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Absence of Localization in Two-Dimensional Clifford Circuits
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We analyze a Floquet circuit with random Clifford gates in one and two spatial dimensions. By using
random graphs and methods from percolation theory, we prove in the two-dimensional (2D) setting that
some local operators grow at a ballistic rate, which implies the absence of localization. In contrast, the
one-dimensional model displays a strong form of localization, characterized by the emergence of left- and
right-blocking walls in random locations. We provide additional insights by complementing our analyt-
ical results with numerical simulations of operator spreading and entanglement growth, which show the
absence (presence) of localization in two dimensions (one dimension). Furthermore, we unveil how the
spectral form factor of the Floquet unitary in 2D circuits behaves like that of quasifree fermions with
chaotic single-particle dynamics, with an exponential ramp that persists up to times scaling linearly with
the size of the system. Our work sheds light on the nature of disordered Floquet Clifford dynamics and
their relationship to fully chaotic quantum dynamics.
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I. INTRODUCTION

An understanding of the dynamics of quantum many-
body systems far from equilibrium is of fundamental
importance for preparing and controlling quantum states
of matter [1]. The universal dynamical behavior provides
signatures of novel quantum phases of matter and their
underlying patterns of quantum information. The study of
the dynamics of quantum many-body systems is notori-
ously challenging due to the exponential growth of the
Hilbert space. In recent years, simulation of the dynam-
ics in a quantum circuit architecture has opened up new
directions for probing quantum chaos, hydrodynamics,
and nonequilibrium phases of matter [2–9]. These phe-
nomena are particularly suitable for quantum simulation
on noisy intermediate-scale quantum (NISQ) devices and
have been studied on state-of-the-art physical platforms.
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Novel quantum many-body phenomena can be realized
in these experiments, providing a test bed for the theo-
retical ideas with potential applications in protecting and
processing quantum information.

The dynamics in circuit models is encoded in the form of
k-local unitary gates acting on qubits. The geometry of the
gates and their symmetries provide access to a wide range
of model phenomena that are analytically tractable and can
be approximated efficiently. Due to their tunability and
control, circuit models provide minimal models for com-
plex quantum phenomena, including systems with kinetic
constraints [10,11], dual-unitary structure [12,13], periodic
dynamics [14], and long-range interactions [15]. Notably,
quantum circuits with random gates have provided a pow-
erful framework to strive for a quantum computational
advantage [16] as well as to study quantum information
scrambling on existing quantum hardware [17].

The vast majority of many-body quantum systems are
ergodic and relax to thermal equilibrium under unitary time
evolution [18,19]. Exceptions to this generic thermalizing
behavior include integrable models [20], which possess
an extensive set of conservation laws, as well as mod-
els exhibiting localization [21,22]. Localization can arise
in systems with sufficiently strong disorder and one of its
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signatures is the slow growth of any initially local opera-
tor when evolving in the Heisenberg picture. In a quantum
circuit, localization in terms of operator growth can be
of single-particle type, where the support of any initially
local operator remains confined in a finite region for all
times [23,24] as, e.g., realized in lattice models of nonin-
teracting fermions with random on-site potential [25] and
for the corresponding mapping to spin systems [26,27].
For a typical realization of our circuit in one dimen-
sion, this definition takes into account the appearance of
walls that block the spread of any operator, as illustrated
in Fig. 1(a). On the other hand, many-body localization
(MBL) exhibits the growth of support of a local opera-
tor as the logarithm of time [28]. In particular, the loglike
growth of entanglement entropy in time [29–31] tells these
systems apart from the Anderson-type localized as defined
below in Definition 1. In one-dimensional (1D) systems,
a many-body localized phase with an extensive set of
exponentially localized integrals of motion might exist at
sufficiently strong disorder [32]. However, the asymptotic
existence of this MBL phase in the thermodynamic limit is
still under active debate, as localization has recently been
found to be unstable even at rather large values of disorder
[33–37]. Moreover, in higher dimensions, analytical
arguments and numerical calculations suggest that MBL
is unstable [38–43].

Uper Uper

1D(a) (b)

FIG. 1. Localization and its absence in Floquet Clifford cir-
cuits. A local operator σx acting nontrivially only on a single
site evolves according to a time-periodic Clifford circuit in (a)
1D and (b) 2D, t = 5. In 1D, the Floquet unitary Uper consists
of a brickwork pattern of two-qubit gates, while in 2D it con-
sists of two layers of four-qubit gates (cf. Fig. 2). The color plot
encodes the local matrices of the time-evolved operator string
U(t)σxU†(t) according to 1 (white), σx (blue), σy (red), or σz
(yellow). The data are shown for a single random realization
of the Clifford gates. For better visualization of the 2D data, we
focus in (b) on a single point in time, t = 5, where the light-cone
boundary (dotted square) is of size 20 × 20 (cf. Definition 2). As
proven in Ref. [14], the 1D circuit exhibits localization due to
the emergence of left- and right-sided walls that confine the evo-
lution at all times. This confinement affects all (not necessarily
Pauli) operators with support between the two walls. Inside the
confined region, the evolution looks ergodic. In contrast, in 2D,
localization is absent, as can be seen from the fact that parts of
the operator grow with the light-cone speed.

Disorder in quantum circuit models can be introduced
in space and time where the gates are chosen at random.
Random unitary dynamics without any symmetries or con-
straints lead to complete mixing [3,4,44,45], while certain
time-periodic circuits can exhibit nonergodic dynamics
[14,46]. There are also various forms of kinetically con-
strained random circuits, akin to fractonic models, that
exhibit localization [47,48]. In this work, we shed light
on the role of dimensionality on localization in ran-
dom Floquet Clifford circuits. Floquet circuits have been
extensively studied [46,49–53] and have provided key
insights into the properties of periodically driven quan-
tum systems [54]. They have been essential to rigorously
demonstrate the occurrence of chaos and random-matrix
behavior in isolated quantum systems [49,52] and, in com-
bination with disorder and many-body localization, they
can host exotic nonequilibrium phases of matter with no
equilibrium counterpart [55,56]. Moreover, certain circuits
with dual-unitary structure allow for a controlled tuning
between ergodic and nonergodic dynamics [12,13]. In this
work, we analytically and numerically study the absence of
localization in two-dimensional (2D) Clifford circuits and
characterize the integrable nature of chaos using measures
of operator growth and spectral form factor (SFF). More-
over, we numerically contrast the 2D against the 1D case,
showing for the latter localization at the dynamical level.

From a quantum information perspective, the Clifford
group plays a key role in fault-tolerant quantum computing
and randomized benchmarking [57–59]. Recently, random
circuits consisting of Clifford gates have provided use-
ful insights into quantum many-body physics [2,14,60–62]
due to their efficient simulability on classical computers
despite the generation of extensive amounts of entangle-
ment. This efficient simulability of Clifford dynamics can
also be understood in terms of a phase-space representa-
tion analogous to that of quasifree bosons and fermions,
with the dimension of the phase space being exponentially
smaller than the Hilbert space (see appendix A of Ref.
[14] and Refs. [63,64]). Yet, Clifford circuits form unitary
designs [65–67] such that circuit averages of certain rele-
vant quantities can exactly reproduce Haar averages over
the full unitary group. Despite their simplicity, Clifford
circuits can thus prove useful to gain insights into some
aspects of the dynamics of more generic quantum systems,
including the build-up of out-of-time-ordered correlators
and the growth of entanglement [3,4].

In addition, as we demonstrate, the Clifford circuits stud-
ied in this paper are to some extent tractable analytically
by a suitable mapping to directed graphs. It is known that
random time-dependent (i.e., annealed disorder) cellular
automata can be analyzed using directed-percolation the-
ory [68,69] and that Clifford circuits can be represented
as cellular automata. However, the circuits considered by
us are not random in time, they have quench disorder,
and hence, they cannot in general be solved with directed
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graphs. Nevertheless, as we show below, in order to probe
their behavior, we only need to analyze the dynamics at the
edge of the light cone. Moreover, at the light-cone edge,
spatial disorder is equivalent to time disorder, producing
an effectively annealed dynamics, which can be analyzed
using percolation theory.

The hybrid nature of Clifford circuits between integrable
and chaotic systems is also reflected in the emergence
of ergodicity and localization. On the one hand, it has
been shown in Ref. [14] that Floquet Clifford circuits
exhibit Anderson-type localization in 1D [cf. Fig. 1(a) and
Definition 1]. On the other, we prove here, and numeri-
cally show [cf. Fig. 1(b)], as a main result, that in 2D,
some operators always grow at a ballistic rate, such that
the model does not localize, despite having strong disor-
der, contrasting the phenomenon in 1D. We also provide
numerical evidence that the ballistic growth happens for
almost all local operators. Moreover, the absence of local-
ization in our time-periodic 2D circuit model differs from
the behavior of disordered free-fermion models, which
show Anderson localization for arbitrarily weak disorder
in 2D [70–72].

We elucidate further aspects of the Floquet Clifford
dynamics by complementing our analytical results with
numerical simulations, where we demonstrate that oper-
ator spreading is exponentially suppressed in 1D, remi-
niscent of the exponential dynamical-localization of the
wave function in Anderson insulators. On the contrary, we
find that operator spreading in 2D occurs ballistically with
light-speed velocity and that the interior of the light cone
becomes fully scrambled and featureless. These findings
are substantiated by the temporal build-up of entangle-
ment, which is bounded and system-size independent in
1D, whereas it grows linearly and saturates toward exten-
sive values in 2D. Finally, we also study the SFF of the
Floquet Clifford circuit, which is a key quantity to diagnose
the emergence of quantum chaos. We show that the SFF
is similar to that of free fermions, the associated single-
particle dynamics of which are chaotic. Specifically, we
find that, in the 2D model, the SFF exhibits an exponen-
tial ramp at early times that persists up to a time that
scales linearly with the size of the system, suggesting
that ergodicity in the case of Clifford dynamics should be
understood with respect to the exponentially smaller phase
space.

Our work provides a comprehensive picture of local-
ization and chaos in disordered Floquet Clifford quantum
circuits, in terms of directed percolation, at the light cone,
and information spreading in classical cellular automata.
An understanding of nonequilibrium quantum many-body
states in Clifford circuits provides an important starting
point for studying the phenomena in generic conditions.
It can serve as a useful benchmark for identifying quan-
tum effects of simulation in noisy quantum devices. The
relevance of Clifford circuits for quantum error correction

can also provide valuable insights into combining error-
correction protocols with quantum simulation.

The rest of this paper is structured as follows.
Section II A contains a description of the model, including
the definition of Clifford unitaries, which are the build-
ing blocks of this quantum circuit. Section II B contains
the main result of our work, Theorem 1, together with
a discussion of its significance, as well as its numerical
demonstration in Sec. II C. In Sec. II D, we numerically
study the SFF of Floquet Clifford unitaries, which supports
our observation of localization in 1D (see also Ref. [14])
and ergodic dynamics in 2D. We also provide a rigorous
lower bound on the time-averaged SFF. Section III con-
tains the proof of Theorem 1, which uses random graphs
and methods reminiscent of those of percolation theory.
Eventually, in Sec. IV, we provide a discussion about the
fact that Clifford dynamics appears to share properties of
integrable systems and chaotic systems. Section V summa-
rizes the results of this work and provides some outlook.
The Appendix provides the relation between the localiza-
tion length and the average position of a blocking wall in
the dynamics of the 1D model.

II. RESULTS

A. Description of the model

Consider an infinite 2D square lattice with sites labeled
by (x, y) ∈ Z

2. At each site, there is a spin-1/2 particle, or
qubit, which has Hilbert space C

2. The dynamics of the
system is time periodic, with the period being one unit of
time. Hence, at integer times t ∈ Z, the evolution opera-
tor can be written as U(t) = (Uper)

t. The unitary Uper that
describes the dynamics of a single period has the form

Uper =
⎛
⎝ ⊗

x,y odd

W(x,y)

⎞
⎠
( ⊗

x,y even

W(x,y)

)
, (1)

where, for any (x, y) ∈ Z
2, the local unitary W(x,y) acts on

the four sites (x, y), (x + 1, y), (x, y + 1), and (x + 1, y +
1). In Eq. (1), (x, y odd) means that both x and y are odd:
analogously, (x, y even) means that both x and y are even.
In the dynamics described by Eq. (1), each time period
decomposes into two half time steps, which are illustrated
in Fig. 2. This quantum circuit with local interactions is an
example of a quantum cellular automaton (QCA) [11,73–
75]. The evolution operator U(t) can also be generated by
a time-periodic Hamiltonian H(t) with local interactions

U(t) = T e−i
∫ t

0 dτH(τ ), (2)

where T denotes a time-ordered exponential. This type of
dynamics is called Floquet dynamics [54].

The disorder of the system is represented by the fact that
each local unitary W(x,y) is sampled independently from
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t = 1/2 t = 1

FIG. 2. The local dynamics. This figure represents the two lay-
ers of local unitaries generating the dynamics of a time period
Uper. Each black dot represents a qubit and each blue square
represents a four-qubit unitary W(x,y).

the uniform distribution over the four-qubit Clifford group.
A unitary W is Clifford if it maps any product of Pauli
sigma matrices to another product of Pauli sigma matri-
ces [63,76]. An example of Clifford unitary W acting on
C

2 ⊗ C
2 is

W(σx ⊗ 1)W† = σz ⊗ σx, (3)

W(σz ⊗ 1)W† = 1 ⊗ σz, (4)

W(1 ⊗ σx)W† = σz ⊗ 1, (5)

W(1 ⊗ σz)W† = σx ⊗ σz. (6)

It can be seen that these four identities fully specify W up
to a global phase. Clearly, having random Clifford unitaries
in neighboring unit cells is a somewhat different type of
disorder than the one usually considered in the study of
localization (e.g., random on-site magnetic fields in spin-
chain models [21,22]). For instance, apart from the fact
that the unitaries are drawn independently, it is not imme-
diately obvious how to quantify the strength of the disorder
in the random-circuit model.

In summary, we study the typical behavior of an ensem-
ble of models. Note that while the statistics defining the
model is translation invariant, typical instances are not.
This approach is standard in the study of disorder and
localization [23]. We also have to mention that the Flo-
quet Clifford circuit described in Eq. (1) and Fig. 2 is a
straightforward 2D version of the 1D model considered in
Ref. [14]. Remarkably, in Ref. [14], it has been proven that
the 1D Floquet model with two-qubit Clifford gates acting
in a brickwork pattern supports Anderson-type localiza-
tion. More specifically, local operators remain confined to
a finite region in space during the time evolution due to
the emergence of left- and right-sided walls [cf. Fig. 1(a)]
that confine the operator spreading at all times (see also
Ref. [77]). Here, we prove that this kind of localization is
absent in the 2D model [cf. Fig. 1(b)]. In this context, let
us note that this absence of localization in 2D is in contrast

to the results of Ref. [77], which has studied similar Flo-
quet Clifford circuits hosting a localization-delocalization
transition in 2D. However, while Ref. [77] has considered
a drastically reduced gate set (only two different two-qubit
Clifford elements), our circuits are more general, with gates
being drawn at random from the full Clifford group.

One difference between the 1D model [Fig. 1(a)] and the
2D model [Fig. 1(b)] is that in the former case the gates are
sampled from the two-qubit Clifford group C2, while in the
latter case they are sampled from the four-qubit Clifford
group C4. Both contain a finite number of distinct elements
but their dimensions differ substantially, i.e., |C2| = 11 520
and |C4| ≈ 1.2 × 1013 [78].

In the following, our analytical arguments are focused
on the 2D model of Eq. (1) and we refer the interested
reader to Ref. [14] for the proof of localization in 1D.
However, in order to provide a concrete comparison of
their properties, we present numerical results of operator
spreading and entanglement growth (Sec. II C), as well as
simulations of the SFF (Sec. II D), for both 1D and 2D
Floquet Clifford circuits.

B. Absence of localization

Many-body lattice systems display localization when
the Lieb-Robinson velocity vanishes. Next, we pro-
vide a definition of Anderson-type localization based on
Ref. [26].

Definition 1.—Let OH (t) = eiHtOe−iHt be the evolution
in the Heisenberg picture of a local observable O with
support at the origin of the lattice and let OH

l (t) be the
restriction of OH (t) onto the ball of radius l > 0 around
the origin. A system displays Anderson-type localization
if there are parameters c,μ > 0 such that

E
H

sup
t

‖OH
l (t)− OH (t)‖∞ ≤ c e− l

μ , (7)

for all l > 0. (The operator norm ‖A‖∞ is the spectral
radius of A, which for finite systems is the largest singular
value of A.)

Note that the left-hand side of Eq. (7) involves an aver-
age over all realizations of the Hamiltonian H , which
usually correspond to different realizations of a random
potential. In the case of QCAs or Floquet systems, the
average is taken over the single-period unitary Uper char-
acterizing the dynamics O(t) = U−t

perHUt
per. In particular, in

quantum circuits, the average runs over all realizations of
the circuit. The above definition implies that if a system
has dynamics such that a local operator grows at a linear
rate (ballistically) in some direction, then we can conclude
that there is no localization of any type. With this in mind,
we make the following definitions.

Definition 2.—The light cone is the largest support that a
single-site operator at t = 0 could have at each future time
t when we maximize over instances of the dynamics (see

030302-4



ABSENCE OF LOCALIZATION . . . PRX QUANTUM 4, 030302 (2023)

t = 1
2

t = 1

t = 3
2

FIG. 3. Light-cone boundary growth. The left column shows
the light cone and its boundary at times t ∈ {1/2, 1, 3/2} of an
operator acting on the encircled site at t = 0. The black dots rep-
resent sites, the blue squares represent four-qubit unitaries, and
the red dashed line is the light-cone boundary. The right column
shows the segment of the directed graph G that describes the
growth history of the boundary up to the corresponding time t.
Each vertex in G represents a unitary and each arrow represents
a qubit at a particular time t. The arrows that do not point to any
vertex represent the qubits of the boundary at time t.

Fig. 3). At each time t, the boundary of the light cone con-
sists of the outer qubits contained in the light cone, which
form a square of side 4t.

The approximate shape of the light cone is a four-sided
pyramid, the apex of which is the site where the initial
operator is supported. The surface of this pyramid is the
boundary of the light cone. In general, an operator may not
have full support inside the light cone, because it acts as
the identity at some sites at particular times (see Fig. 4).
However, despite not having full support, an operator may
grow at maximal speed, as defined next.

Definition 3.—A model has light-speed operator growth
if there is a single-site operator the evolution of which has
nontrivial support (is nonidentity) on the boundary of the
light cone at all future times t = 1, 2, 3, . . . (see Fig. 4).

Light-speed operator growth implies the absence of
localization. However, not having light-speed operator
growth does not imply localization. For example, ballis-
tic growth at a rate smaller than unity is not localization.
Also, diffusive dynamics, where the diameter of the sup-
port of an operator grows as the square root of time, is not
localization. In what follows, we introduce the main result

FIG. 4. Light-speed growth. In this example, an operator
located at the circled site at time t = 0 evolves into an operator
with support on the blue sites at time t = 1. Since some of these
blue sites are at the light-cone boundary (red dashed line), this
operator enjoys light-speed growth (at least up to time t = 1).

of this work, which establishes the absence of localization
in our model.

Theorem 1.—Consider a Pauli operator that differs from
the identity only on a single site at t = 0. With probability
at least 0.44, the time evolution of this operator generated
by the random dynamics given in Eq. (1) is nonidentity on
some sites of the boundary of the light cone at all times
t ∈ {1/2, 1, 3/2, 2, 5/2, . . .}.

That is, with probability 0.44, a particular Pauli oper-
ator at a particular site enjoys light-speed growth. Our
numerical simulations strongly suggest that this happens
for a fraction much larger than 0.44. Non-Pauli operators
are more prone to light-speed growth, because they have
more than one term when expressed in the Pauli basis and
hence there is a greater likelihood that at least one term has
light-speed growth.

Before turning to the formal proof of Theorem 1 in
Sec. III, we now provide numerical support for the pres-
ence (absence) of localization in 1D (2D) random Floquet
Clifford circuits. In particular, let us note that while some
aspects of the Clifford dynamics can be treated analyti-
cally (cf. Sec. III), others are accessible only by numerical
means.

C. Numerical analysis of Floquet Clifford circuits

1. Simulating Clifford circuits

Clifford circuits can be efficiently simulated on classical
computers by exploiting the stabilizer formalism [63,64].
More specifically, a stabilizer state |ψ〉 on L qubits can be
uniquely defined by L operators Pi according to Pi |ψ〉 =
|ψ〉, where the Pi are L-qubit Pauli strings. Instead of
keeping track of the time evolution of the quantum state
directly, |ψ〉 → U(t) |ψ〉, it is then useful to consider the
evolution of the operators, Pi → U(t)PiU†(t). The latter
can be done efficiently if U(t) consists solely of Clif-
ford gates that map single Pauli strings to other single
Pauli strings [cf. Eq. (3)], in stark contrast to more general
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FIG. 5. Operator spreading. Circuit-averaged ρ(x, t) in (a),(b)
refers to the 1D system and (c),(d) refers to the 2D system. The
data are obtained by time evolving an initially local operator
σx located at the origin and averaging over approximately 104

random-circuit realizations. Panels (b) and (d) show cuts of the
data in (a) and (c) at fixed times t. For the better visualization of
the 2D data, (c) shows ρ(x, t) along a cut with y = 0 [as indicated
by the white arrow in the inset of (c), which depicts the full 2D
data at t = 10]. While in 1D, the operator becomes exponentially
localized, with ρ(x, t) ∝ e− x

μ and μ ≈ 10.4, the operator grows
with light speed in 2D with a maximally scrambled light-cone
interior, as indicated by ρ(x, t) ≈ 3/4.

quantum evolution, which would yield superpositions of
multiple Pauli strings. More specifically, the L stabilizers
Pi can be encoded in a L × 2L binary matrix, also called
the stabilizer tableau, the values of which are updated
suitably upon the application of a Clifford gate. As a con-
sequence, the time and memory requirements scale only
polynomially with the number of qubits (for further details,
see Ref. [63]). In fact, time evolving the entire stabilizer
tableau of a state |ψ〉 will be necessary here only for cal-
culating the entanglement entropy in Fig. 6, whereas the
analysis of operator spreading (Figs. 1 and 5) and of the
SFF below (Fig. 7) requires the evolution of single (or, in

0

15

0 50
0

250

010

L = 8 × 8

L = 12 × 12

L = 16 × 16

L = 20 × 20

S
(t

)

t

L = 64
L = 128
L = 256
L = 512

t

(a) (b)1D 2D

FIG. 6. Entanglement growth. The half-system (cf. sketches)
entanglement entropy S(t) under Floquet Clifford evolution for
different system sizes L in (a) 1D and (b) 2D. In 1D, S(t)
approaches an almost system-size independent long-time value.
In 2D, S(t) saturates toward the maximally achievable value L/2.
[Note the different scales of the y axis in (a) and (b).] The data are
averaged over approximately 103 random-circuit realizations.

the case of the SFF, a specific set of) operators. Eventu-
ally, we note that there exist various efficient algorithms
to generate random elements of the Clifford group [78,79].
Here, we follow the approach of Ref. [80], which we use
to sample uniformly from C2 (C4) in our simulations of
1D (2D) circuit geometries. Except for Fig. 1, we then
present results that are averaged over a sufficient number
of random-circuit realizations.

2. Operator spreading

Figure 1(a) demonstrates the occurrence of localiza-
tion in 1D Floquet Clifford circuits. Specifically, con-
sidering O(0) = 1 ⊗ · · · ⊗ 1 ⊗ σx ⊗ 1 ⊗ · · · ⊗ 1, which
differs from the identity only at one site, Fig. 1 shows its
time evolution O(t) = U(t)O(0)U†(t) for a single random-
circuit realization. While the operator grows at light speed
at short times, this growth eventually stops in 1D due to the
emergence of left- and right-blocking walls, leading to the
Anderson-type localization behavior proven in Ref. [14].
In contrast, this kind of localization is absent in the 2D cir-
cuit [Fig. 1(b)], where we find that at least some parts of the
time-evolved operator grow with light speed, that is, they
act nontrivially on the light-cone boundary at all times.

In order to study this operator spreading in more detail,
let Ox(t) denote the local Pauli matrix at the xth position
of the time-evolved operator. (For example, given a two-
qubit system and O(t) = σx ⊗ σz, we might have O1(t) =
σx and O2(t) = σz.) We then define the quantity ρ(x, t),
with

ρ(x, t) =
{

1, if Ox(t) = σx, σy , σz,
0, if Ox(t) = 1.

(8)

In Fig. 5, we show the circuit-averaged dynamics of ρ(x, t)
for 1D and 2D circuits. (Note that here we refrain from
introducing another symbol for the average.) On the one
hand, in the case of 1D circuits [Figs. 5(a) and 5(b)], we
find that most of the support of the operator remains close
to the origin. More specifically, we find that the oper-
ator spreading is exponentially localized, with ρ(x, t) ∝
e−x/μ, μ ≈ 10.4, and becomes essentially stationary at
long times, as can be seen by comparing the cuts of ρ(x, t)
at times t = 25 and t = 50 in Fig. 5(b).

On the other hand, the situation is clearly different in 2D
[Figs. 5(c) and 5(d)]. In this case, we find that ρ(x, t) is
essentially featureless inside the light cone with ρ(x, t) ≈
3/4, with a sharp drop to ρ(x, t) → 0 outside the light
cone. Note that for better visualization, the data in Fig. 5(c)
are shown for a cut at y = 0 of the original 2D data [cf. the
inset in Fig. 5(c)]. Importantly, the circuit-averaged value
ρ(x, t) ≈ 3/4 indicates maximally scrambling dynamics.
Namely, given the definition in Eq. (8) of ρ(x, t), this value
indicates that the matrices σx, σy , σz, and 1 locally occur
all with equal probability.
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It is in principle conceivable that there exist rare
instances of random gate configurations such that the oper-
ator spreading also becomes localized in 2D. In practice,
however, we do not observe any such localized instances
and, in particular, there are no notable signatures in the
circuit-averaged behavior of ρ(x, t) in Figs. 5(c) and 5(d).

3. Entanglement dynamics

To proceed, we now turn to the build-up of entangle-
ment S(t) between two parts A and B of the system, starting
from an initially unentangled product state |↑〉⊗L stabi-
lized by σz everywhere. Within the stabilizer formalism,
S(t) can be efficiently simulated based on the collective
evolution of all L operators Pi that define |ψ〉 [2,81].
Note that the entanglement dynamics in Clifford circuits is
somewhat special since, given the reduced density matrix
ρA(t) = trB |ψ(t)〉〈ψ(t)|, ρA(t)will exhibit a flat eigenvalue
spectrum such that all its Rényi entropies are equivalent
[82]. Nevertheless, Clifford circuits can support exten-
sive amounts of entanglement and the dynamics of S(t)
are often found to mimic the properties of more generic
quantum evolutions [15,60].

In Fig. 6, we show S(t) for half-system bipartitions in
1D and 2D Floquet Clifford circuits with various system
sizes L. The dynamics of S(t) substantiate our previous
observation of localization in 1D and ergodic behavior
in 2D. Specifically, we find that S(t) saturates toward a
rather small and essentially L-independent long-time value
S(t → ∞) ≈ 10 in 1D [Fig. 6(a)]. This emphasizes that
the localization length in 1D is distinctly shorter than the
full system size and that a local operator can only explore
a small part of the system [cf. Fig. 1(a)]. In contrast, in 2D
[Fig. 6(b)], we find that S(t) exhibits a pronounced linear
increase at short times, well known from other random-
circuit models and chaotic quantum systems. Moreover, at
longer times, S(t) saturates toward an extensive long-time
value S(t → ∞) ≈ L/2, which is the maximally achiev-
able value for a system of size L. This volume-law scaling
of S(t) highlights the absence of localization in 2D Floquet
Clifford circuits.

D. Spectral form factor

1. Definition and general remarks

To provide further insights into the nature of Floquet
Clifford circuits we now turn to the SFF. The SFF of an
ensemble of unitaries U is defined as

K(t) = 〈|tr Ut|2〉 , (9)

where t takes integer values and the brackets 〈· · · 〉 denote
the ensemble average over all U ∈ U . The SFF probes the
statistical properties of the spectrum of randomly sampled

unitaries in U . In particular, the Fourier transform

K̃(ω) = 1
π

∞∑
t=1

K(t) cos(ωt) (10)

is the probability that a random U ∈ U has two eigenvalues
separated by a distance ω (see Ref. [83]). The SFF also has
an interpretation in terms of Poincaré recurrences; in fact,
K(t) is a lower bound to the number of Pauli strings P that
are mapped to themselves U−tPUt = P after evolving for
a time t. More precisely, it has been proven in Ref. [84]
that

K(t) = 2−L
∑
P

〈
tr
[
PU−tPUt]〉 , (11)

where the sum is over all Pauli strings P . This identity
holds for any unitary U, although only Clifford unitaries
have the property that U−tPUt is equal or orthogonal to
±P . The possibility of this negative sign is responsible for
the fact that Eq. (11) is not necessarily equal to the number
of recurrences but is a lower bound.

The SFF has been studied extensively to explore the
onset of random-matrix theory (RMT) behavior in the
spectral properties of quantum systems [49,50,85–87]. In
particular, it is proven in Ref. [83] that, for unitaries drawn
from the uniform distribution (Haar measure) over SU(2L),
the SFF reads

K(t) =

⎧⎪⎨
⎪⎩

22L, if t = 0,
t, if 1 ≤ t ≤ 2L,
2L, if t ≥ 2L.

(12)

Haar-distributed unitaries go also under the name of circu-
lar unitary ensemble (CUE). Equation (12) shows that the
SFF increases as a linear ramp before reaching a plateau.
Many-body chaotic systems are defined such that their
SFFs increase linearly in time after an initial dip. The
time at which the linear ramp starts is called the Thouless
time, while the time at which the SFF reaches a plateau
is called the Heisenberg time. A meaningful interpreta-
tion of these time scales requires rescaling, as discussed
in, e.g., Refs. [35,88]. Figure 7 shows that the SFF of the
periodic Clifford circuit that we are considering manifests
an exponential ramp before reaching a plateau. A simi-
lar behavior is shown by quasifree fermions with chaotic
single-particle dynamics [89,90]. (By quasifree fermions,
we mean those having a Hamiltonian quadratic in the cre-
ation and annihilation operators.) The time in Fig. 7 is not
rescaled and the value at which a plateau is reached is
“evaluated” by inspection; therefore we call it plateau-time
instead of Heisenberg time.

Building on the Clifford formalism, it is possible to com-
pute Eq. (11) efficiently [84], without explicitly evaluating
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the exponentially many terms. In order to do so, for any
given Clifford unitary U, we define the group H [U] of Pauli
strings P that are invariant under the action of the unitary
U, namely U†PU = ±P . Then, the method in Ref. [84]
consists of finding a set of generators of the group H [U],
denoted genH [U], and exploiting the following identity:

|trU|2 =
{

2|genH [U]|, if U†PU = +P , ∀P ∈ genH [U],
0, otherwise.

Then, this is done for U = Ut
per, with Uper as defined in

Eq. (1), and several values of t. Finally, one needs to
average over many realizations of the circuit Ut

per. The
exponential dependence of K(t) on the number of gen-
erators already hints at the fact that the SFFs in Clifford
circuits will exhibit strong fluctuations.

2. Numerical results

We now present our numerical results for the SFF in
Floquet Clifford unitaries. Note that while the stabilizer
formalism in principle allows for simulations of U(t) with
complexity scaling polynomially with L, the system sizes
in the following are smaller than we are typically used to
from other examples of Clifford numerics. The main rea-
son for this is that computing K(t) requires averaging over

(a) (b)
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FIG. 7. The circuit-averaged K(t) of Floquet Clifford unitaries
for different system sizes L in (a) 1D and (b) 2D. The data
are averaged over approximately 106 random-circuit realizations.
The vertical dotted lines in (b) denote t = 2L, which approx-
imately marks the end of the exponential ramp. The insets in
(a) and (b) show the same data but now for shorter times [cf.
the shaded areas in (a) and (b)]. In 2D, we find that the ramp
is described by K(t) ∝ 2t/2, while in 1D K(t) ∝ 2(t/2)α with
α ≈ 2.5 for L = 16 and α ≈ 3.6 for L = 24. In all cases, K(t =
0) = 4L. (c),(d) The time-averaged SFF K(t) [Eq. 14] in (c) for
1D and in (d) for 2D. The horizontal dashed lines indicate the
Hilbert-space dimension 2L.

a rather high number of circuit realizations, which makes
simulations of larger L quite costly. Especially for 2D cir-
cuits, we find that extensive averaging is required to obtain
converging results, since the calculation of K(t) appears
to be dominated by rare circuit realizations that yield very
large values of |trUt

per|2.
Figures 7(a) and 7(b) show K(t) for 1D and 2D cir-

cuits with two different system sizes L = 16, 24. For the
1D circuit, we find that K(t) exhibits a steep exponen-
tial increase at early times but quickly crosses over to
a plateaulike behavior. The time at which this crossover
takes place seems independent of L. Strikingly, however,
this “plateau” is dominated by major fluctuations of the
SFF. Note that (most of) these fluctuations are actual fea-
tures of the dynamics of K(t) and cannot be reduced further
by circuit averaging. In fact, the data in Fig. 7 are already
averaged over a substantial number (approximately 106)
of random realizations. These fluctuations follow from the
fact that the Clifford group has finite cardinality |CL|, which
implies that the lengths t of the orbits (i.e., the smallest t
such that U−tPUt = P) are divisors of |CL|. To see this, we
recall Lagrange’s theorem: the order of a subgroup divides
the order of the group. In particular, the smallest r such that
Ur = 1 divides |CL|. Next, let us show that t is a divisor of
r (and consequently a divisor of |CL|). If we assume the
opposite, then r = nt + m with 0 ≤ m < t, which implies
that P = U−rPUr = U−mPUm, which contradicts the fact
that t is minimal.

Notably, the behavior of K(t) changes in the case of
2D circuits [Fig. 7(b)]. Similarly to 1D, we again find
an exponential increase of K(t) at early times. However,
in contrast to 1D, this ramp is cleaner and persists for a
longer time in 2D. Specifically, comparing K(t) for differ-
ent L, we find that the end of the ramp occurs at tH ≈ 2L,
which corresponds to the phase-space dimension of the
Clifford dynamics (cf. Sec. IV A). For times t > 2L, the
SFF displays strong fluctuations around the plateau value.
We interpret this behavior of K(t) as a signature of ergodic
dynamics in phase space, analogous to quasifree fermions,
as discussed above.

Let us explain why, in the 2D case, the plateau time
grows with the system size as tH ≈ 2L, while in the 1D
case tH is independent of L. Equation (11) tells us that
K(t) reaches the plateau when evolving Pauli strings expe-
rience recurrences. In the 2D case, there is no localization;
hence the evolution of Pauli strings is not restricted and can
explore all the phase space. Recurrences reach a maximum
at a time equal to the phase-space dimension 2L [analo-
gously, in RMT, recurrences reach a maximum at a time
equal to the Hilbert-space dimension given in Eq. (12)].
In the 1D case, the evolution of local Pauli operators
is restricted to the localized regions, the size of which
depends on Uper but not on the system size L. The evolution
of nonlocal operators is also restricted because they can be
decomposed into local operators with restricted dynamics.
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This follows from the fact that the evolution of a product
of Pauli strings is equal to the product of the individual
evolutions:

U†(t)[PP ′]U(t) = [U†(t)PU(t)][U†(t)P ′U(t)]. (13)

Now, let us discuss the long-time behavior of K(t). In order
to smooth the large fluctuations of K(t), Figs. 7(c) and 7(d)
show the time-averaged SFF

K(t) = 1
t

t∑
t′=0

K(t′). (14)

The data of K(t) in Fig. 7(c) emphasize the fact that the
initial ramp of K(t) in 1D becomes steeper with increasing
L. The large-t value of K(t) quantifies the degeneracies in
Uper. This follows from

K(∞) = lim
t→∞

1
t

t∑
t′=0

〈
2L∑

i,j =1

ei(Ei−Ej )t′
〉

=
〈

2L∑
i,j =1

δ(Ei, Ej )

〉

=
〈∑

E

g2
E

〉
≥ 2L, (15)

where E runs over all the quasienergies of Uper and gE
is the degeneracy of E (see Ref. [84]). Note that when
gE = 1 for all E, we have

∑
E g2

E = 2L. In Fig. 7(c), we
find that the long-time value of K(t) is notably higher than
the Hilbert-space dimension 2L, signaling the presence of
degeneracy. In contrast, the RMT behavior of Eq. (12))
implies that there are no degeneracies. An enhanced long-
time value of K(t) can also be seen in 2D [see Fig. 7(d)],
albeit less extreme in this case.

III. PROOF OF THEOREM 1

Let us consider the time evolution of a local operator
acting on a single site at time t = 0. The support of this
operator at later times (t > 0) is contained in the light cone
represented in Fig. 3. However, in general, an operator may
not have full support in the light cone (i.e., it acts as the
identity in some events). In Sec. III A, we describe the
boundary of the light cone with a directed graph and in
Sec. III B, we describe the operator growth with a random
directed graph.

Our goal is to lower bound the probability that the evo-
lution of a local operator has support at the boundary at
all times (i.e., nonidentity in at least one site of the bound-
ary). A crucial observation to address this question is that
the state of the operator at the boundary at time t depends

only on the state of the operator at the boundary at time
t − 1/2 and does not depend on the state at the bulk of the
light cone. Importantly, all unitary gates at the boundary at
time t are statistically independent of the gates inside the
light cone at previous times. This fact makes this problem
mathematically tractable.

A. Directed-graph representation

The growth of the light-cone boundary can be repre-
sented by a directed graph G constructed in the following
way. Each vertex of G represents a four-qubit unitary and
each arrow represents a qubit that belongs to the boundary
at a particular time t.

Construction of G

(1) Add one vertex • to represent the four-qubit unitary
acting on the initial site at t = 1/2.

(2) Add one outward-pointing arrow ↗ for each of the
qubits where the first unitary (potentially) propa-
gates the signal at t = 1/2.

(3) Repeat the following steps starting at t = 1/2:

(a) At the end of each outward-pointing arrow ↗
at time t, add the vertex • corresponding to the
unitary acting at t + 1/2 on the qubit associated
to the arrow ↗. (If two arrows represent qubits
acted on by the same unitary at t + 1/2, then
these two arrows point to the same vertex.)

(b) From each vertex • corresponding to a uni-
tary acting at t + 1/2, add one outward-pointing
arrow for each of the qubits being acted on by
the unitary • and belonging to the boundary at
t + 1/2.

(4) Update t �→ t + 1/2 and repeat (a) and (b) up to
infinity.

The construction of G, that is detailed in Figs. 3 and Fig. 8,
shows G up to construction stage t = 3/2. Note that the
infinite graph G has the following property: unitaries that
act on the qubits that are on the corners of the (rectangular)
boundary are represented by a vertex with one inward-
pointing and three outward-pointing arrows. Similarly,
unitaries that act on qubits on edges of the boundary have
two inward-pointing and two outward-pointing arrows.

B. Random directed graph

In this section, we represent the random growth of an
initially local operator evolving according to the random
dynamics in Eq. (1) by a random directed graph GR,
defined below. This graph is constructed by allowing the
arrows of G to be present or absent with certain probabil-
ities. These probabilities are obtained from the statistical
properties of the four-qubit gates W(x,y). The property of
light-speed operator growth up to time t happens when
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(b)(a)

FIG. 8. The directed graph at t = 3/2. (a) the directed graph
G. (b) An instance of the random directed graph GR.

there is a path in GR starting at the central vertex, follow-
ing the directions of the arrows, and having length 2t. In
what follows, we bound the probability that GR contains at
least one such path.

There is, however, one minor point to consider. In prin-
ciple, if a vertex in GR has no inward-pointing arrows (i.e.,
the evolved operator has no support on the sites on which
the gate associated to the vertex acts), then there should not
be any outward-pointing arrows either. However, since we
are considering directed paths from the origin, this is not
a problem. That is to say, if there are no inward-pointing
arrows to a vertex, the presence or absence of outward-
pointing arrows is irrelevant, since a directed path from
the origin cannot use this vertex anyway. Therefore, we
consider the presence of outward-pointing arrows in a ver-
tex of GR to be statistically independent of the presence of
inward-pointing arrows and independent of the presence
of arrows in any other vertex. Still, the outward-pointing
arrows of a particular vertex are not independent random
variables. Each outward-pointing arrow i in a vertex has an
associated random variable xi, which takes the value xi = 1
if the arrow is present and xi = 0 if it is absent. The follow-
ing lemma provides the joint probability distribution of the
variables xi.

Lemma 1.—For the vertex with four outward-pointing
arrows x1, x2, x3, and x4, the probability of the presence of
each arrow is

P(x1, x2, x3, x4) = 1
44 − 1

{
0, if xi = 0 ∀ i,
3
∑

i xi , otherwise,
(16)

where xi = 1 indicates that the ith arrow is present and
xi = 0 that it is absent. For the vertices with three outward-
pointing arrows, the probability distribution is

P(x1, x2, x3) = 1
44 − 1

{
3, if xi = 0 ∀ i,
4 × 3

∑
i xi , otherwise.

(17)

For the vertices with two outward-pointing arrows, the
distribution is

P(x1, x2) = 1
44 − 1

{
42 − 1, ifx1 = x2 = 0,
42 × 3x1+x2 , otherwise.

(18)

Proof.—Let A be a four-qubit Pauli operator different
than the identity and let W be a four-qubit random Clif-
ford unitary. Let us consider the random four-qubit Pauli
operator WAW† = λB = λB1 ⊗ B2 ⊗ B3 ⊗ B4 and ignore
the phase λ. Reference [14, Lemma 3] tells us that B
is uniformly distributed over the 44 − 1 combinations
of B1, B2, B3, B4 ∈ {1, σx, σy , σz} different than B1 = B2 =
B3 = B4 = 1. The factor 3xi follows from the fact that the
value xi = 0 denotes the one case Bi = 1, while the value
xi = 1 denotes the three cases Bi ∈ {σx, σy , σz}. This proves
Eqs. (16), (17), and (18). �

Definition 4.—The random directed graph GR can be
sampled by starting from G and, at each vertex, removing
the outward-pointing arrows according to the probability
distributions given in Eqs. (16), (17), and (18).

Definition 5.—An l-path in GR is a sequence of l con-
secutive arrows starting at the central vertex and following
the directions of the arrows (see Fig. 9).

In the lemma below, we show that in order to upper
bound the probability that GR has no l-path, it is enough
to analyze its lower quadrant, as represented in Fig. 10.

Definition 6.—The directed graph G� is the lower quad-
rant of G and the random directed graph G�

R is the lower
quadrant of GR (see Fig. 10).

Lemma 2.—The probability that GR has no l-path is
upper bounded by the probability that G�

R has no l-path,
that is,

prob{GR has no l-path} ≤ prob{G�
R has no l-path}. (19)

FIG. 9. This figure shows a 3-path in an instance of the random
directed graph GR.
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(b)(a)

FIG. 10. (a) The graph G�. (b) An instance of the random
directed graph G�

IR. Both are shown at time t = 3/2.

Proof.—By definition, if G�
R has an l-path, then GR has

an l-path too; therefore, if GR has no l-path, then G�
R has

no l-path. Using this, the bound follows. �

C. Random graph with statistically independent
arrows

In order to simplify the analysis, we define a new graph
where the probability of the presence of each arrow is inde-
pendent of the presence of other arrows. The next lemma
shows that it is sufficient to analyze this new graph.

Definition 7.—The random directed graph G�
IR is sam-

pled by taking G� and independently removing each arrow
with probability

q := prob{x = 0} = 1
2

− 1
2

√
21
85

� 0.25. (20)

The subscript in G�
IR denotes “independent random

arrows.” The meaning of the value of q given above will
become clear in the proof of Lemma 3. As mentioned
above, we have the following.

Lemma 3.—The probability that G�
R has no l-path is

upper bounded by the probability that G�
IR has no l-path:

prob{G�
R has no l-path} ≤ prob{G�

IR has no l-path}. (21)

Proof.—First, note that the probability distribution of
outward-pointing arrows from different vertices are inde-
pendent and hence we focus only on a single vertex
with two outward-pointing arrows. Second, we construct
a matrix with the probability distribution P(x1, x2) for the
presence of outward-pointing arrows [see Eq. (18)] as

(
P(0, 0) P(0, 1)
P(1, 0) P(1, 1)

)
= 1

255

(
15 16 × 3

16 × 3 16 × 9

)
. (22)

Third, we increase prob{x1 = x2 = 0} → P(0, 0)+ ε and
decrease prob{x1 = x2 = 1} → P(1, 1)− ε until the

distribution becomes of product form
(

P(0, 0)+ ε P(0, 1)

P(1, 0) P(1, 1)− ε

)
=
(

1
17 + ε 16

85
16
85

48
85 − ε

)
(23)

=
(

q2 q(1 − q)
q(1 − q) (1 − q)2

)
.

(24)

We want to find the minimum ε > 0 such that there is
q ∈ [0, 1] satisfying the above equality. Clearly, this trans-
formation cannot increase the likelihood of an l-path. The
above matrix is of product form when its determinant
is zero, in fact the second column of the last matrix in
Eq. (23) is obtained from the first one by multiplying by
(1 − q)/q:

det

(
1
17 + ε 16

85
16
85

48
85 − ε

)
= 0. (25)

This equation has smallest positive solution ε = 1/170
(43 − √

1785) ≈ 0.0044, which implies that

q = 1
17

+ ε + 16
85

= 1
2

− 1
2

√
21
85

. (26)

This proves the statement of the lemma. �

D. Dual graph

Definition 8.—The graph G�∗
IR dual to G�

IR has vertices
located at the faces of G�

IR. The presence of a (nondirected)
edge in G�∗

IR corresponds to the absence of the arrow that it
intersects in G�

IR. Therefore, the probability q∗ that an edge
is absent in G�∗

IR is equal to the probability that an arrow
is present in G�

IR, that is, q∗ = 1 − q, where q is defined
in Eq. (20). Figure 11 displays the graph dual to that of
Fig. 10.

Definition 9.—A d-wall is a set of d consecutive edges
that connect the left side of G�∗

IR to the right side.
Lemma 4.—If G�∗

IR contains a d-wall, then G�
IR contains

no l-path of length l ≥ d.
Proof.—This follows from the fact that a d-wall must

start in one of the first d vertices of the left and that l-paths
always go downward. �

(a) (b)

FIG. 11. The dual graph. (a) The dual graph G�∗. (b) the
instance of the random graph G�∗

IR that is dual to the instance
of G�

IR shown in Fig. 10.
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Lemma 5.—The probability that G�∗
IR has a d-wall for

some d satisfies

prob{∃ d : G�∗
IR has d-wall} ≤ 0.56. (27)

Proof.—Let us start by upper bounding the maximal
number of d-walls Nd that G�∗

IR can have. Consider a d-
wall starting at a specific vertex position on the left side
of G�∗

IR . For the choice of the first edge in the path there is
only one possibility, for the choice of each of the follow-
ing d − 2 edges there are at most three possibilities, and
for the final edge there is a single choice (again). Hence,
we can upper bound the number of d-walls starting at a
specific vertex on the left side by 3d−2. It is worth not-
ing that this upper bound includes many paths that do not
connect the left and right sides and, hence, do not actu-
ally form a d-wall. The total number of vertices that can be
the initial vertex (left side) of a d-wall is d − 1. Hence, we
have Nd ≤ (d − 1)3d−2. In order to obtain a better bound,
we note that when the starting vertex of a d-wall is either
the first or (d − 1)th from the top, then there is only one
possible choice of d-wall. Therefore, we obtain

Nd ≤ (d − 3)3d−2 + 2. (28)

Direct counting gives the exact number of d-walls for small
values of d, which is displayed in the following table:

d 2 3 4 5 6
Nd 1 2 3 6 18 (29)

Next, the probability that G�∗
IR contains a particular d-wall

in G�∗ is (1 − q∗)d = qd. Therefore, the probability that
G�∗

IR has at least one d-wall satisfies

prob{G�∗
IR has d-wall} ≤ Nd qd. (30)

Finally, the probability that G�∗
IR contains a d-wall of any

length d satisfies

prob{∃ d : G�∗
IR has d-wall}

≤
∞∑

d=2

prob{G�∗
IR has d-wall} ≤

∞∑
d=2

Nd qd (31)

≤
6∑

d=2

Nd qd +
∞∑

d=7

[
(d − 3)3d−2 + 2

]
qd (32)

≈ 0.56, (33)

where we use the table in Eq. (29) and the bound in
Eq. (28). �

Combining Lemmas 2, 3, 4, and 5 we can prove our
main result.

Remark.—What follows is an equivalent statement of
Theorem 1 that has appeared previously in the paper.

Theorem 1.—The probability that GR has an l-path of
infinite length l = ∞ satisfies

prob{GR has ∞-path} ≥ 0.44. (34)

To conclude this section, let us note that while this
proof of Theorem 1 establishes the absence of localiza-
tion in the 2D Floquet Clifford circuits given in Eq. (1),
the lower bound given in Eq. (34) is probably not tight for
practical purposes. Specifically, in our simulations of 2D
circuits of finite size L < ∞, we find nontrivial operator
support on the light-cone boundary for virtually all times
and all random-circuit realizations, such as in the example
depicted in Fig. 1(b).

IV. COMPARING CLIFFORD DYNAMICS WITH
QUASIFREE BOSONS AND FERMIONS

In this section, we argue that Clifford dynamics shares
features with quasifree systems, along with certain similar-
ities with chaotic systems. Therefore, in order to elucidate
the full landscape of quantum many-body phenomena, it is
important to understand the properties of Clifford systems.

A. General dynamics

Similarly to quasifree fermions, Clifford unitaries can
be represented by symplectic matrices in a phase space
of dimension exponentially smaller than the Hilbert space.
This dimensional reduction allows for efficient simula-
tion of the evolution of any local or Pauli operator with
a classical computer [64]. The efficient simulability of
Clifford circuits can also be understood with respect to
the non-negativity of the associated Wigner function in
phase space [91,92]. In particular, this non-negativity of
the Wigner function of stabilizer states is analogous to the
non-negative Wigner function of the Gaussian states corre-
sponding to models with a quadratic Hamiltonian [93,94].
Furthermore, we see in Sec. III that Clifford dynam-
ics allow for a certain degree of analytical tractability,
similarly to other types of integrable models.

Unlike quasifree systems, the Clifford phase space is a
vector space over a finite field (Z2N

2 is the phase space of N
qubits); hence evolution cannot be continuous in time. That
is, we can have Floquet-type but not Hamiltonian-type
dynamics. For the same reason, the evolution operator can-
not be diagonalized into noninteracting “modes.” Related
to this is the fact that some aspects of typical Clifford
dynamics cannot be understood in terms of free or weakly
interacting particles [see, e.g., the dynamics in Fig. 1(a)].

Uniformly distributed (i.e., Haar) unitaries are resem-
bled much more from random Clifford unitaries than from
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random quasifree unitaries. This can be made quantita-
tive by using the notion of unitary design [95]. On the
one hand, random quasifree unitaries cannot even gener-
ate a 1-design, because their evolution operators commute
with the number operator (bosons) or the parity operator
(fermions). On the other hand, random Clifford unitaries
generate a 3-design [66,67] and almost a 4-design [96].

As discussed in Sec. II D, the SFF of Clifford unitaries
corresponds to that of quasifree fermions with chaotic
single-particle dynamics, as in the quadratic Sachdev-Ye-
Kitaev (SYK) model [89,90].

B. Translation-invariant local dynamics

In Ref. [97], the authors analyze a translation-invariant
Clifford Floquet model in one spatial dimension. They
prove that the system has no local or quasilocal integrals
of motion. More specifically, any operator that commutes
with the evolution operator acts on an extensive number
of sites with couplings among them that do not decay
with the distance. This is very different to what happens
with quasifree systems, which have an extensive number
of local conservation laws (see Refs. [98,99]).

Unlike quasifree systems, the Clifford model analyzed
in Ref. [97] enjoys a strong form of eigenstate thermal-
ization. That is, all eigenstates are maximally entangled in
the sense that the reduced density matrix of any connected
region is equal to the maximally mixed state (in the ther-
modynamic limit). In other words, none of the eigenstates
satisfy an entanglement area law.

C. Disordered local dynamics

The 1D analog of our model (analyzed in detail in
Ref. [14]) displays a strong form of localization produced
by the emergence of left- and right-blocking walls at ran-
dom locations [see Fig. 1(a)]. Until now, this strong form
of localization, reminiscent of Anderson localization, has
only been found in systems of free or weakly interacting
particles. In strongly interacting systems, the localization
is in some sense weaker (many-body localization), since
the width of the light cones grows as the logarithm of
time. The Clifford dynamics appear to be some form of
hybrid, as they cannot be understood entirely in terms of
free or weakly interacting particles but yet they display
Anderson-type localization in 1D. Remarkably, however,
the similarity in their localization properties does not carry
over to 2D. More specifically, while we show in this paper
that localization is absent in 2D random Floquet Clif-
ford circuits, quasifree systems, such as noninteracting
fermions, are well known to localize in 2D lattices even
in the presence of arbitrarily weak disorder [100].

V. CONCLUSIONS

We introduce a Floquet model comprised of random
Clifford gates and prove as a main result that it does

not localize in two spatial dimensions, despite having
strong disorder. More precisely, we prove the existence
of operators that grow ballistically and we see numeri-
cally that this holds for almost all operators. This result is
notable because, as discussed in Sec. IV, this model shares
certain features of other integrable models and 2D inte-
grable systems with strong disorder are usually expected to
localize, e.g., noninteracting lattice fermions in a random
potential, as originally considered in the case of Ander-
son localization. We substantiate our analytical findings
by numerically demonstrating the absence (presence) of
localization in 2D (1D) Floquet Clifford circuits. Further-
more, we study the SFF of the Floquet unitary, which is
a key quantity in the context of quantum chaos. To the
best of our knowledge, our work is the first to study the
SFF in 2D Clifford circuits, complementing the analysis of
Ref. [84], which has focused on 1D. We unveil that the
SFF behaves in a drastically different way in 2D. In par-
ticular, we observe a clean exponential ramp persisting up
to a time that scales linearly with the system size, which
we interpret as a signature of ergodic dynamics in phase
space.

It is worth noting that, since the definition of light-
speed growth only concerns the boundary of the light cone,
our results also apply to the time-dependent (non-Floquet)
version of the model, where new gates are randomly gen-
erated at each time step. For the same reason, our results
for the 2D model extend to time-periodic circuits with
time period larger than 2. The difference between models
with period equal to 2 and models with a larger period or
time-dependent models could manifest itself in the inte-
rior of the light cone. While the time-dependent model has
completely ergodic dynamics, Fig. 5(c) suggests that our
time-periodic model is not far from it. While, with our ana-
lytical methods, we cannot address the interior of the light
cone, it might be interesting to extend our numerical anal-
ysis to probe whether the bulk of the light cone is indeed
featureless or whether the Floquet circuit induces some
structure on the Pauli strings that are sampled during the
dynamics. Such potential differences compared with fully
ergodic dynamics may be reflected in, e.g., the behavior
of higher-order and nonlocal correlation functions that go
beyond the local probe considered in Fig. 5.

In future work, we would like to study the case where
instead of sampling gates from the Clifford group, we
sample from the full unitary group SU(4). In the case
of time-dependent circuits, this has been well studied in,
e.g., Refs. [3,6,101], whereas the case of time-periodic
quantum circuits in one spatial dimension has been stud-
ied in, e.g., Refs. [49–51]. In this context, one promising
approach to interpolate between Clifford dynamics and
more generic Haar-random circuits is to consider circuits
composed mainly of Clifford elements interspersed with
a (low) density of non-Clifford gates, the latter acting as
a seed of chaos that may enhance the ergodic aspects of
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the dynamics further [102,103], despite the loss of clas-
sical simulability [104]. Such a procedure may also help
us to better understand the apparent differences as well
as similarities of Clifford dynamics and other notions of
integrability [89,90], a detailed exploration of which we
believe to be an important direction of future work.

The localization proven for the dynamics of a period-2
1D QCA of Cliffords in Ref. [14] and corroborated numer-
ically in Fig. 5, as seen above, is known to disappear for
a time-dependent circuit, that corresponds to a periodic
circuit of infinite period, as also follows from Ref. [14].
Numerical investigations performed in Ref. [105] show
that the 1D circuit with period equal to 4 still localizes with
the appearance of hard walls that nevertheless are char-
acterized by a larger localization length than the period-2
case.

Finally, we would like to comment on the connec-
tions between our methods and directed-percolation theory
[106,107]. Both cases analyze the presence of infinitely
long paths that start at the origin in random directed
graphs. However, in our case, and in that of general cellu-
lar automata, the arrows that emerge from the same vertex
are not statistically independent (see Lemma 1), while in
the standard theory of directed percolation they are.

In conclusion, our work provides a new perspective on
the possibility of using Clifford circuits to simulate certain
novel nonequilibrium quantum phenomena. We expect that
our work will inform future studies that aim to use Clif-
ford circuits as starting points to understand more generic
quantum dynamics.

The rigorous understanding of localization and chaos
in this solvable limit provides a basis for toy models to
simulate nonequilibrium states in kinetically constrained
models. The classical simulability of Clifford circuits can
play a constructive role for benchmarking the performance
of noisy intermediate-scale quantum computers for quan-
tum simulation and distinguishing between classical and
quantum effects in them.
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APPENDIX: LOCALIZATION LENGTH IN THE 1D
MODEL

We present here a result that builds upon, and improves,
Ref. [14, Theorem 25]. Let us first informally restate this
theorem. The periodic dynamics of a 1D QCA of two-qubit
gates of uniformly sampled Clifford unitaries, represented
as the inbox of Fig. 1, and in Ref. [14, Fig. 1], are such that
the probability of appearance of a right- (or left-) block-
ing wall is at least 0.12. If we consider only walls with a
penetration length equal to 1, meaning that if, e.g., a right-
blocking wall is placed at x = 0, then the support of an
operator hitting that wall is allowed to flow only up to
x = 1, and then the probability of the appearance of a wall
is exactly equal to 0.12. The proof of this statement rests
on the use of the phase-space formalism for Clifford uni-
taries. The following corollary gives an upper bound on
the average spread of the support of an operator that is
initially nonidentity only at one point. This spread is the
localization length μ that is given in Definition 1.

Corollary 1.—The periodic dynamics of a 1D QCA of
two-qubit gates of uniformly sampled Clifford unitaries
are such that given an operator initially supported only on
site x = 0, the probability that a wall blocking its dynam-
ics appears at a distance l and that no other wall appears
at {0, . . . , l − 1}, is ce−l/μ, with c ≈ 0.07 and μ upper
bounded by 13.2.

Proof.—Let us assume, for simplicity, that we consider
a wall blocking propagation toward the right. Accord-
ing to the phase-space formalism, as detailed in Ref. [14,
see esp. Secs. II E and VII], the absences of walls at
neighboring positions, e.g., x = 0 and x = 1, are corre-
lated events. In fact, they satisfy the conditions C1C0 �= 0
and/or C1D0A1C0 �= 0 for the absence of a wall at x = 0
and C2C1 �= 0 and/or C2D1A2C1 �= 0 for the absence of a
wall at x = 1. Denoting by Wl the presence of a wall at
x = l and by Wl the absence of a wall at x = l, we see
that Prob(W1 ∧ W0) = Prob(W1|W0)Prob(W0). This leads
to a Markov chain; in fact, the absence of a wall at x = 2
involves the matrix blocks {C3, D2, A3, C2} and we see that
none of them appears in the condition defining W0. This
means that the probability of having a wall at x = l and no
other wall at {0, . . . , l − 1} is given by

Prob
(
Wl ∧ Wl−1 ∧ · · · ∧ W0

) =
= Prob

(
Wl|Wl−1

)
Prob

(
W1|W0

)l−1
Prob

(
W0
)

= (
1 − Prob

(
Wl|Wl−1

))
Prob

(
W1|W0

)l−1
Prob

(
W0
)
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= (
1 − Prob

(
W1|W0

))
Prob

(
W1|W0

)l−1
Prob

(
W0
)

=
(
1 − Prob

(
W1|W0

))
Prob

(
W0
)

Prob
(
W1|W0

) Prob
(
W1|W0

)l
.

(A1)

With the aid of computer software, we exactly evaluate
Prob

(
W1|W0

) = 0.927 and we recall from Ref. [14] that
Prob

(
W0
) = 0.88. Then, Eq. (A1) implies that

Prob
(
Wl ∧ Wl−1 ∧ · · · ∧ W0

) = ce− l
μ , (A2)

with

c =
(
1 − Prob

(
W1|W0

))
Prob

(
W0
)

Prob
(
W1|W0

) ≈ 0.07 (A3)

μ = − 1
log

(
Prob

(
W1|W0

)) ≈ 13.2. (A4)

This proof takes into account walls with penetration length
equal to 1, described by Ref. [14, Figs. 4 and 5]. Walls
with a larger penetration length are also allowed by the
dynamics: taking them into account would lead to a shorter
localization length, as confirmed by the numerics that lead
to Fig. 5 and therefore the value μ ≈ 13.2 is an upper
bound. �

We comment about normalization of probability as a
check that Corollary 1 is consistent. In the limit of an
infinite system, the probability of having no wall at all
is vanishing. This follows from the proof of Corollary 1,
where instead of evaluating Prob

(
Wl ∧ Wl−1 ∧ · · · ∧ W0

)
,

we consider Prob
(
Wl ∧ Wl−1 ∧ · · · ∧ W0

)
. This means that

the probability of having at least one wall equals 1. The
probability of having at least one wall is the sum of the
probability of having a wall in x = 0 and whatever else
(namely a configuration of gates that might or might not
give rise to a wall), plus the probability of having no wall in
x = 0 and a wall in x = 1 and whatever else, plus the prob-
ability of having no wall in x = 0 and no wall in x = 1 and
a wall in x = 2 and whatever else, and so on. This means
that

1 = Prob (W0)+
∞∑

l=1

Prob
(
Wl ∧ Wl−1 ∧ · · · ∧ W0

)
.

(A5)

It is possible to verify that Eq. (A5) is implied by
Eqs. (A2), (A3), and (A4). We then have the normalized
probability distribution P(l) for the appearance of a wall at

x = l and no prior wall:

P(l) =
{

Prob (W0) = 0.12, with l = 0,

ce− l
μ , with l ≥ 1.

(A6)

This implies that the average position of a wall is given by

〈l〉=
∞∑

l=1

lce− l
μ = Prob

(
W0
)
μ+O

(
1 − Prob

(
W1|W0

))2
.

(A7)

This gives the relationship between the average position of
a wall and the localization length μ in the limit of a large
system.
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[35] J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, Quantum
chaos challenges many-body localization, Phys. Rev. E
102, 062144 (2020).

[36] P. Sierant, M. Lewenstein, and J. Zakrzewski, Poly-
nomially Filtered Exact Diagonalization Approach to
Many-Body Localization, Phys. Rev. Lett. 125, 156601
(2020).

[37] A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz,
and D. A. Huse, Avalanches and many-body resonances in
many-body localized systems, Phys. Rev. B. 105, 174205
(2022).

[38] W. De Roeck and J. Z. Imbrie, Many-body localization:
Stability and instability, Philos. Trans. R. Soc. A: Math.,
Phys. Eng. Sci. 375, 20160422 (2017).

[39] T. B. Wahl, A. Pal, and S. H. Simon, Signatures of
the many-body localized regime in two dimensions, Nat.
Phys. 15, 164 (2018).

[40] D. Sels and A. Polkovnikov, Dynamical obstruction to
localization in a disordered spin chain, Phys. Rev. E 104,
054105 (2021).

[41] M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer,
and J. Sirker, Evidence for Unbounded Growth of the
Number Entropy in Many-Body Localized Phases, Phys.
Rev. Lett. 124, 243601 (2020).

[42] R. Ghosh and M. Žnidarič, Resonance-induced growth of
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