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Distributed Energy Efficient Channel Allocation
in Underlay Multicast D2D Communications

Mariem Hmila, Manuel Fernández-Veiga, Senior Member, IEEE ,
Miguel Rodríguez-Pérez, Senior Member, IEEE , and Sergio Herrería-Alonso

Abstract—In this paper, we address the optimization of the energy efficiency of underlay multicast device-to-device (D2MD)
communications on cellular networks. In particular, we maximize the energy efficiency of both the global network and the individual users
considering various fairness factors such as maximum power and minimum rate constraints. For this, we employ a canonical
mixed-integer non-linear formulation of the joint power control and resource allocation problem. To cope with its NP-hard nature, we
propose a two-stage semi-distributed solution. In the first stage, we find a stable, yet sub-optimal, channel allocation for D2MD groups
using a cooperative coalitional game framework that allows co-channel transmission over a set of shared resource blocks and/or
transmission over several different channels per D2MD group. In the second stage, a central entity determines the optimal transmission
power for each user in the system via fractional programming. We performed extensive simulations to analyze the resulting energy
efficiency and attainable transmission rates. The results show that the performance of our semi-distributed approach is very close to that
obtained with a pure optimal centralized one.

Index Terms—Game theory, fractional programming, coalition formation, D2D multicast communication, 5G wireless networks.

F

1 INTRODUCTION

D EVICE-to-device (D2D) communications allow user
equipment (UE) devices in close proximity to realize a

direct communication without signal relay through an access
point. The 3GPP started the standardization on D2D in LTE
Release 12 [1] (proximity services, ProSe) for public safety,
which was further enhanced with device-based relaying
in Release 13, and has subsequently evolved toward the
specification of the NR Sidelink in Releases 16 & 17 for
5G and Beyond5G wireless networks [2]. Short range D2D
communications attain high data transmission rates with low
delays, and improve energy efficiency and radio resource
utilization [3], [4]. A broad range of use cases, from proximity-
aware services, to public safety communications, vehicle-to-X
(V2X) communications and the Internet of Things (IoT) will
benefit from the D2D technology.

In applications such as V2X or infotainment, the same
piece of data might be requested by a group of users. This
multicast scenario may be implemented either as cellular
multicast, i.e., the evolved Node-B (eNB) multicasts the
content to the group [5], [6], or as mobile data offloading [7],
[8], [9], diverting spatially local traffic to other networks such
as a D2D side channel. Both approaches reduce the spectrum
usage compared to when every user receives through a
dedicated channel.

As in cellular multicast, D2D has a natural multicast
generalization. In multicast device-to-device (D2MD) com-
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munications, a cluster of users with a common interest on a
particular content forms a group wherein any UE can act as
a transmitter for the rest of the group members. Besides data
dissemination, multicast D2D faces its own challenges as to
neighbor discovery and cluster membership [10], selection of
the head cluster (transmitter UE) [11], and transmission to the
weakest receiver, since all the UEs in the cluster must decode
the same data stream. At the physical layer, both D2D and
D2MD communications can take place either in-band or out-
band [12]. In the in-band case, transmitters share the licensed
spectrum with other cellular users (underlay communication)
while, in the out-band mode, part of the bandwidth is
reserved for D2D or D2MD (overlay communication). The
gains in spectral efficiency and area throughput due to D2D
or D2MD have been extensively analyzed in the literature
(e.g., see [9], [13] for recent accounts). For the performance
advantages of multicast over unicast D2D, see [14]. In the
current 5G standard, NR Sidelink supports transmission in
carriers shared with NR or LTE in the licensed spectrum;
autonomous UE operation, where the UE senses and selects
resources on the sidelink based on network configuration;
and groupcast communications too.

Energy efficiency (EE) is another of the recognized key
performance indices in 5G networks, and is heavily depen-
dent on the used radio interfaces and the average distance
for transmissions [15].EE is defined as the normalized data
transmission rate (in bit/s/Hz) divided by the amount of
energy used for achieving that reliable transmission rate [16],
either from a global network perspective or for an individual
user. Since underlay D2MD techniques use less energy in
their localized transmissions, they should clearly improve EE
too, both locally and globally. However, underlay D2MD also
causes co-channel interference, thus hindering the achievable
transmission rates and putting a limit on EE. The goal of
this paper is to devise efficient interference management
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techniques for the successful introduction of underlay D2MD
communication in 5G cellular networks.

In our previous work [17], we proposed a centralized
solution for optimizing the EE both at the global network
level and for individual users in D2MD communications. In
this paper, which extends the results previously presented
in [18], we build on the same system model to tackle the
EE optimization problem with a semi-distributed approach.
Here, a two-stage decomposition procedure is adopted. In
the first one (the resource allocation sub-problem), a sub-
optimal channel allocation is decided, that is, a stable and
efficient assignment of resource blocks (RBs) to a set of
D2MD groups, based on the outcome of an overlapping
coalitional game. We consider new resource sharing cases
in which (1) co-channel transmission over a set of shared
RBs; and (2) transmission over several different channels
per multicast group are allowed simultaneously. Moreover,
differently from [17], we also consider that both cellular
users and the transmitters in each cluster are rational and
independent. Thus, cellular users can choose which clusters
to share the RBs with, and vice versa, based on just local
information. In the second stage (the power control sub-
problem), the optimal transmission power for all the users
in the system is obtained by a central entity via fractional
programming as in [16], [17]. We compare our solution with
the centralized approach previously proposed in [17] and
an up-to-date fully distributed matching algorithm [19]. The
numerical results show that the performance of the proposed
semi-distributed approach is close to the optimal and better
than that obtained with fully distributed approaches due to
the interplay of the interference-based process of coalition
formation and the use of minimal transmission powers.

The rest of the paper is organized as follows. Sect. 2
discusses the related work and Sect. 3 describes the system
model. In Sect. 4 we present the coalitional game theory
and adapt it to the distributed resource allocation setting.
Then, in Sect. 5 we present in detail the coalition formation
algorithm required for channel allocation. Simulation results
are discussed in Sect. 6. Finally, the main conclusions are laid
out in Sect. 7.

2 RELATED WORK

Interference management techniques required in underlay
D2MD communications can be broadly classified as central-
ized or distributed. In the first type, a central scheduler—an
access point—manages the pairing between cellular users
and D2D clusters to optimize a target metric of interest, like
the sum-rate or the energy efficiency. Additionally, it can
impose some constraints on the transmission power to limit
mutual interference and guarantee a target service level (e.g.,
a minimum SINR).

A centralized optimization approach for D2MD is applied
in [20] for casting the power control (PC) problem as a multi-
objective optimization with weighted factors to minimize
energy consumption and maximize the number of served
links. Joint resource allocation (RA) and PC is considered
in [21] to maximize the total EE achieved by all the clusters.
In that work, the feasible RBs are first identified based on a
threshold on the outage probability, and then a PC algorithm
is run to operate the system with the highest EE possible

for each feasible channel. Centralized system throughput
maximization is canonically formulated in [22] as a Mixed
Integer Non-linear Programming (MINLP) problem, subject
to maximum power and quality of Service (QoS) constraints
for both cellular and D2D users. Due to NP-hardness of
the problem, this is decomposed into coupled RA and PC
sub-problems. D2MD clusters are arranged based on their
individual contribution to the sum throughput when sharing
a certain cellular user (CU) resource block (RB). Then, clusters
far from each other are allowed to share the same RB as long
as the QoS constraints are satisfied. A second RA scheme
based on outage probability is also proposed there, but the
RA is done assuming the worst case that the D2MD clusters
transmit at their maximum allowed power. An incremental
approach is adopted in [23], assuming that the QoS levels
of CUs are met before the activation of D2MD into the cell.
The latter is allowed only if it is still possible to guarantee
the QoS requirements among the CUs and the D2MD cluster.
As in [22], all users are allowed to transmit using their
maximum power, so the system is forced to work in the
strong interference-limited regime. D2MD is restricted to
zones in the cell area where interference is not too severe,
and the best pairing between channels (RBs) and D2MD
groups is found by means of a local search procedure (tabu
search). An increase in the overall system throughput is
demonstrated through numerical experiments.

The effect of spatial and temporal correlation in device
mobility is considered in [24]. This work models the problem
as a constrained multi-objective optimization (maximize the
number of D2D multicast links per resource block and the
network energy efficiency) that is solved using a standard
evolutionary algorithm (Non-dominated Sorting Genetic
Algorithm-II, or NSGA-II). However, the method is sensitive
to the tuning of the search algorithm and the trade-off
between the performance objectives has to be resolved by
a external decision maker. The idea in [25] is to solve the
allocation of channels to groups by attempting to optimize
the SINR by means of a maximum-weight bipartite matching
between channels and D2MD groups, with the Hungarian
algorithm, where the weight is the SINR. This SINR relies
in turn on a power control algorithm that belongs to the
class of fractional programming problems. Further, [25] tests
several centralized and distributed clustering algorithms for
defining the D2MD groups. Instead of a system-dependent
quality signal indicator like the SINR, [26] uses the individual
channel gains to allocate the RBs to clusters, in combination
with a priority mechanism for assigning the groups having
low energy efficiency to the higher-gain channels. Yet not
only are the channel coefficients difficult to estimate, even
by a central entity, but also the allocation rule is heuristic in
nature. A similar centralized, heuristic algorithm is followed
by [27], this time focused on maximizing the total EE of the
clusters.

Clearly, the assumption that the central controller has
complete, accurate information about the users’ transmission
parameters, channels qualities, etc., and, therefore, can syn-
thesize the optimal solution is unrealistic and complex, for
its huge overhead and computational load [28]. Unlike these,
in decentralized approaches network devices are responsible
for taking decisions concerning the transmission power and
resource allocation based only on local observations.
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Using non-cooperative games, the authors of [29] propose
a resource allocation scheme to maximize the EE of individ-
ual users, but only for a setting with a fixed number of users.
The same model is used in [30] to study the trade-off between
energy and spectral efficiency. There, an iterative algorithm
is presented to solve the problem using Nash equilibrium as
the finishing condition. Another example of non-cooperative
game appears in [31] for downlink RB sharing. Here, a two-
level approach was investigated to maximize the number of
served D2D users while guaranteeing the quality of service
for CUs. Those D2D users who have minimum mutual
interference are grouped together, assuming that all transmit
at their maximum power. Then, a Stackelberg game is used
to allocate the transmission power to them. Cooperative
game theory is used to solve the joint power and resource
allocation problem in [32]. The model is an overlapping
coalition formation game, where devices are grouped into
sets (coalitions) composed of a single CU and multiple D2D
pairs. Merge and split rules for the coalition members are set
up so as to maximize system throughput. Simulation results
show that even though the coalition structure attains stability
and achieves an optimal solution, it can be unfair for some
D2D users. For this reason, a fair D2D resource allocation
algorithm is introduced.

While all these works focus on D2D communication, the
authors in [19] consider a D2MD model where resource
allocation is done using matching theory, whereas power
control is solved using fractional programming. The main
goal here is to maximize the EE of individual users. Dif-
ferently, authors in [33], build an underlay D2D multicast
real-time video distribution framework. Physical distance is
crucial for communication QoS, thus a directed hyper-graph
based on distance among users is established to highlight
interfering devices and analyse physical location importance.
In addition, a complementary metric of distance is introduced
to estimate the closeness of UEs in the social domain. In
this work, out of range receivers and transmitters share the
same RB assigned by the eNB. Later, a multi-leader multi-
follower Stakelberg game and a Q-learning-based strategy
are used to determine the users’ transmission power in order
to maximize the network throughput. Unfortunately, with
this algorithm it is not clear how many users are sharing the
same resource block or what the average distance between a
transmitter and a receiver is. Another limitation is that the
channel gain between the eNB and a specific user and D2D
users link gains are predefined.

The approaches previously discussed can be more neatly
categorized according to their degree of shared resources.
Let us call reuse factor (A) to the number of D2D pairs or
D2MD clusters per RB (CU channel), and split factor (B) to
the number of RBs (CU channels) assigned to a D2D pair or
a D2MD cluster. Then we can distinguish four cases:
Dedicated CUs (A = B = 1): each D2D pair/D2MD group can

only use one CU channel, and each channel supports
only a single D2D pair/D2MD group, at most.

Distributed Groups (B > 1, A = 1): a D2D pair/D2MD group
can distribute its messages over distinct CU channels,
but a CU cannot share its resources with more than one
D2D pair/D2MD group.

Shared CUs (B = 1, A > 1): a D2D pair/D2MD group can
use a single CU channel. However, the channel can be

shared among at most A D2D pairs/D2MD groups.
General Case (B > 1, A > 1): a CU channel can be shared

among A D2D pairs/D2MD groups. In addition, a D2D
pair/D2MD group can use B different CU channels. In
this case, inter-users interference might limit the benefits
of D2D pairs/D2MD groups coexistence and reduce
spectral and energy efficiency.

Table 1 summarizes the related work discussed in this
Section using the proposed taxonomy. Compared with
the state-of-the-art, the algorithm presented in this paper
introduces the following contributions:

1) We model the up-link resource allocation sub-problem
in underlay D2MD communications as an overlapping
coalition formation game. The proposed game-theoretic
framework uses the ideas of reuse and split factors, and
allows to analyze the system behavior in terms of EE
for both the system as a whole (global energy efficiency,
Section 3.2) and for individual users (max-min energy
efficiency, Section 3.1).

2) We develop a distributed coalition formation algorithm
that permits D2MD networks to flexibly self-organize
themselves into a stable partition and to adapt to
environmental changes (Section 5).

3) The distributed model explicitly considers QoS con-
straints during the coalition formation phase, includ-
ing maximum power and minimum rate constraints
(Section 5).

4) The power allocation sub-problem is optimally solved
using Dinkelbach’s algorithm. Here, a central entity
must be in charge of applying it, thus combining the
advantages of distributed and centralized solutions.

5) We evaluate the performance for random networks in
varied stochastic spatial configurations (Section 6). The
results are compared with the centralized approach
in [17] to show near optimality, and with an alternative
distributed matching algorithm [19].

3 SYSTEM MODEL & OPTIMIZATION

We focus on a single cell/tier network with one central
entity and several users randomly distributed over the cell
coverage area, as illustrated in Fig. 1 [17]. On the up-link,
" CU users transmit on " orthogonal communication sub-
channels or RBs. We assume that D2MD users are grouped
into  multicast clusters D: , : = 1, . . . ,  , that can reuse
the same communication channels allocated to the CUs
for direct communication among their members. Each of
these D2MD groups has only one designated transmitter
and comprises, therefore, |D: | − 1 receivers.1 In this model,
the base station suffers the interference caused by the co-
channel D2MD transmitters, while the receivers in a D2MD
group are affected by the interference caused by the CU user
and, possibly, the other transmitters of those D2MD groups
sharing the same RB. We briefly reproduce here the two
optimization problems to be solved.

1. The case |D: | = 2 corresponds to a simple unicast communication
or D2D pair or dipole.
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Table 1
Centralized and Distributed Approaches in D2D and D2MD: State of the Art

Ref Scenario Approach Category Model Problem Objective

[20] Shared CUs Optimization Centralized D2MD RA, PC Spectral efficiency
[21] General Case Optimization Centralized D2MD PC D2MD EE
[27] Dedicated CUs Heuristic algorithm Centralized D2MD PC, RA D2MD EE
[22] Shared CUs Graph theory, corner search, STIM Centralized D2MD RA, PC System throughput
[23] Dedicated CUs Tabu search algorithm Centralized D2MD RA, PC System data rate
[24] Shared CUs Multi-objective optimization, NSGA-II Centralized D2MD RA, PC SE, network EE
[25] Shared CUs Optimization, graph theory Centralized D2MD RA, PC Max SINR
[26] Dedicated CUs Optimization Centralized D2MD RA, PC Min D2MD EE

[29], [30] General Case Non-cooperative Distributed D2D RA, PC Users EE
[31] General Case Stackelberg game Distributed D2D PC System capacity
[32] Shared CUs Coalition formation Distributed D2D RA, PC Coalition sum SINR
[19] Shared CUs Matching theory Distributed D2MD RA, PC Individual EE
[33] Shared CUs Multi-leader multi-follower Stackelberg game Semi-distrib. D2MD RA, PC Network throughput

This paper General Case Coalition formation + optimization Semi-distrib. D2MD RA,PC Global EE, max-min EE

Cellular User

Interference

D2D Group

D2D link 

Cellular Link

Figure 1. System model.

3.1 MEE Problem — Max-Min Energy Efficiency
The energy efficiency (in bit/Hz/J) for each CU user < is
defined as the ratio of its normalized transmission rate to the
energy it consumes:

[< ,
A<

g< + ?<
, < = 1, . . . , ", (1)

where A< is the normalized transmission rate (in bit/s/Hz) of
CU <, g< is the power consumed by CU < at rest (i.e., when
there is nothing to transmit) and ?< is its transmission power.
The Shannon’s ergodic capacity formula A< = log2 (1 + W<) is
used for the rate, where W< denotes the SINR for CU <.

Similarly, the energy efficiency for each D2MD group D:
is defined as

Z: ,
':

g: +
∑
< %

(<)
:

, : = 1, . . . ,  , (2)

where ': is the aggregated received rate in group D: , g: is
the power used by all the devices in group D: at rest and
%
(<)
:

is the transmission power allocated to the designated
transmitter of group D: over channel <. Note that ': is
constrained by the weakest receiver, i.e., the one with the
poorest channel quality, and depends on the number of
members of the group:

': = |D: |
"∑
<=1

G:,< min
8∈D:

log2 (1 + W8,<) , (3)

where G:,< is 1 if group D: transmits over channel < (or
0, otherwise) and W8,< is the SINR for user 8 in group D:

over channel <. We also assume that both CU users and
D2MD groups must satisfy individual average power and
transmission constraints:

?< ≤ ?<, < = 1, . . . , ", (4)∑
<

%
(<)
:
≤ %: , : = 1, . . . ,  , (5)

A< ≥ A<, < = 1, . . . , ", (6)
': ≥ ': , : = 1, . . . ,  . (7)

Here, ?< (resp., % ) denote the maximum transmission
power for the CUs (resp., D2D UEs), and A< (resp., ': ), the
minimum acceptable received rate for the CUs (resp., D2D
UEs). Now, we can formulate the max-min energy efficiency
problem as

MEE = max
p, P: ,X

{min{min
<

[<,min
:
Z: }}, (8)

where p = (?1, . . . , ?" ) is the power vector allocated to the
CUs, P: = (% (1): , . . . , %

(" )
:
), : = 1, . . . ,  , is the power vector

allocated to the designated transmitter of group D: over the
" channels and X = [G:,<] is the  × " channel allocation
matrix containing all the indicator variables.

3.2 GEE Problem — Global Energy Efficiency

The global energy efficiency (GEE) of the cellular network is
simply the ratio between the aggregated rate and the total
power needed, so we can formulate the optimization problem
for maximizing the energy efficiency of the whole system as

GEE = max
p, P: ,X

∑
< A< +

∑
: ':

g +∑< ?< +
∑
:

∑
< %

(<)
:

, (9)

where g is the total power consumed by all the devices in
the network at rest.

4 OVERLAPPING COALITION GAME FOR CHANNEL
ALLOCATION

Our approach to simplify the joint resource and power
allocation problem is to resort to a classical decomposition:
i) a decision-making sub-problem concerning the assignment
of RBs to D2MD groups; and ii) an optimization problem
for finding the power vector for all the users in the system.
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Here, we tackle the resource allocation sub-problem as a
game among the users of the cellular network. Our players
(the CUs and the D2MD groups) will collaborate with each
other in order to minimize the aggregated interference
which in turn leads to maximize either the global energy
efficiency or the minimum user energy efficiency. Coalitional
games are suitable for designing fair, robust, practical and
efficient cooperation strategies on communication networks
where the players share a common objective. Ultimately, the
algorithmic solution to this sub-problem will be distributed,
while the solution to the whole problem may be considered as
semi-distributed because, for the power allocation algorithm,
we still keep an optimal, centralized approach.2

4.1 Overlapping Coalitional Games

Coalitional games allow users to form groups, commonly
referred to as coalitions. A coalition is useful when several
players share a common objective and there exist in the
problem structure positive externalities from collaboration
among them. In our context, we assume that both CU users
and D2MD groups are willing to cooperate to properly share
the RBs and achieve higher global and individual EE. A
coalition game G is formally defined as follows [34].

Definition 1. A coalition game G = (N , v,S) is defined by:
1) The set of playersN . In our setting,N =M∪K , withM and
K being the sets of CU users and D2MD groups, respectively.

2) The partition function v that quantifies the worth of a coalition
in the game. It associates to each subset S8 of N a real number
quantifying the objective value of the coalition.

3) The coalition structure S = {S1,S2, . . . ,S=}. This is the set
of formed coalitions, where each coalition S8 is a subset of N
(S8 ⊆ N , 8 = 1, . . . , =).

Note in the above definition that neither: (i) S8 ∩ S 9 = ∅
nor (ii) ∪=

8=1S8 = N are enforced. Therefore, a coalitional game
can have overlapped coalitions (condition (i) fails), or have
players not included in any coalition (condition (ii) fails). The
latter is a simple matter of terminology, since single players
can be equally regarded as individual coalitions.

For any partition function v, coalitional games can also
have transferable utilities, that is, users can transfer losslessly
part of their utilities to another players. In this case, the value
of a coalition only depends on the coalition structure (i.e.,
its members), and not on how the rest of the players have
been partitioned. This property makes the game adapt to
a more group-rational perspective [34], [35], and for that
reason it will be assumed here. Also, it is worth to mention
that our coalition game is non-superadditive, so that users
will never form a grand coalition since, in such case, the high
interference value would force players to act selfishly as in
non-cooperative models.

4.2 Coalition Formation

We consider that each coalition is composed of a single
CU user (the RB to be shared), and one or more D2MD

2. The problem of finding the optimal transmission power vectors falls
into the general class of fractional programming problems, for which
there exist efficient mathematical tools. How to solve this particular
fractional programming problem is detailed in our previous work [17].

groups aiming to share the RB with the CU. In this manner, a
coalition can be seen as an agreement among various players
to act as a single entity for achieving a higher coalition
value v. According to the different values that can take the
split (B) and the reuse (A) factors, we can distinguish up to
three different forms of coalitions:

1) The simplest case occurs when B = A = 1. Each coalition
is composed of a single CU user and a single D2MD
group.

2) The second case appears when B = 1 with A > 1. In this
scenario, each coalition is composed of a single CU and
multiple D2MD groups. Note that in this and the former
case, G remains a traditional coalition formation game.

3) In the third case, we have B > 1 and A ≥ 1, so each D2MD
group can be included in different coalitions.3

Certainly, a more flexible coalition structure allows play-
ers to distribute their resources (time, energy, or money)
among the various coalitions they are part of. Here, the trans-
mitter of each D2MD group D: has a limited transmission
power budget (%: ) which can be split over up to B channels.
As a result, the model turns out to be an Overlapping
Coalition Formation Game (OCFG). The overlapping model
leads to better organized coalitions and possibly higher pay-
offs [36], [37]. Recall that OCFGs hold all the properties of a
traditional coalition game.

4.3 Partition Function
In our game, CU users and D2MD groups must cooperate
to minimize the total co-channel interference among them,
thus increasing the system and their own energy efficiency.
According to this, the partition function v(S<) for coalition
S< will represent the total mutual interference among the
coalition members. To calculate this value, we must compute
the received interference on each side.

First, the interference on each D2MD group D: , : =

1, . . . ,  , in channel < = 1, . . . , ", is determined by its
weakest receiver as

U:,< = max
8∈D:

{?<V:,<,8 +
∑
9≠:

G 9 ,<%
(<)
9
ℎ 9 ,<,8}, (10)

where V:,<,8 is the link gain factor from the CU user in
coalition S< to receiver 8 in group D: and ?< is the CU
transmission power. Each coalition S< may include several
D2MD groups. Therefore, the inter-groups interference needs
to be also considered. Recall that the indicator variable G 9 ,<
is equal to 1 if group D 9 is part of coalition S< (i.e., D 9

transmits on channel <), otherwise it is set to 0, ℎ 9 ,<,8 is the
link gain factor from the transmitter in group D 9 in coali-
tion S< to receiver 8 in group D: and % (<)

9
is its transmission

power on channel <. Eventually, the maximum interference
value for each receiver 8 ∈ D: is considered since the rate
in multicast communications is always determined by the
weakest receiver. We emphasize that this will introduce in
the partition function a min-max fairness rule for balancing
the interference among the clusters [38]. Second, for each
CU user < = 1, . . . , ", the analogous expression for the
interference is

Γ< =
∑
:

G:,<%
(<)
:
ℎ:,<. (11)

3. When A = 1, this form of coalition includes the Distributed Groups
case.
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where ℎ:,< is the deterministic link gain from the transmitter
of group D: to the CU user in coalition S< and %

(<)
:

is its
transmission power on channel <.

Finally, when coalition S< includes one or more D2MD
groups, the interference accumulates on CU users and,
therefore, the coalition value is the total interference

v(S<) = Γ< +
∑
D: ∈S<

U:,<. (12)

Thus, v(S<) subsumes the total interference received by
the CU user and the D2MD groups that are members of
the coalition S<. Recall that, in our game, the number of
coalitions is " , the number of CU users, since every coalition
represents a potential RB to be shared among D2MD groups.

Besides the choice of the partition function, the game has
to specify the users’ strategies for forming the final coalitions.
This turns out to be rather simple, since any strategy that
is profitable [34], i.e., it improves the value of the current
partition function, is a candidate solution to the problem. The
game would simply be the iterated application of profitable
moves, in an asynchronous and distributed manner, until no
further improvement can be made.

5 COALITION FORMATION ALGORITHM

The main ingredients required to construct a coalition
formation algorithm are a preference relation for forming
and breaking coalitions, and adequate notations for assessing
the stability of partitions.

5.1 Preference Relation
A preference relation defines how two coalition structures
are compared. More formally,

Definition 2. A preference relation or comparison relation denoted
by ⊲ is an order defined for comparing two coalition structures
R = {R1, . . . ,R;} and S = {S1, . . . ,S?} that are partitions of the
same subset A ⊂ N . R ⊲S implies that the way R partitions A is
preferred to the way S partitions A.

Our goal is to minimize the total interference over the
coalition members. Therefore, if a coalition structure R is
preferred to another coalition structure S, it means that
the coalitions in R result in less total interference than the
coalitions in S: v(R) = ∑;

8=1 v(R8) ≤ v(S) = ∑?

8=1 v(S8).

5.2 Merge and Split Rules
The partitions in the previous definition are created based
on two rules for forming and breaking the coalitions—merge
and split—that are defined as follows.

Definition 3. (Merge Rule) Any subset of coalitions
{S1, . . . ,S;} may be merged whenever the merged form is preferred
by the players. In other words, when {⋃;

9=1 S 9 } ⊲ {S1, . . . ,S;},
then {S1, . . . ,S;} → {

⋃;
9=1 S 9 }.

Definition 4. (Split Rule) Any coalition
⋃;
9=1 S 9 may be split

whenever the split form is preferred by the players. In other words,
when {S1, . . . ,S;} ⊲ {

⋃;
9=1 S 9 }, then {⋃;

9=1 S 9 } → {S1, . . . ,S;}.

The previous definitions state the general idea behind
coalition formation. In our case, the expression “preferred

by the player” can be explained as follows. Assume that
we have two coalitions S8 and S 9 . The coalition value
changes based on the actions of the merge and split rules. A
D2MD group D: (which might be a single coalition itself)
may split from coalition S8 and merge into coalition S 9 . In
this case, three conditions need to be satisfied to approve the
merge action:

1) The individual interference U:,< on the weakest receiver
of group D: decreases when merging with S 9 .

2) The total received mutual interference of coalition S 9 ∪
D: does not increase: v(S 9 ∪ D: ) ≤ v(S 9 ).

3) The new coalition structure S′ results in less total
interference than the current one: v(S′) ≤ v(S) ⇒ S′ ⊲S.

Conversely, the reciprocal conditions will have to hold for
considering the splitting of a coalition into two disjoint ones.

Initially, we consider that each CU user and D2MD group
forms a single coalition by itself. These isolated coalitions
seek to merge, and eventually split, until " coalitions are
formed, one for each CU channel. Each of these coalitions
can include up to A D2MD groups and each group could be
a member of up to B different coalitions. The members of a
coalition will be the set of users that causes the minimum
mutual interference to its members and to other coalitions.
While this does not guarantee that energy efficiency is being
maximized, it is a reasonable proxy measure for that goal
since: i) for any target SINR, less transmission power will
suffice when the interference is lower, thus increasing EE,
at least locally; ii) the target transmission rates are easier
to achieve when the interference level is tightly controlled;
iii) less interference boosts the opportunities for sharing the
transmission channels among different groups.

5.3 Coalition Formation Algorithm
We propose Algorithm 1 to implement the overlapping
coalition game. Naturally, the algorithm gives explicit rules
for both the split and merge actions and, depending on
the resource allocation scenario applied, different types of
interference are considered. Recall that, when A = 1, there
is no accumulated interference and a D2MD group will
just receive interference from the CU user, and vice versa.
Otherwise (A > 1), the interference accumulates on the CU
users from all the D2MD groups in the coalition and each
D2MD group will suffer interference from the CU and the
rest of the groups in the coalition.

We focus now on giving a brief account of the algorithm
operations. After initializing the counter of the reuse factor
AC and the data structures (line 1), the iterative procedure
for determining the coalitions and the transmission powers
begins. The outer loop (lines 3–23) enforces the limit on the
reuse factor, while the inner loop (lines 8–21) keeps track
of the limit on the split factor. Within the inner loop, the
optimal constrained transmission powers are calculated for
the current coalition structure (line 4), the constraints on the
rates are verified (lines 5-6), the aggregate interferences are
evaluated (line 7), and the search for a profitable split or
merge move is started. For every element in the partition,
Algorithm 1 attempts to find myopically a split (lines 10-13)
or a merge action (lines 14-17) which decrease the value
of the partition function, or equivalently, which decrease
the aggregate interference for the coalition. After the move,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMC.2020.3012451

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL JUNE 2020 7

1: AC ← 1; S< ← {}, < = 1, . . . , "
2: repeat
3: while AC ≤ A do
4: Optimize ?

(<)
:

, ?<, : = 1, . . . ,  , < = 1, . . . , ",
using Thm. 2

5: Evaluate ': using (3), : = 1, . . . ,  
6: Evaluate A< = log(1 + W<), < = 1, . . . , "
7: Sort S< in ascending order using (10)
8: repeat
9: for < = 1, . . . , " do

10: Choose D: ∈ S<
11: if v(S< \ D: ) < v(S< \ D:′) for some D:′

then
12: S< ← S< \ D:
13: end if
14: Choose D: ∉ S<
15: if v(S< ∪ D: ) < v(S< ∪ D:′) for some D:′

then
16: S< ← S< ∪ D:
17: end if
18: Optimize ?

(<)
:

, ?<, : = 1, . . . ,  , < =

1, . . . , " , using Thm. 2
19: end for
20: Update aggregate interferences using (10), (11)

and (12).
21: until allD: ∈ S< are tried or |{D: : D: ∈ S<}| = B
22: AC ← AC + 1
23: end while
24: until S = {S1, . . . ,S" } is a stable coalition structure

Algorithm 1: Coalition Formation Algorithm

if any, the transmission powers are again optimized (line
18), and the interference for each channel and cluster is
updated (line 20). If no profitable moves are possible, then
the limit in the reuse factor is increased to search other
non-explored combinations in the partition (line 22). The
algorithm finishes when a stable partition structure is found.
Stability is discussed in the next Subsection.

The computational complexity of Algorithm 1 is in any
specific instance highly dependent on the random locations
of the UEs and the channel gain realizations, since these
induce different interference strength. Nevertheless, its worst
case execution time can be determined as follows. The
algorithm terminates after at most A rounds, where A is the
reuse factor. In each round, a possible merge and/or split
move is considered for up to " coalitions, and a profitable
move is tested between its members and non-members,
so this step has $ (" 2) complexity, at worst. Besides,
the power optimization complexity is solved through the
Dinkelbach’s algorithm, which has a superlinear convergence
rate [39], and the evaluation of our objective function takes
$ (1) time for a number of variables/constraints which is
$ (" +  ) (rate and power for each user). Therefore, the
overall worst-case complexity is$ (A" 2 ("+ )). We remark
that, in practice, the optimization step finishes in just a few
iterations (3-4, see [17]) and that our numerical experiments
in Section 6 show that a stable coalition can be formed in a
low number of iterations too, so the average complexity is
typically much smaller than $ (A" 2 (" +  )).

5.4 Convergence and Stability

Our main result in this Section is a proof that the convergence
of the OCFG with Algorithm 1 is guaranteed. To this end,
we first define stability as follows, since there exist a number
of refinements of the notion of stability in the literature of
coalition games [34] useful in different contexts.

Definition 5. A coalition structure is Dℎ?-stable if it cannot be
changed by the merge-and-split process. A coalition structure is
Pareto optimal if the following conditions hold:

1) The coalition structure is Dℎ?-stable.
2) The coalition structure maximizes the sum of utilities of the

players.

Theorem 1. The outcome of Algorithm 1 is a stable and Pareto
optimal coalition structure.

Proof: Define the state of the process of coalition
formation as its current partition structure, i.e., the collection
of coalitions formed. A state is called absorbing [34] if the
process does not move, that is, there is no incentive for any
player to perform a merge or a split action. So, by definition,
an absorbing state is Dℎ?-stable. To see that Algorithm 1
reaches in a finite number of steps an absorbing state just
note that, according to conditions 2) and 3) in Section 5.2,
any merge or split move must be profitable, i.e., it must lead
to a lower value for the aggregated interference of the newly
formed coalition. Therefore, the sequence of values of the
partition function for each D2MD cluster is non-negative
and decreasing, and as a consequence the game reaches an
absorbing state. By [34, Lemma 5.1], all absorbing states are
stable. For the Pareto optimality, the proposed game has
transferable utility [28], so the utilities of the player can be
distributed so that the social welfare (the sum of utilities) is
maximal.

We remark that, though our game has transferable
utilities, it is not symmetric since the partition function
depends on the random location of the UEs and not only on
the number of users in the clusters.

5.5 Optimal Power Control

Algorithm 1 unfolds an alternating optimization strategy
between the sub-problems of channel allocation and optimal
power control. This means that, for any given coalition
structure, the minimum transmission powers compatible
with the constraints are used so as to maximize the EE
(global or per-UE). The optimization of transmission powers
can be formulated as a fractional programming problem [40]
and solved computationally in a very efficient way based on
the following result, which is recalled here for the sake of
completeness [17, Thm. 1].

Theorem 2. Let 5 (p) = ∑
< A< (p) +

∑
: ': (p), 6(p) = g +∑

< ?< +
∑
:

∑
< %

(<)
:

and P the set of feasible vectors for the
EE optimization problems. Then p∗ ∈ P solves (9) if and only if
p∗ = arg maxp∈P { 5 (p) − _∗6(p)}, where _∗ is the unique zero of
� (_) = maxp∈P { 5 (p) − _6(p)}.

Since, in our case, 5 (p) is not generally a concave function,
we replace it with a surrogate concave minorization function
taking the same value as 5 (·) at p (see [17] for details). After
this change, the maximization problem appearing in Thm. 2
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Table 2
System Parameters for the Simulation Experiments

Parameter Value

Cell radius 500 m
Reuse factor (A ) {2, 3, 4, 5}
Network density (_) 250 devices/cell
Split factor (B) {2, 3, 4}
Path loss exponent (U) 2.5
Minimum transmission rate {0.1, 0.5} bit/s/Hz
Number of CU users (" ) {3, 4, 5, 6, 8, 10, 15}
Maximum transmission powers [−5, 25] dBm
Number of D2MD groups ( ) {4, 5, 6, 9, 10, 15, 25}
Circuit power 10 dBm

is convex and can be solved with standard methods in linear
time [15], [16]. For the case of maximizing the minimum EE,
the goal is to maximize min8∈N 58 (p)/68 (p), where now 58 (p)
is the rate received by user 8, 68 (p) is its power consumption,
and N is the set of UEs. Theorem 2 can be used to prove
that this is equivalent to solving arg maxp∈P min8 58 (p) −
_∗68 (p). Since the pointwise minimum of concave functions
is a concave function, we immediately see that maximizing
the minimum EE has the same structure and can be solved
with the same numerical methods as the global EE.

6 EVALUATION

In this Section, some simulation results will be presented to
evaluate the performance of multicast EE optimization. To
obtain these results, we used MATLAB and CVX mathemati-
cal package. The default system parameters are summarized
in Table 2. We consider different coalition sizes (i.e., reuse
factors), overlapping degrees (i.e., split factors), effectiveness
of power budget usage (fixed budget per RB or distributed
over several RBs), etc. Each simulation experiment has been
repeated 200 times and all the graphs display the average
value for each performance measure. In these experiments,
the number and location of UEs will follow a standard homo-
geneous Poisson point process (PPP) [41], [42] with density
_ = 250 devices/cell in a cell of radius 500 m. The received
signals are assumed to vary due to the path loss according to
%A = %C (1+ (3/30)U) where %A is the received power, %C is the
transmitted power, 30 is a reference distance (100 m in our
case) and U is the path loss exponent. For D2MD cluster
formation, we used two different algorithms:  -Nearest
Neighbor (KNN) and Distance Limit (DL) clustering. For
both algorithms, the number of head clusters (transmitters of
D2MD groups) are predefined and randomly selected. KNN
results in clusters of the same size, since the receivers of each
cluster are the : closest users to the head cluster, by definition,
while DL clusters have different sizes because their receivers
are those users within the configured radius [43]. This feature,
the fixed or variable size of the clusters, turned out to have
little impact on the performance results observed in our
numerical experiments, so we only show the results for one
of the algorithms, with similar conclusions being valid for
the other. Finally, the CU users with the best channel quality
are selected to share their RBs with the D2MD clusters [44].

Table 3
EE and Rates with Dedicated CUs

MIN. RATE GEE AVG. RATE MEE MIN. RATE
(bit/s/Hz) (bit/Hz/J) (bit/s/Hz) (bit/Hz/J) (bit/s/Hz)

0.1 811.96 104.97 178.26 2.13
0.2 799.53 102.86 179.63 2.14
0.3 791.85 101.50 181.30 2.17
0.4 790.65 100.90 183.20 2.19
0.5 775.26 98.13 179.48 2.13

6.1 Dedicated CUs

We first investigate the simplest coalition formation game
where each D2MD group can only use one CU channel
and each channel only supports a single D2MD group (A =
B = 1). Therefore, there is no accumulated interference on
both sides and the value of the coalition is just the sum of
the interference received by the CU from its corresponding
cluster. The minimum rate per RB is set to 0.1 bit/s/Hz and
the maximum transmission power per device is varied in
the range of −5 dBm to 25 dBm (the maximum transmission
power for UEs in 5G is restricted to 23 dBm [45]). The number
of CU users and D2MD clusters are set to " =  = {5, 10, 15}.
We used DL algorithm to create the clusters, such that each
cluster has 3 receivers on average with a maximum distance
between the head cluster and the receivers of 50 m.

6.1.1 Problem Feasibility

A feasible case means that all the users in the coalitions
were able to satisfy the minimum rate threshold with the
available transmission power budget. For the GEE problem,
feasibility was over 99 %, showing up an average number of
non-feasible cases in all the 200 simulation instances equal to
1. Similarly, the feasibility for the MEE problem reached 100 %
in all the simulated scenarios. We conclude that, for these
settings, problem constraints are not particularly stringent
and a solution to both optimization problems exists in almost
every case.

6.1.2 Energy Efficiency and Rate Analysis

Both global and minimum EE were evaluated using the
parameters defined above. In Fig. 2, we observe the behavior
of the EE and the transmission rate. The aggregated rate
increases as the number of clusters and CU users grows,
but this is not the case for the GEE, where, despite some
minor variations related to the simulation error margin,
the GEE slightly diminishes with the number of users.
However, considering the major difference in the value of
the achieved aggregated rate and that the difference in EE
is relatively small, we could say that it pays off to sacrifice
some of the GEE gain in order to achieve a higher rate.
Note also that increasing the transmission power budget
beyond a threshold—around 10 dBm for global EE and
5 dBm for minimum EE—does not produce further gains
neither in the energy efficiency nor in the rate, due to the
strong interference that would result. This saturation point
identifies the system capacity (in terms of EE) and is nearly
independent of the number of users.
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Figure 2. Performance with dedicated CUs.

Table 4
EE and Rates with Shared CUs

MIN. RATE GEE AVG. RATE MEE MIN. RATE
(bit/s/Hz) (bit/Hz/J) (bit/s/Hz) (bit/Hz/J) (bit/s/Hz)

0.1 762.19 141.84 120.52 1.42
0.2 739.18 136.57 121.63 1.44
0.3 718.80 130.65 120.60 1.42
0.4 711.76 129.27 120.36 1.42
0.5 702.85 127.03 119.27 1.41

6.1.3 Minimum Rate Constraints

We also test the influence of the minimum rate constraints
on both EE and rates. The maximum transmission power is
set to 10 dBm, the minimum rate varies from 0.1 bit/s/Hz to
0.5 bit/s/Hz and the number of CUs and D2MD clusters is 5.
The results of this testing case are illustrated in Table 3. Now,
the GEE and the aggregated rate decrease continuously as
we impose tighter minimum rate constraints. This is because
users must increase their transmission power to attain the
minimum rate, thus raising the amount of interference and
preventing any further improvement in the aggregated rate
and GEE. For the MEE, it is slowly increasing with the
minimum rate constraints augments but drops eventually.
The explanation is the same as for GEE.

6.2 Shared CUs

Next, we evaluate the main performance metrics of the
system when a coalition is composed of a single CU user
and multiple D2MD clusters (B = 1 and A > 1). The minimum

rate per RB is set to 0.1 bit/s/Hz, while the transmission
power budget varies from −5 dBm to 25 dBm. The number
of CU users is set to " = 5, and the number of clusters
to  ∈ {10, 15, 20, 25}. The reuse factor is A ∈ {2, 3, 4, 5},
according to the number of clusters. Again, the clustering
technique used here is DL.

6.2.1 Problem Feasibility
For the GEE problem, the existence of non-feasible cases is
negligible as long as the reuse factor is kept low. Only with
a A = 5 the unfeasible cases raise to 55 ≈ 25%, on average.
Though still a low value, it shows that having more degrees
of freedom for sharing a channel is not always beneficial for
the system design. For the MEE problem, we did not detect
unfeasible cases.

6.2.2 Energy Efficiency and Rate Analysis
Fig. 3 shows the EE and rates obtained varying the transmis-
sion power budget with different reuse factors. As we noticed
in the previous case, the GEE and the aggregated rate increase
with the transmission power until hitting a saturation point,
and the same happens for the MEE and the minimum rate.
Hence, as more power is allocated to users, the EE and rates
for both the system and the individual users remain stable.
Clearly, when A = 1, the network and the individual users
achieve the highest EE and rates, which can be explained
due to the absence of accumulated interference over both
CUs and D2MD groups. However, acceptable values for the
EE and rates are achieved with low values of reuse factors
like A = 2 and A = 3, even with low transmission powers.
Obviously, for the RBs to support more users or having a
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Figure 3. Performance with shared CUs.

bigger coalition size, interference must be kept as weak as
possible. We recall here that, in many realistic settings, the
number of D2MD groups can be larger than the number of
RBs, so the reuse of the spectrum would be necessary to
allow the transmissions of all users.

6.2.3 Minimum Rate Constraints

We also evaluated the minimum rate constraints when A =
2. The obtained results are listed in Table 4. As expected,
the higher the minimum rate value, the more transmission
power is required to satisfy the requested conditions. As a
result, the interference worsens, thus preventing any major
improvement in the achieved rate and the achievable rates
decrease. In turn, as EE is the ratio of the rate to the consumed
power, both MEE and GEE also decrease.

6.3 General Case with Overlapped Coalitions

We test now the benefits of using overlapping coalition games
for resource allocation in the general case with B > 1 and
A > 1. The transmission power goes from −5 dBm to 25 dBm,
and each D2MD group can distribute it over B coalitions. The
minimum total rate is 0.5 bit/s/Hz. The minimum rate per
RB for both CU users and D2MD groups is set to 0.1 bit/s/Hz.
The number of CUs is set to " ∈ {4, 6, 8} while the number
of groups is fixed to  = 4 to ensure that the reuse factor
A = 2 is always satisfied. Finally, the split factor is varied
based on the number of available CUs (B ∈ {2, 3, 4}). The
number of unfeasible problem instances generated under
these conditions was again negligible for any combination of
parameters.

Table 5
EE and Rates in the General Case

MIN. RATE GEE AVG. RATE MEE MIN. RATE
(bit/s/Hz) (bit/Hz/J) (bit/s/Hz) (bit/Hz/J) (bit/s/Hz)

0.1 724.48 193.60 123.70 1.51
0.2 696.51 187.16 126.15 1.54
0.3 662.60 179.60 139.81 1.75

6.3.1 Energy Efficiency and Rate Analysis

We evaluated the EE and rates obtained when using over-
lapped coalitions. As in the previous scenarios, Fig. 4 shows
that both the GEE and the aggregated rate increase with
higher transmission budgets until they saturate and remain
almost constant independently of the possibility of using
more power. And the same happens with the MEE and
the minimum rate, as shown in Fig. 4. However, note that
the split factor affects the EE and the aggregated rate in
a different way. It can be seen that, as more resources a
D2MD group can have, the less EE it attains. Contrarily,
the aggregated rate keeps increasing as more resources are
available. Since the difference in the achieved EE over the
various power values is not as high as in the previous cases,
a higher aggregated rate may compensate for the lower EE.

6.3.2 Minimum Rate Constraints

In this experiment, we set the minimum transmission power
for all the users in a coalition to 10 dBm, and fix the minimum
rate for D2MD groups to a very low value, 0.01 bit/s/Hz,
for each active RB. This is done with the only purpose of
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Figure 4. Performance in the general case.

avoiding very low quality RBs in the solution, from the point
of view of energy efficiency. The minimum rate for CU users
and D2MD groups is varied in the range of 0.1 bit/s/Hz to
0.3 bit/s/Hz, and we have picked values for " and  equal
to 8 and 4, respectively, with a split factor B = 4. The results
are shown in Table 5. It is worth to mention that we decreased
the range of the minimum rate because, as it increases, the
problem feasibility is relatively high. Obviously, the rate and
the EE for both the system and individual users decrease as
we set tighter constraints. Even for a predefined transmission
power, users will always require higher values to satisfy the
requested minimum rate. In this case, the interference in the
coalition will increase, thus resulting in a lower rate and
more consumed transmission power.

6.4 Comparison with Other Approaches
To assess the performance quality of our coalition formation
algorithm, we compare it with a greedy algorithm that
evaluates all the possible pairings between the available
CUs and D2MD groups to select the CU-D2MD pair that
achieves the highest GEE. Note that the optimal selection
process may be affected by the number of receivers in the
D2MD groups. In fact, those groups with more receivers can
achieve higher rates with lower power consumptions (i.e.,
higher GEE). Therefore, to guarantee a fair comparison, we
used the KNN algorithm to form 5 groups with the same
number of receivers (3 receivers per D2MD group).

We considered the three following cases: i) dedicated
CUs, so each coalition is composed of just a CU user and
a single D2MD group (A = B = 1); ii) shared CUs, so each
D2MD group can be part of just a single coalition (B = 1),

but each coalition can be composed of up to 2 groups (A = 2).
The number of CU users and D2MD groups is set to " = 2
and  = 4, respectively; iii) the general case, so we also allow
a group to appear in different coalitions. In this setting, the
number of CU users and D2MD groups is fixed to " =  = 4,
and the reuse and split factors are set to A = B = 2.

In every test scenario, transmission powers are in the
range −5 dBm to 25 dBm and the minimum rate per channel
is 0.1 bit/s/Hz. Fig. 5 shows the global EE and aggregated
rate obtained in each simulation experiment. Clearly, our
coalition formation algorithm performs very close to the
optimal, yet with much lower complexity.

In addition, we compare our semi-distributed approach
with the iterative matching algorithm proposed in [19],
a fully distributed technique. Similar configurations were
used, but with " = 3,  ∈ {6, 9}, A ∈ {2, 3}, and B = 1.
Fig. 6 presents both the system and the individual EE and
rates. Clearly, EE increases monotonically with the power
budget of a user until reaching a maximum. This happens at,
approximately, the same values for both techniques, but note
that the distributed approach shows a sharp decline beyond
that point. Therefore, our algorithm controls much better
the aggregated interference, thus resulting in a significant
performance improvement in both EE and rates. Additionally,
our semi-distributed approach also permits to maximize the
MEE and the minimum rate among network users, thus
providing a higher and fairer performance for them.

Finally, we compared this semi-distributed approach with
the centralized one proposed in our previous work [17].
Fig. 7 shows that the semi-distributed approach performs
slightly better because users make their resource allocation
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Figure 5. GEE and aggregated rate with the proposed coalition formation algorithm and the greedy one.
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Figure 6. Performance comparison: proposed semi-distributed approach vs. the fully distributed one.

decision depend on local information, which is generally
more accurate. The advantages of the semi-distributed
approach will become more remarkable as the number of
users increases since, in this regime, the problem complexity
and overhead signaling with a centralized approach are likely
to overload the central entity, with a huge burden in both
computation and processing time.

6.5 Algorithm Convergence
To evaluate the convergence of the proposed algorithm we
devised three test cases: i) Dedicated CUs scenario with each
cluster limited to a single RB and the number of CU users
and D2MD clusters set to 5; ii) shared CUs scenario with
5 CUs, 10 clusters and A = 2, so up to 2 clusters can share
a single RB; iii) general sharing with 4 CUs and clusters,
and A = B = 2. The maximum transmission power for all the
devices is 10 dBm and the minimum rate per channel is 0.1

bit/s/Hz. In the general case scenario, clusters can divide
the total achieved rate over the B = 2 channels, thus the total
minimum rate is set to 0.2 bit/s/Hz. For clustering we used
the KNN algorithm, so the clusters are homogeneous clusters
of size 3.

Simulation results for the convergence of EE in the
dedicated CU case are shown in Fig 8. Only a few iterations
(2–3) suffice for the semi-distributed algorithm to reach
its stationary value, with only marginal improvement in
subsequent rounds. Fig 9 illustrates the average aggregated
interference per coalition in the shared CUs resource sharing
case. The graph shows that most of the reduction in the
aggregated interference is attained in the very first merge-
split moves of the algorithm, with the remaining ones
being useful just for minor changes in the coalitions and
for adjusting the transmission power. So, once the stable
coalitions are found, no further changes take place into the
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Figure 7. GEE and aggregated rate with the proposed semi-distributed approach and the centralized one.
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Figure 9. Average aggregated interference per coalition vs. Number of
iterations.

structure of the resource allocation, but only in the power
control algorithm. As shown, on average, a coalition needs
only 3–4 iterations to converge, so the algorithm is fast.
The convergence time increases slightly as more clusters are
seeking for RBs, e.g., when the number of D2MD clusters
is set to 20 in the general sharing case, and the average
number of iterations required for a coalition to converge
is between 4 and 6 (see Fig. 10). Finally, we remark that
in Figs. 9–10 the values of interference are relative to the
unit of −20 dBm. Therefore, Figs. 8–10 jointly illustrate that,
for typical realizations of the PPP process, convergence to
a stable partition of UEs into coalitions happens after just a
few execution rounds of Algorithm 1.
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Figure 10. A problem instance: Aggregated interference per coalition vs.
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6.6 Discussion

Simulation results show that the obtained EE and rates
increase with the transmission power budget up to the
saturation point, thus remarking the fact that we have
uniformly identified the EE vs. capacity trade-off of D2MD
wireless networks. Note that, as the interference becomes
stronger, users are forced to consume more energy to satisfy
the target minimum rate. Therefore, no further improvements
can be achieved in rate in exchange of more transmission
power. We have also confirmed experimentally that the
clustering techniques have little or negligible effect on the
obtained EE and rates.

After giving the general idea, we will discuss the different
resource sharing scenarios. In the dedicated CUs scenario
with a one-to-one allocation between CUs and D2MD groups,
the interference is at its minimum level, as it will not
accumulate on the side of the CUs neither the D2MD groups.
As shown in Fig. 2, in this scenario it is preferred to start with
a high number of users because this yields a relatively high
aggregated rate with a minor cost in GEE. However, note that
this might not be completely fair when considering the users’
individual EE, so seeking a moderate number of users will
provide an acceptable balance for the loose in the MEE and
in the aggregated rate in terms of the gain in the GEE. On the
other hand, the shared CUs scenario aims to support more
D2MD groups, as multiple groups can share the resources
of a single CU. This clearly hardens the challenge since the
interference accumulates on both sides from the groups. Even
though we kept the same number of resource blocks in the
simulation experiments (5 RBs), we managed to support up
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to 25 clusters with a reuse factor equal to 5. Comparing these
scenarios, higher EE values are obviously achieved with
dedicated CUs but, for a low transmission power budget,
shared CUs are also efficient. The low transmission budget
helps to create an environment where the interference is more
controlled. As a result, the network capacity is efficiently
increased, thus leading to an acceptable trade-off in terms of
EE and rate as shown in Fig. 3. Finally, we also allowed that
a D2MD group use multiple CUs, i.e., the general case for a
resource allocation scenario. To guarantee the efficiency on
this latter scenario, D2MD groups require a high transmission
power budget to attain high EE and rate values. Compared
to the previous cases, this scenario has the most suitable
balance in terms of network and individual EE and rates, as
shown in Fig. 4. Allocating more resources to D2MD groups,
as well as enough transmission power, will guarantee that
both the system and individual EE and rates will remain
high with the lowest possible energy consumption. As a
conclusion, and after examining both the central and the
distributed approaches for resource allocation, we conclude
that it is possible to take advantage of underlay D2MD
communications when properly configured. It is obvious that
RBs have limited capacity and that, in some cases (that is,
with high reuse factors), more users will result in a negative
effect on EE and rate unless the transmission power is tightly
controlled. Also, high split factors require more transmission
power to attain the desired performance. In summary, the
general scenario provides a good balance between system
and individual performance, while supporting a moderate
number of users.

7 CONCLUSIONS

In this paper, we investigated a two-stage semi-distributed
solution for the joint power control and resource allocation
problem of underlay D2MD communications on cellular
networks. A coalitional game model with a partition function
based on the aggregate co-channel interference is used to
solve in nearly optimal way the allocation of channels under
arbitrary constraints on the minimum rate and the maximum
power. Overlapping coalitions are allowed for enlarging the
solution space. The power control algorithm is instead based
on a fractional programming approach. Both phases are
coupled, and are run in an alternate way, so the transmission
powers are always optimized for every transient coalition
structure found so far. The combined framework is unified—
allows to maximize system-level EE as well as individual
EE— and results in a performance very close to the optimal,
obtaining better results than existing approaches and being
insensitive to cluster size. We demonstrate as a consequence
that the gap between the individual EE of different users is
lower than when only the individual EE is maximized. In
this respect, our approach obtains more fairness—for a given
aggregated transmission rate—than the selfish maximization
of EE by a set of independent users.

As a semi-distributed approach, since only the power con-
trol phase requires inter-cluster information and the resource
allocation is decentralized, the proposed scheme is scalable.
Aggregated interference can be easily measured in practice,
and, since this is the only signal exchanged during the game,
the implementation of the algorithm has low complexity

and overhead. Consequently, it realizes the advantages of
communications without a central infrastructure like D2D.

Although we focused on least-interferrer channel allo-
cation and power minimization to tightly control the inter-
ference regime, other approaches can be investigated. More
efficient multicast data delivery with D2D communications
can be designed by using reconfigurable intelligent surfaces
for mitigating the interference, or separating interference
from information-bearing signals at the receivers via non-
orthogonal multiple access techniques. The performance
analysis of D2MD under those conditions constitutes a
promising research direction.
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