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6 INTRODUCTION

Introduction

This dissertation is of cumulative form and therefore primarily composed of the
contents of 8 papers (see Section 0.1), all of which are the result of work conducted
under the research program ”Cyber-Physical Networking”, financed through the
DFG in priority program SPP 1914. As indicated by its name, the now completed
program addressed open questions concerning control of and communication inside
networks, especially when the two are intertwined. The goal of the program can
be described as follows: Developing new analytic frameworks in which plant control
and communication (either between multiple controllers or within the control loop)
are designed jointly. In contrast, a conventional design approach would see both
issues being handled separately.

The program consisted of several research groups with individual projects. The
project responsible for the development of this dissertation is labeled ”Model-
Predictive Cyber-Physical Networking” and was worked on by

• Dipl.-Ing. Dipl.-Ing. Richard Schöffauer (author of this dissertation) and

• Prof. Dr.-Ing. habil. Gerhard Wunder (supervisor of this dissertation)

from the Freie Universität Berlin, and a collaborating research group, consisting of

• Dipl.-Ing. Jannik Hahn and

• Prof. Dr.-Ing. Olaf Stursberg

from the Universität Kassel. While the Freie Universität Berlin would field expertise
in the communication domain, the Universität Kassel would do so for the control
domain.

The core idea behind the ”Model-Predictive Cyber-Physical Networking” project
revolves around predicting communication delay and letting the plant controllers
use this prediction to improve their performance. In its simplest form, the set-
up consists of a set of plant controllers (that are coupled to a certain degree) and a
communication network over which the controllers exchange information. As a basic
example, one might think of the control of a car platoon where each car (plant) has
its separate dynamics but the control decisions are coupled through a constraint
involving the minimum and maximum distance between two neighboring cars in
order to maintain formation and avoid collisions. Conventionally, one would design
a communication solution that guarantees a certain worst-case communication delay
with which data is exchanged between the cars and then, based on this worst-case
delay, design the plant controllers accordingly. In the project’s joint design approach,
however, we assume that the communication delay is predictable to some degree and
design a communication solution that exploits this fact to not only minimize the
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worst-case delay but to predict the immediate delay over the next few time-steps.
These delay forecasts are then communicated to the cars (plants) which make use
of them and improve their control decisions, thereby improving the overall control
performance. Therefore, the research focuses on two problems:

1. How can the delay be predicted?

2. And how can the delay forecasts be utilized by the controllers?

The papers contained in this dissertation are focused on the first question and
thus on the communication domain. The second question was investigated by our
research partners from the Universität Kassel and therefore does not lie in the scope
of this dissertation. However, there are 2 papers that are collaborative works and
consequently also investigate problems from the control domain. Since their content
is very hard to grasp for readers that are not familiar with the topic, we have
dedicated Section 0.4 to the explanation of the main mechanisms through which the
plant controllers may utilize the delay forecasts.

0.1 List of Papers

This dissertation consists of 8 papers out of which

• 2 Papers have been published in peer-reviewed journals,

• 1 Paper has been submitted for publication in a peer-reviewed journal,

• 4 Papers have been published in peer-reviewed conferences,

• and 1 Paper has been published on an open-access website.

The journals and conferences fall under the umbrella of the IEEE (Institute of
Electrical and Electronics Engineers) and the IFAC (International Federation of
Automatic Control) which are the largest technical professional organizations in
their respective fields.

All Papers are co-authored, 6 of them solely by Prof. Dr.-Ing. habil. Gerhard
Wunder who is the supervisor of this dissertation. 2 papers are also co-authored by
J. Hahn and O. Stursberg and do contain parts without any contribution from the
dissertation’s author. These parts are clearly marked with a green line on the side
and make up roughly 10% of the overall content of this dissertation.

Rather than using chronological order, we will present the papers based on their
content, facilitating the following separation into 3 categories:
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Predictive Control for Queueing Networks

Paper 1. R. Schoeffauer, G. Wunder
”Predictive Network Control and Throughput Sub-Optimality of
MaxWeight” (Predictive Network Control)
IEEE European Conference on Networks and Communications (EuCNC),
2018

Paper 2. R. Schoeffauer, G. Wunder
”Model-Predictive Control for Discrete-Time Queueing Networks With
Varying Topology” (Throughput Optimality of PNC)
IEEE Transactions on Control of Network Systems (TCNS), 2021

Paper 3. R. Schoeffauer, G. Wunder
”Stability Results on Synchronized Queues in Discrete-Time for Arbitrary
Dimension” (Assembly-Queues)
arXiv, 2020

Reliable Predictive Algorithms

Paper 4. J. Hahn, R. Schoeffauer, G. Wunder, O. Stursberg
”Distributed MPC with Prediction of Time-Varying Communication De-
lay” (Quadratic Reliable Prediction)
IFACWorkshop on Distributed Estimation and Control in Networked Sys-
tems (NecSys), 2018

Paper 5. R. Schoeffauer, G. Wunder
”A Linear Algorithm for Reliable Predictive Network Control” (Linear
Reliable Prediction)
IEEE Global Communications Conference (GLOBECOM), 2018

Predictive Control for Age-of-Information

Paper 6. J. Hahn, R. Schoeffauer, G. Wunder and O. Stursberg
”Using AoI Forecasts in Communicating and Robust Distributed Model-
Predictive Control” (Prediction of AoI)
IEEE Transactions on Control of Network Systems (TCNS), 2021

Paper 7. R. Schoeffauer, G. Wunder
”An Algorithm for Exact Numerical Age-of-Information Evaluation in
Multi-Agent Systems” (State-Space of AoI)
IEEE International Conference on Communications (ICC), 2022

Paper 8. R. Schoeffauer, G. Wunder
”Age-of-Information in Clocked Networks” (AoI in Clocked Networks)
In Submission, IEEE/ACM Transactions on Networking
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0.2 Copyright Agreements

In accordance with the IEEE Copyright, we have to make the following notice for
the corresponding papers:

Paper 1. ©2018 IEEE. Reprinted, with permission, from
R. Schoeffauer, G. Wunder, ”Predictive Network Control and Throughput
Sub-Optimality of MaxWeight”, IEEE European Conference on Networks
and Communications (EuCNC), 2018

Paper 2. ©2021 IEEE. Reprinted, with permission, from
R. Schoeffauer, G. Wunder, ”Model-Predictive Control for Discrete-Time
Queueing Networks With Varying Topology”, IEEE Transactions on Con-
trol of Network Systems (TCNS), 2021

Paper 5. ©2018 IEEE. Reprinted, with permission, from
R. Schoeffauer, G. Wunder, ”A Linear Algorithm for Reliable Predictive
Network Control”, IEEE Global Communications Conference (GLOBE-
COM), 2018

Paper 6. ©2021 IEEE. Reprinted, with permission, from
J. Hahn, R. Schoeffauer, G. Wunder and O. Stursberg, ”Using AoI Fore-
casts in Communicating and Robust Distributed Model-Predictive Con-
trol”, IEEE Transactions on Control of Network Systems (TCNS), 2021

Paper 7. ©2022 IEEE. Reprinted, with permission, from
R. Schoeffauer, G. Wunder, ”An Algorithm for Exact Numerical Age-
of-Information Evaluation in Multi-Agent Systems”, IEEE International
Conference on Communications (ICC), 2022

Furthermore, we refer to the following message by the publisher:

“In reference to IEEE copyrighted material which is used with permission in
this thesis, the IEEE does not endorse any of Freie Universität Berlin’s prod-
ucts or services. Internal or personal use of this material is permitted. If
interested in reprinting/republishing IEEE copyrighted material for advertising
or promotional purposes or for creating new collective works for resale or re-
distribution, please go to http: // www. ieee. org/ publications_ standards/

publications/ rights/ rights_ link. html to learn how to obtain a License from
RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the
Archives of Canada may supply single copies of the dissertation.”

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
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0.3 Structure & Notation

The structure of this dissertation follows a simple pattern. Ignoring first and last
chapters, each chapter contains one of the papers from the list in Section 0.1 as
its main content together with preliminary and concluding remarks. These remarks
serve as a guide that leads the reader from one paper to the next and shed some light
on selective additional context necessary to understand the paper since each paper
was written with a certain audience in mind (which usually was already familiar
with concepts referred to in the paper). Additionally, they also critically discuss
weak points in the paper and may extend on certain concepts that were cut short
(usually due to page limitation).

The notation in the original papers is not harmonized. While the earlier papers
are written from the perspective of a novice researcher, later papers profit from
the author having read a significant amount of papers of similar content. For this
dissertation, the author tried to harmonize the notation in the chapters as much
as possible since this drastically improves accessibility of the content. However, as
this directly violates the doctorate rules and regulations set by the department and
the university, the papers are once again printed in the appendix, this time in their
original version.

As the title of this dissertation suggests, prediction of network states is a fun-
damental method applied throughout the presented papers. If we let qt denote a
state-vector at time-step t, then a prediction of that state made in time-step t0 < t
should be denoted as

qt|t0 (1)

Indeed, this notation is used in the field of Model-Predictive Control and therefore
can be found in Papers 4 and 6 (where it is used in those parts that contain no
contribution from the dissertation’s author). Note that qt|t0 is not to be confused
with E[qt|It0 ] (where It0 stands for whatever information is available in time-step
t0), as the prediction may be performed over a totally different system-model, e.g.
in order to reduce computation time. In this dissertation, we will use a slightly
different notation for two reasons:

1. In Paper 2 we utilize a system-model together with two different prediction-
models, already forcing us to find an additional way to distinguish between
qt|t0 from one prediction-model and qt|t0 from another one.

2. As we only treat time-invariant systems and their control, w.l.o.g. we can
always assume that the current time-step, i.e. the time-step in which the pre-
diction of future states is performed, is t0 = 0. However, always entailing
the zero in qt|0 just makes the formulas harder to read without revealing any
important information.

Therefore, we will write q̇t to denote a prediction instead of qt|t0 . This notation
implicitly assumes that t0 = 0 and stresses the fact that q̇t could result from an
entirely different system-model (which we usually refer to as the prediction-model).
We do not make use of any time derivatives, so there is no opportunity for the reader
to confuse q̇t with

dq
dt
.

As a final remark on the notation, note that we will typically use lower indices
(xt) to denote the time index. An upper index is used to count elements of a set
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(X = {x1, x2, x3}) or vector (x = (x1, x2, x3)⊺). Whenever the upper index is indeed
an exponent, it is usually very clear from the context and mentioned in the text
immediately before or after the occurrence.

0.4 Delay Forecasts in the Control Domain

As already mentioned, this section tries to cover the most important aspects of
the control realm. This is necessary to justify the dissertation’s focus on network
prediction and complete the scope of the overarching research project.

To facilitate exploitation of delay forecasts in the control domain, we employ
model predictive controllers (MPCs). What differentiates MPCs from conventional
controllers is the fact that they explicitly evaluate the impact of the control decision
on the future system behavior. Let the equation

xt+1 = Axt +But +Ddt (2)

denote a linear, discrete-time system evolution with xt, ut, dt being state-, control-,
disturbance-vector of arbitrary dimension and A,B,D being matrices that project
the corresponding vectors into the state-space. For simplicity, we assume that
A,B,D are invertible. Like all controllers, an MPC takes the currently available
information (state xt and possibly all quantities from the past) and produces a
control-vector ut. It does so by optimizing a predefined objective (e.g. a cost func-
tion) that is a function not only of the immeditate next state xt+1 but also of future
states xt+2, xt+3, . . . xt+H . Of course, these future states are unknown in time-step
t and therefore the MPC controller uses a prediction-model to obtain an estimate
(or prediction) of these states. This is why H is called the prediction horizon. Nat-
urally, it is prudent to use a prediction-model that is very similar to the actual
system evolution (2). In our example, a prediction of future states can be developed
by iteratively applying (2) which yields for t = 0 and H = 3:x1

x2

x3

 =

Ax0

A2x0

A3x0

+

 B
AB B
A2B AB B

u0

u1

u2

+

 D
AD D
A2D AD D

d0
d1
d2

 (3)

(Throughout the dissertation, we will leave zero-entries in matrices vacant as long
as it supports readability.)

The disturbances d0, d1 and d2 are unknown at time-step t = 0. However, as time
progresses these quantities can be observed. E.g. in time-step t = 2, disturbance d0
can be deduced from the past observation as d0 = D−1 (x1 − Ax0 −Bu0). Hence,
when applying u1 we will have knowledge of d0 and thus u1 can be a function of
d0. Though this dependency could take any shape, it is prudent to make it linear
in order for the optimization of the cost function to remain practical. Hence we can
define the dependency asu̇0

u̇1

u̇2

 =

 0
F1,0 0
F2,0 F2,1 0

ḋ0
ḋ1
ḋ2

+

v̇0
v̇1
v̇2

 (4)

where quantities are now denoted with a dot ˙ on top because they are no longer
part of the actual system evolution. (There is no connection to the frequently used
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notation for time derivatives.) They are part of the prediction-model, since splitting
the control u into a term for linear disturbance feedback Fi,j · ḋ and an offset v̇
is a simplification that does not have to hold true for the actual system evolution
in the end. It is simply a way for us to efficiently obtain a prediction of future
system-states. We also do not know the exact disturbances d that will impact the
system in future time steps. Hence, they are, for now, replaced by ḋ. Plugging this
substitution into (3) yieldsẋ1

ẋ2

ẋ3

 =

Ax0

A2x0

A3x0

+

 B
AB B
A2B AB B

v̇0
v̇1
v̇2


+

 B
AB B
A2B AB B

 0
F1,0 0
F2,0 F2,1 0

+

 D
AD D
A2D AD D

ḋ0
ḋ1
ḋ2

 (5)

Again, we have to replace x with ẋ because the states on the LHS are not necessarily
the states that will occur in the future, they are just a suitable prediction of them.
Now that the controller has obtained a prediction of future system-states, it can
use them to optimize an objective that typically revolves around minimizing the
distance between the states and a reference rt. A common control objective could
look like this:

min

ẋ1

ẋ2

ẋ3

−
r1
r2
r3

⊺

Q

ẋ1

ẋ2

ẋ3

−
r1
r2
r3

 (6)

with some semi-definite matrix Q.
The minimization is performed over the offsets v̇ but also over the feedback

matrices Fi,j since they were arbitrarily introduced by us. The disturbances ḋ are
usually replaced by their bounds such that the optimization yields values for v̇ and
Fi,j which abide to given constraints even in the worst case scenarios.

To recap, the MPC optimizes this objective, using the prediction-model, and
obtains the vectors v̇t and matrices Fi,j. Both can be combined to yield a control
trajectory consisting of u̇0, u̇1, u̇2. Next, the controller sets u0 = u̇0, i.e. applies the
first control of the control trajectory to the actual system (2). However, it does
not use u̇1 or u̇2 for the upcoming time-steps but instead repeats the entire process,
resulting in an implicit control law.

Having established the basic principle via which an MPC operates, we can get
to the real question at hand: how can the MPC controller use delay forecasts to
improve its control decision. For that, we need to look back at the feedback matrix
for the disturbances. Assuming that H = 5 we get

u̇0

u̇1

u̇2

u̇3

u̇4

 =


0 0 0 0 0
■ 0 0 0 0
■ ■ 0 0 0
■ ■ ■ 0 0
■ ■ ■ ■ 0


︸ ︷︷ ︸
Feedback Matrix


ḋ0
ḋ1
ḋ2
ḋ3
ḋ4

+


v̇0
v̇1
v̇2
v̇3
v̇4

 (7)

For simplicity, we substituted the matrices Fi,j with black squares. Notice how u̇0

cannot make use of any disturbance feedback, since a disturbance in time-step t can
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at best be observed in time-step t+1. This is why, in the feedback matrix, elements
on the diagonal and above are zero matrices. However, the illustrated population of
the matrix is the best-case scenario. It might take even longer to determine a past
disturbance, e.g. when the last observed system-state is also several time-steps old.
For our scenario, the disturbances can be interpreted as system-states from other
controllers that are communicated over a network with delay. If the worst-case delay
grows, then feedback is delayed and entries from the feedback matrix turn to zero.
e.g. if the worst case delay is 3, then u̇3 is the first control that has knowledge of ḋ0,
as illustrated in the following examples:



0 0 0 0 0
■ 0 0 0 0
■ ■ 0 0 0
■ ■ ■ 0 0
■ ■ ■ ■ 0


Worst-Case Delay = 1



0 0 0 0 0
0 0 0 0 0
■ 0 0 0 0
■ ■ 0 0 0
■ ■ ■ 0 0


Worst-Case Delay = 2



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
■ 0 0 0 0
■ ■ 0 0 0


Worst-Case Delay = 3

However, using delay forecasts does allow us to fracture this structure, as now
every time-step is given its separate delay value (which logically is as good or better
as the worst-case delay). This facilitates the repopulation of the feedback matrix to
some degree as the following comparison illustrates:



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
■ 0 0 0 0
■ ■ 0 0 0


Delay = {3, 3, 3, 3, 3}



0 0 0 0 0
0 0 0 0 0
■ 0 0 0 0
■ 0 0 0 0
■ ■ ■ ■ 0


Delay = {2, 3, 2, 1, 3}

This time, the delay is given via a trajectory such that {2, 3, 2, 1, 3} expresses that
the delay is 2 in time-step t = 0, 3 in time-step t = 1, 2 in time-step 2, and so on.
This way, the MPC has more freedom, i.e. more variables, over which to optimize
the objective and can thus potentially obtain an improved control-vector (compared
to the MPC controller that can only count on the worst-case delay).

This completes the first chapter of this dissertation. A separate treatment of the
project’s main concepts of the network control aspect is not necessary since each of
the following papers is self-contained and therefore already includes an introduction.
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Abstract We present a novel control policy, called Predictive Network Con-
trol (PNC) to control wireless communication networks on packet level, based on
paradigms of Model-Predictive Control (MPC). In contrast to common myopic poli-
cies, who use one step ahead prediction, PNC predicts the future behavior of the
system for an extended horizon, thus facilitating performance gains. We define an
advanced system-model in which we use a Markov chain in combination with a
Bernoulli trial to model the stochastic components of the network. Furthermore,
we introduce the algorithm and present two detailed simulation examples, which
show general improved performance and a gain in stability region compared to the
standard MaxWeight policy.
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1.1 Preliminary Remarks

As the first published work, this paper’s topic is entirely based upon the fundamental
questions raised in the project proposal and therefore takes a first approach to bring
prediction to the control of queueing networks. In order to do so, the paper proposes
a new control policy and compares it to the well-known MaxWeight policy (MW).
While it includes a sufficient introduction to queueing networks, it lacks any further
details on the MW policy due to a page restriction and the target audience at the
conference. However, since it is very much related to the proposed policy and arises
various times in the other papers as well, it is prudent to give a fairly detailed
description of MW at this point.

The MW policy operates on queueing networks, a detailed description of which
is already given in the paper. Very concisely, a queueing network is expressed by
the following system equation:

qt+1 = qt +RMtvt + at

qt, at ∈ Nn
+

vt ∈ {0, 1}m

Rt ∈ {−1, 0, 1}n×m

(1.1)

The system-state qt is subject to an influx term, consisting of the so-called arrival at
and an efflux term RMtvt. The matrix product RMt maps a binary control-vector vt
into the state-space. While R is fixed, Mt is a temporal realization of a probabilistic
counterpart. Furthermore, vt is constrained by Cvt ≤ c. The goal is to prevent the
system-state qt from growing to infinity.

Usually, Mt is independent of q0 and is the result of a Bernoulli trial (component-
wise) on a matrix M̄ such that M̄ = E[Mt]. The MW policy is based on the simple
quadratic minimization problem

min
v0

E[q⊺1q1 | q0]

=min
v0

(q0 + a0)
⊺ (q0 + a0) + 2 (q0 + a0)

⊺ RM̄v0 + v⊺0M̄
⊺
R⊺RM̄v0

s.t. Cv0 ≤ c, q1 ≥ 0

(1.2)

that tries to minimize the average squared queue-state of the next time-step (for
simplicity, the current time-step is set to t = 0). Crucially, the quadratic term
v⊺0M̄

⊺
R⊺RM̄v0 in (1.2) is bounded because the values of all quantities cannot ex-

ceed 1 per definition. In contrast, the linear term 2 (q0 + a0)
⊺ RM̄v0 from the same

equation can grow to infinity due to the queue-state q0, which is not bounded. Hence,
given large enough q0, the optimal control v∗0 for solving (1.2) is almost certainly the
control that minimizes the linear term by itself. The MW policy (interpreted as a
function ϕ(q0)) is therefore defined as

MW: ϕMW(q0) := arg min
v0

q⊺0RM̄v0 s.t.

(
Cv0 ≤ c

q0 +R−v0 ≥ 0

)
(1.3)

where R− is the routing matrix R without any positive entries so that q1 ≥ 0 can
be guaranteed no matter the realization of Mt.

It is prudent to define the control-option ut = RM̄vt to simplify the formulation.
The control-option ut can be interpreted as the expected impact of vt on the state-
space: E[q1 | q0] = q0 + u0 − a0, and thus represents the expected efflux. Using this
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notation, MW becomes

ϕMW(q0) = arg min
u0∈U

q⊺0u0 (1.4)

where U = {u0, u1, . . . } represents the set of all available control-options which is
dictated by the constraints.

q

−u1

−u2

−u3

Fig. 1.1: Visualization of the MW policy. In a 2-dimensional state-space, MW chooses
the control-option, whose negative vector has the largest projection on the state-vector.

It can be useful to visualize the MW policy through Figure 1.1. To simplify
the matter as much as possible, we drop the time index. According to (1.4), MW
chooses the very u whose negative vector yields the largest projection onto the
state-vector q. Figure 1.1, top-left, depicts the state-space with a state-vector q
inside. Obviously, out of the three given control-options, −u2 produces the largest
projection onto q, and thus MW maps this specific system-state q onto the control-
option u2. Determining the largest projection for every queue-state results in a
separation of the state-space into areas, which map the state-vector q onto a control-
option u as shown in the top-right where each colored area maps to an equally colored
control-option.

Of course, we have to keep in mind the constraint q0 + R−v0 ≥ 0 which forbids
certain control actions to be considered if q is too small, leading to a more compli-
cated mapping when q is close to the origin of the state-space. This is illustrated in
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the bottom-left picture. (Compared to the previous pictures, now the zoom factor
is changed, solely for the sake of improved visualization.) The bottom right picture
depicts a case with a different set of control-options. This time, the green control-
option is dominated by the blue one, i.e. there is no queue-state q for which the
MW policy would activate the green control-option. (Queue-states cannot become
negative.)

Finally, we have to mention that MW features throughput optimality as its most
important property. For a succinct explanation, notice that the efflux in (1.1), i.e.
the term RMtvt, is bounded. Hence, not every rate of influx, given by E[at], can
be compensated by the efflux. E.g., if RMt is such that the network only allows for
one packet per time-step to leave the system (even under the best possible choices
of vt), an average arrival of two packets per time-step can never be compensated, no
matter the policy. Consequently, the queues in the network would grow to infinity.
A policy is called throughput optimal if it can stabilize the network (i.e. prevent the
state from growing to infinity) for all arrival rates, which can be compensated by
the network topology (given through RM̄) at all.

1.2 Paper Body

1.2.1 Introduction and Motivation

Modern wireless networks, such as 5G, have an increasing amount of options to route
packets to multiple nodes, making information flow control essential for throughput
performance, e.g. to avoid bottlenecks due to cell overload, or to exploit diversity of
wireless links for low latency communication [1]. Seminal work on wireless network
control was published in [2] in 1992 and introduced the so-called MaxWeight policy
(MW). This policy still stands as a benchmark and was improved upon many times,
e.g. in [3] and [4]. However, MW and all its deviations are of the myopic type [5].
This means, they only make decisions based on immediate next step system changes
(while using a time-discrete network description which is the most convenient model
due to clocked devices in reality). Although not without its flaws (e.g. large delays
of single packets under low workload [6]), this approach used to be reasonable due to
limited amount of computational resources and high pace requirements. Especially
in simple network topologies (e.g. broadcasting), these policies are well studied [7].
Nowadays though, with advancements in computational power, we have the option of
using more mathematically ambitious algorithms to devise policies that can improve
on the network behavior. Initial attempts in this direction were made in [8], where
in each time-step a draining problem is solved to minimize delay for an OFDM
broadcast channel.

In this paper, we introduce a new network control policy, that we call Predictive
Network Control (PNC). Herein we use paradigms from the field of Model-Predictive
Control (MPC) [9], to devise a policy that predicts the system behavior for multiple
steps into the future. While we gain improvements in performance, this approach
additionally produces a schedule of predicted communications which seems very
intriguing for implementation into Cyber-Physical Systems, where control and com-
munication merge together.

This work is dedicated to present the new policy together with the utilized
system-model. We omit analytical results for later publications but provide numer-
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ical results which indicate inferiority of MW, in terms of performance and overall
stability.

1.2.2 System Model

We concentrate on the fairly common case of a discrete-time, packet-level communi-
cation network, where we have an arbitrary number of entities sending information
to one another [5]. Additionally, information may enter or leave the whole system.
If an entity receives more information than it can send, it has to store it in a buffer.
The amount of information in that buffer we call the queue length q

(i)
t (buffer i,

time-step t).
Considering all entities at once, we get the queue-vector qt ∈ Nn, n being the

number of all buffers. It is possible that one entity keeps multiple buffers, e.g. if the
received information is of different type. This will simply result in n being larger than
the number of entities. Between the entities there exist so-called communication
links as column vectors. E.g. the vector

(
−1 1 0 . . . 0

)⊺
would send information

from the first buffer (decreasing its size by 1) to the second buffer (increasing its
size by 1). These m vectors collected side by side form the routing-matrix R. We
can influence the network by deciding, which links are to be activated at the current
time. For that, we use the binary input- or control-vector vt ∈ {0, 1}m. The system
evolution can then be expressed as

qt+1 = qt +RMtvt + at (1.5)

where R ∈ Zn×m is discrete valued andMt ∈ {0, 1}nv×nv is a diagonal matrix which is
a temporal realization of a probabilistic counterpart. Information leaves the system,
when columns are activated, that possess more negative than positive entries. This
represents the information reaching its intended destination, which is the goal of any
controller. In contrast, the arrival-vector at ∈ Nn represents an information influx
by simply increasing qt (usually in a stochastic way). Its time average ā = E[a] ∈ Rn

+

we call the arrival-rate, which is pivotal for system stability.
If every possible communication link (column of R) could be activated at the

same time, there would be no need to steer the system. However, in reality some of
these links might not be available at the same time, because they share the same
communication channels (which have a limited capacity). These disjunct links can
be encoded in the constituency-matrix C which limits the control decisions through
Cvt ≤ c (with 1 being the vector of ones, with appropriate dimension). This means,
that the controller is usually left with the decision of which information to route
first. While this system-model is mostly in alignment to the usual one [2], we now
introduce some novel features, that aim to model especially wireless communication
more accurately.

(F1) We allow our links (columns of R) to have discrete values (in contrast to the
usual binary ones). This allows information of different type to have different
size or different importance since high entries in a communication link will
mean faster transportation.

(F2) We allow each column of R to have multiple positive and negative entries and
define that we can not activate a link, when (due to the system evolution) at
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least one entry of qt would become negative. The second part is equal to the
control restriction

vt ∈ Vt :=
{
vt ∈ {0, 1}m : Cvt ≤ c , qt +R−vt ≥ 0

}
(1.6)

where both inequalities are meant element wise and R− equals R without its
positive entries. This makes it possible to couple the processing of information,
or model a demand [5, p.273] by forcing certain buffers to only be depletable
together. Especially the last inequality in (1.6) deviates from the standard
models used in [2] and [5], and is responsible for many results that are presented
here.

(F3) As already done in [2], we capture the short term wireless characteristics (e.g.
channel fading), by introducing a diagonal weight matrixM ∈ [0, 1]nv×nv which
encodes the success probability of an activated communication link. Hence a
controller might activate some link in time-step t, which in the end will not
influence the system due to the communication being unsuccessful. More
specifically, we define that the controller has knowledge of all communication
links (now encoded as columns of the matrix R) and their success probabilities
(encoded in M). For the real system evolution however, we evaluate M by
performing Bernoulli trials (coin tosses) on its individual entries. Specifically,

Bern[ξ] =

{
1 w.p. ξ

0 otherwise
(1.7)

for any ξ ∈ [0, 1]. Using this operator on matrices means using it separately on
its individual entries. We then obtain Mt from (1.5) through Mt = Bern[M ].
As a result, some columns of RMt are set to 0, whereas others are as in R,
independent of the decisions made by the controller.

(F4) We capture long term wireless characteristics (e.g. entities leaving the en-
tire system), by having a whole set of probability matrices such that M ∈
{W i} , i = 1 . . . ns and choosing one of these through an underlying discrete-
time Markov chain (DTMC)

st = DTMC({1 . . . ns}, P, s0) (1.8)

on its index set {1 . . . ns} with left side transition matrix P and initial state s0.
In each time-step this DTMC will dictate, which W i to use for the description
in (F3). We can therefore write Mt = Bern[W st ]. This setup is tightly related
to discrete-time Markov jump linear systems [10].

1.2.3 Predictive Network Control (PNC)

We now introduce our new control policy, called Predictive Network Control (PNC).
Like for any policy, the purpose of PNC is to let the system process as much infor-
mation per time as possible, i.e. to escort it out of the system.

As mentioned, PNC is inspired by the paradigms of Model-Predictive Control
(MPC) [9]. Therefore we first define a prediction-model, where quantities are labeled
with a dot on top (q̇t, v̇t) so as to distinguish them from the actual system-model
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(there is no connection to the time derivative). A cost function J(·) then assigns
a cost to a whole trajectory of control-vectors ˜̇vt =

(
v̇⊺t v̇⊺t+1 . . . v̇⊺t+H−1

)⊺
. We

call the length of the trajectory the prediction horizon H. Going on, we calculate
the minimizing trajectory of input-vectors ˜̇v∗t and intuitively apply its first vector
v̇∗t to our system to advance to the next time-step t+1. However once there, we do
not apply the second vector of the optimal trajectory, which would be v̇∗t+1, since
it is outdated. We instead repeat the whole process (minimizing, applying the first
input-vector of the optimal trajectory) and thus obtain an implicit feedback control
law.

In what follows, we will assume that the current time-step is t = 0. We choose
the cost J(·) to be of quadratic form

J(˜̇v0, q0, s0) = E

[
H∑
t=1

q̇⊺tQq q̇t + v̇⊺t−1Qvv̇t−1

∣∣∣∣∣ q0, s0
]

(1.9)

with Qq and Qv being symmetric, positive definite matrices. Naturally, we do not
have a choice but to work with the expectation E[·] of future queue-vectors due to
the stochastic system evolution. For this cost function, we can find the optimal,
minimizing control ˜̇v∗0 by transforming the problem into a standard quadratic pro-
gram. The rest of this section shows how this can be accomplished (despite of the
stochastics in the system evolution).

To handle the DTMC, it helps to define expanded versions of st, P , and R as

ẽst = est ⊗ In P̃ = P ⊗ In R̃ =

RW 1

...
RW ns

 (1.10)

where est is the st-th unit-vector (which is 1 at the (st)-th component and 0 every-
where else). With this we can express the expected future routing-matrix given an
initial Markov-state as

R̄t(s0) := E[RMt | s0] =
(
P̃

⊺
ẽs0

)⊺
R̃ (1.11)

It follows that the expected queue-vector becomes

E[qt | q0, s0] = q0 +
t−1∑
i=0

R̄i(s0)v̇i + tā (1.12)

Substituting this into the cost function yields three cost terms, which are constant,
linear and quadratic with respect to our control:

J(˜̇v0, q0, s0) = Jc(q0, s0) + Jl(q0, s0)˜̇v0 + ˜̇v⊺0Jq(q0, s0)˜̇v0 (1.13)

The first term is independent of v̇t and therefore without concern to us. The linear
term can be expressed with (1.11) as

Jl(q0, s0) = q⊺02Qq


(H − 0) R̄⊺

0(s0)
(H − 1) R̄⊺

1(s0)
...

(H −H) R̄⊺
H−1(s0)


⊺

+ ā⊺R


(H + 1) (H − 0) R̄⊺

0(s0)
(H + 2) (H − 1) R̄⊺

1(s0)
...

(H +H) ( 1 ) R̄⊺
H−1(s0)


⊺

(1.14)
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For the quadratic cost term, we need an expression for the expected square of the
system-matrices. It is easy to verify that for k ≥ l

¯̄Rk,l(s0) := E
[
Mk⊺R⊺QRM l

∣∣ s0] = (P̃ lẽs0

)⊺


R̃
⊺
P̃ k−lẽ1QqRW 1

R̃
⊺
P̃ k−lẽ2QqRW 2

...

R̃
⊺
P̃ k−lẽnsQqRW ns

 (1.15)

It follows that

Jq(q0, s0) = Jq(s0) = (IH ⊗Qv) +


H · ¯̄R0,0(s0) (H − 1) · ¯̄R0,1(s0) . . .

(H − 1) · ¯̄R1,0(s0) (H − 1) · ¯̄R1,1(s0) . . .
...

...
. . .


(1.16)

Furthermore, we need to handle the following 3 constraints:

(i) The binarity of ˜̇v0
˜̇v0 ∈ {0, 1}m·H =: B (1.17)

(ii) The constituency of ˜̇v0
[IH ⊗ C] ˜̇v0 ≤ 1 (1.18)

(iii) The constraint of q̇t ∈ Nnq . Here, the discreteness is provided by the system-
model (1.5). However, there are several ways to translate the positiveness
into the optimization. Simply forcing q̇t ≥ 0 for t = 1 . . . H, resulting in H
so-called hard constraints, is most conservative and neglects any information
on the arrival rate (setting it to the worst case, which is 0). Indeed, it would
suffice to only force positiveness for the first evolution, q̇1 ≥ 0, since this alone
would already guarantee overall positiveness due to the repeated application
of the optimization. The rest of the constraints could then be reformulated as
soft constraints E[q̇t] ≥ 0 for t = 2 . . . H. We suggest an adjustable approach,
depending on the variance of the arrival. The more evenly the arrival, the
more soft constraints should be used. This should improve performance due
to a better prediction of the future states of the network. Using only one hard
constraint for the first two steps yields the following constraint

R− 0 0 . . .
R R− 0 . . .

R̄0(s0) R̄1(s0) R̄−
2 (s0)

...
...

. . .

R̄0(s0) R̄1(s0) R̄2(s0) . . . R̄−
H−1(s0)


︸ ︷︷ ︸

D(s0)

˜̇v0 ≤


q0
q0

q0 + 3ā
...

q0 +Hā


︸ ︷︷ ︸

d(q0, ā)

(1.19)

Multiple hard constraints up to time-step τ can be implemented by replacing
any expected system-matrices matrices with R on the LHS and removing any
ā term on the RHS of the constraint up until row τ . Note that the last matrix
in each row is denoted with (·)−. This operator transforms the matrix by
setting every positive entry of it to 0. Let A be any real valued matrix and
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aij its entries, then a−ij := min{aij, 0}. This is necessary to forbid the system
to route a single packet of information through multiple queues in a single
time-step.

Finally, we can define the PNC as the policy that in each time-step solves the
binary quadratic program

ϕPNC(q0, s0) := v̇∗0 = farg min
˜̇v0

Jl(q0, s0)˜̇v0 + ˜̇v⊺0Jq(s0)˜̇v0

s.t.

˜̇v0 ∈ B, [IH ⊗ C] ˜̇v0 ≤ 1, D(s0)˜̇v0 ≤ d(q0, ā)

(1.20)

and initializes the first optimal control v̇∗0 from its solution (i.e. the first argument,
farg). We implicitly assume, that the Markov-state s0 is known together with all
other used parameters.

1.2.4 Simulations

In what follows, we showcase the behavior of two exemplary networks, when con-
trolled by the PNC policy. We compare it directly with the MW policy, which as
mentioned is often used as a benchmark. Note however, that especially feature (F2)
makes MW deviate from its usual throughput optimal behavior. Also, since the ar-
rival has stochastic character, each simulation yields slightly different results. The
here presented graphs are therefore only representatives which, to the best of our
knowledge, do showcase the usual behavior of the quantity in question.

Note, that PNC, as defined in Section 1.2.3, uses a binary quadratic optimization
over a control variable of potentially high dimension (depending on horizon H).
Whereas MW uses binary linear optimization. Thus any gain in performance has
to be set into relation to the additional computational cost. Having this in mind,
we developed a modified version of PNC, called linear PNC (L-PNC), which does
neglect the quadratic term in the optimization (setting Jq(s0) = 0 in (1.20)). To
separate both versions, we will from now on call the standard PNC (as introduced
in Section 1.2.3) quadratic PNC (Q-PNC). Indeed, all simulations show little to
no change in performance when using L-PNC instead of Q-PNC, though this is still
subject to research. Finally, since MW does not consider any direct cost contributed
to the control-vector, we choose Qq = In and Qv = 0 to be able to compare the
policies.

Generic Example

We first consider an example, specifically constructed to showcase the mechanism
through which PNC dominates MW. This example does not need any probability
weights, as introduced in (F3) and (F4), but only makes use of (F1) and (F2).
Specifically we look at two queues, q[1] and q[2], who are subject to arrival rates
ā[1] and 0, respectively. As shown in Figure 1.2, the controller is in every time-
step presented with the same three mutually exclusive options (links), decoded as
columns in the constant routing-matrix

R =

(
−2 −1 −5
0 1 −1

)
(1.21)
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The first column directly decreases q[1] while not changing q[2]. This can be inter-
preted as the data of q[1] being processed and afterwards leaving the system. The
second column also decreases q[1] for the price of increasing q[2] which models a trans-
mission from q[1] to q[2]. The third column allows the controller to heavily decrease
q[1]; however according to (F2) it can only take this action if q[2] is nonempty. An
interpretation could be, that the parallel processing of the information is extremely
beneficial (e.g. due to a lack of storage).

q[1]

q[2]

r1

r3

r2

Fig. 1.2: Queueing model of the generic example. Packets only arrive at queue q[1] and
can only leave the system via the links r1 and r3.

For this specific case, we designed link 1 in such a way that MW will almost
always prefer it compared to link 2. We say that link 1 dominates link 2 under the
MW policy. As a consequence, MW will never be able to use link 3 (since there
will not be any information in q[2]). Hence the maximal arrival rate that MW can
handle is ā[1] = −R[1,1] = 2.

0

20

40

q[
1
]

t

MW
Q-PNC-H2
L-PNC-H2

−10 0 10 20 30 40 50 60 70 80 90 100 110

0
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q[
2
]

t

Fig. 1.3: Queue-states q
[1]
t and q

[2]
t over time for the generic example for 3 different

policies. The MW policy does not stabilize the system under the specific arrival process.

A superior strategy would be to switch periodically between link 2 and 3, enabling
the system to be stable under a maximal arrival rate of ā[1] = −1

2
R[1,2]− 1

2
R[1,3] = 3.
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PNC, with a horizon of at least H = 2 indeed follows this strategy when possible
(the stochastical character of at may prevent it from time to time). Through this
behavior, PNC does stabilize the Network for a wider set of arrival rates. Figure 1.3
compares the queue-states over the first 100 time-steps for the mentioned policies.
In this case, we chose ā[1] = 2.4 where we simulated at as a Bernoulli trial (coin toss)
with probability of 0.8 and a weight of 3. One can clearly see the growing queue
length under the MW policy, whereas any of the PNC policies does result in a stable
behavior. In other words: PNC can handle a larger network load than MW.

ā[2]

ā[1]

1

5

MW

Q-PNC

Fig. 1.4: Stability region for different policies for the generic example. While MW only
stabilizes the red region, Q-PNC stabilizes both the red and the blue region which can

be shown to be the largest possibly stabilizable region.

The whole stability region for MW is shown in Figure 1.4 as the red area. PNC,
implemented with full hard constraints, does expand onto this with the blue area
(but also still stabilizes the red one). For this specific example, we do not increase
the stability region if we chose H > 2. However, there do exist such networks where
the stability region increases with increasing horizon. E.g. changing the

(
−5 −1

)
column in the R matrix to

(
−5 −2

)
would be such a network.

Natural Example

The second example, that is showcased in the following, is obtained by modeling
a rather real world scenario. We consider two users, interacting through a mobile
game. Additionally a game master is also needed to provide neutral information to
both parties as shown in Figure 1.5. The game consists of many turns, each one
progressing according to the following scheme: The game master sends information
to both users; the game waits until both users interact with this information; their
inputs are communicated between each other and evaluated; the turn ends. This
network can be modeled with the help of three queues: q[1] holds the information, the
game master sends in the beginning of each turn; q[2] holds the information that was
successfully send to both users but is not yet processed due to missing interactions
by the users; q[3] symbolizes the inputs of the users and is increased, only when both
users did interact with the information from q[2]. Hence, information can only exit
the system, when both q[2] and q[3] are non empty, i.e. only when the game master did
successfully send information and both users interacted with it. We further define
two communication channels: one between the users and one from game master to
both users. We assume that both channels are mutually exclusive, so that in each
time step, a policy has to decide for one of them to be inactive. Figure 1.6 shows
the model of the network with arrivals (red) and communication links (blue).
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User 1

Game Master

User 2

Fig. 1.5: Set-up for the natural
example, depicting a game played by

two users.

q[1] q[2]

q[3]

r1

r2

Game Mater

User

Fig. 1.6: Queueing model of the natural
example. Packets can only leave the
system if the users (q[2] and q[3])

”cooperate”.

Note that q[2] acts as a buffer, which, when filled, allows for q[3] to be decreased.
The superiority of PNC over MW is based on the utilization of that buffer. Through
prediction of the Markov chain, PNC usually keeps this buffer at a higher level. MW
on the other hand tends to use this buffer to decrease q[3] every time it gets the chance
to do so, which is not the optimal strategy.

In this simulation example, we model the wireless characteristics according to
(F3) and (F4) by introducing a good network state, in which both communication
channels are guaranteed to work, and a bad network state, in which only the com-
munication between the users is possible. Both are represented by the weight matrix
W good and W bad respectively. We use the following set of parameters where we again
model the stochastics of at as Bernoulli trials:

ā =
(
0.5 0 0.9

)⊺
, C =

(
1 1

)
,

R =

−3 0
3 −1
0 −1

 , P =

(
0.1 0.2
0.9 0.8

)
,

W 1 = W good =

(
1 0
0 1

)
, W 2 = W bad =

(
0 0
0 1

) (1.22)

Figure 1.7 shows q[1] over time, which is an indicator for the speed of the game.
It therefore can be interpreted as a performance measure. We can see, that Q-
PNC outperforms MW already for H = 2. For H = 1, both policies exhibit the
same behavior (which as mentioned is an indication that the quadratic part of the
optimization does not influence the result significantly). It should be noted, that
both policies cannot stabilize the system for the specified arrival rate and that we
used soft constraint for all but the first evolution of the system in the PNC algorithm.

For a stabilizable arrival rate Figure 1.8 shows the performance gains that Q-
PNC with H = 3 yields compared to MW. The average queue-states are roughly
about 10% smaller for Q-PNC. We omit q[2] which is usually higher for PNC, since
it is meant to act like a storage and thus does not give any additional indication
on the performance. For these graphs, we switch between periods of high and low
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Fig. 1.7: The effect of larger prediction horizons H on the throughput performance.
Though no policy can stabilize the specific arrival, predictive control policies facilitate a

larger throughput.
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Fig. 1.8: Queue-states over time for a fluctuating arrival. Since the fluctuation prevents
MW to reach its steady state, Q-PNC-H3 manages to maintain lower queue-backlogs.

arrivals. Specifically we used ā[1] = 0.375 ± 0.3 and ā[3] = 0.38 ± 0.38 for intervals
∆t[1] = 100 and ∆t[3] = 250 respectively; the arrivals were initialized as Bernoulli
trials.

1.2.5 Conclusion

Our new control policy seems to outperform the standard MW policy when the
network is based on our more general system-model. Especially the gain in stabil-
ity region is a huge and surprising advantage. Another conclusion, that might be
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overlooked when reading this paper, is the following negative indication: for rather
simple networks (e.g. broadcasting scenarios), our policy does not lead to any sig-
nificant gains. After the initial results presented here, our immediate research will
evolve around the points of network classification, performance to cost trade-off and
prove of stability for our new control policy.

1.3 Concluding remarks

An important issue that the paper misses to address (but which is rigorously dis-
cussed in Paper 2) is the implicit dependence of the control variable v̇t on future
queue-states and future Markov-states. Specifically, in (1.9), v̇t could depend on
q̇t and also st. As this is the prediction-model and not the actual system-model,
we are free to choose the complexity of the dependencies of v̇t. The derivations in
the paper implicitly assume that v̇t is insensitive to both the current DTMC state
st and the corresponding queue-state q̇t. If this was not the case and v̇t would be
treated as a function of st and q̇t, the complexity of the optimization would grow
significantly. To elaborate we refer to Figure 1.9: on the left side, at some initial
time-step t = 0, a single control variable is employed for the optimization. Due
to the stochastics in the system, this could lead to various possible system-states
in time-step t = 1. For each of these possible system-states, we have to consider
a separate control-vector which, if applied, would lead again to various resulting
system-states. Staying true to the figure, we would have to employ one control-
vector for time-step t = 0, two control-vectors for t = 1, four control-vectors for
t = 2 and so on, resulting in 2H − 1 variable control-vectors (H being the predic-
tion horizon) over which the optimization has to find the optimal trajectory. In
contrast, on the right side of Figure 1.9, the various states that could possibly be
reached from t = 0 with the employed control-vector are immediately condensed by
considering their probability of occurrence and taking the expectation (blue state).
Using this expectation as a new starting point, only one additional control-vector
has to be employed for the prediction in time-step t = 1. This way we end up with
H variable control-vectors over which the optimization is performed. Obviously, we
have a much reduced complexity for the price of possibly sub-optimal solutions to
the actual optimization problem.
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Fig. 1.9: Complexity in the prediction-model. Conditioning future control-vectors on all
possible future realizations (in a causal way) causes the complexity to grow exponentially.
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Compared to the original version of the paper, Figure 1.3 has been updated as
there was a minor mistake in the code of the simulation in the published version.
Crucially, the main statement stays the same, namely that MW does not and PNC
does stabilize the system. However, contrary to what is stated in Section 1.2.4,
MW can activate the second link (which shifts a packet from q[1] to q[2], see Fig-
ure 1.2), but will lose this ability as time progresses almost surely. This is visualized
in Figure 1.10 which plots the negative control-options into the state-space as in-
troduced in Figure 1.1. The colored regions of the state-space map a state vector
to the similarly colored control-option (under the MW policy). If the state vector
lies in the non-colored area of the state-space, the chosen control-option is the 0
vector (idling). The orange arrows indicate a possible evolution of the state vec-
tor. Starting from 0 the arrival could increase the x-component by 3 repeatedly,
while the chosen control-option (u1) decreases the same component by 2. Given
that the average arrival is 0.8 · 3 = 2.4, this yields an evolution that lets the state
vector remain on the x-axis and grow to infinity almost surely since the network
controller will stick to control-option u1. For small queue-states, there is the pos-
sibility that control-options u2 and u3 are used instead, which could compensate
the influx completely since an alternating activation of u2 and u3 yields an efflux
in the x-component by −+1−5

2
= 2.5 (which is larger than the average arrival with

of 2.4). However, even if this alternating activation would be invoked by the MW
policy, the state vector would return completely to the origin with finite probability.
And starting from the origin, there is always a probability of the aforementioned
violet-colored evolution to occur which, all things considered, almost surely leads to
an unstable evolution.

−u1

−u2

−u3

−u1

−u2

−u3

Fig. 1.10: Visualization of the ”Natural Example” from Section 1.2.4. While there exists
the possibility that MW uses control-options u2 and u3 (if the queue-state lies in the red
or green area), almost surely the queue-state will be located on the x-axis resulting in an

unstable behavior since there, MW can only activate u1.
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Abstract In this paper, we equip the conventional discrete-time queueing network
with a Markovian input process which, in addition to the usual short-term stochas-
tics, governs the mid- to long-term behavior of the links between the network nodes.
This is reminiscent of so-called Jump-Markov Systems in control theory, allows the
network topology to change over time, and thus facilitates to model a plethora of
useful applications in wireless communication, traffic, or logistics. We argue that the
common back-pressure control policy is inadequate to control such network dynam-
ics and propose a novel control policy inspired by the paradigms of Model-Predictive
Control. Specifically, by defining a suitable but arbitrary prediction horizon, our
policy takes into account future network states and possible control actions. This
stands in clear contrast to most other policies which are myopic, i.e. only consider
the immediate next state. We show numerically that such an approach can signifi-
cantly improve the control performance and introduce several variants of the policy,
thereby trading off performance versus computational complexity. In addition, we
prove so-called throughput optimality of our policy which guarantees stability for all
network flows that can be maintained by the network topology. Interestingly, in
contrast to general stability proofs in Model-Predictive Control, our proof does not
require the assumption of a terminal set, i.e. the prediction horizon is not required
to be large enough as to reach a predetermined set of states with special properties.
Finally, we provide several illustrating examples, one of which being a network of
assembly-queues. This network in particular constitutes an interesting system class
for which our policy exerts superiority over general back-pressure policies, with the
latter ones even losing their throughput optimality.
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2.1 Preliminary Remarks

This paper revisits the PNC policy from Paper 1, this time however in a much more
rigorous fashion. The main contribution is the proof of the throughput optimality of
PNC which is made very intricate by the repeated application of the policy’s internal
optimization in each time-step, thereby discarding the entire tale of the previously
calculated optimal trajectory.

From the side of queueing networks, throughput optimality is usually proven by
employing a Lyapunov function over the state-space and showing that the evolu-
tion of the network (governed by the policy in question) does, in expectation, drift
downwards this Lyapunov function, with the exception of a finite set of states for
which this must not be the case. In PNC, the first control-vector of the optimal
trajectory (i.e. the control-vector that is actually applied to the system) might not
be optimal by itself for the first state transition. On the other hand, the rest of
the optimal trajectory is discarded when the optimization begins again in the next
time-step. Hence, it is not immediately clear how to show that the PNC policy
guides the system-state downward some suitable Lyapunov function.

On the other hand, techniques from the realm of Model-Predictive Control gener-
ally require existence of a terminal set of system-states which then must be reached
by at least the last predicted state (in order to guarantee stability). In this terminal
set, the system dynamics are assumed to be manageable (e.g. by linearization around
an operating point) so that the system would never leave the terminal set, once it
is reached. Obviously, such a terminal set does not exist in our queueing networks,
because the system dynamics cannot be simplified depending on the system-state.
In this paper, however, we manage to find a way to prove throughput optimality for
PNC by applying a specially adopted Lyapunov function.

2.2 Paper Body

2.2.1 Introduction and Related Research

Discrete-time queueing networks are used to model a variety of scenarios, ranging
from traffic control over parallel computing to wireless communication. They are
closely related to the canonical discrete-time controlled system

xt+1 = Axt +Btvt +Dtwt (2.1)

with xt, vt, wt being state-, control-, and disturbance-vector, and t designating the
time-step. However, they feature some significant differences: (i) The controls vt are
binary in nature and linearly constrained, e.g. due to the interference properties of
wireless channels. (ii) The state resides on the discrete set xt ∈ Nn where it exhibits
no internal dynamics (A is an identity matrix). (iii) The matrices Bt (and Dt)
behave stochastically, implying that the effect of a control decision is not certain.
Together with the class of back-pressure control policies, those systems form a well
investigated subclass of control problems.

The prototype back-pressure policy, that we will call the MaxWeight policy
(MW), was first introduced in [2] where the authors also proved its much cele-
brated property of being throughput optimal. This means that MW can stabilize
the queue-backlog for any load of arriving packets/customers that is sustainable
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under the network topology. Over time, many variations of MW where developed,
e.g. to allow for a generalized control objective [3, 4], or to increase its performance
in special cases like networks with input-queued switches or time-varying channels
[11, 12]. Specific shortcomings of MW, like high end-to-end delay were investigated
in [13, 6, 14] and later partially remedied by [12, 14, 15, 16], using e.g. shortest path
algorithms to reduce delay especially in low traffic scenarios.

In this paper, we propose a novel control policy that is predictive in nature
and therefore named Predictive Network Control (PNC). It can be regarded as a
generalization of MW since it contains MW as a special case. However, while MW
and all its derivations are myopic, i.e. only aim to improve the system-state for the
immediate next time-step, PNC aims to improve the system-state for multiple time-
steps up until a prediction horizon. This leads to the calculation of an entire optimal
trajectory of control-vectors. Then, instead of applying the entire trajectory for the
next few time-steps, only the first control-vector is applied to the system and the
process repeats in the consecutive time-step. This allows the controller to react to
any unforeseen changes in the control system [9].

Our PNC policy can be categorized as Model-Predictive Control (MPC) that is
tailored specifically towards queueing networks. MPC is a well-established branch
of control theory and can cope very easily with hard constraints and non-linearities,
making it particularly suited for our control problem. However, its advantages come
at the cost of increased requirements on computational resources. So far, there
has only been one attempt to bring MPC to queueing networks: In [17] the authors
focus on a special case of the standard model in which only the arrivals to the system
are of stochastic nature. Their investigations are limited to numerical simulations
which show better system performance (less outliers over time in the queue-backlog)
for a designed MPC controller compared to simple feedback control laws. Since our
queueing network will include a much higher degree of stochastics, we will not follow
up on their work.

Concerning the stochastics, we let Bt (the matrix responsible for the topology
and the quality of the links between the nodes of the network) be governed by a
discrete-time Markov chain (DTMC) on top of a Bernoulli trial. This allows to model
long-term and short-term effects, respectively. Take e.g. wireless relay networks with
user mobility: Here, short-term interference leading to packet loss can be modeled
by the Bernoulli trial, while long-term change in channel quality due to the mobility
can be expressed by the DTMC [18]. The proposed stochastics together with the
employed system-model also fit very well to logistic and traffic scenarios. For the
former, take parcel shipping companies: the Bernoulli trial models the probability
of costumers not being home to receive the parcels and the DTMC governs those
probabilities according to time of day or day of the week. For the latter one, take
public transportation services: the Bernoulli trial models passengers arriving on
time to catch a connecting service and the DTMC governs this probability based on
general volume of traffic or weather conditions over the time of day.

Note that it is possible to merge DTMC and Bernoulli trial into an aggregate
DTMC. However, doing so greatly diminishes the convenient separation between
short- and long-term effects without significantly simplifying any mathematical
derivations.

Control systems in which the model parameters change according to a DTMC
are called Jump-Markov Systems (JMS). Since simple feedback controllers cannot
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detect this change, JMS are usually controlled with MPCs. There exist several
control approaches regarding JMS, covering cases with linear [19, 20, 21] and even
nonlinear system dynamics [22, 23] (the referenced works mainly differ in the choice
of considered constraints). However, all these works deal with conventional control
systems, where the controller usually tries to follow a reference trajectory and the
first moment of the disturbance is zero. In contrast, from the perspective of queue-
ing networks, the disturbance represents the arrival of packets whose first moment
is strictly positive, and the controller tries to maintain finite queues for any given
arrival (hence, there is no need for a reference trajectory). For that reason, prior
work on JMS is only partially applicable to our systems. To the best of our knowl-
edge, we are the first to consider both JMS and MPC in the context of discrete-time
queueing networks.

Specifically, our contributions are as follows: (i) We develop a JMS-adapted
discrete-time queueing network and introduce a family of predictive control poli-
cies, based on the paradigms of MPC. (ii) We prove throughput optimality (the
equivalent of stability) for these policies. (iii) We show the benefit of these policies
over the conventional back-pressure control (MW) using numerical simulations. In
particular, our policies seem to maintain their throughput optimality in networks
with assembly-queues.

Eventually, we emphasize that our proof technique itself contains novel concepts
and merges elements from the theory of queueing networks and MPC. On the one
hand, conventional proofs for MPCs always assume a sufficiently long prediction
horizon H so that a terminal set of system-states is reached. This terminal set has
to be invariant under the MPC-induced control law and equipped with a separate
cost function that has Lyapunov properties [9]. Opposed to that, our proof does
not require a terminal set and therefore guarantees stability independent of the
prediction horizon. On the other hand, conventional proofs for queueing networks
typically try to find an upper bound for the one-step drift which readily works for
one-step (myopic) policies [2, 3]. Opposed to that, we merge an H-step policy with
a one-step drift, which is considerably more difficult and requires a completely new
approach.

Notation: We will usually use the lower index to denote time-steps (xt) and the
upper index to count (X = {x1

t , . . . x
n
t }). If additionally the upper index is set in

square brackets (x
[k]
t ), then we count over elements of a vector or diagonal matrix.

A stochastic process will be denoted with curly brackets ({xt}).

2.2.2 System-Model & Prerequisites

System-Model

Our network consists of nq nodes and nv links. Node i (i = 1, . . . nq) corresponds to

a queue which holds q
[i]
t ∈ N packets in time-step t. The collection of these quantities

is the queue-vector qt = (q
[1]
t . . . q

[nq ]
t )⊺ ∈ Q = Nnq .

Packets can be transmitted from one queue to another if there exists a directed
link between the two and the link is activated. Link j (j = 1, . . . nv) is represented
by vector rj ∈ {−1, 0,+1}nq where negative and positive entries denote origin and
destination queue, respectively. All links are collected as columns in the routing-
matrix R ∈ {−1, 0,+1}nq×nv which therefore holds the topology. Transmission of
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packets is expressed by summation: qt + rj = qt + Rej (ej being the j-th canonical
unit vector).

The one-step evolution of our discrete-time queueing network can be expressed
by

qt+1 = qt +RMtvt + at (2.2)

subject to Cvt ≤ c

−R−vt ≤ qt

vt ∈ {0, 1}nv

 and

 Mt ∼ Bernoulli(W st)

W st ∈ {W 1, . . .W ns}
{st} ∼ DTMC({1, . . . ns}, P, s0)


where the actual system-state is the pair (qt, st) which is composed of the queue-state
qt and the topology-state st. The latter governs the stochastics of the links. Both
{qt} and {st} are observable.

Two antagonistic processes influence {qt}: the efflux and the influx. The influx
describes the arrival of new packets to the end of the queues and is denoted by
{at}. We assume {at} to be a sequence of i.i.d. upper bounded multivariate random
variables at ∈ Nnq , at ≤ â1nq , where 1nq is the vector of ones with dimension nq. We
call ā = E[at] the arrival rate.

The efflux describes the departure of packets from the network (facilitated by
links (rj) that do not have a destination, i.e. a positive entry in their vectors). It is
the purpose of the controller to manage this departure by routing and scheduling the
packets through the network. For that purpose, in each time-step he may activate
certain links via the binary control-vector vt ∈ {0, 1}nv which is constrained by two
effects: (i) The constituency-constraints Cvt ≤ c prohibit simultaneous activation
of certain links, e.g. due to interference. The dimensions of matrix C and vector
c are case dependent, their entries are from the set N. (ii) The routing-constraints
qt + R−vt ≥ 0 ensure that a packet can only be scheduled for transmission if it is
present at the corresponding queue, i.e. a packet may only traverse a single link
per time-step instead of being routed through multiple links at once. Here, R− is a
copy of R without any positive entries such that transmitted packets do not arrive
at their destination and simply disappear from the system. Hence, the controller
can only schedule as many packets from a queue as are present at the start of the
time-step t.

For illustration, we state topology and constituency matrices of a toy network in
Figure 2.1 and derive the corresponding constraints: Considering only C and c, both
components of vt could be active simultaneously if qt =

(
1 0

)⊺
. However, if q

[2]
t = 0

it should not be possible to activate r2 in time-step t. Thus, the routing-constraints
are required.

Notably, there exists a network-inherent uncertainty: Scheduled transmissions
may only succeed with a certain probability, leaving the network unchanged if they
fail. We model this with two overlapping stochastic processes, a Bernoulli pro-
cess and a DTMC. First, in time-step t, each vector rj (link j) is multiplied by

a random variable m
[j]
t ∈ {0, 1}, belonging to the Bernoulli process {m[j]

t } with

success-parameter m̄
[j]
t ∈ [0, 1] ⊂ R. Collecting these values in the diagonal matrices

Mt = diagj=1,...nv

{
m

[j]
t

}
and M̄t = diagj=1,...nv

{
m̄

[j]
t

}
allows us to write the multi-

plication of links and random variables as RMt. When we say that Mt is Bernoulli
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q[1]

q[2]

r1

r2

R =

(
−1 0
+1 −1

)
︸ ︷︷ ︸(

1 0
0 1

)
vt ≤ qt

︸ ︷︷ ︸
Routing-Constraints

C =
(
0 0

)
c = 1

︸ ︷︷ ︸(
0 0

)
vt ≤ 1

︸ ︷︷ ︸
Constituency-Constraints

Fig. 2.1: Minimal example of a queueing network. The +1 entry from R is dropped in
the routing constraints (−R−vt ≤ qt) in order to prevent packets from traversing more

than one queue per time-step.

distributed with success-parameter M̄t, Mt ∼ Bernoulli(M̄t), we mean that this is
true for every element of the matrices separately. Note that the realization of Mt is
not known to the controller in time-step t.

On top of that, we let the parameter matrix M̄t change over time in order to
model long-term effects in the connectivity of the network. To that end, we define
a set of matrices W = {W 1, . . .W ns}, with index set S = {1, . . . ns}. Each W i is a
diagonal matrix with dimension nv × nv and entries from [0, 1] ⊂ R. In each time-
step, M̄t is chosen to be from W . This selection process is governed by the DTMC
{st} ∼ DTMC(S, P, s0) where P and s0 are transition matrix and initial state,
respectively. Hence, M̄t = W st . We assume that W and P are known and that {st}
is observable, finite and irreducible, and has stationary distribution π = πP .

Remark: In conventional networks, a link has exactly one origin. This implicit
constraint is a prerequisite for all back-pressure policies to develop their throughput
optimality. Though we will also use this constraint throughout the paper, our novel
control policies seem to maintain their throughput optimality even when it is vio-
lated (see Section 2.2.5), allowing us to control networks with assembly-queues. Fur-
thermore, our system-model also allows for multiple distinguishable types of packet
flows by simply employing a block-diagonal structure in the system matrices and
rearranging the constraints.

Control Policies and Throughput Optimality

In this subsection, we summarize the relevant control and stability concepts. Clearly,
a control-vector vt must be from the set

V =
{
v ∈ {0, 1}nv

∣∣ Cv ≤ c
}

(2.3)

Let qt ∈ Q, st ∈ S, ωt ∈ Ω be the most recently observed realization from
{qt}, {st}, {ωt}, respectively, where {ωt} is an ergodic stochastic process. Then we
define a control policy as a mapping

ϕ : Q× S × Ω→ V , (qt, st, ωt) 7→ ϕ(qt, st, ωt) = vt

s.t. −R−ϕ(qt, st, ωt) ≤ qt
(2.4)
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Hence, generally, we allow for randomized policies. It is readily verified that under
such policies the system-process {qt, st} becomes a DTMC.

We say that a policy stabilizes a system for an arrival rate ā if {qt, st} is positive-
recurrent (i.e. has finite expected return time). Note that this implies finite expected
system-states because in a single transition our system only allows for a finite set
of follow-up states (and hence the queue-state can only change so much in a finite
time).

Finally, we call a policy throughput optimal if it stabilizes a system for all
arrival rates ā for which there exists at least one (possibly unknown) stabilizing pol-
icy. This maximum set of arrival rates for which the system is somehow stabilizable
is called the stability region A. We can construct A as follows:

First, imagine all possible control policies that stabilize a given system. Under
any such policy, {qt, st} is positive-recurrent. Also, {at} is ergodic per definition.
Therefore, the expectation of the efflux RMtvt = qt+1 − qt − at must, over time,
converge to −ā. However, over time, the expectation of RMtvt must also be of
the form

∑
s∈S π

[s]RW sv̄s. Here, π[s] = P[st = s] is the probability of occurrence
of topology-state s, v̄s ∈ conv(V) is the time-averaged control-vector generated by
the policy in s, and conv(·) is the convex hull. Together, we obtain the implication
ā ∈ A ⇒ ∃v̄s ∈ conv(V) : ā+

∑
s∈S π

[s]RW sv̄s = 0.
Second, imagine a policy that assigns to all states (q, s) ∈ Q × S, that do not

violate the routing-constraints (2.4), a random control-vector ϕ(q, s, ωt) with mean
v̄s ∈ conv(V). For all other states, let the policy assign the same random control-
vector but with some of its entries set to 0 so that the routing-constraints are met.
Under this policy, we can prove positive-recurrence of {qt, st} for any arrival rate
with ā+

∑
s∈S π

[s]RW sv̄s < 0. The proof is based on Foster’s theorem [24] using the
test-function f(q, s) = q⊺q. It can be performed analogously to the one in [2] but
is much simpler since the just described policy is static. We obtain the implication
∃v̄s ∈ conv(V) : ā+

∑
s∈S π

[s]RW sv̄s < 0 ⇒ ā ∈ A. Hence, concluding, a policy is
throughput optimal if it stabilizes the system for every

ā ∈ A =

{
ā

∣∣∣∣∣ ∃v̄s ∈ conv(V)
s∈S

: ā+
∑
s∈S

π[s]RW sv̄s < 0

}
. (2.5)

The boundary of A typically is not part of A as can easily be verified by exam-
ining a network consisting of a single queue and a single link that drains this queue:
An optimal policy would simply activate the link whenever possible, i.e. whenever
the routing-constraints are not violated, no matter the arrival rate. Let the link
have a success probability of 1 so that the closure of A is the interval [0, 1]. Let
ā = 1 ∈ [0, 1] with P[at = 0] = P[at = 2] = 1

2
. With this the queue-state becomes a

symmetric 1-dimensional random walk with single boundary. It is well known, that
such a process is only null -recurrent. Hence, ā = 1 (which is the boundary of A)
does not belong to A.

One Policy that achieves throughput optimality is the already mentioned MW
policy, given via

vt = min
vt∈V

q⊺tRM̄tvt s.t. −R−vt ≤ qt (2.6)

Essentially, MW uses the difference in queues states (q⊺tR), multiplied by the trans-
mission success probability of the links between queues (M̄t) to decide upon the
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control vt, with larger differences and higher probabilities being favored. Its through-
put optimality results from its ability to use misplaced packets as an indicator in
subsequent time-steps (through q⊺tR).

2.2.3 Predictive Network Control (PNC)

To control the introduced networks we propose a novel control policy that we refer
to as Predictive Network Control (PNC). This policy operates under the paradigms
of MPC and therefore is equipped with a modified copy of the system-model, called
the prediction-model, and an objective. Its operation scheme is deterministic (ωt ≡
0) and can be described as follows: (i) Based on the prediction-model, an entire
trajectory of control-vectors from t up until t + H − 1 is optimized towards the
objective, where H is called the prediction horizon. (ii) Only the first (i.e. the
immediate) control-vector in this trajectory is actually applied to the system. (iii)
The process repeats (discarding the rest of the just calculated trajectory).

W.l.o.g. we assume the current time-step to be 0 and that the policy has observed
q0 and s0. Let σt be the probability distribution of st such that σ

[s]
t = P[st = s |σ0]

and σt = σ0P
t (t being an exponent). Note that it makes no difference whether we

condition an expression on s0 or σ0. For an arbitrary future time-step T , we express
an expected queue-state in our system-model via

E[qT | q0, σ0] = q0 +
T−1∑
t=0

E
[
RW stϕ(qt, st, 0)

∣∣∣∣ q0, σ0

]
+ T ā. (2.7)

To ease this prediction and thereby the computational effort, the prediction-
model does not necessarily have to reflect the complexity of the system-model and
can be designed in roughly three different ways (differing in the amount of future
stochastically induced variations, that are considered):

(i) In a true prediction, the controller assigns a control-vector to every time-step
(up untilH) and every possible set of realizations of qt, st along the way. The number
of control-vectors required for such a prediction amounts roughly to H ·ns ·k, where
k is the number of all possible queue-states, that can (on average) be realized in a
single time-step. This requires the maximum amount of computational resources but
would truly find the optimal control trajectory that optimizes any given objective.

(ii) In contrast, a relaxed prediction uses only a minimum of control-vectors
(though still enough to count as a meaningful prediction), i.e. for every time-step in
{0, . . . H − 1}, only a single control-vector is utilized. This amounts to H control-
vectors being required for the prediction, speeding up the calculation of an optimal
control trajectory considerably. However, said trajectory might be sub-optimal com-
pared to case i) and hence control performance might suffer.

(iii) Finally, a mixture of both cases could be implemented in order to balance
computational complexity and control performance. E.g. for each time-step, one
could condition the control-vector on the realization of st, but ignore realizations of
qt, leading to H · ns control-vectors being used for the prediction.

Notably, we found that it suffices to define our prediction-model via case (ii)
since we shall prove that already then throughput optimality is actually achieved.
Let us denote the virtual queue-states and control-vectors in the prediction-model
with q̇t, v̇t (no connection to the time-derivative intended). Then an expected future
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queue-state in the prediction-model becomes

E[q̇T | q0, σ0] = q0 +
T−1∑
t=0

(∑
s∈S

σ
[s]
t RW s

)
v̇t + T ā (2.8)

Because the prediction is initialized in each time-step again (using the recent mea-
surements of {qt} and {st}, which are q0 and s0), (2.8) depends on q0 and σ0.

With that, the prediction-model is sufficiently defined and we are left with choos-
ing an objective. To this end, the following abbreviations are useful:

˜̇v0,T :=

 v̇0
...
v̇T

 , ∆̇0,T = ∆̇0,T (˜̇v0,T−1) := q̇T − q0 ∥q̇t∥2 := q̇⊺tQq̇t. (2.9)

Here, ˜̇v0,T−1 is a control trajectory, ∆̇0,T is a difference between queue-states and
the latter is an affine function of the former. The matrix Q is positive-semidefinite
and could easily be carried through every derivation in this paper. However, for
notational convenience we set Q = I (the identity matrix).

A common quadratic objective is then formulated as

E

[
H∑
t=1

q̇⊺tQq̇t

∣∣∣∣∣ q0, s0
]
=

H∑
t=1

E
[
∥q̇t∥2

∣∣ q0, s0] (2.10)

It penalizes large queue-states in a quadratic fashion, and thereby motivates the
control to deliver packets to their destinations. Looking at one of its representative
terms

∥q̇t∥2 = ∥q0∥2 +
∥∥∥∆̇0,t

∥∥∥2 + 2q⊺0∆̇0,t (2.11)

we notice that ∆̇0,t is bounded (as proven later in Lemma 1) and q0 is just an
offset independent of ˜̇v0,t−1. Hence, if q0 is large enough and we are to minimize
∥q̇t∥2 over ˜̇v0,t−1, the last term of (2.11) will always dominate the minimization.
It is therefore sufficient to minimize over the terms 2q⊺0∆̇0,t, and hence our actual
objective becomes

E

[
H∑
t=1

2q⊺0∆̇0,t

∣∣∣∣∣ q0, s0
]
= 2q⊺0

(
H−1∑
t=0

H∑
t

RW̄t(s0)v̇t + ā

)
= l(q0, s0)˜̇v0,H−1 +H(H + 1)q⊺0 ā (2.12)

where W̄t(s0) and l(q0, s0) are denoted in Table 2.1 and
∑H

t = H− t+1. This linear
formulation has considerably reduced complexity compared to the initial quadratic
one. Note that a similar step is taken in the derivation of the MW policy.

Finally, we must make sure that our trajectory fulfills the constraints not only
for the immediate control-vector but for every control-vector in the entire trajec-
tory (otherwise the predicted evolution of the system might never be achievable).
This can be easily done by expanding the constraints in a block-diagonal fashion.
Calculating the expanded constraint sets B, C,R(q0) (for binary-, constituency-,
routing-constraints) is a tedious but straightforward task, the results of which are
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denoted in Table 2.1. With that, the definition of the PNC policy with prediction
horizon H can be given as

ϕPNC(q0, s0) = fargmin
˜̇v0,H−1

E

[
H∑
t=1

2q⊺0∆̇0,t

∣∣∣∣∣ q0, s0
]

= fargmin
˜̇v0,H−1

l(q0, s0)˜̇v0,H−1

subject to ˜̇v0,H−1 ∈ B ∩ C ∩ R(q0)

(2.13)

where fargmin() expresses that only the first argument of the trajectory is used
as output. The optimization can be classified as a binary linear program whose
feasible set always contains ˜̇v0,H−1 = 0. Hence, a not necessarily unique optimal
solution can always be obtained via conventional branch and bound methods. It is
readily verified that {qt, st} becomes a homogeneous DTMC under the PNC policy
(meaning that its transition matrix is independent of t).

Remark: Choosing H = 1 yields the common MW policy. Indeed, if the PNC
controller would follow a once calculated optimal trajectory to its end (i.e. for H
time-steps), PNC would merely be the extension of MW over multiple time-steps.
However, PNC recalculates the trajectory each time-step, thereby discarding its
entire tail. This results in a much improved behavior of PNC (see Section 2.2.5)
but also makes it impossible to infer any properties from MW to PNC. For more
comparisons between the two policies, we refer to [25] and [26].

2.2.4 Throughput Optimality of the PNC Policy

Following theorem is an integral contribution of this paper:

Theorem 1. The PNC policy (2.13) is throughput optimal for the system (2.2).

For the proof, we use the well-known theorem for positive-recurrent DTMCs by
Foster [24]: Finding a Lyapunov-function over the state-space on which the sys-
tem evolution ”drifts downward” almost everywhere, guarantees positive-recurrence
(stability). The difficulty in our case arises from the fact that the PNC policy (like
any other MPC) discards all but the first control-vector of the optimal trajectory.
Hence v0 = ϕPNC(q0, s0) is influenced by the expected evolution for the next H
time-steps, yet the drift is necessarily defined over a one-step evolution. To resolve
this mismatch, we employ a Lyapunov-function which is defined implicitly over a
minimization that mimics (2.13). However, due to the need of being sensitive to
topology-state s1, this minimization is performed over a different model than the
one employed in the PNC policy. Indeed, the required model for the prediction
inside this Lyapunov-function is very much alike the one that was discussed under
point (iii) in Section 2.2.3. Interfacing our PNC policy (which uses a much simpler
model in order to maintain lowest possible complexity) is then achieved by first lift-
ing the constraints, allowing us to manipulate the minimization and insert substitute
variables, and then reintroducing the constraints to reintegrate the entire derivation
into Foster’s theorem.
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Expected value of W st

W̄t(s0) := E[W st | s0] =
∑
s∈S

σ
[s]
t W s (2.14)

Linear objective vector l(q0, s0)

l(q0, s0) = 2q⊺0R


(H − 0)W̄ ⊺

0 (s0)
(H − 1)W̄ ⊺

1 (s0)
...
W̄ ⊺

H−1(s0)


⊺

(2.15)

Binary-constraints
x̃1,H ∈ B ⇐⇒ x̃1,H ∈ {0, 1}nv ·H·D (2.16)

Constituency-constraints

x̃1,H ∈ C ⇐⇒ (ID ⊗ IH ⊗ C) x̃1,H ≤ 1D ⊗ 1H ⊗ c (2.17)

Routing-constraints

x̃1,H ∈ R(q0) ⇐⇒
1D ⊗R−

1D ⊗R 1D ⊗R−

...
. . .

1D ⊗R . . . 1D ⊗R 1D ⊗R−

 x̃1,H ≤


1D ⊗ q0

1D ⊗ (q0 + ā)
...

1D ⊗ (q0 + (H − 1)ā)


(2.18)

D = 1 for the prediction-model

D = ns for the proof-model

σt = σ0P
t (t is an exponent)

ID is the identity matrix with dimension D

Table 2.1: Quantities for policy and proof.

Preliminaries

It will often become necessary to upper and lower bound certain expressions. For
this, we will use k1, k2, k3, . . . to denote arbitrary, non-zero, positive constants which
are independent of the initial queue-state q0 and whose exact values are of no further
interest. Gothic letters are used to express realizations of random variables, such
that e.g. st is a realization of st, hence st ∈ S. At some instances we use the trivial
summation

∑y
x = y−x+1 in order to maintain well-arranged equations. The zero-

vector is 0n and the vector of ones is 1n, where the index stands for the dimension.
If the argument of a minimization is not denoted, it is the same as the argument
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of the prior minimization in the derivation. Lastly, remember that a control-vector
is always binary. We will therefore neglect denoting this constraint (x ∈ B), which
simplifies the formulas. With that we formulate the next lemmas, needed for the
proof.

Lemma 1. The difference ∆0,T (or ∆̇0,T respectively) between two queue-states from
time-steps 0 and T is bounded (element-wise) by

−Tnv1nq ≤ ∆0,T ≤ T (nv + â)1nq (2.19)

leading to
∥q0∥2 + 2q⊺0∆0,T ≤ ∥qT∥2 ≤ ∥q0∥2 + 2q⊺0∆0,T + k1 (2.20)

Simply put: knowing q0 we can bound ∥qT∥2.
Proof. Between time-steps 0 and T we have at best a constant efflux of nv or at
worst a constant influx of nv + â packets per queue per time-step (since there are at
most nv links to fill or drain any given queue).

Lemma 2. The difference between the minimization defined by (2.13), and the same
minimization but relaxed by ignoring the routing-constraints can be bounded by

min
˜̇v0,H−1∈C,R(q0)

E

[
H∑
t=1

2q⊺0∆̇0,t

∣∣∣∣∣ q0, s0
]

− min
˜̇v0,H−1∈C

E

[
H∑
t=1

2q⊺0∆̇0,t

∣∣∣∣∣ q0, s0
]
≤ nvnqH (H + 1) (Hnv − 1) = k2

(2.21)

Simply put: the effect of the queue-state dependent routing-constraints R(q0) on the
solution of the minimization can be bounded.

Proof. First, consider ∆̇0,t: the maximum difference that ∆̇0,t can generate is less
than tnv1nq (all links drain a queue over t steps). Second, consider q0. Again, for
a single queue, the most efflux in H time-steps is Hnv packets (if every link would
drain that queue). Hence, if q0 ≥ Hnv1nq , a control trajectory cannot violate the
routing-constraints. Conversely, if a link cannot be activated due to the routing-
constraints, at least one entry of q0 must be smaller than Hnv.

Due to the linearity, the largest difference in the minimizations will be found
when q0 = (Hnv−1)1nq (possibly denying any activation under routing-constraints).

This, together with the initial bound on ∆̇0,t leads directly to

H∑
t=1

2(Hnv − 1)1⊺
nq
tnv1nq = nvnqH (H + 1) (Hnv − 1) (2.22)

which is an upper bound for the difference in question.

Finally, the following theorem will allow us to express our definition of stability
by the means of a Lyapunov-function.

Lemma 3. If {qt, st} is a homogeneous DTMC, {qt, st} is positive-recurrent if there
exists a function f : Q× S → R+ such that ∀q0 ∈ Q :

E[f(q1, s1)− f(q0, s0) | q0] ≤ k4 − k51⊺
nq
q0 (2.23)

Simply put: if expected difference between two consecutively taken values on f is
negative almost everywhere, the DTMC must be positive-recurrent.
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Proof. This is a simple application of the recurrence theorem for DTMCs by Foster
[24] considering that {st} is itself a finite and therefore positive-recurrent DTMC.
In particular, one can follow the proof from [27, p. 168] and note that because {st}
is finite, the return time to the finite set is independent of {st}. Beyond that it is
easy to verify that f fulfills the conditions on the employed function.

Main Proof of Theorem 1

We now start with the main part of the proof. We will define a Lyapunov-function
f(qt, st) and show that if the system is governed by the PNC policy with horizon
H + 1, f fulfills Lemma 3 for any ā ∈ A.

In addition to the system- and prediction-model we introduce the proof-model
(named this way because we only need it in this proof). It mimics the system-model
except that the control-vectors are only a function of st (and, of course, t). We will
denote virtual queue-state and control-vector in the proof-model as q̈t, v̈t(st) (no
connection to the time-derivative intended). A prediction of future queue-states in
the proof-model results in

E[q̈T | q0, σ0] = q0 +
T−1∑
t=0

∑
s∈S

σ
[s]
t RW sv̈t(s) + T ā (2.24)

Once again, q0 and σ0 are quantities from the system-model that are used as a fix
point from which the prediction is started. We define a control trajectory for the
proof-model as

˜̈v0,H =


v̈′0
v̈′1
...
v̈′H

 , with v̈′t =


v̈t(st = 1)
v̈t(st = 2)

...
v̈t(st = ns)

 (2.25)

and similar to (2.9) the difference of queue-states as ∆̈0,T = q̈T − q0. Note that
Lemma 1 holds equally for ∆, ∆̇ and ∆̈.

For a PNC policy with horizon H + 1, we employ the following Lyapunov-
function:

f(q0, s0) = min
˜̈v0,H−1∈C

E

[
H∑
t=1

∥q̈t∥2
∣∣∣∣∣ q0, s0

]
(2.26)

Note that the horizon of the minimization in f is chosen one step smaller than that
of the PNC policy and the control trajectory is not subject to routing-constraints
R(q0).

We can now start expressing the first term of (2.23) (for now also conditioning
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on s0) like

E[f(q1, s1) | q0, s0] = E

[
min
˜̈v1,H∈C

E

[
H+1∑
t=2

∥q̈t∥2
∣∣∣∣∣ q1, s1

] ∣∣∣∣∣ q0, s0
]

≤ minE

[
E

[
H+1∑
t=2

∥q̈t∥2
∣∣∣∣∣ q1, s1

] ∣∣∣∣∣ q0, s0
]

≤ minE

[
H ∥q1∥2 + k6 + E

[
H+1∑
t=2

2q⊺1∆̈1,t

∣∣∣∣∣ q1, s1
] ∣∣∣∣∣ q0, s0

]

≤ minE

[
H ∥q0∥2 +H2q⊺0∆0,1 + k7 +

H+1∑
t=2

2(q0 +∆0,1)
⊺∆̈1,t

∣∣∣∣∣q0, s0
]

≤ H ∥q0∥2 + k8 +min 2q⊺0E

[
H+1∑
t=2

∆̈1,t +H∆0,1

∣∣∣∣∣ q0, s0
]

(2.27)

≤ H ∥q0∥2 + k8 +
H∑
t=0

H∑
t

2q⊺0 ā−min
v0∈C

E[2q⊺0∆0,1 | q0, s0]

+ min
˜̈v1,H∈C

2q⊺0R

(
H∑
0

W s0v0 +
H∑
t=1

H∑
t

∑
s∈S

σ
[s]
t W sv̈t(s)

)
(2.28)

First and second inequality follow from expressing the expectation as a sum and
applying Lemma 1, respectively. To reach (2.27) we substitute q1 = q0 + ∆0,1 and
bound again with Lemma 1. Note that the product ∆⊺∆̈ can also be bounded
accordingly. Finally, (2.28) follows by writing out any ∆ term, using (2.24), and
both adding and subtracting an additional ∆0,1 term. The latter is also subject to
minimization which makes (2.28) become an inequality.

Next, we concentrate on the last minimization of (2.28). Our goal will be to
extend the argument from ˜̈v1,H to ˜̈v0,H using the PNC policy. To that end we
make a change in variables: Instead of using v̈t(st = 1), . . . v̈t(st = ns), we use a
common vector µt ∈ {0, 1}nv , and a set of discrepancies δt(st = 1), . . . δt(st = ns)
with δt(st) ∈ {−1, 0,+1}nv and µt + δt(st) ∈ {0, 1}nv . We decompose the control
trajectory according to

v̈′t =

 v̈t(1)
...

v̈t(ns)

 =

µt
...
µt

 +

 δt(1)
...

δt(ns)

 = µ′
t + δ′t, (2.29)

˜̈v1,H =

 v̈′1
...
v̈′H

 =

µ′
1
...
µ′
H

+

 δ′1
...
δ′H

 = µ̃1,H + δ̃1,H

Crucially, we enforce the constituency-constraints µ̃1,H ∈ C. But once µ̃1,H is fixed,

we still need to abide to the constituency of ˜̈v1,H . We will denote this as (δ̃1,H ∈
Cµ) := (µ̃1,H + δ̃1,H ∈ C). This entire transformation is necessary in order to bring v0
(selected by PNC) into the minimization operator. The PNC policy is defined as an
optimization over multiple control-vectors and we need to identify this optimization
somewhere in the Lyapunov function. The transformation will help us with this
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identification since the trajectory µ̃1,H has the same impact on the system as ˜̇v1,H ,
which can be seen in the next derivation.

With µ̃1,H and δ̃1,H the last term of (2.28) becomes

min
˜̈v1,H∈C

2q⊺0R

(
H∑
0

W s0v0 +
H∑
t=1

H∑
t

∑
s∈S

σ
[s]
t W sv̈t(s)

)

= min
µ̃1,H+δ̃1,H∈C

2q⊺0R

(
H∑
0

W s0v0 +
H∑
t=1

H∑
t

∑
s∈S

σ
[s]
t W s (µt + δt(s))

)
(2.14)
= min

δ̃1,H∈Cµ
min

µ̃1,H∈C
2q⊺0R

(
H∑
0

W s0v0 +
H∑
t=1

H∑
t

W̄t(s0)µt

+
H∑
t=1

H∑
t

∑
s∈S

σ
[s]
t W sδt(s)

)
(2.30)

≤ min
δ̃1,H∈Cµ

min
(0⊺,(µ̃1,H)

⊺
)
⊺
∈C∩R(q0)

2q⊺0R(. . . ) (2.31)

PNC
= min

δ̃1,H∈Cµ
min

(v⊺0 ,(µ̃1,H)
⊺
)
⊺
∈C∩R(q0)

2q⊺0R(. . . ) (2.32)

Lemma 2

≤ k9 + min
δ̃1,H∈Cµ

min
(v⊺0 ,(µ̃1,H)

⊺
)
⊺
∈C

2q⊺0R(. . . )

≤ k9 + min
δ̃1,H∈Cµ

min
v0∈C

min
µ̃1,H∈C

2q⊺0R(. . . ) (2.33)

= k9 + min
˜̈v1,H∈C

min
v0∈C

2q⊺0R(. . . ) (2.34)

= k9 + min
˜̈v0,H∈C

2q⊺0R

(
H∑
t=0

H∑
t

∑
s∈S

σ
[s]
t W sv̈t(s)

)
(2.35)

= k9 + min
˜̈v0,H∈C

E

[
H+1∑
t=1

2q⊺0∆̈0,t

∣∣∣∣∣ q0, s0
]
−

H∑
t=0

H∑
t

2q⊺0 ā (2.36)

We are allowed to separate the minimizations in (2.30) because this does not increase
the overall feasible set and hence still yields the same value for 2q⊺0R(. . . ). Inequal-
ity (2.31) results from introducing the routing-constraints R(q0) which decreases the
feasible set for µ̃1,H . Since R(q0) depends on q0, the zero-vector of dimension ns ·nv

has to be attached to the trajectory µ̃1,H in order to extend the trajectory back to
time-step 0. Now, because W s0 = W̄0(s0) (taken from (2.30) and (2.12), respec-
tively) we can identify the PNC policy in the derivation: The choice of v0 together
with the minimization over

(
0⊺,
(
µ̃1,H

)⊺)⊺
results in the same value for 2q⊺0R(. . . ) as

the minimization over the trajectory
(
v⊺0 ,
(
µ̃1,H

)⊺)⊺
, but only because v0 is governed

by the PNC policy. In other words,
(
v⊺0 ,
(
µ̃1,H

)⊺)⊺
behaves exactly like ˜̇v0,H . From

there, Lemma 2 allows us to drop the routing-constraints R(q0) which in turn al-
lows to separate the minimizations due to independence in (2.33). We take back the
change in variables in (2.34) and merge v0 and ˜̈v1,H to ˜̈v0,H in (2.35). This merging
is possible because only the s0-th control-vector in v̈′0 (from ˜̈v0,H , see (2.29)) will
have impact on 2q⊺0R(. . . ). The other control-vectors in v̈′0 are instead multiplied
with the 0 entries of σ0. Hence, minimizing over v̈′0 or v0 yields the same result.
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Combining (2.28) and (2.36) we are left with

E[f(q1, s1) | q0, s0]−H ∥q0∥2 − k10 (2.37)

≤ min
˜̈v0,H∈C

E

[
H+1∑
t=1

2q⊺0∆̈0,t

∣∣∣∣∣ q0, s0
]
−min

v̈′0∈C
E

[
2q⊺0∆̈0,1

∣∣∣∣∣ q0, s0
]

Again, we exchanged ∆0,1 with ∆̈0,1 and a corresponding control because s0 is known.
Hence, in both cases, only a single control-vector of the argument actually influences
the objective, and in both cases the effect is the same. This completes the derivation
for the first term of (2.23).

The second term of (2.23) has no interaction with the PNC policy and therefore
can be easily obtained, in the same fashion as (2.28):

E[f(q0, s0) | q0, s0]−H ∥q0∥2 ≥ min
˜̈v0,H−1∈C

E

[
H∑
t=1

2q⊺0∆̈0,t

∣∣∣∣∣ q0, s0
]

(2.38)

Combining (2.37) and (2.38) results in

E[f(q1, s1)− f(q0, s0) | q0, s0] ≤ k10 + min
˜̈v1,H∈C

E

[
2q⊺0∆̈1,H+1

∣∣∣∣∣ q0, s0
]

(2.39)

To alleviate the conditioning on s0, we take the expectation E[· | q0] on both
sides. After that we can swap minimization and expectation operator and write out
the ∆̈ terms:

E[f(q1, s1)− f(q0, s0) | q0] ≤ k10 + E

[
min
˜̈v1,H∈C

E

[
2q⊺0∆̈1,H+1

∣∣∣∣∣ q0, s0
] ∣∣∣∣∣ q0

]

≤ k10 + min
˜̈v1,H∈C

E

[
2q⊺0∆̈1,H+1

∣∣∣∣∣ q0
]

= k10 + min
˜̈v1,H∈C

2q⊺0

(
H∑
t=1

∑
s∈S

π[s]RW sv̈t(s) +Hā

)

= k10 +min
v̈′0∈C

2Hq⊺0

(∑
s∈S

π[s]RW sv̈0(s) + ā

)
(2.40)

The last equality follows from the fact that each v̈′t from ˜̈v1,H encounters the same
term in the objective. Hence, the minimization can be formulated over a single
vector from the proof-model, which is chosen to be v̈′0. Finally, we are interested in
those cases for which ā ∈ A (and hence stabilization is achievable). From (2.5) we
know that in those cases ā = −

∑
s∈S π

[s]RW sv̄s − k111nq where v̄s was an element
from conv(V) and k11 > 0 is some small constant. It follows that

E[f(q1, s1)− f(q0, s0) | q0]

≤ k10 +min
v̈′0∈C

2Hq⊺0

(∑
s∈S

π[s]RW sv̈0(s)−
∑
s∈S

π[s]RW sv̄s − k111nq

)
(2.41)

≤ k10 + 2Hq⊺0

(
− 1nqk

11

)
= k10 − k121⊺

nq
q0 (2.42)
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The constraint v̈′0 ∈ C implies v̈0(s) ∈ V for all s ∈ S. Thus, v̈′0 can lie on any edge
of the boundary of conv(V). Since the minimization is linear it will find its optimum
on one of those edges. Hence, we could replace v̈0(s) ∈ V with v̈0(s) ∈ conv(V) and
not change the outcome of the minimization. But because v̄s is also from conv(V), it
follows that the first sum in (2.41) is guaranteed to be smaller than the second sum
which leads to (2.42). This in turn fits to Lemma 3 and therefore proves positive-
recurrence of {qt, st}. Since this result was generated by applying the PNC policy
and holds for all ā ∈ A, throughput optimality follows. □

2.2.5 Exemplary Applications of PNC

This section holds simulation results which illustrate the performance of PNC com-
pared to selected policies. We employ the following policies:

1. PNC, as introduced in Section 2.2.3

2. qPNC, equal to PNC but considers the entire quadratic term from (2.10) in
the optimization (whereas PNC only considers the reduced linear term)

3. fPNC, equal to PNC but only calculates the optimal trajectory every H steps,
otherwise follows the afore calculated trajectory

4. MW, as introduced in (2.6), equal to PNC with H = 1, represents the proto-
type back-pressure policy

5. RR, round robin policy operating in cycles; in each cycle, each link is activated
once as part of a random order

For the simulations, we implemented the systems according to (2.2) and the PNC
policy according to (2.13) and especially Table 2.1.

Dynamic Topology

We employ a scenario as depicted in Figure 2.2, where a mobile user equipment
(UE) crosses multiple sectors, each one designated to a specific access point (AP).
In each sector, the UE can only communicate with the corresponding AP. The
APs are connected to a global network from which they receive packets that they
are supposed to transmit to the UE. The derived queueing network is shown in
Figure 2.3. We assume that the UE travels with constant velocity along a known
path and the sectors do not overlap. The UE remains in each sector for exactly 3
time-steps, where it experiences perfect channel quality (guaranteed transmission
success). A single packet is created every second time-step at q[1], which represents
the entire arrival to the system. The controller can only select a single link per
time-step.

Given the simplicity of the scenario, the DTMC {st} becomes deterministic,

allowing us to fix the time behavior of the parameters m̄
[j]
t (transmission success

probabilities) of the links. In particular, each sequence {m̄[j]
t } becomes a binary

sequence. If j is uneven, m̄
[j]
t = 1 (corresponding to the wired global network).

Else m̄
[j]
t = 1 only if the UE passes through the corresponding sector as depicted in

Figure 2.4.
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UE

AP

Velocity = 1 Sector
3 Time-Steps

Fig. 2.2: Scenario for example 1. A user equipment traverses multiple access points with
constant velocity, thereby being connected to various access points.

q[1]

q[3] q[4] q[nq ]

q[2]

r1 rnv−1

r2 rnv

Fig. 2.3: Corresponding queueing network to Figure 2.2. Each node represents an access
point, except q[1] and q[2] which represent global source and destination, respectively.

m̄
[2]
t

m̄
[4]
t

m̄
[nv ]
t

= 1

= 1

= 1

= 0

3 6 3(nv − 1) 3nv

t

Fig. 2.4: Transmission success probabilities for the corresponding links to Figure 2.3.
Links are either ideal (error-free) or cannot establish communication at all.
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Fig. 2.5: Simulated throughput of packets, refering to Figure 2.2. Given a constant flow
of packets (red) that is to be transmitted to the destination, our predictive policies are
able to successfully deliver nearly all packets (blue). The MW policy does only manage

do deliver 66% (orange).

The simulation results in Figure 2.5 show the accumulated amount of packets
sent and received by the UE. Some plots are slightly shifted vertically to improve
visualization. It can be observed that only around 66% of the packets reach the
UE for the MW policy. The same holds for the RR policy which acts identically to
MW for this scenario. In comparison, PNC and qPNC can deliver close to 100% of
the packets, and this already when applying merely H = 2. This is quite obviously
facilitated by the topology: It only takes 2 hops from the source of the packet to the
UE and thus H = 2 is already sufficient to determine an optimal path through the
network. Interestingly, fPNC performs much worse. This is because in some time-
steps, fPNC still follows an old control trajectory which has become sub-optimal
due to arrivals and changes in topology.

Networks with Assembly-Queues

Though MW performs poorly in networks with dynamic topology, as showcased in
the previous simulation, it is still able to achieve throughput optimality in the long
run if we assume MW to be sensitive to the current topology-state st (an assump-
tion that we also used for PNC). Indeed, for conventional networks, throughput
optimality is shared by both policies. However, in the example at hand we extend
conventional networks with assembly-queues [28, 29, 30, 31, 32, 33, 34, 35]. In a
batch of assembly-queues, all queues must be served at the same time. Conversely,
if a single queue of such a batch is depleted, all other queues of the same batch
cannot be served (at least not over that particular server or link). As the name sug-
gests, those queues can not only be applied to assembly lines in industrial settings,
but also help to model logistic and traffic scenarios, e.g. when parcels for the same
customer are to be delivered together. In networks with assembly-queues, only PNC
seems to maintain its throughput optimality while MW fails [25].

For our simulation, we imagine a scenario as depicted in Figure 2.6. Set-up and
queueing network are shown on the left and right side, respectively. The example
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consists of an access point (AP) q[1] that can either transmit solitary (link r1),
or initiate synchronized transmission (link r3) with a neighboring AP q[2]. The
synchronized transmission uses constructive interference and thus achieves higher
success probability. However, before synchronized transmission can be initiated, the
data packets have to be shared (link r2), i.e. copied from q[1] to q[2]. Only one link
may be activated in each time-step.

q[1]

q[2]

q[3]r2 r3

r1

Fig. 2.6: Scenario and corresponding queueing network. One access point (q[1]) can
decide between direct transmission or synchronized transmission using a neighboring AP
(q[2]). For this to be relevant, transmission via r3 must feature a much higher success

probability compared to r1.

ā[1]

ā[2]

−u0
−u1

−u3

−u2

Stability Region A (green)

ā[1]

ā[2]

−u0
−u1

−u3

−u2

Set of Arrival Rates ā that

MW is able to stabilize (red)

Alternating u2

and u3 nearly

compensates for

ā = (2; 0)

Fig. 2.7: Stability region for the queueing network depicted in Figure 2.6. MW is only
able to stabilize a small part of the entire stability region.

In order to focus on the essential, we use a single constant matrix M̄ , i.e. we do
not need the topology-state st because the topology stays fixed. The m̄[j] (which
are the diagonal elements of M̄) are chosen in such a way that it is beneficial to
copy (share) the data and then transmit together, instead of broadcasting the data
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directly. Specifically, we set m̄[1] = 1
4
and m̄[2] = m̄[3] = 1 and assume all links to

be disjunct. Note that we can neglect q[3] in all further discussions since it merely
represents the final destination.

With M̄ being fixed, the efflux of the system can be expressed succinctly via the
control-option ut = RM̄vt instead of the control-vector vt. We define U to be the
set of all possible control-options which is readily verified to be

U = { u0, u1, u2, u3 } =
{(

0
0

)
,

(
−1
0

)
,

(
0
4

)
,

(
−4
−4

)}
where we scaled all elements of U with the factor 4 to simplify the presentation. We
have u1, u2, u3 representing single transmission, data sharing, and joint transmission,
respectively. And in each time-step the controller may only choose one of these
options to influence the expected queue-state via E[qt+1 | qt] = qt + ut + at.

With this, it becomes very easy to express the set of all arrival rates ā ∈ A for
which the system is possibly stabilizable:

A =
{
ā
∣∣ ∃ū ∈ conv(U) : ā+ ū < 0

}
(2.43)

A graphical illustration can be found in Figure 2.7, where A corresponds to the
green triangle on the left side.

Now, let us assume that there is no arrival at q[2], i.e. ā[2] = 0. Using the control-
options u2 and u3 in alternating sequence (given that there are enough packets to
do so) would yield an efflux of 4 packets every 2 time-steps in q[1]. Hence, an arrival
rate just smaller than ā = (2; 0)⊺ can be stabilized and therefore belongs to A. The
corresponding point is referenced on the right side of Figure 2.7. It is easily checked
that no other sequence of control-options can match this efflux.

ā[1]

ā[2]

−u0 −u1

−u3

(1.95; 0)

(2; 1)

(3; 2.9)

Illustrated Arrival Rates

are stabilized by:

MW (red)

fPNCH=3 (blue + red)

PNC

qPNC (green + blue + red)

fPNCH=2

Fig. 2.8: Selection of Arrival Rates for the Simulation corresponding to Figure 2.9.

However, conventional back-pressure policies like MW are unable to access the
control-option u2, resulting in the loss of its throughput optimality in this example.
It turns out that the only arrival rates stabilizable by MW are those in the red
triangle on the right side of Figure 2.7.

In contrast, PNC is able to select the missing control-option u2, and simulations
suggest that it stabilizes the example for any strictly positive arrival rate ā from A.
To substantiate this claim we refer to Figure 2.9. Here, we simulated the queue-state
q[1] over time t for 3 different arrival rates ā which are depicted in Figure 2.8 and
initialized as scaled Bernoulli processes.
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Fig. 2.9: Queue-state q[1] as a function of time t for various (color-coded) arrival rates,
referring to the queueing network from Figure 2.6. MW, RR, and fPNCH=3 seem to be

inferior to the other predictive policies.

As predicted, MW does not stabilize the blue and green arrival rates (Figure 2.9).
The RR policy naturally performs even worse since it is insensitive to queue-states
and arrival rates, and therefore can only stabilize a very small set of arrival rates.
As mentioned, fPNC can be interpreted as MW if time was dilated by the factor H.
It performs better because it considers more than just the immediate next system-
state but is only active every H time-steps. Surprisingly, fPNC performs worse
when looking H = 3 steps ahead compared to H = 2. This can be attributed to the
geometry of A; a rigorous explanation is still subject to research. Finally, it can be
seen that both PNC and qPNC stabilize all 3 arrival rates for all employed prediction
horizons. This shows that (i) the MPC paradigm of repeating the optimization in
each time-step is essential for optimal performance and (ii) the reduction of the
quadratic objective to a linear one does not result in performance loss.
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2.2.6 Computational Effort

Due to the consideration of multiple future system-states, PNC is nearly guaranteed
to yield better control decisions compared to conventional back-pressure policies
like MW. However, given that the optimization intrinsic to PNC is a binary linear
program, we would expect that the effort to solve the optimization problem roughly
grows exponentially with the horizon H since the feasible set of the optimization
does so as well.

The simulation results seem to confirm this correlation. In Figure 2.10 we plotted
the relative amount of time needed to find an optimal trajectory as a function of
the horizon H. The results are normalized with respect to the value for H = 1 since
this is the computation effort of the common back-pressure policy MW. Each value
was generated by measuring the run-time over several thousand optimization runs
from the presented examples in Section 2.2.5. Importantly, in our examples, queues
are often times totally drained, resulting in many optimization parameters being
0 (especially for the objective vector). We call this the unloaded case. In order to
escape this potential bias, we also performed the same measurements on simulations
in which the initial queue-states were loaded. In these cases, we initialized the queue-
states with a large amount of packets such that they could never be drained during
the simulation. All simulations were performed using the well-established Gurobi
Optimizer with Matlab.

For this investigation, we did not include the policies RR, fPNC and qPNC. The
first one is not based on an optimization and therefore is not suited for comparison.
The second one requires per definition the H-th part of the computational effort
of PNC. Finally, we found that, in some cases, solving the optimization for qPNC
takes more than 100 times as long as the optimization for PNC. Given that both
policies yield nearly identical results, there seems to be no merit in investigating its
computational effort any further.

In Figure 2.10, it can be seen that the additional effort to find an optimal tra-
jectory, compared to MW, stays low for small values of H. E.g. for H = 2 the
additional effort is just around 20% in the most unfavorable case of an unloaded
initialization. For real world applications, we assume that this additional effort is
even smaller since we expect networks to operate somewhere between the loaded
and unloaded case.

Given the fact that significant performance gains can already be achieved by
employing a horizon of H = 2, these results suggest that PNC is indeed a strong
competitor to traditional back-pressure policies.

2.2.7 Conclusion

We equipped a discrete-time queueing network with an additional DTMC that
changes network parameters (even topology) on a mid- to long-term time scale. We
then introduced a novel family of predictive control policies, PNC, which is based
on the paradigms of MPC, and devised a special implementation of the underlying
prediction that allows the policy to be executed in the fastest way possible. Our pol-
icy is especially well suited to control the above mentioned systems and outperforms
conventional control approaches, as is illustrated in numerical simulations, even if
the prediction horizon is very small. Further simulations suggest that in those cases
the additional computational effort required to run our policy is reasonably low. In
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Fig. 2.10: Relative computation time as function of the (prediction-) horizon. A and B
correspond to exemplary applications A and B from Section 2.2.5.

our main theoretical contribution, we prove throughput optimality of PNC. Looking
ahead, we see an intriguing application in networks that consist of assembly-queues
(e.g. found in parallel computing or manufacturing chains). Those networks still
elude conventional control strategies but seem to be stabilizable under PNC policies
with suitably chosen prediction horizon.

2.3 Concluding Remarks

The paper does not explain an interesting observation from Figure 2.9. Namely,
that fPNC looses its ability to stabilize the arrival vector (1.95; 0) as the horizon
grows from H = 2 to H = 3. This contradicts the intuition that a larger prediction
horizon yields better control performance.

The effect can be explained using an exemplary queueing network with the fol-
lowing control-options (this time explicitly considering the idle control-option as
u0):

u0 =

(
0
0

)
, u1 =

(
−4
−4

)
, u2 =

(
0
+2

)
(2.44)

The network is illustrated in Figure 2.11.
The stability region of the network is depicted in Figure 2.12, top left. It is

readily verified (e.g. by means explained in Section 1.1) that MW can only ever use
u1 or u0. MW chooses to activate u1 when the system-state is in the red marked
area in Figure 2.12, bottom left (of course, the red marked area extends to even
larger system-states). For any other system-state, MW chooses to be idle (u0) since
negative system-states are ruled out. The repeated application of u0 and u1 only
allows MW to stabilize a symmetric arrival with identical arrival sequences in each
component.

Extending this investigation to fPNC with horizon H = 2 (which is equivalent to
the MW policy considered over 2 time-steps because we follow the optimal control
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q[1]

q[2]

r1

r2

Fig. 2.11: Simple network example, corresponding to the control-options from (2.44).
Link ri results in control-option ui.

trajectory until the end before starting a new optimization), we note that the amount
of control-options is increased since any combination of two single-step control-
options is now available to the policy, depicted in Figure 2.12, top mid. Crucially,
that means that fPNC is able to activate u2, albeit only in combination with u1. This
is possible when the system-state is located in the green marked area in Figure 2.12,
bottom mid, and allows fPNC with horizon H = 2 to stabilize the entire positive
stability region. (The question of whether this specific mapping from the queue-
state to the control-options does indeed result in a throughput optimal behavior of
the policy is exactly what the proof of throughput optimality is all about).

It becomes interesting once we extend the horizon once more and look at the
fPNC policy with horizon H = 3. This time, all combinations of three single-step
control-options are available to the policy. However, this makes the policy lose access
to some part of the stability region (dark green area, Figure 2.12, top right), since
it is no longer on the convex hull of all accessible control-options. Because though
control-options like (u1+2u2) are available in theory, fPNC will never use them (see
the mapping in Figure 2.12, bottom right) and thus they do not contribute to the
convex hull. This is the reason why fPNC loses parts of its stability region when
increasing the horizon from H = 2 to H = 3.

Crucially, PNC does not lose its stabilizing abilities when increasing the horizon.
Since the PNC policy does discard the entire tail of the optimized trajectory in every
time-step, it is not bound to actually follow a control trajectory to its end. For PNC
it is enough to gain access to u2 via at least one combination of single-step control-
options. If it does, it can indeed apply u2 as often as is needed. Specifically, looking
at Figure 2.12, bottom right, as long as the system-state stays in the green or orange
area, PNC can activate u2 because both (u1 + u2 + 0) and (2u1 + u2) give access to
u2. The order in which the control-options are activated in these trajectories is only
influenced by the constraints.
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Fig. 2.12: Stability regions (top) and mapping from state-space to the control-options
(bottom). The relocation of the (combined) control-options, caused by an increase of the

horizon, is the reason why fPNC looses parts of its stability region when H = 3.
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Abstract In a batch of assembly-queues, customers can only be served all at once
or not at all, implying that service remains idle if at least one queue is vacant.
As a common misconception, such batches are often deemed to be unstable, no
matter the amount of queues employed. Our contribution consists of correcting
such impreciseness: We prove that a batch of d assembly-queues in a discrete-time
setting is quasi-stable (null-recurrent) for d ∈ {2, 3} and unstable (transient) for
d ≥ 4. In order to present a concise proof, we assume all arrivals to our system
to be Bernoulli processes, thereby avoiding the necessity of several technicalities.
Nevertheless, our results can be extended to arbitrary proper stochastic processes in
an obvious way. To facilitate our analytical results, we construct a correspondence
between such queueing systems and a random-walk-like discrete-time Markov chain
(DTMC) that operates on a quotient-space of the original state-space. For d ≥ 4,
transience can be shown by evaluating infinite power sums over skewed binomial
coefficients. For the intricate case d = 3, we shall employ a theorem by Kendall
which is a predecessor to the well-known recurrence theorem for DTMCs by Foster.
Ignoring the special structure of the quotient-space, whose dimension is d − 1, our
results correspond to Pólya’s observation on random-walks.
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3.1 Preliminary Remarks

The previous paper proved that the PNC policy is throughput optimal for conven-
tional queueing networks. However, so is the MW policy (which is equal to PNC
with Horizon H = 1). The real advantage of PNC compared to MW thus seems
to be the fact that PNC retains the throughput optimality even in presence of so-
called assembly queues. Those queues can only be served all at once or not at all, i.e.
processing of packets/customers becomes impossible if at least one queue is empty.
They were already employed in the examples related to Figure 1.2, Figure 1.6, and
Figure 2.6 in the previous papers where they are easily identified. Given this ob-
servation, the paper at hand takes a closer look at the stability properties of such
assembly queues.

In particular, the investigation revolves around the following somewhat counter-
intuitive observation: Let there be a single queue in a time-discrete setting that
can be drained by exactly one packet per time-slot (effectively decreasing its queue-
backlog by 1) if the queue is not empty. At that queue, packets are arriving with
arrival rate α (i.e. on average, the backlog increases by α packets per time-step).
Under the usual assumption of an ergodic arrival process, it seems intuitive that the
queue-backlog would be stable if α < 1. And indeed this is the case. (To see why
the arrival must be ergodic, we refer to Figure 3.1.)

Now let us extend this scenario by changing the queue into a batch of 2 assembly
queues. As before, the system can be drained by 1 packet per time-step per queue,
but only if both queues are non-empty. But now, each of the 2 queues is subject
to a separate ergodic stochastic arrival process with arrival rates α1 and α2 (corre-
sponding to the two queues). It is a reasonable assumption that if α1 = α2 < 1, i.e.
if, on average, the same amount of packets are arriving at both queues, and if that
average amount of packets is less than 1, then the queue-backlog is stable. However,
this is not the case; one of the queue-backlogs almost surely grows to infinity. This
behavior is investigated through a novel approach in the paper at hand.
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at =

{
n for t = 2n

0 else

it follows that

α = lim
T→∞

1

T

T∑
t=1

at = 0 < 1

but it also follows that

lim
n→∞

q2n →∞

Fig. 3.1: Necessity of ergodicity. The illustrated arrival process has an arrival-rate of 0,
since the sum of all arrived packets grows sublinearly with time. Though the queue can
be drained by 1 packet per time-step, the queue-backlog grows to infinity. This can only

happen if the arrival process is not ergodic.
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3.2 Paper Body

3.2.1 Introduction

Conventional queueing networks, consisting of queue/server pairs, are a well inves-
tigated system class. In those networks, each queue possesses its individual server
which handles the customers exclusively for that queue. In contrast, there exists the
notion of assembly-queues in which a single server is responsible for multiple queues.
Here, service cannot take place if at least one queue is vacant, and successful service
consumes one customer from each queue (see Figure 3.2). Assembly-queues find
application in manufacturing processes [36], parallel computing [37], matchmaking
scenarios [38] and communication [39].

Conventional Queue Batch of 3 synchronized Queues

Fig. 3.2: Graphical illustration of a batch of 3 assembly-queues on the RHS; only if each
queue has at least one packet queued up, service can be performed.

It is known that a single batch of assembly-queues with i.i.d. arrivals in a
continuous-time setting is unstable in the sense that the backlog does not converge
to a stationary distribution [40]. For the special case of 2 assembly-queues, this was
further investigated by [41] who made a connection to the recurrence property of
a corresponding Markov process and found that the difference between the queues,
the so-called excess, is the decisive quantity which entails instability.

On the other hand, this intrinsic instability can be circumvented by enforcing
finite buffer sizes or employing buffer-size-sensitive arrival processes. Using these
techniques, subsequent research on assembly-queues roughly falls into 3 categories.
i) The first one investigates properties like throughput or sojourn times of indi-
vidual batches of assembly-queues [28, 29, 30]. ii) The second one is concerned
with autonomous networks of assembly-queues. In such networks every server al-
ways operates as soon as its queue-states allow it to, hence a network controller
is not required [31, 32, 33]. iii) The last category looks into ”shallow” networks
of assembly-queues. Here, many batches are arranged in parallel such that some
queues are drained by multiple servers. A controller has to decide which batch to
serve first, possibly preventing future service of other batches due to vacant queues.
However, the network remains ”shallow” in the sense that the efflux of one queue is
never the influx of another [34, 35].

A common misconception is that batches of assembly-queues are unstable, re-
gardless of how many queues are part of the batch. We correct this by proving that
the behavior of the backlog significantly changes from null-recurrent to transient
when employing more than 3 queues. Obviously, this can have decisive implications
for those queueing networks in which batches of assembly-queues make up the core
constituents.
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In some sense, we extend the results from [41] to the multi-dimensional case and
to a discrete-time setting. Compared to the findings of [40], we obtain a more precise
characterization of the process that is responsible for the divergence of the backlog.
We show that this process is the multi-dimensional excess which evolves on a specific
quotient-space with equivalence classes taken from the general state-space. This
process resembles a random-walk and will imply null-recurrence (quasi-stability) or
transience (instability), based on the number of queues in the batch. However,
significant differences (like the absence of ”backward motion” in any dimension)
prohibit us from directly employing the results from the theory of random-walks.
Our claim is especially hard to prove for the case in which the batch consists of 3
assembly-queues. We will employ a theorem by Kendall [42] which can be seen as a
predecessor to the famous recurrence theorem by Foster [43]. The other cases can be
dealt with by evaluating infinite power sums over normalized binomial coefficients.

3.2.2 System Model

In the context of discrete-time queueing models, we can express a single batch of
assembly-queues via the evolution of its queue-state. If the batch consists of d queues
(dimensions), then the state-vector will be qt ∈ Nd, where t designates the time-step.
Its process {qt} follows the evolution:

qt+1 = qt − 1mtvt + at (3.1)

The last term represents the multi-dimensional arrival process at ∈ Nd. We assume
at to be a vector of d independent but identically parameterized Bernoulli processes
with first moment α. I.e. in each time-step and each queue, the probability of exactly
one customer arriving is α. While at represents the influx, −1mtvt represents the
efflux, where one is the vector of ones (with dimension d) and vt ∈ {0, 1} is the
control-vector. If qt ≥ 1, meaning that there is at least one customer present in
each queue in time-step t, a controller can set vt = 1 in order to serve the customers
and thereby subtracting 1 from qt. The sequence {mt} is an independent Bernoulli
process with first moment µ that disturbs the control. I.e. only if mt = 1, the
activation of the control vt = 1 has an effect on the system.

As mentioned, the control cannot be activated if at least one queue is vacant,
resulting in the constraint

1vt ≤ qt (3.2)

Obviously, an optimal control strategy activates vt whenever possible and therefore
only needs to depend on the current queue-state qt (given that mt is unknown prior
to realization and the goal is to serve as many customers as possible). The maximum
average efflux resulting from such a policy would be 1µ. Furthermore, if α > µ, the
influx at would on average be greater than the efflux −1mtvt, rendering the system
unstable no matter the control strategy. Hence, we will assume from now on that
α < µ (influx is smaller than maximum possible efflux) and an optimal control
strategy is in place. The main contribution of this paper is the following theorem:

Theorem 2. A batch of d assembly-queues, set up as described above, is quasi-stable
(null-recurrent) for d ∈ {2, 3} and unstable (transient) for d ≥ 4.

Proof. See Section 3.2.3 and Section 3.2.4.
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3.2.3 A Random-Walk on the Quotient-Space

Let the state-space of our queueing system be Zd and identify the main diagonal of
Zd with the subspace ⟨1⟩ := { x = 1 · k, k ∈ Z } ⊂ Zd.

The control decision vt (as part of an optimal control strategy) only depends
on the current queue-state qt. It follows that with such a policy employed, the
process {qt} becomes a discrete-time Markov chain (DTMC). Furthermore, {qt} can
be divided into two distinct processes: a process {q⊥t } perpendicular to ⟨1⟩, and a
process {qqt} parallel to ⟨1⟩.

qt+1 = 1qqt+1 + q⊥t+1

qqt+1 := qt+1 div 1 = (qqt + at) div 1−mtvt

q⊥t+1 := qt+1mod1 =
(
q⊥t + at

)
mod1

(3.3)

Here, xq := x div 1 represents the maximum number of times that one can subtract
1 from x without a single entry of the resulting vector becoming negative. The
remainder to x, which is x− 1xq, is x⊥ := xmod1.

The process {qqt} represents the smallest queue in our initial queueing network
and therefore operates on the 1-dimensional state-space N. Note that {qqt} is not a
DTMC (as shown in the proof of Proposition 1).

On the other hand, {q⊥t } is readily verified to be a DTMC and can be identified as
the multi-dimensional excess of customers, relative to the smallest queue. Crucially,
{q⊥t } is an autonomous process that cannot be influenced by the control. Due to
the modulo operator, the state-space of {q⊥t } is the quotient-space Zd/⟨1⟩. Though
dim

(
Zd/⟨1⟩

)
= d−1, we can still denote {q⊥t } as a vector in Zd, keeping in mind that

different vectors may represent the same equivalence class. This way, {q⊥t } behaves
similar to a random-walk: By the assumptions on at, the average probability of an
increment per time-step in each entry of the vector qt is α. However, regarding (3.3),
there is no direct process to decrease any entry. Instead, by virtue of the quotient-
space, a decrement in any entry is equal to an increment in all other entries:(

−1 0 . . . 0
)⊺ ≡ (0 1 . . . 1

)⊺
mod 1 (3.4)

We will investigate the recurrence property of {q⊥t } in detail in Section 3.2.4.
Note that {qqt} and {q⊥t } operate on disjunct state-spaces. Using a linear trans-

formation on the canonical state-vector qt =
(
q
[1]
t , q

[2]
t , q

[3]
t

)⊺
yields a new description

q′t for the state-space in which the separation becomes obvious:1 0 −1
0 1 −1
0 0 1

 qt =

q
[1]
t − q

[3]
t

q
[2]
t − q

[3]
t

q
[3]
t


q

[1]
t − q

[3]
t

q
[2]
t − q

[3]
t

q
[3]
t

 div

0
0
1

 = q
[3]
t

q
[1]
t − q

[3]
t

q
[2]
t − q

[3]
t

q
[3]
t

mod

0
0
1

 =

q
[1]
t − q

[3]
t

q
[2]
t − q

[3]
t

0


(3.5)
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This exact transformation is only valid as long as q
[3]
t is the smallest entry in the

canonical vector. As {qt} evolves, the transformation might have to be adapted
accordingly. However, the separation will still hold true.

This clean separation of the state-spaces allows for the following claim:

Proposition 1. Let {qt}, {q⊥t } and {qqt} be processes defined as above in (3.1) and
(3.3). Then the following statements are true:

1. The process {qqt} is positive-recurrent.

2. If {q⊥t } is positive-recurrent, null-recurrent or transient, then so is {qt}.

Proof. First, consider {qqt}: If qt = 0 (0 being the zero-vector of dimension d), then
qqt = 0 and the probability of the event {qqt+1 = 1} is αd. If however qt = 1 − e1
(e1 being the first canonical unit vector of dimension d), then again qqt = 0 but the
probability of {qqt+1 = 1} is α. Hence, {qqt} cannot be a DTMC. Let us introduce
a dummy DTMC {wt} that also operates on N and whose transition probabilities,
given that wt = w, are

P[wt+1 = w+ 1] = α

P[wt+1 = w+ 0] = 1− α− µ

P[wt+1 = w− 1] = µ

 if w ≥ 1

P[wt+1 = w+ 1] = α

P[wt+1 = w+ 0] = 1− α

}
if w = 0

(3.6)

and 0 otherwise. Hence, {wt} is an asymmetric random-walk and can be shown to be
positive-recurrent via Foster’s theorem [43], using an arbitrary linearly growing test-
function. However, it is clear that, in any state, {wt} exhibits a higher probability
to move further away from 0 than {qqt}. Therefore, {qqt} must be positive-recurrent
as well.

Now to statement 2: Since {qqt} is positive-recurrent, the process infinitely often
visits any coherent subset of N that contains 0, and the time until it revisits such a
set is finite almost surely. Conversely, when picking infinitely many values from a
realization of {qqt}, the probability of these values lying inside a finite set is 1 a.s. .

We know that {qqt} takes the value of the smallest queue, and that {q⊥t } represents
the differences between this smallest queue and all other queues. If {q⊥t } is transient,
the differences and therefore the queues themselves actively grow to infinity, making
{qt} transient as well. If {q⊥t } is non-transient, the event {all differences return to
0 at the same time} happens infinitely often. If we look at all the values of {qqt} in
these events, we already argued that these values belong to some finite set S ⊂ N
a.s. . Hence, {qt} also revisits S (embedded in Zd) infinitely often, and each time it
does, all queues have the same backlog. It follows that {qt} must be non-transient.
The expected time it takes to revisit S clearly is either infinite or finite, depending
on whether {q⊥t } is null- or positive-recurrent. The proposition follows.

Notably, since {q⊥t } is autonomous, it follows from Proposition 1 that the sta-
bility property of a batch of assembly-queues is fully independent of the control
(remember that we assumed α < µ). With this we can reformulate Theorem 2 as
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Theorem 3. The process {q⊥t } is null-recurrent for d ∈ {2, 3} and transient for
d ≥ 4.

Proof. See Section 3.2.4

3.2.4 Proof of Main Theorem

We separate the proof into 3 parts for the cases d = 2, d = 3 and d ≥ 4. The
following lemma, holding 2 separate results, will be useful.

Lemma 4. Let there be a set of elements X := { x1, x2, . . . xn }, xi ∈ R+ with∑n
i=1 xi = 1. Denote the maximal value with x̂ = maxi=1,...n xi and the average with

x̄ = 1
n

∑n
i=1 xi. Then it holds for each d ∈ N, d ≥ 4 that

n∑
i=1

xd
i ≤ x̂d−1 and

n∑
i=1

x2
i ≥ nx̄2 (3.7)

Proof. It is
n∑

i=1

xd
i ≤

n∑
i=1

xix̂
d−1 = x̂d−1 (3.8)

and

n∑
i=1

x2
i =

n∑
i=1

(x̄+ [xi − x̄])2 = nx̄2 + 2x̄
n∑

i=1

[xi − x̄]︸ ︷︷ ︸
= 0

+
n∑

i=1

[xi − x̄]2 ≥ nx̄2 (3.9)

Case d ≥ 4

Per assumption all arrival processes are Bernoulli processes with parameter α. We
denote the probability of such a process exhibiting k increments in n time-steps as
pn,k and have

pn,k =

(
n

k

)
αk (1− α)n−k (3.10)

Let rn be the probability that {q⊥t } has returned to wherever it originated from
after n steps. It is well known that {q⊥t } is transient if the infinite sum

∑∞
n=1 rn

converges, and non-transient if it diverges. Because of the modulo operator, {q⊥t }
has returned in n steps if all queues have experienced the same amount of increments.
Hence, rn becomes

rn =
n∑

k=0

pdn,k =
n∑

k=0

[(
n

k

)
αk (1− α)n−k

]d
(3.11)

We can identify pdn,k with a position in Pascal’s triangle: n denotes the row and

k the column. (Especially for α = 1
2
the sum

∑∞
n=1 rn runs over the elements of the

normalized triangle, taken to the power of d.) For ease of notation we will use the
identity β = 1− α and will treat pdn,k as a function of α when necessary.



PAPER 3. ASSEMBLY-QUEUES 63

It is
n∑

k=0

pn,k = 1 ∀n ∈ N, ∀α ∈ (0, 1) (3.12)

The terms in row n, which are pn,0, . . . pn,n, follow a binomial distribution which
exhibits 2 maxima at most. Denote with p̂n the largest term in row n, and its
position with k̂n. Going through the terms of the row n from k = 0 to k = n (left
to right), p̂n is positioned wherever the quotient of two consecutive terms is greater
or equal 1 for the first time:(

n

k̂n

)
αk̂nβn−k̂n(

n

k̂n + 1

)
αk̂n+1βn−k̂n−1

≥ 1 ⇐⇒ k̂n ≥ nα− β (3.13)

Due to the discreteness, we can only locate k̂n down to an interval such that k̂n =
nα + δ with −β ≤ δ ≤ α.

Using Stirling’s approximation
√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n and some basic

algebra, we obtain the value of the largest term in a row as

p̂n =

(
n

nα + δ

)
αnα+δβnβ−δ

≤ e

2π

1√
nαβ

(
1 +

δ

nα

)−nα−δ− 1
2
(
1− δ

nβ

)−nβ+δ− 1
2

(3.14)

Regarding the last 2 factors, we can make the following estimation and find, for any
given ε ∈ R+, an N ∈ N such that ∀n ≥ N :(

1 +
δ

nα

)−nα

→ e−δ ≤ eβ + ε(
1 +

δ

nα

)−δ

≤ 1(
1 +

δ

nα

)− 1
2

→ 1 ≤ 1 + ε

(3.15)

With slight abuse of notation concerning the values of ε and N , this yields

p̂n ≤
e2 + ε

2π

1√
nαβ

∀n ≥ N (3.16)

Now, for any d let sd denote the finite sum of the first N − 1 rows, i.e.

sd =
N−1∑
n=1

rn =
N−1∑
n=1

n∑
k=0

pdn,k (3.17)

Using Lemma 4, the entire series becomes
∞∑
n=1

n∑
k=0

pdn,k = sd +
∞∑

n=N

n∑
k=0

pdn,k ≤ sd +
∞∑

n=N

p̂d−1
n

≤ sd +

[
e2 + ε

2π
√
αβ

]d−1 ∞∑
n=N

1

n
d−1
2

(3.18)

which converges for d ≥ 4. This proves transience of {q⊥t } for d ≥ 4.
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Case d = 2

Again, identify pn,k with its corresponding position in Pascal’s triangle (row n, col-
umn k). Every row consists of n+1 terms which add up to (α+ β)n = 1 (using the
binomial theorem). If we average the values of each row, we get an average value of
1

n+1
. Hence, using Lemma 4 yields

∞∑
n=1

rn =
∞∑
n=1

n∑
k=0

p2n,k ≥
∞∑
n=1

n∑
k=0

1

(n+ 1)2
>

∞∑
n=1

1

(n+ 1)
(3.19)

which diverges. It follows that {q⊥t } is non-transient for d = 2. To answer the ques-
tion, whether in this case {q⊥t } is positive-recurrent or null-recurrent, we investigate
the Expected T ime of the process’s F irst Return to wherever it started (ETFR).

For that purpose, define the process

ht = q
[1]
t − q

[2]
t = q

[1]
0 − q

[2]
0 +

t−1∑
τ=0

a[1]τ − a[2]τ (3.20)

It is readily verified that {ht} is a simple symmetric random-walk in 1 dimension
with the additional possibility of a ”null”-increment occurring. Hence, the ETFR of
{ht} must be greater than that of a simple symmetric random-walk, and therefore
the ETFR of {ht} is infinite.

However, we can write {q⊥t } as

q⊥t = ht ·



(
1

0

)
if q

[1]
t > q

[2]
t(

0

−1

)
if q

[1]
t ≤ q

[2]
t

(3.21)

and hence, the ETFR of {q⊥t } must be the one of {ht}. This proves null-recurrence
of {q⊥t } for d = 2.

Case d = 3

This case is more intricate. In a first step we obtain a lower bound on the series∑∞
n=1 rn by setting α = β = 1

2
. It is readily verified that

d

dα
rn(α) = 0 and

d2

dα2
rn(α) > 0 if α =

1

2
(3.22)

and no other candidates for extreme points exist. Hence, it will suffice to show
divergence for α = 1

2
, and we will make use of this substitution in subsequent

formulas.
Note that it is also true that the series

∑∞
n=1 rn diverges if the DTMC {q⊥t }

is non-transient (we only used the converse before). And for α = 1
2
, we can show

the latter part by applying a theorem by Kendall [42] (a predecessor to the famous
recurrence theorem by Foster [43]): The DTMC {q⊥t } with state-space Q is non-
transient, iff there exists a function f : Q → R+ and a finite set F ⊂ Q such that

QK := { q ∈ Q : f(q) ≤ K } = finite for all K ∈ R+

∆f(q) := E[qt+1 − qt | qt = q] ≤ ∞ ∀q ∈ Q
∆f(q) := E[qt+1 − qt | qt = q] < 0 ∀q ∈ Q \ F

(3.23)
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Here, the gothic q, which is q, is used to denote possible realization of the random
variables that the process {qt} is made of.

Next, we show that this theorem is fulfilled for the function

f(q) = ln ln(e+ ρ(q)) (3.24)

where e is Euler’s number and ρ(q) is the squared distance from q to the main
diagonal of the original state-space Z3:

ρ(q) = q⊺q− 1

3
(q⊺1)2 (3.25)

It is also readily checked that this function is well defined for the actual state-space
Q = Z3/⟨1⟩ of {q⊥t } and fulfills the first condition in (3.23). The drift ∆f(q) is
the expected change in f during one evolution of {q⊥t } and is independent of the
control, a feature inherited from {q⊥t }. Because the entries in at are from the set
{0, 1}, and by the virtue of α = 1

2
, the drift simply becomes

∆f(q) = −f(q) + 1

8
[f(q+ e1 + e2 + e3) + f(q)]

+
1

8
[f(q+ e1) + f(q+ e2) + f(q+ e3)] (3.26)

+
1

8
[f(q+ e1 + e2) + f(q+ e2 + e3) + f(q+ e3 + e1)]

with ei being the i-th canonical basis vector.

q

ϕ

Fig. 3.3: State-space Z3/⟨1⟩; r and ϕ describe a current queue-state q⊥t , while the points
mark all possible states that q⊥t+1 can inhabit.

In our case, the fastest way to verify Kendall’s theorem is via a geometrical
interpretation of the state-space. For d = 3, we essentially move on a 2-dimensional
plane with 3 axis as illustrated in Figure 3.3. Hence, we can identify q with its radius
r and an angle ϕ shared with the projection of the (1, 0, 0) axis. A third coordinate
that would hold information about the distance between q and the origin parallel
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to the main diagonal is not required because it would get ”absorbed” by ρ(q). In
these coordinates, and using the cosine formula, the drift becomes

∆f(q) = −6

8
ln ln

(
e+ r2

)
+

1

8

5∑
m=0

ln ln
(
e+ r2 + 1− 2r cos(ϕ+m · 60◦)

)
(3.27)

Differentiating by ϕ yields maxima at ϕ = 30◦ + z · 60◦, with z ∈ Z, such that

∆f(q) ≤ −3

4
ln ln

(
e+ r2

)
+

1

4
ln ln

(
e+ r2 + 1

)
(3.28)

+
1

4
ln ln

(
e+ r2 + 1−

√
3r
)
+

1

4
ln ln

(
e+ r2 + 1 +

√
3r
)

The RHS obviously tends to 0 as r → ∞ because r2 dominates the other terms in
the ln-function, and the coefficients in front of ln-functions add up to 0. On the
other hand, differentiating the RHS by r yields

− 2

r2 ln (r2)
+

1(
r2 −

√
3r
)
ln
(
r2 −

√
3r
) + 1(

r2 +
√
3r
)
ln
(
r2 +

√
3r
) > 0 (3.29)

which is positive due to the convex nature of the occurring functions as r → ∞.
This allows us to deduct as follows: in the direction ϕ of the largest possible values
for ∆f(q), the value of ∆f(q) tends to 0 as r grows to infinity. Furthermore, since
the derivation by r is positive, the value tends to 0 but is always negative if r is
large enough. It follows that ∆f(q) must be negative for all r ∈ R+ beyond a
certain threshold, leaving only a finite set of states for which ∆f(q) ≥ 0, and thus
fulfilling (3.23). Hence, {q⊥t } is non-transient if d = 3.

To investigate whether in this case {q⊥t } is positive- or null-recurrent, we employ
the same technique as in case d = 2. Therefor we define the processes

h
[ij]
t = q

[i]
t − q

[j]
t = q

[i]
0 − q

[j]
0 +

t−1∑
τ=0

a[i]τ − a[j]τ for i, j ∈ {1, 2, 3}, i ̸= j (3.30)

each of which is again a simple symmetric random-walk with additional ”null”-
increment, and exhibits an infinite ETFR (see case d = 2). And because we can
express {q⊥t } through

q⊥t =



h
[1,3]
t

h
[2,3]
t

0

 if q
[3]
t < q

[1]
t , q

[2]
th

[1,2]
t

0

h
(3,2)
t

 if q
[2]
t < q

[3]
t , q

[1]
t 0

h
[2,1]
t

h
[3,1]
t

 if q
[1]
t ≤ q

[2]
t , q

[3]
t

(3.31)

the ETFR of {q⊥t } must also be infinite, making {q⊥t } null-recurrent for the case
d = 3.
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3.2.5 Conclusion

We prove that a batch of d time-discrete assembly-queues with i.i.d. arrivals, oper-
ating under an optimal control, is quasi-stable for d ∈ {2, 3} and unstable for d ≥ 4.
Here, quasi-stability and instability refer to null-recurrence and transience of the
corresponding DTMC that represents the multi-dimensional excess of the queues,
respectively. This implies that for d ∈ {2, 3}, some queue-states possibly become
infinite in some time-steps, but will not actively grow towards it (in contrast to the
queue-states in the transient cases d ≥ 4). In light of the fact that said DTMC
evolves in dimensions d − 1 and resembles a random-walk on a quotient-space, our
result is in accordance with the well-known observation by Pólya [44], stating that
a symmetric random-walk is null-recurrent in 1 or 2 dimensions and transient in 3
or more dimension.

3.2.6 Open Questions

As already investigated for the 2-dimensional case in continuous-time by [41], it
stands to question, whether the queueing process becomes stable if the arrival process
is assumed to be semi-stochastic. E.g. one could assume that in every consecutive
interval of T ≫ 0 time-steps, the same amount of customers has arrived at each
queue. Another option would be to slightly in- or decrease the arrival rates based
on the excess in a manner that minimizes it.

Fig. 3.4: Network, consisting of a conventional queue, that redirects its customers to
different queues of a batch of assembly-queues.

Furthermore, in a network context, the stochastics from the arrival processes
might be mitigated entirely before they reach the batch. See e.g. Figure 3.4 where a
controller can decide which of the assembly-queues to feed, while the only stochastic
arrivals happen to the upper queue.

Finally, (though we assume it to be true) it stands to show that our results can
be generalized to the continuous-time model and to the case in which service of
the batch requires more than one customer at certain queues (asymmetric batch-
throughput).
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3.3 Concluding Remarks

The overall contribution of this paper is somewhat limited by the fact that the
final result, the instability of batches of queues, is already known. However, it was
only investigated for a slightly different set-up in which queues have probabilistic
processing times instead of having to be activated by an all-knowing controller.
Nevertheless, to the best of our knowledge, we are the first to treat random walks
on quotient spaces and show their applicability to this specific subject.
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Abstract The novel idea presented in this paper is to interweave distributed
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4.1 Preliminary Remarks

As showcased in the previous papers, a predictive control policy features certain
benefits compared to a conventional myopic policy. However, the overarching goal
of the project was not merely to improve the control of queueing networks via pre-
dictions, but to investigate how such predictions in the communication realm might
benefit the control realm (both realms being intertwined in a Cyber-Physical Sys-
tem). The paper at hand takes a first approach in this direction, using cooperative
robust MPCs in the control realm. Robust MPCs are controllers that guarantee tight
bounds on the control performance even under uncertain disturbances. To guaran-
tee this, though, they require these disturbances to be tightly bounded themselves
(because, naturally, no controller is able to correct for disturbances with infinite am-
plitude). Considering that communication delay in the control loop simply equals
another disturbance and therefore requires the delay to be bounded, this poses a
problem. It stands in opposition to our model of the communication system so far
since we model transmission failure via Bernoulli trials and thus cannot guarantee a
certain worst-case delay that is never exceeded. (There is always a finite probability
that a given number of consecutive Bernoulli trials fails).

Short of changing the communication model, the only way to bridge the gap
between the control side (that requires fixed worst-case delays) and the communi-
cation side (that cannot guarantee any worst-case delays) is to define a probability
threshold and neglect any delay values that occur with probability smaller than that
threshold. Though this seems like acting as if the problem doesn’t exist, this is ac-
tually quite a normal approach in practice since one can never rule out failure with
absolute certainty. Still, this method entails a lot of new problems for the network
control policy that we try to address in the following paper.

Please note that the paper deviates from the previously used notation by using
the variable r to express a certain amount of repetitions rather then letting it refer
to a vector in the routing matrix (i.e. a link). Also, it is implicitly assumed that the
Heavyside function Θ[x] is defined such that Θ[0] = 1 (while usually, Θ[0] = 0.5).

4.2 Paper Body

4.2.1 Introduction

Two major trends can be recognized in the modern information society: one is
that more and more physical systems used on a daily basis are equipped with dig-
ital controllers, sensors, and actuators (leading to embedded systems) – secondly,
these embedded systems are connected to a global information network (the cyber
space). Bringing these two trends together is a current main challenge in engineer-
ing. Systems in which communication and control are formulated within a common
mathematical model are called Cyber-Physical-Systems (CPS), see [45]. In CPS, the
traditional modeling of plant and controller is extended by a model of the (wireless)
communication between actuators, sensors, and multiple control units. In the stan-
dard setting, the overall objective remains in the realm of control, while stringent
requirements are formulated for the communication. Of crucial importance is the
latency in the wireless network, i.e. the delay of a packet that propagates through
the communication system from the source to its destination. Since control usu-
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ally implies a closed-loop setting, this delay gives a lower bound on how fast the
controller may react to any system changes, thus limiting its effect on the system.
Obviously this has a negative and even nonlinear effect on the control performance.

The most intuitive and typical constraint is that the worst case delay has to
be smaller than the time interval with which the controller operates. If so, the
controller does not experience any delay. A small worst case delay potentially allows
for greater clock rates, leading to higher control performance. While there exists a
good understanding of how such delay influences the control system [46] [47], only
few ideas have emerged that go beyond such simple models. In [48], a co-design of
communication and control is proposed that allows for a distributional relaxation of
delay constraints, such that the worst case delay may be larger than the controllers’
time interval of operation. Another currently investigated idea evolves around event-
based control schemes, helping to lower the requirements on the communication
system while maintaining control performance [49], [50]. Additionally, a protocol
design, specifically tailored to the control needs, can lower effects of jitter and packet
loss [51], leading also to delay minimization.

From the control perspective, achieving common control objectives for various
autonomous and dynamically (de-) coupled subsystems is a challenge, in particular
if input and coupled or uncoupled state constraints have to be satisfied. In [52],
an approach of distributed Model-Predictive Control (DMPC) for this purpose was
introduced, but communication of subsystems and delayed information exchange
are neglected. In [53] and [54], DMPC schemes are proposed by addressing constant
communication delays. Time-varying delay is treated in [55] according to a switching
topology of feedback controllers, while neglecting input and state constraints. All
these approaches aim at enabling a maximum control frequency for a given delay,
or improving the control result under constant or worst case delay.

In this paper, we explore a different approach: The main idea is that the control
algorithm takes reliable packet delay predictions from the communication system,
and gives this information to the corresponding plant controllers. Hence the con-
troller is provided with the additional information, of when an expected set of data
packets will arrive. The main contribution of this paper is to show: 1) how to create
these delay predictions in the communication system and 2) how to use them in
the control system to improve performance. Interestingly, to predict packet delay
over some finite horizon is, to the best of our knowledge, a novel approach not been
considered before.

4.2.2 General Approach

The entire system-model consists of two major parts, see Fig. 4.1: First, in a dis-
tributed setting, multiple physical subsystems (plants) are each equipped with a
local controller. These subsystems are assumed to be dynamically decoupled, but
are coupled through a common control objective to perform a cooperative task. To
achieve this objective, the plant controllers exchange information (like state and
input trajectories) over a communication system subject to time-delay. Receiving a
delayed state and input trajectory, an uncertain nominal state trajectory of the send-
ing subsystem can be reconstructed by knowing the plant dynamics of the sender.
Having an upper bound of possible uncertainty caused by communication delay and
of possible deviations from previous communicated predictions, each subsystem can
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use robust MPC (RMPC) with respect to these uncertainties. By repeatedly solving
local RMPC optimization problems for each subsystem, the common control goal
can be achieved.

CN

CN

CN

CN
CN

Controller

Controller

Controller

Plant

Plant

Plant

Centralized Network Controller

Communication Realm

Control Realm

Fig. 4.1: General structure and communicated information. Each plant controller
represents a node (CN) of the network. While communication between nodes and
network controller is instantaneous, communication between nodes is modeled by a

queueing network.

The underlying communication system itself consists of multiple communication
nodes (CN), which are not necessarily all located at the local controllers. The data is
routed over the communication system, and the routing is controlled by a dedicated,
centralized network controller. The functionality of the overall model is as follows:

1. The network controller not only routes and schedules the data flows generated
by the plant controllers over multiple hops in the network, but is designed to
also predict packet delays over a future horizon.

2. This prediction contains information about when data will arrive at the plant
controllers with (to a certain degree adjustable) reliability. Reliability is
achieved through simple repetition of sending a packet in a hop. This leads to
so-called delay trajectories, which are communicated in each time instance to
the plant controllers (red arrows in Fig. 4.1).

3. The plant controllers are designed to exploit these delay trajectories locally by
RMPC to achieve an improved common control performance.

To exchange data, each controller acts as a communication node (in a possibly
larger network). The dedicated network controller has knowledge of all nodes with
their states, of the momentary network topology (meaning accessible communication
links between the nodes), and of where the data is scheduled to arrive. Furthermore,
the network controller is implemented as an MPC, too. Only then, we are able to
yield future communication schedules, which are necessary for predicting delay times
of exchanged data by the plant controllers. Note that within this scheme, we assume
that transmission along the communication network is time-consuming, however the
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network controller can send its predicted delay trajectories as well as its control
inputs without any delay directly to the communication nodes and associated plant
controllers. This is a valid assumption as long as the size of data, exchanged by the
plant controllers, is considerably larger then the size of the delay trajectories.

The next two sections will go into the details of the communication and control
system design.

4.2.3 Communication System

We model the communication network with a discrete-time, packet-based queueing
system. Herein, each network entity i is assigned to one queue qi, which is 1, if
a corresponding packet is present at the entity, and 0 otherwise. Hence, packet
transmission can be modeled as increasing (and decreasing) queues by 1. We denote
all queues as a queue vector q = (q[1] . . . q[nq ])⊺ ∈ {0, 1}nq , where nq is the number
of entities in the system. If entity i wants its information to be transported to
some destination (a communication request), the queuing system is initialized with
qi being 1 while all other entries in q are 0. The system evolves with t according to:

qt+1 = qt +RMtvt. (4.1)

Entities can exchange packets if there exists at least one communication link between
them. A link is a vector, which adds 1 to a queue (and possible subtracts 1 from
another). They are collected as columns in the routing matrix R ∈ {−1, 0, 1}nq×nv

and can be activated by a network controller through a binary control-vector vt ∈
{0, 1}nv . Due to wireless effects, transmission over links may only succeed with

probability p
[j]
t (link j, time t). Therefore, the routing matrix is disturbed via

multiplication by Mt = Bern
[
diagj=1,...nv

{
p
[j]
t

}]
, effectively turning some columns

of R to 0 since Bern[·] denotes a Bernoulli trial. Note that any controller only

knows R and p
[j]
t but not Mt; specific modeling of the process Mt can be found in

[25]. Furthermore, we usually cannot activate all links at the same time, expressed
by the so-called constituency matrix C ∈ {0, 1}nc×nv and the constraint Cvt ≤ 1nc ,
where 1nc is a vector of ones with dimension nc. Finally, let q

[i] be the queue of the
entity, that the packet is destined for, then the goal of the network controller is to
find a sequence of activations vt to make q[i] = 1.

The system so far only models transportation of one data packet and is thus
referred to as a subsystem. To trace transportation of several data packets (with
possibly differing origin and destination), we initialize a new copy of the subsystem
each time, a communication request occurs. We can stack these subsystems together
in a block diagonal manner since they will only be coupled through the constituency
constraints. With slight abuse of notation we will remain with the introduced nota-
tion, however from now on are extending its meaning to include stacked variables.
Note that each time, a communication request has been served, meaning that the
packet has arrived at its destination, we can remove the subsystem from the stack.

Let us define a suitable control policy, that we call Reliable Predictive Network
Control (rPNC). The goal of this policy is not only to transport data packets but also
to deliver a reliable delay forecast over a time horizonH in each time step t, providing
information of when data will arrive at its destination. To achieve this, we define a
scheduled transmission to be reliable, if its overall transmission success probability,
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determined through p
[j]
t , is greater than some threshold pthreshold. Consequently, if

a link has a small instantaneous success probability, it has to be activated multiple
times consecutively to increase the overall transmission success probability. In detail,
we define r

[j]
t ∈ N, for each link j = 1, . . . , nv, counting the amount of repetitions

needed to ensure reliable communication for that link, when first activated in time
step t. If all p

[j]
t are governed by a discrete-time Markov chain, calculating r

[j]
t is a

straight forward task for the whole prediction horizon.
With this, a weighted graph can be constructed, in which nodes represent com-

munication nodes, and edges represent the communication links. In this graph, r
[j]
t

are sequences (in t) of weights for each edge j, representing how many time steps
one has to spend repeating that edge, when starting at time t, before reaching the
next node. For a reliable prediction of communication delays between two plant
controllers, the network controller has to determine a path between the correspond-
ing nodes. The elapsed time for that path is given by the sum of the specific entries
of the weight sequences along the way as shown in Figure 4.2. Here we identify the
shortest path (in red numbers) by τ

CN1,CN3
0 = 2+1 = 3, so an information send from

CN1 in time-step t = 0 arrives at CN2 in time-step t = 2 and at CN3 in time-step
t = 3. These delay times are used in Sec. 4 by the control system. Note that due
to the definition of r

[j]
t , the real communication will probably be much faster then

the predicted one. To consider the r
[j]
t in the system evolution, we define:

Γt = diag
t′=0,...,H−1

{
diag

j=1,...,nv

{
Θ
[
t− r

[j]
t′ − t′ + 1

]}}
(4.2)

where diag{·} is the diagonal matrix of its arguments, and Θ[·] is the Heaviside
function. The matrix Γt ∈ NH·nv×H·nv (t also being the time index for the pre-

diction) transforms r
[j]
t into a mask function for the control-vector, being 0, when

the necessary amount of repetitions for reliability has not been reached yet, and 1
otherwise.

{rj0, r
j
1, r

j
2, . . . } = {4, 3, 2, . . . }

CN2

CN3CN1

3, 1, 1, . . .2, 2, 1, . . .

Fig. 4.2: Graph Model with weight sequences: shortest path from CN1 to CN3 goes
through CN2

The algorithm finds the best path by minimizing a cost function JH , which assigns
costs to each trajectory of queue-states up until the prediction horizon H. The cost
of a queue-state can be defined in a quadratic fashion through a cost matrix Qq,
such that:

JH(q0) =
H∑
t=1

q̇⊺tQqq̇t (4.3)

where q̇ are states from the prediction-model that does mimic but is not identical
to the system-model. We set the cost of the queue, that represents the destination
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entity, to a global minimum of q̇⊺HQqq̇H . Note that for the algorithm to work, H has
to be larger then the fastest weighted way between origin and destination.

For simplicity of notation, we will now assume that the current time step is t = 0.
The predicted future queue-state is determined by the planned control decisions.
We collect all planned control decisions over the horizon H in a control trajectory
˜̇v⊺0 =

(
v̇⊺0 , v̇⊺1 , . . . , v̇⊺H−1

)
, again using v̇ instead of v because the prediction is

not performed over the actual system-model. Through their definition, r
[j]
t and Γt

contain the processed information of the stochastics of the communication model.
Knowing Γt, the algorithm can therefore use a deterministic system evolution for its
prediction, which will hold in a worst case sense:

q̇t = q0 + [1⊺
H ⊗R] Γt

˜̇v0 , t = 1, . . . , H (4.4)

Additionally, the system has to abide by the following constraints:

• Constituency Constraints represent disjunct control decisions, e.g. due to phys-
ical limitations, and can be expressed via:

[IH ⊗ C] ˜̇v0 ≤ 1Hnc (4.5)

• Reliability Constraints force the controller to consider the necessary repetitions
of scheduled control decisions, in order to guarantee reliable communication. More
specifically, these constraints forbid the controller to do any disjunct control decision
for the appropriate amount of time steps. Define cij as a row of C, which is 1 at the
j-th entry, ej as the canonical unit vector of dimension nv, 0 as the zero vector of
dimension nv. Then for every j = 1, . . . , nv and t = 0, . . . , H − 1 and every possible
i, we have to construct the constraint:(

[1⊺
t ⊗ 0⊺] e⊺i

[
1⊺

r
[j]
t −1
⊗ cij

] [
1⊺

H−t−r
[j]
t

⊗ 0⊺
])

˜̇v0 ≤ 1 (4.6)

• Consistency Constraints guarantee, that a once communicated arrival time
can at worst stay the same in a future optimization. Let δ(i) be the index of the
destination queue of data packet i, a(i) the arrival time (relative to the time of
optimization) of that packet at that queue, and ∆ the elapsed time between the last
optimization and now. Then it must hold for each possible data packet i that:

−e⊺δ(i) [1
⊺
H ⊗R] Γa(i)−∆+1

˜̇v0 ≤ −1 + e⊺δ(i)q0 (4.7)

where this time, the dimension of ei is nq.

• Processability Constraints ensure that all queues are positive or zero at all
times and forbid the routing of the same data through multiple nodes in one single
time step. Defining R− as the copy of routing matrix R in which all positive entries
are set to 0, and R+ in the reverse way, we have to implement for all t = 1, . . . , H:

−
[(
1⊺
t ⊗R− 1⊺

H−t ⊗ 0
)
+
[
1⊺
H ⊗R+

]
Γt−1

]
˜̇v0 ≤ q0 (4.8)

This completes the constrained optimization problem of minimizing (4.3). Note
that the processability constraints can be relaxed to fit the physical situation. Fur-
thermore, the consistency constraints have to be deactivated in the rare event, that
reliable communication does not succeed (w.p. 1− ϕ).

Finally, the network control policy steers the network according to the following
scheme:
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1. For the stacked system, obtain ˜̇v∗0 by minimizing (4.3) following the system
evolution (4.4) subject to (4.5), (4.6), (4.7), and (4.8).

2. Calculate the expected delay trajectories, and communicate them to the plant
controllers.

3. Apply the first part of the optimal control-vector trajectory ˜̇v∗0.

4. Recognize the new system-state and the newly requested data transmission,
delete and add subsystems accordingly.

5. Repeat.

4.2.4 Control System

Consider a plant that is partitioned into a set of subsystems, each modeled as
discrete-time LTI system:

xi
k+1 = Aixi

k +Biui
k, (4.9)

where i ∈ N indicates the subsystem, xi
k ∈ Rni

x the local state, and ui
k ∈ Rni

u

the local control input. The state and input are subject to polytopic constraints.
While the subsystem dynamics (4.9) itself are uncoupled, we consider the case that
a common control goal has to be reached in the sense that a subsystem i ∈ N mini-
mizes a cost function which depends on the state and/or input of other subsystems
j ̸= i. In order to model from where information is required, a predecessor set N i

p

is defined, which contains the indices of those subsystems j from which subsystem
i receives information. Likewise N j

f denotes the follower set containing the indices
of subsystems i ̸= j which receive information from j.

Assumption 1. It is assumed that the information structure established by the sets
N j

p and N j
f is acyclic. Furthermore, we assume that the communication between two

subsystems (j: sender, i: receiver) is subject to the time-varying communication
delay τ j,ik introduced in Sec. 3. Additionally, we introduce di,jk as the age of the
newest information i has at time step k of subsystem j.

Given the PNC-policies introduced in Section 4.2.3 the following holds: If i ∈
N j

f , then subsystem j knows the time-delay τ j,ik , and if j ∈ N i
p , then subsystem

i knows the age di,jk of the next incoming information sent by j. Note that in
general τ j,ik ̸= di,j

k+τ j,ik

(since newer information with small delay may overtake older

information).
Now, let ui

k+l|k denote the prediction of subsystem i of its local input at time

k + l, calculated and sent at time k. Furthermore, let ui,j
k+l|k for j ∈ N i

p be the

prediction that subsystem i has of the inputs uj
k+l|k of subsystem j. Since there is a

communication delay and subsystem j is, at time k+ l, not restricted to choose uj
k+l

equal to the value ui,j
k+l|k as predicted and communicated earlier, subsystem i needs to

consider this possible deviation. It is denoted by δui,j
k+l|k, and subsystem i considers

this uncertainty by using a variable ui,j
k+l|k = ui,j

k+l|k + δui,j
k+l|k when considering the

dynamics of j for evaluating its cost function.
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In addition to the inputs, subsystem j communicates its current state xj
k|k at

time k. The subsystem i knows this state exactly at time-step k′ = k + τ j,ik . Thus,
the last state of subsystem j that is exactly known to i is xi,j

k−di,jk |k−di,jk

. With this

last exactly known state and with the predicted input trajectory, subsystem i can
estimate the state of j:

xi,j
k|k = Aj

d
i,j
k xi,j

k−di,jk |k−di,jk

+

di,jk∑
l=1

Ajl−1

Bjui,j
k−l|k. (4.10)

Using the uncertain input and the state estimation, an augmented prediction-model
can be formulated. Assuming for simplicity of notation that subsystem i has just
one predecessor j, this model is:

xi
k+l+1|k = Aixi

k+l|k +Biui
k+l|k +Bi

1

(
ui,j
k+l|k + δui,j

k+l|k

)
, (4.11)

with the state vector xi
k+l|k =

[
xiT

k+l|k, x
i,jT

k+l|k

]T
∈ Rni

x , the vector of input uncertain-

ties of the predecessor δui,j
k+l|k ∈ Rni

u where ni
x =

∑
j∈N i

p∪{i}
nj
x as well as:

Ai =

[
Ai 0
0 Aj

]
, Bi =

[
Bi

0

]
, Bi

1 =

[
0
Bj

]
(4.12)

The stacked state vector xi
k is subject to a polytopic constraint Xi = {xk

∣∣Ci
xxk ≤

bi
x}.
Each subsystem can now use such a prediction-model within a robust MPC

scheme to determine its own control inputs. The goal is to guarantee robustness
with respect to the defined uncertainties arising from communication delay and the
deviations from previously communicated trajectories. Thereto, the disturbance-
feedback policy proposed in [54] can be enhanced by the predicted time-delay of the
next incoming information di,jk+l to the following representation:

ui
k+l|k = vik+l|k +

l−di,jk+l∑
r=1−di,jk

Ki
l,r|kδu

i,j
k+r|k, (4.13)

where vik+l|k is the control input in absence of uncertainties, andKi
l,r|k is the feedback-

gain to account for the uncertainties. By formulating stacked vectors over the pre-
diction horizon H for state, inputs, and uncertainties:

x̃i
k = [xiT

k|k, . . . ,x
iT

k+H|k]
⊺
, ũi

k = [uiT

k|k, . . . , u
iT

k+H−1|k]
⊺

ũi,j
k = [ui,jT

k|k , . . . , ui,jT

k+H−1|k]
⊺
,

δũi,j
k = [δui,jT

k+1−di,jk |k
, . . . , δui,jT

k+H−1|k]
⊺
, (4.14)

the following representation is obtained:

x̃i
k = Ã

i
xi
k|k + B̃

i
ũi
k + B̃

i

1ũ
i,j
k + B̃

i

2δũ
i,j
k . (4.15)

Equation (4.13) can be rewritten to:

ũi
k = ṽik + K̃i

kδũ
i,j
k , (4.16)
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with ṽik ∈ RH ni
u and the uncertainty feedback matrix K̃i

k ∈ RH ni
u×ni

1,k , where
ni
1,k

(
di,jk
)
represents the time varying length of δũi,j

k . Similarly as in [56], the

lower triangular block matrix K̃k can be enhanced with the prediction of d̃i,jk =
[di,jk , . . . , di,jk+N−1].

Let constraints for the stacked vectors of state, input, and uncertainties over the
prediction horizon be denoted by:

x̃k ∈ X̃i , ũk ∈ Ũi
k, δũk ∈ δŨi

k. (4.17)

When introducing auxiliary matrices F1 to F5 according to [54]), the admissible set
of input sequences can be defined to:

Πi
k (x0) =


(
K̃i

k, ṽ
i
k

) ∣∣∣∣∣∣∣∣∣
xi
k|k = x0, ∃Zi

k ≥ 0 :

Zi
kC̃

i

δ = Fi
2K̃

i
k + Fi

4

Fi
2ṽ

i
k + Zi

kb̃
i
δk
≤ . . .

Fi
5 − Fi

1x
i
k|k − Fi

3ũ
i,j
k

 , (4.18)

with slack variables Zi
k =

[
ZiT

xk|k
, ZiT

uk|k

]⊺
, allowing us to characterize the set of

possible reactions to uncertainties in (4.16) by:

∆Ũi
k =

{
∆ũi

k ∈ RH ni
u

∣∣∣C̃i
u ∆ũi

k ≤ Zi
uk|k

b̃iδk = b̃i∆k

}
,

with ∆ũi
k = K̃i

kδũ
i,j
k and b̃i∆k

=
[
bi

T

∆k|k
, . . . , bi

T

∆k+H−1|k

]⊺
. This set represents also the

set of uncertainties to be communicated to a successor of subsystem i. With respect
to terminal sets and terminal control laws to establish recursive feasibility, we refer
the reader to the solution proposed in [54].

For each subsystem, a two-stage optimization problem is now to be solved in any
k: The first stage minimizes the cost function formulated to be quadratic in the aug-
mented state and control inputs (thus depending on the planned and communicated
inputs of the predecessors), but without considering the uncertainties:

J i
1 =

∥∥xi
k+H|k

∥∥2
Qi

T

+
H−1∑
l=0

∥∥xi
k+l|k

∥∥2
Qi

x
+
∥∥∥[uiT

k+l|k ũi,jT

k+l|k

]∥∥∥2
Qi

u

V i
1

(
xi
0

)
:= min

ṽik, K̃
i
k

J i
1 (4.19)

s.t.: xi
k|k = xi

0,
(
K̃i

k, ṽ
i
k

)
∈ Πi

k

(
xi
0

)
, (4.17), (4.18),

(4.11), (4.13) with δui,j
k+l|k = 0 ∀l ∈ {0, . . . , H−1}.

The entries in K̃i
k are not uniquely defined for V i

1 (xi
0), and since K̃i

k affects the set
∆Ũi

k , K̃
i
k is optimized in a second stage, still satisfying (4.18). Using two uncertainty

sets δŨi
k =

[
δUi

k+1−di,jk |k, . . . , δU
i
k+H−1|k

]
and ∆Ũi

k =
[
∆Ui

k|k, . . . ,∆Ui
k+H−1|k

]
, this

cost function is defined as:

J i
2 =

H−di,jk −1∑
l=1

f1
(
δUi

k+l|k,∆Ui
k+l|k

)
+

τ ik∑
l=0

f2
(
∆Ui

k+l|k
)
,
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where τ ik = maxj∈N i
f

(
τ i,jk

)
is the maximum delay of outgoing information. In the

cost function, f1 is used to balance the incoming and outgoing uncertainty sets(
δŨi

k,∆Ũi
k

)
, i.e. the main idea is to preserve for k+l the same flexibility for adapting

ui
k+l|k with ∆ui

k+l|k ∈ ∆Ui
k+l|k as the predecessor has predicted for its control input

through δuj
k+l|k ∈ δUj

k+l|k. This balancing avoids an blow-up of uncertainty sets by
propagating the uncertainties through the interconnected graph. The term f2, on
the other hand, is used to tighten the uncertainty set ∆Ũi

k for the next τ
i
k time steps

required to pass information to the follower.
The optimization of the second stage is now:

V i
2

(
xi
0, ṽ

i
k

)
= min

K̃i
k

J i
2 s.t.:

(
K̃i

k

)
∈ Πi

k

(
xi
0, ṽ

i
k

)
. (4.20)

Since the control input trajectory ṽik is already computed in (4.19), this is preset
in (4.20) to the set of admissible input sequences Πi

k. Thus, (4.20) just adapts the
values of K̃i

k and, consequently, the behavior of the controlled system in the next
time steps (but not in the current time step k).

4.2.5 Simulation Example

To illustrate the methods and the resulting gain in control performance, the approach
is applied to the platooning example sketched in Figure 4.3. We assume that CPS
1 follows an uncertain trajectory, while CPS 2 and CPS 3 aim at maintaining the
position and speed of the predecessor, while satisfying acceleration constraints.
The communication network is organized as a cellular network, so every incoming

CN4

CN3

CN2

CN1

Controller1

Controller2

Controller3

Centralized Network Controller

Communication Realm

Control Realm

CPS1 CPS3

CPS2

Vehicle1

Vehicle2

Vehicle3

CO CO

Fig. 4.3: Platooning example of a cyber-physical network. CN: Communication Node,
CO: Control objective.

information is send to the base station CN4, and then transmitted to a selected
receiver. The selection and activation of communication links is controlled by the
network controller with the introduced PNC-policies. For the sake of illustration,
we restrict the delay τ 2,3k = 1 to a constant value. In contrast, τ 1,2k is time-varying,
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predictable by PNC-policies, and thus communicated to CPS 1 and CPS 2. Local
dynamics and input constraints of all CPS are assumed to be identical:

xi
k+1 =

[
1 0.3
0 1

]
xi
k +

[
0.045
0.3

]
ui
k, ui

k ∈ [−4, 4] (4.21)

with xi
k = [x1,k, x2,k]

⊺, where x1,k is the position, x2,k the velocity, and ui
k the accel-

eration. Hence, the augmented prediction-model is given by xi
k =

[
xiT

k , xi−1T

k

]⊺
, i ∈

{2, 3}, and the augmented state constraints are specified as
(
xi
k − xi−1

k

)
∈

[10, 10] × [10, 10]. The cost function J i
2, i ∈ N contains f1

(
δUi

k+l|k,∆Ui
k+l|k

)
=∥∥∥biδk+l|k

− bi∆k+l|k

∥∥∥2, and f2

(
∆Ui

k+l|k

)
=
∥∥∥bi∆k+l|k

∥∥∥2. For a prediction horizon of

H = 5, it is assumed that the PNC-policies guarantee τ 1,2k ≤ τ̄ 1,2 = 4 ∀k, hence
d2,1k ≤ τ̄ 1,2 ∀k holds. In the following, the simulation results of the presented meth-
ods (new) are summarized and compared to the worst case delay method (wc d)
from [54]. The simulated scenario is the following: at k = 0, the position, velocity,
and acceleration of all vehicles are initialized to zero. At k = 10, the input reference
trajectory of CPS 1 steps unpredicted to 1.5, thus CPS 1 starts accelerating while
maintaining the previously communicated uncertainty sets. At k = 40, the reference
steps back to zero, but this time predicted before. For the sake of comparison, the
(in general time-varying) communication delay τ 1,210 is fixed at k = 10 to the maxi-
mum value, so the step of CPS 1 is known to CPS 2 with d2,114 = 4. Figure 4.4 shows
the control input of CPS 1 (a) and CPS 2 (b). Since the new methodology already
tightens the uncertainty set ∆Ũ1

k at k = 9 while knowing the output delay, CPS 1
cannot react that agile at k = 10 and k = 11. Once the step of the control input is
communicated, CPS 2 can react much more aggressive in k = 14 and k = 15 due to
the smaller uncertainty set communicated by CPS 1 in k = 9. The slower behavior
of the input of CPS 1 leads to a worse control result related to the reference, as
plotted in Figure 4.4, bottom left, (while CPS 1 follows the reference perfectly in
the worst case delay simulation). This degradation is acceptable, and even intended,
since CPS 2 can react much faster, as shown in Figure 4.4, bottom right.

Summing up all quadratic deviations between control result and reference tra-
jectory according to the weights in J1, the performance can be compared for both
approaches, see Table 4.1. The little worse result for CPS 1 (less than 2) has to
be contrasted to drastic improvements for CPS 2 (more than 130 points) and even
for CPS 3. Remembering that the communication delay τ 2,3k ≡ 1, the better perfor-
mance measure for CPS 3 is most significant. Since there is no difference between a
worst case delay and a predicted delay of constant one, the improved control result
is an effect of the second optimization stage.

Table 4.1: Performance measure of platoon

CPS 1 CPS 2 CPS 3 total

worst case delay 0 275.55 288.37 563.92
new methodology 1.52 141.56 248.33 391.41
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Fig. 4.4: Control input and distance to reference

4.2.6 Conclusion

We have proposed a new theory for combining predictive control of communication
networks with distributed MPC for CPS. If a describing model of the communication
network exists, it is advisable to control the communication network with the pre-
sented RPNC-algorithm. Reducing the overall buffer size, it produces a prediction
of future transmitting delays, which is usable by the associated distributed control
system in two ways: Firstly, incorporating the predicted age of future incoming
data packages can increase the degree of freedom of computing the robust control
invariant sets. Secondly, the prediction of sending delay can be used to optimize the
control invariant set for the following CPS. In comparison to a worst case commu-
nication delay, our methodology improves the overall control result of a platooning
example by over 30%.

4.3 Concluding Remarks

Due to a page limitation, the paper lags an illustrative example for the explanation
of the network control algorithm. This shall be corrected in this section, starting
with a few notes on the general idea behind the algorithm:

1. The reliability concept on which the algorithm is constructed is concerned
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only with reliable transmission via a single link. E.g. defining pthreshold =
0.99 only makes sure that transmission is repeated as often as is necessary
to guarantee that each link individually will have successfully transmitted
the packet with probability beyond 99%. However, if there are 5 links that
have to be traversed one after another in order to reach the final destination,
then the overall probability of the packet reaching the final destination is only
guaranteed to be higher than 0.995 ≈ 0.95. If this probability is to be higher
than 99%, one would have to set the threshold to pthreshold = 0.99

1
5 ≈ 0.998.

2. The matrix Γt is, of course, reevaluated in every time step, as are the r
[j]
t .

Being a constant ingredient in all our papers, we assume that the underlying
stochastic process that governs the transmission success probabilities of the
links is (or at least can be approximated by) a discrete-time Markov chain.
Hence, every new time-step brings with it the additional information of the
current Markov-state of this DTMC. This allows for a better estimation of
future transmission success probabilities and therefore better estimations for
the r

[j]
t .

3. The presented algorithm features at its core a minimization. Discussing its
objective, the paper states that ”We set the cost of the queue, that represents
the destination entity, to a global minimum of q⊺HQqqH”. This is a insufficient
description that needs to be specified. First, we implicitly assume that Qq

is a diagonal matrix because there is no apparent reason to assign any cost
to the product of q[i] and q[j] if i ̸= j. Second, the diagonal element of Qq

that combines q[d] with itself (where d is the index of the destination queue)
is set to a very large negative value compared to all other diagonal elements.
This way, any minimization is strongly motivated to assign large values to q[d]

which can only happen if the system steers packets towards this queue.

Next, we explore the algorithm using the minimal example, depicted in Fig-
ure 4.5. The communication request initiates a packet in q[1] that is supposed to be
delivered to q[3]. The routing matrix and constituency constraints can be written as

R =

−1 0
+1 −1
0 +1

 ,
(
1 1

)
︸ ︷︷ ︸

C

(
v[1]

v[2]

)
︸ ︷︷ ︸

v

≤ 1 (4.22)

q[1] q[2] q[3]

Fig. 4.5: Simple example of 3 queues on which to illustrate the principle of the algorithm.

Based on a given description of the transmission failure probabilities of the links,
we assume that the r-values have been calculated to form the following sequence of
vectors:

r0, r1, r2, · · · =
(
2
2

)
,

(
1
1

)
,

(
1
1

)
, . . . (4.23)
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Note that these values are calculated in the current time-step t = 0 and describe
how many times a link must be activated in order to ensure reliable communication.
The Γ-matrices then take the form

Γ−1 = diag



0
0
0
0
0
0


,Γ0 = diag



0
0
0
0
0
0


,Γ1 = diag



1
1
1
1
0
0


,Γ2 = diag



1
1
1
1
1
1


(4.24)

The entries in Γt act like a mask on the routing matrix. Since r0 = (2, 2)⊺, com-
munication is reliable only when two consecutive activations are initiated, starting
in the first time-step t = 0. And because r1 = r2 = (1, 1)⊺, a transmission is im-
mediately reliable when starting in time steps t = 1 or t = 2. I.e. earliest in time
step t = 3 a packet is allowed to appear in q[3]. Accordingly, the evolution of the
prediction-model becomes:

q̇1 =

1
0
0

+

 0 0 0

 ˜̇v0

q̇2 =

1
0
0

+

−1 0
+1 −1
0 +1

−1 0
+1 −1
0 +1

0

 ˜̇v0

q̇3 =

1
0
0

+

−1 0
+1 −1
0 +1

−1 0
+1 −1
0 +1

−1 0
+1 −1
0 +1

 ˜̇v0

(4.25)

In order to force the algorithm to activate a link as many times as necessary, the
reliability constraints become

1 0 1 1 0 0
0 1 1 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





v̇
[1]
0

v̇
[2]
0

v̇
[1]
1

v̇
[2]
1

v̇
[1]
2

v̇
[2]
2


≤ 1 (4.26)

Notice how activating the first link in time step t = 0 (v̇
[1]
0 ) does impede activation

of the same link in time step t = 1 (v̇
[1]
1 ). At a first glance, this seems wrong since we

wanted the link to be activated twice in a row in order to meet our reliability goal.
However, activating the link twice in a row would decrease the source queue and
increase the destination queue by 2 packets, which would violate the processability
(positiveness) constraints. Therefore, the constraints (4.6) are constructed in such a
way that activation of the same link, or any interfering link, is blocked entirely in the
subsequent time steps (for as long as the reliability goal specifies). Remember that
by virtue of the Model-Predictive Control paradigms, the actual system evolution
can indeed activate the link twice (if necessary). It is merely the prediction in which
a second activation is replaced by a quasi-idle control decision.
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The processability constraints become

−

R− 0 0
R− R− 0
R− R− R−

+

 0 0 0
0 0 0
R+ R+ 0

 ˜̇v0 ≤

q0
q0
q0

 (4.27)

For the first 2 time-steps (t = 0 and t = 1), only the draining effect of ˜̇v0 is considered
and hence, only the source queue can be drained (since the system was initialized
with exactly one packet in the source queue). It is only until time step t = 2 that
the filling effect is considered (through the positive entries in R which are added by
R+) and thus only in this time step the constraints do allow for draining of other
queues (here, q[2]).

In this scenario, it is also possible for the controller to save resources and schedule
the first transmission for time-step t = 1 (instead of t = 0), since then it does not
need to repeat the activation a second time (as was mandatory when starting the

first transmission in time-step t = 0 in order to obtain reliability). If r
[0]
1 would be 2

instead of 1, the controller would not be motivated to do so, since then, activation
of v

[2]
2 would be impossible due to the reliability constraints.
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Abstract This paper introduces a predictive and reliable control approach for
network scheduling and routing for arbitrary topologies in discrete-time, packet
level formulation. We assume existence of a Markov chain, governing the behavior
of the network links, so that our controller can optimize its decisions over a finite
time horizon. Furthermore, we define a notion of reliability in order to facilitate
meaningful forecasts of individual packet delays which can be used by the recipient
network agents. We make a point to formulate the optimization problem as a linear
program for the purpose of its fast execution in practice. With extended simulations,
we demonstrate the gains in performance over the well known MaxWeight policy.
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5.1 Preliminary Remarks

This Paper presents yet another approach to predicting package arrival in a queue-
ing network in a reliable manner. However, the final problem to optimize in this
paper is a binary linear program, making it much easier to solve compared to the
binary quadratic program from the previous paper. Still, the fundamental method
to incorporate reliability remains the repetition of transmissions with low success
probability.

5.2 Paper Body

5.2.1 Introduction

The fifth generation of mobile communication, 5G, aims at not only enabling com-
munication between billions of people around the globe but also connecting billions
of devices. In this context, many boundaries are currently tackled by research, such
as increasing data rates, providing security and many more.

This paper is dedicated to enhance performance of networked devices through
a predictive scheduling and routing of data packets through the network. Specifi-
cally, the here presented network control policy enhances the performance of inter-
connected robust model-predictive controllers (RMPCs). The policy does not only
schedule and route data, but as a novel feature, also predicts their time of arrival
at their corresponding destination. In other words it predicts the communication
delays. Signaling these communication delays ahead of the arrival of the actual data
to the corresponding RMPCs facilitates them to enhance their control performance,
as was first shown in [57].

As a reference network control policy, we will use the well known MaxWeight
or MaxPressure policy, (from now on written as MW), first introduced by [2]. In
the last two decades, MW and other network control strategies were investigated
intensively, e.g. in [5]. However, focus has yet always remained at lowering overall
delay while maintaining the property of maximum throughput, which makes MW
such a good policy in the first place [4] [58]. And though prediction has been
successfully used to improve overall delay in broadcast scenarios [8], for the best of
our knowledge, trying to predict individual packet delays is a novel idea.

Another kindred topic is the so-called delay-constrained routing and schedul-
ing. While originating from area of wired communication [59], it has also been
investigated for the wireless case [60]. However, results are yet limited to rather
mathematical statements with limited use for practice.

In this paper we represent a fast algorithm to schedule and route information
through a network and at the same time provide forecasts of specific delay times in
a reliable fashion. We build on the ideas of [25] where we described a first approach
to yield reliable delay forecasts. However the algorithm that was presented was
computationally expensive (due to its quadratic nature) and had worse performance
in the achieved delay times (caused by a strictly repetitive activation of links). The
algorithm designed in this paper, will eliminate these shortcomings.



88 PAPER 5. LINEAR RELIABLE PREDICTION

5.2.2 System model

We make use of the standard queueing model, which is time-discrete, integer valued
and offers binary controls. This is the appropriate choice for packet level modeling.
Each of the n̄ agents in the network may hold multiple (data-) packets at a given
time-step t, which are to be transmitted to other agents. Those packets are lined
up in so-called queues q̄[i], i = 1, . . . n̄. E.g. q̄[i] = 4 represents 4 packets, waiting in
queue i (located at agent i). The vector of all queues will be denoted as q̄ ∈ Nn̄. With
this model, sending packets from one agent to another is represented by decreasing
and increasing queues at the corresponding agents. De- and increasing can be done
by a vector r[j] ∈ {−1, 0 − 1}n̄, j = 1, . . . m̄, which is called a link; the matrix of
all links is called the routing matrix R ∈ {−1, 0, 1}n̄×m̄. In each time-step, we can
choose to activate a link through a binary control-vector ū ∈ {0, 1}m̄, so that the
system evolves like

q̄t+1 = q̄t + R̄M̄tv̄t + āt , s.t. C̄v̄t ≤ 1 , q̄t+1 ≥ 0 (5.1)

where 1 is a vector of ones with appropriate dimension. The arrival āt ∈ Nn̄ ex-
presses an influx of information to the system and is usually of stochastic nature.
The constituency matrix C̄ prohibits to activate all controls simultaneously, and
naturally queues can only hold a positive number of packets, giving rise to the pos-
itiveness constraint. Note, that it is a key feature of wireless networks to have a
(stochastically) time dependent current topology, expressed by the multiplication
R̄ · M̄t. In each time-step, the diagonal matrix M̄t takes a random selection of the
columns from R̄ and forces them to become 0 columns in the product. The selection
process is given through transmission success probabilities p̄[i] ∈ [0, 1] for each link i
and a Bernoulli trial Bern[·] (where Bern[ξ] = 1 w.p. ξ and 0 otherwise) performing
on it. These probabilities are collected in a diagonal matrix W̄ = diag

i=1...m

{
p̄[i]
}
, so

that we can express the matrix M̄t as M̄t = Bern
[
W̄
]
. Notice that a controller only

knows R̄ and W̄ but not M̄t, thus not every activation (scheduled transmission) will
succeed. The problem lies in finding the best suited control to steer the data to its
destination, though not fully knowing the outcome of the Bernoulli trial.

In order to use meaningful predictions of future behavior, we enhance this stan-
dard model by defining a whole set of probability matrices W̄ i ∈ W instead of
only one (as already done in [25]). In each time-step, the system uses one W̄ i,
according to a discrete-time Markov chain, that evolves on the index set I(W) as
st = M (I(W), P, s0), P being the transition matrix and s0 the initial Markov-state.
Hence we get M̄t = Bern

[
W̄ st

]
. We assume that the controller has full knowledge

of W , P , and st (the current Markov-state), i.e. knows the expected transmission
success probabilities of all links and all future times. The network controller may
be required to measure these parameters before being able to control the network.
In this transient state, the network may be controlled by the MW policy.

5.2.3 Reliable Predictive Network Control

To predict packet transmissions in the system-model, the network controller inter-
nally uses a slightly different model to predict the flow of the packets. This so-called
prediction-model is shown in Figure 5.1 and will be described in this section. Two
major circumstances give rise to the prediction-model:
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Fig. 5.1: Compared to the system-model, the prediction-model uses continuous values for
the states and can be visualized as an arrangement of buckets being filled by dripping

water.

1. Two packets, simultaneously residing at the same agent, may still be intended
for different destination agents. Hence, in order to distinguish different packets
mathematically, each one of them has be cast with its own copy of the system-
model (5.1). These copies will be called subsystems. Suppose that z is the
number of subsystems currently in use (i.e. z packets are currently present in
the network), then we define

R := Iz ⊗ R̄

W i := Iz ⊗ W̄ i

Mt := Iz ⊗ M̄t

, ut :=

ūt
(1)

...
ūt

(z)

 , qt :=

q̄t
(1)

...

q̄
(z)
t

 (5.2)

where (·)(i) corresponds to the i-th subsystem, I denotes the identity matrix,
and n = n̄ ·z and m = m̄ ·z denote the dimensions of the stacked vectors. Note
that C might be constructed in a different way depending on the scenario. The
system evolution thus becomes

qt+1 = qt +RMtut (5.3)

Here, we can ignore the arrival āt since any new packet arriving at the system
will immediately lead to another subsystem being cast and stacked on top
the current prediction-model. E.g. if agent i signals the initialization of a new
packet, then subsystem (z+1) will be cast and the packet will be represented by

initializing q̄
(z+1)
t with a 1 at the i-th component. In the same way, a subsystem

can be erased from the stack, once the agent, the packet was intended for,
signals (to the controller) its successful delivery.

2. The agents, here RMPCs, are only able to use the forecasts of packet-specific
communication delays, if these forecasts are reliable (so that the RMPCs
can still guarantee robustness). Therefore, our policy will predict the flow
through the network with explicit consideration of possible transmission fail-
ures. Specifically, in its prediction for future activations, the algorithm will
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repeat activating a link, until the accumulative expected transmission failure
probability falls beneath a single-transmission failure-probability threshold τ .
We use dotted variables q̇t and v̇t to denote queue-states and control-vectors in
the prediction-model. Let f i

t be the expected transmission failure probability
for time-step t (the current time-step being 0) and link i, given byf

[1]
t

. . .

f
[m]
t


t

= Im −
[
σ0P

t ⊗ Im
] W 1

...
W |W|

 (5.4)

where σt is the distribution of st such that σ0P
t (here, t is an exponent) is

the distribution of st, predicted at t = 0. Then we define that a packet is
predicted to be reliably transmitted over a link i (in the prediction), only if

H−1∏
t=0

f
[i]
t

v̇
[i]
t ≤ τ =⇒

H−1∑
t=0

v̇
[i]
t logτ f

[i]
t ≥ 1 (5.5)

where v̇
[i]
t is the corresponding control variable for this link in the prediction-

model and H is the prediction horizon.

Now we return to the network controller. It is implemented as an MPC, meaning
that in each time-step, the controller minimizes a cost function (influenced by the
prediction-model) to yield a control trajectory ˜̇v⊺0 =

(
v̇⊺0 , . . . v̇

⊺
H−1

)
over a horizon H

but then only applies the first component to the system, such that v0 = v̇0. (Here,
the current time step is set to 0 for ease of notation.) Usually, MPC objective
functions are quadratic in nature, leading to semi definite programs. Since network
control has to happen very fast (depending on the granularity of the data), a main
contribution in this paper is to devise an algorithm that is specifically designed to
be a binary linear program which is solvable in polynomial time [61].

The intuition behind the algorithm equals a waterfall, always filling the queues
in direct vicinity of already filled ones. As a first step we introduce the reliability
(5.5) as a constraint. Let

ω
[i]
t = min

{
logτ f

[i]
t , 1

}
(5.6)

then we can define

ΩC =

(
diag

i

{
ω
[i]
0

}
. . . diag

i

{
ω
[i]
H−1

})
∈ Rm×mH (5.7)

Forcing ΩC ṽ0 ≥ 1 will make ṽ0 guarantee reliable activations and hence reliable
forecasts as described earlier. However, applying this to our system evolution so
far could contradict the positiveness constraint on q. E.g. having three scheduled
activations v[i] (over different time-steps during the horizon H) of the link i would
result in a negative queue-state of 1−3 = −2 at the link-origin queue and suggest the
presence of 0 + 3 = 3 data packets at the link-destination queue. To compensate,
we bring two changes to the prediction-model. First, we change the r[i] (links)
to not decrease any queue-states at all. Second, we multiply the r[i] with their
corresponding ω

[i]
t values, resulting in the queue vector being real valued (q̇t ∈ Rn)
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in th prediction-model. Incorporating these changes into (5.3) while simultaneously
considering the evolution for the whole prediction horizon yields q̇1

...
q̇H

 =

q0
...
q0

+

R+

...
. . .

R+ . . . R+

ΩE ˜̇v0 (5.8)

with the two definitions

R+[i,j]
= max { 0 , R[i,j] } (5.9)

and

ΩE = diag
t=0...H−1

{
diag
i=1...m

{
ω
[i]
t

}}
(5.10)

Note that ignoring to decrease queues is only viable because we are using sep-
arate subsystems for each single packet and therefore need only to consider the
propagation of the packet but not what happens to queues that have already been
passed by it. This way, we also avoid further constraints for the positiveness of
the queues. Furthermore, using ω

[i]
t as weights means that a packet is predicted

to have successfully been transmitted over a link, if the link-destination queue is
filled exactly to or beyond 1. However we are still missing two main ingredients for
the prediction-model to work: on the one hand, queues filled just beyond 1 are not
supposed to be filled any further. On the other, only those links can be activated,
whose link-origin queue has been filled exactly to or beyond 1.

By the virtue of v̇
[i]
t being binary, we can formulate both constraints in a linear

manner. Let T d ∈ {0, 1}m×n be a simple transformation matrix, that rearranges
qt in such a way, that the i-th entry in T dqt is the link-destination queue of link i,
and define T o in the same way for the link-origin queues. Then we get for the first
constraint

v̇t ≤ 2 · 1m − T dq̇t

= 2 · 1m − T dq0 − T dR+

(
diag

i=1,...m

{
ω
[i]
0

}
v̇0 + · · ·+ diag

i=1,...m

{
ω
[i]
t−1

}
v̇t−1

)
(5.11)

and for the second

ut ≤ T oqt

= T oq0 + T oR+

(
diag

i=1,...m

{
ω
[i]
0

}
v̇0 + · · ·+ diag

i=1,...m

{
ω
[i]
t−1

}
v̇t−1

)
(5.12)

Defining a block triangular matrix as

∆
(
T dR+

)
=


0

T dR+ . . .
...

. . . . . .

T dR+ . . . T dR+ 0

 (5.13)

we can write this over the prediction horizon to yield[
IHm +∆

(
T dR+

)
ΩE
]
˜̇v0 ≤ 1H ⊗

[
2 · 1m − T dq0

]
(5.14)
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for the first and [
IHm −∆

(
T oR+

)
ΩE
]
˜̇v0 ≤ 1H ⊗ [T oq0] (5.15)

for the second constraint. Together with the reliability constraint ΩC ˜̇v0 ≥ 1 and a
suitable constituency constraint C̃ ˜̇v0 ≤ 1 this completes evolution and constraints of
the prediction-model. (In the end of this section, we will discuss the case, in which
the constraints can not be fulfilled.)

This leaves us with the definition of a suitable objective function J . In a linear
fashion, we use the weight vector γ ∈ Rn, γ < 0 to assign rewards to filling any
queue. The “closer” such a queue is to the subsystem-destination queue, the higher
the reward it grants. With proper γ, the algorithm thus will automatically push the
packet in the right direction. For simple networks, γ can be constructed by hand.
How to arrive at an optimal γ is however still subject to research. In any case, the
objective function becomes

J =
H∑
t=1

γ⊺ (q̇t − q0) = [1⊺
H ⊗ γ]

R+

...
. . .

R+ . . . R+

ΩE ˜̇v0 (5.16)

To summarize, the control policy consists of solving the following minimization
problem in each time step, while only applying the first component of the optimal
control trajectory ˜̇v0 (that minimizes the objective):

min
ũ

(5.16)

s.t.

C̃ ˜̇v0 ≤ 1

−ΩC ˜̇v0 ≤ −1[
IHm −∆

(
T oR+

)
ΩE
]
˜̇v0 ≤ 1H ⊗ [T oq0][

IHm +∆
(
T dR+

)
ΩE
]
˜̇v0 ≤ 1H ⊗

[
2 · 1m − T dq0

]
(5.17)

Note that this is a binary linear program with linear constraints. Furthermore, any
matrices can be pre-computed offline, making it feasible to solve. Given an optimal
ũ it is an easy task, to derive at the prediction of when packets will arrive at their
corresponding destination.

For completeness we finally address some technicalities left open:

1. There are cases in which the reliability constraint can not be fulfilled by any
˜̇v0 at all (e.g. if H is too small). As a solution, we append a dummy control
v̇D to ˜̇v0, which has no influence on the prediction-model evolution and is
penalized with suitable weights in J . Writing the reliability constraint as[
˜̇v0

⊺ | v̇⊺D
] [

ΩCC | Im
]⊺ ≥ 1⊺ guarantees a feasible solution.

2. Once the subsystem-destination queue q∗ has been filled, no further activations
in this subsystem are to be scheduled. To this end, we engineer a dummy queue
qD and a link from q∗ to qD. We reward filling of qD highly in J and disable
the constraint so that it can be filled without limit. Making activation of the
dummy link disjunct to any other activation in the subsystem will result in
the desired behavior.
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3. To ease the understanding we omitted a constraint that would force the policy
to yield only reduced or equal delay times at consecutive time-steps. This
constraint has to be added in order for the policy to stay consistent with its
forecasts.

4. As a general way of defining γ, one can use the Dijkstra algorithm on each
subsystem. Doing this, the weights of the links should be defined as the number
of consecutive repetitions necessary to fulfill reliability over that link. Here,
one can work with time-averaged transmission success probabilities. Offsetting
the derived shortest paths for each queue then yields the reward coefficients
for γ.

5. For the entire algorithm to work, we assume that all agents store their received
packets until the network controller signals to alleviate them. Thus, in the
system-model, we implicitly also work with R+ instead of R.

5.2.4 Simulation

For numerical results, we compare the well known MW policy with our introduced
Reliable Predictive Network Control policy (rPNC). We use a scenario in which
three robots communicate via wireless connection as depicted in Figure 5.2 and all
communication is routed through a central router. Disturbances in the communica-
tion are caused by periodic environmental effects, e.g. moving objects in a factory
building.

Channel Behavior

due to

Disturbance Pattern

Fig. 5.2: Scenario used for simulations. The channel of each agent is subject to its
individual disturbance. A prudent network controller has to leverage these in order to

maximize throughput.

For their work tasks, the robots need to exchange data. We assume that at time
t = 0, each robot needs to send its data (modeled as one packet) to the other two
and has signaled this need to the router. The router then assigns communication



94 PAPER 5. LINEAR RELIABLE PREDICTION

resources to the robots. Specifically, we assume that in each time-step, either one,
and only one robot may send its packet to the router (interference property) or
the router may send a single packet to all robots at once (broadcast property).
Note that we imply, that signaling between the agents is instantaneous compared
to the transmission of the packets containing the actual data. This seems to be a
reasonable assumption when working with RMPCs, since exchanged data consists
of entire trajectories of their internal states.

The performance of rPNC depends highly on the periodic disturbances that
dictate the transmission success probabilities p

[i]
t (which are found as the entries

of W st). For this reason we simulate over many randomly selected disturbance
patterns and then average the results. We assume that any disturbance pattern has
a period of k steps and evolves deterministic in time so that it can be represented (in
terms of transmission success probabilities) by a discrete-time Markov chain with
binary transition matrix and a set W of probability matrices W i, holding the pit.
Furthermore we specify, that in each step the transmission success probability is
either high p̂ or low p̌ resulting in 2k − 1 different patterns (we do not consider the
unique pattern, only consisting of p̌). Finally, in order to avoid non-unique solutions
to the optimization, we slightly vary p̂ for each pattern once this pattern is selected
for simulation, by using a randomly drawn value from a uniform distribution over
the interval [p̂± 0.01p̂] instead of the value p̂ itself; the same goes for p̌.

A single simulation run follows the system evolution for N time steps while the
rPNC policy uses a prediction horizon of H. We accumulate simulation runs via two
loops. The first one repeats over x randomly chosen cases (without repetition). A
case is defined as an assignment of patterns to the links of the three robots, resulting

in
(
2k − 1

)3
different cases. In a second loop (having a fixed case) we simulate over

different initializations of the routing matrix (equivalent to different initializations
of Bern[W σt ] per link per time-step). We repeat this inner loop y times, resulting in
x · y simulation runs. Parameter N is the number of time-steps over which a single
simulation run is executed.

Detailed Description of a Specific Case

We first demonstrate the general disadvantage of MW on a specific case (i.e. every
link has a fixed pattern assigned). We chose the following parameters:

p̂ p̌ 1− τ N H x y

100% 0% 90% 20 4 1 1

Table 5.1: Simulation Parameters (Specific Case)

The patterns are illustrated in Figure 5.3. The blue colors indicate time-steps,
in which p

[i]
t = p̂ = 100%, gray colors indicate that p

[i]
t = p̌ = 0. Robot 1 can only

communicate once per period; Robot 2 twice. In the described setup, each robot has
to send its packet over its link to the router (disjunct actions), before the router can
possibly broadcast the packet, using two resource blocks at once. Hence, in the very
first time-step, in order to minimize overall delay, it is always optimal to let Robot
1 send its packet to the router, since Robot 2 has the uncontested third time-step
to do so and Robot 3 can only communicate in orthogonal time-steps. Using rPNC,
this is indeed always the first action taken.
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Robot 1

Robot 2

Robot 3

p11

p20

p30

p10

. . .

. . .

. . .

Time

Period

Optimal first Activation

Resources
unavailable

Resources
available

Fig. 5.3: Pattern assignment for a specific case/disturbance. Blue time-slots indicate
that communication is possible, gray ones the opposite.

However, using MW, the decision which Robot (1 or 2) gets to communicate in

the very first time-step only depends on the transmission success probabilities p
[1]
0

and p
[2]
0 . In practice, if p

[2]
0 is just slightly higher than p

[1]
0 , MW will allocate the first

time-step to Robot 2, hence resulting in a sup-optimal control of the network.
To showcase this, we simulate over all possible slight variations in p̂. The behav-

ior of MW might differ, depending on how the robots 1, 2, 3 must be mapped to the
indices α, β, δ in order to fulfill the inequality p̂α > p̂β > p̂δ. There are six different
mappings that do that, corresponding to the symmetry group S3. Figure 5.4 shows
simulation results for all six possibilities. MW and rPNC are compared by accumu-
lating (over all robot-queues) their respective delays and taking the quotient. For
this specific case, rPNC reduces overall delay by about 17 to 24 percent compared
to MW, depending on the transmission success probabilities.

General Simulation Results

Next, we present results from extended simulations (Monte-Carlo simulation) over
several cases.

p̂ p̌ 1− τ N H x y

. . . . . . . . . 40 4 10 200

Table 5.2: Simulation Parameters (Monte-Carlo)

We simulate for different p̌, where we adjust p̂ according to p̂+ p̌ = 1; Figure 5.5
holds the results. Note that we also adjusted the threshold τ when using a different
p̌, so that rPNC always deems p̂ reliable, i.e. τ > 1− p̂. Not adjusting τ leads to a
distinct drop in performance of the rPNC policy, since the short horizon of H = 4
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123 132 213 231 312 321
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Sequence in which Robots Fulfill p̂α > p̂β > p̂δ
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Fig. 5.4: Simulation results for a specific case.

does not suffice to schedule most of the transmission in a reliable way. In other
words, a high reliability requirement (in comparison to the available transmission
success probabilities), has to be accompanied with a far enough horizon to enable
the algorithm to reliable schedule in its prediction-model.

0 0.1 0.2 0.3 0.4 0.5
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Fig. 5.5: Simulation results for the overall Monte-Carlo simulation.

The simulations show, that we can expect an average reduction in accumulated
delays of about 10%, if transmission success probabilities (channel states) jump
between 1 (superb) and 0 (not available at all). The closer p̌ and p̂ get, the more
this pleasant reduction diminishes. In the instance, that p̌ = p̂ = 0.5, MW even
exceeds the performance of rPNC. This result is due to the fact, that in this instance,
future predictions are the least helpful (there is no time dependent pattern to take
advantage of and the one step optimal control becomes the general optimal control).

Note that the resulting quotient of a single simulation can differ heavily (0.5
to 1.5) from the obtained averaged performance quotients (0.9 . . . 1.02). Also, the
discussion above does not take into account, that we additionally yield individual
forecasts of delays. One should keep in mind, that the reduction of accumulated
delay is only one benefit of the rPNC algorithm. And finally, the simulated scenario
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resembles a bursty stimulation of the network. The disadvantages of MW become
less stringent, once the bursty traffic transitions into a steady state traffic, because
then, MW can use the length of individual queues to obtain information on good
and bad paths through the network.

Time Consumption

By applying the binary linear optimization over the horizon H, the minimization
problem in rPNC has to be solved for m ·H unknown binary values. In comparison,
MW does only solve for m unknown binary values, since in each step it solves

min
u

q⊺Rv (5.18)

where q and R are current queue vector and current routing matrix. Though one
would intuitively suspect an exponential growth (withH) in time needed for deriving
at an optimal solution, at least for scenario presented here, simulations suggest a
linear growth as shown in Figure 5.6. The used parameters are captured in Table 5.3,
where we chose N = 7 to ensure that there are always packets still to be transmitted.
If all packets are transmitted, then the consecutive optimization is trivial which
would in turn compromise the simulation results.

p̂ p̌ 1− τ N H x y

70% 30% 68% 7 . . . 10 100

Table 5.3: Simulation Parameters (Time Consumption)

2 3 4 5 6 7 8 9 10
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Fig. 5.6: Ratio of processing time as a function of the prediction horizon. Apparently,
the processing time only grows linearly with the horizon, at last for small values.

Finally, we also try to investigate how time consumption scales with the number
of subsystems in the prediction-model, i.e. with the number of packets to be trans-
mitted simultaneously. We use again the parameter set from Table 5.3 but vary
the number of packets, for which transfer is requested in the very first time-step;
the results are shown in Figure 5.7. The casual decrease in time consumption with
growing number of packets might be a consequence of the utilized optimizer (gurobi)
applying a branch-and-bound procedure to solve the minimization. This remains to
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be analyzed. Nevertheless, the results once more suggest a linear growth in time
consumption with increasing number of packets.
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H = 4
H = 5

Fig. 5.7: Ratio of processing time as a function of the number of subsystems. Though
the dependency does not seem to be linear, the processing time apparently does not scale

exponentially with the number of subsystems (at least for small values).

5.2.5 Conclusion

We provided a proof of concept for a new network control policy, which is predictive
in nature (based on MPC paradigms), and does provide reliable forecast of delay
times of single data packets. The applied optimization problem is linear and thus
quite feasible to implement. The numerical results show a clear advantage of our
approach in comparison to MW when it comes to pure routing and scheduling de-
cisions. However these advantages are leveraged with an increased utilization of
computational resources, the dimension of which we could identify.

5.3 Concluding Remarks

Compared to Paper 4, the introduced algorithm in this paper allows for the rep-
etition of links to take place in non-consecutive time-steps, which is a significant
improvement. As before though, the paper misses an illustrative example in or-
der to describe the intricate prediction-model. We will deliver such an example in
this section and again use the queueing network from Figure 4.5, where 3 queues are
connected via 2 links according to the following routing and transformation matrices

R =

−1 0
+1 −1
0 +1

 , T o =

(
1 0 0
0 1 0

)
, T d =

(
0 1 0
0 0 1

)
(5.19)

This time, the transmission success probabilities are to be time-invariant with values
p
[1]
t = 0.8 and p

[2]
t = 0.9. Choosing the failure-probability threshold to be τ = 0.1,

we end up with

ω
[1]
t = 0.7, ω

[2]
t = 1 (5.20)
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These ω-values are the continuous counterparts to the p-values from the queueing
model. They dictate how much an activation will actually influence the prediction-
model.

It is readily verified, that the prediction over 3 time-steps becomes

q̇1
q̇2
q̇3

 =

q0
q0
q0

+

R+ 0 0
R+ R+ 0
R+ R+ R+



0.7

1
0.7

1
0.7

1

 ˜̇v0

=

q0
q0
q0

+



0 0
+0.7 0
0 +1
0 0 0 0

+0.7 0 +0.7 0
0 +1 0 +1
0 0 0 0 0 0

+0.7 0 +0.7 0 +0.7 0
0 +1 0 +1 0 +1





v̇
[1]
0

v̇
[2]
0

v̇
[1]
1

v̇
[2]
1

v̇
[1]
2

v̇
[2]
2



(5.21)

Note that any control-vector can only fill, but never deplete any queues, and that
the first link only fills queues with 0.7 packets per activation.

According to (5.15), activating this first link is possible right out of the gate,
since the first queue is initialized with a packet:(

v̇
[1]
0

v̇
[2]
0

)
≤ T oq0 =

(
q
[1]
0

q
[2]
0

)
=

(
1

0

)
(5.22)

If we extend this constraint to all time-steps of the prediction and consider the
evolution, we get




1

1
1

1
1

1

−


0 0
0.7 0
0 0
0.7 0

0 0
0.7 0







v̇
[1]
0

v̇
[2]
0

v̇
[1]
1

v̇
[2]
1

v̇
[1]
2

v̇
[2]
2


≤


1
0
1
0
1
0

 (5.23)

Indeed, the constraint is not too hard to translate. Let us take e.g. the last row:

v̇
[2]
2 ≤ 0 + 0.7v̇

[1]
0 + 0.7v̇

[1]
1 (5.24)

Activating v̇
[2]
t is only possible, if both v̇

[1]
0 and v̇

[1]
1 were active before since only then

the RHS exceeds 1. This stems from the idea that with at least two activations, reli-
able transmission can be assumed because then the transmission failure probability
is undercut. If the prediction horizon was larger, there would be more opportunities,
e.g. v̇

[1]
2 , to make the RHS greater 1.
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The constraint from above prevents links from activation if their origin queue has
not been filled beyond 1 (i.e. did not receive enough transmissions to reliably contain
the packet). However, by the virtue of having a linear objective, if there exists a
motivation for the control to fill up a certain queue, it does not disappear (in contrast
to e.g. quadratic objectives where a global extreme point exists). Hence, there also
needs to be a countermeasure to restrain a link from being activated if its destination
queue is already filled beyond 1 (bounding the domain of the optimization problem
and thereby creating local extreme points). These constraints are given through
(5.14) and do evaluate to




1

1
1

1
1

1

+


0.7 0
0 1
0.7 0
0 1

0.7 0
0 1







v̇
[1]
0

v̇
[2]
0

v̇
[1]
1

v̇
[2]
1

v̇
[1]
2

v̇
[2]
2


≤


2
2
2
2
2
2

 (5.25)

Exemplarily investigating the 5-th row yields

v̇
[1]
2 ≤ 2− 0.7v̇

[1]
0 − 0.7v̇

[1]
1 (5.26)

which encodes that after activating the first link twice it can no longer be activated
as the RHS is smaller than 1. And indeed 2 activations should be enough to have
a packet reliably reach the queue q[2] (the destination of the link corresponding to

v̇
[1]
t ).
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Abstract In order to enhance the performance of Cyber-Physical Systems, this
paper proposes the integrated design of distributed controllers for distributed plants
together with the control of the communication network. Conventional design meth-
ods use static interfaces between both entities and therefore rely on worst-case es-
timations of communication delay, often leading to conservative behavior of the
overall system. By contrast, the present approach establishes a robust distributed
Model-Predictive Control scheme, in which the local subsystem controllers operate
under the assumption of a variable communication schedule that is predicted by a
network controller. Using appropriate models for the communication network, the
network controller applies a predictive network policy for scheduling the commu-
nication among the subsystem controllers across the network. Given the resulting
time-varying predictions of the age of information, the paper shows under which
conditions the subsystem controllers can robustly stabilize the distributed system.
To illustrate the approach, the paper also reports on the application to a vehicle
platooning scenario.



PAPER 6. PREDICTION OF AOI 103

6.1 Preliminary Remarks

Paper 4 took a first attempt at making the predictions from the communication
system available to the control realm. The intention behind this: enhancing the
performance of the plant controllers by supplying them with these predictions. In
the communication realm, Paper 4 uses a queueing framework since this was the
initial set-up proposed in the project description. However, as the project advanced,
we realized that the queueing framework is somewhat too complex for the practical
scenarios we had in mind.

Specifically, it is quite reasonable to assume that distributed controllers, working
together to achieve a common control goal, are connected in a very tight fashion, e.g.
over a single base station, because there exists a clear motivation to invest in such
communication solutions. If this is the case, however, communication over multiple
nodes is of no concern. In the paper at hand, we therefore leave behind the queueing
framework and concentrate on a most simple topology: one base station and various
agents, connected to that base station via wireless communication channels. This
enables us to change our focus: away from optimizing the routing decisions and
towards optimizing the actual delay or rather Age-of-Information.

Please take note that since the paper at hand contains a large contribution from
our research partners (Universität Kassel), we deviate from the notation guidelines
that were established in the introduction of this dissertation. The details are clarified
in the paper.

6.2 Paper Body

6.2.1 Introduction

Current technological advances in communication technology have lead to systems
in which networks connect more and more locally controlled and autonomously op-
erating devices. Such systems have an impact across a large number of applications,
including networked automobile and traffic systems, smart energy grids, and the next
generation of manufacturing plants (industry 4.0 ). Typically referred to as Cyber-
Physical Systems, these systems are composed of physical components, digital and
computational nodes, as well as the interconnecting communication infrastructure
[62]. While traditional engineering concepts follow divide-and-conquer principles for
separated and largely decoupled design of these components, requirements of high
performance, reliability, as well as online and autonomous reconfiguration call for
integrated design in which inter-dependencies are carefully taken into account [63].

This paper proposes a new approach of the latter type, tailored to the spe-
cific case of combining a wireless communication network with a distributed plant
in which subsystems are locally controlled by model-predictive controllers (MPCs).
The controllers aim at establishing cooperation with respect to a common cost func-
tional formulated for the distributed plant, thus requiring to exchange data between
the controllers across a centrally organized communication network with possibly
time-varying properties of connectivity, reliability, and latency.

In order to let the controllers adapt to such properties autonomously and online,
the use of model-predictive controllers is a straightforward choice: they do not only
allow for the consideration of predicted behavior of other controlled entities and
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constraints for states, inputs, and outputs, but also imperfections in the communi-
cation. In fact, Model-Predictive Control without consideration of communication
defects has reached a state of considerable maturity, including variants for nonlinear
dynamics [64, 65], systems with uncertainties [66, 67, 68, 69], for fast computations
[70, 71, 72], and distributed settings [73, 74, 75].

With respect to versions of distributed MPC taking network imperfections into
account, solutions have been proposed in [76, 77, 54]. Common lines in these studies
are, however, that network delays are either assumed to be negligibly small compared
to the dominant plant dynamics [78, 79, 80], or that an upper bound of the delay
(commonly named as worst-case delay) is assumed to be known [81, 82]. Own work
in this direction has aimed at devising robust MPC strategies to compensate for the
maximum delays [54], or to use schemes of event-based communication [50].

However, explicitly accounting for the network defects by use of a worst-case
delay within robust control schemes is, most of the time, overly conservative

since delays are typically governed by a Chi-like distribution [83], such that the
occurrence of the worst-case delay is extremely rare.

Consequently, the subsystem controllers (network agents) typically have much
newer data available than what would be expected under the worst-case delay. In
addition, a time-varying communication schedule leads to non-uniformly distributed
instances of information reception and therefore lends itself to a description via the
so-called age of information (AoI) metric that measures the time elapsed between
generation and reception of information. This motivates to develop methods that
can obtain and make use of the expected AoI, thus circumventing the static interface
between communication and control that a worst-case delay typically amounts to.
Assuming that a basic model for the link quality can be obtained (e.g. via machine
learning techniques [84, 85]), this paper proposes a model-predictive network con-
troller to handle both the management of transmissions as well as the prediction of
future AoI, a strategy that is reminiscent of our prior work [25].

In contrast to that work, however, the paper at hand focuses on AoI rather than
the throughput metric, shifting its focus to timely data arrival rather than transmis-
sion of large data streams. This also facilitates the utilization of a network topology
in which routing problems disappear, since every agent is in proximity of any other
agent. Such topologies are commonly encountered in related literature, where it
stands to minimize the overall age of data in machine-to-machine communication
scenarios [86, 87, 88].

Recent own work in [57] has sketched the idea of using predictive controllers for
both the minimization of network delays, and the control of distributed plants under
consideration of predicted AoI. That paper, however, neither detailed the network
control scheme, nor the interface between network and subsystem controllers, nor
the stability of the overall scheme. In contrast, the present paper proposes a novel
predictive control scheme for the communication network and defines a mathemati-
cal interface through which the subsystem controllers can make use of the resulting
forecasts of the AoI. Furthermore, it shows how these forecasts can be used to en-
hance control performance of the subsystem controllers, and under which conditions
robust stability is ensured.

The paper is organized as follows: Section 6.2.2 introduces the general system
architecture. Section 6.2.3 presents the design of a predictive network control scheme
that generates delay forecasts. Section 6.2.4 presents the design of a distributed



PAPER 6. PREDICTION OF AOI 105

predictive control scheme making use of the delay forecasts, and stability of the
scheme is proven. Section 6.2.5 illustrates the performance gain, when employing
the proposed methods to a vehicle platoon scenario.

6.2.2 Set-Up and Notation

Set-up This paper considers Cyber-Physical Systems composed of two main parts,
a distributed control system (CSYS) comprising a set of locally controlled subsys-
tems, and a communication network (CNET) over which the local controllers of
the subsystems in CSYS can communicate, see Figure 6.1. The dynamics of the
subsystems are assumed to be decoupled in this setting, i.e. the state of one subsys-
tem may not directly affect the dynamics of another, while different subsystems can
impose constraints onto each other, and the behavior of one controlled subsystem
may affect the control goal of another. An example in which such dependencies are
practically relevant is that of a platoon of autonomous vehicles, as elaborated on in
Section 6.2.5. It is further assumed that the local controllers are not able to measure
the state of an interacting subsystem, thus information on neighbors can solely be
obtained by exchange of information through the CNET.

In the latter, each subsystem controller acts as an agent in the communication
network that requests data from and provides data to all other agents. Here, ”data”
refers to state information of the subsystems. The agents are connected via links
which exhibit individual, time-depending behavior with respect to transmission qual-
ity. A centralized network controller manages a schedule, determining when which
agent is allowed to broadcast its data to all other agents. In contrast to conventional
network control approaches, this paper models the network controller as an MPC,
enabling the generation of forecasts of future data transmission. In other words,
it becomes possible to inform an agent of when it will receive data from another
agent. The exploitation of this additional information is the key aspect leading to
increased control performance for the distributed plant. To enable this exploitation,
the CNET architecture foresees two layers of communication, as indicated in Fig-
ure 6.1: on one layer the agents broadcast their data to one another (blue arrows);
on the other layer, the network controller informs the agents of both, the broadcast
schedule and the forecasts of when information will arrive (red arrows).

Notation CSYS and CNET both operate on discrete-time domains with under-
lying time-steps. Any value of a discrete-time signal z at time t0 + k ·∆t is denoted
by zk with index k ∈ N and a constant interval ∆t ∈ R+. A value zk+l predicted in
time k is indicated by zk+l|k, where zk|k = zk. A complete predicted trajectory over
a horizon of length H is denoted by z̃k = [z⊺k|k, z⊺k+1|k, . . . , z⊺k+H|k]

⊺. With slight
abuse of notation, in some cases the first or last entry in the trajectory is omitted.

The symbol zk refers to a stacked column vector of signals from different sub-
systems, and a trajectory of a stacked vector zk is denoted by z̃k.

To refer to polytopic constraints for any element of
z̃k: Z =

{
z̃k ∈ Rñz

∣∣C̃z · z̃k ≤ b̃z

}
the pair (C̃z, b̃z) is used.

Matrices 0n,m and 1n,m denote n × m-matrices of zeros and ones, respectively,
while a column vector is simpler written as 0n. For brevity, 0 is sometimes used to
denote a zero matrix, if the dimensions are clear from the context.

Let an index set N = {1, 2, . . . , n} ⊂ N refer to a set of n subsystems. Then,
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CSYS

CNET

C2 CnC1

P2 PnP1

Network Controller

Network Data
CSYS Data

Fig. 6.1: Structure of the Cyber-Physical System, with local subsystem controllers Ci

and plant subsystems Pi, and two different communication layers (red/blue).

a column vector zi , a matrix Ai , and a set Ai indicate variables defined for the
subsystem with index i ∈ N . Furthermore, for the example of N = {1, 2, 3}, the
notation diag

([
Aj
]
, j ∈ N

)
is equivalent to diag(A1 , A2 , A3), and prod(Aj , j ∈ N )

defines the Cartesian product A1×A2×A3 . In addition, [zj ]j∈N defines the stacked
vector [z1

⊺
, z2

⊺
, z3

⊺
]⊺.

6.2.3 Communication Network

The CNET is modeled as a discrete-time packet-based system with n agents (cor-
responding to n subsystem controllers) and erroneous (wireless) transmissions. It
is assumed that in each time-step each agent requires data from all other agents,
and that likewise in each time-step each agent provides a new batch of data that
can potentially be broadcasted to all other agents. The network resources are as-
sumed to be limited, and thus agents typically have to work with out-dated data
until new information is received. The age of information is pivotal for the agents’
performance.

Definition 1. Suppose each batch of data receives a time-stamp when being gen-
erated by its agent. The age of information aijt ∈ N is the difference between the
current time-step t and the time stamp of the latest batch of data that agent i received
from agent j.

If, in the current time-step t, agent i successfully receives data from agent j, aijt is
reset to 1 (since in time-discrete models, transmission and computation is assumed to
take up an entire time-step). Otherwise aijt is increased by 1. However, successfully
receiving data from agent j can only occur, if (i) the network controller does schedule
agent j to broadcast its data, via setting the control variable vjt ∈ {0, 1} to 1, and if
(ii) the data does not get lost due to erroneous transmissions (see Figure 6.2). The
second part is expressed by the stochastic variable pjit ∈ {0, 1} (0 corresponding to
failure) such that data is successfully received (by agent i from agent j) if vjt ·p

ji
t = 1.

This results in the following evolution for the AoI:

aijt+1 = 1 + aijt
(
1− vjtp

ji
t

)
= 1 + aijt

(
1− pjit

)vjt (6.1)
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Agent j Agent i
if vjt p

ji
t = 1

Network Controller

pjit ∼ Bernoulli
(
p̄jit

)
p̄jit = q̄ij

(sjit )

{sjit } ∼ DTMC({1, . . . |Q|}, T, s0)

Q = { q̄ji(1) , q̄ji(2) , q̄ji(3) }

q̄ji(1)

q̄ji(2)q̄ji(3)

Stochastic Process

Fig. 6.2: Conditions for successful transmission from agent j to agent i: vjt p
ji
t has to be

1; the DTMC stands exemplarily.

The control variables vjt are collected in the binary control-vector vt =
[v1t , . . . v

n
t ]

⊺ ∈ {0, 1}n. Usually, e.g. due to interference properties, only certain agents
are allowed to be engaged in broadcasting at the same time, and hence only cer-
tain realizations of vt are admissible. The admissible set of control-vectors will be
denoted by V such that vt ∈ V .

For ease of notation, the upper indices of the random variable pjit are omitted for
the moment: the process {pt} is governed by a Bernoulli process and a discrete-time
Markov chain (DTMC) as shown in the bottom of Figure 6.2. The first one allows
for consideration of unpredictable short-term drops in channel quality. In particular,
each pt is Bernoulli distributed (i.e. either 0 or 1) with success-parameter p̄t ∈ [0, 1]
(note that the parameter is indeed time-variant). Opposed to that, the DTMC al-
lows for consideration of a partially predictable, long-term behavior by dictating the
time behavior of the parameter p̄t. To that end, let Q =

{
q̄(1), . . . q̄(m)

}
be a finite set

of values that p̄t can take (the indices of the elements are set in parentheses to distin-
guish them from the time-step). Moreover, define {st} ∼ DTMC({1, . . . |Q|}, T, s0)
with transition matrix T and initial state s0 such that in each time-step t it holds
that p̄t = q̄(st). For completeness, let the row vector σt denote the probability
distribution to st. The following common assumption is made:

Assumption 2. The quantities Q and T of the DTMC {st} are known (e.g. as a
result of machine learning techniques), and the state st is observable in time-step t
(which is a common assumption for DTMCs).

Note that under this model, it is possible to calculate the following expectation
(needed later in (6.3)) for some arbitrary time-steps t0 < t1 < . . . tl in increasing
order:

E

[
l∏

i=1

pti

∣∣∣∣∣σt0

]
= E

[
l∏

i=1

p̄ti

∣∣∣∣∣σt0

]
= σt0

l∏
i=1

(
T ti−ti−1∆Q

)
1 (6.2)

where ∆Q is the diagonal matrix whose entries are the elements of Q in the given
order, and 1 is a suitably dimensioned row vector of ones.
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An obvious control objective consists of minimizing the AoI for the immediate
next time-step (a common approach in current network control strategies [89]). Op-
posed to that, our strategy aims to minimize the AoI over a certain number of
time-steps, the prediction horizon N . Without loss of generality, assume that the
current time-step is 0. Then, using the recursive form (6.1), the explicit expression
for the AoI in time-step t becomes

aijt = 1 +
(
1− vjt−1p

ji
t−1

)
+
(
1− vjt−1p

ji
t−1

)
·
(
1− vjt−2p

ji
t−2

)
+ . . .

+
(
1− vjt−1p

ji
t−1

)
· . . . ·

(
1− vj0p

ji
0

)
aij0

= t+
∑

I∈P (Nt−1)

(−1)|I|(a0 +min{I})
∏
l∈I

vjl p
ji
l

(6.3)

Here, P (Nt−1) is the power set of the set Nt−1 (the natural numbers from 0 up to and
including t−1) which stems from the products of (1−vlpl). It is min ∅ = max ∅ = 0
and

∏
∅ = 1.

Summing up (6.3) for t = 1, . . . N and taking the expectation yields the suitable
objective J ij (the accumulated expected AoI values over the next N time-steps):

J ij(v̇0, . . . v̇N−1) := E

[
N∑
t=1

aijt

∣∣∣∣∣ aij0 , σ0

]

=
N2 +N

2
+

∑
I∈P (NN−1)

(N −max{I}) (6.4)

· (−1)|I|
(
aij0 +min{I}

)(∏
l∈I

v̇jl

)
E

[∏
l∈I

pjil

∣∣∣∣∣σ0

]

Notice how we employ v̇t instead of vt, which is necessary in order to distinguish
the free variables over which the optimization is performed from the actual control
variables employed to steer the system. Also, there is no need to consider the sum of
squares of aijt (which would be the usual objective) because every AoI is potentially
reset to 1, no matter its value. Hence, larger values of the AoI will automatically
be more prone to minimization than smaller ones, even in this linear formulation.

Still, (6.4) merely considers the AoI for data of agent i from agent j. The actual
control objective however has to consider all AoI values in the entire system, and
hence becomes:

min
v̇0,...v̇N−1∈V

n∑
i=1

n∑
j=1

wijJ ij(v̇0, . . . v̇N−1) (6.5)

where wij ∈ R+ are weights to balance for more or less important data. E.g., if agent
i has no use for data from agent j then wij = 0. Eventually, these weights could
also be signaled from the agents to the network controller, allowing for time-variant
weights.

Due to the control-vector v̇t being binary, this is a combinatorial problem with
non-linear objective function. The amount of feasible solutions is given by |V|N
where |V| denotes the cardinality of V . Furthermore, the amount of summands
(over the power set in (6.4)) that need be evaluated in order to obtain the value of
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J ij for a single realization of v̇0, . . . v̇N−1 grows exponentially in N as well. While
exhaustive enumeration leads to the optimal solution, one can expect the problem
to quickly become intractable for higher dimensions in online solution. On the other
hand, even for N = 1, satisfying analytical results on how to efficiently control the
resulting Markov-decision-process do not yet exist [89]. Therefore, at this point,
this papers proposes two heuristic relaxations to the optimization problem (6.5),
that drastically reduces the effort of finding good approximations of the solution (as
substantiated through extensive simulation).

First, the branching of the paths of the DTMC is replaced by a mean dis-
tribution. This means, in particular, that E

[
pjit1 · p

ji
t2

∣∣σ0

]
is approximated by

E
[
pjit1
∣∣σ0

]
· E
[
pjit2
∣∣σ0

]
. Though this procedure makes use only of a small share

of the information encoded by the DTMC in principle, the scheme provides more
and better information than a setting without prediction. Good approximations
are especially obtained for cases in which the DTMC models slower-paced processes
(i.e. in which the transition matrix can be transformed such that entries close to
the diagonal are large). This fits well to the predictive controllers proposed for the
CSYS, since such controllers are typically used for exactly such processes.

Using the substitution

ϕji
t (vt) := E

[
1− vjtp

ji
t

∣∣σ0

]
∈ {1, 1− σ0T

t∆Q1} (6.6)

(where t in T t is indeed an exponent) makes it possible to state (6.4) in a simplified
form (directly derived from (6.3)):

I ij(v̇0, . . . v̇N−1) := E

[
N∑
t=1

aijt

∣∣∣∣∣ aij0 , σ0

]
relaxed

= N +
N∑
t=1

(
t−1∑
l=1

l∏
m=1

ϕji
t−m(v̇t−m) + aij0

t−1∏
m=0

ϕji
m(v̇m)

)
(6.7)

Compared to the strict formulation, only N2

2
terms need to be evaluated in order to

obtain I ij for a single realization of v̇0, . . . v̇N−1.
As a second relaxation, problem (6.5) is separated into N consecutive minimiza-

tion problems:

min
v̇tN∈V

tN∈NN−1\{t1,...tN−1}

. . . min
v̇t2∈V

t2∈NN−1\{t1}

min
v̇t1∈V

t1∈NN−1

n∑
i=1

n∑
j=1

wijI ij(v̇0, . . . v̇N−1) (6.8)

In each minimization, the most promising realization of vt in the most promis-
ing time-step t is fixed and applied to the objective. However, in any subse-
quent minimization, this time-step then becomes unavailable and thus the rela-
tive feasible set for each subsequent minimization shrinks. This scheme results in
(N + (N − 1) + . . .+1) · |V| = N2+N

2
· |V| evaluations of the objective before finding

the solution. Both relaxations therefore drastically reduce the complexity of the
problem and allow for a fast calculation of a sub-optimal solution. Note that choos-
ing N = 1 still leads to the exact minimization over all immediate AoI values in the
entire system.

In summary, the network controller operates as an MPC, solving (6.8) in every
time-step t, with (6.8) being denoted relative to the said time-step. Let us revoke
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this relative notation and assume the current time-step to be t again. Considering
more than just the AoI of the immediate next time-step in the control objective,
naturally improves the control performance. However, a solution of (6.8) now also
enables the network controller to predict when new data is probably arriving at the
agents. Hereafter, these predictions are called ”forecasts” and they are defined as
trajectories of the predicted AoI:

˜̇aij1 = [ȧij1 , ȧ
ij
2 , . . . ȧ

ij
N ]

⊺ (6.9)

Given a current network control trajectory ˜̇v0 = [v̇⊺0 , . . . v̇
⊺
N−1]

⊺, forecasts are
generated by the network controller based on the accumulated transmission failure
probability by time-step t+ h, which is:

h−1∏
l=0

E
[(
1− pjit+l

)v̇jt+l

∣∣∣∣σt

]
(6.10)

As soon as this probability falls beneath a certain threshold τ , the network controller
assumes that transmission did succeed at least once by the end of that time-step.
Let tijτ be the time-step in which this happens and let tijf be the first time-step in
which transmission was attempted:

tijτ := min
h

{
h :

h−1∏
l=0

E
[(
1− pjit+l

)v̇jt+l

∣∣∣∣σt

]
< τ

}
(6.11)

tijf := min
h

{
h :

h−1∏
l=0

E
[(
1− pjit+l

)v̇jt+l

∣∣∣∣σt

]
< 1

}
(6.12)

Then, as depicted in Figure 6.3, the forecast ãijt becomes:

˜̇aijt =



ȧijt+1
...

ȧij
t+tijτ −1

ȧij
t+tijτ ±0

ȧij
t+tijτ +1
...


=



ȧijt +1
...

ȧijt + tijτ −1

ȧijt + tijτ
tijτ − tf +1

...


(6.13)

The concept can be extended in a straightforward way for cases in which the thresh-
old is transgressed more than once.

Once generated, those forecasts are transmitted to the agents. However, due
to the underlying stochastics, they are only of limited reliability. Decreasing the
threshold τ improves this reliability, but also reduces the amount of foreseen packet
deliveries that can be detected within the fixed prediction horizon N . Hence, the
right parametrization of τ depends on the agents needs.

Instead of investigating this parameterization, the paper at hand focuses on es-
tablishing a framework with which the network agents can make use of the AoI
forecasts at all. Therefore, the agents are identified with a system of distributed,
robust MPCs in a deterministic setting, explicitly adapted for the use of AoI fore-
casts. In order to overcome the apparent modeling mismatch between a stochastic
communication but deterministic control framework, the following assumption is
important:
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t

ȧt

0
1

a0

tf tτ

˜̇a0

Fig. 6.3: Forecast generation when tf and tτ are given. The forecast (black line) results
from combining the largest AoI from the two cases in which transmission succeeds in

either in tf (blue) or in tτ (red).

Assumption 3. The parameter τ is chosen sufficiently small, such that the forecasts
are reliable, i.e. ȧijt ≥ aijt holds.

Note that this assumption is similarly restrictive as the commonly used assump-
tion of a worst-case delay, but additionally requires the network controller to not
violate any previously communicated forecast.

6.2.4 Distributed Control System

With respect to the distributed plant to be controlled, consider again a set N =
{1, . . . , n} of discrete-time, linear time-invariant subsystems with the following dy-
namics:

xi
k+1=Aixi

k+Biui
k, i∈N . (6.14)

For the subsystem with index i, xi
k denotes the state vector and ui

k the input vector,
both subject to polytopic constraints:

xi
k ∈X i =

{
x∈Rni

x
∣∣Ci

x ·x≤ bix

}
, (6.15)

ui
k ∈U i =

{
u∈Rni

u
∣∣Ci

u ·u≤ biu

}
. (6.16)

It is assumed that the subsystems are coupled through constraints and the control
objective, but not through the dynamics (6.14) at this stage.
Example: For the scenario of a platoon of vehicles, as will be considered in
Section 6.2.5, coupling through constraints is understood as keeping the position
of a subsequent vehicle strictly behind the position of the preceding vehicle (with
a safety margin) in order to avoid collision. The coupling through the control
objective can here be understood as minimizing the deviation from a desired
distance between vehicles.

Let the index-set N i ⊂ N contain the indices of all subsystems coupled to i
in this form, called neighbors. Since the exchange of information is limited to the
communication network, each subsystem estimates the behavior of its neighbors
based on the initially provided model of the neighbors’ dynamics. During system
operation, each subsystem controller receives or holds possibly outdated information
on the neighbors’ states, and estimates their expected current state by applying
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forward time-shift to the neighbors’ models. Thus, a local, augmented (and now
dynamically coupled) model can be constructed for any subsystem:

xi
k+l+1|k = Aixi

k+l|k +Biui
k+l|k +Bi

1u
i
k+l|k +Bi

2δu
i
k+l|k. (6.17)

In here, the augmented state vector is xi
k =

[
xi
k;
[
xij
k

]
j∈N i

]
∈ Rni

x , the augmented

vector of nominal inputs of the neighbors is ui
k =

[
uij
k

]
j∈N i , and possible deviations

of the neighbors’ inputs from their nominal values are denoted by δui
k =

[
δuij

k

]
j∈N i .

Such a possible deviation of an input in time-step k + l as predicted in time-step k
is defined by:

uj
k+l =uij

k+l|k+δuij
k+l|k. (6.18)

The matrices of the model (6.17) follow as described in [57], e.g. if N i = j:

Ai =

[
Ai 0
0 Aj

]
,Bi =

[
Bi

0

]
,Bi

1 = Bi
2 =

[
0
Bj

]
. (6.19)

All subsystems j ∈ N i communicate conservative uncertainty sets ∆U for their
possible deviations to subsystem i, i.e. their selected inputs are guaranteed to be
contained in these sets. Collecting all the communicated data, polytopic constraints
for subsystem i are written as:

δui
k+l|k ∈ δUi

k+l|k = prod
(
∆U ij

k+l|k, j ∈ N
i
)

(6.20)

where the sets ∆U ij
k+l|k correspond to the communicated sets but shifted forward in

time to the current time-step. Note, that also subsystem i has to communicate such
an uncertainty set to all its neighbors. The determination of this uncertainty set is
described later in (6.37).

As already mentioned, the augmented model (6.17) is dynamically coupled to
neighbored subsystems such that coupling by state constraints can be formulated
by:

xi
k+l|k ∈Xi =

{
x
∣∣Ci

x ·x≤bi
x

}
. (6.21)

Extending the model (6.17) to the prediction-model (c.f. [57]) the behavior and
constraints of the augmented system are predicted up to the control horizon H:

x̃i
k = Ã

i
xi
k|k+B̃

i
ũi
k+B̃

i

1ũ
i
k+B̃

i

2δũ
i
k (6.22)

with ũi
k as the input trajectory of subsystem i. The state trajectory x̃i

k needs to
satisfy

x̃i
k ∈ X̃i = Xi × . . .× Xi

ξ =
{
x̃
∣∣∣C̃i

x · x̃ ≤ b̃
i

x

}
(6.23)

for all possible deviations of neighbored subsystems:

δũi
k ∈ δŨi

k =
{
δũ
∣∣∣C̃i

δ · δũ ≤ b̃
i

δk

}
, (6.24)
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where the set δŨi
k is derived from (6.20).

To compensate for these possible deviations from preceding neighbors, the control
law of each subsystem is formulated as a disturbance feedback in stacked vector form:

ũi
k = ṽik+∆̃i

k = ṽik+Ki
kδũ

i
k (6.25)

with ṽik as nominal input trajectory and ∆̃i
k as disturbance feedback term. Note that

the ∆̃i
k vanishes if all neighbored subsystems do not deviate from communicated

trajectories, and that the local input trajectory needs to satisfy a local time-varying
constraint:

ũi
k ∈ Ũ i

k =
{
ũ
∣∣∣C̃i

u · ũ ≤ b̃iuk

}
⊆ U i × . . .× U i . (6.26)

Even though (6.16) is time-invariant, the time-variance of (6.26) results from a self-
updating mechanism to be formulated later in (6.38). Thus, the control trajectory
to be computed in k is constrained by the information about possible deviations
from the nominal trajectory computed and communicated to connected subsystems
in a previous time-step.

Proposition 1. In each time-step k, the network-controller provides by (6.9) and
Asm. 3 reliable forecasts of the future age of information ãijk of each neighbor j ∈ N i

such that:

1. The disturbance feedback matrix Ki
k satisfies the structure:

Ki
k =



0 0 ··· 0
ηi
k+1,k−āik+1|k ··· ··· 0

ηi
k+2,k−āik+1|k

. . . ··· 0
...

. . . ··· 0
ηi
k+H−1,k−āik+1|k ··· η

i
k+H−1,k+H−2|k 0

 (6.27)

with

āik =max
j∈N i

(
aijk
)
, (6.28)

ηin,m|k =
[
ηij

⊺

n,m|k

]⊺
j∈N i
∈Rni

u×ni
u ,

ηijn,m|k ∈

{
R if k−aijk <m≤n−aijn|k
0 else.

(6.29)

2. If N < H, then aijk+l|k := āij ∀l ∈ {N + 1, H}, where āij = max
k

(
aijk
)
, and N

is the horizon for the trajectory ãijk as provided by the network controller.

By substituting (6.25) in (6.22), the constraints (6.23) and (6.26) are combined
into the set of all admissible input trajectories (c.f. [57]):(

ṽik,K
i
k

)
∈Πi

k

(
xi
k

)
. (6.30)

From [54], the specification of local control goals with respect to the augmented
state and input vectors is adopted, establishing a form of coupling through control
objectives.
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The local control objective with finite horizon H and stage cost Li(x, u) =
∥x∥2Qi

x
+ ∥u∥2Qi

u
is given by:

J i
k =V i

f

(
ξik+H|k

)
+

H−1∑
l=0

Li
(
xi
k+l|k,

[
vi

⊺

k+l|k u
i⊺

k+l|k
]⊺)

(6.31)

with Qi
x = Qi⊺

x > 0, Qi
u = Qi⊺

u > 0, end cost function V i
f (r) = ∥r∥

2
P i
ξ
with terminal

cost P i
ξ = P i⊺

ξ ≥ 0, and terminal state ξik:

ξik+H|k =
[
xi⊺

k+H−āi+1|k,...,x
i⊺

k+H−1|k,x
i⊺

k+H|k
]⊺

(6.32)

In here, āi = max
k,j∈N i

(
aijk
)
is the maximally possible age of information.

As is common in constrained MPC, the existence of a terminal set Xi
ξ is assumed

in addition. The special requirements occurring from the time-varying communica-
tion are stated as follows:

Assumption 4. Given a terminal set Xi
ξ ⊆ Xi × . . .× Xi for the terminal state ξik,

it holds that:

1. The set Xi
ξ is robust forward invariant with respect to the closed-loop system:

ξik+1=Ai
ξξ

i
k+Bi

ξu
i
k (6.33)

with

Ai
ξ =

([
0 I
0 Ai

]
+

[
0 0

BiKi 0

])
, Bi

ξ =

[
0
Bi

1

]
(6.34)

such that ξik+1 ∈ Xi
ξ if ξik ∈ Xi

ξ for all ui
k ∈ prod(U j , j ∈ N i).

2. The terminal state feedback ui
k = Kixi

k−āi+1 =
[
Ki 0

]
ξik = Ki

ξξ
i
k satisfies the

local input constraint ui
k ∈ U i for all ξik ∈ Xi

ξ.

3. The terminal cost P i
ξ solves the Lyapunov equation Ai

ξ
⊺
P i
ξA

i
ξ−P i

ξ+Qi
ξ ≼ 0 with

Qi
ξ = diag

([
0
Ki

]⊺
Qi

u

[
0
Ki

]
,0, . . . ,0, Qi

x

)
and with respect to the autonomous

and undisturbed closed-loop system:

ξik+1 = Aξξ
i
k. (6.35)

4. L(xi
k+l|k,0) = 0 for all l ∈ {H − ai + 1, . . . , H} implies

∥∥∥ξik+H|k

∥∥∥2
P i
ξ

= 0.

Minimizing the cost function (6.31) with respect to the set of admissible inputs
(6.30), the optimization problem to be solved in every time-step is the following:

V i
k = min

(ṽik,Ki
k)

∥∥ξik+H|k
∥∥2
P i
ξ

+
H−1∑
l=0

∥∥xi
k+l|k

∥∥2
Qi

x
+
∥∥∥[vi⊺k+l|k ui⊺

k+l|k
]⊺∥∥∥2

Qi
u

(6.36)

s.t.: xi
k+l+1|k =Aixi

k+l|k+Bivik+l|k+Bi
1u

i
k+l|k,

and (6.30).
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Solving (6.36) yields the nominal input trajectory ṽik and the feedback matrix
Ki

k. Together with the bounds on δũi
k, the feedback matrix provides an upper bound

for ∆̃i
k, such that:

∆Ũ i
k =
{
∆̃i

k

∣∣∣C̃i
u∆̃

i
k≤ γ̃i

k

}
(6.37)

is the uncertainty set of the nominal input trajectory of subsystem i (for exact
computation of γ̃i

k c.f. [54]).
The current state, nominal input trajectory, and uncertainty set determine the

behavior of subsystem i for the next H time-steps, and are communicated to all
neighboring subsystems. Forcing subsystem i in the next time-step k+1 to comply
with the communicated information in time-step k, the time-varying input trajectory
constraint (6.26) needs to be shifted forward in time by one time-step:

b̃iuk+1
= C̃i

u

[
vi

⊺

k+1|k, . . . , v
i⊺

k+H−1|k,0
]
+
[
γi⊺

k+1|k, γ
i⊺

k+H−1|k, . . . , b
i⊺

u

]
. (6.38)

Theorem 4. If Asm.s 3 and 4 hold, and (6.36) is feasible for all subsystems i ∈ N
in time-step k = 0, (6.36) remains feasible for all subsystems and k > 0.

Proof. If (6.36) is feasible in time-step k, it provides through (6.30) a nominal
input vik|k which satisfies the time-varying input constraint U i

k, and the global input

constraint U i by definition of (6.26). Furthermore, ũi
k robustly steers the local

system into the terminal constraint Xi
ξ satisfying all local and global state constraints

and time-varying input constraints for all possible deviations δũi
k ∈ δŨi

k.
In all time-steps k + l for 1 ≤ l < H, a feasible input ui

k+l = ui
k+l|k is given by the

tuple (ṽik, K
i
k) designed in k with:

ui
k+l := vik+l|k+

∑
j∈N i

k+l−aij
k+l|k∑

m=k−aijk +1

ηijk+l,m|kδu
ij
m|k. (6.39)

Note, that the lower and upper bounds follow from Prop. 1.1, and that the last
required deviation is δuij

k+l−aij
k+l|k|k

. Recall (6.18) for time-step k + l, and the fact

that the last exactly known input from subsystem j in k + l is given by uj

k+l−aijk+l

.

Then, the last known deviation is δuij

k+l−aijk+l|k
, which is at least as old as the desired

one, if Asm. 3 holds with aijk+l|k ≥ aijk+l. Through (6.30), input ui
k+l satisfies local

input constraints, if all δuij
m,k ∈ ∆U ij

m|k, which is true, if all subsystems j update their

local input trajectory constraint according to (6.38). Additionally, state constraints
are also satisfied through (6.30).

In time-step k + H, an admissible input can be calculated according to the
terminal control law ui

k+H = Ki
ξξ

i
k+H|k, since the terminal state ξik+H|k is robustly

steered into Xi
ξ through constraint (6.30) within (6.23). If Asm. 4 holds and Xi

ξ

is robustly invariant for any permissible ui
k+H|k, state and input constraints are

satisfied.
Thus, the Asm.s 3 and 4 ensure the existence of the admissible input trajectory

in k + 1:

ũi
k+1 :=

[
ui⊺

k+1|k,...,u
i⊺

k+H−1|k,(K
i
ξξ

i
k+H|k)

⊺
]⊺
. (6.40)
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Feasibility of (6.36) for all times k + l ∀l ∈ N>0, follows directly by induction
over k.

According to the signal ui
k+l|k in the cost function (6.31), stability of the dis-

tributed control system is proven with respect to the ISpS -property, which is stated
and proven below:

Definition 2. From [90] it is well known, that an autonomous system
zk+1 = f(zk, wk) with bounded disturbance wk ∈ W is input-to-state practical sta-
ble (ISpS) in a forward positive invariant Z, if there exist constants d1, d2 ≥ 0,
a1, a2, a3, ae > 0, and K-functions α1(r) = a1r

ae , α2(r) = a2r
ae , α3(r) = a3r

ae, and
ϕ(r) respectively, and a function V : Z → R≥0 such that for all z ∈ Z:

α1(∥zk∥)≤V (zk)≤α2(∥zk∥)+d1, (6.41)

V (zk+1)−V (zk)≤−α3(∥zk∥)+ϕ(∥wk∥)+d2 (6.42)

hold for all wk ∈ W, where ∥zk∥ denotes any norm. As in [91], the relaxation of
(6.42) to a multi-step definition is used with Ĥ ∈ N≥1, such that:

V
(
zk+Ĥ

)
−V (zk)≤α3(∥zk∥)+Ĥϕ

(∥∥∥w[k,Ĥ]

∥∥∥)+Ĥd2 (6.43)

needs to be proven with
∥∥∥w[k,Ĥ]

∥∥∥ = max
r∈{k,...,k+Ĥ}

∥wr∥.

Defining an extended state as the triple zik = (xi
k, v

i
k,u

i
k), the norm and the

trajectory are given by ∥zik∥
r

Qi
z
:= ∥xi

k∥
r

Qi
x
+
∥∥[vik;ui

k

]∥∥r
Qi

u
, and z̃ik = (x̃i

k, ṽ
i
k, ũ

i
k) re-

spectively. Note that the cost function (6.31) explicitly depends on z̃ik, but the
value function (6.36) simply depends on the tuple (xi

k, ũ
i
k), since x̃

i
k follows from the

auxiliary condition with initial state xi
k, and ṽik is an optimization variable. Thus,

the condition V i
k (x

i
k, ũ

i
k) = J i

k

(
x̃i⋆

k , ṽ
i⋆

k , ũ
i
k

)
= J i

k

(
z̃i

⋆

k

)
= V i

k holds, where ⋆ denotes
the solution of the optimization (6.36).

Theorem 5. If Asm.s 3 and 4 hold, system (6.17) with control law (6.25) is ISpS,
if the optimization problem (6.36) is feasible, and if weights Qi

x and Qi
u are chosen

such that the set Ωi = {z|Li(z) = 0} is not empty.

Proof. In order to establish the ISpS property, the set Z i is chosen equal to the set
in the triple z̃ik for which (6.36) is feasible, and the set Ω̃i = Ωi × · · · × Ωi for the
extended state trajectory.

To consider deviations from previously communicated predictions of neighbored
subsystems, i.e. ui

k+l|k ̸= ui
k+l|k+l, the difference between two predictions is defined

as δzik+l|k = zik+l|k+1 − zik+l|k, and the difference between to predicted trajectories

is δz̃ik =
[
δzi

⊺

k+1|k, . . . , δz
i⊺

k+H|k
]⊺
, with δzik+H|k =

(
xi
k+H|k+1 − xi

k+H|k, 0, 0
)
. Since

cost function (6.31) is a quadratic function, which is zero if z̃ik ∈ Ω̃i (according to
Asm. 4.4), it is straightforward to see, that there exist lower and an upper compar-

ison functions α1

(
∥z̃ik∥Q̃i

z

)
and α2

(
∥z̃ik∥Q̃i

z

)
, such that (6.41) holds with d1 = 0.
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To proof the reduction of cost (6.43), consider the optimal cost in k if (6.36) is
feasible:

V i
k =
∥∥ξik+H|k

∥∥2
P i
ξ

+
∥∥xi

k|k
∥∥2
Qi

x
+
∥∥[vik|k;ui

k|k
]∥∥2

Qi
u

(6.44)

+
H−2∑
l=0

∥∥xi
k+l+1|k

∥∥2
Qi

x
+
∥∥[vik+l+1|k;u

i
k+l+1|k

]∥∥2
Qi

u
. (6.45)

Some general cost in k + 1 are given by:

J i
k+1 =

∥∥ξik+H+1|k+1

∥∥2
P i
ξ

+
∥∥xi

k+H|k+1

∥∥2
Qi

x
(6.46)

+
∥∥[vik+H|k+1;u

i
k+H|k+1

]∥∥2
Qi

u
(6.47)

+
H−2∑
l=0

∥∥xi
k+l+1|k+1

∥∥2
Qi

x
+
∥∥[vik+l+1|k+1;u

i
k+l+1|k+1

]∥∥2
Qi

u
. (6.48)

Now, first consider the case that there is no difference between predicted inputs of
neighbored subsystems, i.e. ui

k+l|k+1 := ui
k+l|k. Applying in k+1 the input sequence

defined in (6.40), the result is a trajectory of admissible triples z̃ik+1 without differ-
ence in predictions, i.e. δz̃ik = 0. An upper bound for the optimal cost difference is
given by:

Vk+1
i−V i

k ≤
∥∥xi

k+H|k+1

∥∥2
Qi

x
(6.49)

+
∥∥[vik+H|k+1;u

i
k+H|k+1

]∥∥2
Qi

u
+
∥∥ξik+H+1|k+1

∥∥2
P i
ξ

(6.50)

−
∥∥xi

k|k
∥∥2
Qi

x
−
∥∥[vik|k;ui

k|k
]∥∥2

Qi
u
−
∥∥ξik+H|k

∥∥2
Pξ
. (6.51)

Note the following three facts:

1. xi
k+H|k+1 := xi

k+H|k, and vik+H|k+1 := Ki
ξξ

i
k+H|k, such that:∥∥[Ki

ξξ
i
k+H|k;u

i
k+H|k+1

]∥∥2
Qi

u
≤

∥∥[Ki
ξξ

i
k+H|k;0

]∥∥2
Qi

u
+
∥∥[0;ui

k+H|k+1

]∥∥2
Qi

u
and∥∥∥xi

k+H|k

∥∥∥2
Qi

x

+
∥∥[Ki

ξξ
i
k+H|k;0

]∥∥2
Qi

u
=
∥∥∥ξik+H|k

∥∥∥2
Qi

ξ

.

2. ξik+H+1|k+1 = Ai
ξξ

i
k+H|k+1 + Bi

ξuk+H|k+1 with ξik+H|k+1 := ξik+H|k such that:∥∥∥ξik+H+1|k+1

∥∥∥2
P i
ξ

≤
∥∥∥Ai

ξξ
i
k+H|k

∥∥∥2
P i
ξ

+
∥∥∥Bi

ξu
i
k+H|k+1

∥∥∥2
P i
ξ

.

3. P i
ξ is assumed to solve the Lyapunov equation for the closed-loop system (6.33),

such that:
∥∥∥Ai

ξξ
i
k+H|k

∥∥∥2
P i
ξ

−
∥∥∥ξik+H|k

∥∥∥2
P i
ξ

+
∥∥∥ξik+H|k

∥∥∥2
Qi

ξ

≤ 0.

Considering these facts, an upper bound results according to Asm. 4:

V i
k+1−V i

k ≤−
∥∥xi

k|k
∥∥2
Qi

x
−
∥∥[vik|k;ui

k|k
]∥∥2

Qi
u

(6.52)

+
∥∥[0;ui

k+H|k+1

]∥∥2
Qi

u
+
∥∥Bi

ξu
i
k+H|k+1

∥∥2
P i
ξ

. (6.53)
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Since ui
k+H|k+1 ∈ prod(U j , j ∈ N i) is bounded, there exists a constant d2 and a

comparison function α3 such that:

V i
k+1−V i

k ≤−α3

(∥∥zik∥∥Qi
z

)
+d2. (6.54)

Now consider the general case with possible deviations of previously communicated
predictions, i.e. δz̃ik ̸= 0. Analogously to δz̃ik, the difference of two predicted terminal
states is denoted by δξik+l|k. To the norm of possible deviations from above, the

triangle inequality applied for all l ∈ {0, . . . , H − 2} leads to:∥∥zik+l+1|k+1

∥∥−∥∥zik+l+1|k
∥∥≤∥∥δzik+l+1|k

∥∥, (6.55)

and to the state in fact 1):∥∥xi
k+H|k+1

∥∥2
Qi

x
≤
∥∥xi

k+H|k
∥∥2
Qi

x
+
∥∥δzik+H|k

∥∥2
Qi

z
, (6.56)

and to the input in fact 1):∥∥[Ki
ξξ

i
k+H|k+1;0

]∥∥
Qi

u
≤
∥∥[Ki

ξξ
i
k+H|k;0

]∥∥
Qi

u
+
∥∥[Ki

ξδξ
i
k+H|k;0

]∥∥
Qi

u
, (6.57)

and to the terminal state in fact 2):∥∥Ai
ξξ

i
k+H|k+1

∥∥2
P i
ξ

≤
∥∥Ai

ξξ
i
k+H|k

∥∥2
P i
ξ

+
∥∥Ai

ξδξ
i
k+H|k

∥∥2
P i
ξ

. (6.58)

Then, the upper bound (6.54) is obtained to:

V i
k+1−V i

k ≤−α3

(∥∥zik∥∥Qi
z

)
+d2+

∥∥[Ki
ξδξ

i
k+H|k;0

]∥∥
Qi

u
(6.59)

+
∥∥Ai

ξδξ
i
k+H|k

∥∥2
P i
ξ

+
H∑
l=1

∥∥δzik+l|k
∥∥2
Qi

z
. (6.60)

Since a difference in the terminal state δξik+H|k comprises multiple differences in

the augmented states xi
k+l|k, it strictly depends on the difference of predictions δz̃k.

Therefore, it is straightforward that there exists a comparison function ϕ, such that:

V i
k+1−V i

k ≤−α3

(∥∥zik∥∥Qi
z

)
+ϕ
(∥∥δz̃ik∥∥Q̃i

z

)
+d2 (6.61)

holds.
Since there is no guarantee to receive new information in k + 1, and possible

deviations of previously communicated predictions are not known before new data
arrives, the scheme needs to by applied recursively. Assuming Ĥ = H ≥ āi , data
will be known and the decrease of the value function is upper bounded by:

V i
k+H − V i

k ≤ −α3

(∥∥z̃ik∥∥Q̃i
z

)
+Hσ

(∥∥δz̃i[k:k+H]

∥∥
Q̃i

z

)
+Hd2, (6.62)

which complies to (6.43) and implies the ISpS property.

Note that under certain conditions the stricter property of input-to-state stability
(ISS) can be derived.
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Corollary 1. If system (6.17) with control law (6.25) is ISpS, it is also ISS if all
subsystems j ∈ N converge to the origin of their respective terminal set.

Proof. The terminal control law ui
k = Kixi

k−āi+1 steers all subsystems i ∈ N to the
origin of their respective terminal set. If converged, the control law results with
ui
k = 0. If all subsystems converge to the origin at the end of their prediction

horizon, this implies ui
k+H|k+1 = 0, and since (6.54) - (6.62) d2 depends exclusively

on ui
k+H|k+1, d2 = 0 follows. Together with d1 = 0 (as discussed already in the proof

to Theorem 2), the ISS property is implied.

6.2.5 Simulation Example

In this section, the presented framework is applied to the example of 3 autonomous
vehicles (subsystems denoted by S1 to S3 hereafter) which move as a platoon. The
common control objective consists of minimizing the distances between the vehicles,
while avoiding collision. It is assumed that the vehicles communicate over wire-
less channels, and that the tasks of the centralized network controller are either
performed by one of the vehicles itself, or by a road side unit. Either way, the
platoon is organized in such a way that each subsystem (corresponding to an agent
in the CNET) only requires data from its immediate predecessor. Hence, S1 acts
autonomously, S2 receives data from S1 (with AoI a2,1k ), and S3 receives data from
S2 (with AoI a3,2k ), as illustrated in Figure 6.4.

data data

S1S2 / a2,1tS3 / a3,2t

Fig. 6.4: Structure of the platoon example.

Given the goal of robust control of the platoon in the CSYS, the forecasts pre-
dicted by the network controller in the CNET have to be reliable according to
Asm. 3. This is accomplished by 2 minor tweaks to the CNET model: First, the
DTMC {sk} (which governs the quality of the links) is modeled with determinis-
tic transition probabilities. In particular, each state of {st} dictates the two mean
transition probabilities p̄2k and p̄3k for the transmission between S1→ S2 and S2→ S3,
respectively, as illustrated in Figure 6.5.

Secondly, the following minor deviation from the MPC paradigm for the network
controller is considered: Instead of optimizing for the entire horizon without regard
of the previously calculated optimal control trajectory, the network controller only
optimizes for the last step of the horizon, while all prior controls are given by the
previous trajectory. Though this constrains the control of the CNET, it enables the
strict robustness result for the control of the CSYS from the previous section.

Doing so, the evolution of the AoI is shown in Figure 6.6 (top) for a random
realization of the link transmissions variables p1k and p2k. The blue-shaded area
represents the actual AoI a2,1k and a3,2k , that is at least 1 and at most 4. Additionally,
the red-shaded area represents the predicted AoI. Not quite visible is the fact that
the red-shaded bars always include the blue ones.

The local dynamics (6.14) of the subsystems S1, S2, and S3 are parameterized
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q̄1(1) = 1

q̄2(1) = 1

q̄1(2)=0.85

q̄2(2)=0.85
0.85
1

0.85
0.85

1
0.85

0.85
0.85

1
1

1
1

1 1 1

1

111

1 initial

Fig. 6.5: DTMC {sk} governing the values of the mean transmission success probabilities
by assigning p̄1k = q̄1(sk) (top entry) and p̄2k = q̄2(sk) (bottom entry).

identically and as in [54] with:

Ai =

[
1 0.3
0 1

]
, Bi =

[
0.045
0.3

]
, i ∈ N = {1, 2, 3}. (6.63)

The state xi
k =

[
xi
1,k xi

2,k

]⊺
consists of the position xi

1,k and velocity xi
2,k. The

input is given by the acceleration ui
k, constraint to ∥u1

k∥ ≤ 1.98, ∥u2
k∥ ≤ 3, and

∥u3
k∥ ≤ 5. The first vehicle S1 follows an internal reference, such that the focus is on

the behavior of S2 and S3, with augmented states xi⊺

k =
[
xi⊺

k xi−1⊺

k

]
, i ∈ {2, 3}. The

weights of the cost functions are chosen toQi
x =

[
Q −Q
−Q Q

]
, withQ = diag(5, 1), and

Qi
u =

[
0.1 −0.1
−0.1 0.1

]
respectively. Note, that Qi

x and Qi
u are indefinite, but a decrease

of stage cost in direction of all local states and inputs is still guaranteed. To avoid
collisions, the augmented state is constrained to 0 ≤ xi−1

1,k −xi
1,k ≤ 200. According to

Figure 6.5, the maximum possible AoI is 4. Hence, the terminal control laws need
to compensate 4 time-steps and are chosen to u2

k =
[
−0.03 −0.54 0.03 0.54

]
x2
k−4,

and u3
k =

[
−0.06 −0.6 0.06 0.6

]
x3
k−4 to satisfy Asm. 4. The computation of the

terminal sets follows according to the methods described in [92] and the model
(6.33). With a control horizon of H = 8, the simulation starts at k = 0 with initial
states xref

0 = [0 5]⊺, x1
0 = [−13 5]⊺, x2

0 = [−20 5]⊺, and x3
0 = [−25 5]⊺, where ref

denotes the internal reference of S1. This reference corresponds to accelerating with
a constant value of uref

k = 1. The vehicles S2 and S3 minimize the distance to their
predecessor, and S1 to its reference respectively.

In k = 20, an unexpected change of the setpoint of S1 is modeled to keep a
constant distance of 5 meters to the reference. Thus, S1 suddenly decelerates and
deviates from the prediction, which was communicated to S2 before (but remains
inside the bounds predicted at k = 19). As soon as S2 receives the information of
this deviation, it reacts with deviating from its own plan previously predicted and
communicated to S3 (but again within the communicated bounds). This scheme
repeats for S3. Figure 6.6 shows the distance of all subsystems with respect to the
reference of S1, where the trajectory of the last subsystem is shown as dashed line
and the trajectory of the first subsystem as a blue solid line. The control results
differ with respect to the use of the forecasted age of information (fc) compared to
the use of the worst-case age (wc). To quantify the conservatism of both simulations,
the ideal behavior – which would result if the communication network could a priori
predict the true values of the AoI – is shown, too. At k = 60, a significant delay
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Fig. 6.6: Predicted and actual values for the AoI (top), and distance of vehicles to the
reference of S1 with unpredicted setpoint change of S1 at k = 20 with use of the forecasts

(fc) in contrast to the ideal behavior (ideal) and the use of a worst-case delay (wc)
(bottom).

of sending information from S2 to S3 in the communication network is modeled
(see Figure 6.6 top), such that S3 has to decelerate and to keep more distance to
S2. This results in the same behavior according to the use of the worst-case age of
information. Prior delays in the communication network have lower effect caused
by general transient effects of the distributed plant.

The figure shows that the maximum distance of the platoon can be reduced
significantly for S2 and S3 by using the forecasts within the predictive vehicle con-
trollers. For the considered simulation, the distance of the platoon (measured from
S1 to S3) caused by the setpoint change of S1 is reduced by over 37%, from 7.5m
to 4.7m, still avoiding collisions in a robust way. This improvement of performance
mainly results from the reduced predicted age of information, and the less restrictive
constraints constructed thereon in the subsystem controllers. The comparison to the
ideal behavior unveils that the amount of conservatism introduced by the uncertain
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communication almost vanishes if the AoI forecasts are used.

6.2.6 Conclusions

A new control scheme for a class of Cyber-Physical System has been presented,
which interweaves the control strategy of the communication system with the control
strategy of the distributed plant. As a main result, robust stability in the sense
of ISpS has been proven for the MPC scheme of the distributed plant, given the
assumption that the predictive network controller provides reliable forecasts of the
age of information. The principle of controlling the communication network by
a predictive control scheme offers the possibility to generate such forecasts (as a
by-product) with adjustable reliability. The inclusion of the forecasts decreases
the conservatism of the robust DMPC scheme for plant control. The amount of
improvement is difficult to quantify in a general sense, but strongly depends on the
difference of the predicted delay to the upper bound of possible delays: the larger
the average difference over the operation is, the more significant the performance
increase will be.

The presented methodology is relevant for all applications for which a con-
trolled distributed plant interacts through a communication network with time-
varying communication delay. With respect to 5G communication, this applies to
many Cyber-Physical Systems, including all autonomous applications of driving and
robotics.

Future work will extend the considerations to a framework in which the dis-
tributed plant control will consider the age of information in stochastic representa-
tion. This appears as a viable alternative if the computation of the robust positive
invariant sets is numerically challenging, as observed for higher-dimensional dynam-
ics.

6.3 Concluding Remarks

The relaxations, proposed to ease the computational burden of the optimization
(6.5) are heuristic and the paper does neither mention nor quantify their impact on
the quality of the generated solution (compared to the true optimal solution of (6.5)).
To rectify, we present the results of a Monte-Carlo simulation, based on a set-up
consisting of 5 agents where each agent requires status information of all other agents
(i.e. all weights in (6.5) are set to 1). The prediction horizon is 5 and there are 5
Markov-states, each with a separate set of transmission success probabilities for each
possible link between the agents. In each instance of the Monte-Carlo simulation,
these sets of transmission success probabilities (identifiable via a symmetric matrix
of dimension 5 × 5) as well as the transition matrix for the DTMC are rerolled.
Using less agents or a smaller prediction horizon does simplify the optimization
and therefore, most likely, would result in sub-optimal solutions (produced by the
relaxed optimization) which are closer to the actual optimal solution, compared to
the chosen set-up. On the other hand, using more agents or a larger prediction
horizon does exceed our available computational resources.

To evaluate the quality of the solution of the relaxed optimization, we calculate
its relative distance to the true optimal solution, labeled ρ. Let xbest and xworst be
the true optimal solution and the worst solution (i.e. the solution that maximizes
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the objective instead of minimizing it), respectively. Then, with x being the (sup-
optimal) solution of the relaxed optimization, the relative distance becomes

ε =
x− xbest

xworst − xbest

(6.64)

The results of 1000 simulation runs are illustrated in Figure 6.7, where a cumulative
distribution function of ρ is plotted. Through all our runs, the largest deviation
from the true optimal solution was less than 15% while in around 20% of all cases,
there was no difference at all. This justifies the relaxations made in the paper.
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Fig. 6.7: Cumulative Distribution of the error made by the relaxed optimization. In
about 20% of all cases, there is no difference between true and relaxed optimization. In

90% of all cases, the error is well beyond 7%.
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Abstract We present an algorithm for the numerical evaluation of the state-space
distribution of an Age-of-Information network. Given enough computational re-
sources, the evaluation can be performed to an arbitrary high precision. An Age-
of-Information network is described by a vector of natural numbers, that track how
outdated status information from various agents is. Our algorithm yields the means
to determine any moment of the corresponding stochastic process. This can be ex-
tremely valuable for cases in which the network consists of controllers that communi-
cate with one another, as it potentially allows for less conservative control behavior.
It also enables the comparison of different policies regarding their performance (min-
imizing the average Age-of-Information) to a much more accurate degree than was
possible before. This is illustrated using the conventional MaxWeight policy and
the optimal policy. We also validate and compare the algorithm with Monte-Carlo
simulations.
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7.1 Preliminary Remarks

As seen in the previous paper, optimizing the AoI via scheduling decisions is quite
intricate, especially if the optimization is supposed to hold for an entire prediction
horizon. Naturally the question arises whether there exists an optimal scheduling
policy, i.e. a policy that guarantees a minimum AoI, averaged over all agents and
over all time. To the best of our knowledge such a policy does not exist in analytical
form, though, given the discreteness of the problem, it is possible to derive it in a
tabular description. This is possible through the means of dynamic programming
[93] which provides a set of iterative methods that run over the state-space and in
each iteration improve on a value function and the policy. Caused by the iterative
nature of these methods, the true value function (which can be formulated such as
to yield the expected AoI as a function of the system-state) is only approached in
the limit. In contrast, the paper at hand presents a method which yields the exact
probability distribution over the state-space under any policy in tabular description.
This automatically means that the exact average AoI can be obtained together with
any higher moments like e.g. the variance.

Note that though dynamic programming only yields the true value function of a
given policy in the limit, the optimal policy itself is obtained already with a finite
number of iterations, since the policy is basically a discrete function.

7.2 Paper Body

7.2.1 Introduction

In recent years, the so-called Age-of-Information (AoI) metric has gained consider-
able attention in lieu of the conventional Communication-Delay (ComDelay) metric.
While ComDelay captures the elapsed time between transmission and reception, AoI
measures the age of information at the receiver. To appreciate the difference, imag-
ine a communication line with a 1 second ComDelay and assume that a packet of
information is send over that line only every full hour. The ComDelay is not influ-
enced by this usage and remains 1 second; however the AoI at the receiver is about
30 minutes on average. It starts from 1 second every full hour and peaks at 1 hour
and 1 second just before the next reception.

In contrast to ComDelay, AoI is especially well suited towards the needs of the
information-receiving agents in a network. And in cases where the receiving agent
is a controller awaiting new status-updates on its input variables (i.e. when the
network closes a control loop), AoI is the much more significant indicator for the
overall performance. While AoI grows linearly in time, it is reset abruptly to one
(or zero, depending on the context), once a new status-update is received. This
non-linear behavior is the reason why analytical results on the stochastic process
describing the AoI are rare and usually of limited quality.

In search for an optimal scheduling policy, i.e. a policy that minimizes the average
AoI, [94] shows that a greedy policy is optimal, but only in the case of symmetric
networks. For the general case, [95] derives requirements on the optimal policy
by modeling the network as a Markov-Decision-Process. [88] shows, that the same
approach allows to employ restless bandit methods for leveraging a well performing
policy. In [89, 96, 97], the authors develop a lower bound on the average AoI and
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manage to link the performance of multiple low-complexity policies to that bound.
However, the results are quite weak; e.g. while the MaxWeight policy seems to yield
an average AoI very close to this lower bound in simulations, analytically it can only
be guaranteed to yield less than double that bound.

AoI in networks with explicit multi-hop propagation is investigated in [98, 99],
where the focus lies on specific topologies (e.g. line or ring networks). For a general
topology, fundamental bounds on average and peak AoI are derived in [100].

As mentioned, AoI is especially well suited if the network is part of a closed
control loop. In [101], the authors show how forecasting AoI values can improve
the performance of model-predictive controllers with a common control goal. For
cellular networked control systems, [102] compares the AoI metric with a Value-of-
Information metric which considers the expected information content of an update.
The most practical investigation is performed in [86], where the authors even con-
sider processing delay and physical execution times for industrial wireless sensor-
actuator networks, in order to derive policies that minimize the average AoI.

Our contribution makes it possible to derive an exact numerical ratio between
the performance of the optimal (average AoI minimizing) policy and the MaxWeight
policy in the case of a two-agent network. In addition to that, a straightforward
extension of the presented algorithm allows to yield such results for any policy and
any number of agents (only limited by computational resources). Since the algorithm
computes the exact probability distribution over the state-space, it enables system
designers to derive the stochastical moments of the network process, facilitating
a more accurate prediction of the network performance (and in cases where the
network is part of a control loop a less conservative parametrization of the distributed
controllers). In this paper, we present the algorithm including its application to the
MaxWeight and the optimal policy.

7.2.2 System Model

The underlying system-model for this paper is inspired by the use case of distributed
controllers, communicating in order to achieve a common control goal. Each con-
troller operates autonomously and thus naturally generates status-updates of all
relevant local quantities. Its individual control goal, however, is influenced by
other quantities, only observable (because local) to other controllers in the net-
work. Outdated information of those quantities directly diminishes the controller’s
performance. Hence, each controller is always motivated to broadcast its freshly
generated status to all other controllers.

In particular, we assume a network of n ∈ N agents who communicate over a
wireless resource such that only one agent may broadcast at any given time. (Here
and throughout the paper, N does not contain {0}!). Time is slotted and in each slot,
every agent generates an update of its own status that can potentially be broadcasted
to all other agents. Every agent remembers the latest received status information of
all other agents. Let the AoI of agent’s i last broadcasted status-update at all other
agents be denoted by ait ∈ N. The collection (a1t , a

2
t , . . . a

n
t ) ∈ Nn therefore fully

describes the network state in time-step t. Given no updates, ait increases linearly
with time but is reset to one, once a status-update is received. In order for this
to happen, in each time-step a policy determines which agent is to broadcast its
current status to all other agents and thus which AoI component is to be reset. If
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agent i is to broadcast in time-step t then the control variable vit ∈ {0, 1} is one,
otherwise it is zero. The resource constraint requires that

∑
i v

i
t = 1. Whether

such a transmission from agent i to all other agents would succeed is determined
by the stochastic variable pit ∈ {0, 1}, which is one in case of success and zero
otherwise. The sequence {pit} describes a Bernoulli process with success probability
pi ∈ [0, 1] ⊂ R (failure probability p̄i = 1−pi) and serves to model channel fading and
other stochastic disturbances. Put together this results in the following evolution of
the AoI:

ait+1 = 1 + ait
(
1− vitp

i
t

)
(7.1)

With with slight abuse of notation, we let a ∈ Nn denote a state of the network
and ai (i ∈ {1, . . . n}) its components, independent of time. Since the system dy-
namics are time-invariant, we need only consider stationary policies that map each
state a to a network agent i. Such a mapping, called a decision d fully defines a
policy:

d : Nn → {1, . . . n} (7.2)

Furthermore, we will only consider causal policies, i.e. policies for which holds

d(a) = i =⇒ d(a+ ei) = i (7.3)

with ei being the i-th unit vector. I.e. given a state a and the policy’s decision
d(a) = i, the policy’s decision stays on agent i, if we were to increase the AoI only in
the i-th component. Most reasonable policies (like MaxWeight) fulfill this property.

7.2.3 Methodology for Evaluation of Exact State-Space Dis-
tribution

Notation & Technique

Let f(a) be the probability, with which the network is in state a, given an arbitrary
time-slot and no prior information. To evaluate f(a) we utilize the special structure
of the system evolution (7.1): Every state a, not at the boundary of the state-space
can only be reached from its diagonal predecessor a− 1 = (a1 − 1, . . . an − 1), and
only if in this predecessor-state, the intended reset did fail (which happens with
probability p̄d(a−1)). The sequence of consecutive predecessors of such a state form
a diagonal line that ends at the state

a− 1 ·
(
min

i
{ai}+ 1

)
=
(
a1 −min

i
{ai}+ 1, . . . an −min

i
{ai}+ 1

)
(7.4)

at the boundary of the state-space (dark-green states in Figure 7.1). We call this
the ”root-state” of a. Once the probabilities of all root-states are known, the re-
maining distribution over the state-space follows immediately by construction of
said diagonals.

The policy determines how probability diminishes along a diagonal: The product
of all failure probabilities D(a), necessary to reach state a from its root-state, can
be expressed recursively by

D(a) =

{
1 if mini{ai} = 1

D(a− 1) · p̄d(a−1) otherwise
(7.5)
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Hence, we have the following connection between a state’s probability and its root
probability:

f(a) = D(a)f(a− 1 ·
(
min

i
{ai}+ 1

)
) (7.6)

Finally, given any causal policy, a root-state, let’s say (1, a2, . . . an), can be expressed
by

f(1, a2, . . . an) = p1
∞∑

a1=b

f(a1, a2 − 1, . . . an − 1) (7.7)

where b is determined by the employed policy. In particular, we say that state
(b, a2 − 1, . . . an − 1) is the ”first” state, from which (1, a2, a3, . . . an) is reachable.
A visual representation of (7.7) are the light-blue and light-green sets of states in
Figure 7.1.

Evaluation of the State-Space Distribution under the MaxWeight Policy
for n = 2

y

1 2
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..
.
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ŷ

x̂... x

Fig. 7.1: Root-state recursion under MW policy in 2-dim. state-space. States on the
boundary (root-states) are only reachable from the highlighted sets of states

(light-green/blue). States not on the boundary are only reachable from their diagonal
predecessor.

Given these tools, we will now investigate the AoI under the well known
MaxWeight (MW) policy, in the 2-dimensional case. The methodology is appli-
cable to higher-dimensional cases, albeit with slightly more linear algebra in order
to determine the required variables. For succinct notation we will identify a1 and
a2 with x and y, and p1 and p2 with p and q, respectively. Also, b from (7.7) will be
denoted by x′(y) or y′(x), referring to the x or y component of the first state, from
which the root-state in question is reachable. We can specify these functions given
the employed policy: MW separates the state-space linearly into two halves. When-
ever xp ≥ yq, the system will try to reset x with probability p, otherwise y with
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Fig. 7.2: Probability distribution over the state-space for the MW policy. Depicted are
the exact values following the described method (upper left), the sampled values through
106 simulation steps (upper right) and the absolute difference between the two (down

mid).

probability q. Hence the first state from which (1, y) is reachable is (x′(y−1), y−1)
with

x′(y) =

⌈
q

p
y

⌉
(7.8)

since x′(y)p ≥ yq; and vice versa for root-states of the form (x, 1).
W.l.o.g. we will assume that p > q. Then, as visualized by Figure 7.1 (blue

states), we can express the probability of a root-state on the y-axis as

f(1, y + 1) = p
∞∑

x=x′(y)

f(x, y) (7.9)

= p

y∑
x=x′(y)

f(x, y) + p

∞∑
x=y+1

f(x, y)

= p

y∑
x=x′(y)

f(1, y − x+ 1)D(x, y) + p

∞∑
x=y+1

f(x− y + 1, 1)D(x, y)

Crucially, no matter the choice of y, the last sum will always originate from the
probability of all the root-states on the x-axis. In contrast, the first sum refers
back to root-states on the y-axis that came before the state (1, y), constituting a
recursion.
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To quickly yield this recursion, we compare (7.9) for states (1, y + 1) and (1, y):
The probability of reaching (1, y + 1) is equal to the probability of reaching (1, y),
attenuated by the probability that reaching (1, y) did fail (diagonal shift from blue
to green states in Figure 7.1). However, from time to time, (1, y + 1) can also be
reached from an additional state whose predecessor does not stem from the states
that (1, y) was reachable from (dark green state in Figure 7.1). This ”disturbance”
in the recursion is caused by a change in x′(y) and thus directly connected to the
employed policy. The root of these additional states must be on the y-axis.

In particular, If x′(y) is not x′(y − 1) + 1, there must be an additional state
from which (1, y+1) is reachable, namely (x′(y), y). The root of this state is (1, y−
x′(y) + 1), and according to (7.6) we have

f(x′(y), y) = f(1, y − x′(y) + 1)D(x′(y), y)

= f(1, y − x′(y) + 1)q̄x
′(y)−1

(7.10)

This leads to the recursive formula

f(1, y + 1) =

{
p̄f(1, y) + pf(1, y − x′(y) + 1)q̄x

′(y)−1 if x′(y) = x′(y − 1)

p̄f(1, y) otherwise
(7.11)

With that we are just missing an initial value to start the recursion. Naturally
we start with

fA(1, 2) = p
∞∑

x=x′(1)

fA(x, 1) = 1 (7.12)

since f(1, 1) = f(2, 2) = · · · = 0 (x and y cannot be reset at the same time). We
use fA instead of f because we will have to scale the results in the end to ensure
their sum equals 1. All formulas so far also hold true for fA and we have f = A · fA
for some constant A ∈ R to be found. (In the multi-dimensional case, more initial
values need to be used and thus more constants need to be considered.)

Henceforward, the entire distribution over the y-axis can be evaluated using
(7.11). Evaluation must stop at some ŷ due to practical limitations. Using the
propagation along the diagonals via (7.6), the entire (y > x)-half of the state-space
can be evaluated as well. Once this is done, the boundary distribution on the x-axis,
fA(x, 1), follows as

fA(x+ 1, 1) = q

ŷ∑
y=y′(x)

fA(x, y) (7.13)

Evaluation of the boundary distribution fA(x, 1) has to end at x̂ =
⌊
qŷ
p

⌋
+ 1 ≤ ŷ.

This is the x-component of the last state that is reachable from any prior evaluated
states. Subsequently, the probability of the missing diagonals can be determined,
after which f follows from fA through normalization to 1 (i.e. finding A). Figure 7.2
shows the resulting distribution for the parameters p = 0.6 and q = 0.2.

Remark: For p
q
=: κ ∈ N and y = κm+ 1 and m = 1, 2, . . . (i.e. looking only at

every κ-th value of y), (7.11) simplifies to

f(1, κm+ 1) = p̄f(1, κm) + pq̄m−1f(1, (κ− 1)m+ 1) (7.14)

Every y value, not covered by this recursion can be expressed by exponential attenua-
tion. A solution for this difference equation would allow for an analytical description
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of the distribution over the entire state-space. However, such a difference equation
with proportional delay is notoriously hard to solve, especially since (7.14) exhibits a
non-constant factor in front of the delayed term. The most recent results on similar
equations can be found in [103] and references therein. In further abstraction, (7.14)
is the discrete version of the so-called Pantograph equation, first published in [104].
However, due to the discrete argument, the difference equation does only hold for
certain arguments (those which abide to the corresponding divisibility) whereas the
Pantograph equation holds for all its real arguments. Therefore, most results on the
Pantograph equation are not transferable to our problem.

Evaluation of the State-Space Distribution under the Optimal Policy for
n = 2

Still staying in 2 dimensions, we will now discuss a more general example in which
the policy is defined only numerically, i.e. d(a) is given by a matrix. Once again we
will identify a1 and a2 with x and y, and p1 and p2 with p and q, respectively. The
policy shall now be defined by Figure 7.3: For all states above the separating line
(red line), the policy tries to reset the y component, whereas for all states beneath,
it tries to reset the x component.
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Fig. 7.3: General root-state recursion in 2-dim. state-space. The dark-green states are
dropped compared to the previous line (blue). Their contribution has to be subtracted

which requires involvement of their root states (also dark-green).

Since the function x′(y) is now not given by a mathematical expression, we need
to consider the change in x′(y) for each step separately. Given the pure exponential
attenuation of the root-states’ probability in the case of x′(y) = x′(y − 1) + 1, we
define

∆(y) = x′(y)− x′(y − 1)− 1 (7.15)
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With that, the following more general recursion holds

f(y + 1, 1) =



p̄f(y, 1) + p

−∆(y)−1∑
i=0

f(y, x′(y) + i) if ∆(y) < 0

0 if ∆(y) = 0

p̄f(y, 1)− p

∆(y)∑
i=1

f(y, x′(y)− i) if ∆(y) > 0

(7.16)

where root-states can be substituted via

f(y, x′(y)± i) = f(y − x′(y)∓ i+ 1, 1)D(y, x′(y)± i) (7.17)

With an initial parameter, the state-space can thus be evaluated using Algorithm 1.

Algorithm 1 Pseudo-Algorithm for Two-Agent System

Require: f (2D-Matrix)
Require: ŷ (Size of y-dimension of matrix f)
f(1, 2)← 1
y ← 2
while y < ŷ − 1 do
Evaluate ∆(y), using (7.15)
Evaluate f(1, y + 1) using (7.16)
Evaluate states, diagonal to f(1, y + 1) using (7.6)
y ← y + 1

end while
x← 2
while x ≤ ⌊ q

p
y⌋+ 1 do

Evaluate f(x, 1), using (7.13)
x← x+ 1

end while
Normalize matrix f

We can employ the presented method on the optimal control policy (OP).
Though to the best of our knowledge, an analytical expression is not yet found
for this optimal policy, it is easily obtained by policy-iteration methods in form of
a decision matrix like the one in Figure 7.3 (the separating line corresponds to the
policy). For the case of p = 0.9 and q = 0.1, the decision matrices of the MW
policy and the OP policy are depicted in Figure 7.4. The change in the resulting
state-space distributions is visualized in Figure 7.5.

Doing this evaluation for every combination of p = {0.1, . . . 0.9} and q =
{0.1 . . . 0.9}, allows one to yield the comparison in performance of MW and OP
policy. Therefor, every state probability is multiplied with its corresponding AoI
value (identical to its L0-norm). The sum over all states then gives the average AoI
under the policy. As can be seen in Figure 7.6, OP has a performance gain (less
average AoI) of about 15% over MW in the case of p = 0.9 and q = 0.1. The closer
the probabilities are, the smaller this advantage gets, since the policies coincide for
p = q.
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Fig. 7.4: Truncated decision matrix for MW (blue) and OP (blue + green). If the
current state resides in the colored region, each policy tries to reset the y-component of
the AoI with success probability q = 0.1, otherwise the x-component with probability
p = 0.9. Compared with MW, OP tries to reset the y-component (corresponding to the

weak communication link) much more often.
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Fig. 7.5: State-space probability distribution for transmission success probabilities
p = 0.9 and q = 0.1 under MW (top) and OP policy (bottom). The wave-like

distribution under MW can be attributed to equation (7.14). An intuitive explanation is
derived in Figure 7.8.
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Fig. 7.7: Average AoI for q = 0.1 and p = 0.9, . . . 0.99. Exact values using the algorithm
(dark-blue/dark-green) and values obtained with Monte-Carlo simulation (107 steps)

(light-blue and light-green). The non-smooth decay under MW stands out.

7.2.4 Noteworthy Observations

Looking at the results, there is a surprising observation visualized in Figure 7.7. As
evaluated by the proposed algorithm and cross checked with Monte-Carlo simula-
tions, there does not seem to be a smooth decay of the average AoI when increasing
the success probability p under the MW policy. Setting q = 0.1 and looking at the
values for p = 0.94 and p = 0.95, the average AoI increases while p increases. I.e.
the system performance decreases though the network reliability strictly increases.
Using only Monte-Carlo simulations to determine the average AoI, one would prob-
ably misinterpret such a finding as sample noise. Our algorithm, however, proves
that this seems to be a genuine effect.



PAPER 7. STATE-SPACE OF AOI 135

An explanation for this effect might be found in Figure 7.4. The figure shows
that MW gives much less priority to the activation of the weak link (y-component
of the AoI), compared to OP. Increasing p from p = 0.94 to p = 0.95 will lessen
MW’s priority on activating the weak link even more (since the weight of the strong
link becomes even greater). Given that the state-space is discrete, the slight change
in p will make some of MW’s state-dependent decisions flip from ”activate weak
link” to ”activate strong link” (equal to slightly less blue area in Figure 7.4). These
non-smooth flips, together with the fact that for optimal behavior, a policy should
rather try to activate the weak link more often might cause the observed behavior.
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Fig. 7.8: Intuitive explanation for wave-like form of the probability distribution in
Figure 7.5: Let the probability of a successful reset of x and y be high and low,

respectively. Then, if the dark-green state is highly probable, so are the light-green
states. And even if a y reset is to succeed during the indicated evolution, there is a high

probability of reaching the dark-green state again.

7.2.5 Conclusion

We presented an algorithm with which, for the first time, it is possible to yield an
exact numerical comparison between the AoI-optimizing policy and the MaxWeight
policy in terms of average AoI in a two-agent network. For this case, we show the
connection to a difference equation with proportional delay (related to the infamous
Pantograph equation) and present simulation results for different transmission pa-
rameters. Our algorithm is based on the evaluation of the probability distribution
over the state-space, facilitated by the special properties of the AoI process. It is
readily applicable to any causal policy and can also be extended to the case of ar-
bitrary many agents. In contrast to Monte-Carlo simulations, our algorithm allows
for a much faster evaluation and additionally is much more exact, facilitating the
evaluation of higher order moments of the underlying stochastic AoI process.
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7.3 Concluding Remarks

Though it is true, that the method presented in this paper can be extended to
more dimensions, it already requires an immense amount of effort only to denote
the recurrence formulas for the case of 3 dimensions (i.e. 3 agents). The difficulty
comes from the structure of the separation of the state-space, which is generated
by a policy’s mapping from a state-vector onto a control decision. While in the
presented case of 2 agents, the separation of the state-space takes the form of a
1-dimensional manifold for any causal policy, in the case of 3 agents, the separation
takes the form of 3 separate 2-dimensional manifolds that intersect somewhere in
the 3-dimensional state-space. Nevertheless, the paper gives a clear perspective on
how to yield such recurrence formulas even for cases of higher dimensions.
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Abstract We derive key features of the Age-of-Information distribution in a sys-
tem whose activities are strictly limited to periodic instances on a global time grid.
In particular, one agent periodically generates updates while the other agent peri-
odically uses the most recently received of those updates. Likewise, transmission of
those updates over a network can only occur periodically. All periods may differ.
We derive results for two different models: a basic one in which the mathematical
problems can be handled directly and an extended model which, among others, can
also account for stochastic transmission failure, making the results applicable to
instances with wireless communication. For both models, a suitable approximation
for the expected Age-of-Information and an upper bound for its largest occurring
value are developed. For the extended model (which is the more relevant one from
a practical standpoint) we also present numerical results for the distribution of the
approximation error for numerous parameter choices. Finally, we show how these
results lead to the surprising effect that, in some instances, increasing the network
period (slowing down the network) does decrease the expected Age-of-Information.
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8.1 Preliminary Remarks

Paper 6 showed that a network policy that minimizes the AoI is very complex as
it boils down to a combinatorial problem with non-linear objective function. This
raises the question of whether it is possible to predict the AoI in the case of a
fixed network policy and some known disturbance patterns for the links. Naturally,
one would try and start with the most simple policy, the round-robin policy where
communication windows are predetermined and periodic. However, even in this most
simple scenario there did not exist a formula with which to determine the expected
or peak AoI prior to the following paper. As it turns out, even if communication is
assumed to be error-free, the description of the AoI is so complex, that it takes a
significant amount of theory to yield the key characteristics of the AoI process, as
the paper at hand shows.

8.2 Paper Body

8.2.1 Introduction & Related Research

Timely delivery of data is an important feature of communication systems. To
quantify this feature, the Communication-Delay (ComDelay) has long been the pre-
dominant metric. In recent years however, especially in the context of machine-
to-machine communication (which includes many communication scenarios from
IoT), the Age-of-Information (AoI) metric has gained considerable attention. While
ComDelay captures the elapsed time between transmission and reception (and thus
only considers the communication infrastructure), AoI measures how ”old” the cur-
rent information at the receiver really is. To illustrate the difference, imagine a
communication line with a 1 second ComDelay and assume that a packet of infor-
mation is sent over that line only every full hour. The ComDelay is not influenced
by this usage and remains 1 second; however the AoI at the receiver is about 30
minutes on average. Every reception, it starts from 1 second and linearly grows with
time, peaking at 1 hour and 1 second just before the next reception.

So far, the AoI metric has been studied in a variety of scenarios, an overview over
which is given in one of the subsequent paragraphs. However, all these scenarios
are concerned with stochastic systems: data generation is irregular, intermediate
processing takes a random amount of time, transmission is defective. While there
certainly is a lot of motivation for such scenarios, it is surprising that the rather sim-
ple deterministic set-up has been ignored until now. In practice, many autonomous
systems do engage in their tasks in a very regular fashion: measuring system-states,
processing new outputs, applying corrective actions, they all take place in a prede-
fined amount of time and are repeated thereafter periodically. Hence there is strong
motivation to model data generation and utilization as strictly periodic processes
that may differ from agent to agent. This is especially true in scenarios where hu-
man interaction, and therefore stochastic input, is absent (e.g. industrial production
lines). It just so happens that in those scenarios, high requirements on communica-
tion (like latency, bandwidth efficiency and robustness against agent drop-outs) do
also favor periodic transmissions regimes like token-ring protocols or simple round-
robin policies [105].

Therefore, in this paper, we investigate an elementary system that consists of
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Agent A

Network N

Agent B

Transmission Slot

Data Generation

Data ProcessingFixed Period

Time Grid Resulting AoI

Fig. 8.1: General set-up: two agents communicate over a network. Each agent features its
independent working cycle (distance between blue slots) on a shared time grid. Agent B
periodically generates status-updates which are send over a network N to agent A. Agent

A can only make us of this new information at the start of its next processing cycle.

two subsystems with periodic workflow and a connecting communication network
that also features a periodic workflow. It turns out that even without any stochastic
effects taken into account, the non-linear behavior of the AoI makes it difficult to
yield analytical expressions e.g. for the average AoI or the largest occurring AoI in
the system. Our contribution consists of deriving expressions for exactly such key
performance parameters in connected subsystems with periodic workflow. Along
the way, we state structural results regarding the AoI process over time for those
systems.

Regarding related research, note that to the best of our knowledge, we are
the first to investigate the AoI in the context of such a deterministic framework.
Therefore the following references are only of limited use when trying to contex-
tualize our contribution. Investigation of the AoI metric started with [106, 107]
where the average AoI was optimized over the update generation rate for elemen-
tary queueing systems such as M/M/1, M/D/1, and D/M/1. Naturally, this sparked
further research exploring various other queueing systems and other AoI features
like the peak AoI. The benefit of having multiple servers (e.g. M/M/2 queue) was
investigated in [108, 109, 110, 111]. The effect of packet deadlines, after which
packets are deleted, freeing up network resources in the process, was demonstrated
in [112, 113, 114]. Energy consuming update generation and transmission can be
modeled by energy harvesting sources which, in the context of AoI, was investi-
gated in [115, 116, 98, 117, 118]. Direct power constraints on the other hand were
considered in [119]. AoI in the context of wireless networks, especially broadcast
networks, where link transmission is defective and interference constraints limit the
set of admissible scheduling policies was investigated in [96, 89, 120, 121]. Here,
the focus lies on finding (near-) optimal policies to minimize the AoI for the entire
network. The special case of stochastic policies that trigger transmissions over indi-
vidual links based on Bernoulli processes (ALOHA-like policies) was researched in
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[122, 123]. AoI in multi hop wireless networks was dealt with in [124, 125, 126], and
for the special case of gossip networks in [127, 128, 129].

We close the introduction with some notes on the notation:

• For sandwiched values we use the following shorthand:

z = x± y ⇐⇒ x− y ≤ z ≤ x+ y (8.1)

• If not stated otherwise, sets in this paper are multisets, i.e. a single element
might have more than one occurrence. (Therefore a multiset might represent a
distribution of values.)

• Sets of evenly distributed natural numbers are denoted as the triple ⟨start, step-
size, number of steps⟩:〈

y, x,X

〉
:=
{
y, y + x, y + 2x, . . . y + (X − 1)x

}
(8.2)

• The modulo-operator will be abbreviated by %, its complement by %:

x% y := x−
⌊
x

y

⌋
y x% y :=

⌈
x

y

⌉
y − x (8.3)

(While x% y is the distance between x and the closest multiple of y that is still
smaller than x, x% y is the distance between x and the closest multiple of y that
is still larger than x. It holds that (−x) % y = x% y.)

8.2.2 Basic System Model

Our elementary system consists of two agents (A and B) and a communication net-
work (N). Time is slotted with t ∈ N indicating the time-step. Agent A periodically
engages in a processing cycle for which he uses the latest status-update he received
from agent B. While agent A is processing, he may receive new status-updates from
agent B but is not able to make use of them until the start of his next processing
cycle. Only the newest status-update from B at A is needed for processing and thus
only the last received status-update is buffered. Still, even this status-update is, in
general, several time-steps old when it is used at the start of the next processing
cycle. This age is called the Age-of-Information, or short AoI. Agent B generates
its status-updates periodically. Likewise, the network N can transmit updates from
B to A only at periodically distributed time-steps (e.g. because other users require
communication resources as well).

In particular: agent A starts a new processing cycle every A-th time-step, agent
B generates an update every B-th time-step, network N transmits the latest update
from agent B every N -th time-step. These periods A,B,N may share a greatest
common divisor (pairwise), labeled a, b, n, and a coprime ”core” which remains once
the common divisors are removed, labeled A′, B′, N ′. More specifically:

A = A′ · b · n
B = B′ · b · a
N = N ′ · n · a

such that

a = gcd (B,N)

b = gcd (A,B)

n = gcd (A,N)

(8.4)
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Fig. 8.2: Basic model. All periods start at t = 0, data generation and transmission is
instantaneous.

All quantities are ∈ N. We do not consider a divisor (except 1) that divides all
three periods A,B,N since such a divisor can readily be accounted for by scaling
the entire time axis.

From here, we develop two different models. The first one is labeled the ”basic”
model:

• Update generation and transmission is instantaneous.

• All periods start at t = 0.

• Transmissions are always successful.

Figure 8.1 illustrates the setting. Notably, the basic model already exhibits the
fundamental mathematical challenges, which is why most of our proofs will address
this system-model.

We are interested in the AoI process (αk)k∈N (from now on denoted just as (αk))
where αk is the AoI of the latest received update (from B at A) at the beginning of
agent A’s processing cycle k. In case of the basic model, this process can readily be
deduced from Figure 8.1 as

αk = kA%N + (kA− kA%N) %B

= kA%N + (kA%B − kA%N) %B
(8.5)

Even though (αk) is deterministic, we will interpret (αk) as a stochastic process
since its behavior can quickly become quite complex.

As a direct consequence of this kind of modeling, in time-step t = 0, agent B
generates a status-update which network N immediately transmits to agent A and
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which can then be used in agent A’s first processing cycle. Hence, in time-step t = 0
(and periodically thereafter) the AoI is zero: α0 = 0, which already motivates a
second system-model.

8.2.3 Extended System Model

Intuitively, the AoI at agent A should never truly be zero for several reasons, e.g.
due to the time it takes for the transmission to reach agent A or due to the time it
takes agent B to generate the status-update. Therefore, we will extend our results
to a system-model which accounts for such delays and also introduces some other
aspects that are quite common in this field of research. We refer to this new model
as the ”extended” model:

• Update generation and transmission each take one time-step.

• Relative to time-step t = 0, the first periods of agent B and network N are delayed
by ∆B and ∆N time-steps.

• Transmissions succeed only with probability p = 1− p̄.

For a visual representation see Figure 8.3.
In this model we denote the AoI process with (εk) while its (verbal) definition

stays the same relative to the model. Compared to the basic model, the elapsed
time since the last network transmission relative to the current time-step t = kA
(the beginning of agent A’s k-th processing cycle) changes according to

kA%N (8.6)

↪→ (kA−∆N) %N (8.7)

↪→ 1 + (kA−∆N − 1) %N (8.8)

↪→ lN + 1 + (kA−∆N − 1) %N (8.9)

The first change follows from the shift of network N’s period. The second change
follows from the transmission delay: (8.7) and (8.8) are identical if the value of
(8.7) is from the set {1, . . . N − 1}. For these values the transmission delay does
not effect the outcome since there is enough time until agent A’s processing cycle
starts. However, if transmission takes place in the same time-step as A’s processing
cycle starts (eq. (8.7) yields 0), then in the extended model, agent A cannot make
use of the new update yet and has to resort to the previous transmission which is N
steps in the past (eq. (8.8) yields N). The third change follows from unsuccessful
transmissions. If the latest l transmissions did not succeed, (8.9) accounts for that
by adding lN time-steps on top of (8.8). We will account for the probability of that
happening later.

On agent B’s side, the elapsed time since the last status-update from agent B
that the network could use for transmission becomes

(kA−⋆) %B (8.10)

↪→ (kA−⋆−∆B) %B (8.11)

↪→ 1 + (kA−⋆−∆B − 1) %B (8.12)
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Fig. 8.3: Extended model. Start of initial periods are shifted, update generation and
transmission each take up one time-step.

where ⋆ is the placeholder for the term (8.9), i.e. the elapsed time since the latest
network transmission (see. Figure 8.3). As before, the changes are due to the shift
of B’s period and the update generation delay.

Simply summing (8.9) and (8.12) seems to yields an evolution for (εk). However,
this evolution does not account for the fact that the number l of failed transmis-
sions prior to reception most certainly changes over time. Hence, such a sum only
yields an evolution under the assumption that for every kA-th time-step, the last l
transmissions did fail while the (l + 1)-th transmission did succeed. We denote the

sequence following such an evolution with (ε
[l]
k ) (ignoring the fact that it might be

impossible to comply with sich an assumption):

ε
[l]
k = 2 + lN + (kA−∆N − 1) %N

+
[
(kA−∆B − 2− lN) %B − (kA−∆N − 1) %N

]
%B

(8.13)

Though this looks quite more intricate than (8.5), we can analyze (ε
[l]
k ) the same

way we analyzed the basic model. Note that the values 2 and 1, which appear in
(8.13), stem from the delays in update generation and transmission. It is an easy
exercise to use different delay values and carry those over to any of the presented
results.

8.2.4 Results for the Basic Model

Treating (αk) as a stochastic process, the main goal of this paper is to find usable
expressions for the expectation and some upper bound on its largest values. As it
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turns out, these expressions can be derived, once the following structural result on
the distribution of values of (αk) is established:

Theorem 6. In the basic model, the period of the process (αk) is aB
′N ′. And over

aB′N ′ consecutive elements, the AoI sequence (αk) generates the following distribu-
tion of values:

aB′N ′⋃
k=1

{
αk

}
=

⋃
i=0...a−1
j=0...N ′−1

〈
cij, ab, B

′
〉

(8.14)

with

cij = iA% (ab) +

⌈
iA% (an)− iA% (ab) + jan

ab

⌉
ab (8.15)

Theorem 6 reveals that the distribution of (αk) can be expressed as a super-
position of sets of equally distanced values. This is illustrated in Figure 8.4. The
most influential quantities in this regard are the starting positions of these sets: cij.
The ceiling and modulo operators in (8.15) lead to an intricate expression for the
expected AoI which does not lend itself to practical use (derivation in the appendix):

E[αk] =
B +N − n+ ab

2
− b

N ′

(
a(b+ 1)

2

⌊
N ′

b

⌋

+
⌈
(N ′ % b)

a

b

⌉
+

a−1∑
i=0

N ′%b−1∑
j=0

(
j −

⌊
ib
a

⌋)
n% b

b

) (8.16)

However, it can be simplified considerably by using the central property of the ceiling
operator: x ≤ ⌈x⌉ < x+ 1, which yields the following Corollary:

Corollary 1. In the basic model, the expected AoI is bounded by

E[αk] =
B +N − n

2
± ab

2
(8.17)

Using Ê[αk] =
B+N−n

2
as an approximation, the maximal relative error becomes∣∣∣∣∣E[αt]− Ê[αt]

E[αt]

∣∣∣∣∣ ≤ ab

(B′ − 1)ab+ n(aN ′ − 1)
(8.18)

The largest value of (αk) is

max
k

αk ≤ B +N − n (8.19)

Proofs for both Theorem 6 and Corollary 1 are found in the appendix. Note that
according to Corollary 1, it is possible to increase A′ (the part of A that is coprime
to all other quantities) without changing any of the results. Furthermore, when
using the center of the possible range (Ê[αk]) as an approximation for the true value
E[αk], the relative error can become infinitely large if B′ = 1 = aN ′. The reason
lies in the fact that (αk) becomes a null-sequence for those parameters. Since the
basic model rather serves theoretical purposes, we omit any further investigation in
the quality of the approximation.
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Fig. 8.4: Visualization of the structure implied by Theorem 6: 5 sets of equally distanced
values (connected marks), each starting with a different value. In superposition they

yield the desired distribution (red). Parameters: A = 17, B = 7, N = 5, a = b = 1, n = 2.

8.2.5 Results for the Extended Model

In analogy to the results for the basic model, we can find the same structural result
for the distribution of the AoI under the extended model. Note however, that
Theorem 7 is restricted to a sequence (ε

[l]
k ), i.e. a specific value of l. The parameter

l stands for the assumption that, no matter which processing cycle of agent A is
considered, the last l− 1 network transmissions prior to that cycle did fail. Though
this might be an assumption that is impossible to fulfill, the theorem will still be
crucial for following results.

Theorem 7. In the extended model, the period of the process (ε
[l]
k ) is aB′N ′. And

over aB′N ′ consecutive elements, the AoI sequence (ε
[l]
k ) generates the following

distribution of values:

aB′N ′⋃
k=1

{
ε
[l]
k

}
=

⋃
i=0...a−1
j=0...N ′−1

〈
c
[l]
ij , ab, B

′
〉

(8.20)

with

c
[l]
ij = 2 + lN + (iA−∆B − 2− lN) % ab +⌈

(iA−∆N − 1) % an− (iA−∆B − 2− lN) % ab+ jan

ab

⌉
ab (8.21)

The similarities between Theorem 6 and Theorem 7 are obvious. Notably, the
change in the structure is restricted to the starting points cij of the sets with equally
distanced elements. As before, an exact equation for E[εk] can be developed (com-
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bining techniques from the proofs of (8.16) and Corollary 2):

E[εk] =
B +N − ab− n

2
+K +

p̄

p
N (8.22)

+ lim
L→∞

L∑
l=0

pp̄l

aN ′

∑
i=0,...a−1
j=0,...N ′−1

(
∆B −∆N + lN + 1 + jan−

⌊
iA−∆N − 1

an

⌋
an

)
% ab

The following corollary, crucially, is also not restricted on the impossible assumption
on (ε

[l]
k ). The exact reason for this is provided in the proof and is based on the

probabilistic occurrence of the values of (ε
[l]
k ) in (εk).

Corollary 2. In the extended model, the expected AoI is bounded by

E[εk] =
B +N − n

2
+K +

p̄

p
N ± ab

2
(8.23)

with
K = 2 + (∆N + 1) % n (8.24)

Using Ê[εk] = B+N−n
2

+K+ p̄
p
N as approximation, the maximal relative error becomes∣∣∣∣∣E[εk]− Ê[εk]

E[εk]

∣∣∣∣∣ ≤ ab

(B′ − 1)ab+ n(aN ′ − 1) + 2(K + p̄
p
N)

(8.25)

With probability σ it holds ∀ k that

εk ≤ B +N − n+K +N

⌈
ln(1− σ)

ln(1− p)
− 1

⌉
(8.26)

8.2.6 Approximation Error

The structure of (8.22) makes it very hard to analyze the relative approximation
error (LHS of (8.26)) analytically. Therefore, we utilize simulations to validate its
suitability. Note however, that the use of a Monte-Carlo protocol is a rather poor
choice here: It is easy to check that for 3 random variables X, Y, Z ∈ {1, 2, . . .M} ⊂
N we have

E
[
gcd(X, Y ) · gcd(Y, Z)

X

]
→ 0 (8.27)

as M grows to infinity [130] (essentially because gcd(X, Y ) grows logarithmically).
Parameter M is our simulation range and is needed since one cannot generate ar-
bitrarily large random numbers. Hence, if M is chosen large enough, a numerical
evaluation of the LHS of (8.26) via randomly chosen parameter configurations will
result in a negligible error.

However, ever larger values for M would mean ever larger values for A,B,N
and thus would mean that the time grid becomes ever finer, which is unsuitable for
practical purposes. Therefore, it is prudent to analyze the LHS of (8.26) for rather
small values of M . Consequently, a Monte-Carlo protocol (with large M) can be
omitted in favor of a full blown simulation over the entire parameter space (bounded
by a small M).
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Fig. 8.5: Distribution of the relative approximation error (8.26) as function of the agents
periods A,B,N and simulation range M (sign sensitive). Colored bars indicate intervals

in which an overwhelming amount of data points lie in.
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In the following, we evaluated all relative errors for M ≤ 30 such that

1 ≤ A,B,N ≤ 30

0 ≤ ∆B < B

0 ≤ ∆N < N

p ∈ {0.1, 0.2, . . . , 0.9, 1}

(8.28)

resulting in just under 65 · 106 data points. Each resulting distribution (a function
of the respective parameter) is visualized by its mean and 3 encompassing intervals,
indicating where a certain majority (99%, 95%, 90%) of its values can be found.

The most relevant result is illustrated in the last plot of Figure 8.5, showing that
the mean error and its variance tend to shrink as M grows. Specifically, for M = 30,
the mean relative error is roughly −3% and 95% of all evaluated errors are between
−12% and 6%. The negative sign for the mean indicates that our approximation
does yield a conservative result, overestimating the average AoI.

8.2.7 Implication on Network Parametrization

The average AoI, E[ε], is roughly governed by the term B+N−gcd (A,N). While B
and N do increase E[ε], the greatest common divisor n = gcd (A,N), shared by the
network’s period N and agent A’s period A, decreases it. Hence, a smaller (faster)
N may not yield a smaller (faster) E[ε].

Taking the viewpoint of the network, we can treat A as a random quantity
(as there are several scenarios in which the agents’ periods are unknown to the
network). Doing so, we can capture this effect by finding an expression for the
expected greatest common divisor E[ gcd (R,N)] where R is a substitution for A
and stands for a random integer. In case that R is drawn uniformly from all N+, we
state the following theorem:

Theorem 8. Let R ∈ N+ be a random positive integer whose distribution is uniform
over N+. Further let M =

∏
x∈X xr(x) be an integer M together with its prime

factorization. Then the expected greatest common divisor shared by M and R is

E[ gcd (R,M)] =
∑
X ′⊂X

∏
x∈X ′

r(x)
∑

X ′′⊂X ′

(−1)|X ′′|
∏
x∈X ′′

1

x
(8.29)

In Figure 8.6, this result is used to plot E[ gcd (R,N)] over N . It can be seen that
e.g. N = 60 is a more beneficial network period than N = 59, as the choice N = 60
will, on average, yield a smaller AoI. This is a direct consequence of the number 59
being a prime and the number 60 having much more divisors than any number in
its immediate neighborhood. (A large number of divisors increases the chance of n
being large.) Given that the greatest common divisor only grows logarithmically,
this effect becomes less important the larger the network period N gets, as the linear
growth of N will dominate the average AoI.

8.2.8 Conclusion

For the described system (see Figure 8.3), we derived a structural result on the
distribution of the values of the AoI process. Based on that result we developed both
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Fig. 8.6: Expected greatest common divisor of a random positive integer R (uniformly
distributed over its entire domain) and another integer N .

an exact and an approximating expression for the mean of the process together with
a probabilistic bound on the maximal occurring AoI. The simulations show that the
approximation is good enough to enable efficient calculation of the mean AoI with
limited error. We also obtained the surprising result that, in some instances, it can
be beneficial to slow the network down in order to decrease the AoI.

8.2.9 Appendix

To present the proofs as succinct as possible, we will often use the notation Y = X+x
to express that the set Y is generated by adding the value x to every element of the
set X .

Lemma 5. Let X, Y ∈ N and gcd (X, Y ) = 1 (i.e. X and Y are coprime). Then

Y⋃
k=1

{
kX % Y

}
=

〈
0, 1, Y

〉
(8.30)

Proof. We prove via contradiction. Denote the following residues, starting with
arbitrary k ∈ N as

kX % Y = z0

(k + 1)X % Y = z1
...

(k + Y − 1)X % Y = zY−1

(k + Y )X % Y = kX % Y = z0

(8.31)

with zi ∈ {0, 1, . . . Y − 1}. Suppose that there are at least two numbers from
{z0, z1, . . . zY−1} which are equal, say zk′ and zk′′ , then

(k + k′)X % Y = (k + k′′)X % Y

⇒ (k + k′)X − (k + k′′)X = (k′ − k′′)X = wY
(8.32)
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for some w ∈ N. Per construction we have |k′ − k′′| < Y which implies that
lcm(X, Y ) = |k′ − k′′|X < YX. This must be wrong since X and Y are coprime,
proving the claim.

Lemma 6. Let (xk) be a sequence with period X and denote its values according to
(x1+lX , . . . xX+lX) = (x1, . . . xX) for all l ∈ N. Likewise let (yk) be a sequence with
period Y and (y1+lY , . . . yY+lY ) = (y1, . . . yY ). Further let z = gcd (X, Y ). Then over
any XY

z
consecutive steps k, the set of generated pairs (xk, yk) contains exactly each

pairing (xi, yj) once, whose indices are part of the same residual class r with regard
to z:

XY
z⋃

k=1

{
(xk, yk)

}
=

z⋃
r=1

⋃
i∈⟨r,z,Xz ⟩
j∈⟨r,z,Yz ⟩

{
(xi, yj)

}
(8.33)

Proof. For z = 1, (8.33) means that every possible pairing occurs exactly once.
Conversely, assume that a specific pairing (xi, yj) is generated twice during the XY
steps and denote these steps with k′ and k′′. Then |k′′− k′| = ∆ < XY and, due to
the periodicity, both X and Y must be divisors of ∆, making ∆ a common multiple
smaller XY . Since X and Y are coprime this is a contradiction.

For z ∈ N, construct two new sequences (x̃κ) and (ỹκ) according to

x̃κ = (xκz+1, . . . xκz+z)

ỹκ = (yκz+1, . . . yκz+z)
(8.34)

I.e. one element of (x̃κ) consists of z consecutive elements from (xk). Per con-
struction (x̃κ) has periodicity X

z
and (ỹκ) has periodicity Y

z
. Also, X

z
and Y

z
are

coprime. Hence, according to the first part of the proof, over any X
z
· Y

z
consecu-

tive steps, each of the X
z
different elements of (x̃κ) will eventually pair with each

of the Y
z
different elements of (ỹκ). Using (8.34) this implies that over any XY

z2
· z

consecutive steps of the original sequence, each xiz+κ meets every yjz+κ exactly
once, with i = 1, . . . X

z
; j = 1, . . . Y

z
; κ = 1 . . . z. With slight redefinition of i

and j (such that they include z) this means that for given κ, xi+κ meats yj+κ iff
i ∈ {0, z, 2z, . . .

(
X
z
− 1
)
z} and j ∈ {0, z, 2z, . . .

(
Y
z
− 1
)
z}. The proposition fol-

lows.

Lemma 7. Let X, x, y ∈ N, then〈
y, x,X

〉
%Xx =

〈
y % x, x,X

〉
(8.35)〈

−y, x,X
〉
%Xx =

〈
y % x, x,X

〉
(8.36)

Proof. We proof (8.36) and initially assume that y < Xx. Then
〈
−y, x,X

〉
will

consist of positive and possibly negative values. Continuously adding x to −y even-
tually starts producing non-negative results, beginning with the

⌈
y
x

⌉
-th summation

step. This motivates the separation〈
−y, x,X

〉
=

〈
−y, x,

⌊y
x

⌋〉
︸ ︷︷ ︸
negative values

∪
〈
−y +

⌈y
x

⌉
x, x,X −

⌊y
x

⌋〉
︸ ︷︷ ︸

non-negative values

(8.37)
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The largest term of the ”non-negative” set is −y + (X − 1)x. Therefore, taking
all values modulo (Xx) only effects the ”negative” set by adding Xx. Doing so,
the smallest term in the ”negative” set becomes −y + Xx (which is exactly one x
greater than the largest term of the ”non-negative” set). Hence, after the % (Xx)
operation, the elements of both sets can be rearranged into a new set according to〈

−y, x,X
〉
% (Xx) =

〈
−y +Xx, x,

⌊y
x

⌋〉
∪
〈
−y +

⌈y
x

⌉
x, x,X −

⌊y
x

⌋〉
=

〈
−y +

⌈y
x

⌉
x, x,X

〉
(8.38)

Suppose now that y ≥ Xx and in particular y %Xx = z. Then we get〈
−y, x,X

〉
%Xx =

〈
−y %Xx, x,X

〉
%Xx

=

〈
−z, x,X

〉
%Xx

∗
=

〈
−z +

⌈z
x

⌉
x, x,X

〉
∗∗
=

〈
−y +

⌈y
x

⌉
x, x,X

〉
(8.39)

where (*) is true because z < Xx and (**) is readily verified by substitution (y =
wXx+ z for some w ∈ N). To proof (8.35), see that

(−y) % x = (−y)−
⌊
(−y)
x

⌋
x = −y +

⌈y
x

⌉
x = y % x (8.40)

and hence substitution of −y for y in (8.36) yields (8.35).

Proof of Theorem 1
The evolution of the AoI sequence (αk) according to (8.5) can be interpreted as a
function of the sequences (ηk) and (βk), identified by:

αk = αk(βk, ηk) = ηk + (βk − ηk) %B =

kA%N︸ ︷︷ ︸
=: ηk

+
(
kA%B︸ ︷︷ ︸
=: βk

− kA%N︸ ︷︷ ︸
=: ηk

)
%B (8.41)

This means that
βk = b

[
k(nA′) % (aB′)

]
ηk = n

[
k(bA′) % (aN ′)

] (8.42)

and we know from Lemma 5 that (βk) and (ηk) do generate the sets
〈
0, b, aB′〉 and〈

0, n, aN ′〉 (over their respective periods). With one element from each set, we can
readily describe the resulting value for αk. However, not all possible element pairings
are realized. Our first priority is therefore to determine which elements (and values)
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are realized simultaneously. To that end it is prudent to denote the elements in
appearing order and assign to them ”fixed” values bi and ni according to

β1+l(aB) =: b1

β2+l(aB) =: b2
...

βaB+l(aB) =: baB

η1+l(aN) =: n1

η2+l(aN) =: n2
...

ηaN+l(aN) =: naN

(8.43)

with l ∈ N.
Since the periods of (βk) and (ηk) are aB′ and aN ′, the period of (αk) must be

aB′N ′. From Lemma 6, we know that during those aB′N ′ steps only those bi and
nj will occur at the same step, whose indices belong to the same residue class r ∈ N
with respect to the greatest common divisor a:

aB′N ′⋃
k=1

{
αk(βk, ηk)

}
=

a−1⋃
r=0

B′⋃
i=1

N ′⋃
j=1

{
αk(bia+r, nja+r)

}
(8.44)

Looking at the value behind bia+r we have

bia+r = (ia+ r)A%B

= (iaA%B + rA) %B

= (iabnA′ % abB′ + rA) %B

= (ab(inA′ %B′) + rA) %B

(8.45)

Over all possible i, i.e. for i = 1, . . . B′, the term ab(inA′ % B′) generates the set〈
0, ab, B′〉. And therefore, using Lemma 7

B′⋃
i=1

{
bia+r

}
=

(〈
0, ab, B′

〉
+ rA

)
% abB =

〈
rA% ab, ab, B′

〉
(8.46)

Of course, the same holds true for nja+r:

N ′⋃
j=0

{
nja+r

}
=

〈
rA% an, an,N ′

〉
(8.47)

Knowing that, we can look back at our starting equation:

αk = ηk + (βk − ηk) %B (8.48)

Over (αk)’s period aB′N ′, every value from (8.46) will pair up with every value from
(8.47) exactly once. I.e. for the value nja+r from (8.47) the sequence (αk) generates
the values

nja+r +

(〈
rA% ab, ab, B′

〉
− nja+r

)
%B (8.49)

which according to Lemma 7 is equal to〈
rA% ab+

⌈
nja+r − rA% ab

ab

⌉
ab, ab, B′

〉
(8.50)
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To yield an expression for all generated values, we have to take the union of (8.50)
over all possible nja+r. I.e. the union over all possible residue classes r = 0, . . . a−1,
and per residue class over all j = 0, . . . N ′− 1. Since we do not care for the order of
the generated values, we can invoke (8.47) for the union over j and obtain

N ′−1⋃
j=0

〈
crj, ab, B

′
〉

with crj = rA% ab+

⌈
rA% an+ jan− rA% ab

ab

⌉
ab

(8.51)

Replacing r with i and taking the union over i = 0, . . . a − 1 yields the proposi-
tion.

Derivation of Equation (8.16)
To obtain the expected AoI, we need an expression for the expected value of cij,
because

E[αk] =
1

aB′N ′

aB′N ′∑
k=1

αk =
1

aB′N ′

∑
i=0...a−1
j=0...N ′−1

∑
x∈⟨cij ,ab,B′⟩

x

=
1

aN ′

∑
i=0...a−1
j=0...N ′−1

cij +
(B′ − 1)ab

2
(8.52)

Looking at cij as defined in (8.15), the term containing the ceiling operator can
be developed in the following way if we consider its sum over i = 0, . . . a − 1 and
j = 0, . . . N ′ − 1: ∑⌈

iA% an+ jan− iA% ab

ab

⌉
(1)
=
∑⌈

n
(
ib−

⌊
ib
a

⌋
a
)
+ jan− b

(
in−

⌊
in
a

⌋
a
)

ab

⌉
(8.53)

=
∑⌊

in

a

⌋
+
∑⌈(

j −
⌊
ib
a

⌋)
n

b

⌉
Equality (1) holds because of (8.4) and (8.3) and the fact that the factor A′ merely
reorders the occurrence of the rest classes and can therefore be omitted due to the
sum (see Lemma 5).

Applying the substitution

x

y
=

x− x% y

y︸ ︷︷ ︸
∈ N

+
x% y

y
(8.54)

to the remaining ceiling and floor operators makes it possible to retract the inte-
ger part from the operators. The resulting sums are readily evaluated except the
following two:∑⌈(

j −
⌊
ib
a

⌋)
n% b

b

⌉
= aN − a

⌊
N ′

b

⌋
−
⌈
(N ′ % b)

a

b

⌉
(8.55)



PAPER 8. AOI IN CLOCKED NETWORKS 155

and

∑(
j −

⌊
ib
a

⌋)
n% b

b
=

a(b− 1)

2

⌊
N ′

b

⌋
+

a−1∑
i=0

N ′%b−1∑
j=0

(
j −

⌊
ib
a

⌋)
n% b

b
(8.56)

Equation (8.55) follows since the ceiling operator always evaluates to 1 except when
j −

⌊
ib
a

⌋
is a multiple of b. In those cases it evaluates to 0. For i = 0 this happens⌊

N ′

b

⌋
+1 times. This does not change as long as

⌊
ib
a

⌋
< (N ′−1)%b, i.e.

⌈
(N ′ % b) a

b

⌉
times. For all other cases a multiple of b is only realized

⌊
N ′

b

⌋
times.

Equation (8.56) follows because any b consecutive summands over j evaluate to
b−1
2
. And there are only

⌊
N ′

b

⌋
such sequences of summands over j.

Rejoining all of these results, one can yields the following expression for the sum
over all cij:

1

aN ′

∑
i=0,...a−1
j=0,...N ′−1

cij =
N − n+ 2ab

2
− b

N ′

(
a(b+ 1)

2

⌊
N ′

b

⌋

+
⌈
(N ′ % b)

a

b

⌉
+

1

b

a−1∑
i=0

N ′%b−1∑
j=0

(
j −

⌊
ib

a

⌋)
n% b

)
(8.57)

Finally (8.16) results by substituting (8.57) into (8.52).

Proof of Corollary 1
To obtain the approximation (8.17), we take (8.15) at face value and use the bounds
of the ceiling operator. This gives

cij = iA% (an) + jan+
ab± ab

2
(8.58)

Applying Lemma 5 yields

1

aN ′

∑
ij

cij =
n(aN ′ − 1) + ab± ab

2
(8.59)

Substituting this into (8.52) finalizes the derivation.
For (8.18), note that once Ê[αk] =

B+N−n
2

is set, the largest relative error occurs
if E[αk] is on the lower boundary of the possible set, i.e. if E[αk] =

B+N−n−ab
2

. The

distance between Ê[αk] and E[αk] is then
ab
2
. Division yields the proposition.

The largest value of (αk) depends on the largest value of cij which again can be
bounded via the bounds of the ceiling operator:

max
k

αk = max
ij

cij + (B′ − 1)ab

= max
i
{iA% an}+max

j
{jan}+B (8.60)

= n(a− 1) + (N ′ − 1)an+B = B +N − n

which proves the corollary.
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Proof of Corollary 2
We separate the values generated by (εk) in aB′N ′-long groups of elements. Then
the expectation can be expressed via

E[εk] = lim
K→∞

1

K

K∑
k=0

εk = lim
K→∞

1

K

K∑
k′=0

1

aB′N ′

aB′N ′−1∑
k=0

εk′aB′N ′+k

=
1

aB′N ′

aB′N ′−1∑
k=0

lim
K→∞

1

K

K∑
k′=0

εk′aB′N ′+k (8.61)

=
1

aB′N ′

aB′N ′−1∑
k=0

pε
[0]
k + pp̄1ε

[1]
k + pp̄2ε

[2]
k + . . .

Notice that this way, we circumvented the ”impossibility” of the assumption for (ε
[l]
k ),

since with probability pp̄l it is indeed the case that, relative to time-step t = kA,
the last l transmissions did fail and the (l+1)-th did succeed, for each of the aB′N ′

elements. According to Theorem 7 and Lemma 7 we get

1

aN ′

∑
i=0,...a−1
j=0,...N ′−1

c
[l]
ij =

1

aN ′

∑
i=0,...a−1
j=0,...N ′−1

(
2 + lN + jan+

ab± ab

2
+ (iA−∆N − 1) % an

)

= 2 + lN +
(N − n)

2
+

ab± ab

2
+ (∆N + 1) % n (8.62)

because (iA−∆N − 1)% an = (iA% an−∆N − 1)% an which, over i = 0, . . . a− 1,
generates the set (

〈
0, n, a

〉
−−∆N − 1) % an. Hence, with K = 2 + (∆N + 1) % n,

1

aB′N ′

aB′N ′∑
k=0

ε
[l]
k =

1

aB′N ′

∑
i=0,...a−1
j=0,...N ′−1

〈
c
[l]
ij , ab, B

′
〉

= ab
(B′ − 1)

2
+

1

aN ′

∑
i=0,...a−1
j=0,...N ′−1

c
[l]
ij

=
B +N − n

2
+K + lN ± ab

2

(8.63)

Substituting this back into (8.61) and using the well-known results on polylogarithms
yields

E[εk] =
B +N − n

2
+K ± ab

2
+ p lim

L→∞

L∑
l=0

p̄llN

=
B +N − n

2
+K ± ab

2
+

p̄

p
N

(8.64)

This proves proposition (8.23).
As for proposition (8.26), notice that (polylogarithm)

p
(
1 + p̄+ p̄2 + · · ·+ p̄λ−1

)
= 1− p̄λ (8.65)

I.e. considering only the first λ summands in (8.61) means considering only 1− p̄λ

percent of all possibly occurring values. The largest value among these belongs to
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the p̄λ−1 part and is easily evaluated to be

max
ij

c
[λ−1]
ij + (B′ − 1)ab ≤ B +N − n+K + (λ− 1)N (8.66)

Setting σ = 1− p̄λ yields proposition (8.26).

Finally, (8.25) follows for the same reasons as the corresponding proposition from
Corollary 1.

Definition 3. Given a set of primes X = {x1, x2, . . . } we define the set of all
multiples generated by this set as

MX =

a : a = k ·
∏
x∈X ′

x,

k ∈ Z
X ′ ⊂ X
X ′ ̸= ∅

 =
⋃
x∈X

xZ (8.67)

Lemma 8. Let X = {x1, x2, . . . } be a set of prime numbers xi and Y = {y} be a
singleton set with another prime y ̸∈ X . Denote the sets of all multiples generated
by them withMX andMY , respectively. Then

|MX |
|Z|

=
|MX ∩MY |
|MY |

(8.68)

I.e. proportionally, there are as many multiples generated by X in Z as there are in
MY .

Proof. If a ∈MX ∩MY then

a = k ·
∏
x∈X ′

x = k′ · y (8.69)

for some k, k′ ∈ Z and ∅ ̸= X ′ ⊂ X . However, since y ̸∈ X it must be hold that

a = k′′ · y ·
∏
x∈X ′

x, k′′ ∈ Z (8.70)

but then

MX ∩MY =

ya : a = k ·
∏
x∈X ′

x,

k ∈ Z
X ′ ⊂ X
X ′ ̸= ∅

 (8.71)

I.e. MX ∩MY = yMX . Therefore we have |MX∩MY |
|MX | = y = |yZ|

|Z| = |MY |
|Z| .

Lemma 9. Let R be a random integer uniformly drawn from N+. Further let M =∏
x∈X xr(x) be an integer together with its prime factorization. Then the probability

that M and R are coprime is

P

[
gcd

(
R,
∏
x∈X

xr(x)

)
= 1

]
=
∑
X ′⊂X

(−1)|X
′|∏

x∈X ′
x

(8.72)
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Proof. First suppose that r(x) = 1 for all x ∈ X . We employ an inductive reasoning:
If M = x then in agreement with (8.72) we have

P[gcd (R, x) = 1] = 1− 1

x
=

(−1)0

1
+

(−1)1

x
(8.73)

which obviously is correct.
Next suppose that the claim holds for some M =

∏
x∈X x and note that the

following relation holds

P

[
gcd

(
R,
∏
x∈X

x

)
= 1

]
= 1− P[R ∈MX ] = θ (8.74)

where θ is a placeholder for (8.72). When we expand M by an additional prime
y ̸∈ X (and for convenience define the singleton set Y = {y}), we get

P

[
gcd

(
R, y ·

∏
x∈X

x

)
= 1

]
= 1− P[R ∈MX∪Y ]

= 1− P[R ∈MX ∪MY ]

= 1− P[R ∈MX ]− P[R ∈MY ] + P[R ∈MX ∩MY ]

= θ − 1

y
+
|MX ∩MY |

|Z|
(8.75)

Lemma 8
= θ − 1

y
+
|MX | |MY |
|Z| |Z|

= θ − 1

y
+ (1− θ)

1

y
= θ

(
1− 1

y

)
Substituting for θ and defining Z = X ∪ {y} we obtain

P

[
gcd

(
R, y ·

∏
x∈X

x

)
= 1

]
=
∑
X ′⊂X

(−1)|X
′|∏

x∈X ′
x
− 1

y

∑
X ′⊂X

(−1)|X
′|∏

x∈X ′
x

=
∑
Z′⊂Z
y ̸∈Z′

(−1)|Z
′|∏

x∈Z′
x

+
∑
Z′⊂Z
y ̸∈Z′

(−1)|Z
′|+1

y
∏

x∈Z′
x

=
∑
Z′⊂Z

(−1)|Z
′|∏

z∈Z′
z

(8.76)

Per induction, this proves the claim if r(x) = 1 for all x ∈ X .
This leaves us to show that claim (8.72) is indeed independent of the multiplicity

of the prime factors. This can be done by construction. We have

P

[
gcd

(
R,
∏
x∈X

xr(x)

)
= 1

]
= P

[
gcd

(
R,
∏
x∈X

xr(x)−1 ·
∏
x∈X

x

)
= 1

]
(8.77)

= P

[
gcd

(
R, y ·

∏
x∈X

x

)
= 1

]
= 1− P[R ∈MX ∪MY ]

= 1− P[R ∈MX ] = P

[
gcd

(
R,
∏
x∈X

x

)
= 1

]

where this time y =
∏

x∈X xr(x)−1 ∈MX such thatMY ⊂MX . This completes the
proof.
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Lemma 10. Let R be a random integer uniformly drawn from N+. Further let M =∏
x∈X x be an integer together with its prime factorization, where X = {x1, x2, . . . }

is a multiset of primes (i.e. a single prime can be contained more than once, cor-
responding to its multiplicity in M). Let further X ′ ⊂ X such that D =

∏
x∈X ′ x

defines a divisor of M . Then the probability that D is the greatest common divisor
between R and M is

P[gcd (R,M) = D] =
1

D
P
[
gcd

(
R,

M

D

)
= 1

]
(8.78)

Proof. We have the straightforward construction

P[gcd (R,M) = D] = P

R ∈MD ∩

 ⋂
x∈X\X ′

R ̸∈ Mx·D


= P

 ⋂
x∈X\X ′

R ̸∈ Mx·D

∣∣∣∣∣∣R ∈MD

P[R ∈MD]

= P

 ⋂
x∈X\X ′

R ̸∈ Mx

P[R ∈MD]

=

1− P

 ⋃
x∈X\X ′

R ∈Mx

P[R ∈MD]

=
(
1− P

[
R ∈MX\X ′

])
P[R ∈MD]

=
1

D
P

gcd
R,

∏
x∈X

x∏
x∈X ′

x

 = 1



(8.79)

Substituting M and D yields the proposition.

Proof of Theorem 8
Define π(X , r(X )) :=

∏
x∈X xr(x) as an efficient way to denote a prime factorization

where X is the set of primes and r(X ) is the vector of corresponding multiplicities.
Then we have

E[ gcd (R,M)] = E[ gcd (R, π(X , r(X )))]

=
∑
X ′⊂X

∑
r′≤r(X ′)

π(X ′, r′) · P[gcd (R, π(X , r(X ))) = π(X ′, r′)] (8.80)

Lemma 10
=

∑
X ′⊂X

∑
r′≤r(X ′)

P
[
gcd

(
R,

π(X , r(X ))
π(X ′, r′)

)
= 1

]
(8.81)

=
∑
X ′⊂X

∑
r′≤r(X ′)

P[gcd (R, π(X ′, r′)) = 1] (8.82)

=
∑
X ′⊂X

∏
x∈X ′

r(x) · P

[
gcd

(
R,
∏
x∈X ′

x

)
= 1

]
(8.83)

where the vector r′ must be greater or equal to 1 in every component. Equation
(8.82) follows by symmetry: the set of all divisors of a given number M is the same
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as the set of quotients obtained by dividing M by each of its divisors separately.
Equation (8.83) follows by the independence of multiplicity (established in Lemma 9)
and the fact that

∏
x∈X ′ r(x) =

∑
r′≤r(X ′) 1. Applying Lemma 9 then yields the

proposition.

8.3 Concluding Remarks

Obviously, the proof in the appendix is the main contribution of the paper. While
it is only presented through rigorous formulas, there exists quite a rich geometric
interpretation for the main ideas behind it which we do not want to withhold.

We start with the term (8.41), the evolution of the AoI:

ηt + (βt − ηt) %B (8.84)

In order to obtain the distribution of the AoI sequence, we have Lemma 5 stating
that both ηt and βt generate sets of equally distanced values. However, the key
lies in not treating both sequences equally but rather imagining ηt as some fixed
disturbance that acts on the set generated by βt. Figure 8.7 illustrates this case.
Starting from the set generated by βt on the top, in a first step, ηt shifts those values
towards the negative part of the number line. After that, by virtue of the modulo-
operator, all negative values are relocated back into the original range (which was
[0, B]) while leaving the separation property of the values intact. Finally, ηt again
shifts all values, but this time in the opposite direction. The details in the proof deal
with figuring out which values from βt encounter which values from ηt and where
exactly the sets are shifted to.

0 B

generated by βt

shifted by ηt

relocated by the mod-operator

shifted by ηt

Fig. 8.7: Visualization of the proof for Theorem 6. A single disturbance ηt acts on a set
of values, generated by βt via equation (8.84).

For the second major proof, which deals with the expectation of the gcd, there
exist visual representations of Lemma 8 and Lemma 9. Lemma 8 is concerned with
the relative occurrence of multiples of a prime on the number line, and states that
it stays the same when observing the number line through a grid which is also
generated by the multiples of a prime. This finds a neat illustration in Figure 8.8.
Here, the horizontal grids represent the number lines. In the first grid, all multiples
of 2 are marked in blue, as are multiples of 3 in the second grid. (Of course, those
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grids each only present an exemplary finite part of the infinite grid.) The third line
collects all numbers from the second grid that coincide with a multiple of 2 (i.e. with
a blue entry in the first grid). If all these numbers are rearranged to form a new
grid (the fourth grid), it can be observed that the amount of blue entries, relative to
the number of white entries, is again 1

3
, i.e. the same as it was before in the second

grid. In other words, even if we observe only every second number on the number
line, it is still true that every third of these numbers is a multiple of 3.

2x

3x

Fig. 8.8: Visualization of Lemma 8. Observing the number line through a mask,
generated by all multiples of a prime, does not change the relative occurrence of

multiples of other primes.

Through similar means, Figure 8.9 illustrates Lemma 9 that gives a formula for
the probability of the gcd being 1. In this example, we ask for the probability of
the gcd between a random number and 30 = (2 · 3 · 5) to be 1. This is the same as
the probability of these two numbers being coprime. To find the answer, we mark
all numbers that are not coprime on the number line/grid and simply count them.
Obviously, all numbers that are multiples of 2 or 3 or 5 cannot be coprime to 30.
These numbers are marked with blue in the first three grids. We find that 1

2
of all

numbers are multiples of 2, and that 1
3
of all numbers are multiples of 3, and that 1

5
of

all numbers are multiples of 5. However adding all these fractions overestimates the
amount of numbers that are multiples of 2,3 or 5, since some numbers are accounted
for more than once. This is illustrated in the fourth grid where we marked all
previously marked numbers. However, instead of using the color blue, we gave each
number a counter that counts in how many grids this number was marked. E.g. 6
was marked both in the grid with multiples of 2 as well as in the grid with multiples
of 3.

To compensate for the increased occurrence of such values, we have to deduct 1
2·3

of all numbers, and 1
2·5 of all numbers and 1

3·5 of all numbers from the overestimation
1
2
+ 1

3
+ 1

5
. This is illustrated by the next 4 grids, who mark corresponding values and

deduct them from the previous ”sum”. Evidently, now almost every number that is
a multiple of 2,3 or 5 has been considered exactly once, except 30 and multiples of
it, which are not considered at all anymore. Again, to compensate we have to add
the probability of all numbers, that are a multiple of 30, i.e. 1

2·35̇ , illustrated in the
last two grids. In the end, we end up considering every multiple of 2,3 and 5 exactly
once, if we execute all these compensations to the overestimate that we started with
which gives us

P[gcd (R, 2 · 3 · 5) = 1] =
1

2
+

1

3
+

1

5
− 1

2 · 3
− 1

2 · 5
− 1

3 · 5
+

1

2 · 3 · 5
(8.85)
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2 2 2 2 2 32

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 01

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 11

2x

3x

5x

(2 · 3)x

(2 · 5)x

(3 · 5)x

(2 · 3 · 5)x

+

+

=

−

−

−

=

+

=

Fig. 8.9: Visualization of Lemma 9. The observed structure in (8.85) stems from an
iterative scheme to compensate for multiplicities.
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Abstract in German Language

Im Rahmen dieser Dissertation wurden die folgenden 3 Schwerpunkte bearbeitet:

• Zum einen wurde eine prädiktive Methode zur Kontrolle von Warteschlangen-
netzwerken entwickelt. Unter Annahme eines beschreibbaren stochastis-
chen Prozesses, der die Übertragungswahrscheinlichkeit von Warte- zu
Warteschlange beschreibt, ist diese Methode eine direkte Erweiterung der
allseits bekannten ”Back-Pressure” Methoden auf Prädiktionshorizonte vari-
abler Länge. Durch Verbindung von Beweismethoden aus den Gebi-
eten der modellprädiktiven Regelungstheorie und der Warteschlangentheo-
rie konnte bewiesen werden, dass sich diese Methode optimal bezüglich des
Durchflusses verhält. Außerdem konnte herausgearbeitet werden, warum
diese Methode weiterführende Netzwerkstrukturen stabilisiert, die im Gegen-
satz zu herkömmlichen Strukturen auch synchronisierte Warteschlangen
enthält. In diesem Zusammenhang konnte auch eine Verbindung der Sta-
bilitätseigenschaften solcher synchronisierter Warteschlangen mit Zufallsbe-
wegungen auf Faktorräumen hergestellt werden.

• Des Weiteren wurden 2 Algorithmen entwickelt, die es erlauben, Kommu-
nikationsverzögerungen durch geschickte Regelung des Netzwerkes verlässlich
vorherzusagen. Beide Algorithmen arbeiten nach den Prinzipien der mod-
ellprädiktiven Regelung, unterscheiden sich jedoch insbesondere hinsichtlich
ihrer Zielfunktion. Während die Optimierung bei beiden auf ein kombina-
torisches Problem hinausläuft (was durch die diskrete Funktionsweise des Netz-
werkes nicht verhindert werden kann), konnten wir die Komplexität einer der
Algorithmen auf eine lineare Zielfunktion beschränken. Dies ermöglicht eine
bessere Skalierung mit den Systemparametern im Gegensatz zu den üblichen
quadratischen Zielfunktionen.

• Als Letztes wurde die Prädiktion des Age-of-Information untersucht. Resul-
tate waren hier ein Algorithmus zur verlässlichen Vorhersage von AoI-Werten
in Netzwerken mit flacher Topologie und eine Methode zur Berechnung der
exakten Wahrscheinlichkeitsverteilung über dem AoI-Zustandsraum. Außer-
dem wurde die Verteilung der AoI-Werte in Agenten eines ”Wireless Token
Ring Protokolls” hergeleitet. Dies ermöglicht die Ermittlung aller relevanten
Momente des stochastischen Prozesses, der das AoI beschreibt und somit eine
Vorhersage des AoI im stochastischen Sinne.
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[38] Burak Büke and Hanyi Chen. Stabilizing policies for probabilistic matching
systems. Queueing Systems, 2015.

[39] Mehmet Fatih Aktas and Emina Soljanin. Anonymity Mixes as (Partial) As-
sembly Queues: Modeling and Analysis. IEEE Information Theory Workshop,
ITW, 2019.

[40] J . Michael Harrison. Assembly-like Queues. Journal of Applied Probability,
1973.

[41] Guy Latouche. Queues With Paired Customers. Journal of Applied Probability,
1981.



BIBLIOGRAPHY 167

[42] David G. Kendall. On non-dissipative Markoff chains with an enumerable
infinity of states. Mathematical Proceedings of the Cambridge Philosophical
Society, 1951.

[43] F. G. Foster. On the Stochastic Matrices Associated with Certain Queuing
Processes. The Annals of Mathematical Statistics, 1953.
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control of constrained linear systems with bounded disturbances. Automatica,
2005.

[68] Daniele Bernardini and Alberto Bemporad. Stabilizing model predictive con-
trol of stochastic constrained linear systems. IEEE Transactions on Automatic
Control, 2012.

[69] Giuseppe C. Calafiore and Lorenzo Fagiano. Robust model predictive control
via scenario optimization. IEEE Transactions on Automatic Control, 2013.

[70] Yang Wang and Stephen Boys. Fast Model Predictive Control Using Online
Optimization. IEEE Transactions on Control Systems Technology, 2010.



BIBLIOGRAPHY 169

[71] Yu Gao and Kil To Chong. The explicit constrained min-max model predictive
control of a discrete-time linear system with uncertain disturbances. IEEE
Transactions on Automatic Control, 2012.

[72] Melanie Nicole Zeilinger, Colin Neil Jones, and Manfred Morari. Real-time
suboptimal model predictive control using a combination of explicit MPC and
online optimization. IEEE Transactions on Automatic Control, 2011.

[73] Brett T. Stewart, Aswin N. Venkat, James B. Rawlings, Stephen J. Wright,
and Gabriele Pannocchia. Cooperative distributed model predictive control.
Systems and Control Letters, 2010.

[74] Panagiotis D. Christofides, Riccardo Scattolini, David Muñoz de la Peña, and
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[79] Svenja Blasi, Markus Kögel, and Rolf Findeisen. Distributed Model Predictive
Control Using Cooperative Contract Options. IFAC-PapersOnLine, 2018.

[80] Nagacharan Teja Tangirala, Anuj Abraham, Apratim Choudhury, Pranjal
Vyas, Rongkai Zhang, and Justin Dauwels. Analysis of Packet drops and
Channel Crowding in Vehicle Platooning using V2X communication. IEEE
Symposium Series on Computational Intelligence, SSCI, 2018.

[81] Dongyao Jia, Kejie Lu, and Jianping Wang. On the network connectivity of
platoon-based vehicular cyber-physical systems. Transportation Research Part
C: Emerging Technologies, 2014.

[82] Mohammad Hosseinzadeh Yamchi and Reza Mahboobi Esfanjani. Distributed
predictive formation control of networked mobile robots subject to communi-
cation delay. Robotics and Autonomous Systems, 2017.

[83] Qi Wang, Katia Jaffrès-Runser, Jean Luc Scharbarg, Christian Fraboul,
Yi Sun, Jun Li, and Zhongcheng Li. A thorough analysis of the performance
of delay distribution models for IEEE 802.11 DCF. Ad Hoc Networks, 2015.



170 BIBLIOGRAPHY

[84] Jing Wang, Jian Tang, Zhiyuan Xu, Yanzhi Wang, Guoliang Xue, Xing Zhang,
and Dejun Yang. Spatiotemporal modeling and prediction in cellular networks:
A big data enabled deep learning approach. IEEE INFOCOM, 2017.

[85] Chen Qiu, Yanyan Zhang, Zhiyong Feng, Ping Zhang, and Shuguang Cui.
Spatio-Temporal Wireless Traffic Prediction with Recurrent Neural Network.
IEEE Wireless Communications Letters, 2018.

[86] Devarpita Sinha and Rajarshi Roy. Scheduling Status Update for Optimizing
Age of Information in the Context of Industrial Cyber-Physical System. IEEE
Access, 2019.

[87] Qing He, Di Yuan, and Anthony Ephremides. Optimal Link Scheduling for
Age Minimization in Wireless Systems. IEEE Transactions on Information
Theory, 2018.

[88] Yu Pin Hsu, Eytan Modiano, and Lingjie Duan. Scheduling Algorithms for
Minimizing Age of Information in Wireless Broadcast Networks with Random
Arrivals. IEEE Transactions on Mobile Computing, 2020.

[89] Igor Kadota, Abhishek Sinha, and Eytan Modiano. Scheduling algorithms
for optimizing age of information in wireless networks with throughput con-
straints. IEEE/ACM Transactions on Networking, 2019.
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