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A B S T R A C T   

MiRNAs are emerging as key molecules to study neuropsychiatric diseases. However, despite the large number of 
methodologies and software for miRNA-seq analyses, there is little supporting literature for researchers in this 
area. This review focuses on evaluating how miRNA-seq has been used to study neuropsychiatric diseases to date, 
analyzing both the main findings discovered and the bioinformatics workflows and tools used from a method
ological perspective. The objective of this review is two-fold: first, to evaluate current miRNA-seq procedures 
used in neuropsychiatry; and second, to offer comprehensive information that can serve as a guide to new re
searchers in bioinformatics. After conducting a systematic search (from 2016 to June 30, 2020) of articles using 
miRNA-seq in neuropsychiatry, we have seen that it has already been used for different types of studies in three 
main categories: diagnosis, prognosis, and mechanism. We carefully analyzed the bioinformatics workflows of 
each study, observing a high degree of variability with respect to the tools and methods used and several 
methodological complexities that are identified and discussed in this review.   

1. Introduction 

Unlike other diseases, mental illnesses diagnosis is mainly made by 
the identification of a wide set of unspecific symptoms. Patients diag
nosed with the same psychiatric disorder can exhibit very different 
clinical manifestations, often resulting in poor treatment efficacy and 
management. The artificial classification of the mental disorders also 
restricts the power of discovering the underlying biological mechanism, 
as much variability is lost when assigning a diagnosis. 

Micro RNAs (miRNAs) are small non-coding RNAs (<200 nucleo
tides) involved in the post-transcriptional regulation of gene expression, 
or RNA silencing, and participate in the epigenetic regulation of protein 
synthesis [1–3]. Most miRNAs are 21–24 nt in length, play a role in the 
regulation of most of the biological processes [4], and their expression is 
known to be affected by everyday events such as sleep, eating, stress or 

medications [3]. In the last decade, the importance of miRNAs as etio
logical mechanisms of neuropsychiatric disorders has been recognized 
and a large number of studies had begun to discover their roles in 
neuropsychiatry diseases such as Alzheimer’s, schizophrenia depression 
or Parkinson [5–10]. In this context, miRNAs have recently gained 
attention as potential biomarkers in brain diseases due to their ability to 
epigenetically influence almost all aspects of brain functioning in a 
reversible manner [3,5,10,11]. 

The development of RNA-seq technologies focused on miRNA 
expression (miRNA-seq) allowed new approaches to understand, di
agnose and treat these diseases. In this review, we focus on evaluating 
how miRNA-seq has been used to date in this area, with the goal of 
analyzing the usefulness and state of maturity of this technology in 
neuropsychiatry. These approaches have the benefit of capturing a lot of 
the variability inside these disorders, and setting a starting point to trace 
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their etiology [7,12,13]. In addition, it is important to note that very 
little information and standardization regarding miRNA-seq data anal
ysis is available, resulting in a growing concern about the veracity and 
reproducibility of its results and conclusions [14,15]. For this reason, 
this review also aims to offer clear and comprehensive information that 
can serve as a guide to new researchers in this field. 

Recent reviews focused on analyzing the trends in the development 
of miRNA bioinformatics tools [16] or specific steps of the typical 
workflows such as preprocessing [17] or normalization [18]. In this 
review, we analyze the main objectives and bioinformatics workflows of 
miRNA-seq studies of neuropsychiatric diseases from a methodological 
perspective. Our objective is to create a valuable resource for those who 
want to work in this field by providing an overview of how miRNA-seq 
data is currently processed to study neuropsychiatric conditions. 

For this, we conducted four systematic searches on PubMed Central 
using the terms detailed in the Supplementary Table 1. Our inclusion 
criteria were the use of a miRNA-seq methodology to study a neuro
psychiatric condition (on human or animal models), and a publication 
date ranging from January 2016 to June 2020. After the initial search, 
we manually examined the 440 results and excluded bibliographic re
views, studies focused on specific miRNAs or those addressing traumatic 
brain injuries. We also discarded studies based on data acquired from 
microarray or RT-qPCR technologies, including those performing vali
dation of a previous miRNA-seq study. We selected two studies [19,20] 
from the 73 results of the first search; one [21] from the 70 results of the 
second; nine [22–30] from the 225 results of the third, and four studies 
[31–34] from the 72 results of the fourth search. These 20 studies were 
used in the development of this review. 

Once the bibliographic material was selected, we grouped the twenty 
studies by their main objectives (diagnosis, prognosis, and mechanism; 

which are explained in section 2), creating one diagram per article to 
analyze each bioinformatics workflow in detail. After analyzing each 
workflow, we built a summary diagram for each objective and used 
them to build a general diagram that encompasses all the articles 
pipelines (section 3). In addition, we analyzed each workflow step in 
detail to find the different approaches and software used in the 
literature. 

2. Objectives 

The aim of this section is to categorize the literature reviewed and 
analyze their main objectives from a functional point of view, bringing 
an overview of the questions addressed to date in the field of neuro
psychiatry using miRNA-seq data. To complement this analysis, the next 
section focuses on the steps of the bioinformatics analyses required to 
accomplish such objectives. The 20 studies used miRNA-seq in animal 
and/or human samples oriented to study several psychiatric disorders 
and neurodegenerative diseases and fall into three main categories: 
diagnosis, mechanism, and prognosis. While the latter category has only 
one study, the remaining are almost equally distributed between diag
nosis and mechanism, with one that falls in both categories. 

Eight of the 20 studies reviewed fall within the diagnosis category 
[11,19,20,22,28,30,35,36]. Table 1 summarizes the main features of 
these studies in chronological order. As shown, all of them were carried 
out in humans and the most studied condition is Alzheimer’s disease. 
These studies rely on the definition and discovery of biomarkers, that is, 
specific disease-related miRNAs. Once a set of biomarkers have been 
identified, two main analyses are performed: (i) building a predictive 
model to evaluate the potential diagnostic utility, and (ii) applying 
target prediction followed by enrichment analysis. Hicks [22] 

Table 1 
Studies in the diagnosis category.  

Study Date Organism miRNA sequencing 
target 

Disease Samples Objectives 

Hicks et al., 
2016 [22] 

April 2016 Human Saliva Autist Spectrum Disorder 
(ASD) 

24 ASD, 21 controls - Discover biomarkers by comparing miRNAs from ASD 
saliva samples and controls. 
- Evaluate the functional importance of ASD-related 
miRNAs. 

Hoss et al., 
2016 [19] 

March 
2016 

Human Brain (post- 
mortem) 

Parkinson’s Disease (PD) 29 PD, 33 controls - Discover biomarkers by comparing PD patients and 
controls. 
- Study the disease-related phenotypes of onset age and 
dementia by comparing PD patients with dementia and 
dementia patients without PD. 

Hara et al., 
2017 [30] 

January 
2017 

Human Serum Alzheimer’s disease (AD) Discovery set: 27 AD, 
18 controls 
Validation set: 36 AD, 
22 controls 

- Discover blood biomarkers by comparing serum 
samples from AD patients and controls. 

Wang et al., 
2018 [26] 

May 2018 Human Blood samples/ 
White blood cells 

Attention-deficit/ 
hyperactivity disorder 
(ADHD) 

White blood cells 
(discovery) set: 5 
ADHD, 5 controls 
Training set (blood 
samples): 68 ADHD, 
54 controls 
Testing set: 20 ADHD, 
20 controls 

- Discover biomarkers by comparing white blood cells 
from ADHD patients with controls. 

Gámez- 
Valero 
et al., 2019 
[20] 

October 
2019 

Human Plasma 
extracellular 
vesicles (EVs) 

Alzheimer’s disease (AD) 
and dementia with Lewy 
bodies (DLB) 

18 DLB, 10 AD, and 
15 controls 

- Discover biomarkers to improve misdiagnosis 
between AD and Dementia with Lewy bodies (DLB) by 
comparing miRNAs from plasma extracellular vesicles 
of AD patients with LBD patients. 

Lee et al., 
2020 [28] 

January 
2020 

Human Serum (peripheral 
blood) 

Bipolar II disorder (BP-II) Discovery set: 3 BP-II, 
3 controls 
Training set: 79 BP-II, 
95 controls 
Testing set: 20 BP-II, 
20 controls 

- Discover biomarkers by comparing miRNAs from BD- 
II blood samples and controls. 

Wu et al., 
2020 [36] 

February 
2020 

Human Blood samples Alzheimer’s disease (AD) 40 AD, 31 controls - Discover biomarkers by comparing miRNAS from AD 
blood samples and controls. 

Nie et al., 
2020 [35] 

May 2020 Human Exosome (exo- 
miRNA)/peripheral 
blood 

Parkinson’s Disease (PD) 5 AD, 7 PD, 34 
controls 

- Discover biomarkers for AD and PD by comparing 
AD/PD plasma exosomal miRNAs with controls.  
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highlighted 14 miRNAs in saliva with potential for a diagnosis of Autism 
Spectrum Disorder (ASD). Wang [26] described a set of 13 miRNAs in 
peripheral blood that may assist in identifying 
Attention-deficit/hyperactivity disorder (ADHD). Lee [28] identified 
serum miRNAs (miR-7-5p, miR-142–3p, miR-221–5p, and miR-370–3p) 
that may be potential peripheral biomarkers in the diagnosis of bipolar II 
disorder (BP-II). Hoss [19] described 29 miRNAs altered in Parkinson 
Disease (PD) prefrontal cortex, 21 of which overlapped with Huntington 
Disease (HD). Nie [35] found eight miRNAs present in human plasma 
exosomes to be significantly altered in AD and PD samples. Hara [30] 
identified serum miR-501–3p as a potential biomarker related to the 
progression of Alzheimer’s disease. Another study detected different 
miRNA expression levels comparing the miRNA profile of 
plasma-derived extracellular vesicles of dementia with Lewy bodies 
(DLB) and AD patients, which could help to improve the differential 

diagnosis between both diseases [20]. Wu [36] detected, in peripheral 
blood, 71 significantly differentially expressed miRNAs between the 
Alzheimer’s disease (AD) and control groups. 

Nine of the 20 studies reviewed fall within the mechanism category 
[21,22,24,25,27,29,31–34]. Table 2 summarizes the main features of 
these studies in chronological order. The aim of these articles is to 
deepen the understanding of neuropsychiatric pathology and expand the 
essential knowledge about the disease. Unlike the studies in the diag
nosis category, these studies have a fundamental approach and usually 
do not seek direct clinical application, and cover topics such as discov
ering underlying biological mechanisms [22,25,27,32,34,37], investi
gating the relationship between miRNAs and an interesting feature [21, 
25,29,31,32,38], and studying the fluctuations of the miRNAome during 
an event of interest [27,34]. 

Hicks [22] is the only study falling into two categories that highlights 

Table 2 
Studies in the mechanism category.  

Study Date Organism miRNA sequencing 
target 

Disease Samples Objectives 

Hicks et al., 
2016 [22] 

April 2016 Human Saliva Autist Spectrum 
Disorder (ASD) 

21 controls, 24 ASD - Discover biomarkers by comparing miRNAs from 
ASD saliva samples and controls. 
- Evaluate the functional importance of ASD-related 
miRNAs. 

Pfau et al., 
2016 [24] 

December 
2016 

Mouse Nucleus Accumbens 
(NAc) 

Stress-related 
disorders 

NA - Study the transcriptional and post-transcriptional 
profiles of NAc regarding to sexual differences in the 
behavioral response to subchronic variable stress 
(SCVS). For this, a comparison of the expression of 
miRNA and mRNA in NAc after exposure to such 
stress was conducted. 

Martin et al., 
2017 [25] 

January 
2017 

Human Peripheral blood Post Traumatic 
Stress Disease 
(PTSD) 

9 controls, 15 PTSD - Study the role of miRNAs in PTSD symptoms by 
comparing PTSD patient blood samples with controls. 

Faraji et al., 
2017 [31] 

May 2017 Long-Evans 
rats 

Brain Prenatal stress (PS) 34 - Study the possible relationships between 
multigenerational PS and focal cerebral ischemia 
outcomes by comparing miRNA expression levels 
between stressed rats, rats with a stroke, rats with 
both conditions and controls. 

Rani et al., 
2017 [21] 

October 
2017 

Human Extracellular 
microvesicle 
enriched plasma 
samples 

Age-Related 
Cognitive Decline 

97 healthy individuals - Study the relationships of the structural and 
cognitive function of the brain in older adults by 
comparing the expression levels of miRNA between 
different ages and cognitive functions. 

Si et al., 2018 
[32] 

August 
2018 

Mouse Nucleus Accumbens Depression NA - Improve understanding of the molecular 
mechanisms underlying stress-induced depression 
versus resilience. For this, a comparison of miRNA 
and mRNA expression levels from depressed and 
resistant mice after applying chronic unpredictable 
mild stress was conducted. 

Sillivan et al., 
2019 [29] 

May 2019 Mouse Basolateral amygdala 
complex (BLC) 

Post Traumatic 
Stress Disease 
(PTSD) 

NA - Study the role of the miRNAs in the susceptibility to 
remote, stress-enhanced memories by comparing 
miRNA expression of stress-susceptible mice to stress 
resilient mice. 

Hu et al., 
2019 [27] 

August 
2019 

Human Human dorsolateral 
prefrontal cortex 
(DLPFC) 

Schizophrenia 109 controls, 34 
patients 

- Study the temporal dynamics of miRNA expression 
and its dysregulation in the DLPFC of patients with 
schizophrenia by determining its expression at 
different ages and comparing it with controls. 

Mavrikaki 
et al., 2019 
[33] 

October 
2019 

Sprague- 
Dawley rats 

Bed nucleus of the 
stria terminalis 
(BNST) 

Anxiety/Stress 
response 

NA - Study the differences in the expression of BNST 
miRNA between male and female rats exposed to 
social isolation stress on the adolescence by 
comparing their miRNA expression to controls. 

Song et al., 
2019 [34] 

December 
2019 

Sprague- 
Dawley rats 

Nucleus Accumbens Chronic 
Unpredictable Mild 
Stress (CUMS) 

8 controls, 8 CUMS, 8 
CUMS with treatment 

- Study the alterations on NAc miRNA expression 
during chronic stress and the effect of the medication 
on this alteration. For this, comparisons between 
control, CUMS and CUMS with treatment were made 
through a co-expression analysis. 

Ma et al., 
2020 [37] 

February 
2020 

Mouse Brain Alzheimer’s disease 
(AD) 

NA - Study the interactions between miRNAs, mRNAs and 
lncRNAs on AD to seek differentially expressed 
networks. 

Weisz et al., 
2020 [38] 

Month 
2020 

Human/Rat Hipocampus (rat)/ 
Serum (human) 

Traumatic Brain 
Injuries (TBI) 

Human: 51 (6 acute 
and 6 aged controls, 33 
acute TBI, 6 chronic 
TBI) 
Rats: 56 (half controls, 
half TBI) 

- Study the possible relationships between long-term 
dysregulation of hippocampal miRNAs and chronic 
neurodegeneration after TBI. For this, a comparison of 
miRNA expression levels between patient with a 
diffuse injury pattern and patients with focal 
contusion was conducted.  
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14 miRNAs as potential biomarkers for ASD. Pfau [24] and Si [32] 
suggested that miRNA profiles are associated with depression resilience. 
Song [34] showed that antidepressant treatment (Escitalopram) can 
reverse Nucleus Accumbens (NAc) miRNA abnormality induced by 
chronic stress. Hu [27] showed that miR-936 and miR-3162 are 
important in dorsolateral prefrontal cortex development, suggesting a 
relationship between schizophrenia and dysregulation of miRNAs 
augmented in infancy and prepuberty. Posttraumatic stress disorder 
(PTSD) was found to be related to eight differentially expressed miRNAs 
in peripheral blood which can target axon guidance and Wnt signaling 
pathways [25]. Another study showed that mir-135b-5p contributes to 
the storage of stress-enhanced fear memory within the amygdala and 
may be an important therapeutic target [29]. In addition, multigener
ational prenatal stress downregulates miR-708 in the prefrontal cortex 
and upregulates the MAPK pathway involved in regulation of neuron 
development and cell proliferation [31]. Mavrikaki [33] raises the op
portunity to develop sex-specific pharmacotherapies. Ma [37] used the 
APP/PS1 mouse brain to provide insights that facilitate AD diagnosis 
and future treatment strategies. Rani [21] identified 13 miRNAs in 
circulating microvesicles as potential biomarkers for age-related cogni
tive decline, and that could be associated with a pre-symptomatic stage 
of disease. To conclude, Weisz [38] proposed that miRNA-sequencing in 
biofluids might be used to distinguish traumatic brain injuries (TBI) as 
acute, chronic, focal or diffuse, and potentially, the existence of neuro
degenerative sequelae. 

Finally, only one study belongs to the prognosis category [23]. In this 
study, authors identified biomarkers for disease risk estimation, looking 
for indications of a prognosis in the characteristics of the patient (sex, 
disease subtype) and attempted to find these variation patterns at the 
miRNA expression level. Like all the diagnosis studies, this study was 
also carried out in human samples of immune cells (leukocytes). The 
disease under study was psychosis (schizophrenia or a related disorder) 
and included 27 controls, 30 high-risk progressors, and 37 high-risk 
non-progressors. Authors were able to identify five regulatory miRNAs 
in leukocytes that could differentiate persons who develop psychosis 
from those who do not. 

3. Bioinformatics analysis 

This section is a compilation of the analyses, methods and software 
tools that were found in the literature. Table 3 is intended to serve as a 
guide to the subsequent content by providing an overview of the soft
ware used in each step of the miRNA-seq workflow; additionally, Sup
plementary Table 2 offers a summary of each analysis along with a list of 
the software used for each process, which are discussed in the following 
subsections. 

3.1. miRNA/mRNA NGS data processing 

The first process of the bioinformatics pipeline is the preparation of 
the miRNA sequenced data to run all the subsequent analysis. This step 
comprises data preprocessing, quality control, alignment to the refer
ence genome and quantification and normalization of the results. 
Furthermore, the studies that analyze the miRNA-mRNA targets [24,32, 
37] also preprocess the mRNA data, adding an extra step: filtering the 
non-coding transcripts. These are all well established procedures across 
the studies and there is not much conceptual variation. 

3.1.1. Preprocessing 
Raw sequenced data need to be prepared before any type of inter

pretation. This preprocessing mainly implies trimming the 3′ or 5’ 
adapters needed by the HT-Seq technology and filtering the sequences 
by size to keep only those attributable to miRNAs (approximately 
18–25 nt). 

Cutadapt [39] was the most common software used for adaptor 
trimming, employed on six of the 20 studies [19,29–31,33,36]. The 
main features of cutadapt are trimming the 5′ and 3’ adapter and the 
poli-A tails of the transcripts, and offering custom thresholds for mis
matches, deletions and insertions. 

Six of the remaining studies used different tools, namely FASTX 
Trimmer [24], Ion Torrent Suite [25], miRDeep2 [38], miRSeq [26], 
Partek Flow [21] and Trimmomatic [20]. The remaining studies did not 
specify the process. 

Table 3 
Software used per analysis on the reviewed studies. They are grouped chronologically on each objective. Processes not specified on the studies are denoted by “-”. 
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3.1.2. Quality control 
Before data interpretation, reads need to be analyzed for foreign 

DNA contamination, unwanted biases or artificial duplications that 
might have been generated by the sequencer itself. For this purpose, the 
reviewed studies used four different tools, namely FastQC [40], Ion 
Torrent Suite [41], miRSeq [42] and NOIseq [43]. 

FastQC was the most common software used for quality control and it 
was employed in five of the 20 studies to estimate overall sequence 
quality [19,24,29,31,33]. The main feature of FastQC is the generation 
of an html report from a BAM, SAM or FastQ file. This file contains basic 
statistics results such as total numbers of reads, reads length or GC 
content along with more specific analyses intended to test for several 
types of bias like overrepresented sequences or Kmer content. 

Two of the remaining studies [21,25] used Ion Torrent Suite for this 
process and the other two miRSeq and NOIseq, respectively [26,32]. The 
remaining studies did not specify this process. 

3.1.3. Alignment 
Alignment is the process of mapping reads against a reference 

genome or transcriptome in order to identify the corresponding genomic 
positions and find the reads identity. It is the key step where the data 
obtained by a sequencer is linked to current knowledge, and all down
stream analyses depend on its precision. 

Aligning against a genome allows for the discovery of potentially 
new miRNAs, but it is a complex process and usually requires indexing 
the reference genome in order to increase the speed of the query process. 
Transcriptome alignment on its side is faster and more reliable in the 
reads identification, but is restricted to the current knowledge and 
prevents new, unannotated transcript discovery [44]. 

Eight of the 20 studies (40%) align to the transcriptome [11,23,28, 
32,34,36,38], twelve (60%) align to a reference genome [19–22,24,25, 
29–31,33,35,37] and only one (5%) performed both alignments [33]. Is 
important to note that nine studies used a deprecated version of a 
genome for alignment (Supplementary Table 3). 

As all the studies used miRNAs data, they employed specialized 
aligners to match short reads to large genomes; these are known as short 
read aligners [45]. Bowtie [46] was by far the most widely used software 
being employed on 9 of the 20 studies (45%) [19–22,24,27,28,30,32,36, 
37]. Its two main features are great efficiency on short reads alignment, 
as a result of indexing the genome with a Burrows-Wheeler trans
formation, and high interoperability due to its standard output on SAM 
format. It is also integrated by tools like TopHat [47] and Crossbow 
[48]. Bowtie 2 [49], meanwhile, is recommended for reading lengths>

50 nt; however it was used in three studies [20,28,37]. As shown in 
Table 3, the remaining eight studies that did specify this step used CLC 
genomics workbench [50], miRDeep2 [51], miRSeq [42], MicroRazerS 
[52], Blast [53], Burrows-Wheeler Aligner [54], seqbuster [55] and 
STAR [56]. Lastly, in the study conducted by Mavrikaki [33] two 
different tools are used, namely seqbuster and STAR. 

3.1.4. Quantification 
The aligned sequences are the reads “tagged” with an identifier 

(usually their genome coordinate) along with some metadata and in
formation about each alignment. Some common formats to store this 
type of data are the BAM, SAM and CRAM. In the quantification process, 
these sequences are grouped by their identifier and quantified, so that 
the output of this process is a list of non-repeated identifiers together 
with their number of occurrences in the sample. The coordinates of the 
sequence are usually intersected before the actual quantification process 
with an annotation file from some database (commonly on GFF/GTF 
format) to add current knowledge about each read. In addition, unan
notated reads can be tested for a potential miRNA function. 

In line with the above, miRbase [57] was the most employed data
base for miRNA annotation, having been used in 14 of the studies (70%) 
[19,21,26–30,32–38]. Other databases used were MirGeneDB [58], 
GenBank [59], Rfam [60] and ncRNA database [61]. Three studies [21, 

33,37] tested for potential miRNA function using miRDeep2, and only 
Ma [37] also used miREvo [62] for this purpose. 

Regarding the quantification process itself, seven different tools were 
used for quantification, namely BaseSpace [63], FASTA/Q collapser 
[64], HTSeq [65], miRDeep2 [51], miRSeq [42], sRNAnalyzer [66] and 
MicroRazerS [52]. MiRDeep2 was the most prevalent tool, being used in 
four of the 20 studies [25,29,33,38]. It is a software package composed 
of three scripts that covers preprocessing (mapper.pl), quantification 
(quantifier.pl) and identification of known and novel miRNAs (miR
Deep2.pl). The latter uses an algorithm based on Bayesian statistics to 
score and collect potential miRNA sequences between the aligned reads 
[51]. 

Sillivan [29], Weisz [38] and Martin [25] used quantifier.pl for 
quantification whereas Mavrikaki [33] did not specify the quantification 
method, although they probably used quantifier.pl as well. As shown in 
Table 3, Hara [30] and Pfau [24] used HTSeq Python package, and the 
five remaining studies used Illumina BaseSpace platform [22], FASTA/Q 
collapser [19], miRSeq [26], sRNAnalyzer [36], MicroRazerS [31] and a 
custom script [37]. The remaining articles did not specify this process. 

3.1.5. Normalization 
The number of reads mapped to a gene is affected by different factors 

aside from its abundance; factors such as reads length [67], GC-content 
[68] and sequencing depth [69] can cause significant alterations on the 
quantification results and produce false positives in differential 
expression analysis [70]. Therefore, normalization is essential to make 
reliable comparisons between samples. Five different normalization 
methods were used on the bibliography reviewed, namely Reads Per 
Kilobase Million (RPKM), Transcripts Per Kilobase Million (TPM), 
Trimmed Mean of M-values (TMM), Reads per million mapped reads 
(RPM) and median-of-ratios method (DESeq). RPKM and TPM are used 
to normalize for library size whereas TMM and DESeq normalize for 
sequence depth, while RPM is similar to RPKM but without taking into 
account the transcripts length. It has been suggested that TMM and 
DESeq are the most suitable methods for miRNA count data normali
zation, whereas the Total Count and RPKM normalization methods are 
discouraged [17,71]. 

As can be seen on Supplementary Table 4, five of the 20 studies 
(25%) normalized for library size using TPM (3), RPKM (1) and custom 
methods (1). 12 of the 20 studies (60%) normalized for sequence depth 
using DESeq (9) and TMM (3). Hicks [22] used RPM for normalization, 
Song [34] did not normalize the data due to DEGseq requirements [72] 
and Pfau [24] and Rani [21] did not specify the normalization process. 

To carry out the counts normalization the reviewed studies used 
three different software tools, namely DESeq/DESeq2 [73,74], edgeR 
[75] and Illumina BaseSpace platform [63]. As shown in Table 3, the 
most used software was DESeq/DESeq2, having been employed in nine 
of the 20 studies [19,25,29–33,35,38]. DESeq is an R package for 
normalization, visualization and differential expression analysis of high 
dimensional count data. The DESeq normalization assumes that DE and 
non-DE genes behave the same and that the expression across conditions 
is balanced [70]. The use of edgeR, which is an R package specialized on 
differential expression analysis of RNA-seq data with a built-in 
normalization method (TMM) for sequence depth, is notable in three 
of the most recent studies [27,36,38]. It makes the same assumptions as 
DESeq. Finally, Hicks [22] used the Illumina Basespace platform for the 
normalization process. The remaining studies did not specify the soft
ware used. 

3.1.6. Filtering non-coding transcripts 
Several studies apply a “Network analysis” to search for relationships 

between miRNAs and mRNAs. This process involves the integration of 
miRNA and mRNA data, which requires an mRNA preprocessing. To 
obtain the mRNAs from the RNA-seq data, a filter is applied to non- 
coding reads to retain only those with potential mRNA function. Only 
Ma [37] specified the software tools used for this purpose, which were 
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CNCI [76], CPC [77], PfamScan [78] and PhyloCSF [79]. The remaining 
articles [24,32] applied this step but did not specify any particular 
software. 

3.2. Expression analysis 

After preprocessing comes expression analysis, which is the first 
stage of the workflow where the data begins to be analyzed: it comprises 
filtering reads by abundance, the differential expression analysis itself 
and a false discovery rate correction procedure. The expression analysis 
can be regarded as the set of processes aimed at detecting statistically 
significant variations in miRNA expression between different 
conditions. 

3.2.1. Filter low-expression genes 
RNA-seq provides a high dynamic range on gene expression profile 

quantification; however, quantification methods lack precision on low- 
expressed reads due to noise produced by the random sampling pro
cess typical of this technology [80]. The filtering of low-expressed genes 
can increase the number of differentially expressed reads and improve 
the robustness of its results [81]. 

There are several filtering procedures, usually based on an empirical 
threshold suggested by a differential expression analysis software [80]. 
For instance, in DESeq2 this filter can be applied automatically. 

As shown in Supplementary Tables 5 and 15 of 20 articles (75%) 
explicitly stated that they filtered low-expression miRNAs/mRNA or 
used DESeq2, whereas five studies did not report any software. Sup
plementary Table 5 shows the filtering criteria in each study: usually the 
occurrence of a read between samples, a minimum threshold for reads 
on each sample or a combination of both criteria are used to discard low- 
expression reads. There was no agreement about the “occurrence across 
samples” threshold, which was 10% in the Hu study [27], 50% in the 
Hicks study [22], 80% in the Pfau study [24], 100% in the Rani and 
Jeffries studies [21,23] and a mixed criteria in the Gámez-Valero study 
[20]. Regarding the “minimum reads per sample threshold”, four studies 
[20,24,32,36] established five reads as the minimum required to count a 
miRNA as present, whereas the remaining ones widely differ on their 
criteria. Finally, five studies [20,21,23,24,36] used both the threshold of 
“occurrence across samples” and “minimum reads per sample” to find 
low-expressed miRNAs. 

3.2.2. Differential expression analysis 
Once the miRNA-seq data for each condition studied is quantified, 

normalized, and low-expression reads have been removed, the miRNAs 
are compared to find transcriptional variations between cases and con
trols with the goal of finding over-expressed, under-expressed, or absent 
miRNAs among the conditions under study. This process is known as 
differential expression analysis (DEA) and its results are often critical to 
the study’s conclusions. There are several complexities in this process 
that can lead to an inaccurate outcome. On one hand, there are many 
covariates besides the one of interest that may hide the association of 
expression levels with the primary factor of interest [82]; these include 
variables such as age, gender or medications, but also the batch effect. 
On the other hand, the available DEA software tools implement different 
methods that can lead to different results from the same data [83–85], 
making comparisons across studies difficult. In line with these problems, 
two of the reviewed studies [35,38] addressed the variability of the DEA 
tools by using more than one and keeping only the matching results. 

Regarding the confounding factors effects, four studies [19,24,30, 
33] repeated the DEA with and without adjustment for covariates, and 
then compared the results to overview the magnitude of the 
non-relevant variability. Wang [26] applied a Multivariate Analysis of 
Covariance (MANCOVA) to test whether age, sex, or intelligence quo
tient functioned as confounding factors, whereas Rani used an ANOVA 
for sex differences and Pearson’s regression analysis for age. Hu [27] 
previously applied a Principal Component Analysis (PCA) to test if 

diagnostic, age, sex or race cause a significant variation in expression 
levels, and then adjusted a general linear model (GLM) for the most 
relevant variables. This is important because accounting for the effect of 
irrelevant variables also reduces the power of detecting DE genes [86]. 
Finally, due to the small sample sizes only Hoss [19] used ComBat [87] 
to correct for batch effect before applying the DEA. 

Regarding the DEA tools, seven different software packages were 
used for this process, namely DESeq/DESeq2 [73,74], edgeR [75], 
Limma [88], SPSS, Cuffdiff [89], DEGseq [72] and NOIseq [43]. DESeq 
and its latest version DESeq2 were the most frequent software, used in 
nine of the 20 studies (45%). These two programs use a parametric 
approach (the negative binomial distribution) to build a model to find 
differentially expressed reads between conditions. With the parametric 
approach it is possible to rely on the model to predict the value of un
known data, but the conclusions are limited by the fit of the model [86]. 

Also notable is the use of other two parametric DEA tools: edgeR and 
Limma, each one used in four different studies (Table 3). EdgeR uses 
negative binomial distribution whereas Limma relies on a linear 
approach. Lastly, Cuffdiff, DEGseq and NOIseq were each used in just 
one study. DEGseq has a parametric approach based on a Poisson model 
while Cuffdiff and NOIseq are non-parametric tools. 

It is worth mentioning that 11 of the studies reviewed [20,23,24, 
27–30,32,33,37,84] used an experimental validation through RT-qPCR 
to confirm the in-silico DE miRNA expression. Wu [36] addressed the 
lack of experimental validation with the replication of the study in an 
independent cohort. 

3.2.3. Multiple testing correction 
On an RNA-seq DEA, each gene is tested for differential expression 

analysis with a certain threshold of significance. This means that tens of 
thousands of comparisons are made, one for each gene, and that the 
confidence level is applied to each test considered individually. This 
fact, known as multiple comparisons problem, may lead to high rates of 
false positives and produce an overestimation of the associations 
detected. Thus, a multiple testing correction procedure is applied. 

The most common correction in the reviewed literature was the False 
Discovery Rate (FDR), which was proposed by Benjamini and Hochberg 
in 1995 and is defined as “an estimation of the proportion of errors 
committed by falsely rejecting null hypotheses’’ [90]. The FDR correc
tion was employed on 17 of the 20 articles (85%), and it is included on 
all the DEA software used (Cuffdiff [89], DEGseq [72], DESeq [74], 
edgeR [75], Limma [88], NOIseq [43]) on the studies [19,24,25,27, 
29–38]. Hicks [22], Gámez-Valero [20] and Rani [21] applied this 
correction but did not specify any software. 

Only Jeffries [23] used a family-wise error rate approach using a 
Bonferroni correction. The Bonferroni correction is a very conservative 
correction when applied to high-dimensional data, since the significance 
level decreases as the number of comparisons increases. This results in a 
lack of power to detect true positives and has been the main reason for 
the disuse of this method in the RNA-seq analysis in favor of the FDR 
approaches [91]. Finally, Wang [26] and Lee [28] did not mention any 
multiple testing correction. 

3.3. Evaluation of diagnostic utility 

After DEA and multiple testing correction, a list of potential bio
markers is obtained. Then, a set of tests can be performed to assess the 
predictive power of these molecules and thus estimate their applicability 
in a clinical setting. The main approach is to build a predictive model 
using machine learning techniques with the data and then evaluate its 
performance to discriminate between the conditions under study. Pre
dictive models are excellent tools for testing potential biomarkers, but 
their performance is tied to the data on which they are built. If the 
sample is small, as in the case of RNA-seq studies, there is a high risk of 
overfitting, as the model will not be able to generalize to new, unseen 
data. 
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Six of the 20 articles (30%) built predictive models to assess the 
diagnostic utility of the differentially expressed miRNAs, using different 
classification models and validation schemes [19,20,22,23,28,36]. 
Table 4 summarizes these methods along with the software packages 
used when available. These classification models were: supported vector 
machine (SVM) [28], Wilcoxon-rank sum test [20], partial least squares 
discriminant analysis (PLS-DA) [22], weighted voting classification 
[19], logistic regression analysis [36], and a combination of a greedy 
algorithm ( GA) with a t-test [23]. 

Regarding the validation schemes (Table 4), two of the studies used 
Leave One Out Cross-Validation (LOOCV) [19,20], whereas the 
remaining articles applied different approaches. Lee et al. [28], used a 
train dataset for model building and an independent test set for model 
evaluation. Interestingly, Wu et al. [36] replicated the study on an in
dependent dataset and compared the overlapping miRNAs found in both 
datasets. Then, they applied a ROC analysis to assess the discriminative 
power of the two replicated DE miRNAs. Other approaches include 
Monte Carlo cross validation (MCCV) [22] and the application of a 
permutation test [23]. 

3.4. Functional analysis 

At this stage of the bioinformatics workflow, the miRNAs presumably 
related with the conditions under study have been discovered due to the 
DEA. Thus, the next logical step is to analyze these molecular mea
surements at the functional level. The group of methods intended to 
characterize the functions affected by these DE miRNAs constitute the 
functional analysis. 

3.4.1. Target prediction 
As post-transcriptional repressors, miRNAs block the protein-coding 

gene expression by binding their seed region to the mRNA 3′ UTR. An 
alteration in the miRNA biogenesis or their mRNA targets has been 
linked to the development and the evolution of diseases [92], including 
psychiatric and neurodevelopmental disorders [93]. Furthermore, since 
one miRNA can target several mRNAs, the number of genes affected by a 
miRNA deregulation is expected to be greater than the number of 
miRNAs altered in such dysregulation. The identification of the mRNAs 
targeted by the DE miRNAs is known as target prediction (TP) and is a 
key step on the interpretation of an RNA-seq analysis. 

The process of TP is usually based on a comparison between the DE 
miRNA and an mRNA database, resulting in a list of candidate mRNA 
targets. Commonly, these comparisons are focused on a miRNA-mRNA 
seed match, the conservation of miRNA regions or the ease of the 
miRNA-mRNA hybridization [94]. 

Twelve of the reviewed studies (60%) performed a TP analysis using 
a total of eight different software tools [25–29,32,34–36], namely IPA 
[95], DIANA-miRPath [96], miRanda [97], miRDB [98], miRWalk [99], 
RNAhybrid [100], DIANA-TarBase [101] and TargetScan [102]. The 

most used tool was TargetScan, which was employed in seven of the 20 
studies [26–29,32,34,35]. TargetScan is a web server focused on miRNA 
TP that uses the miRNA-mRNA seed matching and conserved sites to 
establish the relationship between the miRNA and its mRNA target. The 
output of TargetScan is a rank of the predicted targets. To obtain more 
robust results, three studies applied several TP software to their data and 
kept only those targets predicted by all the databases [32,35] or more 
than one [29]. The combinations used were TargetScan + miRanda +
RNAhybrid [32,35] and TargetScan + TarBase + microCts [29]. The 
remaining two articles used Ingenuity Pathway Analysis (IPA) [36] and 
miRWalk [25]. 

3.4.2. Pathway enrichment analysis 
A pathway is a group of genes and their interactions that are related 

to a specific biological function [103]. The TP analysis brings informa
tion about the genes altered by the disease, so the process of finding the 
interactions and functional groups in these genes and then searching for 
differential expression is known as pathway enrichment analysis (PEA). 
PEA bridges the gap between gene alterations and biological functions, 
making RNA-seq information less abstract and offering clearer insights 
of the underlying biological processes. 

There are two key concepts to understanding a PEA: (i) the databases 
with the information about the gene functions (e.g., Gene Ontology 
[104], GeneCards [105]) or pathways in which they are present (e.g., 
KEGG [106], Reactome [107], WikiPathways [108]); and (ii) the 
methodology used to find enriched pathways from the DE genes of the 
study. 

There are three types of PEA according to the methodology used to 
find altered pathways: Over-Representation Analysis (ORA), Functional 
Class Scoring (FCS) and Pathway Topology (PT). They are also known as 
first, second and third generation approaches respectively [103]. In an 
ORA approach, a pathway is considered DE when more DE genes belong 
to it than expected compared to all the genes in the study. The main 
benefit of this method is its simplicity, but it treats each gene equally 
regardless of their expression, uses only a portion of the data (DE genes), 
and does not account for gene interactions [109]. On the other hand, 
FCS methods use a gene-level statistic to compute a pathway weight and 
thus find DE pathways. With FCS methods all data available is consid
ered, and the expression of each gene is used to identify DE pathways. As 
a drawback, FCS also does not consider genetic interactions. Finally, PT 
methods address the ORA and FCS limitations, being similar to FCS but 
using the topology of the gene interactions to compute the gene-level 
statistics, and usually having a great performance when pathways do 
not overlap [110,111]. 

As Table 5 shows, 14 of the reviewed studies (70%) applied a PEA 
[21,22,24–29,33–35,37,38] using a total of six different software tools, 
namely DAVID [112], DIANA miRPath [96], IPA [95], JNLP-GSEA 
[113], miRWalk [99] and Partek Genomic Suite [114]. ORA was the 
most common approach for PEA, having been used in 13 of the 20 ar
ticles [21,22,24,25,27–29,33–38]. Only one article used an FCS method 
[27] and neither used a PT approach. 

DAVID was the most frequent PEA tool (Table 5), having been 
employed in five of the 20 studies (30%) [22,28,34,36,37]. DAVID is an 
ORA tool for determining functionally essential genes in a gene list 
through the identification of the enriched functions and biological 
processes in which DE genes are involved. The remaining articles used 
DIANA miRPath [21,29,33,35], IPA [38], JNLP-GSEA [27], miRWalk 
[25] and Partek Genomic Suite [26]. 

Regarding the databases used for PEA (Table 5), five were used in the 
literature, namely KEGG, Gene Ontology (GO), Simons Foundation 
Autism Database (AutDB) [115], Genomatix [116] and the reference 
sets of IPA. As Table 5 shows, KEGG and Gene Ontology (GO) were the 
most used databases. It is worth mentioning that Hicks et al. [22] also 
compared the miRNA targets with the AutDB in order to find genes 
presumably involved in autism, and that Weisz et al. [38] only selected 
the pathways related to central nervous signaling or immune system 

Table 4 
Classification and validation methods used for the evaluation of the diagnostic 
utility.  

Study Classifiation Model Validation Software 

Lee et al., 2020 
[28] 

Support Vector 
Machines 

Train/test SPSS 

Wu et al., 2020 
[36] 

Logistic regression 
analysis 

Independent 
sample 

– 

Gámez-Valero 
et al., 2019 
[20] 

Wilconson-rank sum 
test 

Leave One Out 
Cross-Validation 

– 

Hicks et al., 
2016 [22] 

Partial least squares 
discriminant analysis 

Monte Carlo cross- 
validation 

Caret 

Hoss et al., 2016 
[19] 

Weighted Voting 
classification 

Leave One Out 
cross-validation 

GenePatterns 

Jeffries et al., 
2016 [23] 

Greedy Algorithm and 
t-test 

Permutation test –  
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after performing the analysis. 

3.4.3. Network analysis 

A large amount of information is collected in miRNA-seq studies. 
Along with the samples, not only is miRNA expression gathered, but also 
information about other transcripts such as mRNA or long non coding 
RNA (lncRNA), medication, sex and other secondary conditions. The 
process of integrating this information and constructing a network of 
clusters and interactions is known as network or integrative analysis. 

Four of the reviewed studies (20%) performed a network analysis 
[24,27,32,34,37], all of them using Cytoscape [117]. Cytoscape is an 
open-source platform for building and analyzing complex networks that 
allows linking the resulting network with databases of functional 
annotation. 

Two studies sequenced miRNAs and mRNAs and used the network 
analysis to integrate the differential expression of both [24,32]. As re
pressors, miRNAs are usually negatively correlated with mRNA 
expression; by analyzing the simultaneous changes between both, they 
explore the potential interactions between the DE miRNAs and their 
mRNA targets. 

On the other hand, Ma et al. [37] applied the network analysis to 
integrate information of the DE miRNA, DE mRNA and DE lncRNA 
expression to construct a competing endogenous RNA (ceRNA) network. 
Finally, Song et al. [34] built a network focused on the co-expression 
patterns of the DE miRNAs to identify those with common biological 
functions. 

4. Discussion 

MiRNA-seq is a valuable approach to address the study of neuro
psychiatric diseases and gain insights into their development and course. 
However, it is still a new, complex field that requires the integration of 
many disciplines, relying heavily on the use of bioinformatics tools for 
data processing, interpretation and analysis. A large number of different 
bioinformatics programs and protocols for miRNA-seq (and other RNA- 
Seq technologies) data analysis have been developed in the last years 
[16,118,119]. For this reason, different online repositories of 
miRNA-seq tools such as miRandb [120], Tools4miRs [121], and miR
ToolsGallery [122], have been also developed to help users discover and 
select the right tools. In this scenario, it can be cumbersome for new 
researchers to design an appropriate workflow to conduct a miRNA-seq 

study and, therefore, its results and conclusions may have limited 
reproducibility. 

After reviewing 20 miRNA-seq studies focused on neuropsychiatric 
diseases, we achieved a general depiction of main interests and current 
methodologies applied in this field. We categorized them into one of the 
three main objectives (diagnosis, mechanism, and prognosis) and 
analyzed each study in detail to capture the bioinformatics workflows 
used. As noted by Simoneau et al. [15], we found that the description of 
the bioinformatics methods is often incompletely reported in some ar
ticles, with some steps much better described than others and important 
omissions made. Nevertheless, we were able to identify the main 
workflows, creating one figure with the workflow of each study that can 
be found in the Supplementary Material 1. In addition, the Supple
mentary Material 1 also includes the typical workflows for the diagnosis 
and mechanism objectives. Fig. 1 shows the general miRNA-seq data 
analysis in neuropsychiatric studies inferred from the reviewed litera
ture, which has similarities with analyses applied to a conventional NGS 
assessment of miRNA-seq data in other areas. All this information may 
help researchers in neuropsychiatric diseases in designing a workflow 
for the analysis of miRNA-seq data and selecting the tools to use in each 
specific step. 

As Fig. 1 shows, the preprocessing and expression analysis steps are 
common to all the studies. In addition, a significant number of studies 
include the target prediction and enrichment analysis steps. Despite the 
high degree of similarity between the workflows used for each objective, 
there are notable differences in post-DEA analysis. Studies with diag
nosis objectives usually build predictive models to test the specificity 
and sensitivity of the DE miRNAs (Fig. 1, number 3), and usually explore 
the influence of several variables on the miRNA expression of human 
samples. On the other hand, those classified in the mechanism category 
have a tendency to integrate miRNA and mRNA data on a network 
analysis (Fig. 1, number 3’), and often compare the results from animal 
models with previous data from human studies. Lastly, the only study 
classified on the category prognosis used the DE miRNAs between 
different stages of psychosis risk to build a classification model and then 
used a miRNA-miRNA correlation network to study the degree of co- 
regulation within groups. 

During the elaboration of this review, we also identified several 
complexities that are worth comment. As shown here, workflows for 
miRNA-seq data analysis are, in general, diverse and complex, with 
many sequential steps and many choices for each of them. In this sense, a 
recent study by Botvinik-Nezer et al. conducted in 2020 indicated that 
the analytical flexibility produced by complex workflows (many steps, 
many choices and each step) across studies was related with substantial 
effects of scientific conclusions [123]. This study also emphasizes the 
need to validate and share analysis workflows and the need to perform 
and report multiple analyses of the same data to address the results 
variability. As shown in the previous section, the number of different 
tools used for the same analysis steps is very high. For instance, up to 
seven different tools were used for the differential expression analysis 
step, with DESeq/DESeq2 being the most popular choice (used in nine of 
20 studies). Alignment, filtering low-expression genes, and target pre
diction were the steps most subject to methodological variations as can 
be seen in Table 4 and Supplementary Tables 3 and 5. Four of the studies 
included in this review [29,32,35,38] used more than one software to 
perform the same analysis and try to diminish the results variability. In 
addition, and regarding the preprocessing steps, a paper from Tam et al. 
[17] made practical recommendations on the most suitable pre
processing methods for the extraction and interpretation of miRNA 
count data that should be taken into account when developing new 
pipelines. 

Once the analysis workflow is established and the corresponding 
tools are selected, another technical complexity is managing its execu
tion. To overcome this issue, workflow management systems (WMS) are 
typically used, although they require advanced bioinformatics skills and 
may require a significant amount of development time and effort. 

Table 5 
Methods, software and databases used for pathway enrichment analysis.  

Study Method Software Database 

Hicks et al., 2016 [22] ORA DAVID 
– 

- 
AutDB 

Pfau et al., 2016 [24] ORA IPA, DAVID GO terms 
IPA reference set 

Martin et al., 2017 [25] ORA miRWalk – 
Rani et al., 2017 [21] ORA DIANA miRPath GO terms 
Wang et al., 2018 [26] ORA Partek-Genomic- 

Suite 
– 

Sillivan et al., 2019 [29] ORA DIANA miRPath – 
Hu et al., 2019 [27] FCS 

ORA 
JNLP-GSEA Genomatix 

database 
Mavrikaki et al., 2019 

[33] 
ORA DIANA miRPath – 

Song et al., 2019 [34] ORA DAVID GO terms 
KEGG 

Lee et al., 2020 [28] ORA DAVID KEGG 
Wu et al., 2020 [36] ORA DAVID KEGG 
Nie et al., 2020 [35] ORA DIANA-miRPath KEGG 
Ma et al., 2020 [37] ORA DAVID GO terms 

KEGG 
Weisz et al., 2020 [38] ORA IPA IPA reference set 

*ORA: Over-Representation methods, FCS: Functional Class Scoring methods. 
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Consequently, this is not always a feasible choice for many research 
groups. Given these facts, integrated tools have been developed to 
support typical analysis workflows, including miARma-Seq [124], a tool 
that includes almost all steps identified in the reviewed literature. None 
of the articles reviewed used such integrated software implementing a 
miRNA-seq workflow and do not even mention the use of a WMS to set 
up and execute their own analyses. The use of a WMS is recommended 
and a good practice providing several benefits, making the computa
tional methods more maintainable, reproducible, and shareable [125]. 
Additionally, the use of a WMS would allow changing the software used 
in some steps more easily (e.g., changing the alignment tool) or using 
different tools and integrating their results (e.g., perform target pre
diction with different databases). 

Finally, another sensitive issue found in the reviewed studies is a 
general use of outdated tools and databases, most notably in the align
ment and enrichment analysis steps. Regarding the former, nine studies 
used a deprecated version of a genome for alignment Supplementary 
Table 3. This is probably due to the exclusive use of annotations from 
versions of miRBase prior to 21, where the annotations of the hg38 
genome were included. Furthermore, it is easier to make comparisons 
with data from previous studies based on hg19 by using a deprecated 
version of the genome rather than reassigning the old coordinates. 
Regarding the latter, four studies conducted between 2019 and 2020 
used DAVID, which had been outdated since October 2016. This may be 
the result of the variety and complexity of the analyses and tools for 
pathway analysis; there are many methodologies and software with 
ambiguous names and a lack of literature and consensus regarding 
procedures. In our opinion, this translates into a reduced understanding 

of the processes for pathway analysis, and a search for clear and simple 
solutions like those offered by DAVID or the ORA analyses. 

Aside from the technical and methodological issues discussed so far, 
another important limitation of most studies reviewed is the small 
sample sizes used. Having an appropriate sample size is critical to con
ducting experiments with enough power to detect true effects; using 
small sample sizes can increase false positive results and produce 
augmented, unreliable effect sizes [126]. This issue is present in most of 
the articles reviewed and, in fact, most of them acknowledge it. As 
shown in Tables 1 and 2, most of the studies only collected a few tens of 
samples for their experiments. Such low sample sizes can hinder both the 
identification of true differentially expressed miRNAs and the creation 
of accurate predictive models. 

In summary, many studies conducted over the last few years have 
combined microRNA-seq technologies with a large variety of experi
mental and bioinformatics approaches to identify and characterize 
microRNAs (key regulators of transcriptome plasticity) involved in 
several neuropsychiatric disorders. In such a context, microRNAs have 
emerged as potential candidates to be used as biomarkers (e.g.: disease 
prediction, diagnosis, prognosis and therapeutic response) and/or 
therapeutic targets to treat a large number of diseases, including brain 
diseases. Nevertheless, the methodological miRNA-seq perspective on 
the neuropsychiatric field remains somewhat generic. In the near future, 
the combination of methodologies, such as those shown in this review, 
together with predictive analysis (i.e. predictive modelling, machine 
learning) [127] may contribute to develop specific analytical ap
proaches in the field of neuropsychiatry, thus improving medical care 
refining precision medicine (or personalized medicine). Future research 

Fig. 1. Outline of the general bioinformatics workflow for a miRNA-seq study of a neuropsychiatric disease. The frequency of each process is indicated with a 
progress bar and the alternative steps are denoted with quotation marks. 
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should be oriented in that direction. 
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[121] A. Lukasik, M. Wójcikowski, P. Zielenkiewicz, Tools4miRs – one place to gather 
all the tools for miRNA analysis, Bioinformatics 32 (2016) 2722–2724. 

[122] L. Chen, L. Heikkinen, C. Wang, et al., miRToolsGallery: a tag-based and rankable 
microRNA bioinformatics resources database portal, Database 2018 (2018). 

[123] R. Botvinik-Nezer, F. Holzmeister, C.F. Camerer, et al., Variability in the analysis 
of a single neuroimaging dataset by many teams, Nature 582 (2020) 84–88. 
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