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Abstract: Gold nanoparticles (AuNPs) have garnered attention as a potential alternative to con-
ventional antibiotics due to their innovative antibacterial properties. This study demonstrates the
successful production of biosynthetic gold nanoparticles (bAuNPs) using Pseudomonas aeruginosa
(P. aeruginosa) as spherical nanostructures at 58 ◦C for 24 h, under alkaline pH (9.0). The successful
synthesis of bAuNPs was confirmed through UV-Vis spectroscopy, exhibiting a characteristic peak
within the 500–600 nm wavelength range, and the evaluation of the main functional groups and
morphology were stressed by Fourier Transform Infrared Spectroscopy (FT-IR) and Transmission
Electron Microscopy (TEM), respectively. Subsequently, the synthesized bAuNPs were combined
with low concentrations of ampicillin and evaluated against Methicillin-Susceptible Staphylococcus
aureus (MSSA) and Methicillin-Resistant Staphylococcus aureus (MRSA) through the classical serial
dilution method. This innovative approach holds the potential to address the escalating issue of
antibiotic resistance, providing a viable and sustainable solution.

Keywords: antibiotic resistance; biosynthetic gold nanoparticles; ampicillin; synergism

1. Introduction

Antibiotic usage has contributed to the emergence of antibiotic resistance, diminishing
the bactericidal efficacy of antibiotics at previously effective doses. This phenomenon
poses a significant threat to human life and health, as multidrug-resistant bacteria (MDR)
have re-emerged, causing severe and incurable diseases [1]. In response to this challenge,
researchers have turned to inorganic nanoparticles (NPs), such as silver nanoparticles
(AgNPs), copper nanoparticles (CuNPs), and zinc nanoparticles (ZnONPs), as potential
antibacterial agents. These NPs possess strong antibacterial properties and are less prone
to the development of antibiotic resistance [2–4].

Various facets of nanomaterial-mediated antibacterial treatments are explored in
available review articles. Notably, Mba and Nweze [5] extensively examine the challenges,
opportunities, and advancements in nanomaterial-based antibacterial therapy against
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MDR strains. Their insights emphasize the pressing need for innovative technologies in
antibacterial treatments.

Furthermore, Gupta et al. [6] provides a tutorial review that elucidates the diverse
con-tributions of nanomaterials to different treatment modalities against MDR bacteria.
In a separate vein, Miller et al. [7] delve into inorganic NPs drug delivery capabilities,
in-vestigating their release mechanisms within infected cells and elucidating techniques to
enhance drug loading capacities through surface functionalization.

Concurrently, multiple research groups emphasize the importance of dynamic ther-
apies reliant on reactive oxygen species (ROS) for eradicating bacteria. For instance,
Ray et al. [8] have reported on targeted bacterial detection and photothermal elimination.
In a multifaceted therapeutic context, Huo et al. [9] have defined an enhanced photothermal
conversion efficiency, while Han et al. [10] have reviewed near-infrared (NIR) light-based
antibacterial treatments. Moreover, beyond their potential applications in the therapeu-
tic field, researchers have explored the utilization of these nanomaterials as disinfection
agents. In a study conducted by Najafpoor et al. [11], magnetic silver nanoparticles were
investigated for their promise in both disinfection and wastewater treatment. These diverse
strands of research collectively underscore the pivotal role of nanomaterials and innovative
technologies in the continuous evolution of antibacterial treatment strategies.

The mechanisms underlying the antibacterial activity of gold nanoparticles (AuNPs)
encompass several key aspects. Due to their nanoscale dimensions, AuNPs can breach the
bacterial cell membrane, potentially causing membrane destabilization and the release of
cellular components. Furthermore, when exposed to light or other stimuli, AuNPs can
generate reactive oxygen species (ROS), including free radicals, which can inflict damage
upon proteins, lipids, and nucleic acids within the bacterial cell. AuNPs also damage
proteins by interfering with existing disulfide bridges or thiol groups in various molecular
systems within the cells. Some AuNPs possess the capability to impede bacterial growth by
interfering with DNA replication or crucial metabolic processes. Additionally, they disrupt
bacterial cellular respiration by impacting the electron transport chain and reducing the
production of ATP, the cell’s primary energy source. These nanoparticles also have the
capacity to induce DNA damage, resulting in genetic mutations and possible cell demise,
as well as perturb gene expression, leading to disruptions in normal cellular processes.
Depending on their surface coating, AuNPs may accumulate in specific bacterial cellular
components, such as the cell wall, plasma membrane, or cytoplasm, causing localized harm.
Furthermore, they can induce oxidative stress in bacterial cells, triggering the oxidation
of vital biomolecules, and interact with bacterial proteins, leading to alterations in their
structure and function. While the exact mechanisms of AuNPs’ antibacterial activity are
not fully understood, there is evidence to suggest that they disrupt DNA and proteins
through the uptake of free gold ions, increase oxidative stress by generating ROS, and
directly interact with cellular membranes, as illustrated in Figure 1 [12–14].

Another approach to combat high-spectrum antibiotic-resistant bacteria involves
augmenting the antibacterial action of antibiotics through the use of other agents. Gold
nanoparticles (AuNPs), known for their inherent non-cytotoxic nature [15,16], have shown
promise in enhancing the bactericidal activity of antibiotics such as carbapenems [17], line-
zolid [18], and streptomycin [19]. Various synthesis methods can be employed to produce
AuNPs [20]. The most commonly used conventional method is the Turkevitch method,
which involves the reduction of chloroauric acid HAuCl4 using citrate-containing water [20].
Physical methods, including radiation (microwave, gamma irradiation, or ultraviolet), can
also generate AuNPs by creating heat and a reducing environment. Laser ablation, another
physical method utilizing lasers emitting specific wavelengths, is frequently employed for
AuNP synthesis [21]. However, the use of hazardous chemicals, high temperatures, and
expensive equipment associated with these methods has raised concerns regarding their
ecological impact and sustainability. As a result, biosynthesized nanoparticles (bAuNPs)
have emerged as a disruptive alternative to conventional synthesis methods, offering a
more sustainable and eco-friendly approach. In addition to their sustainability, bAuNPs
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possess avant-garde properties such as biocompatibility, bioavailability, bioactivity, and
bioabsorption, making them attractive substitutes for conventionally synthesized NPs in
various applications [22].
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processes, while others disrupt cellular respiration, reducing ATP production. They can induce 
DNA damage, genetic mutations, and dysregulate gene expression. Depending on their coating, 
gold nanoparticles may accumulate in specific cellular components, causing localized damage and 
inducing oxidative stress. Additionally, they can interact with bacterial proteins, altering their 
structure and function. 
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Figure 1. Mechanisms of action of gold nanoparticles on bacterial cells. Gold nanoparticles, due
to their nanoscale size, can penetrate bacterial cell membranes, potentially destabilizing them and
causing the leakage of cellular components. When exposed to light or other stimuli, these nanoparti-
cles can generate reactive oxygen species (ROS), damaging proteins, lipids, and nucleic acids inside
bacterial cells. In particular, gold nanoparticles damage proteins by interfering with existing disulfide
bridges or thiol groups in the various biomolecular systems within the cells. Some gold nanoparticles
inhibit bacterial growth by interfering with DNA replication or metabolic processes, while others
disrupt cellular respiration, reducing ATP production. They can induce DNA damage, genetic
mutations, and dysregulate gene expression. Depending on their coating, gold nanoparticles may
accumulate in specific cellular components, causing localized damage and inducing oxidative stress.
Additionally, they can interact with bacterial proteins, altering their structure and function.

Biosynthesized nanoparticles can be produced from different organisms, including
plant tissues, actinomycetes, fungi, bacteria, algae, and others. Although some studies have
described intracellular synthesis of bAuNPs using fungi, this approach is more complex
and time-consuming compared to extracellular synthesis, which eliminates several recovery
steps required for AuNP isolation [23]. Bacteria have become a widely studied microorgan-
ism for NP synthesis due to their simple culture conditions, ease of purification, and high
synthesis yields [24]. The biosynthesis of nanoparticles involves the oxidation/reduction
of metallic ions by biomolecules, such as proteins, enzymes, carbohydrates, and sugars,
secreted by microorganisms [25]. Among the reductants found in nature, Pseudomonas
aeruginosa extract has gained attention as an appealing option for the biosynthesis of gold
nanoparticles. It has been shown to be more efficient than chemical synthesis methods,
yielding AuNPs with promising antimicrobial activities [26]. Additionally, P. aeruginosa
has the ability to produce a wide variety of compounds with bactericidal or bacterio-
static properties, including pyocyanin and other heterocyclic compounds like quinolines,
phenylpyrroles, and phenazines, which could further enhance the antimicrobial potential
of the resulting AuNPs [27].

Hence, employing P. aeruginosa extracts as a sustainable method to synthesize small-
sized gold nanoparticles (AuNPs) capable of augmenting the antibacterial activity of
antibiotics can prove to be an effective strategy in combating superbugs. The class of
β-lactam antibiotics holds immense significance as it is present in more than 34 U.S. Food
and Drug Administration (FDA)-approved medications, accounting for approximately
half of all antibiotics [28]. However, the emergence of β-lactam resistance has signifi-
cantly impacted empirical therapy [29]. To tackle this challenge, the present study utilized
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P. aeruginosa extracts to generate biosynthetic small-sized AuNPs. These resulting AuNPs
were combined with low concentrations of ampicillin (Amp) to create a cocktail, which was
then tested against MSSA and MRSA.

The aim of this study was to introduce a biosynthetic approach for reducing HAuCl4
salts into nanoparticles, thereby circumventing the use of toxic chemical substances that
have significant environmental implications. Furthermore, the antibacterial potential of
these biosynthesized nanoparticles was evaluated against both MRSA and MSSA. This
study introduces a novel approach by harnessing AuNPs biosynthesized with P. aeruginosa,
a bacterium with inherent antibacterial properties often underappreciated in this context.
These AuNPs are combined with minimal ampicillin doses, offering a potential solution
to address MRSA’s resistance to β-lactam antibiotics. Additionally, the study pioneers the
biosynthesis of these AuNPs under specific conditions (pH 9, 58 ◦C, 24 h), resulting in the
production of small, spherical nanoparticles not previously documented in the literature.

2. Materials and Methods
2.1. Chemicals

Gold(III) chloride, HAuCl4 (ACS reagent), was obtained from Sigma Aldrich, St. Louis,
MO, USA, and used without further purification. All other reagents used in this study were
of analytical grade.

2.2. Pseudomonas aeruginosa Strain and Maintenance

P. aeruginosa (ATCC 15692) was purchased and maintained by Laboratory of Medical
and Industrial biotechnology (LaBMI), Porto Research, Technology & Innovation Center
(PORTIC), Porto, Portugal. Bacteria were routinely cultured in Trypticase soy agar (TSA)
plates where the fluorescent pigment pyoverdine typically produced by P. aeruginosa strains
was observed.

2.3. bAuNPs Synthesis

P. aeruginosa was cultured at OD600 = 0.1 in 100 mL TSB and maintained at 150 rpm
for 9 h at 37 ◦C. The supernatant was recovered by centrifugation at 4000 rpm. After, a
HAuCl4 solution (50 mM) was mixed with the cell free supernatant. The resulting solution
was submitted to a pH manipulation using 0.1 M NaOH until reach pH (9.0). The synthesis
was conducted at 58 ◦C for 24 h. Control solutions (without the addition of HAuCl4) were
also run along with the experimental tubes and subjected to the same reaction conditions.

2.4. bAuNPs Characterization
2.4.1. Ultraviolet-Visible Spectroscopy (UV-Vis Spectroscopy)

To confirm the presence of AuNPs, the excitation spectra of the samples were mea-
sured by UV-Vis spectroscopy using the Multiskan SkyHigh spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). The pellets of control and AuNPs solutions were
resuspended in DEPC (diethyl pyrocarbonate)-treated water (Thermo Fisher Scientific,
Waltham, MA, USA), mixed by vortexing, and the excitation spectra were recorded in a
wavelength range of 300 to 700 nm. All measurements were done in a quartz cuvette (1 mm).
Concentrations of gold ions that were reduced to AuNPs in the biosynthesis process were
calculated following Scarabelli et al. [30] correlation, where, from the absorbance at 400 nm
and for a 1 mm cuvette, an absorbance of 1.2 (OD400) corresponds to [Au0] = 0.5 mM:

A400nm = 1.2⇔ [Au0] = 0.5 mM (1)

2.4.2. Transmission Electron Microscopy (TEM)

10 µL of each sample was mounted on carbon film-coated mesh nickel grids and left
standing for 2 min. The excess liquid was removed with filter paper from all samples, and
the grids were observed in a JEM 1400 TEM (JOEL Ltd., Tokyo, Japan) with an accelerating
voltage of 80 kV. Images were digitally recorded using a CCD digital camera (Orious 1100W
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Tokyo, Japan). After, images were analyzed using ImageJ version 1.54f API (U. S. National
Institutes of Health, Bethesda, MD, USA) software to assess the mean particle size.

2.4.3. Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy (ATR-FT-IR)

The ATR-FT-IR analyses were performed using the Frontier™ MIR/FIR spectrom-
eter from PerkinElmer in a scanning range of 550–4000 cm−1 for 16 scans at a spectral
resolution of 4 cm−1. Prior to analysis all samples were lyophilized (Model Alpha 2–4
LSCplus—Christ, Osterode am Harz, Germany).

2.5. bAuNPs and Ampicillin Effect on Bacteria Growth

The influence of gold nanoparticles in the kinetics growth curve was tested on
two strains of S. aureus. For the present study, it was used a methicillin-resistant S. aureus
(MRSA, ATCC 43300) and a methicillin-susceptible S. aureus (MSSA, ATCC 25923). All
strains were cultured in Muller-Hinton Broth (MHB) and adjusted to 0.1 (OD600).

The effect of bAuNPs and ampicillin in bacterial growth was first tested separately
and using the serial dilution method. Final concentrations of bAuNPs ranging from 0.5 to
0.0001 mM and final concentrations of antibiotic ranging from 10 to 0.00001 mg/L were
added to the cultures. Cultures were placed in 96 well plates adding 200 µL of the final
solution in each well and maintaining at 37 ◦C for 24 h. Absorbances (OD600) were
measured every 30 min using the Multiskan SkyHigh spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) over a 24 h period. Control wells containing only medium,
and bacteria were monitored in the same conditions throughout the experiment.

bAuNPs were tested again under the same conditions but adding only 0.1 mM of solu-
tion concentration in both bacteria. Ampicillin was tested at a concentration of 0.01 mg/L
for MSSA and 0.1 mg/L for MRSA. Cultures were also done with the addition of a mixture
of bAuNPs and ampicillin in the same concentrations. The growth was again monitored
for 24 h using the spectrophotometer.

The area under the curve (AUC) was calculated using GraphPad prism 9.0.0 (Graph-
Pad Software, Inc., San Diego, CA, USA), which was used as cumulative measure of the
effect of the bAuNPs in the total growth of bacteria.

2.6. bAuNPs and Ampicillin Effect on Bacteria Viability

After 24 h growth, each culture was submitted to serial dilutions ranging from 1 to
10−8. 10 ul of each solution was plated in MHA plates. After 12 h growth, the colony
forming units (CFU) were counted under a magnifying glass. All cultures were grown
at 37 ◦C for 24 h in triplicate and the colonies were counted in a magnifying glass. After,
CFU/mL was calculated using the following equation:

CFU
mL

=
Nº of colonies

Volume of culture plated (mL)
× dilution (2)

where CFU/mL is the number of colony-forming units per milliliter; Nº of colonies is the
number of colonies on the culture plate; Volume of culture plated (mL) is the volume of
the culture that was plated on the plate, measured in milliliters and dilution is the dilution
factor used when plating the culture.

2.7. Statistics Analysis

All data was analyzed as the mean ± standard deviation (SD). All the assays were
repeated in triplicate for statistical analysis. The statistical significance was determined
using Student t test, 1-way analysis of variance analysis. Results were considered significant
when * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. All analyses were performed in
GraphPad prism version 9.0.0 (GraphPad Software, Inc., San Diego, CA, USA).
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3. Results and Discussion
3.1. bAuNPs Characterization
3.1.1. UV-Vis and TEM

A few hours after adding chloroauric acid to the bacterial supernatant, the synthesis of
nanoparticles was initially identified by the color change of the solutions to red (Figure 2a).
The synthesis of bAuNPs was confirmed using UV-Vis spectroscopy, which revealed char-
acteristic peaks in the wavelength range of 500–600 nm (Figure 2a). UV-Vis spectroscopy
was employed to determine the concentration and aggregation of bAuNPs.
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Figure 2. UV-vis spectrum and TEM photographs of the obtained bAuNPs at 58 ◦C under alkaline
pH (9.0) for 24 h: (a) UV-Vis spectra and the colloidal solution obtained for bAuNPs synthesized.
(b) TEM photographs (200 nm). Note: NC refers to the normal condition, which represents the basal
medium only, while bAuNPs represents biosynthetic gold nanoparticles.

The morphological features, including shape and size, were determined using TEM.
TEM analysis (Figure 2b) demonstrated that under alkaline pH (9.0) and at 58 ◦C for 24 h,
the gold nanoparticles exhibited a spherical structure and reduced sizes (30.862 ± 13.48).
The synthesis methodology of AuNPs follows two steps: (I) nucleation and (II) growth
phase. Nucleation is the process in which a cluster, a particle from a new phase, is formed
in a single-phase system. In the chemistry of AuNPs synthesis, these clusters are referred
to as nuclei.

The critical radius of these clusters is related to the smallest size at which a particle
can remain in solution without redissolving. During the growth stage, more material is
deposited on the cluster, increasing its size and transforming it into a nanoparticle. This is
caused by the spread of growing species as well as surface processes [31]. At a high pH,
the OH− ions present in the extract replace the Cl− ions present in the AuCl4−, preventing
the possible subsequent growth of the nuclei due to repulsions between negatively charged
ions of the cell extract and gold ions. This may explain why the bAuNPs synthesized at pH
9.0 maintain a small size and spherical shape [32].

3.1.2. ATR-FT-IR

The ATR-FT-IR spectrum (Figure 3) exhibits a strong and broad vibration band at
3267 cm−1, which can be assigned to the stretching of the hydroxyl groups. Additionally,
a weak vibration at 3076 cm−1, characteristic of N-H stretching, and an absorption peak
at approximately 2965 cm−1, attributed to the C-H stretching vibration of alkanes, are
observed. All ATR-FT-IR spectra also show vibrations at 1632 and 1579 cm−1, which can be
assigned to amides containing carbonyl groups (C=O), as well as absorption bands at 1453,
1399, and 1077 cm−1, attributed to the C-O stretching vibrations of aromatic and aliphatic
amines, respectively [33]. The presence of various compounds suggests the involvement of
organic molecules in the bAuNPs synthesis process. The presence of amines, likely due to
amino acid residues, indicates the coexistence of proteins from P. aeruginosa extract with
bAuNPs. This finding leads to the hypothesis that these coexisting proteins could be one of
the factors influencing the rate of internalization of bAuNPs in tumor and bacterial cells.
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Consequently, there is a reduced probability of cells recognizing bAuNPs as foreign agents
and instead internalizing them as a food supplement.
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3.2. bAuNPs and Ampicillin Effect on Bacterial Growth and Viability

The data obtained from the preliminary screening analysis of the effect of bAuNPs on
the growth of MSSA and MRSA, tested across a concentration range of 0.5 mM to 0.0001
mM, revealed a statistically significant reduction in growth when bAuNPs were applied at a
concentration of 0.1 mM. The growth inhibition percentages were 59% for MSSA (Figure 4c)
and 57% for MRSA (Figure 4d), respectively (p < 0.01).

However, no dose-dependent effect was observed with increasing concentration
of bAuNPs. These findings contradict the results reported by Ahmad et al. and
Folorunso et al. [34,35], but they support the notion that the effect of bAuNPs is not
linearly correlated with concentration. This underscores the importance of selecting an
optimal concentration. Based on this, a concentration of 0.1 mM of bAuNPs was chosen
for the subsequent assays.

In contrast, the results obtained for the effect of ampicillin on the growth of MSSA
and MRSA exhibited an increase with increasing dose. The effect of this antibiotic showed
statistical significance in MSSA (Figure 4a) at concentrations of 10, 1, and 0.1 mg/L, resulting
in decreases of 66% (p < 0.0001), 28% (p < 0.05), and 22% (p < 0.05), respectively. In MRSA
(Figure 4b), decrease of 17% and 14% (p < 0.05) were observed at concentrations of 10
and 1 mg/L, respectively. As the effect of the antibiotic showed a consistent pattern with
increasing dose, the chosen concentrations for the subsequent assays were the lowest
concentrations immediately following those that demonstrated a statistically significant
bacterial growth decrease. Therefore, the chosen concentration for MSSA was 0.01 mg/L
(20% growth decrease) and for MRSA, it was 0.1 mg/L (12% growth decrease).

Ampicillin and bAuNPs were retested against MSSA and MRSA, and the results
indicate a synergistic effect when the antibiotic is combined with bAuNPs, leading to
a significant decrease in bacterial growth. The application of ampicillin resulted in a
growth decline of 20% for MSSA (Figure 5a,c) and 13% for MRSA (Figure 5b,d). When
bAuNPs were used alone, they exhibited a growth decrease of 60% for MSSA (Figure 4a,c)
and 58% for MRSA (Figure 5b,d) (p < 0.01). However, when ampicillin was applied
in combination with bAuNPs, a synergistic effect was observed, resulting in a remark-
able bacterial growth decrease of 84% and 78% (p < 0.001) for MSSA (Figure 4a,c) and
MRSA (Figure 5b,d), respectively.
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Figure 4. The effect of different concentrations of ampicillin and bAuNPs on bacterial growth
expressed as the percentage of control AUC (area under the curve): (a) Effect of ampicillin on MSSA
growth; (b) Effect of ampicillin on MRSA growth; (c) Effect of bAuNPs on MSSA growth; (d) Effect of
bAuNPs on MRSA growth; AUC—area under the curve. NC—normal condition, i.e., basal medium
only. * p < 0.05, ** p < 0.01, **** p < 0.0001.

To assess the impact on cell viability, ampicillin and bAuNPs were further tested on
MSSA and MRSA under the same experimental conditions, and the number of colony-
forming units (CFUs) was determined. The results, presented in Table 1 and Figure 6,
indicate that both agents exhibited inhibitory effects on the cell viability of both bacterial
strains. Treatment with ampicillin alone resulted in a 13% reduction in viability for MSSA
(Figure 6a) and a 12% reduction for MRSA (Figure 6b). Similarly, bAuNPs demonstrated
their efficacy by reducing viability by 49% in MSSA (Figure 6a) and 40% in MRSA (Figure 6b)
(p < 0.01). Remarkably, the synergistic effect persisted when ampicillin was combined with
bAuNPs, leading to a substantial reduction in cell viability of 74% (p < 0.001) for MSSA
(Figure 5a) and 66% (p < 0.01) for MRSA (Figure 6b).
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Figure 5. Effect of specific concentrations of ampicillin and bAuNPs on bacterial growth: (a) MSSA
growth curves; (b) MRSA growth curves; (c) effect of ampicillin, bAuNPs and both (0.01 mg/L Amp
and 0.1 mM bAuNPs) on MSSA growth expressed in AUC as percentage of control; (d) effect of
ampicillin, bAuNPs and both (0.1 mg/L Amp and 0.1 mM bAuNPs) on MRSA growth expressed in
AUC as percentage of control. AUC—area under the curve; NC—normal condition, i.e., basal medium
only; Amp—ampicillin; bAuNPs—biosynthetic gold nanoparticles; Both—a mixture of bAuNP
and ampicillin; MSSA—Methicillin-susceptible S. aureus; MRSA—Methicillin-resistant S. aureus;
CFU—colony-forming units. ** p < 0.01, *** p < 0.001.

Table 1. Effect of ampicillin and bAuNPs in MSSA and MRSA viability.

Agent Growth Condition CFU/mL

MSSA

NC 3.93 × 108

0.001 mg/L Amp 3.40 × 108

0.1 mM bAuNPs 2.00 × 108

Both 1.05 × 108

MRSA

NC 4.40 × 108

0.001 mg/L Amp 3.85 × 108

0.1 mM bAuNPs 2.63 × 108

Both 1.48 × 108

Legend: NC—normal condition, i.e., basal medium only; Amp—ampicillin; bAuNPs—biosynthetic gold nanoparti-
cles; MSSA—Methicillin-susceptible S. aureus; MRSA—Methicillin-resistant S. aureus; CFU—colony-forming units.

Gold nanoparticles (AuNPs) have garnered significant interest as potential carriers
for antibiotic drugs. Several studies have explored the use of AuNPs to deliver antibiotics,
and these investigations support the notion that the effectiveness of antibiotics remains
unchanged when attached to AuNPs [36–39]. The conjugation of antibiotics with AuNPs
offers the potential for enhanced therapeutic outcomes and improved drug delivery to
target bacterial infections.
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Figure 6. Effect of ampicillin and bAuNPs on bacterial viability: (a) Viability of MSSA expressed in
CFU/mL as a percentage of control after treatment with ampicillin, bAuNPs, and both (0.01 mg/L
Amp and 0.1 mM bAuNPs); (b) Viability of MRSA expressed in CFU/mL as a percentage of control af-
ter treatment with ampicillin, bAuNPs, and both (0.1 mg/L Amp and 0.1 mM bAuNPs). NC—Normal
condition, i.e., basal medium only; Amp—Ampicillin; bAuNPs—Biosynthetic gold nanoparticles;
Both—A mixture of bAuNPs and ampicillin; CFU—Colony-forming units. ** p < 0.01, *** p < 0.001.

In previous studies, the quantitative evaluation of the efficacy of antibiotic-AuNP
conjugates against bacteria remained uncertain. Most reports determined the Minimum
Inhibitory Concentrations (MICs) of the agents by measuring the decrease in optical density
or by utilizing aggregated AuNPs [40]. However, in the present research, colony forming
unit counting was employed as a quantitative method to assess the individual and com-
bined effects of each agent on bacterial viability. This approach provides a more accurate
and reliable measure of the impact on bacterial growth and survival.

The observed synergistic effect of ampicillin in combination with bAuNPs suggests
that bAuNPs play a role in enhancing the penetration of ampicillin into the bacterial
cell wall. This enhanced penetration leads to increased interactions between ampicillin
and bacteria, ultimately improving the efficacy of the antibiotic. It is important to note
that the resistance of S. aureus to antibiotics, such as ampicillin, is primarily attributed to
the production of the penicillin-binding protein 2a (PBP-2a). This protein exhibits lower
affinity for β-lactam antibiotics, thereby reducing the effectiveness of these drugs [41].
Consequently, the results obtained in this study imply that bAuNPs might enhance the
affinity of bacteria to ampicillin, potentially overcoming the resistance mechanism mediated
by PBP-2a. This enhanced affinity could disrupt the bacterial cell wall, further contributing
to the reduction in bacterial growth and viability.

Nevertheless, the exact mechanism of action of bAuNPs on bacteria remains incom-
pletely understood and necessitates further investigation. Future research efforts can focus
on elucidating the precise molecular interactions between bAuNPs and bacteria, as well
as the impact of these interactions on the integrity of the bacterial cell wall. Such studies
will contribute to a more comprehensive understanding of the potential applications of
bAuNPs in combating antibiotic-resistant bacteria.

4. Conclusions

In conclusion, our study demonstrated that biosynthetic AuNPs using biomass ex-
tracts of P. aeruginosa at 58 ◦C and alkaline pH (9.0) resulted in the formation of small
spherical nanoparticles with reduced size, as confirmed by UV-Vis and TEM analyses.
The preliminary antibacterial screening revealed a statistically significant reduction in
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the growth of MSSA and MRSA when exposed to bAuNPs. Moreover, the combination
of ampicillin and bAuNPs exhibited a synergistic effect, significantly reducing bacterial
growth and viability, thereby enhancing the individual effects of both agents.

Our findings suggest that bAuNPs enhance the penetration of ampicillin into the
bacterial cell wall, increasing its efficacy. Additionally, it is possible that bAuNPs enhance
the affinity of bacteria to the antibiotic, leading to the disruption of the cell wall. This
strategy holds promise for combating antibiotic-resistant bacteria.

Furthermore, the use of P. aeruginosa extract as a green reduction system for bAuNP
synthesis offers a more sustainable and environmentally friendly alternative to traditional
synthesis methods. The valorization of bAuNPs stands as a pivotal achievement of this
study. Derived from diverse organisms including plants, fungi, and bacteria, bAuNPs are
extracellularly synthesized for efficiency, circumventing intricate intracellular processes
and recovery steps. Bacteria, especially P. aeruginosa, excel in nanoparticle synthesis due
to simple culture conditions and the reduction of metallic ions using biomolecules. Also,
the biomass extracts of P. aeruginosa yields bAuNPs with potent antimicrobial potential,
boosted by antibacterial compounds like pyocyanin. Adopting P. aeruginosa extracts for
bAuNP synthesis transforms antibacterial strategies, augmenting both their direct activity
and antibiotic efficacy. This approach gains significance against antibiotic-resistant su-
perbugs. The fusion of biosynthetic AuNPs with low ampicillin concentrations presents
a promising synergy, impactful against Methicillin-Susceptible and Methicillin-Resistant
S. aureus, showcasing a transformative path for combating resistance.

Overall, the utilization of biosynthetic AuNPs as carriers for antibiotics, such as
ampicillin, holds significant promise in improving antibacterial therapies. The synergistic
effects observed in this study highlight the potential of bAuNPs to enhance the efficacy
of antibiotics and combat antibiotic resistance. Further advancements in this field could
lead to the development of novel therapeutic strategies to address the challenges posed by
multidrug-resistant bacteria and contribute to the fight against infectious diseases.

In the face of the escalating global health concern posed by antibiotic-resistant bacteria,
the strategy employed in this study presents a formidable approach. The fusion of biosyn-
thetic AuNPs with established antibiotics not only showcases the power of interdisciplinary
collaboration but also promises to reshape antibacterial therapeutic paradigms.
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