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Abstract
Dense depth information can be reconstructed from stereo images using conventional hand-crafted as well as deep learning-
based approaches. While deep-learning methods often show superior results compared to hand-crafted ones, they commonly 
learn geometric principles underlying the matching task from scratch and neglect that these principles have already been 
intensively studied and were considered explicitly in various models with great success in the past. In consequence, a broad 
range of principles and associated features need to be learned, limiting the possibility to focus on important details to also 
succeed in challenging image regions, such as close to depth discontinuities, thin objects and in weakly textured areas. To 
overcome this limitation, in this work, a hybrid technique, i.e., a combination of conventional hand-crafted and deep learning-
based methods, is presented, addressing the task of dense stereo matching. More precisely, the input RGB stereo images are 
supplemented by a fourth image channel containing feature information obtained with a method based on expert knowledge. 
In addition, the assumption that edges in an image and discontinuities in the corresponding depth map coincide is modeled 
explicitly, allowing to predict the probability of being located next to a depth discontinuity per pixel. This information is 
used to guide the matching process and helps to sharpen correct depth discontinuities and to avoid the false prediction of 
such discontinuities, especially in weakly textured areas. The performance of the proposed method is investigated on three 
different data sets, including studies on the influence of the two methodological components as well as on the generalization 
capability. The results demonstrate that the presented hybrid approach can help to mitigate common limitations of deep 
learning-based methods and improves the quality of the estimated depth maps.

Keywords  Image matching · Depth estimation · 3D reconstruction · Hybrid technique

1  Introduction

The availability of depth information is beneficial or even 
a crucial prerequisite for many applications, such as robot-
ics (Häne et al. 2011), 3D reconstruction (Krutikova et al. 
2017), semantic segmentation (Badrinarayanan et al. 2017) 
and pedestrian tracking (Nguyen and Heipke 2020). Besides 

the acquisition via active sensors, the reconstruction of depth 
from stereo images is particularly popular, inter alia due 
to the possibility to obtain dense depth estimates and the 
comparably inexpensive sensor setup. However, such dense 
stereo matching approaches are commonly challenged by 
occlusions, weakly textured surfaces and depth discontinui-
ties in the scene. Latter may lead to the problem that depth 
estimates corresponding to small and thin (parts of) objects 
in an image are falsely detected as noise and filtered out, 
resulting in the disappearance of these parts of the scene 
in the depth map. While inaccurate depth discontinuities 
and missing object parts may only have a minor negative 
influence on the overall quantitative results, these areas are 
highly relevant, for example, in navigation-related tasks to 
avoid collisions.

Especially in the pre-deep learning era, many hand-
crafted, i.e., non-data driven, approaches have been pre-
sented in the literature that address these challenging 
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scenarios explicitly. For this purpose, various feature 
description methods have been proposed and adapted for 
image matching that are robust against certain geometric 
and radiometric conditions (Zabih and Woodfill 1994; Yinan 
et al. 2012; Kabbai et al. 2015). An assumption commonly 
made to cope with weakly textured surfaces and depth dis-
continuities is that a direct relation exists between intensity 
gradients and depth discontinuities. This assumption can be 
used to generally encourage smoothness in a depth map and 
to foster discontinuities only for pixels that have assigned 
a strong intensity gradient in the associated RGB image 
(Hirschmüller 2008). However, such hand-crafted features 
and smoothness assumptions are commonly optimized in an 
isolated manner, not considering the further components of 
dense stereo matching methods. As such an approach lacks 
an overall optimization goal, such hand-crafted features 
are often not optimal with respect to the entire matching 
process.

This issue is also demonstrated by the overall supe-
rior performance of recent deep learning-based methods, 
compared to non-data driven approaches. However, deep 
learning-based methods often learn well-known geometric 
principles from scratch and consider image regions, that 
have been characterized as being challenging before, only 
implicitly by learning solutions from training data. As such 
challenging regions commonly constitute only a small part 
of an image, they are highly underrepresented in the train-
ing set and without explicitly focusing on these regions, the 
associated depth estimates are often significantly less accu-
rate and error prone compared to the entirety of an image. 
Consequently, there are clear trade-offs between traditional 
computer vision and deep learning-based approaches for 
dense stereo matching. To combine the advantages of both 
directions, the discriminative power of data driven methods 
and the possibility of expert knowledge-based techniques 
to model geometric principles explicitly, first hybrid meth-
ods have been presented in the literature in recent years for 
vision tasks in general (Tianyu et al. 2018) and for dense 
stereo matching in particular (Pang et al. 2017; Stucker and 
Schindler 2022).

Following this concept, a hybrid method addressing 
dense stereo matching is proposed in the present work. 
On the one hand, the goal is to avoid false predictions 
of depth discontinuities in weakly textured regions of an 
image. On the other hand, correct discontinuities are to be 
sharpened and small (parts of) objects are to be preserved 
in the depth map. To achieve these objectives, a twofold 
strategy is applied, facilitating a Convolutional Neural 
Network (CNN) with expert knowledge: First, it is investi-
gated whether feature maps generated with a hand-crafted 
method based on expert knowledge can provide valuable 
information to a CNN. For this purpose, a basic set of 
information is provided to the CNN as additional input to 

the stereo image pair, allowing the CNN to focus on rele-
vant details. Second, the assumption that image edges, i.e., 
strong intensity gradients, and depth discontinuities coin-
cide is modeled explicitly, by training a neural network to 
predict depth discontinuities from RGB images. The depth 
discontinuities obtained in this way are used to guide the 
deep learning-based matching process, by providing this 
rough representation of the scene’s geometry to the neu-
ral network at different stages and in multiple resolutions. 
Thus, in this work, expert knowledge is incorporated into 
a deep learning-based approach in two ways: Feature maps 
computed based on expert knowledge are used as addi-
tional input to a neural network and the assumption that 
gradients in the RGB images and discontinuities in the 
depth maps coincide is based on expert knowledge, too. 
In summary, the present work contains the following main 
contributions:

–	 A strategy to consider the information obtained with a 
hand-crafted feature description method as additional 
input to a deep learning-based dense stereo matching 
method, supplementing the RGB stereo image pairs.

–	 A deep learning-based method to predict a pixel’s proba-
bility of being located next to a depth discontinuity based 
on a RGB image, making explicit use of the assumption 
that image edges and depth discontinuities often coin-
cide.

–	 An approach to consider the predicted information on 
depth discontinuities in the matching process at multiple 
scales.

2 � Related Work

The task of computing depth from stereo image pairs is 
already being studied for many years (Barnard and Fischler 
1982), leading to a wide variety of methods on this topic 
presented in the literature. To allow for a sound comparison 
of these stereo matching algorithms, Scharstein and Sze-
liski (2002) have presented a taxonomy and categorization 
scheme, which distinguishes the following four steps: match-
ing cost computation, cost aggregation, disparity compu-
tation and disparity refinement. While the taxonomy was 
originally developed to subdivide hand-crafted methods, 
many deep learning-based approaches are designed in a sim-
ilar fashion (Mayer et al. 2016; Kendall et al. 2017). These 
methods often consist of an end-to-end trainable sequence 
of individual components, in which each component can be 
mapped to one of the steps in the taxonomy. Thus, we will 
also make use of this taxonomy in the following to review 
and discuss deep learning-based techniques and in the con-
text of the description of our own method.
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2.1 � Deep Learning‑Based Dense Stereo Matching

While in earlier years only individual steps of the taxonomy 
have been realized using deep learning, such as the match-
ing cost computation (Zbontar and LeCun 2016; Luo et al. 
2016), a rapid transition took place to model the complete 
matching process as a single neural network (Mayer et al. 
2016; Kendall et al. 2017). In DispNet, presented by Mayer 
et al. (2016), features are extracted from the left and the 
right image, respectively, using a Siamese network structure. 
These features are then combined via correlation to build 
a cost volume, which is further processed using multiple 
layers of 2D convolutions. In the final step, disparity esti-
mates per pixel are obtained via regression, which is real-
ized as another 2D convolutional layer. GC-Net proposed 
by Kendall et al. (2017) presents a similar concept, but con-
catenates the feature maps from the left and right image 
instead of correlating them. In the following, multiple 3D 
convolutions and transposed convolutions, arranged in an 
encoder–decoder scheme with skip connections, are applied 
to obtain a cost volume. Disparity estimates per pixel are 
regressed from this cost volume by applying a differenti-
able version of the argmin operation. Although both methods 
show clear improvements in the overall results compared to 
hand-crafted and partially deep learning-based approaches, 
depth estimates in weakly textured areas and depth discon-
tinuities often remain inaccurate and error prone.

To address these limitations, various further methods 
have been presented in the literature, most of them adapt-
ing the basic concepts of Mayer et al. (2016) and Kendall 
et al. (2017). For example, in Ilg et al. (2018) a custom layer 
and auxiliary loss functions are added, in Shaked and Wolf 
(2017) a reflective confidence algorithm is proposed and in 
Pang et al. (2017) a residual learning method is introduced to 
improve the performance of DispNet and MC-CNN (Zbontar 
and LeCun 2016) to handle occlusions and areas close to 
depth discontinuities. On the other hand, Kang et al. (2019) 
state that DispNet shows a lower accuracy for large dispari-
ties and introduce dilated convolutions to broaden the recep-
tive field and to consider multi-scale contextual information 
without introducing additional parameters that need to be 
trained. Based on the enlarged receptive field, this method 
is also beneficial in weakly textured areas. Moreover, they 
incorporate disparity gradient information as a gradient reg-
ularizer in the loss function to preserve geometric details. 
However, this strategy influences the training process only 
and does not provide additional information or guidance 
at test time, which clearly limits its impact. Cheng et al. 
(2019) adapt PSM-Net by adding spatial pooling to com-
pute an improved cost volume. That leads to a 30% reduc-
tion in depth error in NYU v2 (Silberman et al. 2012) and 
KITTI Odometry (Geiger et al. 2012) data sets. Even so, 
due to the spatial pooling, the smoothing effect is evident 

from the disparity map, especially at the object boundaries 
and smaller structures. Shamsafar et al. (2021) introduce a 
new cost volume to learn the similarity of unary features at 
a particular disparity, which significantly reduces the End-
Point-Error (EPE). However, object boundaries and small 
structures are not well-handled. Tosi et al. (2021) propose 
a different approach of stereo matching that improves the 
depth accuracy near object boundaries, by employing a 2D 
or 3D PSM Network (Chang and Chen 2018) as a back-
bone, which takes a stereo image pair as input and outputs a 
low-resolution disparity map. This disparity map is used in 
SMD-Net to initialize a mixture density per pixel, which is 
represented by a set of Gaussian components. The idea is to 
model the distribution of possible disparities for each pixel 
and the output is the final high-resolution disparity map. 
Post-processing is carried out to address over-smoothing. 
Finally, Lipson et al. (2021) introduce a convolutional recur-
rent model that allows to iteratively propagate depth infor-
mation across the image. By carrying out depth propagation 
at multiple resolutions simultaneously, a globally consistent 
high-resolution depth map is obtained. Due to the fact that 
the results are state of the art and the associated program 
code is publicly available, this method is used for compari-
son in Sect. 5.

2.2 � Hybrid Approaches

Hybrid approaches combine aspects of traditional non-data 
driven and deep learning-based approaches with the goal 
to make use of the benefits of both. Such approaches have 
successfully been developed for various photogrammetry 
and computer vision-related tasks already (O’Mahony et al. 
2020), including image classification (Tianyu et al. 2018), 
panoramic vision  (Verma et  al. 2020), video stabiliza-
tion (Liu et al. 2021) and image-based brain tumor detec-
tion (Saba et al. 2020), which mainly fuse hand-crafted fea-
tures with such that have been extracted with a CNN before 
an actual classification is done. However, also further hybrid 
strategies are presented in the literature, for example, using 
geometric information in the loss function (Kang et al. 2019) 
or as a traditional prior, such as brightness constancy, gra-
dient constancy and image-driven smoothness assumptions 
(Xiang et al. 2018).

Also in the context of reconstructing the 3D geometry 
of a depicted scene, first hybrid approaches have been 
proposed. Stucker and Schindler (2022) and Stucker et al. 
(2022) present hybrid methods in the context of binocular 
dense stereo matching and the estimation of a digital surface 
model using an occupancy field, respectively. Both follow a 
similar approach, estimating initial depth information with 
a non-data driven technique first, which is refined via deep 
learning afterwards. The idea is that the basic concept of 
3D reconstruction from images does not need to be learned 
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from scratch, rather letting the neural network focus on the 
improvement and correction of particularly challenging parts 
of an image by providing a reasonably good initialization 
of the desired result. While both methods show convincing 
results, their performance is potentially limited by the fact 
that the fusion of the non-data driven and the deep learning-
based method is realized as a two-step approach of initializa-
tion and refinement instead of aiming for a full integration. 
Such a two-step approach requires that errors made in the 
first step can be detected and corrected in the second step 
and prevents optimizing the entire method end-to-end. On 
the other hand, Zhang et al. (2019) address the cost aggrega-
tion step of the dense stereo matching taxonomy by incorpo-
rating the semi-global aggregation scheme of Hirschmüller 
(2008) into a CNN. In this way, the general validity of the 
well-designed aggregation scheme of semi-global matching 
is combined with the adaptation capability of a weighting 
scheme that is optimized for a certain domain.

Closest to the method presented in this work, are the ones 
of Qi et al. (2020) and Ilg et al. (2018). In Qi et al. (2020), 
a method for monocular depth estimation is presented in 
which a neural network is trained to predict depth and sur-
face normals jointly. Both predictions are refined using edge 
maps extracted from the RGB image using the Canny detec-
tor (Canny 1986) and thus establish an explicit connection 
between image edges and depth discontinuities as well as 
to abrupt changes in the direction of the surface normals. 
However, the proposed direct incorporation of extracted 
image edges does not improve the results significantly close 
to depth discontinuities, probably because the assumption 
that image edges and depth discontinuities coincide is not 
always valid. Ilg et al. (2018) follow a similar approach for 
the tasks of disparity, optical flow and scene flow estimation, 
but jointly predict occlusion, motion and depth boundaries 

from stereo image pairs using a CNN instead of including 
image edges directly. In contrast, no temporal information 
and only the left image of a stereo pair is used as basis to 
predict depth discontinuities in the present work. In addition, 
we employ an auxiliary loss term that allows us to learn this 
task from labeled reference depth discontinuities directly.

3 � Methodology

In this section, the developed hybrid methodology for the 
task of dense stereo matching and its components are pre-
sented. This method is specifically designed to focus on 
some of the most challenging areas in the context of dis-
parity estimation, namely, depth discontinuities, thin struc-
tures and weakly textured areas. For this purpose, two novel 
components are presented: A strategy to use hand-crafted 
features as an additional input of a CNN is described in 
Sect. 3.2, a technique to predict depth discontinuities and 
to integrate this information into the matching process is 
described in Sect. 3.3. Both components are described with 
respect to GC-Net (Kendall et al. 2017), which is reviewed in 
Sect. 3.1. Note that the proposed components are generally 
applicable to all methods that follow the same basic realiza-
tion of the matching taxonomy (cf. Sect. 2). An overview of 
the complete method is given in Fig. 1.

3.1 � Baseline

As basis for our hybrid method, we use GC-Net proposed 
by Kendall et al. (2017). GC-Net implements the complete 
dense stereo matching taxonomy as a single CNN that can 
be trained in an end-to-end manner to estimate disparity 
maps from epipolar rectified stereo image pairs. As GC-Net 

Fig. 1   Overview of the proposed hybrid method. GC-Net is used as 
a basis to estimate a disparity map from an epipolar rectified stereo 
image pair. The input images are supplemented by an additional fea-
ture channel which is obtained by applying the LBP transformation 

on the respective RGB image. Depth discontinuities are predicted 
from the left stereo image using a U-Net architecture and are fed into 
the decoder of GC-Net at multiple stages to guide the up-sampling 
process



PFG	

1 3

follows a purely data driven approach and builds the basis 
for many methods presented afterwards (cf. Sect. 2.1), it 
appears to be a well-suited baseline for investigating the 
effects of the hybrid concepts developed in the context of 
this work, while at the same time offering the possibility to 
apply these concepts to other dense stereo matching meth-
ods in a straightforward manner. The architecture of GC-
Net consists of four basic modules, which are also shown 
in Fig. 1: feature extraction, encoder, decoder and dispar-
ity extraction. First, features are extracted from the left and 
right image, respectively, using several 2D convolutional 
layers that are arranged in a Siamese network structure. The 
extracted features are assembled to a 4D volume (a 3D vol-
ume with two spatial dimensions and one disparity dimen-
sion, for which every entry is a feature vector) by concat-
enating feature vectors from the left and right image for all 
potential point correspondences. This volume is then further 
processed by an encoder–decoder structure that consists of 
multiple 3D convolutional and transposed convolutional lay-
ers. Skip connections that link layers of the encoder and 
the decoder are used to guide the up-sampling process. The 
result is a cost volume that has the same spatial resolution 
as the RGB input images and a disparity map is extracted by 
applying a soft argmin operation over the disparity dimen-
sion of the cost volume.

3.2 � Hand‑Crafted Features as Basis

The central idea of the first component of our hybrid method 
is to incorporate feature maps obtained with a hand-crafted 
method into GC-Net at an early stage. Thus, a basic set of 
coarse information is provided, allowing the CNN to focus 
on learning supplementary features that capture details 
relevant to the matching task. This concept is realized by 
applying a hand-crafted feature description method on both 
RGB images of a stereo pair, appending the resulting feature 
maps to the respective RGB image as a fourth image channel 
before feeding the so-extended images to the neural network. 
On the one hand, this approach provides additional guid-
ance during training. On the other hand, the expert domain 
knowledge used to develop a hand-crafted feature descrip-
tion method is also available for the network at test time. 
Consequently, this information does not need to be encoded 
in the neural network itself, as it would, for example, be 
necessary if the expert knowledge would only be used to 
adapt the loss function. Finally, the introduction of this 
information as an additional image channel only marginally 
increases the number of parameters of the neural network 
to be trained.

Following Anwer et al. (2018), who propose a hybrid 
method similar to the one described above but for image 
classification, we use Local Binary Patterns (LBP) as 
presented in Ojala et  al. (2002) as hand-crafted feature 

description method. This choice is further supported by the 
results of preliminary experiments that have been carried 
out in the context of the present work, showing that LBP 
outperforms other types of features, such as Histogram of 
Oriented Gradients (HOG) features or edge maps extracted 
with the Canny detector, when being combined with a CNN 
for the task of dense stereo matching. An ablation study on 
this aspect is presented in Sect. 5.4.

LBP is an effective descriptor for local texture patterns. 
It involves dividing an image into small regions from which 
robust features are extracted. It encodes the local structure 
of an image by comparing the gray-level intensity of each 
pixel with its eight neighboring pixels. The resulting binary 
number is then converted into a decimal value, which repre-
sents the texture pattern encoded by that pixel.

A visual example of a feature map obtained via LBP is 
shown in Fig. 2. LBP is chosen to be part of our method due 
to its discriminative power, its computational simplicity, and 
its robustness to monotonic gray level changes caused, for 
example, by variations in illumination and contrast.

3.3 � Predicted Depth Discontinuities as Guidance 
for the Decoder

The second component of our hybrid method is based on the 
assumption that image edges, i.e., strong intensity gradients 
of an image, coincide with discontinuities in the correspond-
ing depth map. However, as this assumption does not always 
hold true (see Fig. 3), we propose to train a CNN to predict 
depth discontinuities from a single RGB image, instead of 
making direct use of image edges to guide the matching 
process. More precisely, the probability per pixel of the 
input image is predicted that the respective pixel is located 
next to a depth discontinuity, resulting in a single-channel 
feature map Y that has the same spatial dimensions as the 
input image. Thus, only the potential position of a depth 
discontinuity is considered, not its magnitude (which would 
be much more error prone as shown by the general issues of 
monocular depth estimation methods with predicting abso-
lute depth values). As functional model for this component, 
we use a symmetric U-Net (Ronneberger et al. 2015) with 

Fig. 2   Example of the LBP transformation. The figure shows an RGB 
image and its transformation using LBP
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VGG16 (Simonyan and Zisserman 2014) as encoder and a 
maximum down-sampling factor of 25.

In our experiments, this network is either trained with the 
dice or the weighted binary cross-entropy loss function as 
optimization objective. Using the dice loss commonly leads 
to sharp separations between distinct classes and thus allows 
for precise localization of depth discontinuities. On the other 
hand, the weighted binary cross-entropy loss allows us to 
account for class imbalances, which have to be expected 
with the present problem definition, as pixels close to depth 
discontinuities are commonly highly underrepresented com-
pared to all other pixels. As these regions close to depth 
discontinuities are of special interest in the present work, a 
weighting factor � is applied to pixels in these regions in the 
weighted binary cross-entropy loss function. This weight is 
determined based on the inverse class frequency of pixels 
close to depth discontinuities in the training set, guiding 
the model to focus on these pixels. Both variants, using the 
dice and the weighted binary cross-entropy loss function, 
are compared experimentally in Sect. 5.5 and are defined 
as follows:

(1)Ldice = 1 −
2
∑N

i=1
yi ⋅ ŷi

∑N

i=1
yi + ŷi

,

(2)Lwbce = −
1

N

N∑

i=1

𝛼ŷi log yi + (1 − 𝛼)(1 − ŷi) log(1 − yi)

where N is the number of pixels with a reference disparity 
available, y is the predicted probability in [0, 1] and ŷ is the 
true class membership, whereas ŷ ∈ {0, 1} with 1 meaning 
that a pixel is located next to a depth discontinuity and 0 
that it is not. Thus, in the dice loss, the numerator is the 
sum of true positive predictions and the denominator is the 
total number of positives in the prediction and the reference, 
meaning that the dice loss decreases as the intersection of 
the prediction and the reference increases. In this context, 
the true class memberships ŷ are derived from the reference 
disparity map by computing the first derivative of the dis-
parity map using a Canny operator, followed by a binariza-
tion of the obtained gradients with thresholds of 10 (lower 
threshold) and 30 (higher threshold). These thresholds are 
determined empirically.

To use the estimated information on depth discontinuities 
as guidance for the matching process, the predicted feature 
map Y is incorporated into the decoder part of GC-Net after 
each up-sampling of the 4D feature volume (see Fig. 1). 
For this purpose, Y is actually predicted in multiple resolu-
tions by adapting the resolution of the RGB input image 
to the spatial dimensions of the respective feature volume. 
In this context, the parameters of the described CNN for 
predicting depth discontinuities are shared over all resolu-
tions. The incorporation itself is realized by concatenating 
the predicted probability of a pixel being located close to 
a depth discontinuity to the feature vectors of all entries in 
the feature volume corresponding to this pixel (note that 
there are multiple entries associated with one pixel of the 
left image along the disparity dimension). The intuition 
behind this guidance strategy is that relevant high-frequency 
information might get lost during the down-sampling pro-
cess in the encoder. While higher resolution feature maps 
from the encoder are available via skip connections, this 
high-frequency information cannot always be fully recov-
ered when up-sampling in the decoder. In this context, the 
predicted depth discontinuities provide a rough initialization 
for the 3D geometry in the desired higher resolution of an 
up-sampling operation, facilitating the accurate localiza-
tion of a correct depth discontinuity and the avoidance of 
an incorrect one. This strategy promises to be particularly 
helpful for estimating the full resolution cost volume, which 
has the same spatial dimensions as the input stereo images, 
as no skip connection is linked to this volume in GC-Net, 
due to the fact that the first feature volume in the encoder is 
already down-sampled by a factor of two.

The described combination of U-Net used to predict 
depth discontinuities and GC-Net is trained via a two-part 
loss function:

(3)L = LL1 + Ldepth_discon

Fig. 3   Example for the relation between image edges and depth dis-
continuities. It can be seen that the majority of image gradients coin-
cide with depth discontinuities. However, there also exist image edges 
that are caused by texture and do not correspond to a geometric edge, 
and, vice versa, depth discontinuities that do coincide with an image 
edge. Latter is commonly caused by geometric structures that are not 
reflected in the appearance, e.g., due to objects with similar textures 
that are partially overlapping in the image
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where LL1 is the mean L1 distance between the estimated 
disparity and the true disparity of a pixel, considering all 
pixels for which the true disparity is available. Ldepth_discon 
is the loss function used to optimize the depth discontinu-
ity prediction, using either the dice or the weighted binary 
cross-entropy loss function, as defined in Eqs. 1 and 2, 
respectively.

4 � Experimental Setup

In this section, the experimental setup is described which 
is used to evaluate the methodology proposed in Sect. 3, 
including the data sets used (Sect.  4.1), the training 
(Sect. 4.2) as well as the test settings (Sect. 4.3).

4.1 � Data Sets

For the experiments conducted in the context of the present 
work, three different data sets are used: Sceneflow FlyingTh-
ings3D (Mayer et al. 2016), InStereo2k (Bao et al. 2020) 
and Middlebury v3 (Scharstein et al. 2014). The Sceneflow 
data set is a collection of about 27 thousand synthetic stereo 
image pairs with a resolution of 540 × 960 pixels that show 
a variety of scenes with randomly located objects and for 
which a dense ground truth is available. InStereo2k and Mid-
dlebury v3 contain 2050 and 15 stereo image pairs, respec-
tively, which have a varying resolution between 659 × 497 
and 900 × 750 pixels, showing various real indoor scenes. 
Both data sets provide a reference for the disparity for about 
90% of the pixels which is captured via structured light. 
As the method of learning to predict depth discontinuities 
presented in this work relies on the availability of a dense 
ground truth for the disparity during training, the experi-
ments are limited to indoor data sets. Adapting this part of 
our method to also be applicable to outdoor data, which 
commonly provides sparse reference data, will be subject 
of future work.

4.2 � Training Procedure

The presented combination of GC-Net and U-Net is trained 
on twelve thousand synthetic stereo image pairs of the 
Sceneflow data set first, as commonly done in the literature 
(Mayer et al. 2016; Kendall et al. 2017), before fine-tuning 
it on two thousand real stereo image pairs of the InStereo2k 
data set. In each iteration of the training process, a sample of 
256 × 512 pixels is randomly cropped from a stereo image 
pair and the contained RGB values are normalized to the 
interval [−1, 1] , before feeding it to the neural network. The 
batch size is equal to one, i.e., the gradients are computed 
and the neural network parameters are updated after each 
sample. In this context, one sample per stereo image pair is 

seen in every epoch. This training strategy is applied on both 
data sets. To compute the loss, only pixels with a known 
reference are considered. Moreover, the disparity range con-
sidered during training is limited to [0, 191] pixels, meaning 
that pixels with a ground truth disparity outside of this range 
are discarded during the training process, whereas this limit 
does not apply at test time. For optimizing the ability to 
predict depth discontinuities, only the feature map Y in full 
resolution is evaluated in the loss term Ldepth_discon . Using an 
early stopping strategy, i.e., the training is stopped when the 
validation loss does not decrease within three consecutive 
epochs, the parameter values resulting in the lowest valida-
tion loss are used for testing. Using the weighted binary 
cross-entropy loss function for Ldepth_discon in Eq. 3, pixels 
that are located close to depth discontinuities are weighted 
by 0.9, while all other pixels are weighted by 0.1. These 
weights are determined based on the inverse frequency of 
the two classes in the training set. Lastly, all convolutional 
layers are initialized with the Xavier normal initializer (Glo-
rot and Bengio 2010) and RMSprop (Tieleman and Hinton 
2012) with a learning rate of 0.001 is used as optimizer. 
To compare the proposed method against the current state-
of-the-art, RAFT-Stereo (Lipson et  al. 2021) has been 
trained following the same procedure and using the same 
data described above, while using the model-related hyper-
parameter settings described in the original publication.

4.3 � Evaluation Procedure

To evaluate the effectiveness of the presented method and its 
individual components, the following variants are compared: 
As Baseline, the original version of GC-Net is used without 
applying any changes. 4th channel (LBP) refers to a vari-
ant that only considers hand-crafted features as additional 
input as described in Sect. 3.2, but neglects the prediction 
of depth discontinuities. U-Net with dice refers to a variant 
in which the baseline is extended by the prediction of depth 
discontinuities using the dice loss function as described in 
Sect. 3.3, but without adding additional input. Lastly, two 
variants that incorporate both components into the baseline 
are referred to as LBP + U-Net with dice and LBP + U-Net 
with wbce, using the dice and the weighted binary cross-
entropy loss function for learning to predict depth disconti-
nuities, respectively.

To compute quantitative results, twenty random stereo 
image pairs from each of the Sceneflow FlyingThings3D 
and InStereo2k data sets, and all fifteen stereo image pairs 
from the Middlebury v3 data set are evaluated using the 
Mean Absolute Error (MAE), the Root Mean Square Error 
(RMSE) and the Pixel Error Rate (PER) as metrics. The 
same image pairs are being used for all experiments. In the 
MAE, all deviations are weighted equally, making it easy to 
interpret the results of this metric:
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where N is the number of pixels for which a ground truth for 
the disparity is available, d is the predicted disparity and d̂ 
is the ground truth disparity.

In the RMSE, on the other hand, large errors have a 
higher weight than small ones, allowing to identify the pres-
ence of such large errors if the RMSE is evaluated together 
with the MAE:

Finally, the PER allows for a more detailed analysis of the 
error distribution by providing the percentage of pixels that 
achieve a specific level of accuracy, defined based on the 
specified threshold �:

whereas in this work, the PER is evaluated using 1, 3, and 
5 pixels for �.

Besides the general evaluation considering all pixels of 
the test images, also a more detailed analysis of the results 
is carried out, assessing predictions for pixels close to depth 
discontinuities only. For this purpose, a pixel is considered 
to be situated near a depth discontinuity if the difference 
in the disparity between this and the surrounding pixels 
exceeds a threshold of two pixels, averaging the disparity 
over a 9 × 9 neighborhood (Scharstein and Szeliski 2002).

(4)MAE =
1

N

N∑

i=1

|di − d̂i| ,

(5)RMSE =

√√√√ 1

N

N∑

i=1

(di − d̂i)
2 .

(6)PER =
1

N

N∑

i=1

�i ,

(7)𝛼i =

{
1 if |di − d̂i| > 𝜏

0 else
,

5 � Results and Discussion

In this section, the results of the dense stereo matching 
method described in Sect. 3 are presented and discussed. 
To give an overview of the general performance, the method 
is first evaluated on test data from the two data sets that 
are also used for training in Sect. 5.1. The generalization 
capability is analyzed in Sect. 5.2 by testing on samples 
from a data set which has not been seen during training. As 
the general issue of dense stereo matching methods with 
depth discontinuities is one of the main motivations of this 
work, these parts of the test images are analyzed in detail 
in Sect. 5.3. Ablation studies on the influence of the hand-
crafted feature description method used as a fourth image 
channel and of the loss function used for learning to predict 
depth discontinuities are presented in Sects. 5.4 and 5.5, 
respectively. Lastly, in Sect. 5.6, our approach is compared 
against the current state-of-the-art, namely, RAFT-Stereo 
presented by Lipson et al. (2021).

5.1 � General Performance

The first set of experiments evaluates the presented method 
on the Sceneflow and on the InStereo2k data sets, using the 
pre-trained parameter values to produce the results of the 
former and the fine-tuned parameter values for the latter. 
As shown in Table 1, both components of the presented 
method have a positive impact on the results of the Scen-
eflow data set, leading to a clear improvement of all variants 
compared to the Baseline, whereas the consideration of both 
components leads to the best results. A similar trend can be 
observed for the results of the InStereo2k data set. How-
ever, the consideration of hand-crafted features as additional 
input leads to a slight decrease in performance. This might 
be caused by the fact that the indoor scenes of this data 
set contain many weakly textured and texture-less surfaces 

Table 1   Overall quantitative results

The results of the baseline and the four variants of the method presented in this work are compared to RAFT-Stereo on the Sceneflow and the 
InStereo2k data sets. The shown results have been produced using the parameter values obtained by training on the Sceneflow data set and by 
additionally fine-tuning on the InStereo2k data set, respectively. The best values of our method per column are shown in bold

Variants Sceneflow InStereo2k

4th channel (LBP) Disconti-
nuities via 
dice

Disconti-
nuities via 
wbce

Pixel Error Rate [%] MAE [px] RMSE [px] Pixel Error Rate [%] MAE [px] RMSE [px]

� = 1 � = 3 � = 5 � = 1 � = 3 � = 5

13.55 8.05 6.55 2.24 9.86 14.34 5.42 3.43 1.00 2.91
✓ 6.90 3.01 2.13 0.63 3.44 15.74 6.34 3.97 1.11 3.07

✓ 6.64 2.93 2.04 0.63 3.59 12.38 4.19 2.50 0.95 2.56
✓ ✓ 6.67 2.98 2.04 0.62 3.50 12.14 3.81 2.06 0.70 1.86
✓ ✓ 7.15 2.74 1.92 0.61 3.45 12.37 4.36 2.72 1.05 3.75
RAFT-Stereo (Lipson et al. 2021) 6.12 2.66 1.84 0.55 3.31 7.83 1.90 0.75 0.42 0.85
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for which the LBP descriptor does not provide any helpful 
information, whereas the objects in the Sceneflow data set 
are commonly highly textured.

The qualitative results on the Sceneflow data set shown 
in Fig. 4 demonstrate that clear improvements are achieved 
close to depth discontinuities as well as on smooth surfaces. 
While the former is addressed explicitly by the presented 
method, the latter is supported implicitly, as a low probabil-
ity for a depth discontinuity in the prediction of the U-Net 
suppresses the prediction of such a discontinuity in the final 
disparity map. Both are also clearly visible in the qualitative 
results on the InStereo2k data set in Fig. 5, whereas the best 
results are achieved with the complete model trained with 

the dice loss function, which is also indicated by the numeric 
results in Table 1. Moreover, also the reconstruction of fine 
structures can be improved, particularly visible, for example, 
at the handle of the box in the upper part of the image and at 
the plate of the table on the right hand side.

5.2 � Generalization Capability

To investigate the generalization capability of the presented 
method, it is tested on samples of the Middlebury data set, 
from which no samples are used for training. For this experi-
ment, the parameters fine-tuned on the InStereo2k data set 
are used for all variants. As shown in Table 2, the quality of 

Fig. 4   Qualitative comparison on the Sceneflow data set. These 
results are produced with parameter values obtained by training on 
the Sceneflow data set. The second row shows disparity maps, where 
dark blue to dark red represent small to large disparities, respectively. 
The difference maps (third row) show the differences in the dispar-
ity maps between the respective variant and the baseline. Ranging 

from dark green ( ≥ 10 pixels) over white to dark red ( ≤ −10 pixels), 
improvements and deteriorations compared to the baseline are shown. 
Pixels for which no reference depth is available are displayed in the 
disparity and difference maps in white and gray, respectively. Signifi-
cant differences can especially be seen in weakly textured areas, for 
thin objects and at depth discontinuities
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the estimated disparity maps decreases significantly for all 
evaluated variants compared to the results on the Sceneflow 
and the InStereo2k data sets. This is to be expected, as a 
relevant domain gap exists between this test set and the data 
used for training, which is characterized by differences in the 
acquisition setup (e.g., different cameras and base lengths) 
as well as in the depicted scenes (e.g., different objects and 
depth ranges). However, our complete method trained with 
the dice loss demonstrates the best performance, although 
the improvement to the Baseline is less prominent. On 
the Middlebury data set, the influence of the hand-crafted 
features as the fourth image channel is ambiguous: on the 
one hand, the predictions get less accurate, visible by the 
increase of the MAE and the PER for all three thresholds. 
On the other hand, the number of large errors is reduced, as 
indicated by the smaller value for the RMSE.

Similar observations can also be made on the qualita-
tive results shown in Fig. 6. However, a clear foreground 
fattening effect can be observed, which leads to a blurry 
reconstruction of the scene’s geometry and negatively affects 
the sharpness of the estimated depth discontinuities. The 
explicit prediction of depth discontinuities using the pre-
sented U-Net-based approach mitigates this effect, inde-
pendent of the used loss function. The issue that the depth 
discontinuities are still not as sharp as for the Sceneflow data 
set is probably caused by the domain gap between training 
and test data, as well as by the fact that the InStereo2k data 
set is frequently missing a reference for the disparity for 
pixels close to depth discontinuities (visible, for example, in 
Fig. 5). As the InStereo2k data set is used for fine-tuning the 
parameters of our neural network, learning sharp depth dis-
continuities is a challenging task under these circumstances. 
Lastly, using the weighted binary cross-entropy loss, arti-
facts and noise can be observed in the weakly textured areas 
in the background of the image, which does not apply using 
the dice loss.

Fig. 5   Qualitative comparison on the InStereo2k data set. These 
results are produced with parameter values obtained by training on 
the Sceneflow data set and fine-tuning on the InStereo2k data set. The 
second and third row show the disparity and difference maps of the 
two variants of our full method, respectively, varying only the loss 
function used for training. For an explanation of the color coding, 
refer to Fig. 4

Table 2   Quantitative results on 
the generalization capability

The results of the baseline and the four variants of the method presented in this work are compared to 
RAFT-Stereo on the Middlebury data set, for which no samples have been seen during training. The shown 
results have been produced using the parameter values obtained by training on the Sceneflow data set and 
fine-tuning on the InStereo2k data set. The best values of our method per column are shown in bold

Variants Middlebury

4th channel (LBP) Discontinui-
ties via dice

Discontinui-
ties via wbce

Pixel Error Rate [%] MAE [px] RMSE [px]

� = 1 � = 3 � = 5

32.98 19.75 16.00 4.77 12.31
✓ 37.35 22.75 18.04 5.10 11.21

✓ 36.30 24.24 20.29 8.04 21.34
✓ ✓ 30.06 18.02 14.03 4.22 10.50
✓ ✓ 33.51 21.14 17.34 5.97 14.71
RAFT-Stereo (Lipson et al. 2021) 20.31 9.08 5.92 1.35 3.52
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5.3 � Behavior Close to Depth Discontinuities

So far, the discussed quantitative results are average val-
ues over all pixels of an image, not distinguishing between 
different parts of the depicted scenes. To allow for a more 
detailed analysis of the error close to depth discontinuities—
the parts of the scene that are given special emphasis in the 
methodology—the MAE and RMSE for the corresponding 
parts in the images are determined isolated from the rest 
of these images and are shown in Table 3. These results 
demonstrate that both components of our methodology have 
a positive effect on the disparity estimation close to depth 
discontinuities and lead to clear improvements compared to 
the baseline. In this context, especially the clear benefit of 
using LBP as additional input on the Middlebury data set is 
to be highlighted, which is contrary to what can be observed 
from the results for the entire images (cf. Table 2). This 
indicates that this component has a positive influence on 
the disparity estimation close to depth discontinuities, but 
a negative one on other regions of an image, an issue that 
we will further investigate in future research. Furthermore, 
it can be stated that the usage of the dice loss is to be pre-
ferred over the weighted binary cross-entropy loss on the 
Middlebury data set, as the latter shows significantly worse 
results considering both, the entire image as well as depth 
discontinuities only, probably caused by a worse generali-
zation capability. Lastly, it is to be noted that although the 
presented method leads to superior results compared to the 
baseline, a clear gap can still be seen between the overall 
results and the results that only consider pixels close to depth 
discontinuities. Consequently, depth discontinuities remain 
one of the major challenges in dense stereo matching and 
require further research in the future.

Fig. 6   Qualitative comparison on the Middlebury data set. These 
results are produced with parameter values obtained by training on 
the Sceneflow data set and fine-tuning on the InStereo2k data set. The 
second and third row show the disparity and difference maps of the 
two variants of our full method, respectively, varying only the loss 
function used for training. Significant differences can especially be 
seen in weakly textured areas and at depth discontinuities. For an 
explanation of the color coding, refer to Fig. 4

Table 3   Quantitative results 
for pixels close to depth 
discontinuities

The results of the baseline and the four variants of the method presented in this work are compared to 
RAFT-Stereo on the Sceneflow and the Middlebury data sets. The best values of our method per column 
are shown in bold

Variants Sceneflow Middlebury

4th channel (LBP) Discontinui-
ties via dice

Discontinui-
ties via wbce

MAE [px] RMSE [px] MAE [px] RMSE [px]

6.65 14.32 8.55 16.21
✓ 3.93 10.61 7.43 14.05

✓ 3.99 11.03 10.73 22.32
✓ ✓ 3.91 10.76 7.93 13.56
✓ ✓ 3.81 10.71 8.85 16.80
RAFT-Stereo (Lipson et al. 2021) 4.91 10.51 5.55 9.66
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5.4 � Influence of the Feature Description Method 
Used as Fourth Image Channel

In this section, the concept of using a hand-crafted feature 
description method as a fourth image channel (cf. Sect. 3.2) 
is investigated in more detail. For this purpose, the pro-
posed usage of Local Binary Patterns (LBP) is compared 
against the employment of Histograms of Oriented Gra-
dients (HOG) and feature maps resulting from the Canny 
edge detector. All three feature description methods focus 
on image gradients and thus follow the general concept of 
this work to make use of the assumption that image gradi-
ents and depth discontinuities are related. To highlight the 
influence of this part of our method, the prediction of depth 
discontinuities (cf. Sect. 3.3) is neglected for producing the 
results discussed in this section.

As demonstrated by the quantitative results in Table 4, the 
general idea of providing additional guidance to the purely 
data driven baseline using a hand-crafted feature description 
method leads to improvements independent of the actually 
used kind of features. The same is also shown by the dif-
ference maps between the baseline and the variants of our 
method that use one of the listed feature description meth-
ods as the fourth image channel in Fig. 7. Especially for 
pixels close to actual depth discontinuities and for pixels 
that are falsely identified as such by the baseline, signifi-
cant improvements can be observed. Having a closer look 
at the quantitative results, the usage of LBP leads to the best 
results, although only minor differences can be seen in com-
parison with the usage of HOG and Canny edge detector.

5.5 � Influence of the Loss Function Used 
for Predicting Depth Discontinuities

In this section, the influence of the loss function is inves-
tigated that is used for training the described U-Net to 
predict depth discontinuities (cf. Sect. 3.3). As shown 
and discussed in the previous results, the usage of the 

weighted binary cross-entropy and the dice loss function 
often leads to clearly different results, which is particu-
larly visible in Figs. 5 and 6. While the wbce loss leads to 
artifacts and noise in the weakly textured background of 
the images, these issues do not occur with the dice loss. 
Comparing the predicted information with the two loss 
functions shown in Fig. 8, it can be seen that the variant 
with the dice loss leads to sharper but partially incomplete 
depth discontinuities, while the wbce-based variant tends 
to predict more blurry discontinuities and even some dis-
continuities that do not exist in the true geometry of the 
scene. Especially latter leads to such artifacts and noise in 
the disparity estimations that are described above, as the 
predicted information is used as guidance, encouraging 
GC-Net to predict incorrect depth discontinuities. These 
characteristics of the two variants associated with the two 
different losses are also indicated by the numeric results 
shown in Table 5. Evaluating the ability of the two vari-
ants to distinguish between pixels that are located next 
to depth discontinuities and such that are not, the dice 
loss variant shows a higher precision, while the wbce loss 
variant shows a higher recall. To take into account the 

Table 4   Quantitative comparison of different feature description 
methods used as fourth image channel

The numeric values shown in the table correspond to the defined 
Sceneflow test set (see Sect. 4.1). The best values per row are shown 
in bold

Variants Sceneflow

Pixel Error Rate [%] MAE RMSE

� = 1 � = 3 � = 5 [px] [px]

Baseline 13.55 8.05 6.55 2.24 9.86
HOG 7.48 3.18 2.20 0.66 3.59
Canny 6.92 3.10 2.18 0.65 3.57
LBP 6.90 3.01 2.13 0.63 3.44

Fig. 7   Comparison of different feature description methods used as 
fourth image channel. For an example from the Sceneflow data set, 
the differences between the baseline and our method using only a 
fourth image channel (cf. Sect. 3.2) are shown. For an explanation of 
the color coding, refer to Fig. 4



PFG	

1 3

highly unbalanced nature of the data—only about 10% of 
all pixels are located close to depth discontinuities—also 
the balanced accuracy, being the mean of the true posi-
tive rate and the true negative rate, is provided. With a 
balanced accuracy of 70.1% and 83.6% for the variants 
based on wbce and dice loss, respectively, this metric dem-
onstrates that the ability to predict depth discontinuities 
is still limited. Addressing similar issues with respect to 
imbalanced data, Jadon (2020) and Taghanaki et al. (2019) 
propose a more sophisticated loss function and a combina-
tion of different loss functions, respectively, both being 

promising directions to further improve the performance 
of our method in future work.

5.6 � Comparison Against State‑of‑the‑Art

While the results shown and discussed so far clearly reveal 
the improvements of the method presented in this work 
compared to the baseline it is based on, this section focuses 
on the comparison against the current state-of-the-art. For 
this purpose, RAFT-stereo (Lipson et al. 2021) is trained 
and tested under the same conditions and on the same data 
(cf. Sect. 4.2). Although we use a relatively simple method 
as baseline, the results achieved on the Sceneflow data 
set are comparable to those of RAFT-stereo, as shown in 
Table 1. Even slightly better results can be achieved for pix-
els close to depth discontinuities with respect to the mean 
absolute error (cf. Table 3) and as shown in Fig. 9. However, 
RAFT-Stereo outperforms our approach on the InStereo2k 
and the Middlebury data sets. It is worth noting that in the 
InStereo2k data set, which is used for fine-tuning, almost 
no ground truth is available for the disparity of pixels close 
to depth discontinuities. While this information is crucial 
during training to make full use of the concept our method 
is based on, i.e. learning to estimate the position of depth 
discontinuities from image gradients, RAFT-Stereo does 
not focus on these pixels, potentially explaining the differ-
ences in the results. However, our method is still able to 
outperform RAFT-Stereo in certain areas, as visible in the 
difference maps shown in Fig. 9: On the InStereo2k data set, 
the disparity estimates of pixels in the background can be 
improved, by counteracting over-smooth predictions. On the 
Middlebury data set, the results of RAFT-Stereo also suffer 
from the foreground fattening effect described in Sect. 5.2, 
again leading to better results of our method in the back-
ground, but more artifacts in the foreground. All in all, these 
results show that the method presented in this work is also 
relevant in the context of the current state-of-the-art in dense 
stereo matching.

6 � Conclusions

In this work, a novel method for dense stereo matching 
is presented that supplements deep learning with feature 
information obtained based on expert knowledge. For this 
purpose, a twofold strategy is applied: First, the RGB input 
images are described via Local Binary Patterns and the 
resulting feature descriptors are attached to the respective 
images as an additional image channel. In this way, a basic 
set of feature information is provided to the neural network, 
allowing it to focus on details that supplement this set. Sec-
ond, the assumption that edges in an image and disconti-
nuities in the corresponding depth map coincide is modeled 

Fig. 8   Example for the prediction of depth discontinuities. The 
images show the ground truth and the depth discontinuities predicted 
using parameter values trained with the dice and the weighted binary 
cross-entropy loss, respectively

Table 5   Quantitative comparison of weighted binary cross-entropy 
and dice loss

The numeric values shown in the table correspond to the defined 
Sceneflow test set (see Sect. 4.1). The best values per row are shown 
in bold

Discontinuities via 
dice

Disconti-
nuities via 
wbce

Balanced Accuracy [%] 83.6 70.1
Recall [%] 99.2 99.7
Precision [%] 99.2 96.8
F1 score [%] 99.2 98.2
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explicitly by training a neural network that predicts latter 
from RGB images. The information obtained in this way 
is used to guide the deep learning-based matching process.

The evaluation carried out in the context of this work 
reveals two main findings: The proposed method improves 
the quality of the depth estimation compared to a purely 
data driven baseline and it achieves results comparable 
to the current state-of-the-art in dense stereo matching, if 
sufficient training data with dense ground truth for pixels 
close to depth discontinuities is available. Furthermore, it 
is shown that both components of the method contribute to 
this improvement. These findings also apply to the subset of 
pixels that are located close to depth discontinuities and in 
the presence of a domain gap between training and test data. 
However, a significant impact of such a gap is still visible, 
leading to a clear deterioration of the results compared to the 
scenario in which similar data has been seen during training. 
To mitigate this problem of over-fitting and to improve the 
generalization capability, we will investigate whether the 

complexity of the model used to predict depth discontinui-
ties can be reduced and we will introduce further geometric 
constraints.

Comparing different optimization objectives for the pre-
diction of depth discontinuities, it is found that dice loss is 
superior with respect to the majority of evaluated scenarios 
and quality metrics, although weighted binary cross-entropy 
performs slightly better on artificial data in some aspects. 
As the ratio between pixels that are close to depth discon-
tinuities and pixels that are not is highly imbalanced, spe-
cial care has to be taken about this issue. While weighting 
the binary cross-entropy term according to this ratio in the 
training data worked reasonably well, a more sophisticated 
strategy such as the log-cosh dice loss function proposed by 
Jadon (2020) or a combination of different loss functions 
(Taghanaki et al. 2019) might further improve the results. 
Lastly, we will investigate the applicability of the presented 
method on terrestrial outdoor data and airborne images in 
our future work. As reference data for depth in such outdoor 

Fig. 9   Qualitative comparison against the state-of-the-art. From top 
to bottom, the rows show results from the Sceneflow, InStereo2k 
and Middlebury data sets, respectively. The results on the Sceneflow 
data set were computed with parameter values obtained by training 
on the Sceneflow data set only, the other results were computed with 

parameter values obtained by additional fine-tuning on the InStereo2k 
data set. While Ours refers to the variant LBP + U-Net with dice, the 
difference maps show the differences between the results of RAFT-
Stereo and ours. For an explanation of the color coding, refer to Fig. 4
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settings is commonly captured by a laser scanner and is thus 
sparse, this investigation will include the development of a 
suitable training strategy to learn the prediction of depth 
discontinuities from  sparse reference data.
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