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Abstract: Generative AI has gained enormous interest nowadays due to new applications like
ChatGPT, DALL E, Stable Diffusion, and Deepfake. In particular, DALL E, Stable Diffusion, and
others (Adobe Firefly, ImagineArt, etc.) can create images from a text prompt and are even able to
create photorealistic images. Due to this fact, intense research has been performed to create new image
forensics applications able to distinguish between real captured images and videos and artificial
ones. Detecting forgeries made with Deepfake is one of the most researched issues. This paper
is about another kind of forgery detection. The purpose of this research is to detect photorealistic
AI-created images versus real photos coming from a physical camera. Id est, making a binary decision
over an image, asking whether it is artificially or naturally created. Artificial images do not need
to try to represent any real object, person, or place. For this purpose, techniques that perform a
pixel-level feature extraction are used. The first one is Photo Response Non-Uniformity (PRNU).
PRNU is a special noise due to imperfections on the camera sensor that is used for source camera
identification. The underlying idea is that AI images will have a different PRNU pattern. The second
one is error level analysis (ELA). This is another type of feature extraction traditionally used for
detecting image editing. ELA is being used nowadays by photographers for the manual detection
of AI-created images. Both kinds of features are used to train convolutional neural networks to
differentiate between AI images and real photographs. Good results are obtained, achieving accuracy
rates of over 95%. Both extraction methods are carefully assessed by computing precision/recall and
F1-score measurements.

Keywords: artificial intelligence; AI images; photographs; PRNU; ELA; CCN; deep learning

1. Introduction

Nowadays, generative artificial intelligence is one of the top themes of computer
engineering research. The emergence of transformers [1] as a key tool for generating
content has opened a world of new applications where automated systems can create
productions that, until now, were exclusive to human authorship. Transformers were
first used for automated translation systems, where a first processing stage (the encoder)
transforms the input text into a numerical representation of text meaning; then a second
stage (the decoder) converts (like an inverse transform) those intermediate data into text in
another language [2].

Besides neural machine translators, other impressive applications have arisen. Fa-
mously, ChatGPT is a conversational engine created with a decoder transformer [3]. Using
transformers, models for translating regular text into images have also been developed. The
most known and documented examples of these last ones are DALL E [4,5] and Stable Dif-
fusion [6]. But other examples have quickly been released, like OpenArt [7], ImagineArt [8],
Adobe Firefly [9], and many others.

These artificial image generators have reached the point where they may create photo-
realistic images that can make humans hesitate on whether a particular image is coming
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from a camera or is an artificial creation. As an example, in Figure 1, three AI-created
images are presented. They were created by three different engines: DALL E 2, Stable
Diffusion, and OpenArt (after testing many applications, these three were found the most
appropriate for photorealistic images; other models are good at producing drawings or
illustrations and not so much at imitating real photographs). The prompt was the same for
the three images: “realistic photo, a portrait of a dog in a library, Sigma 85 mm f/1.4”. Note
that details about the lens were added (85 mm focal lens, f/1.4 numeric aperture); this is a
common trick used for getting more realistic results. In the same figure, we also present
three real photographs that will be processed later. The purpose of this work is to make a
binary decision between two options: AI image (fully created AI image) and real image.
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Another impressive AI application is Deepfake [10,11]. Deepfake can create photos
and videos mixing plausible information from previous photos and/or videos. For ex-
ample, creating a video of a person mixing the body of one given individual and the face
of another one. The potential danger of this technology being used for fraud or other
illegal purposes (defamation, pornography, etc.) has sparked much research in the field of
detecting Deepfake image creation [12]. For example, in [13], Rössler et al. start by creating
a large dataset of fake videos. In [14], authors exploit what is, perhaps, the most intuitive
method: finding image artifacts that can reveal synthetic content. In [15], a system called
“FakeCatcher” is described; this system works relying on biological signals, like the small
periodic color variations present in a real face video by cause of the person’s heart rate.
A very recent paper by Becattini et al. [16] presents a Deepfake detector based on Head
Pose Estimation (HPE). In [17], Bappy et al. present a general image forgery detector based
on recursive neural networks (LSTM). Almost all publications in this field claim that the
direct use of neural networks does not produce good results in these kinds of applications.
In [18], authors use the detection of “convolutional traces”, basing themselves on the fact
that AI-generated images have passed several convolution stages.

The work described in this paper is similar to Deepfake detection but with a different
purpose. The target is to automatically detect AI-generated photorealistic images, id est,
distinguishing whole AI images from real photographs. AI images are not supposed to
represent or try to represent any particular real object, place, or individual. This can be
interesting for classifying images on photography websites and/or in social networks. Note
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that, in this case, the system is dealing with all kinds of images: human faces, animals, still
nature, landscapes, etc. For this reason, it is not possible to rely on some of the “face-related”
characteristics. Relying on artifacts may work for some images but not for all. Artifacts
are common in artificial images within some detailed parts (the fingers of a person’s hand
or pedals of a bike), but in many images, there are no visible errors. Furthermore, there
are some evident errors, like a person with three hands or even with two heads, which are
evident from a human view but not so easy to automate in an autonomous recognition
system for any type of image.

For this particular application, there are much fewer references in the literature. In a
recent preprint [19], the authors propose a method for AI image detection using a complex
feature extraction based on two parallel deep learning processes. The results are similar
to the ones presented in this paper, but they are using a more complex method, and their
tests have been conducted on images of smaller resolution (maximum 256 × 256). In [20],
authors construct a huge dataset, and they discover that systems trained on one generation
model are pretty good on images from that model but not so much on others. In this work,
several models are used to create the dataset, and other different models are tried for final
tests (see Section 4). According to [21], features extracted for recognition are crucial in
this problem when trying to work with different generation models. They point out that
statistics of overexposed pixels can be a good election that seems to reinforce the election of
PRNU. Another recommendation is using color-related features; the ELA pattern used in
this paper is strongly related to color, as JPEG error is greater on color components. Other
references [22–24] focus on CG (computer-generated) images, which is another type of
problem as they deal with images that were created with intensive human intervention.

For a similar need, Google has recently announced a new tool called SynthID [25],
which adds an invisible watermark to AI-generated images so that they can be identified.
Note that this will identify AI images only if the creation engine watermarks them.

Because of the need to classify whole images with no assumption about image con-
tent, the system was designed based on methods from other image forensics applications.
The main idea is to extract some relevant information from images before applying a
convolutional neural network. Convolutional neural networks (CNNs) are very useful in
distinguishing between classes that are visually different for humans, like digit classifica-
tion [26,27], distinguishing objects relevant for making driving decisions in real traffic, and
many other similar applications [28]. Nevertheless, in this case, classes are not visually
different, and that suggests that the direct application of CNNs could not be very useful (be-
sides the experience from the Deepfake case). For this reason, pixel-wise feature extraction
was used. This means using processing stages that convert images into other images with
the same size (it converts each pixel to a new pixel) but containing a reduced amount of
information that should be relevant to the particular problem of distinguishing AI images.

There are, to date, two methods used for this issue. The first one is Photo Response
Non-Uniformity (PRNU). PRNU is a kind of noise used for source camera identification
(distinguishing the camera that took a given image) [29]. The origin of PRNU is the
slightly different sensitivity of individual pixels in a real image sensor. This effect is due
to manufacturing imperfections, and it is unavoidable. AI images should have no PRNU
at all. Nevertheless, PRNU computation methods always yield a nonzero result. PRNU
has been extensively studied, including its limitations [30,31]. CNN is trained to infer
special characteristics of AI images with false PRNU patterns. There exist applications
designed to erase or even forge PRNU patterns (embedding on an image the pattern of a
given camera) [32]. So, this is a method that can reveal images created by “not very expert”
or “not very malicious” users.

The second feature extraction method used is error level analysis (ELA). ELA is a
special image (or pattern) that detects irregular errors in JPEG-coded images. ELA has been
successfully used to detect editing in images (thus to authenticate scanned or photographed
images) [33,34]. ELA has also been applied for forged face detection [35]. ELA detects non-
uniformity in quantization errors due to JPEG compression. Applied to an AI-generated
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image, ELA normally yields a strange result, as if all pixels of the image were modified
by editing. This could be due to the special nature of AI images coming from training
with many JPEG-coded photographs. So, the ELA pattern is also a good choice for the
application that this paper is addressing. It would seem that this method also has a
limitation: all images, either coming from a real camera or an AI engine, must be obtained
in the JPEG format. It would not be a great drawback as JPEG is the most frequently used
photography format. Nevertheless, as seen in the remainder of this paper, ELA has been
successfully tested on AI images obtained in the PNG format.

Another possible feature extraction for this problem is the local binary pattern (LBP) [36].
The LBP is based on differences between adjacent pixels. An eight-bit word is assigned to each
pixel with a binary ‘1’ for greater surrounding pixels and a ‘0’ in another case. This technique
has successfully been used for fake face detection [37]. The LBP is also used to detect fake face
presentations to biometric systems with video replays. Patel [38] explored this approach by
detecting Moiré patterns with LBP features.

The remainder of the paper is organized as follows: in Section 2, methods and process-
ing are described, as well as the image dataset used for training and testing; in Section 3,
the results are summarized. In the Section 4, the main results of this work are highlighted.

2. Materials and Methods
2.1. The Dataset

The dataset used in this work for training and testing is composed of a collection of
images divided into two groups (or classes): AI-generated and real camera photographs.
First, AI-generated images were created by authors using three different engines: DALL E,
Stable Diffusion, and OpenArt. These images were visually checked to discard those that
were not photorealistic. Second, real photos were selected randomly from image databases.
There are images from the Dresden Image Database [39], from the VISION dataset [40],
and also from authors’ provided images that were already used in previous studies [31,41].
There are real photos from the following cameras: Canon Ixus 70 (two instances), Casio
Ex Z150 (two instances), Canon PhotoSmart SX720, Canon EOS 1100D, Kodak M1063
(two instances), and Sony ILCE 5000. Photos from smartphones are also included: Huawei
P20, Huawei P9, Samsung Galaxy S3 Mini, Apple iPhone 4s, Apple iPhone 5c, Apple
iPhone 6, and LG D290.

Initially, the dataset was made up of 459 AI-generated images and the same number
of real photographs (a total of 918 images). Afterward, an extended dataset of 1252 was
tested. Both datasets are fully balanced (the same number of samples in each class). In
each test, a percentage of dataset samples will be used for training, leaving the remainder
for validation.

2.2. PRNU Extraction

As the name, Photo Response Non-Uniformity, indicates, PRNU comes from the
different light sensitivity of the different pixels (elementary sensors). This is an unavoidable
characteristic due to manufacturing imperfections, and it is present on all image sensor
chips. PRNU is seen as a multiplicative noise that responds to the following equation [29]:

Imout = (Iones + Noisecam).Imin + Noiseadd (1)

where Imin is the “real” image presented to the camera (the incident light intensity), Iones is
a matrix full of ones, Noisecam is the “sensor noise pattern” (PRNU pattern), and Imout is
the final image surrendered by the camera. The symbol “.” means matrix point-by-point
(pixel-wise) product, and Noiseadd is additive noise from other sources.

PRNU is computed from an image (or from a collection of images coming from the
same camera) performing a denoising process on Imout, and then computing a residual
as follows:

W = Imout − denoise(Imout) (2)
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Neglecting the additive noise and assuming that Imin = denoise(Imout), given a collection
of images from the same camera, the PRNU pattern (sometimes called camera fingerprint)
can be estimated as follows:

F =
∑N

n=1 Wn Imn
in

∑N
n=1(Imn

in)
2 (3)

Note that, in this application, we will always compute PRNU fingerprints with a single
image (N = 1) both for AI-generated and real images. In this case, F = W/Imin (pixel-wise
quotient), and it is clear that we will obtain some results, even for AI images.

Note that “denoising” is a noise reduction filter. For this problem, there are several
options documented in the literature: median filter [42], Wiener filter [43], and variations
of Wiener filter. In this study, a Matlab [44] implementation from [45] is used; this software
uses a Wavelet Transform [46]-based Wiener filter.

From each image, a centered square 512 × 512 region is extracted to work with smaller
images and to avoid logos or visible watermarks, and PRNU is computed from the sub-
image. Note that the problem is classifying the whole image, not detecting a “modified”
part. The minimum image size for this version is then 512 × 512. The system can be tailored
easily for smaller sizes, but that would require retraining.

The results of this process are noise-like images that are very difficult to interpret
visually (see Figure 2, where PRNU patterns are shown for images of Figure 1, and his-
togram equalization was applied to enhance these images a bit). Note that Equation (2) can
be seen as a high pass filter, and so, the results contain part of image contours (a normal
phenomenon when computing the pattern from a single image). There seems to be no
significant visible difference between AI images, Figure 2a–c, and real ones, Figure 2d–f.
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patterns for real images.

2.3. ELA Error Level Analysis

ELA pattern is computed to detect irregular distributions of quantization noise. This
is a tool normally used to detect image editing. An ELA pattern is normally computed
by coding the whole image with JPEG standard at a known, constant, and normally high-
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quality level (a typical value is 95%); then, the decoded image from the JPEG bit stream is
subtracted from the original image.

ELAimg = img − JPEG−1[JPEG(img, 95%)] (4)

If we are facing an edited image, an irregular pattern with different intensities will
appear. In Figure 3, ELA patterns for the same original images (Figure 1) are shown. Again,
histogram equalization was applied to enhance these images a bit.

Note that, in this case, patterns are color images. For PRNU computation, images
are converted to grayscale before any processing. Images are again cropped to the central
square sub-image of size 512 × 512.

Again, a “high pass filtering” effect is evident. Visual differences between AI images,
Figure 3a–c, and real ones, Figure 3d–f, are again not very remarkable. Perhaps contours
are more evident in the above part, but it does not seem conclusive. Nevertheless, neural
networks are able to learn differences that are not perceived by humans.
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2.4. CNNs—Convolutional Neural Networks

CNNs are a cascade of convolutional (or linear filtering) stages accompanied by others
of non-linear activation, normalization, and decimation. These stages extract high-level
features from low-level data (pixels), so CNNs can process images directly with no need
for feature extraction. The initial image is repeatedly filtered and decimated, creating
a set of several small images that are finally processed by a classical perceptron (fully
connected) stage to obtain the final result. This final result is a numerical vector of as many
components as classes to be recognized. The Softmax normalization (the most frequently
used at the final stage of CNNs) makes vector coefficients lie in the range of 0.0–1.0, and, in
addition, they always add up to 1.0. The maximum component defines which one is the
recognized class.

Filter coefficients and perceptron weights are all optimized through the training pro-
cess. The training algorithm is Stochastic Gradient Descent with Momentum (SGDM) [47],
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which is a gradient-type optimization that minimizes the mean square error between the
obtained and desired output.

In this paper, a previous image-to-image transformation is performed that acts as
a pixel-wise feature extraction. This stage tries to search for relevant characteristics for
distinguishing classes, removing unimportant information. As reported in the case of
Deepfake detection, a direct CNN application is not good for this type of problem.

The dataset is divided randomly, selecting 85% of images of each class for training and
leaving the rest for validation. Note that the dataset is balanced (it has the same number of
samples for each class). A validation stage is performed at each training epoch, adequately
controlling the learning process. Each complete epoch (run of all training samples in
random order) is divided into n iterations. Each of the iterations is a mini-batch, which is a
set of samples that is processed without updating weights (mini-batch size is DatasetSize/n).
Testing values for n, optimum results were obtained for n = 3.

CNN structure: the number of stages and filter configuration at each stage is shown in
Figure 4, and it is the same for the two kinds of pattern extraction techniques tested.
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At the end of training, a confusion matrix is computed for the validation set. This
means counting the number of True-Positive (AI images correctly detected), False-Negative
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(AI images not detected), False-Positive (real photographs detected as AI), and True-
Negative (real photographs detected as real) images. The matrix is arranged in this manner:

CM =

[
TP FN
FP TN

]
(5)

From this matrix, several performance measurements can be computed:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

F1 =
2·P·R
P + R

(9)

Accuracy is simply the success rate. The other three parameters are very easy to inter-
pret and are very typical in classification systems: P (precision) would be the probability of
true detection for true cases, and R (recall) would be the probability of effective detection
of true cases. F1-score is the harmonic mean of P and R. The greater these quantities are,
the better the performance achieved.

3. Results

CNN nets were trained and tested for both types of feature extraction. This process
produces learning curves displayed in Figures 5 and 6. In both cases, a good result is
achieved: accuracy is 0.95 for PRNU and 0.98 for ELA. Both trainings were performed with
100 epochs. Training time is longer for the ELA case (167 min versus 109); this is reasonable
because ELA images are color ones with three times more information.

Blue curves in both figures are the accuracy values obtained for each iteration (mea-
sured on the training samples), and black curves are accuracy values for the validation
set at each epoch (an epoch is equal to n iterations, with n = 3 in this case). The curves
below (brown and black) are the mean square error (over training and validation set); this
is another method for controlling learning.

In both cases, the fact that black curves follow the evolution of blue/brown curves
demonstrates that the neural network is generalizing. In the case of overfitting, the blue
curve can go high, but the black curve would remain low.

Comparing both trainings, ELA offers more stable results.
The final results for both methods (confusion matrices for the validation set) are

as follows:

CM(PRNU) =

[
67 02
05 64

]
, CM(ELA) =

[
66 01
02 67

]
(10)

These matrices yield the following numbers in the P, R, and F1 terms; see Table 1.

Table 1. Numerical results for both methods.

Method
(Pattern Type) Accuracy Precision Recall F1 Score

PRNU 0.95 0.93 0.97 0.95
ELA 0.98 0.97 0.99 0.98
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4. Discussion

The last presented results seem to demonstrate again that both methods are good,
but ELA outperforms PRNU with a slight advantage. These results were obtained with a
reduced dataset of 459 images per class. Afterward, a new test was conducted using an
extended version with 626 samples per class. This test was only performed with the ELA
extraction (the best option). The learning curve is presented in Figure 7. In this case, the
n parameter was set to 5 because, with more samples, it is necessary to reduce batch size.
The number of epochs is 75 because, in previous tests, it was seen that learning for ELA
features was already getting stable at that point.
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New assessment data for ELA features improved slightly. The confusion matrix
becomes the following:

CM =

[
94 00
01 93

]
(11)

The accuracy is now 0.99, precision is 0.99, recall is 1.0, and F1 score is 0.99. To obtain
more insight into these results, we tested a pre-trained classic net. We chose AlexNet [30].
For this process, image cropping is modified so that we obtain the required size for input in
this CNN: 227 × 227 × 3. The three last layers (including the final classification via a fully
connected MLP layer) are modified to the new problem of binary classification (two output
neurons). Weights for this level are reset to random values. The model is retrained with a
very small learning rate at all levels EXCEPT at the modified ones. Learning parameters
are now those recommended for this kind of training: SGDM method [48], only 4 epochs
with a mini-batch size of 10 that results in 106 iterations per epoch. Again, the dataset is
divided into two parts consisting of 85% for training and 15% for validation. Confusion
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matrixes for the validation set are the following, where the test was performed with the
two feature extraction types: PRNU and ELA.

CM(PRNU) =

[
67 02
05 64

]
, CM(ELA) =

[
90 04
12 82

]
(12)

These matrices yield the following numbers in the P, R, and F1 terms; see Table 2.

Table 2. Numerical results for both methods in AlexNet experiment.

Method
(Pattern Type) Accuracy Precision Recall F1 Score

PRNU 0.88 0.86 0.90 0.88
ELA 0.91 0.88 0.96 0.92

It can be seen that the method is viable but should be refined a bit. Perhaps the pre-
trained levels of AlexNet are good for ordinary images but not so well fitted for PRNU/ELA
patterns. Up to the point, the preferred method is ELA + specific CNN.

Another test is carried out, presenting to the original system (to the trained CNNs)
a new set of completely new images. Neither was used so far in training nor validation.
This new dataset consists of 150 AI-generated images and 150 other real photos. Photos
were taken from unused material from the VISION database [40] (they are all smartphone
photos). AI images were created using creation engines different from those of the first
dataset: Leonardo.AI [49] and TensorArt [48].

Confusion matrixes for this new dataset are now as follows:

CM(PRNU) =

[
128 22
0 150

]
, CM(ELA) =

[
90 04
0 150

]
(13)

These matrices yield the following numbers in the P, R, and F1 terms; see Table 3.

Table 3. Numerical results for both methods (new test-only dataset).

Method
(Pattern Type) Accuracy Precision Recall F1 Score

PRNU 0.93 1.00 0.85 0.92
ELA 0.91 1.00 0.82 0.90

Curiously, in this case, PRNU outperforms ELA. Furthermore, seeing that generally
real photos are correctly classified (there are no false positives), creating a combined method
is easy. If both methods are executed on the same image, it is enough that one of them
classifies it as an AI image to consider it an AI image. Running the test again with this
combination, the accuracy goes to 0.97 and the F1 score to 0.97. The mean execution time of
this combined recognition is 0.43 s per image in the Matlab application. The implementation
takes advantage of the combination “logical OR” nature: if the first method applied yields
an AI image result, it is not necessary to execute the second one.

4.1. Conclusions

In this work, an automated system for detecting AI-created images and distinguishing
them from real camera photographs was created.

Direct use of CNNs over the images seemed not very recommendable, but extracting
pattern-like (or pixel-wise) features like PRNU or ELA patterns yields good results. ELA
patterns work slightly better, although the combination of both methods is easy and
improves results.
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This issue is relatively new in the world of image forensics. Although there are many
publications about the detection of image editing, including AI editing and Deepfake, pure
recognition of 100% created AI images with no assumptions about content is less common.
The method presented in this paper was trained with three different creation models and
tested with a validation set obtained from the main dataset and also with a new dataset
obtained from other different creation models. Other publications present similar results
but on smaller images [19]. There also exist good results, but they are very dependent on
the image creation model [20] (note that when executing a recognition, a possible creation
model is not known). In [21], the authors study feature extraction methods that are able to
recognize AI images coming from different models. The use of ELA and PRNU patterns is
compatible with their findings.

As supplementary results,

• A new dataset on AI-created images was created. This set could be augmented and
published as a separate result;

• A graphical demo application was created; see Appendix A.

4.2. Future Work

Some lines of future work can be pointed out now as follows:

• Augmenting the AI image dataset for publication as a public research result;
• Enhancing that dataset by incorporating other image creation engines;
• Testing other pixel-wise feature extraction techniques like LBPs (local binary patterns);
• Testing other structures for CNN, maybe specific or pre-trained;
• Testing other classification schemes;
• Exploring the combination of methods further;
• Developing a version that could be used at a server to classify images uploaded to a

Web 2.0 service;
• Trying PRNU/ELA features for Deepfake detection and other anti-forgery applications.
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Appendix A

A demonstration application was created using Matlab GUI design tools. This app
allows loading an image, choosing the preferred method (PRNU or ELA), and running the
classifier. The result is output using a message box. See Figure A1.
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