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Abstract
Purpose A basic task of a robotic scrub nurse is surgical instrument detection. Deep learning techniques could potentially
address this task; nevertheless, their performance is subject to some degree of error, which could render them unsuitable for
real-world applications. In this work, we aim to demonstrate how the combination of a trained instrument detector with an
instance-based voting scheme that considers several frames and viewpoints is enough to guarantee a strong improvement in
the instrument detection task.
Methods We exploit the typical setup of a robotic scrub nurse to collect RGB data and point clouds from different viewpoints.
Using trained Mask R-CNNmodels, we obtain predictions from each view. We propose a multi-view voting scheme based on
predicted instances that combines the gathered data and predictions to produce a reliable map of the location of the instruments
in the scene.
Results Our approach reduces the number of errors by more than 82% compared with the single-view case. On average, the
data from five viewpoints are sufficient to infer the correct instrument arrangement with our best model.
Conclusion Our approach can drastically improve an instrument detector’s performance. Our method is practical and can be
applied during an actual medical procedure without negatively affecting the surgical workflow. Our implementation and data
are made available for the scientific community (https://github.com/Jorebs/Multi-view-Voting-Scheme).

Keywords Robot-assisted surgery · Robotic scrub nurse · Surgical instrument detection · Multi-viewpoint inference · Mask
R-CNN

Introduction

In the last decade, a significant scarcity of medical work-
ers has been observed [1, 2], which has been aggravated
by the Covid-19 pandemic [3]. This, in combination with
the increasing acceptance of healthcare robots [4, 5], moti-
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vates the development of robotic scrub nurses (RSNs) as
autonomous surgery assistants, which could mitigate staff
shortages and become affordable for medical centers.

Passing the correct requested instrument to the surgeon is
a fundamental task of an RSN, thus, instrument detection is
of utmost importance. Common strategies for addressing this
task rely on deep learning methods [6, 7], and have achieved
a high success rate, e.g., 91.2meanAverage Precision (mAP)
[8]. Nevertheless, their performance is not perfect. In a high-
risk environment such as surgery, the existence of errors can
significantly hinder the applicability of an RSN in real-world
scenarios. As presented in Fig. 1, typical errors manifest in
the form of misclassifications, false detections, omissions,
and redundancies.

A way to reduce these errors is to combine data from
multiple viewpoints. Several studies have been performed
on the topics of multi-view object detection and segmenta-
tion. In [9], object detection performance is improved with
the integration of images from different viewpoints in X-
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(a) Misclassifications and false detections (b) Omissions and redundancies

Fig. 1 Typical performance errors of instrument detectors based on
instance segmentation. a Misclassifications occur when an incorrect
class is assigned to an instrument, e.g., different tools assigned to the
same class (C16). False detections are incorrect predictions associated

with the background. b Omissions arise when no prediction is made
for an instrument. Redundancies occur when multiple predictions cor-
respond to the same tool (double bounding boxes)

ray inspection. In [10], multi-view instance segmentation is
employed to improve the performance on panoramas, fusing
the segmentation results in image space to achieve consis-
tent results. In [11], data from multiple views is employed
using a robot manipulator with an attached RGB-D camera
to achieve object segmentation and address the challenge of
object picking. The findings of these and other studies [12–
14] are consistent: the consideration of multiple viewpoints
is beneficial for deep-learning-based object recognition.

In this work, we expand upon our previous publication
[15] by demonstrating the benefits of using data from mul-
tiple views for instrument detection for an RSN, which
differs from traditional single-frame instrument detection
approaches [6–8]. In contrast with the 3D scene and com-
paratively larger objects considered in other works [11, 14],
we focus on a planar scene, with thin and flat reflective instru-
ments on a table. This makes the use of point-cloud-based
segmentation unreliable. Thus, we adopt a simple, yet effec-
tive 2D voting scheme to reduce the number of detection
errors. The voting is applied using complete predicted object
instances, in opposition to the pixel-wise strategies used by
other authors [10, 11]. To the best of our knowledge, no other
published work for multi-view object detection or segmen-
tation adopts this kind of voting approach.

Our proposed method exploits the typical setup of an
RSN (Fig. 2a), including a robot manipulator and an RGB-
D camera in an eye-in-hand configuration. We consider the
complete surgery set for wisdom teeth extraction (Fig. 2b),
which includes both unique and similar-looking instruments,
to create a challenging scenario for our instrument detec-
tors. The viewpoint of the camera can easily be modified by
changing the robot’s pose. Image frames and point clouds
of the scene can be acquired at each pose. We employ these
data, the instances predicted by our detectors, and the robot’s
poses to map the locations of the instruments onto a common
plane (defined by axes x and y in Fig. 2a). Overlapping pre-

dictions in this plane can be matched together and used as
votes. These, in combination with our instance-based voting
scheme, can be used to determine the final 2D poses and
classes of the instruments on the table plane.

The contribution of this work is the introduction of an
instance-based multi-view voting scheme (MVVS) that uses
images and point clouds from different views to dramatically
enhance the performance of trained instrument detectors.Our
strategy is effective even in the presence of outliers with low
performance and can be integrated into a real-world opera-
tion without negatively affecting the surgical workflow. Our
method is practical and simple and does not requiremodifica-
tions in the typical setup of an RSN.We believe our approach
constitutes a meaningful step toward eliminating the need for
an error-free detector while guaranteeing reliable instrument
detection.

RSN setup for instrument detection

In this section, we describe themain components of our RSN,
our instrument set, and relevant information of the instrument
detectors used in our experiments.

Equipment andmaterials

Our equipment and materials are located in our research lab-
oratory. Our RSN is composed of a robot manipulator and
an RGB-D camera in an eye-in-hand configuration (Fig. 2a).
More information on our equipment is provided in our pre-
vious work [15]. A surgery set for wisdom teeth extraction
(Fig. 2b), with 18 different instruments, is selected for our
experiments. The instruments are placed on a table on a sur-
gical cloth, depicting the arrangement used during an actual
surgery, i.e., random placement, avoiding inter-instrument
occlusions.
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Fig. 2 RSN system, surgery set, and models employed during our
experiments. a The instruments are placed over a surgical cloth on a
medical table in front of the robot. An RGB-D camera is used in an
eye-in-hand configuration. b The instruments of our surgery set are
identified by labels from “C00" to “C17". c Three Mask R-CNN mod-

els (M1, M2, M3) are used during our experiments, with performances
of 83.8, 83.3, and 82.6 box mAP, respectively. M1 includes no outliers,
while M2 andM3 include two, corresponding to classes with weak per-
formance. Performances are in terms of the box AP, at an IoU of 0.5

Instrument detectors

As introduced in [15], low detection performance for some
classes can occur when dealing with similar-looking instru-
ments. To evaluate the robustness of ourMVVS against these
cases, we use it in combination with three different Mask
R-CNN [16] models, namely M1, M2, and M3. These are
specifically selected so that they have similar mean perfor-
mances but differ in the performanceof the individual classes,
as presented in Fig. 2c. M1 includes no outliers and leads to
the best performance. All models are trained exclusively on
synthetic data created with the mask-based object insertion
(MBOI) method [15]. During the data generation, a collec-
tion of 300 background images, as well as collections of 90
single-instrument images per class, are considered. Our bal-
anced training set is composed of 7400 images, including an
average of 3100 instances per instrument class, with varia-
tions below ± 1% from the average value. The validation set
includes a total of 82 annotated real images, with 51 instances
per class. For training, a learning rate of 0.001 is used. The
description of our hardware and other relevant information
about our training is based on the values used in [15].

Localization and data combination

In this section, we describe the required previous steps for
the application of our proposed MVVS. These include the
localization of the instruments in the scene and the projection
of the predictions onto a common plane.

Localization

Our RGB-D camera allows for the determination of the point
cloud of a given scene. The coordinates of the corresponding
points are given in a camera-fixed frame. This, as depicted
in Fig. 2a, constitutes a non-inertial reference frame since it
moves with the robot’s end-effector (EE). In order to suc-
cessfully locate a point in the scene, the point cloud must be
transformed into an inertial frame, i.e., the robot-base frame
in our case. Mathematically, a three-dimensional point in the
camera-fixed frame pC, depicted in homogeneous coordi-
nates, can be transformed into a point in the inertial frame
p0 using Eq. (1), as follows:

p0 = 0TEEX−1 pC (1)

0TEE and X are homogeneous transformation matrices from
EE to the robot-base frame, and from EE to the camera-
fixed frame, respectively. pC can be directly obtained from
the point cloud provided by the camera, while 0TEE can be
determined from the robot’s internal sensors. The calculation
of X requires the use of a hand-eye calibration procedure
[17]. We employ the method proposed by Park et al. [18] to
determine X , allowing for the transformation of the points
of the point cloud into the inertial coordinate frame, as given
in Eq. (1).

Projection onto a common plane

To determine whether or not predicted instances from differ-
ent viewpoints correspond to the same instrument, amatching
process must be applied. Not only a reliable description
of the instruments’ pose (2D position and orientation on
the table), but also the projection of the predictions onto
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a common plane are necessary. We refer to this projection
as location map. Despite the errors present in the predic-
tions of our models (examples in Fig. 1), it can be noted that
the trained instrument detectors successfully predict both the
bounding boxes and segmentationmasks inmost cases. Since
the bounding boxes cannot accurately describe the orienta-
tion of the instruments, we consider them unreliable to be
used as a basis for the location map. Therefore, the projec-
tion process is based on the predicted segmentation masks.
We perform the mapping by applying the following steps:
(1) obtain predictions and point clouds from different robot
poses, (2) determine theminimal bounding boxes that enclose
the predicted segmentation masks, and (3) transform the
points of the minimal bounding boxes into the robot-base
frame (Eq. 1). Once the projection is complete, a location
map is created, in which the projected minimal bounding
boxes are referred to as polygons. The data corresponding
to the instrument class of each polygon is recorded. The
information associated with the location maps is fed to our
MVVS (Sect. “Multi-view voting scheme”) to determine a
final location map that describes the poses and classes of the
instruments in the scene. The complete process is illustrated
in Fig. 3.

Multi-view voting scheme

The generated location maps can be combined into a sin-
gle map (Fig. 4a). Since the considered data are created
with a constant instrument arrangement, the polygons corre-
sponding to each instrument should overlap in this combined
location map. We consider a group of overlapping polygons
as a candidate since they suggest the presence of an instru-
ment in a certain location. Each candidate is associated with
a group of votes, which are the instrument classes of the
overlapping polygons. Our proposed MVVS includes three
main steps: (1) matching overlapping polygons to determine
the candidates, (2) determining a final polygon to represent
each candidate, and (3) estimating the most likely instrument
class for the final polygons in the final locationmap (Fig. 4b).
These steps are described in the following subsections.

Polygonmatching

We combine the location maps, as is presented in Fig. 4a.
Since our 2D matching problem involves determining the
degree of overlap between polygons, our solution is based
on the Intersection over Union (IoU) metric, given its capac-
ity to quantify overlapping areas and its standard application
in the field of object detection [7, 9, 15]. We define an IoU
threshold and match together all polygons with IoU greater
than this value. The threshold selection must be investigated
since higher values could lead to neglecting matching poly-

Final location map

Voting Scheme

a)

b)

c)

Fig. 3 Application of ourMVVS for three different viewpoints. a RGB
images and their corresponding point clouds are recorded from differ-
ent robot poses. b The RGB data is fed to an instrument detector to
obtain predictions. c The minimal bounding boxes corresponding to the
predicted segmentationmasks are found and transformed into the robot-
base frame to create a location map for each pose. A voting scheme is
then used to find a final location map, where the poses and classes of
the instruments are described

gons, while lower thresholds might imply matching together
polygons that do not correspond to the same instrument. We
explore the optimal threshold values in Sect. “Determination
of suitable IoU thresholds”.

Determination of suitable final polygons

Thematched polygonsmay vary considerably fromone loca-
tion map to the next since some instruments might only
appear partially in the field of view of the camera. This can
change the size and even the shape of the polygon in the
location maps (e.g., in Fig. 4a, blue and light orange poly-
gons on the lower left). Thus, not all matched polygons in
a candidate accurately represent the pose of the correspond-
ing instrument. To select representative polygons, we assume
that each instrumentwill be fully visible inmost of the frames
and that a fully visible instrumentwill lead to a representative
polygon. We perform the selection by finding the polygon
that maximizes the sum of its IoU with the other polygons
in its corresponding candidate. Mathematically, for a list of
polygons corresponding to a candidate C, the optimal poly-
gon Popt is determined by:
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Fig. 4 Illustration of the use of
multiple viewpoints combined
in a single location map (a) to
create a final location map (b)

(a) Location map for 15 viewpoints (b) Final location map

Popt = argmax
Pi

⎛
⎜⎜⎝

n∑
i=0
i �= j

IoU
(
Pi, Pj

)
⎞
⎟⎟⎠ ∀Pi ∈ C (2)

Determination of the final instrument classes

Since our surgery set (Fig. 2b) includes 18 instruments and
each instrument corresponds to a class, we match the gen-
erated candidates to each of the instrument classes. In our
case, the number of candidates is often higher than that of
the classes, either due to false detections or incorrect poly-
gon matching. Thus, some of the candidates must often be
neglected. We solve this class-assignment problem in the
following steps: 1) Create a list of eligible candidates and
initialize it with all determined candidates. 2) Find the can-
didate with the most votes for any particular class and assign
it to that class. 3) Remove the assigned candidate from the list
of eligible candidates, as well as all votes to the associated
instrument class. 4) Repeat steps 2 and 3 until all classes have
been matched, and the list of eligible candidates is empty or
no votes for the unmatched classes are left. If two or more
candidates are considered equally likely to correspond to a
class, conflict is determined and no matching is performed
for that class.

Experiments and results

In this section, we describe the process associated with the
generation of our data, explain the experiments performed,
and analyze the corresponding results.

Preparation and generation of the data

In order to evaluate our MVVS, we consider 20 different
instrument arrangements by placing our 18 instruments in
different locations (Sect. “Equipment and materials”). We
create collections of data for each of the arrangements,
including the RGB images and point clouds corresponding

to different viewpoints. The acquisition of these data is per-
formed via a simple motion-capture routine, in which our
RSN (Fig. 2a) performs the following steps: (1) The robot
moves to an initial pose, i.e., home pose, from which all
instruments are visible (Fig. 5a). (2) The camera captures an
image and the corresponding point cloud of the scene. (3)
The robot moves to a new randomly determined pose facing
the table, from which a new image and a new point cloud are
recorded. (4) The procedure is repeated until the data of 15
different viewpoints are acquired. The changes in the robot’s
position coordinates (X , Y , Z ) and orientation coordinates
(A, B, C) are determined by:

X = X0 + Tau, Y = Y0 + 3Tau, Z = Z0 + 2Tau
(3a)

A = A0 + 2Oau, B = B0 + Oau, C = C0 + Oau
(3b)

with u ∼ U(−1, 1). Heuristically, we determine that X0 =
500 mm, Y0 = 0 mm, Z0 = 650 mm, Ta = 100 mm,
A0 = −π , B0 = 0, C0 = π , and Oa = π

8 are suitable
values and are therefore used during the data acquisition.
The images of each arrangement taken from the home pose
are manually annotated and are used as ground truth (Fig. 5a)
for evaluation.

Determination of suitable IoU thresholds

A criterion for the declaration of a correctly identified instru-
ment is necessary for evaluation. This implies the existence
of matching classes and a minimum degree of overlapping
between the predicted and ground truth polygons. An IoU
threshold of 0.5 is commonly defined for this matter [8, 14,
15]. In our case, we defined it as 0.3, which is considered
reasonable, given our use of minimal bounding boxes and
the presence of thin and elongated instruments. An example
of error quantification with our MVVS is provided in Fig. 5.

As described in (Sect. “Polygonmatching”), a second IoU
threshold is required tomatch a polygon to a given candidate.
As our first experiment,we explore the effect of this threshold
on the number of correctly identified instruments for different
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Fig. 5 Example of the
quantification of the errors
during our evaluation. 15 out of
18 instruments are correctly
identified. From the ground
truth (a), a location map is
inferred (b). When compared
with the predicted location map
(c), errors can be quantified.
Three different errors are
observed: (1) prediction failure
(omission), (2) and (3) are
misclassifications. Reasonable
difference in matching polygons
(4) are not considered errors.
The predicted location map is
obtained with the application of
our proposed MVVS

(a) Ground truth

1
2 3

(b) Ground truth location map

1
2 3

(c) Predicted location map

1
2 3

4

(d) Predicted and ground-truth maps

arrangements (Fig. 2b), using our detector M1. Results for
representative arrangements are presented in Fig. 6. The fig-
ure indicates how the use of several frames is associated with
higher numbers of correctly identified instruments. Interme-
diate thresholds seem to lead to superior performance since
high values tend to neglect polygons, while low values tend
to include polygons that might not correspond to the same
instrument. An IoU threshold of 0.3 is selected for matching
polygons to candidates, given its fast convergence and asso-
ciated performance. This value is, thus, used in all further
experiments.

Evaluation of the proposedmulti-view voting
scheme

To evaluate ourMVVS, we apply it to the collected data from
20 different instrument arrangements using our instrument
detectors, M1, M2, and M3 (Fig. 2c). For our evaluation, we
declare our method has achieved convergence if the consid-
eration of data from any of the additional viewpoints does not
lead to class changes on the final location map. Moreover, a
minimum of three additional viewpoints with no associated
change is considered, after using all 15 collected pieces of
data. Thus, we determine theminimum number of viewpoints
for convergence (MNVC), which in our cases can range from
1 to 12. With the goal of quantifying the improvement pro-
vided by our voting scheme, we determine the number of
errors with a single viewpoint (ESV), and the number of
errors withmultiple viewpoints (EMV). EMV is defined once

convergence is reached. As in our previous experiment, we
declare an error when either the overlap between the pre-
dicted and ground truth polygons do not meet the minimum
threshold of 0.3 IoU or when their instrument classes do not
match. In the current experiment, we also quantify the qual-
ity of the predictions by calculating the mean IoU (mIoU).
The results are shown in Table 1.

The results indicate that the sum of the EMV among all
arrangements is drastically lower than that of the ESV for
our three models, proving the effectiveness of our method.
The reduction in errors experienced by M1 is bigger than
that of M2 and M3 (95.9% vs 91.0% and 82.0%, respec-
tively). This difference can be explained by the presence of
outliers with lower values (below 50 box AP) for M2 and
M3 (Fig. 2c), which indicates a strong tendency for errors
in certain classes. This could lead to a relatively lower error
reduction after applying our MVVS, explaining the behav-
ior for M1. Moreover, the mIoU of the ground truth and
predicted polygons is above 74% in all models, proving the
quality of the predicted polygons obtained with the MVVS.
M1 achieves convergence with an average of 4.65 MNVC,
while M2 and M3 require the use of 6.26 and 7.38 MNVC.
We estimate approximately 2.8 s of data gathering and exe-
cution time for each viewpoint, implying an investment of
less than 15s for M1.
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(c) Arrangement 13

Fig. 6 Correctly identified instruments as a function of the number of
viewpoints used with our MVVS for model M1. Four IoU thresholds
are studied. A general increasing tendency is observed with the use of
multiple viewpoints. In these examples, only the threshold values of 0.3

and 0.5 lead to the identification of all 18 instruments using 15 view-
points or less. A threshold of 0.3 is selected given its faster convergence
and superior performance

Table 1 Errors for a single viewpoint (ESV) and multiple viewpoints (EMV) using our MVVS. EMV is determined upon reaching convergence

mIoU (%) Arr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Sum Ave

M1

78.3 ESV 2 4 8 5 6 4 6 3 8 8 3 6 5 6 6 2 2 3 3 5 98 4.90

EMV 0 1 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0.20

MNVC 4 6 5 2 2 5 8 5 3 2 3 4 3 6 5 9 2 9 2 8 93 4.65

M2

76.4 ESV 8 10 13 5 8 11 8 7 5 1 8 11 5 2 10 0 5 4 7 6 134 6.70

EMV 0 0 2 0 0 0 0 0 0 2 0 2 0 2 0 1 0 0 0 3 12 0.60

MNVC 4 5 2 10 12 12 4 5 3 − 7 7 8 12 5 3 3 7 3 7 119 6.26

M3

74.1 ESV 3 9 6 9 4 8 5 6 8 2 0 11 7 8 9 7 7 2 9 8 128 6.4

EMV 0 2 1 2 2 2 0 0 1 0 0 1 2 0 1 2 3 1 0 3 23 1.15

MNVC 2 − − 3 5 12 4 12 12 2 5 7 − 5 9 − 10 8 4 12 118 7.38

The minimum number of viewpoints for convergence (MNVC) is included, after which no class changes in the final location map occur. The symbol
“–” indicates that convergence is not reached with the consideration of 15 viewpoints or less, in which cases EMV is determined with the data of
the last considered viewpoint. The instrument arrangements (Arr) are identified by the numbers from “0” to “19”

Conclusions

With an error reduction greater than 82%, our proposed
MVVS proves to be greatly beneficial for the performance
of the three considered instrument detectors. Although our
method is robust against outliers with low performance,
models with relatively high box AP for all classes are
recommended (box AP > 50) to optimize its benefits. In
combination with our best model (M1), our method identi-
fies correctly 356 instruments out of the 360 included in our
image data, for a 98.9 % success rate. Moreover, on aver-
age, data from only 5 different viewpoints are required to
achieve convergence, implying a time investment of approx-
imately 15s. This initial investment can be applied at the
beginningof surgery to create a reliablemapof the instrument
arrangement. Since the RSN ismeant to hand the instruments
to the surgeon, as well as retrieve them, these interactions

can be used to modify the created location map after every
instrument movement, without the need of gathering addi-
tional data. Furthermore, the robot’s idle time can be invested
in updating the location map, as verification for additional
safety. With this short initial time investment, the exploita-
tion of the idle time, and the modification of the location map
according to the instrument movements, our voting scheme
should not interrupt the surgical workflow, while guaran-
teeing high reliability in the instrument detection task. This
eliminates the need for an error-free instrument detector.

MVVS could be improved with the consideration of the
confusion matrix of the associated instrument detector. The
entries can be used to estimate the probability of misclassifi-
cation, which can be integrated into the determination of the
final instrument classes. This will be explored in our future
work.
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