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Abstract Modeling the past or future spread pat-
terns of invasive plant species is challenging and in 
an ideal case requires multi-temporal and spatially 
explicit data on the occurrences of the target spe-
cies as well as information on the habitat suitability 
of the areas at risk of being invaded. Most studies 
either focus on modeling the habitat suitability of 
a given area for an invasive species or try to model 
the spreading behavior of an invasive species based 

on temporally or spatially limited occurrence data 
and some environmental variables. Here we suggest 
a workflow that combines habitat suitability maps, 
occurrence data from multiple time steps collected 
from remote sensing data, and cellular automata mod-
els to first reconstruct the spreading patterns of the 
invasive shrub Ulex europaeus on the island Chiloé 
in Chile and then make predictions for the future 
spread of the species. First, U. europaeus occur-
rences are derived for four time steps between 1988 
and 2020 using remote sensing data and a supervised 
classification. The resulting occurrence data is com-
bined with occurrence data of the native range of U. 
europaeus from the GBIF database and selected envi-
ronmental variables to derive habitat suitability maps 
using Maxent. Then, cellular automata models are 
calibrated using the occurrence estimates of the four 
time steps, the suitability map, and some additional 
geo-layer containing information about soils and 
human infrastructure. Finally, a set of calibrated cel-
lular automata models are used to predict the poten-
tial spread of U. europaeus for the years 2070 and 
2100 using climate scenarios. All individual steps of 
the workflow where reference data was available led 
to sufficient results (supervised classifications Over-
all Accuracy > 0.97; Maxent AUC > 0.85; cellular 
automata Balanced Accuracy > 0.91) and the spatial 
patterns of the derived maps matched the experiences 
collected during the field surveys. Our model predic-
tions suggest a continuous expansion of the maximal 
potential range of U. europaeus, particularly in the 
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Eastern and Northern part of Chiloé Island. We deem 
the suggested workflow to be a good solution to com-
bine the static habitat suitability information—repre-
senting the environmental constraints—with a tem-
porally and spatially dynamic model representing the 
actual spreading behavior of the invasive species. The 
obtained understanding of spreading patterns and the 
information on areas identified to have a high inva-
sion probability in the future can support land manag-
ers to plan prevention and mitigation measures.

Keywords Chile · Landsat · Google earth · GBIF · 
Maxent · Cellular automata

Introduction

Understanding the spread dynamics of invasive alien 
plants (IAP) requires spatially explicit occurrence 
data of the IAP species at multiple time steps. Col-
lecting such occurrence data in the field is time- con-
suming and often restricted by the accessibility of 
sites. This can lead to a spatial collection bias with a 
higher proportion of occurrence records along roads 
(Bradley 2014). Further, depending on the dispersal 
characteristics of the target species and the frequency 
and extent of environmental disturbances, invasion 
processes may last several years or decades. Such 
time periods are rarely covered in field records.

For some IAP, multi-temporal remote sensing data 
can be a promising alternative data-source to recon-
struct, model and predict invasion dynamics over 
longer time periods. However, the successful assess-
ment of invasions patterns from current and historic 
remote sensing data depends on some requirements. 
Most importantly, the targeted IAP has to be identifi-
able in the remote sensing data. This requires that the 
size of individuals or stands of the target species is 
sufficiently large to cause a clear spectral, textural or 
structural signal in the remote sensing data set. This 
signal also has to be unique enough to be separable 
from co-occurring native plant species (Müllerová 
et al. 2017; Bradley 2014; Huang and Asner 2009).

Such a unique spectral signature of an IAP can 
for example be caused by physiological differences 
between native species and the IAP that result in dis-
tinct optical traits (different pigment levels, different 
morphology, etc.). A unique spectral signal of an IAP 
can also be phenology-related. For example an IAP 

may differ from native species in their date of leaf 
emergence, senescence initialization or other phe-
nological stages. Such phenological differences can 
in some cases be detected with remote sensing and 
were exploited to successfully map invasive species 
in several vegetation communities (e.g., Hoyos et al. 
2010; Somers and Asner 2012). For some IAP flow-
ering events may also facilitate their remote detection 
(e.g., Somodi et al. 2012). Related discussions about 
the importance of specific optical traits as well as spa-
tial, spectral and temporal resolution of remote sens-
ing data for identifying IAP can be found in several 
reviews (Bradley 2014; Huang and Asner 2009; Roc-
chini et al. 2015).

One key challenge for identifying occurrences of 
a target species in historic remote sensing data is the 
often missing corresponding reference data. However, 
the increasing number of historic high-resolution data 
sets, e.g. from orthophotos and very high spatial reso-
lution satellite image-archives, may provide informa-
tion that can replace field-collected reference data for 
some IAP. This has been demonstrated in some stud-
ies that successfully reconstructed invasion dynamics 
of IAP from multi-temporal remote sensing datasets 
and also incorporated high resolution imagery as val-
idation data. For example, Liu et  al. (2016) applied 
a combination of digital orthophotos and Landsat 
satellite images to successfully reconstruct the inva-
sion dynamics of Phragmites along the Detroit river 
across a time period of 11 years.

However, most earlier studies also had field data 
available for at least some years (e.g., Espinar et  al. 
2015; Mao et al. 2019; Ren et al. 2019; Wang et al. 
2015).

One of the most popular sources of freely avail-
able high-resolution and multi-temporal remote sens-
ing data is the Google Earth Pro (GEP) platform. 
Since its launch in 2005, the amount of available data 
(e.g., from DigitalGlobe, NASA, ESA, GeoEye-1, 
IKONOS,,SPOT etc.) and their quality have steadily 
increased (Lesiv et  al. 2018). However, because the 
data in GEP cannot be accessed in its original format, 
many studies use the data only for visual interpreta-
tion, to verify their results, or to delineate reference 
data (Yu and Gong 2012; Visser et al. 2014).

These studies studies showed that it is possible to 
map the invasion state of some IAP across several 
time steps from historic remote sensing data, even 
if some time steps lack field reference data. Some 
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studies also model the invasion dynamics between the 
reconstructed invasion state maps and provide esti-
mates for the future spread of the targeted IAP. Cellu-
lar automata (CA) models are often used for the pre-
diction step. Cellular automata are well-established in 
invasion ecology and ecology in general. Their ease 
of implementation in combination with their abil-
ity to simulate spatial patterns make them suitable 
to address many ecological questions which contain 
a spatial dimension (Breckling et  al. 2011). Good 
introductions to CA models in the context of ecol-
ogy are for example given in Breckling et al. (2011), 
Dunkerley (1999), and Ghosh et al. (2017). The basic 
structure of a CA model consists of a grid with many 
individual cells in a defined state. The state of a cell 
can change over time depending on its properties and 
its neighborhood (adjacent pixels). Whether a cell 
changes its state or not depends on a set of transi-
tional rules that is defined by the modeler, either by 
using expert knowledge only or by combining the lat-
ter with calibration data.

Cellular automata models have been applied suc-
cessfully to depict and predict invasions pattern of 
IAP (e.g., Barbosa et  al. 2018; Merow et  al. 2011) 
including also examples where the CA model based 
on remotely sensed occurrence maps of IAP. For 
example, Barona and Mena (2014) used Landsat and 
SPOT imagery to map an invasive shrubland species 
(Psidium guajava) on the Galapagos Islands at three 
time steps covering the period between 1980 and 
2009. Using these maps, they trained a CA-Markov 
chains GEOMOD model to predict the spread of the 
species for the year 2030 based on the predictor vari-
ables humidity and altitude. Huang et al. (2008) fol-
lowed a similar approach and mapped the spread of a 
grassland IAP (spartina alterniflora) in a Marshland 
environment by initiating a CA model with a remote 
sensing-based land-cover classification map from the 
start of the considered time period. Then, they used 
yearly land-cover classification maps for a 6 years 
time period to validate the CA model and the estab-
lished rule-set. Using the same data set as Huang 
et al. (2008), Zheng et al. (2015) suggest that adding 
constraints to a CA model can improve the accuracy 
for modeling the spread of IAP. In their case, the 
additional consideration of environmental variables 
describing the wetland area notably improved the 
model accuracy in comparison to CA models exclu-
sively based on neighborhood relations. Lu et  al. 

(2013) modeled the spread of an invasive weed (Leu-
caena leucocephal) in Taiwan with a CA model and 
remote sensing data. They first classified infested 
areas in SPOT satellite images for three time points 
between 1988 and 2007 including also high resolu-
tion imagery as reference data. Then, they trained a 
logistic regression model to explain the spread of the 
IAP between the first two time points with a set of 
environmental variables (e.g., elevation, slope, dis-
tance of IAP patches to roads, forest edges and farm-
lands). The probability maps of the logistic regression 
model were then fed into a CA model to successfully 
predict the spatial occurrence of the IAP at the third 
time-point.

In summary, the combination of IAP occurrence 
maps derived from remote sensing data and process-
based spatially dynamic CA models has been suc-
cessfully used in several studies to reconstruct the 
spreading of IAP and may also hold potential for esti-
mating future invasion patterns. However, the number 
of studies following such an approach is still limited 
and so far, hardly any study attempted to predict their 
CA models to time-points in the more distant future. 
Moreover, the generally rule-based nature of CAs is 
in most cases still driven by expert knowledge, which 
is known to be biased by personal experience, acces-
sibility of areas, as well as the often limited knowl-
edge about the processes influencing the spreading of 
invasive species (Ghosh et al. 2017).

In contrast to CAs, correlative species distribution 
models (SDMs) have been used frequently to model 
the current and also the future potential distribution 
of IAPs without including potentially biased expert 
knowledge (Cao et  al. 2021). However, correlative 
SDMs face some other limitations, partly related to 
the basic assumptions underlying correlative SDM. 
These include (1) that the distribution of a species is 
limited wholly or partly by aspects of climate and (2) 
that most species are in an equilibrium with climate, 
that is, the species occurs in all reachable and suit-
able habitats (Araújo and Peterson 2012). The latter 
is unrealistic as constraints related to dispersal as well 
as biotic interactions and human influence prevent 
many species from occurring in theoretically suitable 
habitats (Araújo and Peterson 2012). In the context 
of biological invasions, another assumption of cor-
relative SDMs is that the niche observed for the spe-
cies in its native range will be the same as in the new 
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region where it occurs as IAP (Wiens and Graham 
2005; Wiens et al. 2010).

This so called niche conservatism is a crucial 
requirement if a SDM trained with species occur-
rence data from the native range is applied to a new 
area where a species acts as an IAP. However, niche 
shifts and also expansions have been observed for 
several IAP (Pena-Gomez et al. 2014). Solely relying 
on training data from the native range of the IAP may 
thus lead to an underestimation of the invasive poten-
tial of the species. Contrarily, training a SDM based 
on occurrence data only from the non-native range is 
very likely to violate the equilibrium assumption as 
the species in most cases did not have the time yet to 
reach all the areas in which it could in theory survive 
(Pili et al. 2020). Again there is a notable risk that the 
area of suitable habitat for the IAP will be underes-
timated. Despite the drawbacks of correlative SDMs, 
they have been widely applied as tools for predicting 
the potential distribution of IAP under current and 
future climate conditions and been proven useful for 
assessing invasions risks. Methodical developments, 
particularly approaches that combine multiple SDMs 
(Gallien et  al. 2012) or combine SDMs with other 
model types, representing for example spreading 
properties of the IAP, may further improve the per-
formance of SDM in the context of invasion ecology.

In this study we want to show the advantage of a 
combined model at the example of U. europaeus, the 
common gorse (Rees and Hill 2001). The native range 
of the shrub is the Atlantic coast of Western-Europe. 
After its introduction to other continents, it became 
invasive in numerous coastal regions worldwide, for 
example in North and South America and Australia 
(Hornoy et al. 2011). In Central-Chile U. europaeus 
is considered as a highly damaging IAP with negative 
effects on agriculture and plantation forestry (Noram-
buena et  al. 2000) and on the unique endemic flora 
(Altamirano et  al. 2016). Therefore, some studies 
have developed methods to map the recent spread of 
U. europaeus based on remote sensing data (e.g., Kat-
tenborn et al. 2019; Gränzig et al. 2021) or modelled 
its invasion dynamics and distribution (e.g., Sorbe 
et al. 2023; Bateman and Vitousek 2018; Altamirano 
et al. 2016). However, no study to date has used his-
torical and current presence data in combination with 
future climate data, as well as additional geo-data, 
to reconstruct and predict the invasion pattern of U. 
europaeus.

The objectives of this study are: 

1. To develop a combined workflow of correlative 
SDMs and CAs that allows to reconstruct the his-
toric spread of U. europaeus as observed from 
multi-temporal satellite data,

2. To use this retrospective data set to calibrate CA 
models predicting the future spread under dif-
ferent climate change scenarios and to assess 
the continued invasion risk of U. europaeus on 
Chiloé Island.

Fig. 1  Chile (The  inset map with Chiloe Island is  indicated in 
red. The red star indicates the capital of Chile, Santiago de Chile) 
and Chiloé Island including National parks (blue lines), Ruta 5 
(black line) and settlements (blue points) from Open Street Map 
(OSM). The white numbers indicate the islands at the surrounding 
gulfs: 1 = Isla Lemuy, 2 = Isla Quehui, 3 = Isla Chelin, 4 = Isla 
Quinchao, 5 = Isla Quenac, 6 = Isla Llingua, 7 = Isla Mechuque, 
8 = Isla Anihue, 9 = Isla Caucahue, 10 = Isla Tranqui
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Data and methods

Study site and target species

This study focuses on Chiloé Island in south-central 
Chile (see Fig. 1). The local climate has a strong oce-
anic influence with a corresponding high air humidity, 
high precipitation rates and low temperature ampli-
tudes (annual average rainfall of 2090  mm, mean 
annual temperature of 12  ◦C). Chiloé Island extends 
over an area of approx. 9180  km2 and is mainly cov-
ered by native north-Patagonian rainforests (66.9%) 
and agricultural land (27.4%), with the most intensive 
agricultural use taking place in the north-eastern and 
central parts of the island (Barrena et al. 2014).

The north-eastern and the central part of Chiloé 
Island represent the main distribution area of U. euro-
paeus today Gränzig et  al. (2021). Once introduced 
as “natural” fence due to its dense and spiky foliage, 
it quickly spread into meadows, agricultural land, 
and plantations. This process was supported by the 
favourable climatic conditions on the island and the 
high adaptability of U. europaeus to disturbances. U. 
europaeus is a fast growing leguminous shrub which 
can be up to 7 m tall (but more often between 2 and 
4  m). It shows a very unique yellow flower during 
spring (Clements et al. 2001). Seeds of U. europaeus 
are able to germinate after fire events. In addition, 
the species has a taproot system with lateral spread-
ing capacities, which supports rapid re-sprouting 
after disturbances. Thus, removing U. europaeus after 
establishment is very expensive and difficult to under-
take (Norambuena et al. 2000).

Data

Generally, the spread of U. europaeus is assumed to 
depend on various environmental factors which can 
be summarized by a range of geodatasets including 
(historic and future) climate data, relief and altitude-
related parameters (sun azimuth angle), infrastructure 
data, as well as soil variables (see Table 1). For mod-
eling the past and predicting the future invasion pat-
terns we used environmental and remote sensing data 
for both, the native (Western Europe) and the invasive 
range (Chiloé Island) of U. europaeus following the 
recommendation of Clements et  al. (2001). Further-
more, we included infrastructure and soil data for 
modeling the spreading patterns of U. europaeus.

Environmental data

WorldClim (version 2.1) data (30 s resolution) was 
acquired for the study area of Chiloé Island (tiles 33 
and 43) and for Western-Europe (Fick and Hijmans 
2017). WorldClim data represents average climate 
data for the time-period 1970–2000 and includes 19 
bioclimatic variables.

For predicting the future invasion patterns, gen-
eral circulation models (GCM) were acquired from 
the Coupled Model Inter-comparison Project 5 
(CMIP5, https:// world clim. org/ data/ v1.4/ cmip5_ 
30s. html). Each GCM dataset used in our study 
consists of the same bioclimatic variables as the 
Worldclim 2.1 data. We used CMIP5 climate data, 
because of its availability in 30  s resolution. The 
CMIP5 data were downloaded for two representa-
tive concentration pathways (RCP). RCP 45 is con-
sidered as an intermediate scenario, whereas the 
RCP 85 is the worst-case scenario with a continuous 
cumulative rise of the CO

2
 emissions (IPCC 2014). 

The 30 s resolution CIMP5 data were available for 
two time periods 2050 (averaged for 2041–2060) 
and 2070 (averaged for 2061–2080) (Taylor et  al. 
2012). Although the WorldClim data was already 
provided as averaged values for both time-periods, 
we used them, but averaged the different models 
provided by WorldClim for each time-period. All 
GCMs (17 total, see Table   7) were then averaged 
for the 19 bioclimatic variables and for each RCP.

We used the TanDEM-X DEM standard prod-
uct with a spatial resolution of 12 m and a vertical 
accuracy of 2 m (Esch et  al. 2012) to derive topo-
graphic information for Chiloé Island. For Central-
Europe, we used Shuttle Radar Topography Mission 
data (SRTM-3) with a 90 m resolution. From both 
DEMs, hillshade images were calculated taking into 
account aspect and slope as well as the solar azi-
muth angle at the highest zenith state.

From the total set of available environmental 
variables, we selected a subset representing the 
most important environmental requirements of U. 
europaeus in its native and non-native range. We 
furthermore ensured that the selected variables 
have low to medium inter-correlations (see Fig. 2). 
During this expert selection, the following earlier 
reported environmental requirements of U. euro-
paeus were considered:

https://worldclim.org/data/v1.4/cmip5_30s.html
https://worldclim.org/data/v1.4/cmip5_30s.html
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– The distribution of U. europaeus depends pri-
marily on temperature (cannot survive very high 
and very low temperatures) (Zabkiewicz 1976).

– Ulex europaeus prefers maritime conditions with 
a distinct seasonality in precipitation (Clements 
et al. 2001).

– Ulex europaeus is a light demanding plant (intol-
erant against heavy shade) (Hackwell 1980).

Based on these assumptions and after dropping highly 
correlated variables, five variables (Hillshade, Annual 
Mean Temperature (Bio1), Temp. Annual Range 
(Bio7), Annual Precipitation (Bio12), Precipitation 
Variability (Bio15)) were selected.

To obtain a temporally consistent data-set, the four 
selected bioclimatic variables were linearly inter-
polated to 5-years intervals for the future climate 
conditions. Thus, the 5-years interpolation starts in 
2000 based on the historical WorldClim 2.1 data, 
continues with the CMIP5 data for 2050 (10 inter-
polation steps), and ends in 2070 (mid-term forecast) 
(four interpolation steps between CMIP 5 for 2050 
and 2070). Climate data from 2070 were constantly 
used for the long-term forecast (to 2100) because no 
climate forecasts beyond 2070 are available, as cli-
mate forecasts for such large time periods are very 
imprecise.

Additionally we used two geo-layers to account for 
abiotic and anthropogenic factors in the CA models. 
We used a soil-type data set for Chile from CIREN 
(Chilean Natural Resources Information Centre—
status 2010–2012, (CIREN 2003)) to include soil 
suitability information. The data (scale of 1:10 000) 
was aggregated to eight suitability classes based on 
expert knowledge. Furthermore infrastructure data for 
Chiloé Island was downloaded from the OpenStreet-
Map platform (OSM, wiki.openstreetmap.org). We 
focused on layers representing the road network as 
roads are known to be a primary propagation route for 
U. europaeus (Moss 1960). Each pixel within 100 m 
of the nearest traffic route was considered part of the 
road-affected area.

Figure  3 shows maps of the selected climate and 
terrain variables as well as of the additional geo-layer 
for soil and roads.

Remote sensing data

For the long-term calibration of the CA models, we 
used four Level 2A Landsat images with very low 
cloud cover acquired on October 8, 1988 (Landsat 4), 
October 23, 1999 (Landsat 7), October 27, 2015 and 
November 09, 2020 (both Landsat 8). All scenes were 
acquired during the flowering period of U. europaeus.

To train the classification algorithm for mapping 
U. europaeus occurrences in the Landsat scenes, 
high resolution RGB Google Earth Pro (GEP) 
imagery were used to identify retro-perspective and 
actual presence points. The first available high reso-
lution image during the flowering phase was from 
2009 and the latest from 2020. In total, 13 suitable 
dates were available. We intensively scanned these 
images for larger (at least the extent of one Land-
sat pixel) U. europaeus patches and digitized them. 
Patches from 2009 to 2015 were then merged for the 
2015 Landsat image and from 2009 to 2020 for the 
2020 Landsat image. We assume that once a site has 
been colonized by U. europaeus, this status remains 
unchanged even if U. europaeus has been removed. 
This was necessary due to the strong dynamic 
between removal and regrowth of U. europaeus. 
More than 4500 patches of U. europaeus were 
detected (See Fig. 4). Based on the aggregated layer 
for 2020, we traced these patches back to get pres-
ence points for the years 1999 and 1988 (See Fig. 5) 
via an onscreen backward analysis. For this step 

Fig. 2  Correlation between the environmental variables. A list 
of the abbreviations of the bioclimatic variables of Worldclim 
can be found in Table   8. Variables that had a correlation of 
less than ± 0.5 were used in this study
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we used the downloaded Landsat images. Already 
GEP-digitized patches which show the unique yel-
low flower of U. europaeus in the historic Landsat 
images before 2009 were considered as U. euro-
paeus patch also in the backward time-steps where 
no high resolution reference data was available. If 
there was was no indication of a yellow flowering 
in the Landsat images, we omitted the patch. Within 
the patches which we assigned to the U. europaeus 
class for all Landsat images, 2000 random points 

were selected. These occurrence points were then 
used as reference points for the classification of U. 
europaeus in “  Mapping the occurrence of Ulex 
(Step 1)” Section.

Methods

The methodological workflow (see Fig. 6) consists of 
3 major steps: (1) Mapping past (1988, 1999, 2015) 
and recent (2020) occurrences of U. europaeus based 
on multi-temporal remote sensing data and Random 
Forest classifications. (2) Modelling the past and 

(a) Hillshade (b) Bio 01 (c) Bio 07

(d) Bio 12 (e) Bio 15 (f) Soil

(g) Roads

Fig. 3  Environmental and infrastructure variables. A list of 
the abbreviations of the bioclimatic variables of Worldclim can 
be found in Table  8 and in Table  1. A deeper blue indicates 
lower values for maps (a–f). The range of values is indicated in 
the legends inserted in Figures a–f 

Fig. 4  Aggregated U. europaeus patches (cyan) detected in 
Google Earth Pro (GEP) in the time period 2009–2020. The 
red squares indicates the footprints of the high-resolution 
images available in GEP. The blue lines indicates the National 
parks, the black line indicates the Ruta 5 sur and the blue 
points indicate settlements (Source: Open Street Map)
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predict the future habitat suitability for U. europaeus 
with the help of a SDM based on environmental 
variables. (3) Modelling the past (starting in 1988) 
and predict the future invasion pattern of U. euro-
paeus with CA models based on occurrence maps, 
habitat suitability layers derived from the SDM and 

additional geo-layers (roads and soil). Before predict-
ing the future invasion pattern, the CA models were 
calibrated based on the past (1999 and 2015) and 
recent occurrence maps (2020) to establish a set of 
optimal transition rules. Based on this set of transi-
tion rules the invasion pattern is predicted for a mid-
term period (until the year 2070) and a long-term 
period (until the year 2100) and finally the invasion 
probability is calculated. The latter prediction period 
(2100) is slightly longer than the period of the climate 
model (2070), because the spreading process might 
need more time to reach its maximum extend, espe-
cially in the southern part of the island even under no 
further changing climate conditions.

Mapping the occurrence of Ulex (Step 1)

For the retrospective CA model calibration, four 
occurrence maps were prepared, representing the 
spatial distribution of U. europaeus on Chiloé Island 
in the years 1988, 1999, 2015 and 2020. The occur-
rences of U. europaeus were classified based on the 
Landsat images and the reference points described 
in the previous “Remote sensing data” Section . The 
presence points of each time-stamp were divided into 
50% calibration and 50% validation for assessing the 
classification quality. The Random Forest algorithm 
(Breiman 2001) was used as a one-class-classifier 
to derive the probability values of potential U. euro-
paeus occurrences. Optimal hyper-parameters (mtry 
= Randomly Selected Predictors, split-rule = Split-
ting Rule, min.node.size = Minimal Node Size) of the 
RF algorithm (Ranger algorithm of the caret package 
in R) were optimized with a grid-search approach 
based on a 5-fold cross-validation of the calibration 
points. The calibrated RF models were then applied 
to the entire Landsat images to estimate U. europaeus 
occurrence probability values. Estimated occurrence 
probabilities above 0.8 were considered as occur-
rences, and were compared to the validation points 
for calculating the Overall Accuracy (OA).

Based on the resulting occurrence maps, reference 
data-sets for the CA models were derived for each 
time-stamp. All classified U. europaeus patches in 
the occurrence map of 1988 were used as initial refer-
ence data. For the other three time stamps, the occur-
rence maps were aggregated for all previous time 
stamps, always starting in 1988. For the time-stamps 
in 2015 and 2020, the digitized U. europaeus patches, 

(a) Landsat 4 (1988) (b) Landsat 7 (1999)

(c) Google Earth Pro (2010) (d) Landsat 8 (2015)

(e) Landsat 8 (2020) (f) Google Earth Pro (2020)

Fig. 5  Delineated U. europeaus patches based on the last 
available high-resolution Google Earth Pro image for this site 
from 2010 with background images: a Landsat 4 (year 1989), 
b Landsat 7 (year 1999), c Google Earth Pro (2010), d Land-
sat 8 (year 2015), e Landsat 8 (year 2020), e Google Earth Pro 
(2020)
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scanned in Google Earth Pro, were additionally added 
to increase the amount of reference data. In this way, 
all classified and digitized occurrences of U. euro-
paeus, since 1988, are included in the latest refer-
ence data of 2020. That is, our reference data for each 
time step represents all areas were U. europaeus has 
occurred at least once until a given time step (maxi-
mal distribution).

Modeling the habitat suitability (Step 2)

To model the current and estimate the future habi-
tat suitability for U. europaeus on Chiloé Island, the 
Maxent species distribution algorithm (Phillips et al. 
2004) was used as implemented in the dismo pack-
age in R (Hijmans et al. 2017). In this study, the esti-
mated potential spatial distribution provided by Max-
ent is translated to an habitat suitability ranging from 
0 (low suitability) to 1 (high suitability).

The occurrence points of U. europaeus on 
Chiloé Island were derived from the reference data 
for the year 2020 originating from the classification 
of the Landsat images (see “Mapping the occur-
rence of Ulex (Step 1))” Section and the digitized 
patches in GEP (see “Remote sensing data)” Sec-
tion. Based on the aggregated occurrence map, 
we randomly selected 200 pixels using a stratified 
distance sampling within U. europaeus patches to 
avoid auto-correlation effects within the Maxent 
models (see Fig.  7). The occurrence points from 
the native range were downloaded from the Global 
Biodiversity Information Facility archive (Ulex L. 
in GBIF Secretariat 2022). To obtain a balanced set 
of invasive and native occurrence points we also 
randomly selected 200 GBIF points from Europe 
(see Fig.  8). In Fig.  9 the range of the selected 
environmental variables is shown for the selected 
occurrence points for Chiloé Island and Western-
Europe. As background data for the Maxent model, 

Table 1  Utilized variables 
for the modelling process 
including their data-source 
and resolution. CI = Chiloé 
Island, WE = Western-
Europe

Region Data-source Variable Res.

WE GBIF Occurance points Ulex –
CI Google earth pro Reference data for LCLU + Ulex –
WE/CI WorldClim CMIP5 BIO1: Annual mean temperature 30 s
WE/CI WorldClim CMIP5 BIO7: Temperature annual range (BIO5-

BIO6)
30 s

WE/CI WorldClim CMIP5 BIO12: Annual precipitation 30 s
WE/CI WorldClim CMIP5 BIO15: Precipitation seasonality 30 s
WE SRTM Hillshade 90 m
CI TandDEM-X Hillshade 12 m
CI NASA USGS Landsat 4 (1988) 30 m

Landsat 7 (1999)
Landsat 8 (2015)
Landsat 8 (2020)

CI CIREN Soil quality (1–8) –
CI Open street Map Roads –

Fig. 6  Workflow of the study. The displayed steps are 
described in “Mapping the occurrence of Ulex (Step 1)” Sec-
tion for Step 1, “Remote sensing data” Section for Step 2, 
“ Modelling the Invasion probability with transition rules (Step 
3a)” Section for Step 3a, and “Estimating the invasion prob-
ability (Step 3b)” Section for Step 3b
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20.000 random points were selected for Chiloé 
Island as well as for Western-Europe. The back-
ground points for the native range are distributed 
over entire Western-Europe. In the first step of the 
SDM, the Maxent model was calibrated to the his-
toric and recent (1988–2020) (see “Environmental 
data” Section) environmental variables based on 
the presence points describing the native and non-
native realized niche. The presence points were 
divided into 75% for calibration and 25% for AUC 

calculation to check the model quality. The cali-
brated SDM was then applied to the interpolated 
future (2020–2070) environmental variables (see 
“Environmental data” Section) to predict the habi-
tat suitability in 5-years steps. This was done for 
both RCP scenarios separately.

Fig. 7  Selected invasive occurrence points (yellow points) 
on Chiloé Island including national parks (blue dashed line), 
Ruta 5 sur (black line) and settlements (blue points) from Open 
Street Map

Fig. 8  Selected native occurrence points from Western-
Europe (GBIF)

Fig. 9  Comparison of the selected environmental variables for 
the occurrence points of U. europaeus on Chiloé Island and 
Western-Europe (GBIF)
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Modelling the invasion probability with transition 
rules (Step 3a)

The last part of the modelling of the invasion prob-
ability consists of two steps. In step 3a (“Modelling 
the Invasion probability with transition rules (Step 
3a)” Section) transitions rules for a Cellular Autom-
aton model are identified based on past and recent 
Occurrence Maps, Habitat Suitability information 
(1988–2020) as well as information on roads and soil. 
These calibrated transition rules are used in step 3b 
(“Estimating the invasion probability (Step 3b)” Sec-
tion) to estimate the future invasion probability based 
on optimal transition rules, the so-called level-sets.

The two main components of CA modeling are 
the applied transition rules and the considered neigh-
borhood. Depending on the transition rules the state 
of the cells will be updated in each iteration (year). 
Here, a cell can either be colonized by U. europaeus 
(state = 1) or remain un-colonized (state = 0). Since 
the aim of the CA models is to predict the potential 
distribution of U. europaeus and not the actual inva-
sion status, the state of a cell is not reversible once 
colonized by U. europaeus. In this study, the habi-
tat suitability was used as baseline information to 
describe the likelihood of a cell of being invaded. 
However, since the invasion probability of an area by 
U. europaeus may not only depend on suitable cli-
matic and topographical conditions but also on local 
soil conditions and spreading vectors, we altered the 
SDM-based habitat suitability based on the Open 
Street Map infrastructure layer and the soil map. 
This was done by assigning both geo-layers a specific 
habitat suitability value. Since U. europaeus is able 
to grow on many different soil types, only unfavour-
able soil types were considered as constraints (low 
values). After integrating the unfavourable soil types 
in the habitat suitability maps, roads (represented by a 
100 m buffer around linear OSM road features) were 
additionally integrated (high values). The optimal 
values for soil and the roads are tested in “Estimating 
the invasion probability (Step 3b)” Section.

This refined environmental variability map builds 
the basic "landscape" for modeling the spread of U. 
europaeus with the CA models. The second impor-
tant parameter to model the actual spread over time, is 
the neighborhood of each individual cell in the land-
scape. Depending on the number of neighbors that 
are already invaded by U. europaeus, the invasion 

pressure is calculated. The spatial definition of the 
neighborhood of an individual cell is another parame-
ter that can be optimized (Ghosh et al. 2017). Follow-
ing Li and Yeh (2000) a circular shape was used in 
this study instead of a rectangular, to equally consider 
the invasion state of all neighboring cells, independ-
ent from directions. Only pixels whose pixel centers 
were within the distribution radius were considered. 
In addition to the shape, the size of the neighbor-
hood is also important, since it directly regulates the 
spreading distance of the target plant. U. europaeus 
can spread by growth several meters per year (up to 
5 m), but can bridge far larger distances through the 
transport of seeds by animals (ants and birds) (Moss 
1960) as well as seed transport in streams and by 
vehicles on roads (Hill 1949). Here, we tested several 
neighborhood sizes during the calibration task (see 
“Estimating the invasion probability (Step 3b)” Sec-
tion). Based on the habitat suitability and the invasion 
pressure calculated from the neighborhood of each 
cell, the following two general transitions rules were 
derived: 

1. Depending on the habitat suitability of a cell 
(from low = 0 to high = 1) a certain

2. invasion pressure (from low = 0% to high = 
100%) is required to change the state from un-
colonized (state = 0) to colonized (state = 1).

To consider the full gradual range of both parameters, 
we parameterized them and grouped them into four 
levels (low, medium-low, medium-high, high). The 
general assumption was, that a cell with a high habi-
tat suitability value (e.g. > 0.6 ) requires only a low 
invasion pressure (e.g. > 1% of the surrounding pixel 
are already colonized) to change the state from 0 to 
1 and vice-versa. Different levels of both parameters 
are tested in “Estimating the invasion probability 
(Step 3b)” Section to find the optimal combination 
to supplement the two general transitional rules by 
additional rules. These optimal transition rules are 
called level-sets. They were used to model the spread 
of U. europaeus from the initial state in 1988 to the 
recent state in 2020 and to forecast the future invasion 
pattern.

The CA modeling task is separated into two 
individual steps, (a) reconstruction of the invasion 
dynamics between the years 1988 and 2020 and (b) 
prediction of the future invasive pattern until 2100. 
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In the first iteration of the retrospective modeling, 
the CA models use the 30 m grid of the occurrence 
map of 1988 as starting point. The invasion pressure 
is always calculated first in each iteration based on 
the occurrence map. The occurrence map will then 
be updated according to the transition rules in each 
iteration. Finally, the CA models stop in 2020 and the 
modelled invasion status is compared to the mapped 
U. europaeus occurrences in 1999, 2015 and 2020 
(see “Mapping the occurrence of Ulex (Step 1)” Sec-
tion) to assess the model performance. For the latter 
two, the digitized patches from GEP (see “Remote 
sensing data” Section) were included.

The CA model performance was optimized in an 
exhaustive parameter tuning for all possible com-
binations (see next “Estimating the invasion prob-
ability (Step 3b)” Section). Once all tested transi-
tion rules, defined in Tables   2, 3 and 4, had been 

evaluated, the upper 95% percentile (best 5%) of 
all transition rules were used to predict the inva-
sion pattern of U. europaeus on Chiloé Island for 
the entire period between 1988 and 2070 (mid-
term forecast) and until the year 2100 (long-time 
forecast). For this purpose, the habitat suitability 
maps of the past (1988–2020) and the future period 
(2020–2070) were used. For the long-term fore-
cast, the latest habitat suitability map from 2070 
was used for all forecasts after 2070. The decision 
to also include a long-term forecast for 2100 (for 
which no climate scenario is available) was moti-
vated by our interest in understanding whether 
the somewhat untouched areas of the two national 
parks in the south and west of the island are likely 
to be invaded by U. europaeus in the long-term. 
For the long-term forecasts, no changes in climate 
were considered because there were no suitable 
climate models for this time period. Therefore, the 

Table 2  Levels-sets of 
the environmental habitat 
suitability (HS) and 
invasion pressure (IP) 
values

Parameter ID Low Medium-low Medium-high High

Env. suitability HS1 ≥ 0.1 ≥ 0.3 ≥ 0.5 ≥ 0.7

HS2 ≥ 0.2 ≥ 0.4 ≥ 0.6 ≥ 0.8

HS3 ≥ 0.3 ≥ 0.5 ≥ 0.7 ≥ 0.9

HS4 ≥ 0.1 ≥ 0.2 ≥ 0.4 ≥ 0.8

HS5 ≥ 0.2 ≥ 0.3 ≥ 0.5 ≥ 0.9

HS6 ≥ 0.1 ≥ 0.5 ≥ 0.7 ≥ 0.8

HS7 ≥ 0.2 ≥ 0.6 ≥ 0.8 ≥ 0.9

Invasion pressure IP1 ≥ 1% ≥ 5% ≥ 10% ≥ 15%

IP2 ≥ 1% ≥ 10% ≥ 20% ≥ 30%

IP3 ≥ 1% ≥ 15% ≥ 30% ≥ 45%

IP4 ≥ 1% ≥ 20% ≥ 40% ≥ 60%

IP5 ≥ 1% ≥ 25% ≥ 50% ≥ 75%

IP6 ≥ 1% ≥ 30% ≥ 60% ≥ 90%

Table 3  Size of the circular neighborhood in pixel (NS), the 
extent of the neighborhood in pixel and the invasion distance 
in meter

Parameter ID Extent Distance (m)

Neighborh. size NS1 3 pix 30
NS2 5 pix 60
NS3 7 pix 90
NS4 9 pix 120
NS5 11 pix 150
NS6 13 pix 180
NS7 15 pix 210

Table 4  Habitat suitability (HS) values for soil (SO) and roads 
(RO)

Parameter ID HS values

Roads RO1 0.6
RO2 0.8
RO3 1.0

Soil SO1 0.0
SO2 0.2
SO3 0.4
SO4 0.6
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advancing spread of Ulex in the long-term mod-
eling Ulex is solely due to changes in invasion pres-
sure, as habitat suitability remained constant.

In a last step, the predictions (0 = un-colonized; 
1 = colonized) were aggregated and divided by the 
number of selected transition rules to receive the 
invasion probability of U. europaeus on Chiloé 
Island.

Estimating the invasion probability (Step 3b)

Based on the assumptions in “Modeling the Habi-
tat Suitability (Step 2) and Modelling the Invasion 
probability with transition rules (Step 3a)” Sections 
about the spreading ability and the environmental 
requirements of U. europaeus, several parameter 
level-sets were tested to establish optimal transi-
tion rules for the CA models. Seven levels-sets of 
the habitat suitability (HS) and six levels-sets of 
the invasion pressure (Table  2) were tested in the 
CA model. Both parameters were always separated 
into four levels but the way the four levels were 
determined varied for HS. We tested three linear 
(HS1–HS3), two exponential (HS4 & HS5) and 
two exponential leveling (HS6 & HS7) assump-
tions (which drive the ways of how the HS from 0 
to 100 % is split into four classes) to simulate the 
processes of invasion dynamics. The levels of inva-
sion pressure on the other hand, were considered to 
be only a linear phenomenon. Since, the invasion 
pressure is related to the neighborhood size (NS) we 
additionally examined seven circular neighborhood 
sizes (Table  3). Furthermore, four habitat suitabil-
ity values for the unfavourable soil types (SO) and 
three for roads (RO) (Table  4) were tested for the 
habitat suitability map aggregation. The aggregated 
suitability maps were included in the CA model to 
describe the properties of the cells.

As already mentioned, all parameter level-sets 
of HS, IP, NS, RO and SO were combined into dif-
ferent transition rules and tested with an exhaustive 
parameter tuning approach. In total 1848 unique 
transition rules were evaluated. For each transition 
rule set the Balanced Accuracy (BA) was calculated 
by comparing the predicted invasion pattern for the 
years 1999, 2015 and 2020 with the corresponding 
aggregated reference data (occurrence maps) of the 
same year (see “Mapping the occurrence of Ulex 
(Step 1)” Section). The BA was used because of the 

imbalance between the amount of pixels represent-
ing presence or absence of U. europaeus within the 
reference data. The BA averages (Eq.  1) the True 
Positive Rate (TPR or Sensitivity) (Eq.  2) and the 
True Negative Rate (TNR or Specificity) (Eq.  3). 
Finally, the BA values of the three time stamps were 
averaged for each parameter setting.

Results

Past and recent occurrence maps

The past and recent occurrence maps (see Step 1 in 
Fig. 6) generated with the Random Forest algorithm 
achieved a very high predictive accuracy for all four 
time-stamps. The Overall Accuracy for the valida-
tion points ranges between 0.975 and 0.993 (Table 5). 
However, there were some mis-classifications 
between U. europaeus and some smaller land cover 
classes which were not included in the classification. 
This was particularly the case for the typical Magel-
lan peat-bogs on Chiloé Island, which can show 
similar yellow color as U. europaeus. This was also 
recognized by Gränzig et al. (2021). Thus all occur-
rences maps were visually checked and clearly wrong 
pixels were manually corrected.

(1)Balanced Accuracy =
Sensitivity + Specificity

2

(2)Sensitivity =
True Positive

True Positive + False Negative

(3)Specificity =
TrueNegative

TrueNegative + False Positive

Table 5  Accuracy assessment of the Random Forest classi-
fications performed with recent and historic reference data as 
seen in Figs. 4 and 5 as part of the workflow Step 1 shown in 
Fig. 6

Year Overall accuracy Balanced 
accuracy

Kappa

1988 0.975 0.912 0.889
1999 0.980 0.938 0.914
2015 0.993 0.976 0.971
2020 0.979 0.933 0.910
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Habitat suitability maps

The Maxent species distribution model (SDM) was 
used to estimate the past (1988–2020) and the future 
(2020–2070) habitat suitability for U. europaeus on 
Chiloé Island. The retrospective SDM reached an 
accuracy (here defined as AUC value) of 0.888 for 
training (75% of the presence points) and 0.851 for 
test data (25% of the presence points). According to 
the jackknife test, within the Maxent algorithm, the 
Annual Temperature Range (Bio 7) has the most 
unique information of all selected environmental vari-
ables. The precipitation seasonality (Bio15) was the 
second most important variable, by some distance. 
Hillshade, Annual mean temperature (Bio1) and 
annual precipitation (Bio12) show comparably low 
unique information. In Fig. 10 the habitat suitability 
maps of the past and recent time periods and for the 
year 2070 are shown for both climate scenarios.

Calibration of the cellular automata

The overall performance of the unique transition 
rule sets tested during the exhaustive parameter tun-
ing ranges between 0.622 and 0.933 Balanced Accu-
racy (BA). However, some noticeable differences 
between the included parameter level-sets are obvi-
ous. The boxplots in Fig. 11 show the BA of all Cel-
lular Automata models, depending on whether a cer-
tain level-set, neighborhood-size or habitat suitability 
value for soil and roads are included in the transi-
tion rule or not. Thus, the influence of the individual 
parameter level-sets are highlighted.

The BA values of the six invasion pressure (IP) 
level-sets (see Table 2 for definition) show the strong-
est differences among each other. This indicates, 
that this parameter has a strong influence on the per-
formance of the models. IP1 shows the overall best 
results, since it reaches the above mentioned maximal 
BA value and an average of 0.855 BA. In comparison, 
models including IP6 achieve only a maximal BA 
value of 0.854 with an average of 0.692. The maximal 
BA value of the other invasion pressure level-sets is 
gradually decreasing step-wise from 0.930 (avg. BA 
0.813) to 0.877 (avg. BA 0.706).

The circular neighborhood size (NS) also shows 
some differences in BA values between the exam-
ined sizes. NS1 shows the lowest overall maximal 
BA (0.742) and the lowest average BA value (0.672) 

(a) 1970-2000

(b) Year 2020 [RCP45 ] (c) Year 2020 [RCP85

(d) Year 2070 [RCP45 ] (e) Year 2070 [RCP85

Fig. 10  Habitat suitability maps
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of all parameter levels. This means that all models 
including a small neighborhood size of 30 m (NS1) 
perform by far the worst. Even IP1 is showing nega-
tive outliers when combined with NS1. Accordingly, 
the BA values increase with increasing neighborhood 
size. Models using neighborhood sizes of 180–210 m 
(13–15 pixels) produce the maximal (0.933) BA value 
and had similar average BA values (0.789 and 0.787).

The influence of the habitat suitability (HS) is 
smaller in comparison to the invasion pressure level-
sets. The maximal BA values of the seven different 
level-sets show only small differences. They range 
between 0.922 and 0.933 BA. However, the aver-
age BA values show some differences. HS1 achieves 
the highest average BA value (0.804), whereas HS6 
shows the lowest (0.704). The average BA values of 
HS2, HS4 and HS5 range around 0.77. HS3 and HS7 
reached average BA values around 0.72. Interestingly, 
HS1 in combination with NS1 shows slightly better 
results than all other parameters, with the exception 
of R03.

The tested habitat suitability (HS) values for roads 
(RO) also show some influence on the model perfor-
mance. If the influence of roads on habitat suitability 
is considered very high (RO3—see Table 4 for defi-
nition), the model achieves the maximum BA value 
(avg. BA 0.809), but when a lower habitat suitability 
for roads is assumed (RO1 or RO2), the maximal BA 

value drops to 0.922 (avg. BA 0.721) and 0.915 (avg. 
BA 0.713), respectively.

A reverse trend can be seen for the constrains asso-
ciated with soil (SO). All models that assumed no 
influence of soils on habitat suitability (SO1—see 
Table  4 for definition) show a comparatively lower 
BA value (max BA 0.874; avg BA 0.746) than the 
other three tested habitat suitability values, which 
gradually increase the influence of soil. All other val-
ues of habitat suitability for soil (SO1–SO3) showed 
similar maximum BA values around 0.93, but slightly 
different average values (0.783, 0.765, and 0.755, 
respectively).

If only the upper 95% percentile of all tested transi-
tion rules sets are considered, 93 different sets remain. 
The range of BA values is then concentrated between 
0.916 and 0.933. Figure  12 depicts the frequency 
of the individual parameter level-sets on the upper 
95%-percentile. In most of the cases HS1 and IP1 for 
habitat suitability and invasion pressure are included 
in the best performing transition rules with a large 
circular neighborhood (NS7) and well as high influ-
ence of roads and soils (RO3 and SO4). All selected 
93 transition rules sets were used to estimate the inva-
sion probability of U. europaeus on Chiloé Island for 
the entire period between 1988 and 2070 (mid-term 
forecast) and until the year 2100 (long-time forecast).

Fig. 11  Balanced accuracy of all CA models according to 
whether a certain level-set (habitat suitability = HS, invasion 
pressure = IP, neighborhood size = NS, roads = RO, soils = 
SO) was included in the transition rules or not. More informa-
tion on the definition level-sets can be found in Tables 2, 3 and 
4. Colours indicate just different groups of level-sets

Fig. 12  Contribution of the level-sets (habitat suitability = 
HS, invasion pressure = IP, neighborhood size = NS, roads = 
RO, soils = SO) on the selected upper 95%-percentile of all 
tested transition rules (93 cases). A higher frequency shows 
that this level-set was more often included in a model of a very 
high accuracy. More information on the definition level-sets 
can be found in Tables 2, 3 and 4. Colours indicate just differ-
ent groups of level-sets
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Historical invasion patterns

Based on the upper 95%-percentile of all tested 
parameter-sets, the historical (1988–2015), the 
actual (2020), the mid-term future (until 2070), and 
the long-term future (until 2100) potential maximal 
spread of U. europaeus was estimated. The resulting 
predictions were summed for each time-stamp and 
divided by the number of CA models performed.

In Fig.  13 the historical and the actual invasion 
probabilities are shown. In the year 1990 (2 years 
after the initial start of the CA models) the extent 
of the possible invasion of U. europaeus is limited 
to small local patches in the North and in Central-
Chiloé. More information on the local develop-
ment of the spread of U. europaeus can be found in 
the Appendix. By 2020, most of the small isolated 
patches of high probability have merged into larger 
contiguous areas. However, clear differences in the 
extent of areas with high and low invasion probabili-
ties are apparent for the north and Central-Chiloé. In 
2010 and 2020, the areas showing a the high invasion 
probability increase strongly. A continuous invasion 
corridor is now visible with high invasion probabili-
ties along the "Ruta 5 sur" from Ancud to Central-
Chiloé. However, this corridor is much wider in 2020 
than in 2010. The highest invasion probabilities are 
still observed in the North and along the roads. It is is 
very likely that U. europaeus could occur almost any-
where on the island on the East-coast. The enclaves 
more in the South are still isolated, however, due to 
their increasing expansion, they are almost connected 
to the main invasion areas in 2020.

Future invasion pattern

In Fig. 14 the potential invasion patterns of U. euro-
paeus is illustrated for the mid-term and the long-
term forecast and for both RCP scenarios. Until the 
year 2070 the potential invasion will spread much 
stronger into the eastern, western and southern parts 
of the island. The North will be very likely com-
pletely invaded by U. europaeus. In the year 2100, 
both scenarios shows only little differences. The only 
un-invaded areas will be the main parts of the Parque 
Nacional Chiloé, the Parque Tepuhueico at the west-
coast and of the Parque Tantauco at the south-coast 
of Chiloé Island. Table  6 shows the estimated spa-
tial extent of the historical and future invasion of U. 

europaeus. While the area in 1990 was quite small 
(309  km2), by 2020, the invaded area had increased 
more than eight-fold (2565  km2). For the mid-term 
forecast for the year 2070, an area of 4800  km2 for 
RCP45 and 4877  km2 for RCP85 was estimated. In 
the long-term forecast, the area for RCP45 increases 
to 5519  km2 and for RCP85 even up to 5801  km2.

Discussion

In this study we introduced a workflow combining 
correlative SDMs and CAs that allows to reconstruct 
the historic spread and the modelling of the future 
spread of U. europaeus. This general workflow is 
based on three main parts:

– Mapping of the occurrences of U. europaeus 
between 1988 and 2020

– Modelling the habitat suitability of U. europaeus 
with a correlative SDM

– Estimating the invasion probability with calibrated 
CA models

In the following sections we will discuss each of this 
parts individually and then end with a paragraph on 
the synergistic use of these methods.

Mapping occurrences between 1988 and 2020

For mapping the historic to recent occurrences of 
U. europaeus, the overall accuracies reached very 
high values (between 0.975 and 0.993), which is in 

Table 6  Estimated spatial extent of historical and future U. 
europaeus invasion

Year Scenario Spatial 
extent 
 (km2)

1990 Historical 309
2000 Historical 1383
2010 Historical 1993
2020 Historical 2565
2070 RCP45 4800
2100 RCP45 5519
2070 RCP85 4877
2100 RCP85 5801
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accordance to other studies for this IAP (Kattenborn 
et  al. 2019; Gränzig et  al. 2021). These results are 
related to the distinctive yellow flowering of Ulex 
euopaeus, which makes it comparably easy to detect 
its presence, even in the past, if a suitable remote 
sensing dataset is available.

Nevertheless, it remains a challenge to identify 
sufficient historic presence points of U. europaeus 
to serve as reference data. Only with an appropri-
ate number and, even more important, with a repre-
sentative distribution of presence points, the historic 
and the future invasion pattern can be estimated 

realistically (Elith et  al. 2011). To achieve this, we 
collected more than 4500 individual occurrences 
from high-resolution GEP imagery available for the 
time period between 2009 and 2020. A drawback of 
this approach is that the distribution of the identified 
patches depends strongly on the spatial coverage and 
even more on the acquisition time of the high-resolu-
tion images in GEP. Although the coverage of high-
resolution imagery was fairly well distributed for the 
main inhabited parts of the island (see Fig. 4), it can-
not be excluded that patches of U. europaeus were 
missed due to a lack of spatial coverage or a temporal 

(a) Year 1990 (b) Year 2000

(c) Year 2010 (d) Year 2020

Fig. 13  Historical (1990, 2000 and 2010) and actual (2020) 
estimation of the invasion pattern of U. europaeus 

(a) Year 2070 [RCP45 ] (b) Year 2070 [RCP85 ]

(c) Year 2100 [RCP45 ] (d) Year 2100 [RCP85 ]

Fig. 14  Mid-term forecast (2070) and long-term forecast 
(2100) of the invasion pattern of U. europaeus for the scenar-
ios RCP45 and RCP85
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offset to the main flowering phase of U. europaeus. 
For example, there were no high-resolution images 
available for the area around the village of Chepu 
along the Rio Chepu. The same applies for the very 
south of Chiloé Island. It can not fully be clarified 
whether U. europaeus already has invaded that area. 
Concerning the problem of temporal offset of GEP 
images with the flowering phase, it must be consid-
ered that the flowering phase of U. europaeus on 
Chiloé Island can have a temporal delay between the 
north and the south, due to differing climatic condi-
tions (Rees and Hill 2001). Therefore, images show-
ing the flowering phase in one part of the island may 
be too early or too late in other parts. Individuals 
of U. europaeus which had already withered or had 
not yet started to flower. would then be difficult to 
distinguish from native shrubs and other vegetation. 
Moreover, in the our approach for collecting refer-
ence data, we assumed that a site stayed colonized 
once U. europaeus was established. We deemed this 
to be a reasonable approach knowing that the success-
ful management of U. europaeus was limited in the 
recent decades and since we were most interested in 
determining the invasion potential.

A further challenge was to derive reliable train-
ing points for the time period before 2009 where no 
high resolution data was available. We traced back 
points identified between 2009 and 2020 but for 
1988 and 1999 the confirmation of the training points 
relies only on Landsat data at 30 m resolution. This 
approach could be highly error-prone if the target 
species does not have a unique bloom or if only a 
small number of training points were derived. Since 
the yellow flower of U. europaeus is visible even on 
Landsat’s 30  m images (see Altamirano et  al. 2016; 
Shepherd and Lee 2002), it can be assumed with high 
confidence that the patches identified in the GEP 
images and backtracked in the Landsat data indeed 
represented U. europaeus. Even if some patches were 
incorrectly identified as U. europaeus, the impact on 
the quality of the classification maps would be small 
thanks to the large amount of patches reliably identi-
fied in GEP. The spatial offsets between GEP high-
resolution images and other remote sensing data, can 
be a source of uncertainties as discussed by Goudarzi 
and Landry (2017) and Yu and Gong (2012). Depend-
ing on the location on the globe the horizontal error 
can be so high (Potere 2008), that manual geomet-
ric correction is required to remove offsets (Yu and 

Gong 2012). Since, no high precision ground control 
points were available to estimate the spatial offsets 
of GEP’s high-resolution images for our study site, 
the spatial offsets were evaluated by the ruler tool 
available in GEP. With only one exception, all high-
resolution images were found to have a spatial off-
set less than 30 m resolution to the applied Landsat 
images. These small offsets seem acceptable for the 
purpose of modelling invasive species with medium 
resolution images as stated by Visser et  al. (2014) 
and are in accordance with the findings of other stud-
ies (Goudarzi and Landry 2017; Pulighe et al. 2016). 
The one outlier image showed a very strong offset of 
around 300 m to all other high-resolution images. All 
patches delineated in this image were manually cor-
rected to match the previous and following high-res-
olution images.

In summary, the workflow for obtaining spatially 
explicit occurrence maps for U. europaeus across 
longer time periods using Landsat satellite images 
and supervised classifications trained with reference 
data from high-resolution images works reasonably 
well. The expected limitations and uncertainties were 
all considered acceptable in the given case due to the 
specific spectral properties of U. europaeus which 
enabled a reliable identification, both during the vis-
ual interpretation phase as well as during the super-
vised classification (the latter reached very high over-
all and kappa accuracies).

Mapping the habitat suitability with a SDM

In the second part of the methodical workflow we 
calculated habitat suitability maps using Maxent. 
We used U. europaeus presence data from both, the 
native range and the non-native range on Chiloé 
Island. Including presence data from the native 
range of an invasive alien species (IAP) for mod-
elling their distribution is crucial for taking into 
account that some niche shifts and also expansions 
have been observed for IAP (Pena-Gomez et  al. 
2014). Despite Chiloé Island and Western-Europe 
both having a maritime climate, Fig.  9 indicates 
that presence points from Chiloé Island and from 
Western-Europe show different ranges for some of 
the included variables. Whereas the illumination 
conditions (hillshade, CI = 239/WE = 230) and 
the annual mean temperature (Bio1) are very simi-
lar across both regions (CI = 10.4/WE = 10.0), a 
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strong difference in the temperature annual range 
(Bio7) is apparent (CI = 124, WE = 214). Chiloé 
Island has an on average lower difference between 
winter and summer temperatures. Since the pres-
ence points from GBIF are distributed over the 
entire range of Western-Europe (from South-Spain 
to South-Sweden), the range of the annual tempera-
ture range is large. However, even for the strongly 
oceanic influenced Mediterranean climate of Gali-
cia in Spain, where very mild winter and summer 
temperatures occur, the range is still higher than on 
Chiloé Island. Even larger differences can be seen 
for the annual precipitation (Bio12). The annual 
amount of precipitation is almost 1400 mm higher 
for Chiloé Island than for the presence points from 
Western-Europe (CI = 2243/WE = 858). There is 
also a stronger variation of precipitation during the 
year on Chiloé Island (Bio15, CI = 47/WE = 21). 
This underscores that the U. europaeus population 
on Chiloé Island is on the edge or even outside of 
its native range. Considering only the presence 
points of Chiloé Island or only from Western-
Europe in our SDM would not correspond to this 
extended niche of U. europaeus. The differing con-
ditions on Chiloé Island seem to create an advan-
tage for U. europaeus. Potentially this is related 
to missing competitors or seed predators that may 
normally occur in regions with less extreme pre-
cipitation and which may have more difficulties 
thriving under the conditions on Chiloé Island. As 
one example, Norambuena et  al. (2000) analysed 
the potential of seed predators (gorse spider mite) 
to control the invasion of U. europaeus in Chile. 
However, the establishment of some of the mite 
strains was hampered by the high precipitation 
rates in some parts of Chile.

Overall, the results of the Maxent habitat suit-
ability models presented here were acceptable with 
an AUC of > 0.85. We deem that the correspond-
ing habitat suitability maps provide useful infor-
mation about the areas with climatic conditions 
that are suitable for U. europaeus to establish and 
grow. However, modeling the species distribution 
based only on climate variables is not adequate 
for species where anthropogenic and biotic fac-
tors may contribute to the invasion success and 
the spreading behavior (Elliott-Graves 2016). To 
account for this, we included a proxy for anthro-
pogenic drivers in the CA models by implementing 

infrastructure-related data and considering the 
dispersion distance which is influenced by human 
activities. The CA models are discussed with more 
detail below.

Using cellular automata for estimating future 
distributions of U. europaeus

In the last step of our workflow we implemented CA 
models to combine the habitat suitability maps with a 
spatially dynamic approach which allows to capture 
the spreading behavior of U. europaeus on Chiloé 
Island. Finding reasonable transition rules for the 
CA models was essential to re-produce the historic 
and forecast the future spread of U. europaeus. To 
account for the complex dynamics of invasion, we 
parameterized the main factors (e.g., habitat suit-
ability based on climate and terrain data, as well as 
infrastructure and abiotic factors) and conducted an 
exhaustive search for the most appropriate transition 
rules for the CA models. In general, those rules that 
allow a rapid spread of U. europaeus were identified 
as the best possible options to estimate the historical 
invasion probability. IP1 was the most used level-set 
in the upper 95%-percentile. This indicates that only a 
low invasion pressure is needed to change the state of 
a cell from un-colonized to colonized for a given hab-
itat suitability (HS) value. This underlines the high 
invasion success of U. europaeus. Since beside IP1 
one of the two largest neighborhood sizes (NS6 and 
NS7) was frequently used in the best performing tran-
sition rules, a high dispersal speed (up to 180  m or 
even 210 m per year) can be assumed. Furthermore, 
the fact that HS1 (low HS values for the four levels) 
was the most used level-set for the habitat suitability, 
reinforces the observation that only comparably low 
invasion pressure and habitat suitability is needed to 
change the state of a cell to "invaded".

The trend that the most suitable rule-sets had high 
HS values for the unfavorable soil types (e.g., SO4) 
and for the roads (RO3), indicates that U. europaeus 
is hardly affected by spatial constraints with respect 
to soil types and is also able to spread faster along 
roads. All these trends stress the enormous invasion 
potential of U. europaeus mentioned by Clements 
et  al. (2001) and stand in contrast to the study of 
(Zheng et al. (2015)) who found clear improvements 
of the CA models by including invasion constrains. 
In our case, including the soil layer only marginally 
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improved the CA model’s performance. Nevertheless, 
we cannot exclude the possibility that invasion con-
strains based on other factors, for example based on 
LULC, could improve our CA model results. Some 
studies have also included a random spread com-
ponent to their CA to account for dispersion related 
to human activities (Barbosa et  al. 2018). In our 
approach human activities were taken into account 
by assuming a higher habitat suitability for roads and 
their surrounding area (100  m buffer) as well as by 
considering comparably large dispersion distances of 
U. europaeus. We assumed that the different neigh-
borhood sizes (NS) we considered relate to different 
dispersion processes for U. europaeus  (vegetative or 
by the transportation of seeds by animals, humans or 
streams). We did not consider the possibility that U. 
europaeus could have still been planted on Chiloé 
Island during the time period between 1988 and 2020. 
Since we do not have any information on this, we 
restrained from adding this factor to the CA models.

Furthermore, we are aware that 1988 does not rep-
resent the first occurrence of U. europaeus on Chiloé 
Island. We could already identify numerous U. euro-
paeus patches in 1988. We therefore have to assume 
that the invasion of U. europaeus started several years 
or even decades before 1988. The invasion probability 
of some regions must have been already high in the 
initial year of our study. We can also not fully exclude 
the possibility that U. europaeus had a stronger pres-
ence on Chiloé Island in 1988 than our derived histor-
ical reference data indicates. If this would be the case, 
the transition rules detected for the CA models may 
have been different and rules that indicate a slower 
dispersion of U. europaeus might have prevailed.

One notable restriction of our CA models relates to 
the uncertainties of the historic occurrence data which 
we obtained from remote sensing data. For example, 
U. europaeus patches can be seen in Google Earth 
Pro for the area east of Quellin, but those points are 
not included in the aggregated reference points until 
the year 2020. One possible explanation could be, 
that U. europaeus was introduced in this area through 
water transport by small boats. This assumption is 
supported by Google Earth Pro images in which U. 
europaeus patches can be seen on the coastline of Isla 
Tranqui. We hypothesize that U. europaeus migrated 
from the coast near Quellin across the sea to Isla 

Tranqui and from there back to the main island near 
the village of Auchac. However, it is unclear whether 
this movement started from some seeds transported 
by the stream to the Gulf of Corcovado or from some 
small boats docked at Isla Tranqui, transporting seeds 
to until then un-colonized areas. Simulating this 
movement or behavior of U. europaeus would be too 
complex for the comparably simple approach to simu-
late spread of the IAP with the CA model presented 
here but could be addressed in future studies.

While the CA models were able to reproduce the 
invasion patterns observed in the occurrence maps 
available for four dates between 1988 and 2020 with 
good balanced accuracies (>0.91), we are aware that 
we still do not capture all relevant processes. It is 
important to stress that the high accuracies obtained 
for the CA model notably depended on a good param-
eterization and that the exhaustive search for suitable 
parameters showed clear tendencies. This is impor-
tant as it strengthens our confidence that the spread 
behavior of U. europaeus can actually be captured 
with our approach. If very differing parameter sets 
would have led to comparable accuracies, the mean-
ingfulness of the selected parameterization sets would 
have been hard to interpret.

Based on this, we assume that using the CA mod-
els to predict the future invasion state of U. europaeus 
is acceptable, even though we are fully aware that the 
further we reach into the future, the less reliable the 
predictions are likely to be for obvious reasons. As 
many transition rule sets led to comparable accura-
cies and it was hard to identify a single clearly best-
performing set, we used the average of the 5% best 
models to predict the future state of the U. europaeus 
invasion. We think this is a good compromise to inte-
grate the variability of the different parameter sets 
with comparable model accuracies in the predictions 
and thereby potentially increase the robustness of the 
predictions.

Overall, the prediction maps obtained for 2070 
and 2100 showed reasonable patterns which repre-
sented a continuation of the spatial developments of 
the spread of U. europaeus observed between 1988 
and 2020. We believe that if no unexpected changes 
are introduced to the ecosystem (e.g., a new seed 
predator or other biotic antagonists for U. europaeus), 
the predicted invasion patterns may give a realistic 
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estimation of the future state of U. europaeus inva-
sion on Chiloé Island.

Reflection on the suggested combined approach

Our workflow which combines presence data of U. 
europaeus obtained from remote sensing images, 
habitat suitability maps and CA models performed 
well according to the sparse validation data that we 
had available. Reflecting on the limitations of apply-
ing either of the three steps in isolation, our approach 
provides several obvious advantages. By applying 
remote sensing data instead of field data, we obtain a 
spatially and temporally more complete dataset. This 
is particularly relevant for understanding the spa-
tial invasion dynamics and for avoiding well-known 
observer biases of field-collected data. By using this 
spatially and temporally more complete informa-
tion to train a habitat suitability model which is then 
fed into CA models, we manage to simultaneously 
consider the environmental base-constrains and the 
spread dynamics which are also influenced by anthro-
pogenic factors, which were also integrated into the 
CA models. These advantages are contrasted by sev-
eral challenges associated with the approach. Using 
multiple models which each contain a certain level 
of error or uncertainty may lead to cumulative errors 
which may be particularly problematic for the last 
step of the workflow where we predict the invasion 
dynamics to the future. Here, the climate scenario 
data further add to the uncertainty. Tracing all men-
tioned uncertainties throughout the workflow may be 
possible but typically requires sophisticated statisti-
cal approaches which are not readily available. In our 
study, we assume that uncertainty problems were less 
pronounced because each of the models in the indi-
vidual steps, which were based on actual data, per-
formed reasonably well and led to plausible results. It 
is, however, clear that this problem may be a lot more 
pronounced in other use-cases. Some key aspects 
which may hamper the transferability of the presented 
workflow to other species and regions include: 1. the 
spectral properties and the resulting detectability of 
the target species from remote sensing data, 2. avail-
ability of high resolution historic images, 3. key-fac-
tors driving the invasion success and potentially miss-
ing data on these drivers.

Conclusions

In this study we present a workflow that allowed us 
to reconstruct the historic spread of U. europaeus 
on Chiloé Island in the South of Chile. We used a 
combination of multispectral satellite data, GBIF 
occurrence data and climate data from the World-
Clim database to derive habitat suitability maps 
which were then fed into CA models along with 
soil and infrastructure information to first model 
the spread of U. europaeus starting from the initial 
situation in 1988 to the current state in 2020. The 
derived model was then applied to predict the future 
spread of U. europaeus making use of climate sce-
nario data. All modeling steps resulted in plausible 
spatial patterns and reasonable accuracies which 
indicate that the overall approach is sound.

The key innovation of the approach lies in the 
combination of spatially dynamic CA models with 
the habitat suitability products, representing the 
full ecological niche. Only the combination of 
habitat suitability and the spatial modeling of the 
invasion process enables a reasonable prediction 
of future invasion spread patterns. For the latter, 
the availability of high quality spatially continuous 
occurrence maps for the invasive species at differ-
ent points in time is a key-requirement. The purely 
remote sensing-based solution suggested here to 
provide such maps may be suitable not only for this 
case but also for other cases where the species is 
clearly identifiable in the remote sensing data.

Our results predict an ongoing spread of U. euro-
paeus over large parts of Chiloé Island until 2100 
with just slight difference for the examined climate 
scenarios. However, we have to point out that this is 
a prediction of the potential maximal spread of U. 
europaeus based on the historic invasion dynamics. 
Changes in environmental, anthropogenic or eco-
logical factors may affect the invasion dynamics of 
U. europaeus in the future. We nevertheless believe 
that our prediction maps indicating the current and 
future spread of the species can support local land 
managers in their efforts to prevent further spread of 
U. europaeus and potentially also help to plan miti-
gation measures. Moreover, it might be worthwhile 
to dedicate more research to develop improved con-
trol and management techniques to contain the still 
ongoing invasion of U. europaeus.
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See Tables 7 and 8.

Table 7  Utilized general circulation models (GCM) of the coupled model intercomparison Project 5 (CMIP5)

GCM Modeling center (or Group)

ACCESS1-0 Commonwealth Scientific and Industrial  Research Organization (CSIRO) and  Bureau of Meteorology (BOM), 
Australia

BCC-CSM1-1 Beijing Climate Center,  China Meteorological Administration
CCSM4 National Center for Atmospheric Research
CNRM-CM5 Centre National de Recherches  Météorologiques/Centre Européen de  Recherche et Formation Avancée  en 

Calcul Scientifique
GFDL-CM3 NOAA Geophysical Fluid  Dynamics Laboratory
GISS-E2-R NASA Goddard Institute for Space  Studies
HadGEM2-AO National Institute of Meteorological  Research/Korea Meteorological  Administration
HadGEM2-ES Met Office Hadley Centre  (additional HadGEM2-ES realizations  contributed by Instituto Nacional  de Pesquisas 

Espaciais)
HadGEM2-CC Met Office Hadley Centre  (additional HadGEM2-ES realizations  contributed by Instituto Nacional  de Pesquisas 

Espaciais)
INMCM4 Institute for Numerical Mathematics
IPSL-CM5A-LR Institut Pierre-Simon Laplace
MIROC5 Atmosphere and Ocean Research  Institute (The University of Tokyo),  National Institute for Environmental  Stud-

ies, and Japan Agency for Marine-  Earth Scienceand Technology
MRI-CGCM3 Meteorological Research Institute
MIROC-ESM Japan Agency for Marine-Earth Science  and Technology, Atmosphere and Ocean  Research Institute (The Uni-

versity  of Tokyo), and National Institute  for Environmental Studies
MIROC-ESM-
CHEM

Japan Agency for Marine-Earth Science  and Technology, Atmosphere and Ocean  Research Institute (The Uni-
versity  of Tokyo), and National Institute  for Environmental Studies

MPI-ESM-LR Max-Planck-Institut für Meteorologie  (Max Planck Institute for Meteorology)
NorESM1-M Norwegian Climate Centre

http://creativecommons.org/licenses/by/4.0/
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Description of the local modelling results

The invasion patterns of U. europaeus were described 
in a summarized way in the result section. In the fol-
lowing, the spatial patterns are explained in more 
detail.

At the beginning of the modelled time period 
in 1989 U. europaeus is present around the town of 
Ancud in the North of the Island. Patches of high 
probability also appear more frequently along the 
coastline and extend to Punta Quetalmahue and end at 
the village of Teguaco on the Playa Mar Brava. Also 
the headland in the very north of the island shows a 
high probability to be invaded at some small locations 
in 1990. In the North-East, there are some patches 
with high invasion probability around the small town 
of Chacao, were the "Ruta 5 sur" enters the island. 
Starting from Ancud some isolated patches of high 
probability spread along the "Ruta 5 sur" in southern 
direction to the densely populated area around the 
towns of Castro, Chonchi and Dalcahue. This area 
shows a very dense pattern of high probabilities. The 
islands of Quinchao, Quenac, Lemuy, Chelín and 
Quehui, between the Gulf of Ancud and the Gulf of 
Corcovado, were also most likely already colonized 
by U. europaeus in 1989. From this probably heavily 

infested area, the possible occurrences extend fur-
ther eastward along the coast towards the villages of 
Tenaún Bajo, Quicavi and Montemar. Also on the 
island of Caucahué some small patches of U. euro-
paeus have very likely been present in 1989. A lit-
tle further north of Isla Caucahué, on the mainland 
of Chiloé Island, near the village of Aucho, a small 
patch of U. europaeus also seems very likely. Some 
small enclaves of U. europaeus can also be observed 
around the town of Queilén and the village of Natri 
Bajo in the South of the Island. These patches could 
represent the most remote and southern occurrences 
of U. europaeus in 1989.

By 2020, there is a large and almost contiguous 
patch of high probability in Central-Chiloé with only 
lower values at the narrow invasion borders. How-
ever, there are also some clearly visible core areas 
with high probabilities and broad invasion borders 
with lower values in the north. Especially the roads 
show much higher values than their surrounding 
areas. The extent of the remote enclaves between the 
city of Queilén and the village of Natri Bajo has also 
increased.

Until the year 2070 the potential invasion area 
will spread much stronger into the eastern, west-
ern and southern parts of the island. The North will 

Table 8  Abbreviations of 
the Worlclim bioclimatic 
variables

Code Bioclimatic variable

BIO1 Annual mean temperature
BIO2 Mean diurnal range (mean of monthly (max temp–min temp))
BIO3 Isothermality (BIO2/BIO7) (times 100)
BIO4 Temperature seasonality (standard deviation times 100)
BIO5 Max Temperature of warmest month
BIO6 Min Temperature of coldest month
BIO7 Temperature annual range (BIO5-BIO6)
BIO8 Mean temperature of wettest quarter
BIO9 Mean temperature of driest Quarter
BIO10 Mean temperature of warmest quarter
BIO11 Mean temperature of coldest quarter
BIO12 Annual precipitation
BIO13 Precipitation of wettest month
BIO14 Precipitation of driest month
BIO15 Precipitation seasonality
BIO16 Precipitation of wettest quarter
BIO17 Precipitation of driest quarter
BIO18 Precipitation of warmest quarter
BIO19 Precipitation of coldest quarter
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be very likely completely invaded by U. europaeus. 
The area between the "Ruta 5 sur" and the east-cost 
will be invaded too. However, in the interior of these 
two regions lower probability can be observed. A 
long modelled invasion front begins from the village 
of Chepu at the Rio Chepu and runs to the small vil-
lage of Chanco on the east-coast. This invasion front 
runs around the higher regions of the Parque Nacional 
Chiloé (Chiloé National Park) with the dense Valdiv-
ian rain forest on the west coast. In Central-Chiloé 
this front almost reaches the west coast at the village 
of Cucao after following Lago Huillinco and Lago 
Cucao. The small enclaves of high probability between 
the town of Queilén and the village of Natri Bajo will 
be reached by the main invasion area in 2070. Start-
ing from this point the potential invasion will spread 
stronger into the south according to the model. How-
ever the model shows only medium probabilities. A 
new enclave of a potential U. europaeus infestation 
was modelled in the south at the village of Yaldad next 
the the town Quellón. Here we can observe the strong-
est difference between the two RCP scenarios. In the 
RCP45 scenario, the enclave seems to be in its initial 
stage, with a very limited extent and a low invasion 
probability. In the RCP85 scenario, on the other hand, 
the enclave shows a higher probability and already 
starts to spread into the surrounding areas.

In the year 2100, both scenarios shows only little 
differences. The invasion front will move stronger 
into the Parque Nacional Chiloé and will finally 
reach the west-coast at the village of Chanco. In the 
RCP45 scenario, the isolated enclave at the village 
of Yaldad increases just slowly and the probabil-
ity remains low. However, in the RCP85 scenario, 
this area is much stronger infested by U. europaeus 
and the city of Quellón shows high invasion prob-
abilities. It is even possible that the main invasion 
area will connect with this small enclave in the year 
2100. The only un-invaded areas will be the main 
parts of the Parque Nacional Chiloé, the Parque 
Tepuhueico at the west-coast and of the Parque Tan-
tauco at the south-coast of Chiloé Island.
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