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Abstract
Standard discontinuous Galerkin finite element solutions to convection-dominated
convection–diffusion equations usually possess sharp layers but also exhibit large spuri-
ous oscillations. Slope limiters are known as a post-processing technique to reduce these
unphysical values. This paper studies the application of deep neural networks for detecting
mesh cells on which slope limiters should be applied. The networks are trained with data
obtained from simulations of a standard benchmark problem with linear finite elements. It is
investigated how they perform when applied to discrete solutions obtained with higher order
finite elements and to solutions for a different benchmark problem.

Keywords Convection–diffusion equations · Discontinuous Galerkin methods · Spurious
oscillations · Deep neural networks · Slope limiter

Mathematics Subject Classification 65N30 · 68T07

1 Introduction

Convection–diffusion equations are a basic model to describe the distribution of a scalar
quantity in fluids. Besides modeling the heat distribution in a room (energy balance), they
can describe the concentration of drugs in blood and the propagation of chemical substances
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in water (mass balance) to name just a few. Mathematically speaking, they are given in a
bounded domain� ⊂ R

d , d ∈ {2, 3}, with polyhedral Lipschitz boundary� = �D∪�N with
�D ∩ �N = ∅. The steady-state convection–diffusion–reaction problem with homogeneous
Neumann boundary conditions on �N then reads as follows: Find a sufficiently smooth
function u such that

−ε�u + b · ∇u + cu = f in �,

u = g on �D,

ε∇u · n = 0 on �N,

(1)

where ε > 0 is the diffusion coefficient, the convection field is denoted by b ∈ [W 1,∞(�)]d ,
c ∈ L∞(�) describes the reaction coefficient, and f ∈ L2(�) models sources. On the
Dirichlet boundary �D Dirichlet conditions g are prescribed and the outer unit normal vector
on the boundary of� is denoted by n. At the inflow boundary �− = {x ∈ � : b(x) ·n(x) <

0}, Dirichlet boundary conditions have to be prescribed, i.e., �− ⊂ �D.
In many applications the convective transport dominates the diffusive one. Then, the char-

acteristic feature of solutions of Eq. (1) are layers, which are thin regions with a very large
gradient. The thickness of layers is usually so small that they cannot be resolved on feasible
grids. This situation, which is mathematically expressed by ε 	 h‖b‖L∞(�), where h is
the (local) mesh size, is called the convection-dominated regime. It is a typical property of
multiscale problems that very important features of the solution cannot be resolved. Conse-
quently, convection–diffusion–reaction problems are usually multiscale problems, with the
layers being the subgrid scales. It is well known that in this case the discrete solution to
Eq. (1) obtained by classical numerical schemes, like the central finite difference method and
Galerkin finite element method, exhibits huge so-called spurious oscillations, i.e., unphysical
values such as negative concentrations or an unreasonable amount of energy, e.g., see [1–4].

There have been many contributions concerning discontinuous Galerkin (DG) methods
for discretizing second order elliptic boundary value problems in the last decades, e.g., see the
monographs [5–7], even though they were already invented in 1973 in [8]. One advantage
is that, compared with conforming finite elements, hp-refinement on both simplicial and
also polygonal and polyhedral meshes can be performed very easily, e.g., see [9, 10]. With
respect to convection–diffusion equations, DG methods with a standard upwind flux are
stable discretizations in the convection-dominated regime. It was shown in [6, 11–13] that
they even control the streamline derivative without needing an additional term, as it is the
case for conforming finite elements. Furthermore, DG methods are known to produce very
sharp layers in the convection-dominated regime. But on the other hand these methods also
have the flaw of producing large over- and undershoots [4, 14, 15].

A computational cheap way to significantly reduce spurious oscillations in a post-
processing step are so-called slope limiters. In a first step, they identify so-called troubled-
cells where over- and undershoots occur and, in a second step, replace the solution locally
by a polynomial of lower degree. The solution is usually replaced by a constant approxi-
mation [16, 17] or a (at most) linear one [5, 18]. This approach is typical for appropriate
numerical methods for multiscale problems in the sense that different schemes are applied
for the different scales. Using low order finite elements in a vicinity of layers is fine since
error bounds for higher order elements contain the norm of the solution in a higher order
Sobolev space and these norms scale (locally at layers) with inverse powers of the diffusion
coefficient. The power increases with the order of the Sobolev space and finally there is a
huge constant in the error bound such that it cannot be expected to obtain a better accuracy in
a neighborhood of layers when using higher order elements there. In [14, 15] several of these
methods have been numerically investigated for convection-dominated convection–diffusion
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equations. These methods share the advantage that they are computationally cheap, keep the
higher order approximation away from layers, and most important that most of the methods
also reduce the oscillations significantly, but not completely [14, 15].

Within the last decades the interest in deep neural networks as a form of deep learning has
risen sharply. Thanks to their ability to be universal function approximators [19–21, Chapter
6.4.1] and classifiers [22], they have also been used to detect troubled-cells. In 2018, Ray
and Hesthaven have trained a multilayer perceptron (MLP) to identify troubled-cells for one-
dimensional scalar and systems of conservation laws [23]. They have observed that theirMLP
detector can mimic a classical limiter but without the need of fine-tuning a parameter. Their
results have been extended by the authors to two-dimensional problems in [24]. Liu et al. have
trained a convolutional neural network (CNN) based shock detector for Euler’s gas equations
and saw that their detector was significantly faster than classical ones [25]. In 2018 and 2020,
Han Veiga and Abgrall have trained a MLP detector based on data from a Runge–Kutta DG
scheme and tested how well it can then be transferred to a residual distribution (RD) scheme
without retraining it [26, 27]. Again, they have used scalar transport equations and Euler’s
gas equations. Morgan et al. have trained and tested a MLP detector with a Lagrangian RD
method to detect troubled-cells in the two-dimensional Taylor–Green vortex and Triple-point
vortex [28]. Beck et al. have trained a CNN based limiter in 2020 for a DG spectral element
method to approximate the solution of Euler’s gas equations [29]. Their limiter is able to
both detect cells and also locate the position of the shock inside the cell. As it can be seen, all
these results are for different numerical schemes for the discretization of scalar or hyperbolic
systems of equations, mainly Euler’s gas equations. Neural networks have been applied also
with respect to other aspects of the numerical solution of partial differential equations, e.g.,
see [30–34].

The goal of this paper consists in performing a first step in systematically exploring
the behavior of MLPs for classifying mesh cells for the numerical solution of convection–
diffusion–reaction problems. In contrast to the above mentioned papers, this manuscript
studies an elliptic boundary value problem. On the one hand, slope limiting processes in the
hyperbolic and the elliptic case are quite similar: Based on local features of the numerical
solution, slope limiting algorithms try to detect the cells where spurious oscillations are
present. Indeed, many slope limiting techniques that were proposed for elliptic problems are
either initially constructed for hyperbolic ones or are modified versions of methods for such
problems. Therefore, in general it could be expected that similar architectures of the neural
networks can be employed in the elliptic case as in the hyperbolic counterparts. This is also
the motivation why in the present work multilayer perceptron models are used as in [23,
24, 26–28]. Note that with the same argument it should also be possible to use CNN-based
architectures as done in [25, 29], but for the sake of brevity, this approach is postponed to
future work. Moreover, due to the close relationship between slope limiters for hyperbolic
and elliptic problems, it is not surprising that many features that are used as the input to the
MLPs in this work are also considered in [23, 24, 26–28], e.g., the integral mean of the cell
and its neighbors, and values at interface midpoints.

On the other hand, numerical methods for hyperbolic (or convection-dominated parabolic)
problems apply often small time steps. Then, the starting solution, which is (nearly) free of
spurious oscillations, can be utilized to reduce such oscillations in the solution of the next time
step, since it can be expected that both solutions are in some sense not thatmuch different. This
strategy is used, e.g., in the construction of limiters for flux corrected transport schemes, e.g.,
see [35] for a description. However, there is no such starting solution for elliptic problems.
Slope limiting for elliptic problems has to be applied to a solution that was computed with
some (stabilized) discretization and which possesses usually notable spurious oscillations.
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As already mentioned, the present work focuses on the elliptic boundary value problem
given in Eq. (1). It is well known that for computing an accurate solution of Eq. (1) without
or with only small (acceptable) spurious oscillations, one has to treat the subgrid scale layer
regions differently than the large scale regions, see the recent survey paper [35]. This first step
aims to figure out whether or not there areMLPs that workwell for a situationwhere the result
is already principally known, just to have a kind of benchmark situation to compare with. This
means, this first step should be considered as a proof of concept. The considered situation
is the above described reduction of spurious oscillations in DG methods using limiters. To
this end, a limiter is going to be trained with data that is obtained by applying classical
limiters to the lowest order discrete solution of a standard benchmark problem defined in
[36]. Several architectures are tested and it will be investigated how well the resulting limiter
can be applied to higher order solutions and to another benchmark problem, the so-called
Hemker example from [37]. Since standard limiters are already quite efficient, there is no
need to replace them by the MLP-based limiter for increasing the efficiency. However, using
the MLP-based limiter might be appealing in practice, since it combines good properties of
various traditional limiters and it is not necessary that the user chooses explicitly a concrete
limiter, together with the necessary parameters. But one should be aware that the MLP-based
limiter depends implicitly on the parameters of traditional limiters that were used in the
training process. Our principal intention consists in using the results and experience obtained
in this proof of concept study in situations that require to perform different algorithms for
different mesh cells and where efficient methods are not known. Such a situation is the choice
of local parameters in stabilized discretizations of convection–diffusion–reaction problems.
Currently available approaches, based on solving non-convex optimization problems, e.g.,
[38, 39], are rather time-consuming.

The remainder of the paper is structured as follows: in Sect. 2, both the standardDGmethod
for discretizing equation (1) and relevant classical slope limiters are introduced. Section3
follows with explaining the multilayer perceptron model and how the data is created with
which the MLP limiter is trained. Several architectures are trained in Sect. 4 and are tested
numerically. The paper concludes with a short summary and outlook. All data and code
created and used for this work can be found at www.doi.org/10.20347/40vd-f944 [40].

In what follows the usual notation is used for Lebesgue and Sobolev spaces and their
respective norms. The inner product in L2(�) is denoted by (·, ·), a norm of a space X is
denoted by ‖ · ‖X and a seminorm by | · |X .

2 Discontinuous Galerkin Methods and Slope Limiter for
Convection–Diffusion Equations

2.1 Discontinuous Galerkin Methods

Equation (1) can be transformed to its weak formulation in a standard way which then reads
as follows: Find u ∈ H1(�) such that u = g on �D and

(ε∇u,∇v) + (b · ∇u + cu, v) = ( f , v) ∀v ∈ H1
D,0(�), (2)

where H1
D,0(�):={v ∈ H1(�) : v = 0 on �D}. Under the assumptions that

c − 1

2
∇ · b ≥ 0, �D = ∅, b · n ≥ 0 on �N,
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by applying the Lax–Milgram Lemma it can be proven that problem (2) possesses a unique
weak solution, e.g., see [1, Section III.1.1].

To introduce the DG discretization of (2), some notation needs to be fixed. Let {Th}, 0 < h,
be a quasi-uniform family of decompositions of� into simplicial or quadrilateral/hexahedral
meshes such that for any h it holds� = ∪K∈Th K and the cells have pairwise disjoint interiors.
As usual the triangulations should be admissible, see [41, p. 38, p. 51], i.e., among other
properties, each facet of a mesh cell that lies on � is either contained in �D or �N. The set
of all facets is denoted by Eh := ∪K∈Th Eh(K ), where Eh(K ) is the set of all facets E ⊂ ∂K
of a cell K . Furthermore, this set can be decomposed into the set of all interior facets E I

h and
boundary facets ∂Eh :=Eh ∩ ∂�. The inflow boundary facets are called E−

h :=�− ∩ Eh , the set
of Dirichlet boundary facets is denoted by ED

h :=∂Eh ∩ �D and the notation E ID
h :=E I

h ∪ ED
h is

set. In addition to that, |K | denotes the d-volume and hK the diameter of a cell K ∈ Th and
h:=maxK∈Th hK is defined. Due to the regularity of the family of triangulations there exists
a constant C > 0 such that for all Th and K ∈ Th it holds hE ≤ hK ≤ ChE , where hE is the
diameter of a facet E ∈ Eh(K ).

If there exists a facet E ∈ Eh(Ki ) ∩ Eh(K j ) that is shared by the cells Ki , K j ∈ Th , then
the cells are called neighbors. Under the assumption that there is a fixed numbering of the
mesh cells K0, K1, …∈ Th , the unit normal vector nE on a facet E ∈ Eh is defined by

nE :=
{
nK , if E ∈ ∂Eh ∩ Eh(K ) for a K ∈ Th,
nKi , if Ki and K j are neighbors along facet E and i < j,

where nK denotes the outward unit normal vector of the cell K ∈ Th .
The below defined DG space is a subspace of the broken Sobolev space

Hk(Th) = {v ∈ L2(�) : v|K ∈ Hk(K ) for any K ∈ Th} ⊃ Hk(�), k ∈ N,

that is equipped with its piecewise-defined norm and semi-norm

‖v‖2Hk (Th)
:=

∑
K∈Th

‖v‖2Hk (K )
, |v|2Hk (Th)

:=
∑
K∈Th

|v|2Hk (K )
.

Given a fixed p ∈ N, the finite element space is defined by

Vh,p:=
{
vh ∈ L2(�) : vh |K ∈ Rp(K ) for any K ∈ Th

} ⊂ Hk(Th),

where Rp(K ):=Pp(K ) is the space of polynomials of at most degree p on simplicial mesh
cells and Rp(K ):=Qp(K ) is the tensor product space of polynomials of at most degree p
on quadrilateral/hexahedral cells.

Both Hk(Th) and Vh,p contain functions that are discontinuous along interior facets E ∈
Eh . Hence, a given function v ∈ Vh,p itself is not well-defined on E but its jump �v� and
average 〈v〉 can be defined for any x ∈ E by

�v�(x):=

⎧⎪⎨
⎪⎩

v|Ki (x) − v|K j (x), if Ki and K j are neighbors along facet E and

i < j,

v|K (x), if E ∈ ∂Eh ∩ Eh(K ) for a K ∈ Th,

and

〈v〉 (x):=

⎧⎪⎨
⎪⎩

1
2 (v|Ki (x) + v|K j (x)), if Ki and K j are neighbors along facet E

and i = j,

v|K (x), if E ∈ ∂Eh ∩ Eh(K ) for a K ∈ Th .
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Finally, the DG discretization of (1) reads as follows: Find uh ∈ Vh,p such that

aDG(uh, vh) = fDG(vh) ∀ vh ∈ Vh,p, (3)

where the bilinear form aDG : H1(Th)×H1(Th) → R is defined as aDG(v,w):=aε(v,w)+
abc(v,w), where v,w ∈ H1(Th), with

aε(v,w) =
∑
K∈Th

∫
K

ε∇v · ∇w dx

−
∑
E∈E ID

h

ε

∫
E

(
〈∇v · nE 〉 �w� + κ 〈∇w · nE 〉 �v�

)
ds

+
∑
E∈E I

h

σ

hE

∫
E
�v��w� ds +

∑
E∈ED

h

2σ

hE

∫
E

vw ds

(4)

and

abc(v,w) =
∑
K∈Th

∫
K

(
b · ∇vw + cvw

)
dx −

∑
E∈E I

h

∫
E
b · nE �v� 〈w〉 ds

+
∑
E∈E I

h

∫
E

η

2
|b · nE |�v��w� ds −

∑
E∈E−

h

∫
E
b · nEvw ds.

(5)

The discrete right-hand side fDG : H1(Th) → R of (3) is defined by

fDG(w) =
∑
K∈Th

∫
K

f w dx −
∑
E∈E−

h

∫
E
b · nEgw ds

−
∑
E∈ED

h

εκ

∫
E

∇w · nEg ds +
∑
E∈ED

h

2σ

hE

∫
E
gw ds.

(6)

The discrete scheme (3) contains three user-chosen parameters. The parameter κ controls
the symmetry of (4) where κ = 1 corresponds to the symmetric interior penalty Galerkin
(SIPG), κ = 0 to the incomplete interior penalty Galerkin (IIPG), and κ = −1 to the non-
symmetric (NIPG) discretization of the Laplacian. The stability parameter σ , also called
penalty parameter, in (4) and (6) that is incorporated as in [13, Section 2.2] influences the
coercivity ofaε: The bilinear form for the SIPGand IIPGmethod is coercive ifσ is sufficiently
large, where σ is proportional to ε, and for the NIPG method it is coercive for any σ > 0,
e.g., see [5, Chapter 2.7.1]. Last but not least, the stabilization parameter η ≥ 0 appearing
in (5) has to be chosen by the user. The choice η = 0 corresponds to a centered flux and
η = 1 to an upwind flux discretization across the facet E , e.g., see [6, p. 55, p. 65]. It can be
proven that DG methods converge asymptotically with an optimal rate in the DG norm, with
an optimal rate in the L2-norm only for the SIPG variant and suboptimally for the IIPG and
NIPG method, e.g., see [5–7, 13] and the references therein.

2.2 Slope Limiters

Slope limiters are a cheap post-processing technique to reduce spurious oscillations in the
discrete solution. After the solution uh of (3) is computed, the solution is adapted as follows:
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1. Identify and mark cells in which the function might show spurious oscillations by

(a) computing (cell wise) a set of features of the solution and
(b) based on these features deciding whether to mark a cell.

2. Approximate the solution locally on the marked cells by a polynomial of lower degree.

These steps can be translated into mathematics by introducing some mappings. Let Fl :
Vh,p × Th → R

nl be a function that maps locally a discrete function to nl ∈ N features, and
Ml : Rnl → {0, 1} be a decision maker function. The post-processing techniques can then
be seen as mappings l : Vh,p → Vh,p defined cell wise on a cell K ∈ Th for uh ∈ Vh,p by

l(uh)|K :=
{
uh |K , if Ml(Fl(uh, K )) = 0,


l,K (uh), else,

where 
l,K : Vh,p|K → Rp(K ) reconstructs the solution in marked cells.
Different methods differ only in their respective functions Fl ,Ml , 
l,K . Several of these

methods are described in detail andwere tested numerically in [14, 15] and theywill be briefly
recalled here. Since for what comes later only Ml and Fl are important, 
l,K is only men-
tioned in passing. For the sake of presentation, the methods are described in two dimensions
on triangles, but they can be easily extended to three dimensions or to quadrilateral/hexahedral
meshes.

It is worth to emphasize that for all the methods presented below, the mappings Fl and
Ml act locally, i.e., they are defined cell wise. Especially Fl can be computed using only
information of the discrete solution on a cell itself and possibly its direct neighbors, and
globally defined quantities like a tolerance or reference values. The mapping Ml then takes
cell wise features and returns locally the decision whether to mark a cell or not.

Since the numerical studies consider only two-dimensional problems, the individual slope
limiters will be presented, for simplicity, only to this situation. As already noted in [14], their
extension to three dimensions is usually straightforward.
LinTriaReco

This method was proposed in [18] and described again in [5, pp. 103–104] and [14].
Let K ∈ Th be a simplicial cell with facets Ei ∈ Eh(K ), i = 0, 1, 2, and neighbors

Ki ∈ Th along these edges. Using the notation mi , i = 0, 1, 2, for the edge mid points and
uh,K := ∫

K uh dx/|K | for the integral mean of uh in K , the feature mapping of LinTriaReco
is defined by

FLTR(uh, K ):={uh,K0 , uh |K (m0), uh,K1 , uh |K (m1), uh,K2 , uh |K (m2), uh,K , tol},
(7)

where tol ∈ R, tol 	 1 is a fixed positive tolerance. Hence, the number of features nLTR of
LinTriaReco is 8.

Let �a, b� :=min{a, b} and �a, b�:=max{a, b} for a, b ∈ R. The decision maker MLTR

is given by

MLTR(FLTR(uh, K )):=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if Eh(K ) ∩ ∂Eh = ∅ ∧(
uh |K (m0) /∈ [⌊

uh,K0 , uh,K
⌋ − tol, �uh,K0 , uh,K � + tol

] ∨
uh |K (m1) /∈ [⌊

uh,K1 , uh,K
⌋ − tol, �uh,K1 , uh,K � + tol

] ∨
uh |K (m2) /∈ [⌊

uh,K2 , uh,K
⌋ − tol, �uh,K2 , uh,K � + tol

] )
0, else.

(8)
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The tolerance tol is introduced to prevent marking of cells due to numerical round-off errors.
Hence roughly speaking, LinTriaReco marks an interior cell K if for at least one edge the
value of the solution at the edge midpoint is not between the cell averages of the function in
the cell and the corresponding neighbor.

For the reconstruction 
LTR,K, three affine functions are constructed based on the cell
averages of the discrete solution in the cell and its neighbors of which one is chosen, e.g.,
see [5, 14, p. 104].
ConstTriaReco

This method was proposed in [14] and is a modification of LinTriaReco. Instead of eval-
uating the function at the edge midpoint the integral mean uE

h,K := ∫
E uh |K ds/hE is used.

Furthermore, for boundary edges E ∈ Eh ∩ ∂Eh , i.e., edges along which the cell has no
neighbor, a virtual neighbor is constructed by mirroring the opposite vertex along the edge
E . Then, on this virtual neighbor the discrete function is defined to be the continuation of
uh |K which exists and is well-defined since uh |K is a polynomial of degree at most p. In this
way every triangle has three neighbors and a cell average in each neighbor can be computed.

The feature mapping is then given by

FCTR(uh, K ):={uh,K0 , uE0
h,K , uh,K1 , uE1

h,K , uh,K2 , uE2
h,K , uh,K , tol}, (9)

and hence nCTR = 8.
ConstTriaReco’s decision maker is then analogously defined by

MCTR(FCTR(uh, K )):=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if uE0

h,K /∈ [⌊
uh,K0 , uh,K

⌋ − tol, �uh,K0 , uh,K � + tol
] ∨

uE1
h,K /∈ [⌊

uh,K1 , uh,K
⌋ − tol, �uh,K1 , uh,K � + tol

] ∨
uE2
h,K /∈ [⌊

uh,K2 , uh,K
⌋ − tol, �uh,K2 , uh,K � + tol

]
0, else.

(10)

To reconstruct the solution, 
CTR,K (uh):=uh,K is used, which led often to good results
in the numerical studies of [14].
ConstJumpMod

A different approach is taken by ConstJumpMod that was proposed in [14] and improved
in [15]. Based on the marking criterion of [16, 17] ConstJumpMod tries to approximate the
local order of convergence along each edge and marks a cell if this order is smaller than some
reference value.

Let 0 < C0 ∈ R be a positive constant, L be a characteristic length scale of the problem
and u0 a characteristic scale of the solution. For each edge E ∈ Eh the quantity

αE :=

⎧⎪⎨
⎪⎩
ln

(
1

C0Lu20

∫
E �uh�2 : ds

) /
ln

(
hE
L

)
, if E ∈ E I

h,

αref , else,

can be computed, where αref ∈ R is a fixed positive reference value. These values are used
to define the feature mapping that is given by

FCJM(uh, K ):={αE0 , αE1 , αE2 , αref } (11)

and it follows that nCJM = 4.
To mark a cell K , the decision maker

MCJM(FCJM(uh, K )):=
{
1, if mini=0,1,2 αEi < αref ,

0, else,
(12)
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is used. Note, to prevent having infinite values in the feature set before computing MCJM,
these values can be replaced by αref without changing the result of MCJM, which might be
beneficial for the implementation.

The solution in the marked cells is again replaced by the cell integral mean, i.e.,

CJM,K (uh):=uh,K .
ConstJumpNorm

Based on the previous approach, the method ConstJumpNorm was introduced in [15] that
depends on the mean L∞(E)-norm of the jump of the function uh . The L1- and L2-norms
have been investigated as well but significant differences could not be observed [15]. If this
jump is larger than a fixed positive reference value 0 < βref ∈ R the cell is marked.

To be precise, for each edge E ∈ Eh the quantity

βE :=
{∥∥�uh�

∥∥
L∞(E)

, if E ∈ E I
h,

0, else,

can be defined. Based on this quantity, the feature mapping

FCJN(uh, K ):={βE0 , βE1 , βE2 , βref } (13)

can be computed, so that nCJN = 4.
The decision maker function of ConstJumpNorm is given by

MCJN(FCJN(uh, K )):=
{
1, if maxi=0,1,2 βEi ≥ βref ,

0, else,
(14)

and the solution is approximated by 
CJN,K (uh):=uh,K .

3 Deep Neural Networks as Spurious Oscillations Detector

Deep learning techniques such as deep (neural) networks are a subpart of machine learning
which try to approximate a possibly unknown function by learning it from data [21, p. 1–8].
In the following, multilayer perceptrons (MLPs) also known as feed forward neural networks
are briefly introduced; see also [21, 42, Chapter 6] for detailed information.

Mathematically speaking, MLPs can be seen as functions that map an input domain X to
some output domain Y by composing a sequence of functions g1, g2, …, g, i.e.,

x �→ g(g−1(. . . g1(x)) . . .) ∈ Y (x ∈ X ).

Here each gi , i = 1, 2, . . . , , also called i th layer has the form gi (•) = σi (Wi • +bi ),
where Wi is a rectangular matrix called weight matrix, bi is a vector called bias vector, σi
is a component wise defined nonlinear function called activation function. The first layer
is called input layer, the last layer is called output layer and the layers in between hidden
layers. In other words, starting with x as value(s) of the input layer each following layer
takes as input all the output of the previous layer, also called nodes, performs an affine
transformation and applies component wise an activation function. MLPs can be therefore
characterized or rather parameterized by their corresponding weights, biases and activation
functions,which iswhy they are often referred to asparameters. Different activation functions
can be used, but what they all have in common is that they are nonlinear, which is crucial
to approximate nonlinear functions [21, p. 168]. Possible choices are the sigmoid function
σ(x) = 1/

(
1 + e−x

)
, the rectified linear unit (ReLU) function σ(x) = max{0, x} or the
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hyperbolic tangent σ(x) = tanh(x) = (ex − e−x )/(ex + e−x ). To reach the goal that a
MLP approximates a given function, the parameters need to be chosen accordingly. They are
chosen in an optimization process that is called training.

Let F : X → Y be the function that will be approximated by a MLP. During the training
the parameters are optimized to minimize a given loss function L over a given finite data set
D ⊂ X × Y which consists of pairs (xi , yi ) ∈ X × Y of features xi and labels yi = F(xi ).1

In this work, different approaches are investigated to approximate (combinations of)
the decision maker functions MLTR, MCTR, MCJM, and MCJN by MLPs, see below. The
concrete choice F = MLTR, X = Im(FLTR) ⊂ R

8, Y = {0, 1},

L(D):= − 1

N

N∑
i=1

yi ln(ŷi ) + (1 − yi ) ln(1 − ŷi ), (15)

where N is the number of training data in D and ŷi is the prediction of the MLP, may serve
as a simple example and is used in Sect. 4.2. This loss function is usually called binary cross
entropy loss.

During the training the parameters p are updated by

p → p − η∇pL(p),

where 0 < η ∈ R is a positive step width, also called learning rate, and∇p denotes the partial
derivatives with respect to the parameters. In this work the minibatch stochastic gradient
descent [21, 42, Chapter 8.1.3] is used together with the Adam algorithm [43] to adapt the
step width automatically.

3.1 Generating the Data Set

To enable the MLP to approximate a given function training data is needed. As stated above,
decision maker functions are approximated that take as input a feature vector of the solution
on a single cell and return either 1 (mark the cell) or 0 (do not mark a cell). To generate
training data the following problem is fixed.

Example 1 [HMM example] Let � = (0, 1)2 be the unit square and b =
(cos(−π/3), sin(−π/3))T , c = f = 0. On the whole boundary Dirichlet boundary
conditions are prescribed, i.e., �D = ∂�, by choosing

g =
{
1 (y = 1 ∧ x > 0) or (x = 0 ∧ y > 0.75),

0 else.

This example is a modification of a classical benchmark problem stated in [36] in which the
discontinuity point of the Dirichlet boundary conditions is chosen slightly different to match
the requirements of applying a DG method on a uniform grid.

For small diffusion coefficients ε, the solution possesses two boundary layers at the outflow
boundary and an interior layer in the direction of the convection, see Fig. 1 for a sketch of
the solution.

To generate training data, the discrete problem (3) can be solved on a series of uniformly
refined meshes starting with the initial meshes depicted in Fig. 2. On each level, the discrete
solution is calculated and afterwards on each cell the features ofLinTriaReco,ConstTriaReco,

1 This is so-called supervised learning. See [21, p. 103–105] for unsupervised and reinforcement learning.
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Fig. 1 Sketch of the solution to Example 1 for ε = 10−8 obtained with a nonlinear algebraic flux-corrected
(AFC) finite element method with Kuzmin limiter, see [44]

Fig. 2 Initial meshes for Example 1. The grid on the left-hand side is referred to as regular and the grid on the
right-hand side as irregular grid

ConstJumpMod,ConstJumpNorm and the corresponding labels are computed and stored, see
Eqs. (7)–(13). Since a data point for each cell is created, a lot of data can be generated easily
since the number of cells scales quadratically when the grid is refined. Here it comes in handy
that the decision maker functions act locally.

The data is generated using discontinuous piecewise linear finite elements P1 for the above
mentioned problem with a diffusion coefficient ε = 10−8. The SIPG discretization is chosen
with upwind stabilization, i.e., κ = 1 and η = 1 in Eqs. (4) to (6). Let n0 be the number
of vertices in each cell, i.e., n0 = 3 on the triangular grids depicted in Fig. 2. Guided by
[5, Chapter 2.7.1], the penalty parameter σ = 2εn0(p + 1)(p + 2)/2 = 18ε is used. All
simulations are performed with ParMooN [45, 46] and the direct solver UMFPACK [47] is
used to solve the linear systems of equations. InLinTriaReco andConstTriaReco the tolerance
tol is set to 10−11. For ConstJumpMod the parameters C0 = 1, L = 1.5 and u0 = 1, and
αref = 4 are chosen. Lastly, the reference value βref is set to be the arithmetic mean of all
βE in ConstJumpNorm.
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3.1.1 Rotation Invariance of the Data

Unfortunately, the features above described and defined in Eqs. (7), (9), (11) and (13) depend
on the numbering of the edges and hence, so does the data. To overcome this problem, or in
other words to introduce some sort of rotation invariance, each data point in the data set is
stored three times, one for each particular counter clockwise numbering of the edges.

3.1.2 Magnitude Invariance

In [27] the authors have decided to scale the features to introduce some form of magnitude
invariance. In contrast to this, here the features are not scaled. The reason for this is that all
decision maker functions essentially compare the magnitude of a feature with other features.
If features are scaled feature-wise as in [27], the ratio of the magnitude of features can be
changed. In this way inconsistent data can be created, i.e., the label does not fit to the data
anymore. To prevent this situation, a scaling of the features is therefore not applied.

3.2 Restricting the Data Set

Following the above describe procedure a lot of data can be generated, e.g., refining the
regular grid nine times and the irregular grid eight times leads to 4.456.437 data points.
Unfortunately, a lot of duplicates exist in the data, e.g., due to the fact that the solution of
the problem is piecewise constant in huge parts of the domain and hence, the features can be
equal. This can be the case for an individual limiter but also for any combination of limiters,
e.g., also for all limiters at the same time. Our approach consists in removing the duplicates to
prevent the MLP from learning a pattern specific to the duplicates and to prevent overfitting
to the duplicates and hence, ending up in a MLP that does not generalize well to unseen data.
That is, either the duplicates in the data of a single limiter are removed if a single limiter is
learned, or duplicates of the data of all limiters if all limiters are learned at the same time,
see also the numerical examples below.

After having removed the duplicates it can further be noted that there are for each limiter
individually significantly less marked cells than unmarked cells, e.g., for LinTriaReco after
removing the duplicates there are around 77% cells that are not marked and 23% marked
cells. When inspecting the whole data set it can be seen that cells that are not marked by
any limiter are more common (ca. 93.6%) than cells that are marked at least by one limiter
(ca. 6.4%). It is well known that care has to be taken when it comes to such unbalanced data
sets [48, Chapter 11.2]. To have a better balance between marked cells and unmarked cells,
resp., in the distribution of the label combinations, the data set is further restricted to have
either as many marked cells as cells that are not marked in the case that a single limiter is
approximated or the amount of the combination where no limiter marks a cell is reduced to
equal the amount of the second most occurring label combination in the case all limiters are
approximated at a single time. The rows that are removed are chosen randomly using a fixed
random seed to guarantee reproducibility.

3.3 Splitting the Data Set

Even after deleting duplicates and decreasing the amount of cells that are not marked, resp.,
the amount of the most occurring label combination, a lot of training data remains, e.g.,
379.539 when all limiters are learned at the same time, and 260.436 if only ConstJumpNorm
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is considered. On the one hand, the more data exists the more likely it is that the network
approximates the function that lies behind the data, but on the other hand, more training data
increases the optimization time when the network is trained. Hence, it is recommended to
have less data of higher quality, i.e., showing relevant features of the function, than more
data with lower quality. In this data set it might be difficult to choose “good” data points a
priori but it might be still useful to choose only a subset of the data points for performance
reasons. Therefore, a subset of only 7500 data points is randomly chosen to be the training
data for the networks.

Furthermore, to prevent overfitting of the data, another 1875 are chosen to be the validation
data set, see also [21, Chapter 5.3] for an introduction to overfitting and validation sets. During
the training the validation set is evaluated as well to see how well the network generalizes
to unseen data. At some point the networks might only fit better the training data but they
become worse on the validation data set, which is why the optimization can be stopped at
this point to prevent overfitting.

Last but not least, a third set is introduced with which the trained networks are rated how
well they work. The so-called test set consists of the validation set and all remaining data.
After the training has finished the networks are applied on the test set to measure the overall
performance of the networks.

3.4 Measuring the Performance of the Networks

To measure the performance of the trained networks the measures

accuracy acc:= tp + tn
tp + f p + tn + fn

,

precision prc:= tp
tp + f p

,

recall rec:= tp
tp + fn

,

are used, where tp denotes the true positive, tn the true negative, f p the false positive and fn
the false negative classifications. Themeasure accuracy is the ratio of correct classified data to
all data, i.e., it measures how good the networks performs overall. While the second measure
gives information about the proportion of positive classifications that was actually correct,
recall answers what proportion of actual positives was identified as such. Since for reducing
spurious oscillations it is worse to not detect a cell that should be marked than to mark a cell
that should not, recall might be considered more important than precision. Therefore, the
total rating rtot of the limiters is set to be a weighted combination of the measures, namely

rtot:=2

5
acc + 1

5
prc + 2

5
rec,

where acc, prc and rec are computed based on the test set.

4 Numerical Studies

For the implementation of theMLP networks the open source library TensorFlow is used [49,
50]. As stated above, the finite element computations are performed with ParMooN [45, 46]
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Table 1 Hyperparameters that are tested resulting in 648 different combinations

Hidden layers [256, 128, 64], [128, 128, 128], [256, 128, 64, 32]
[100, 100, 100, 100], [256, 128, 64, 32, 16], [90, 90, 90, 90, 90]

Learning rate 0.005, 0.001, 0.0005, 0.0001, 5 × 10−5, 1 × 10−5

Batch size 32, 64, 128

Activation ReLU, tanh

Initialization seed 40, 41, 42

and CppFlow [51] is used to open and deploy stored TensorFlow models in ParMooN. Note
that the data and most parts of the code that are used in this section are publicly available at
www.doi.org/10.20347/40vd-f944 [40].

4.1 Architecture of theMLPs

Given a specific mapping that should be approximated by a MLP, it is in general almost
impossible to come up a priori with the optimal architecture of the MLP, i.e., the number of
layers, activation functions, number of nodes per layer. To find a suitable architecture, in this
work, different architectures are tested. Six different combinations of number of hidden layers
and number of nodes which corresponds to the number of columns in the weight matricesWi ,
two different activation functions, three different batch sizes, six different learning rates and
three different initializations of the parameters are used which are coded by different seeds,
resulting in 648 different architectures that are investigated, see Table 1. Each combination
therefore can also be identified by a number between one and 648 which is done below. The
size of the input and the output layer are determined by the task to solve. While for all hidden
layers the same activation function is used, i.e., one of the functions given in Table 1, the
activation function for the output layer depends on the experiment and is therefore stated in the
experiments below. The parameters of the layers are initialized using the Glorot normalized
initialization [52] with different seeds for each layer based on the seeds given in Table 1.
Also the loss function L depends on the experiment and hence is given below.

The networks are trained for at most 10000 epochs and the training is stopped earlier,
if the loss of the validation set does not decrease for 100 epochs. The model with the best
accuracy is then saved as trained model.

4.2 Learning Single Limiters

The first experiment figures out whether the individual feature mappings (8), (10), (12), and
(14) can by approximated by a MLP. Since for all functions Y = {0, 1}, the output layer
consists of a single node and uses the sigmoid activation function. The size of the input
layer is defined by the input of the decision maker functions, i.e., eight for LinTriaReco and
ConstTriaReco, and four for ConstJumpMod and ConstJumpNorm. As loss the binary cross
entropy loss L(D) given in (15) is applied. The data is prepared as described in Sects. 3.1
to 3.3 and the measures defined in Sect. 3.4 are used to measure the performance of the
networks.

The total rating rtot for the networks for each limiter is plotted in Fig. 3, whereMLP (lim)
denotes the MLP networks that approximate the decision maker function of lim. In general
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Fig. 3 Rating for all architectures for all limiters for Sect. 4.2

Table 2 Statistics about the total rating of the trained networks of Sect. 4.2

rtot LinTriaReco rtot ConstTriaReco rtot ConstJumpMod rtot ConstJumpNorm

Max 0.744 0.737 0.999 0.997

Mean 0.669 0.670 0.997 0.994

Std 0.034 0.035 0.001 0.019

Standard deviation is abbreviated by std

Table 3 Pearson correlation
coefficients between the
hyperparameters and the total
ratings from Sect. 4.2

rtot LinTriaReco rtot ConstTriaReco

Hidden layers − 0.018 − 0.004

Learning rate − 0.521 − 0.413

Batch size − 0.057 − 0.068

Activation − 0.372 − 0.394

Initialization seed 0.027 0.029

it can be seen that the results ofMLP (LinTriaReco) andMLP (ConstTriaReco) look similar
as well as the results of MLP (ConstJumpMod) and MLP (ConstJumpNorm). On the one
hand, all architectures are able to approximate ConstJumpMod very well and ConstJump-
Norm can be approximated by almost all architectures. On the other hand, LinTriaReco and
ConstTriaReco cannot be approximated that well with the investigated architectures. The best
total rating for MLP (LinTriaReco) and MLP (ConstTriaReco) is still around 0.253 worse
than the mean of MLP (ConstJumpMod) and MLP (ConstJumpNorm), see also Table 2.
As indicated by the standard deviation, the quality of the approximation of MLP (LinTria-
Reco) and MLP (ConstTriaReco) depends more on the choice of the architecture than of
MLP (ConstJumpNorm), which in turn is more dependent than the approximation of MLP
(ConstJumpMod). It can further be noted that in Fig. 3 there is a pattern indicating which
architectures work worse for MLP (LinTriaReco) and MLP (ConstTriaReco). The Pearson
correlation coefficients between the hyperparameters and the ratings ofMLP (LinTriaReco)
andMLP (ConstTriaReco) are given in Table 3. The correlation coefficients forMLP (Const-
JumpMod) and MLP (ConstJumpNorm) are not investigated since almost all architectures
lead to good results. It can be seen that the learning rate and the activation function have
the largest impact. From the obtained results it can be deduced that the learning rate should
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Fig. 4 Results for all architectures from Sect. 4.3

Table 4 Statistics about the total
rating of the trained networks of
Sect. 4.3

rtot LinTriaReco

Max 0.979

Mean 0.977

Std 0.002

Standard deviation is abbreviated by std

not be chosen too small and after looking into the data it can be observed that the ReLU
activation function works better than tanh. This might be a reason for the pattern in Fig. 3.

4.3 Overcoming the DifficultiesWhen Learning LinTriaReco and ConstTriaReco

As seen in the previous experiment, the decision maker functions of LinTriaReco and Const-
TriaReco could not be approximated well and ConstJumpMod and ConstJumpNorm could
be approximated by the chosen architectures if only the features of the respective limiter are
used. This experiment investigates if enriching the feature set enables the architectures to
predict the outcome of the decision maker function of LinTriaReco. The hope is that there is
an implicit dependency between this enriched feature space and the outcome of LinTriaReco
and that the MLPs can approximate this mapping better than MLTR itself. To this end, the
output layer consists again of a single node and the sigmoid activation function is used. The
idea in this experiment is to use all features of LinTriaReco, ConstTriaReco, ConstJump-
Mod, and ConstJumpNorm. Hence, the input layer, in contrast to the previous experiment,
is now larger and consists of nLTR + nCTR + nCJM + nCJN = 24 nodes. As a consequence,
this experiment allows us to investigate whether there is a hidden dependency between the
features of all these limiters and the label of LinTriaReco. Again the binary cross entropy
loss (15) is applied to train the networks. The data is loaded, restricted and split as before
and the measure rtot is used to rate the trained MLPs.

Figure 4 shows the result for the tested architectures. All tested architectures have a similar
good rating, i.e., it seems that there is a mapping from all features to the label of LinTria-
Reco that can be approximated with the used architectures. The best rating (0.979) is slightly
worse than the best results for ConstJumpMod (0.999) and ConstJumpNorm (0.997) of the
previous experiment but could increase the rating of LinTriaReco by around 0.235. Also
all architectures are stable in the sense of producing similar good results as shown by the
mean that is close to the best rating and the small standard deviation, see Table 4. Pearson
correlation coefficients are not shown since all architectures are stable.
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Fig. 5 Results for all architectures from Sect. 4.4

Altogether, the results of this and the former experiment seem to indicate that the features
of LinTriaReco and ConstTriaReco might not be suited best for deciding whether to mark
a cell or not. In contrast to this, the features of ConstJumpMod and ConstJumpNorm seem
to provide better information and hence are more suited, since also the label of LinTriaReco
can be approximated if these features are part of the input to the MLPs.

4.4 Learning All Limiters Simultaneously Based onVectors

The previous experiment raises the questions whether it is possible to learn all decisionmaker
functions at once. The idea is to train a network that approximates themap from all features to
all labels simultaneously, i.e., the size of the input layer is nLTR +nCTR +nCJM +nCJN = 24
and the output size is four, since we want to approximate four decision maker functions
at once. In this sense the problem is a multi-label classification task. As in Sect. 4.2, the
activation function of the output layer is set to be the sigmoid function such that the output
of the network is in [0, 1]4. This means that by construction the networks return a vector of
four predicted labels at once. Furthermore, the loss

L(D):=1

4

4∑
j=1

(
− 1

N

N∑
i=1

yi, j ln(ŷi, j ) + (1 − yi, j ) ln(1 − ŷi, j )

)

is used, where N is again the number of training data in D, yi, j is the j th component of
the i th training data point and ŷi, j is the j th component of the prediction ŷi of the MLP.
Comparing with Eq. (15), this loss is the average of the binary cross entropy loss of the
four decision maker functions that are learned at once. The data is prepared following the
procedure described in Sects. 3.1 to 3.3 and the total measure rtot from Sect. 3.4 is used to
rate the trained MLPs. The measures are evaluated element-wise and not vector-wise for the
output of the MLPs.

The results for all configurations are depicted in Fig. 5. It can be seen that almost all
configurations are able to approximate all decision maker functions at once. As indicated
also by Table 5 the best network achieves a total rating of around 0.95 which is slightly lower
than the best rating in Sect. 4.2 but can still considered to be a good result. Both the mean
of 0.938 that is close to the maximal total rating and the small standard deviation (0.007)
indicate that there are only few configurations that work worse than the best one. For the
sake of brevity and due to the small standard deviation, Pearson correlation coefficients are
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Table 5 Statistics about the total
rating of the trained networks of
Sect. 4.4. Standard deviation is
abbreviated by std

rtot

Max 0.950

Mean 0.938

Std 0.007

not shown. However, the learning rate has the largest impact with a coefficient of − 0.116,
supporting the result from Sect. 4.2.

4.5 Learning All Limiters Simultaneously Based on Classes

The multi-label problem of the previous section can be transformed to a multi-class problem.
After preparing the data as before, every unique label combination is assigned to a unique
number, e.g.,

[0, 0, 0, 0] �→ 0, [0, 0, 0, 1] �→ 1, [0, 0, 1, 0] �→ 2

and so on. This number j is then assigned to a probability vector, i.e., the components are
non-negative and sum to 1, by mapping j to the vector [0, . . . , 0, 1, 0, . . . , 0] that has the 1
at the j th component. Every entry in this vector gives the probability that the input belongs
to the respective class. The input layer size is again 24 and the output layer size is the
number of classes which are in this experiment 12 since not all possible label combinations
occur in the dataset. After splitting the data into training, validation, and test set it can be
observed that not all label combinations occur in the training set since some combinations
are very rare. The activation function of the output layer is chosen to be the softmax function
σ(x)i = exp(xi )/

∑12
j=1 exp(x j ), i = 1, . . . , 12, such that the output is a probability vector.

Hence, in contrast to the previous section, the output gives probabilities that the input belongs
to the possible label combinations and does not return a specific combination. The usual loss
for multi-class problems is used, namely the categorical cross entropy

L(D):= −
N∑
i=1

12∑
j=1

yi, j ln(ŷi, j ),

where N is the number of training data points, yi, j is the j th component of the i th training data
vector and ŷi, j the prediction of the network. Note that yi, j is 0 for all except one entry where
it is 1. To measure the performance of the networks the outputs of the networks are mapped
back to label vectors by multiplying the probability of the classes with the corresponding
label vectors of the classes and summing up the results. In other words, a weighted sum of
all label vectors is computed where the weights correspond to the predicted probabilities.
This procedure gives a vector of four labels that can be compared with the corresponding
true labels in the test set, to identify the true positives, true negatives, false positives and false
negatives. Afterwards the measures given in Sect. 3.4 can be computed.

In Fig. 6 the total rating of the trained networks is plotted. The results are similar to the
results of Sect. 4.4 as also indicated by the values in Table 6. The best and the mean are
negligibly smaller than the values obtained in the previous experiment. Hence, it does not
matter whether to deal with the problem as a multi-label or a multi-class problem, at least in
this particular setting with the used training set and the measures.
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Fig. 6 Results for all architectures from Sect. 4.5

Table 6 Statistics about the total
rating of the trained networks of
Sect. 4.5

rtot

Max 0.949

Mean 0.937

Std 0.007

Standard deviation is abbreviated by std

4.6 Applying aMLP Limiter to Higher Polynomial Degrees

Until here the experiments have investigated howgood theMLPs can approximate the data but
they have not been applied to the DG solution of (other) convection-dominated convection–
diffusion equations. To this end, the MLP from Sect. 4.4 with the best total rating is used,
which has four hidden layers of 100 nodes and the hyperbolic tangent as activation function,
and is trained with a learning rate of 0.0005, a batch size of 128, and is initialized with seed
42. After the DG solution of a convection–diffusion problem is solved, all features of the
conventional limiters are calculated and the MLP is asked to predict the label combination
given these features. A cell is finally marked if at least n ∈ [1, 2, 3, 4] of the four predicted
labels are true, i.e., larger than 0.5. If a cell is marked then the solution is locally replaced by
its integral mean, i.e., 
MLP,K (uh):=uh,K since this choice has produced the best results in
[14] and [15]. This limiter is below called MLP limiter.

4.6.1 Determining the MinimumNumber of Predicted Marks n

Since it is not a priori clear which value of n to choose, this is determined in a first step. The
smaller n, the more cells are marked, which on the one hand hopefully leads to less spurious
oscillations but on the other hand, marking too many cells might reduce the order of accuracy
and leads to unnecessary computational overhead. Therefore, n should be chosen in such a
way that enough but not too many cells are marked. To find the optimal n, Example 1 is used
with exactly the same setting as in Sect. 3.1, i.e., the setting with which the data is created.
Since the limiter is trained with this data it can be expected that it predicts the labels of the
traditional limiter correctly in most of the cases. Since for Example 1 an analytical solution
is not known, the discrete solution uh cannot be compared against the exact solution. As in
[14, 15], to assess the quality of the limited discrete solution therefore the measures

oscmax(uh) = max
(x,y)∈�

uh(x, y) − umax + umin − min
(x,y)∈�

uh(x, y),
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Fig. 7 Results of oscmean and oscmax for Example 1 on the regular and irregular grid depicted in Fig. 2 for
P1 finite elements with two classical limiters and various versions of theMLP limiter

oscmean(uh) = 1

|Th |
∑
K∈Th

[
max{0, max

(x,y)∈K uh(x, y) − umax}

+max{0, umin − min
(x,y)∈K uh(x, y)}

]
,

are used to measure the maximal size and a mean value of spurious oscillations, where umax

and umin are the largest and smallest value of the weak solution, resp., and |Th | denotes the
number of cells in the triangulation. In Example 1 it is umin = 0 and umax = 1. To compute
the desired quantities, uh is evaluated at certain points, which are the points of the nodal
functionals defining continuous Pp finite elements of the same order.

The results of the MLP limiter with n = 1, 2, 3, 4 on both the regular and the irregular
grid are shown in Fig. 7 and compared with ConstJumpMod and ConstJumpNorm, which are
the classical limiters that work best for this problem [15].

It can be seen that, on the one hand, the MLP limiter with n = 1 behaves similarly to
the one with n = 2, and, on the other hand, the limiters where n = 3 and n = 4 show
almost no difference. While the former ones are as good as the classical ConstJumpMod and
ConstJumpNorm limiters, the latter ones behave much worse, meaning they lead to larger
mean and maximal oscillations. As a consequence, in what follows, the MLP limiter with
n = 2 is used since it produces better results than the ones with n = 3, 4 and should by
definition mark less or the same amount of cells than the one with n = 1. Of course, it is not
guaranteed that n = 2 is the optimal choice also in other scenarios, however this experiment
indicates that it is a reasonable choice and the experiments below confirm the choice.
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Fig. 8 Results for measures for various limiters and various polynomial degrees obtained for Example 1 on
the regular grid from Fig. 2

Fig. 9 Results for measures for various limiters and various polynomial degrees obtained for Example 1 on
the irregular grid from Fig. 2

4.6.2 Higher Polynomial Degrees

Since theMLP limiter is fixed it can be applied to other problems. To start, again Example 1
is used but the limiter is applied to the discrete solution obtained with finite elements with
higher polynomial degrees, namely P2, P3, and P4 finite elements. The rest of the problem
is not varied, i.e., ε = 10−8, κ = 1, η = 1. As in Sect. 3.1 the penalty parameter is chosen
to be σ = 2εn0(p + 1)(p + 2)/2, where again n0 denotes the number of vertices a cell has.
Also the parameters used in the classical limiters are kept the same. The problems are solved
on the series of uniformly refined grids starting as above with the initial meshes depicted in
Fig. 2. In what followsGalerkin denotes the DG solution from Eq. (3) without being limited.

The results for the measures oscmean and oscmax for the best conventional limiter as well
as theMLP limiter on both types of meshes are shown in Figs. 8 and 9. It can be seen that the
MLP limiter reduces both the mean and the maximal oscillations significantly compared to
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Fig. 10 Sketch of the solution to Example 2 for ε = 10−8 obtained with a nonlinear algebraic flux-corrected
(AFC) finite element method with Kuzmin limiter, see [44]

Galerkin. While on coarser grids it acts worse than ConstJumpNorm but better than Const-
JumpMod, on finer grids all limiters almost coincide. A reason for this could be the fact
that way more training data obtained on finer grids is available compared to data from
coarser grids, since the number of available data scales exponentially with the number of the
refinement.

4.7 Applying aMLP Limiter to the Hemker Problem

Finally, in this section theMLP limiter is applied to a different example, namely the Hemker
benchmark problem. It was proposed in [37] and it is a very popular benchmark problem
for convection-dominated convection–diffusion equations. It models the transport of energy
from a body through a channel and shows many features of problems that are also relevant
in applications. The structure of the solution is similar to the solution of the HMM example,
e.g., it is constant in most regions, and hence there is hope that the MLP limiter is able to
limit the solution in a reasonable way.

Example 2 (Hemker example) The problem is stated in � = {(−3, 9) × (−3, 3)}\{(x, y) :
x2 + y2 ≤ 1}, and has the coefficients b = (1, 0)T , c = f = 0. If x = −3 and at the circular
boundary, Dirichlet boundary conditions are prescribed by setting

g = 0 if x = −3, g = 1 at the circle.

Everywhere else homogeneous Neumann conditions are applied. The solution is sketched in
Fig. 10 and takes values in [0, 1].

As before, the diffusion coefficient is set to ε = 10−8 and κ = 1, η = 1, and σ =
εn0(p + 1)(p + 2) are used as parameters in the DG method. The problem is solved on a
series of grids starting from the one depicted in Fig. 11. The characteristic length scale for
this problem is L = 13.5 and the remaining parameters of the limiter stay the same.

In Fig. 12 the results for both measures for the limited solution and the original solution
for various polynomial degrees are shown. As before ConstJumpMod, ConstJumpNorm, and
the MLP limiter are able to reduce the oscillations significantly compared to Galerkin. For
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Fig. 11 Initial mesh for Example 2 used in Sect. 4.7

Fig. 12 Results for measures for various limiters and various polynomial degrees obtained for Example 2

P1 and P2 theMLP limiter is slightly worse than the traditional ones on coarser grids but on
finer grids it behaves equally well. For P3 and P4 it is worse than the classical companions,
except for the finest grid and except for P4 for oscmax on one coarser level. We observed that
theMLP limiter is always better than LinTriaReco in both measures, better than ConstJump-
Norm for oscmax for all polynomial degree, and for oscmean for P1 and for P2 to P4 on the
two finer levels, but these results are not presented for the sake of brevity. A visualization of
the limited P4 solution with ConstJumpNorm andMLP on the second finest grid is shown in
Fig. 13. It can be observed that theMLP limiter limits most of the cells correctly but forgets
to mark some cells with undershoots. This is also is the reason why it has worse oscmean and
oscmax values compared to ConstJumpNorm.

5 Summary and Outlook

This paper is a contribution to deeper understanding how neural network based slope limiters
can be created and applied. In contrast to previous papers, it was focused on constructing a
multilayer perceptron model for limiting the discrete solution of an elliptic problem, namely
convection–diffusion equations in the convection-dominated regime. It was shown how data
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Fig. 13 Discrete P4 solution to Example 2 limited by the ConstJumpNorm limiter (left) and the MLP limiter
(right)

from a lowest order discretization can be used to train a limiter that then can be applied to the
discrete solution of higher order methods. The results have indicated that the limiter works
almost equally well as classical methods for higher order methods for the same problem but
somewhat worse than these methods when applied to the solution of a different problem.

These results are also in agreementwith the findings of previousworks that treat hyperbolic
problems. In [24] the authors report that their MLP-based limiter works for some problems
equally well and for some better than the classical reference approaches. The limiter con-
structed in [27] behaves equally well or slightly worse than traditional limiters. The authors
furthermore discuss the lack of theoretical guarantees which indeed also cannot be pro-
vided in the present work. Finally, in [28] it is reported that the MLP-based limiter produces
high-quality results even though it is not compared to traditional limiters.

In our opinion, there are four main conclusions to be drawn from the presented studies.
First, it could be shown that it is possible to construct MLP-based limiters also for elliptic
problems. Second, care has to be taken which features are chosen, since it was observed
that features based on jumps are better suited than others. The other two conclusions are of
importance for our future work and to reach such insight was actually a main motivation
for performing the presented studies. First, it can be concluded that it is possible to classify
mesh cells corresponding to subgrid scales and large scales on the basis ofMLPs for the class
of problems we are interested in. And finally, the concrete architecture of the MLP played
only a minor role as long as no extreme values for the hyperparameters were chosen. Hence,
the results were robust with respect to the choice of the MLP and pursuing a sophisticated
approach for finding an appropriate MLP is not necessary.

As already mentioned in the introduction, we consider the presented study as a proof of
concept to show that it is possible to construct MLPs which are capable of appropriately
detecting subregions with subgrid scales for numerical solutions of convection–diffusion–
reaction equations. Based on their prediction, spurious oscillations in the discrete solution
could be reduced significantly in this study. We plan to use the obtained insights for devel-
oping MLP-based algorithms for choosing local parameters in stabilized discretizations of
convection–diffusion–reaction problems. Among others, this process requires a classification
of mesh cells into cells in subgrid scale regions and away of these regions. Since the choice
of user-defined parameters is an issue in many numerical methods for many problems, a
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medium-range goal consists of extending successful MLP-based techniques to other kinds
of boundary value or initial-boundary value problems.
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