A.

Proof. Given F = (f1,f2,f3, f4, f5, f6) ∈ H, we need to prove that the equation

−AU = F

has a solution. We obtain the system:

−v = f1,
−a = f2,
−A31u − A32v − A33a − A35θ − A36φ = f3,
−θ = f4,
−φ = f5,
−A62v − A63a − A64α − A65θ − A66φ = f6,

from which, after easy algebraic manipulations, we conclude that we must solve the simpler system:

−A31u = f3 + A32f1 + A33f2 + A35f4 + A36f5,
−A64α = f6 + A62f1 + A63f2 + A65f4 + A66f5.

It is straightforward to see that the right-hand side of the previous system is in W −1,2(B) × W−1,2(B).
In view of the assumptions on C∗

ijkl and K∗
ij , we obtain that this system admits a solution in the space

W −1,2(B) × W−1,2(B). �

From Lemmas 3.1 and 3.2, we can prove that A generates a quasi-contractive semigroup by using the
Lumer–Phillips corollary applied to Hille–Yosida theorem. Therefore, problem (3.1) has a unique solution.
This is obtained in the following result.

Theorem 3.3. The operator A generates a C0-semigroup of contractions in the space H. Moreover, for
any initial data U(0) in the domain of the operator A, we conclude that there exists at least one solution
to Cauchy problem (3.1) with the regularity:

U ∈ C1([0,∞);H) ∩ C([0,∞);D(A)).
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Remark 3.4. It is possible to obtain an existence result under more general assumptions. Even if we could
extend this comment to the non-homogeneous case, we now assume that the material is homogeneous.
Indeed, we also have the equality:

E∗(t) +

t∫

0

D∗(s) ds = E∗(0),

where

E∗(t) =
1
2

∫

B

[
ρ(τ1üi + u̇i)(τ1üi + u̇i)

+C∗
ijrs(ui,j + τ1u̇i,j)(ur,s + τ1u̇r,s) + τ1Cijrsu̇i,j u̇r,s +

τ2
1

τ2
2

(
c(τ2α̈ + α̇)2

+K∗
ij(α,i + τ2α̇,i)(α,j + τ2α̇,j) + τ2lijα̇,iα̇,j

)]
dv,

D∗(t) =
∫

B

[
Cijrsu̇i,j u̇r,s +

τ2
1

τ2
2

lijα̇,iα̇,j + βij

[
u̇iθ,j + τ1(üiθ,j − u̇i,j θ̇)

+
τ2
1

τ2
2

(u̇i,jθ + τ2(u̇i,j θ̇ − üiθ,j))
]
dv,

and lij = Kij − τ2K
∗
ij .

In view of this equality, under the assumption proposed previously and that lij is a positive definite
tensor, we can define the inner product in H:

〈U,U∗〉 =
1
2

∫

B

[
ρ(τ1ai + vi)(τ1a∗

i + v∗
i ) + C∗

ijkl(ui,j + τ1vi,j)(u∗
k,l + τ1v∗

k,l)

+τ1Cijklvi,jv∗
k,l +

τ2
1

τ2
2

(
c(τ2φ + θ)(τ2φ∗ + θ∗) + K∗

ij(α,i + τ2θ,i)(α∗
,j + τ2θ∗

,j)

+τ2lijθ,iθ∗
,j

)]
dv.

In this case, we can see that there exists a positive constant L1 such that

Re〈AU,U〉 ≤ L1‖U‖2,

but we do not need the assumptions required above. Again, the domain is dense and we can also prove
that zero belongs to the resolvent of this operator A. Therefore, we can obtain the existence of solutions
under the assumptions (i)–(iii), but changing the condition on Kij by lij , which is a weaker condition.

4. One-dimensional case

In this section, we restrict our analysis to the one-dimensional homogeneous case.
If we define the inner product

〈U,U∗〉 =
1
2

π∫

0

[
ρ(τ1a + v)(τ1a∗ + v∗) + c(τ1φ + θ)(τ1φ∗ + θ∗)

+
τ1
τ2

c

(
1 − τ2

τ1

)
θθ∗ + C(ux + τ1vx)(u∗

x + τ1v∗
x) + τ1Cvxv∗

x +
τ2
1

τ2
Kθxθ∗

x

+
τ1
τ2

K(αx + τ1θx)(α∗
x + τ1θ∗

x)
]
dx,
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we have

Re〈AU,U〉 = −
π∫

0

[
Cvxvx +

τ1
τ2

Kθxθx +
τ2
1

τ2
c

(
1 − τ2

τ1

)
φφ∗

+
1
2
β

τ1
τ2

(
1 − τ2

τ1

)(
vx(θ + τ1φ) + vx(θ + τ1φ)

) ]
dx.

Therefore, if we assume that the bilinear form given by the matrix⎛
⎜⎜⎜⎜⎜⎜⎝

C
1
2
β

τ1
τ2

(
1 − τ2

τ1

)
τ1
2

β
τ1
τ2

(
1 − τ2

τ1

)

1
2
β

τ1
τ2

(
1 − τ2

τ1

)
τ1
τ2

K 0

τ1
2

β
τ1
τ2

(
1 − τ2

τ1

)
0

τ2
1

τ2
c

(
1 − τ2

τ1

)

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.1)

is positive definite we conclude that Re〈AU,U〉 ≤ 0 for every U ∈ Dom(A).

Remark 4.1. Matrix (4.1) is positive definite if and only if the following conditions hold:

C > 0, 4CKτ1τ2 − β2(τ1 − τ2)2 > 0,
4CKcτ1τ2 − Kβ2τ2

1 (τ1 − τ2) − cβ2(τ1 − τ2)2 > 0.

We see that whenever τ1 − τ2 is small enough, the previous conditions hold.

It is worth noting that, under the assumptions proposed in this section, we can prove that zero belongs
to the resolvent of the operator.

Therefore, we have shown the following.

Theorem 4.2. Under the previous assumptions (i∗) and that the matrix (4.1) is positive definite, the
solutions decay in an exponential way.

Proof. Since the semigroup is contractive, we can use the semigroup theory of linear operators as well as
the characterization of the exponentially stable semigroups obtained by Pruss (and other authors), which
can be recalled in the book of Liu and Zheng [18]. Therefore, in order to prove the theorem it is sufficient
to show that the imaginary axis is contained in the resolvent of the operator A and that the asymptotic
condition

lim
|λ|→∞

‖(iλI − A)−1‖L(H) < ∞ (4.2)

holds.
We will prove the first condition. In the case that this is not fulfilled, there exist a sequence of real

numbers λn → λ �= 0 and a sequence of unit norm vectors Un = (un, vn, an, αn, θn, φn) such that

iλnun − vn → 0 in W 1,2(B),
iλnvn − an → 0 in W 1,2(B),
iλnan − A31un − A32vn − A33an − A35θn − A36φn → 0 in L2(B),
iλnαn − θn → 0 in W 1,2(B),
iλnθn − φn → 0 in W 1,2(B),
iλnφn − A62vn − A63an − A64αn − A65θn − A66φn → 0 in L2(B).

In view of the assumption on the dissipation D(t), we have that

vn, θn → 0 in W 1,2(B), φn → 0 in L2(B),

and therefore,

λnun, λnαn → 0 in W 1,2(B).
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If we multiply the above third convergence by vn, we also obtain that an → 0 in L2(B). This is a
contradiction because we assumed that Un were unit norm vectors.

To prove the asymptotic condition, we can use a similar argument. �

5. A fully discrete scheme: a priori error estimates

In this section, we will introduce a fully discrete approximation of the problem defined by system (2.1),
boundary conditions (2.2) and initial conditions (2.3) over a finite time interval [0, T ], T > 0. First, we
need to write this problem in its variational form. Therefore, let us denote Y = L2(B), H = [L2(B)]d,
E = H1

0 (B) and V = [H1
0 (B)]d. Moreover, for a Hilbert space X, let (·, ·)X and ‖·‖X be the inner product

and norm in X, respectively.
Therefore, multiplying the equations of system (2.1) by adequate test functions belonging to the

spaces V and E, respectively, and using boundary conditions (2.2), we obtain the following variational
formulation of this thermo-mechanical problem, written in terms of the acceleration a(t) = (ai(t)), the
thermal acceleration φ(t), the velocity v(t) = (vi(t)) and the temperature θ(t).

Find the acceleration a : [0, T ] → V and the thermal acceleration φ : [0, T ] → E such that a(0) = a0,
φ(0) = φ0,and for a.e. t ∈ (0, T ) and w ∈ V, ξ ∈ E,

ρ(τ1ȧ(t) + a(t),w)H + C(v(t),w) + C∗(u(t),w) = (βij(θ(t) + τ1φ(t)),j , wi)Y ,

c(τ2φ̇(t) + φ(t), ξ)Y + K(θ(t), ξ) + K∗(α(t), ξ) = (βij(vi,j(t) + τ2ai,j(t)), ξ)Y ,
(5.1)

where the operators C, C∗, K and K∗ are given by

C(w, ξ) = (Cijrswr,s, ξi,j)Y ∀w = (wi), ξ = (ξi) ∈ V,
C∗(w, ξ) = (C∗

ijrswr,s, ξi,j)Y ∀w = (wi), ξ = (ξi) ∈ V,
K(w, ξ) = (Kijw,j , ξ,i)Y ∀w, ξ ∈ E,
K∗(w, ξ) = (K∗

ijw,j , ξ,i)Y ∀w, ξ ∈ E,

and the velocity v(t), the temperature θ(t), the displacements u(t) and the thermal displacements α(t) are
recovered from the relations:

v(t) =

t∫

0

a(s) ds + v0, θ(t) =

t∫

0

φ(s) ds + θ0,

u(t) =

t∫

0

v(s) ds + u0, α(t) =

t∫

0

θ(s) ds + α0.

(5.2)

Now, we introduce a fully discrete approximation of problem (5.1)–(5.2). We will proceed in two
steps. First, we approximate the problem in space. Thus, let us assume that B is a polyhedral domain
and construct the finite element spaces:

Eh = {ξh ∈ C(B) ∩ E; ξh
Tr ∈ P1(Tr) ∀Tr ∈ T h},

V h = {wh ∈ [C(B)]d ∩ V ; wh
Tr ∈ [P1(Tr)]d ∀Tr ∈ T h},

(5.3)

where T h is a regular finite element triangulation of the domain B (in the sense of [7]), and P1(Tr)
represents the space of affine functions in Tr. Moreover, as usual, parameter h > 0 denotes the mesh size.

The discrete initial conditions u0h, v0h, a0h, α0h, θ0h and φ0h are approximations of the respective
initial conditions u0, v0, a0, α0, θ0 and φ0 defined as

u0h = Ph
1 u0, v0h = Ph

1 v0, a0h = Ph
1 a0,

α0h = Ph
2 α0, θ0h = Ph

2 θ0, φ0h = Ph
2 φ0.

(5.4)
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Here, we denote by Ph
1 and Ph

2 the interpolation operators over the finite element spaces V h and Eh,
respectively (see, again, [7]).

Secondly, in order to provide the time discretization, we consider a uniform partition of the time
interval [0, T ], denoted by 0 = t0 < t1 < · · · < tN = T , where k = T/N is the time step size. If f is a
continuous function, we denote fn = f(tn) and, for the sequence {zn}N

n=0, let δzn = (zn − zn−1)/k be its
divided differences.

Therefore, using the well-known implicit Euler scheme we can introduce the following fully discrete
problem.

Find the discrete acceleration ahk = {ahk
n }N

n=0 ⊂ V h and the discrete thermal acceleration φhk =
{φhk

n }N
n=0 ⊂ Eh such that ahk

0 = a0h, φhk
0 = φ0h, and for all n = 1, . . . , N and wh ∈ V h, ξh ∈ Eh,

ρ(τ1δahk
n + ahk

n ,wh)H + C(vhk
n ,wh) + C∗(uhk

n ,wh) = (βij(θhk
n + τ1φ

hk
n ),j , w

h
i )Y ,

c(τ2δφhk
n + φhk

n , ξh)Y + K(θhk
n , ξh) + K∗(αhk

n , ξh) = (βij(vhk
in,j + τ2a

hk
in,j), ξ

h)Y ,
(5.5)

where the discrete velocity vhk
n , the discrete temperature θhk

n , the discrete displacements uhk
n and the

discrete thermal displacements αhk
n are updated from the relations:

vhk
n = k

n∑
j=1

ahk
j + v0h, θhk

n = k

n∑
j=1

φhk
j + θ0h,

uhk
n = k

n∑
j=1

vhk
j + u0h, αhk

n = k

n∑
j=1

θhk
j + α0h.

(5.6)

Using assumptions (i)–(iii) and applying Lax–Milgram lemma, it is easy to prove that the above
discrete problem has a unique solution.

In the rest of the section, we will obtain some a priori error estimates on the numerical errors an −ahk
n

and φn − φhk
n , which we state in the following result.

Theorem 5.1. Let the assumptions (i)–(iii) hold. If we denote by (u,v,a, α, θ, φ) the solution to problem
(5.1)–(5.2) and by (uhk,vhk,ahk, αhk, θhk, φhk) the solution to problem (5.5)–(5.6), then we have the
following a priori error estimates, for all {wh

n}N
n=0 ⊂ V h, {ξh

n}N
n=0 ⊂ Eh,

max
0≤n≤N

{
‖an − ahk

n ‖2H + ‖vn − vhk
n ‖2V + ‖un − uhk

n ‖2V + ‖φn − φhk
n ‖2Y

+ ‖θn − θhk
n ‖2E + ‖αn − αhk

n ‖2E
}

≤ Ck
N∑

j=1

[
‖ȧj − δaj‖2H + ‖v̇j − δvj‖2V + ‖aj − wh

j ‖2V + ‖φ̇j − δφj‖2Y

+ ‖θ̇j − δθj‖2E + ‖φj − ξh
j ‖2E + ‖α̇j − δαj‖2E + ‖u̇j − δuj‖2V + I1j + I2j

]

+
C

k

N−1∑
j=1

[
‖aj − wh

j − (aj+1 − wh
j+1)‖2H + ‖φj − ξh

j − (φj+1 − ξh
j+1)‖2Y

]

+ C max
0≤n≤N

‖an − wh
n‖2H + C max

0≤n≤N
‖φn − ξh

n‖2Y

+ C
(
‖a0 − a0h‖2H + ‖v0 − v0h‖2V + ‖u0 − u0h‖2V + ‖φ0 − φ0h‖2Y

+ ‖θ0 − θ0h‖2E + ‖α0 − α0h‖2E
)
,
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where C is a positive constant which does not depend on parameters h and k, and the integration errors
I1j and I2j are defined as

I1j =

∥∥∥∥∥∥
tj∫

0

θ(s) ds − k

j∑
l=1

θl

∥∥∥∥∥∥

2

E

, I2j =

∥∥∥∥∥∥
tj∫

0

v(s) ds − k

j∑
l=1

vl

∥∥∥∥∥∥

2

V

. (5.7)

Proof. In this proof, in order to simplify the calculations, we will consider that τ1 = τ2 = 1. We note that
we can modify the arguments used below to the general case with some minor changes.

First, we will obtain the error estimates on the acceleration term an − ahk
n . Thus, we subtract vari-

ational equation (5.1)1 for a test function w = wh ∈ V h ⊂ V , at time t = tn, and discrete variational
equation (5.5)1 to find that

ρ(ȧn − δahk
n + an − ahk

n ,wh)H + C(vn − vhk
n ,wh) + C∗(un − uhk

n ,wh)
= (βij(θn − θhk

n + φn − φhk
n ),j , w

h
i )Y ∀wh ∈ V h.

Therefore, it follows that, for all wh ∈ V h,

ρ(ȧn − δahk
n + an − ahk

n ,an − ahk
n )H + C(vn − vhk

n ,an − ahk
n )

+C∗(un − uhk
n ,an − ahk

n ) − (βij(θn − θhk
n + φn − φhk

n ),j , ain − ahk
in )Y

= ρ(ȧn − δahk
n + an − ahk

n ,an − wh)H + C(vn − vhk
n ,an − wh)

+C∗(un − uhk
n ,an − wh) − (βij(θn − θhk

n + φn − φhk
n ),j , ain − wh

i )Y .

Taking into account that
(
δan − δahk

n ,an − ahk
n

)
H

≥ 1
2k

{
‖an − ahk

n ‖2H − ‖an−1 − ahk
n−1‖2H

}
,

C(vn − vhk
n ,an − ahk

n ) ≥ C(vn − vhk
n , v̇n − δvn)

+
C

2k

{
‖vn − vhk

n ‖2V − ‖vn−1 − vhk
n−1‖2V

}
,

(βij(φn − φhk
n ),j , ain − wh

i )Y = −(βij(φn − φhk
n ), ain,j − wh

i,j)Y ,

where we have used assumptions (i)–(iii), applying several times Cauchy–Schwarz inequality and Cauchy’s
inequality ab ≤ εa2 + 1

4εb
2, a, b, ε ∈ R with ε > 0, we obtain the following error estimates for the

acceleration terms:
ρ

2k

{
‖an − ahk

n ‖2H − ‖an−1 − ahk
n−1‖2H

}
+

C

2k

{
‖vn − vhk

n ‖2V − ‖vn−1 − vhk
n−1‖2V

}

+C∗(un − uhk
n , δvn − δvhk

n ) − (βij(φn − φhk
n ),j , ain − ahk

in )Y

≤ C
(
‖ȧn − δan‖2H + ‖an − ahk

n ‖2H + ‖an − wh‖2V + ‖vn − vhk
n ‖2V

+‖un − uhk
n ‖2V + ‖θn − θhk

n ‖2E + ‖φn − φhk
n ‖2Y + ‖v̇n − δvn‖2V

+(δan − δahk
n ,an − wh)H

)
∀wh ∈ V h, (5.8)

where, here and in what follows, C will represent a positive constant which depends on the constitutive
tensors and coefficients, but it does not depend on the discretization parameters h and k, and whose
value may change even within the same line.

Now, we obtain the error estimates on the thermal acceleration term φn −φhk
n . Subtracting variational

equation (5.1)2, for a test function ξ = ξh ∈ Eh ⊂ E at time t = tn, and discrete variational equation
(5.5)2 it follows that

c(φ̇n − δφhk
n + φn − φhk

n , ξh)Y + K(θn − θhk
n , ξh) + K∗(αn − αhk

n , ξh)
−(βij(vin,j − vhk

in,j + ain,j − ahk
in,j), ξ

h)Y ∀ξh ∈ Eh.
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Therefore, we obtain that, for all ξh ∈ Eh,

c(φ̇n − δφhk
n + φn − φhk

n , φn − φhk
n )Y + K(θn − θhk

n , φn − φhk
n )

+K∗(αn − αhk
n , φn − φhk

n ) − (βij(vin,j − vhk
in,j + ain,j − ahk

in,j), φn − φhk
n )Y

= c(φ̇n − δφhk
n + φn − φhk

n , φn − ξh)Y + K(θn − θhk
n , φn − ξh)

+K∗(αn − αhk
n , φn − ξh) − (βij(vin,j − vhk

in,j + ain,j − ahk
in,j), φn − ξh)Y .

Keeping in mind that
(
δφn − δφhk

n , φn − φhk
n

)
Y

≥ 1
2k

{
‖φn − φhk

n ‖2Y − ‖φn−1 − φhk
n−1‖2Y

}
,

K(θn − θhk
n , φn − φhk

n ) ≥ K(θn − θhk
n , θ̇n − δθn)

+
C1

2k

{
‖θn − θhk

n ‖2E − ‖θn−1 − θhk
n−1‖2E

}
,

(βij(ain,j − ahk
in,j), φn − ξh)Y = −(βij(ain − ahk

in ), φn,j − ξh
,j)Y ,

we have, for all ξh ∈ Eh,

c

2k

{
‖φn − φhk

n ‖2Y − ‖φn−1 − φhk
n−1‖2Y

}
+

C1

2k

{
‖θn − θhk

n ‖2E − ‖θn−1 − θhk
n−1‖2E

}

+K∗(αn − αhk
n , δθn − δθhk

n ) − (βij(ain,j − ahk
in,j), φn − φhk

n )Y

≤ C
(
‖φ̇n − δφn‖2Y + ‖φn − φhk

n ‖2Y + ‖φn − ξh‖2E + ‖θn − θhk
n ‖2E

+‖αn − αhk
n ‖2E + ‖an − ahk

n ‖2H + ‖vn − vhk
n ‖2V + ‖θ̇n − δθn‖2E

+(δφn − δφhk
n , φn − ξh)Y

)
. (5.9)

Combining estimates (5.8) and (5.9) and taking into account that

−(βij(ain,j − ahk
in,j), φn − φhk

n )Y = (βij(ain − ahk
in ), φn,j − φhk

n,j)Y ,

we find that, for all wh ∈ V h, ξh ∈ Eh,
ρ

2k

{
‖an − ahk

n ‖2H − ‖an−1 − ahk
n−1‖2H

}
+

C

2k

{
‖vn − vhk

n ‖2V − ‖vn−1 − vhk
n−1‖2V

}

+
c

2k

{
‖φn − φhk

n ‖2Y − ‖φn−1 − φhk
n−1‖2Y

}
+

C1

2k

{
‖θn − θhk

n ‖2E − ‖θn−1 − θhk
n−1‖2E

}

+C∗(un − uhk
n , δvn − δvhk

n ) + K∗(αn − αhk
n , δθn − δθhk

n )

≤ C
(
‖ȧn − δan‖2H + ‖an − ahk

n ‖2H + ‖an − wh‖2V + ‖vn − vhk
n ‖2V

+‖un − uhk
n ‖2V + ‖θn − θhk

n ‖2E + ‖φn − φhk
n ‖2Y + ‖v̇n − δvn‖2V

+(δan − δahk
n ,an − wh)H + ‖φ̇n − δφn‖2Y + ‖φn − ξh‖2E + ‖αn − αhk

n ‖2E
+‖θ̇n − δθn‖2E + (δφn − δφhk

n , φn − ξh)Y

)
.

Multiplying the above estimates by k and summing up to n, we have, for all {wh
j }n

j=1 ⊂ V h, {ξh
j }n

j=1 ⊂
Eh,

‖an − ahk
n ‖2H + ‖vn − vhk

n ‖2V + ‖φn − φhk
n ‖2Y + ‖θn − θhk

n ‖2E

+k
n∑

j=1

[
C∗(uj − uhk

j , δvj − δvhk
j ) + K∗(αj − αhk

j , δθj − δθhk
j )

]

≤ Ck

n∑
j=1

(
‖ȧj − δaj‖2H + ‖aj − ahk

j ‖2H + ‖aj − wh
j ‖2V + ‖vj − vhk

j ‖2V

+‖uj − uhk
j ‖2V + ‖θj − θhk

j ‖2E + ‖φj − φhk
j ‖2Y + ‖v̇j − δvj‖2V
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+(δaj − δahk
j ,aj − wh

j )H + ‖φ̇j − δφj‖2Y + ‖φj − ξh
j ‖2E + ‖αj − αhk

j ‖2E
+‖θ̇j − δθj‖2E + (δφj − δφhk

j , φj − ξh
j )Y

)
+ C

(
‖a0 − a0h‖2H

+‖v0 − v0h‖2V + ‖φ0 − φ0h‖2Y + ‖θ0 − θ0h‖2E
)
.

We note that it is easy to prove that

k
n∑

j=1

(δaj − δahk
j ,aj − wh

j )H =
n∑

j=1

(aj − ahk
j − (aj−1 − ahk

j−1),aj − wh
j )H

= (an − ahk
n ,an − wh

n)H + (a0h − a0,a1 − wh
1 )H

+
n−1∑
j=1

(aj − ahk
j ,aj − wh

j − (aj+1 − wh
j+1))H ,

k

n∑
j=1

(δφj − δφhk
j , φj − ξh

j )Y =
n∑

j=1

(φj − φhk
j − (φj−1 − φhk

j−1), φj − ξh
j )Y

= (φn − φhk
n , φn − ξh

n)Y + (φ0h − φ0, φ1 − ξh
1 )Y

+
n−1∑
j=1

(φj − φhk
j , φj − ξh

j − (φj+1 − ξh
j+1))Y ,

k

n∑
j=1

C∗(uj − uhk
j , δvj − δvhk

j ) ≤ C∗(un − uhk
n ,vn − vhk

n ) + C∗(u0h − u0,v1 − vhk
1 )

−k
n∑

j=1

C∗(vj − vhk
j ,vj − vhk

j ) + Ck
n∑

j=1

[
‖u̇j − δuj‖2V + ‖vj − vhk

j ‖2V
]
,

k

n∑
j=1

K∗(αj − αhk
j , δθj − δθhk

j ) ≤ K∗(αn − αhk
n , θn − θhk

n ) + K∗(α0h − α0, θ1 − θhk
1 )

−k
n∑

j=1

K∗(θj − θhk
j , θj − θhk

j ) + Ck
n∑

j=1

[
‖α̇j − δαj‖2E + ‖θj − θhk

j ‖2E
]
,

‖un − uhk
n ‖2V ≤ C

(
‖u0 − u0h‖2V + k

n∑
j=1

‖vj − vhk
j ‖2V + I2j

)
,

‖αn − αhk
n ‖2E ≤ C

(
‖α0 − α0h‖2E + k

n∑
j=1

‖θj − θhk
j ‖2E + I1j

)
,

where I1j and I2j are the integration errors defined in (5.7).
Thus, using a discrete version of Gronwall’s inequality (see [5]) we conclude the desired a priori error

estimates. �

We note that we can use the above a priori error estimates to derive the convergence order of the
approximations under additional regularity conditions on the continuous solution. Therefore, if we assume
that

u ∈ H4(0, T ;H) ∩ W 2,∞(0, T ; [H2(B)]d) ∩ H3(0, T ;V ),
α ∈ H4(0, T ;Y ) ∩ W 2,∞(0, T ;H2(B)) ∩ H3(0, T ;E), (5.10)

we obtain the following.

Corollary 5.2. Under the additional regularity conditions (5.10) and the assumptions of Theorem 5.1, we
find that the approximations obtained by problem (5.5)–(5.6) are linearly convergent; that is, there exists
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a positive constant C, independent of the discretization parameters h and k, such that

max
0≤n≤N

{
‖an − ahk

n ‖H + ‖vn − vhk
n ‖V + ‖un − uhk

n ‖V + ‖φn − φhk
n ‖Y

+‖θn − θhk
n ‖E + ‖αn − αhk

n ‖E

}
≤ C(h + k).

6. Numerical results

In this final section, we present the numerical scheme implemented in MATLAB for solving problem
(5.5)–(5.6), and we show some numerical examples to demonstrate the accuracy of the approximations,
the behavior of the discrete energy decay and the dependence on the coupling coefficient β.

6.1. Numerical scheme for the one-dimensional problem

As a first step, given the solution uhk
n−1, vhk

n−1, ahk
n−1, αhk

n−1, θhk
n−1 and φhk

n−1 at time tn−1, variables ahk
n and

φhk
n are obtained by solving the discrete linear system, for all wh, ξh ∈ V h.

ρ
(τ1

k
ahk

n + φhk
n , wh

)
+ Ck

(
ahk

nx, wh
x

)
+ C∗k2

(
ahk

nx, wh
x

)
= ρ

(τ1
k

ahk
n−1, w

h
)

−C
(
vhk
(n−1)x, wh

x

)
− C∗

(
uhk
(n−1)x + kvhk

(n−1)x, wh
x

)
+ β

(
θhk

nx + τ1φ
hk
nx, wh

)
,

c
(τ2

k
φhk

n + φhk
n , ξh

)
+ Kk

(
φhk

nx, ξh
x

)
+ K∗k2

(
φhk

nx, ξh
x

)
= c

(τ2
k

φhk
n−1, ξ

h
)

−K
(
θhk
(n−1)x, ξh

x

)
− K∗

(
αhk
(n−1)x + kθhk

(n−1)x, ξh
x

)
+ β

(
vhk

nx + τ2a
hk
nx, ξh

)
.

This numerical scheme was implemented on a 3.2 GHz PC using MATLAB, and a typical run (using
parameters h = k = 0.001) took about 0.17 s of CPU time

6.2. First example: numerical convergence

As a first simpler example, in order to show the accuracy of the approximations the following problem is
considered over the domain B = (0, 1).

ρ(τ1
...
u + ü) = Cu̇xx + C∗uxx + β(θx + τ1θ̇x) + F1,

c(τ2
...
α + α̈) = Kα̇xx + K∗αxx + β(u̇x + τ2üx) + F2,

with the following data:

T = 1, ρ = 1, C = 4, C∗ = 1, β = 1, c = 2,
K = 7, K∗ = 3, τ1 = 2, τ2 = 1.

By using the following initial conditions, for all x ∈ B = (0, 1),

u0(x) = v0(x) = a0(x) = α0(x) = θ0(x) = φ0(x) = x(x − 1),

considering homogeneous Dirichlet boundary conditions and the (artificial) supply terms, for all (x, t) ∈
(0, 1) × (0, 1),

F1(x, t) = et(3x(x − 1) − 6x − 7), F2(x, t) = et(4x(x − 1) − 4x − 8),

the exact solution to the above one-dimensional problem can be easily calculated and it has the form, for
(x, t) ∈ [0, 1] × [0, 1]:

u(x, t) = α(x, t) = etx(x − 1).



ZAMP A MGT thermoelastic problem with two relaxation Page 15 of 20 197

T
a
b
l
e
1
.

E
x
a
m

p
le

1
:
N

u
m

er
ic

a
l
er

ro
rs

fo
r

so
m

e
v
a
lu

es
o
f

h
a
n
d

k

h
↓k

→
0
.0

1
0
.0

0
5

0
.0

0
2

0
.0

0
1

0
.0

0
0
5

0
.0

0
0
2

0
.0

0
0
1

1
/
2
3

0
.3

5
4
2
0
5

0
.3

4
7
2
4
0

0
.3

4
3
0
8
2

0
.3

4
1
6
9
8

0
.3

4
1
0
0
7

0
.3

4
0
5
9
2

0
.3

4
0
4
5
4

1
/
2
4

0
.1

8
4
1
0
6

0
.1

7
6
9
6
2

0
.1

7
2
7
4
5

0
.1

7
1
3
4
9

0
.1

7
0
6
5
4

0
.1

7
0
2
3
7

0
.1

7
0
0
9
8

1
/
2
5

0
.0

9
9
4
9
1

0
.0

9
2
0
5
2

0
.0

8
7
7
5
3

0
.0

8
6
3
4
7

0
.0

8
5
6
4
9

0
.0

8
5
2
3
2

0
.0

8
5
0
9
3

1
/
2
6

0
.0

5
7
7
6
4

0
.0

4
9
7
6
5

0
.0

4
5
3
0
2

0
.0

4
3
8
7
3

0
.0

4
3
1
7
0

0
.0

4
2
7
5
2

0
.0

4
2
6
1
3

1
/
2
7

0
.0

3
7
8
3
2

0
.0

2
8
9
0
5

0
.0

2
4
1
2
7

0
.0

2
2
6
5
1

0
.0

2
1
9
3
6

0
.0

2
1
5
1
5

0
.0

2
1
3
7
5

1
/
2
8

0
.0

2
8
9
9
5

0
.0

1
8
9
4
0

0
.0

1
3
6
3
3

0
.0

1
2
0
6
5

0
.0

1
1
3
2
6

0
.0

1
0
8
9
7

0
.0

1
0
7
5
7

1
/
2
9

0
.0

2
5
4
7
2

0
.0

1
4
5
2
0

0
.0

0
8
5
4
8

0
.0

0
6
8
1
8

0
.0

0
6
0
3
3

0
.0

0
5
5
9
1

0
.0

0
5
4
4
9

1
/
2
1
0

0
.0

2
4
2
0
3

0
.0

1
2
7
5
8

0
.0

0
6
2
2
6

0
.0

0
4
2
7
5

0
.0

0
3
4
0
9

0
.0

0
2
9
4
1

0
.0

0
2
7
9
5

1
/
2
1
1

0
.0

2
3
7
9
3

0
.0

1
2
1
2
5

0
.0

0
5
2
6
6

0
.0

0
3
1
1
4

0
.0

0
2
1
3
8

0
.0

0
1
6
2
4

0
.0

0
1
4
7
1

1
/
2
1
2

0
.0

2
3
6
7
7

0
.0

1
1
9
2
1

0
.0

0
4
9
1
1

0
.0

0
2
6
3
4

0
.0

0
1
5
5
7

0
.0

0
0
9
8
0

0
.0

0
0
8
1
2

1
/
2
1
3

0
.0

2
3
6
4
7

0
.0

1
1
8
6
4

0
.0

0
4
7
9
2

0
.0

0
2
4
5
7

0
.0

0
1
3
1
8

0
.0

0
0
6
7
8

0
.0

0
0
4
9
0



197 Page 16 of 20 N. Bazarra, J. R. Fernández and R. Quintanilla ZAMP

Fig. 1. Example 1: Asymptotic constant error

Fig. 2. Example 1: Evolution in time of the discrete energy (natural and semi-log scales)

Therefore, the approximation errors estimated by

max
0≤n≤N

{
‖an − ahk

n ‖Y + ‖vn − vhk
n ‖E + ‖un − uhk

n ‖E + ‖φn − φhk
n ‖Y

+‖θn − θhk
n ‖E + ‖αn − αhk

n ‖E

}

are presented in Table 1 for several values of the discretization parameters h and k. Moreover, the evolution
of the error depending on the parameter h + k is plotted in Fig. 1. We notice that the convergence of the
algorithm is clearly observed, and the linear convergence, stated in Corollary 5.2, is achieved.

If we assume that there are not supply terms, and we use the final time T = 500, the data

ρ = 1, C = 1, C∗ = 0.01, β = 1, c = 2, K = 7, K∗ = 3,
τ1 = 1, τ2 = 0.1,

and the initial conditions:

u0(x) = x(x − 1) ∀x ∈ (0, 1), v0 = a0 = α0 = θ0 = φ0 = 0,
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Fig. 3. Example 2: Displacement, velocity and acceleration for different values of β

taking the discretization parameters h = k = 0.001, the evolution in time of the discrete energy given by

Ehk
n =

1
2

(
ρ||τ1ahk

n + vhk
n ||2Y + Cτ1||vhk

n ||2E + C∗||uhk
n ||2E + c||τ2φhk

n + θhk
n ||2Y

+K||τ1θhk
n ||2E + K∗||αhk

n ||2E
)

is plotted in Fig. 2 (in both natural and semi-log scales). As it is demonstrated in this figure, it converges
to zero and an exponential decay seems to be achieved.

6.3. Second example: Dependence of the solution on parameter β

In this last example, we address the dependence of the solution to problem (5.1)–(5.2) on the coupling
parameter β.
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Fig. 4. Example 2: Thermal displacement, temperature and thermal acceleration for different values of β

We assume that there are not supply terms, and we use following data:

T = 1, ρ = 1, C = 1, C∗ = 0.1, c = 2, K = 7, K∗ = 3,
τ1 = 2, τ2 = 0.1,

and the initial conditions:

u0(x) = v0(x) = a0(x) = x(x − 1) ∀x ∈ (0, 1), α0 = θ0 = φ0 = 0.

Then, taking the discretization parameters h = 0.001 and k = 0.001, we plot the solution to problem
(5.5)–(5.6) in Figs. 3 and 4 for some values of parameter β. As can be seen in Fig. 3, the displacements
and velocities are rather similar for all the values but, if we focus on the accelerations, some oscillations
appear for the largest value of the parameter.

In Fig. 4, as expected we can see a big dependence on the value of the parameter. The reason is that
these thermal displacements are produced by the deformation and so, they increase when the value of
the coupling coefficient is greater.
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