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Abstract
In this paper we consider the prescribed mean curvature flow of a non-compact space-like
Cauchy hypersurface of bounded geometry in a generalized Robertson–Walker space-time.
We prove that the flow preserves the space-likeness condition and exists for infinite time. We
also prove convergence in the setting of manifolds with boundary. Our discussion generalizes
previous work by Ecker, Huisken, Gerhardt and others with respect to a crucial aspects: we
consider any non-compact Cauchy hypersurface under the assumption of bounded geome-
try. Moreover, we specialize the aforementioned works by considering globally hyperbolic
Lorentzian space-times equipped with a specific class of warped product metrics.

Keywords Mean curvature flow · Non-compactness · Generalized Robertson–Walker
space-times · Prescribed mean curvature

Mathematics Subject Classification 53E10 · 58J35 · 83C05

1 Introduction and statement of themain result

We are interested in maximal space-like Cauchy hypersurfaces, where maximality refers
to vanishing mean curvature, and more generally in space-like Cauchy hypersurfaces with
prescribed mean curvature in globally hyperbolic Lorentzian space-times. These play an
important role in gravitational physics, such as in the first proof of the positive mass theorem
by Schoen and Yau [27, 28] and the analysis of the Cauchy problem for asymptotically flat
space-times byChoquet-Bruhat andYork [7] and Lichnerowicz [22].We also refer the reader,
for example, to Bartnik [3] and references therein for an overview.

Construction of such Cauchy hypersurfaces using the prescribed mean curvature flow has
been pioneered by Ecker and Huisken [9]. The prescribed mean curvature flow in a semi-
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Riemannian manifold (N,g) is a family of embeddings F(t) ≡ F(·, t) : M → N of a smooth
manifold M with parameter t ∈ [0, T ] in some interval, satisfying an initial value problem

∂tF(t) = −(H−H)μ F(t = 0) = F0, (1.1)

where H : M → R is the prescribing function, H is the mean curvature of F(t)M ⊂ N and
F0 is some initial embedding. Under the mean curvature flow, for every point p in M the
normal velocity at which F(p, t)moves is given by the mean curvature of F(t)(M) at F(t,p)
minus H. If H ≡ 0, the flow is referred to as the (usual) mean curvature flow.

Mean curvature flows have been extensively studied in various scenarios. Though we are
rather interested in the Lorentzian setting, let us mention some results in case of M being
a compact hypersurface of a Riemannian manifold N. Mean curvature flows in this setting
have been studied, for example, by Huisken [16, 17], Ecker [10], Colding and Minicozzi
[8], White [31], Mantegazza [23]) and Smoczyk [30], to cite just a few. The list is far from
complete.

Prescribed mean curvature flows in a globally hyperbolic Lorentzian space-time N have
been studied for compact hypersurfaces M by Ecker and Huisken [9] and Gerhardt [14].
Without spatial compactness, Ecker [11] proved long time existence and convergence for
(1.1) when N is the Minkowski space-time R×R

m. Recently, in [18] the authors proved
convergence of (1.1) withH = 0 under the assumptionN = R×Mwith Lorentzian product
metric g = −dx20 + g̃ and (M, g̃) being asymptotically flat.

1.1 Setting and notation

Up to isometry, a globally hyperbolic Lorentzian space-time (N,g) is given by a product
R × M with Lorentzian metric

g = eφ
(

−
(

dx0
)2

+ g̃x0

)

,

whereM is a smooth space-like Cauchy hypersurface, the natural projection x0 : R×M → R

is a time-function, φ ∈ C∞(R×M) is a smooth function and g̃x0 restricts to a Riemannian
metric on {x0} × M. This statement is due to Bernal and Sanchez [5, Theorem 1.1].

In the preceeding work [12], the first named author has studied the prescribed mean
curvature flow (1.1) in the special case where the metric g is given by a warped product

g = −
(

dx0
)2

+ f(x0)2g̃ (1.2)

for some positive smooth function f : R → R
+, bounded away from zero. Assume that for

each t ∈ [0, T ] the embedding F(t)(M) ⊂ N is a space-like Cauchy hypersurface given by
the graph of a function u(t) : M → R. Then the flow (1.1) can be written as an evolution
equation for u(t). As asserted by [12, Proposition 3.1], the evolution is explicitly given by

∂tu + Δu =
f ′(u)
f(u)

(

m +
|˜∇u|2g̃

f(u)2 − |˜∇u|2
g̃

)

+H f(u)
√

f(u)2 − |˜∇u|2
g̃

,

u(0, ·) = u0,

(1.3)

where m = dimM, ˜∇ is the gradient on M defined by g̃ and Δ is the (positive) Laplace–
Beltrami operator induced by the s-dependent metric g = F(t)∗g, which is Riemannian by
the space-likeness assumption.
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In this paper we will always stay in the following setting:

Setting 1.1 Consider the following setting.

(1) Assume (M, g̃), to be a stochastically complete Riemannian manifold of bounded geom-
etry. Assume furthermore that its embedding F0(M) ⊂ N is a space-like Cauchy
hypersurface given by the graph of a function u0 : M → R.

(2) Let f : R → R
+ be smooth, uniformly bounded away from zero, with uniformly bounded

first and second derivatives. We consider a warped product Lorentzian metric (usually
referred to as generalized Robertson–Walker metric) on N = R × M

g = −
(

dx0
)2

+ f(x0)2g̃ (1.4)

(3) The solution u = u(·, t) to (1.3), if it exists, defines a family of embeddings

F = F(·, t) : M × [0, T ] → N, F(p, t) := (p,u(p, t)),p ∈ M.

The induced family of metrics on M is defined by g = F∗g.

We want to point out that bounded geometry of (M, g̃), see Definition 3.4, is required
in order to apply parabolic Schauder and Krylov–Safonov estimates; and it is required in
[18] as well. Stochastic completeness, see Sect. 4, allows for applications of the Omori-Yau
maximum principle.

Remark 1.2 Wewill prove long-time existence and convergence of (1.3) under the assumption
that f as well as its derivatives are uniformly bounded and f � ε > 0 on R. However, once
we deduce existence of a uniformly bounded u, a posteriori uniform bounds on f and its
derivatives are not necessary, since f appears in (1.3) only as f(u); thus, the only relevant
values of f are over the bounded range of u.

We will consistently use the following notation and conventions:

Notation 1.3 (1) Sometimes we drop the t-dependence notationally. When referring to the
evolution in t, we will refer to the parameter t as time as well.

(2) The upper script ∼, as for ˜∇, ˜Δ, stands for differential operators defined in terms of
the metric g̃ on M. We omit any upper script, as for ∇, Δ, to denote the t-dependent
operators defined with respect to the induced metric g = g(t) on M. The upper script
−, as for ∇ will be used for operators on (N,g).

(3) We use summation convention on repeated indices. Latin indices will run in {1, . . . ,m}

while the Greek ones are ranging in {0, . . . ,m}. Finally, we will write f(u) instead of
f ◦u; we will write ∂i instead of ∂/∂xi and, as a convention, we will use ∂0 for ∂x0 in N.

(4) We will consider Δ to be the positive Laplace–Beltrami operator, that is

Δu = − div(∇u). (1.5)

1.2 Statement of themain result

In this paper we present threemain results, one on short-time existence of the flow, the second
on long-time existence, and the third one on convergence. These results will require varying
sets of analytic assumptions, which we now list.

Assumptions 1.4 Consider the classical Hölder spaces Ck,α(M) with integer k ∈ N0 and
α ∈ (0, 1), defined with respect to the Riemannian metric g̃. We impose
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(1) initial regularity: u0 ∈ C3,α(M) and H ∈ C�,α(M) with � � 2.
(2) upper barrier: H(t = 0) −H � δ > 0 for some positive δ.
(3) Time-like convergence: RicN(X,X) > 0 for any time-like X ∈ TN.

While the initial regularity assumption is natural, the other two assumptions are rather
restrictive. Still, they already appear in [9], cf. also page 606 therein for the time-like conver-
gence assumption. Gerhardt [14] studies mean curvature flow without time-like convergence
assumption; however, the authors did not succeed in extending his arguments to the non-
compact setting.
Our first main result is on the short-time existence and it is proved in Sect. 3.4.

Theorem 1.5 Impose Assumptions 1.4 (1). Then the solution u to the mean curvature flow
(1.3) exists with u ∈ C3,α(M × [0, T ]) ∩ C�+2,α(M × [σ, T ]) for T > 0 sufficiently small
and for every 0 < σ < T . The embeddings F(t)M are space-like Cauchy hypersurfaces in
N.

Remark 1.6 Note that in what follows we will be denoting the space C�+2,α(M × [σ, T ])
with 0 < σ < T simply by C�+2,α(M × (0, T ]).

Our next result concerns the long-time existence.

Theorem 1.7 Consider the Setting 1.1. Then the mean curvature flow (1.3).

(i) admits a global solution u ∈ C3,α(M× [0, T ])∩C�+2,α(M× (0,∞)) in (0,∞) locally
uniformly bounded Hölder norm, if Assumptions 1.4 (1) and (2) hold;

(ii) admits a global solution u ∈ C3,α(M × [0, T ]) ∩ C�+2,α(M × (0,∞)) with uniformly
bounded Hölder norm, if Assumptions 1.4 (1)–(3) hold. Moreover, ‖∂tu‖∞ is exponen-
tially decreasing.

Our final main result is about convergence of the flow and we state it as follows.

Theorem 1.8 Consider the Setting 1.1 and impose Assumptions 1.4 (1)–(3). Assume that M
is the open interior of a compact manifold M with boundary ∂M. Then the prescribed mean
curvature flow (1.3), starting at u0 exists for all times and converges to u∗ ∈ L∞(M) as
t → ∞. Moreover, u∗ ∈ C�+2 in the open interior M with well-defined mean curvature
H∗ ≡ H.

Remark 1.9 The strict positivity RicN(X,X) > 0 for any time-like X ∈ TN in the time-like
convergence assumption can be relaxed. Alternatively, one may only assume RicN(X,X) �
0 for any time-like X ∈ TN, and require additionally H � δ > 0. Then the results of
Theorem 1.8 still hold.

Both Theorems 1.7 and 1.8 will be proved in Sect. 11.

1.3 Distinct arguments due to non-compactness

We should emphasize here that the arguments in our basic references [9] and [14] in fact do
not simply carry over to the non-compact setting. Therefore, it might be beneficial for the
reader to list those points where the arguments had to be adapted to the non-compact setting.

(i) As is usual in the analysis of geometric flows, a priori estimates are a consequence of
the maximum principle. In the non-compact setting, we apply the Omori-Yau maxi-
mum principle on stochastically complete manifolds. In particular, we prove that the
(graphical) mean curvature flow stays stochastically complete.
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(ii) The a priori C0 estimates, as derived, for example, in [13], use barrier functions. This
approach is not easily adapted to the non-compact setting, compare the very intricate
barrier function construction [18]. That barrier function argument does not carry over
to a general bounded geometry setting in any obvious way.

(iii) The a priori C2 estimates, as derived, for example, in [14], require certain local coor-
dinates around some maximum point. In the non-compact setting we cannot expect the
maximum to be attained. Instead, one works with the supremum of a solution, which
may lie ”at infinity” of the manifold. Thus, a different argument, cf. [9], without using
special coordinates is necessary.

(iv) Convergence of the flow in the compact setting is usually a consequence of a compact
embedding of Hölder spaces. On manifolds with bounded geometry the embedding
Ck,α(M) ⊂ Ck,β(M) with β < α, is not necessarily compact. We overcome this dif-
ficulty by specializing to the case of manifolds with boundary, where a similar compact
embedding holds in the setting of weighted Hölder spaces.

1.4 Outline of the paper

We begin in Sect. 2 with the geometry of generalized Robertson–Walker space-times and
their space-like hypersurfaces. In Sect. 3 we discuss parabolic Schauder and Krylov Safonov
estimates onmanifolds of bounded geometry. These estimates are applied twice: first in order
to establish short-time existence of the flow, and later to turn a priori estimates into Hölder
regularity, concluding long-time existence. In Sect. 4 we discuss the Omori-Yau maximum
principle on stochastically complete manifolds.

In Sect. 5 we derive the evolution equation of the main object of our analysis, the gradient
function. The proof of the aforementioned evolution equation will be divided in two steps in
Sects. 5.1 and 5.2. This is due to a lack of literature about (prescribed) mean curvature flows
in warped product-type Lorentzian manifolds. Thus, all the ”classical” evolution equations,
e.g. in [9], had to be re-derived. Evolution equations for the mean curvature and for the scalar
second fundamental form are derived in Sects. 6 and 7.

Uniform a priori bounds are derived in the subsequent three sections, Sects. 8, 9 and 10.
The upper bound in the C0-estimates follows a classical argument, while the lower bound
uses a trick to overcome absence of a lower barrier. For the C1-estimates in Sect. 9, we
follow Gerhardt’s argument, cf. [14], to conclude that a space-like prescribed graphical mean
curvature flow stays uniformly space-like. From here we deduce long-time existence and
convergence in Sect. 11.

2 Geometry of generalized Robertson–Walker space-times

In this work we are interested in generalized Robertson–Walker space-times, abbreviated as
(GRWST), whose definitionwe now state explicitly once again, before continuing in studying
its intrinsic geometry.

Definition 2.1 Let (M, g̃) be an m-dimensional Riemannian manifold. A generalized
Robertson–Walker space-time (GRWST) is an (m + 1)-dimensional Lorentzian manifold
(N,g) satisfying the following:
there exist a diffeomorphism Φ : R × M → N and a function f ∈ C∞(R,R+) such that g

is a warped product, i.e.
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Φ∗g = −dx20 + f(x0)
2g̃, (2.1)

where xo denotes the coordinate on R. Below we will always identify (N,g) with (R ×
M,Φ∗g). GRWSTs are automatically time-oriented, i.e. admit a nowhere vanishing time-
like vector field T . Here, we can obviously take T = ∂0.

We continue in the setting of Definition 2.1 and consider a family of embeddings F(·, t) :

M → N arising as graphs of a family of functions u(·, t) : M → R with t ∈ [0, T ] so that

F(p, t) = (u(p, t),p). (2.2)

The induced metric on M is given by g = F∗g and is explicitly determined in terms of u and
g̃, as asserted by the next lemma, cf. [12, Proposition 2.2] for the proof.

Lemma 2.2 The induced metric g = F∗g is given in local coordinates by

gij = −uiuj + f(u)2g̃ij. (2.3)

The inverse of the metric tensor g can be locally expressed as

gij =
1

f(u)2
g̃ij +

1
f(u)2

g̃jlulg̃
imum

f(u)2 − |˜∇u|2
. (2.4)

The prescribed mean curvature flow is a family of metrics on M, embedded into N as a
space-like graphs, satisfying some mean curvature flow evolution equation. In order to be
precise, we need to gather some geometric quantities and present some useful facts about
graphical space-like hypersurfaces.

2.1 Space-like graphs

A space-like hypersurface of a Lorentzian manifold (N,g) is a codimension 1 submanifold
so that the induced metric is Riemannian. Equivalently, a hypersurface is space-like if its unit
normal μ is time-like. We choose, as a convention, that the unit normal μ is future oriented,
i.e.

− g(T ,μ) ≡ −g(∂0,μ) > 0. (2.5)

We codify this expression as the gradient function in the next definition. Our analysis will
revolve around that gradient function, as, for example, in [9].

Definition 2.3 Let A be a space-like hypersurface of a time orientable Lorentzian manifold
(N,g) with a nowhere vanishing time-like vector field T . The gradient function v is then
defined by

v := −g(T ,μ). (2.6)

We now provide an explicit expression for the gradient function of the hypersurface
F(M, t) ⊂ N in the GRWST (N,g). In local coordinates, induced from M, the (future ori-
ented) unit normalμ of F(M, t) ⊂ N is given by (see [12] formore details and computations)

μ =
f(u)

√

f(u)2 − |˜∇u|2

(

∂0 +
1

f(u)2
g̃ijuj∂i

)

. (2.7)
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From there, using T = ∂0, we obtain by Definition 2.3

v =
f(u)

√

f(u)2 − |˜∇u|2
. (2.8)

Remark 2.4 The graph of a function u : M → R immersed in the GRWST (N,g) is space-
like if and only if

|˜∇u|2g̃ < f(u)2I (2.9)

See Sect. 2 in [12] for more details.

We emphasize that the geometry induced on M by the embeddings F ≡ F(·, t) is differ-
ent from the geometry arising from the metric g̃. Therefore, we distinguish the geometric
quantities associated to g = F∗g from those associated to g̃: those associated to the latter
are indicated by an upper script ∼. For instance, ∇ and ˜∇ denote the gradient (or covariant
derivative) on M with respect to g and g̃ respectively. We compute

∇u =
˜∇u

f(u)2 − |˜∇u|2
g̃

, |∇u|2g =
|˜∇u|2g̃

f(u)2 − |˜∇u|2
g̃

, (2.10)

where | · |g denotes the pointwise norm with respect to g, while | · |g̃ refers to the pointwise
norm with respect to g̃. From (2.8) to (2.10) we conclude the following list of properties for
the gradient function.

Proposition 2.5 The gradient function v in (2.8) satisfies the following properties.

(i) the gradient function v and the gradient of u are related by

|∇u|2g =
f(u)2

f(u)2 − |˜∇u|2
g̃

− 1 = v2 − 1. (2.11)

(ii) The gradient function v satisfies v � 1.
(iii) The pointwise g-norm of ∇u is bounded from above by

|∇u|2g � v2. (2.12)

(iv) The following equality holds

v2|˜∇u|2g̃ = f(u)2|∇u|2g. (2.13)

2.2 Intrinsic geometry

Consider local coordinates (x1, . . . , xm) on M, with the corresponding local frame
(∂1, . . . , ∂m) on TM. Identifying N with R × M, local coordinates on N are given by
(x0, x1, . . . , xm) and a local frame for TN is

(∂0, ∂1, . . . , ∂m).

The intrinsic geometry of a GRWST (N,g) is described completely by the Christoffel sym-
bols, which are given explicitly by the following formulae.
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Lemma 2.6 The Christoffel symbols Γ
α
βη of the metric tensor g over N are given by

Γ
α
00 = 0, Γ

0
0i = 0, Γ

k
ij =

˜Γk
ij,

Γ
0
ij = f(x0)f ′(x0)g̃ij, Γ

k
0i =

f(x0)f ′(x0)
f(x0)2

δk
i .

(2.14)

By making use of the Christoffel symbols listed above, we can compute the local expression
for theRiemannian curvature tensor on (N,g). Recall, for∇ being the Levi-Civita connection
of TN, its Riemann curvature RN is a (1, 3)-tensor

RN : Γ(TN) × Γ(TN) × Γ(TN) → Γ(TN).

In terms of any coordinate frame (∂α)α for TN, the components

RN
αβγ

δ
∂δ = RN(∂α, ∂β)∂γ. (2.15)

can be expressed in terms of Christoffel symbols by

RN
αβγ

δ = Γ
δ
βγ,α − Γ

δ
αγ,β +

∑

η

Γ
η
βγΓ

δ
αη − Γ

η
αγΓ

δ
βη. (2.16)

By making use of the metric tensor we can contract indices gaining a (0, 4)-tensor. Such a
(0, 4)-tensor will be denoted by RN as well and is given by

RN : Γ(TN) × Γ(TN) × Γ(TN) × Γ(TN) → C∞(N),

RN(X, Y,Z,W) := g(RN(X, Y)Z,W),

RN
αβγδ := RN(∂α, ∂β, ∂γ, ∂δ) = gδζRN

αβγ
ζ
.

(2.17)

Using local coordinates (x0, x1, . . . , xm), we obtain from (2.14), (2.16) and (2.17) the fol-
lowing list of formulas for RN.

Lemma 2.7 For every i, j,k ∈ {1, . . . ,m} we have for the Riemann curvature tensor

RN(∂0, ∂i, ∂j, ∂k) = RN
0ijk = 0,

RN(∂0, ∂i, ∂j, ∂0) = RN
0ij0 = −f(x0)f ′′(x0)g̃ij.

(2.18)

We can now compute the values of the Ricci tensor RicN, defined in terms of any coordinate
frame (∂α)α for TN by (we sum over j,k = 1, . . . ,m)

RicN(∂α, ∂β) = gδγRN(∂δ, ∂α, ∂β, ∂γ)

= gjkRN(∂j, ∂α, ∂β, ∂k) − RN(∂0, ∂α, ∂β, ∂0).
(2.19)

Corollary 2.8 For every i, j = 1, . . . ,m we have for the Ricci curvature tensor

RicN(∂0, ∂0) = −m
f ′′(x0)
f(x0)

, RicN(∂0, ∂i) = 0,

RicN(∂i, ∂j) = ˜Ric(∂i, ∂j) + f(x0)f ′′(x0)g̃ij + (m − 1)(f ′(x0))2g̃ij.

(2.20)
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2.3 Extrinsic geometry

Consider the graphical embedding F ≡ F(·, t) : M → N. Its image F(M) is an hypersurface
in N, i.e. a codimension one submanifold of N = R×M. Consider the pull-back bundle
F∗TN over M. The Riemannian metric g induces an inner product on F∗TN by setting for
any p ∈ M and any W1 = (p,w1),W2 = (p,w2) ∈ F∗

pTN with w1,w2 ∈ TF(p)N

gp(W1,W2) := gF(p)(w1,w2). (2.21)

We will denote the pull-back connection on F∗TN (of the Levi-Civita connection on TN)
by ∇F∗TN. It is easy to see, e.g. by computations in local coordinates, that the pull-back
connection satisfies the following metric property.

Lemma 2.9 For every X ∈ Γ(TM) and for every Y,Z ∈ Γ(F∗TN), one has

X (g (Y,Z)) = g
(

∇F∗TN
X Y,Z

)

+ g
(

Y,∇F∗TN
X Z

)

. (2.22)

Remark 2.10 Notice that themetric property above holds in general whenever considering the
pull-back connection of the Levi-Civita connection; i.e. it does not depend on the topology
of N nor in the codimension of M.

Note that the total differential DF(p) maps TpM to F∗
pTN. If μ is the (time-like) unit

normal of F(M) and (∂1, . . . , ∂m) denotes the coordinate frame for TM then

(μ,DF(∂1), . . . ,DF(∂m)),

is a local frame for F∗TN. The main object needed for describing the extrinsic geometry of
a submanifold is the second fundamental form. We recall the usual definitions here briefly
and then specify the results to our GRWST setting.

Definition 2.11 Let F : M → (N,g) be an immersion and g = F∗g the metric induced on
M by pulling-back g. Denote by ∇ the Levi-Civita connection on TM associated with the
induced metric g. The second fundamental form is defined for every X,Y ∈ Γ(TM) by

II(X, Y) := ∇F∗TN
X (DF(Y)) − DF(∇XY). (2.23)

The second fundamental form is normal. That is, for every X,Y,Z ∈ Γ(TM)

g(II(X, Y),DF(Z)) = 0. (2.24)

In particular, II(X,Y) lies in the C∞(M)−span of μ. We can define the scalar second funda-
mental form as follows.

Definition 2.12 The scalar second fundamental form of F(M) ⊂ N is a map h : Γ(TM) ×
Γ(TM) → R so that for every vector fields X and Y over M

h(X, Y) = g(II(X, Y),μ). (2.25)

Proposition 2.13 Let F(M) ⊂ N be a space-like hypersurface. Then, for any X,Y ∈ Γ(TM)

we have the following relations between II and h and between the operator ∇F∗TNμ :

Γ(TM) → Γ(F∗TN) and h

II(X, Y) = − h(X, Y)μI (2.26)

−g
(

∇F∗TN
X μ,DF(Y)

)

= g (μ, II(X,Y)) = h(X,Y). (2.27)
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Proof Since (μ,DF(∂1), . . . ,DF(∂m)) is a local frame for F∗TN, with μ orthogonal to
DF(∂i) for every i and time-like,

II(X,Y) = −g(II(X, Y),μ)μ + gijg(II(X,Y),DF(∂i))DF(∂j)

where gij denotes the inverse of the induced metric onM. Equation (2.26) now follows from
(2.24).
Equation (2.27) follows from the metric property of ∇F∗TN, (2.23), (2.26) and the fact that
μ is time-like. 
�

Definition 2.14 For an immersion F : M → (N,g), we define

(1) the mean curvature vector H := trace II,
(2) the mean curvature H := trace h.

From Proposition 2.13 we conclude

Corollary 2.15 Let F : M → (N,g) be a space-like hypersurface. Then

H = −Hμ.

Finally, let us state a formula that will be useful later. From the local expression of the
Christoffel symbols Γk

ij and of the scalar second fundamental form hij, e.g. equations (2.6)
and (2.15) in [12] we infer

v hij = −(uij − Γk
ijuk) − f(u)f ′(u)g̃ij. (2.28)

Remark 2.16 We want to point out that Eq. (2.28) is exactly the same as equation (1.16) in
[14] once substituting the appropriate values of the Christoffel symbols of (N,g) expressed
in (2.14).

3 Parabolic Schauder and Krylov–Safonov estimates

In this section we review parabolic Schauder and Krylov–Safonov estimates on manifolds
with bounded geometry.

3.1 Classical Hölder spaces

Consider a Riemannian manifold (M, g̃).

Definition 3.1 The Hölder space Cα ≡ Cα(M × [0, T ]), for α ∈ (0, 1), is defined as the
space of continuous functions u ∈ C0(M × [0, T ]) which satisfy

[u]α := sup
M2

T

{

|u(p, t) − u(p ′, t ′)|
d(p,p ′)α + |t − t ′|α/2

}

< ∞, (3.1)

where the supremum is over M2
T with MT := M × [0, T ]; the distance d is induced by the

metric g̃. The Hölder norm of any u ∈ Cα(M × [0, T ]) is defined by

‖u‖α := ‖u‖∞ + [u]α. (3.2)
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The resulting normed vector spaceCα(M× [0, T ]) is a Banach space. As asserted in the next
result, cf. [6, Lemma 2] for a similar statement and its proof, an equivalent Hölder norm is
obtained with spatial and time differences taken only within bounded local regions.

Lemma 3.2 The following defines an equivalent norm on Cα(M × [0, T ]) (we will not dis-
tinguish equivalent norms notationally)

‖u‖α := ‖u‖∞ + [u] ′α, [u] ′α := sup
M2

T ,δ

{

|u(p, t) − u(p ′, t ′)|
d(p,p ′)α + |t − t ′|α/2

}

, (3.3)

where M2
T ,δ := {(p, t), (p ′, t ′) ∈ MT | d(p,p ′)α + |t − t ′|α/2 � δ}.

We will only use the Hölder norm ‖u‖α as in (3.3). We also define the higher order Hölder
spaces for any given k ∈ N in terms of the gradient ˜∇ and pointwise norms | · |g̃ induced by
g̃ by setting

Ck,α ≡ Ck,α(M × [0, T ]) :=
{

u ∈ Ck
∣

∣

∣ |˜∇�1∂
�2
t u|g̃ ∈ Cα, �1 + 2�2 � k

}

which is a Banach space with the norm

‖u‖k,α :=
∑

l1+2l2�k

∥

∥

∥|˜∇�1∂�2
s u|g̃

∥

∥

∥

α
. (3.4)

Wewill also useHölder spaces for functions depending either only on spatial variables or only
on the s-time variables. We denote the former by Ck,α(M) and the latter by Ck,α([0, T ]).

We conclude this subsection with the following observation.

Lemma 3.3 Let u ∈ Cα(M × [0, T ]). Then the functions usup(t) := supp∈M u(p, t) and
uinf(t) := infp∈M u(p, t) are continuous in [0, T ].

Proof We will prove the statement only for usup(t) since a similar argument holds also for
uinf(t). Let ε > 0 and t0 ∈ [0, T ] be given. By definition of the supremum we know that, for
every (p, t) ∈ M × [0, T ],

u(p, t) � usup(t) + ε/2.

Consider now t ∈ [0, T ] so that ‖u‖α|t− t0|
α/2 < ε/2. Since u ∈ Cα(M× [0, T ]) one has

|u(p, t) − u(p, t0)| � ‖u‖α|t − t0|
α/2.

From the above one concludes the following chain of inequalities:

u(p, t) � u(p, t0)+‖u‖α|t − t0|
α/2�usup(0) + ε/2+ ‖u‖α|t − t0|

α/2=usup(t0) + ε,

implying usup(t) � usup(t0)+ε. With similar arguments one shows that the other inequality
holds as well, thus providing

|usup(t) − usup(t0)| � ε

for every t ∈ Bδ(t0) with δ depending on ε and ‖u‖α. Since t0 ∈ [0, T ] was arbitrary, the
statement follows. 
�
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3.2 Manifolds of bounded geometry

Definition 3.4 We say that a Riemannian manifold (M, g̃) has bounded geometry if its injec-
tivity radius is bounded away from 0 and its Ricci curvature is uniformly bounded, i.e. if for
any vector field X on M we have | ˜Ric(X,X)| � cg̃(X,X) for some uniform constant c > 0.

The hypothesis of bounded geometry implies, in particular, that for some δ > 0, all (open)
balls Bδ(x) of radius δ, centred at x ∈ M, are uniformly quasi-isometric to the Euclidean
ball Bδ(0) ∈ R

m. This means that for each Bδ(x) there exists a diffeomorphism

Ψx : Bδ(0) → Bδ(x),

which changes the distances at most by a constant factor that can be chosen independently
of x. Using these quasi-isometries Ψx, we can define in view of Lemma 3.2 an equivalent
norm on Ck,α(M × [0, T ]) as follows. Ψx defines a diffeomorphism

Ψx : Bδ(0) × [0, T ] → Bδ(x) × [0, T ].

We denote the Hölder norm on Ck,α(Bδ(0) × [0, T ]), defined as in Definition 3.1, by ‖ ·
‖k,α,Bδ(0)×[0,T ] and obtain an equivalent norm on Ck,α(M × [0, T ]) given by

‖u‖k,α = sup
x∈M

∥

∥

∥Ψ∗u|Bδ(x)

∥

∥

∥

k,α,Bδ(0)×[0,T ]
. (3.5)

3.3 Parabolic Schauder and Krylov–Safonov estimates

The classical Krylov–Safonov estimates, see [20], as well as the classical parabolic Schauder
estimates, see [19], can be obtained for manifolds of bounded geometry in the sense of
Sect. 3.2. We refer the reader to a nice exposition about Krylov–Safonovand parabolic
Schauder estimates in [25]. We sum up over repeated indices and consider a uniformly
elliptic symmetric differential operator L acting on C∞

0 (M). Here by uniform ellipticity we
mean that in local coordinates

Ψ∗ ◦ L ◦ (Ψ∗)−1 = −aij(s, x)∂xi
∂xj

+ bj(s, x)∂xj
+ c(s, x),

where Λ−1‖ξ‖2 � aij(s, x)ξiξj � Λ‖ξ‖2,
and ‖b(s, x)‖ � Λ−1, 0 � c(s, x) � Λ−1,

(3.6)

for some uniform Λ > 0.

Proposition 3.5 Consider a uniformly elliptic symmetric differential operator L, as in (3.6),
acting on C∞

0 (M). Let ϕ : M × [0, T ] → R be uniformly bounded and consider a uniformly
bounded solution ω to

(∂t + L)ω = ϕ. (3.7)

(1) Then there exists a constant C > 0 depending only on m and Λ such that

‖ω‖α � C
(

‖ω‖∞ + ‖ϕ‖∞

)

,

(2) If additionally, aij,bj, c,ϕ ∈ Ck,α(M × [0, T ]), then there exists a constant C > 0
depending only on m,Λ and the Hölder norms of the local coefficients of L, such that

‖ω‖k+2,α � C
(

‖ω‖∞ + ‖ϕ‖k,α

)

.
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Proof The solution ω satisfies for each x ∈ M
(

∂t + Ψ∗ ◦ L ◦ (Ψ∗)−1
)

Ψ∗ω|Bδ(x) = Ψ∗ϕ|Bδ(x) .

Let us set Qδ := Bδ(0) × [0, δ2]. By the Krylov–Safonov estimate, see [20, Theorem 4.2]
and cf. [25, Theorem 12], we find for some uniform constant C > 0, depending only on
δ,m = dimM and the ellipticity constant Λ > 0 from (3.6)

‖ Ψ∗ω|Bδ(x) ‖α,Qδ/2
� C

(

‖ Ψ∗ω|Bδ(x) ‖
∞,Qδ

+ ‖ Ψ∗ϕ|Bδ(x) ‖
∞,Qδ

)

� C
(

‖ω‖∞ + ‖ϕ‖∞

)

.

Thus, using the Hölder norm in (3.5), we find

‖ω‖α � C
(

‖ω‖∞ + ‖ϕ‖∞

)

.

By Lemma 3.2 we conclude ω ∈ Cα(M × [0, (δ/2)2]). We extend the regularity statement
to the whole time interval [0, T ] (with constants independent of T ) iteratively. By setting
t = (δ/2)2 + t ′, from the argument above we obtain ω ∈ Cα(M × [(δ/2)2, 2(δ/2)2]). The
first statement now follows by repeating the iteration, till we reach T .

For the second statement, standard parabolic Schauder estimates, see [19, Theorem8.12.1]
and cf. [25, Theorem 6], assert that for some uniform constant C > 0, depending only on
δ,m,Λ and the Hölder norms of the coefficients

‖ Ψ∗ω|Bδ(x) ‖k+2,α,Qδ/2
� C

(

‖ Ψ∗ω|Bδ(x) ‖
∞,Qδ

+ ‖ Ψ∗f|Bδ(x) ‖k,α,Qδ

)

� C
(

‖ω‖∞ + ‖f‖k,α

)

.

By Lemma 3.2 we conclude ω ∈ Ck,α(M × [0, (δ/2)2]). Extension to Ck,α(M × [0, T ])
goes exactly as before. 
�

We conclude the subsection by presenting some mapping properties for the parametrix to
the inhomogeneous heat Eq. (3.7). These can be deduced from Proposition 3.5 exactly as in
[6, Proposition 10.1], cf. [19, Theorem 8.10.1] for the first claim in (3.8) below.

Proposition 3.6 Consider an s-independent uniformly elliptic symmetric differential opera-
tor L acting on C∞

0 (M) as above. The inhomogeneous heat equation (∂t + L)ω = ϕ, with
ω(t = 0) = 0 and ϕ ∈ Ck,α(M × [0, T ]), has a parametrix Q acting as a bounded linear
map

Q : Ck,α(M × [0, T ]) → Ck+2,α(M × [0, T ]),

Q : Ck+2,α(M × [0, T ]) → s Ck+2,α(M × [0, T ]).
(3.8)

3.4 Application: short-time existence of the flow

Wepresent a weaker analogue of themain result by the first named author [12], proving short-
time existence of the prescribed mean curvature flow with space-like Cauchy hypersurfaces
of bounded geometry. In contrast, [12] asserts that starting with a Φ-manifold, the Cauchy
hypersurfaces remain generalizedΦ-manifolds for short time. The following proves Theorem
1.5.
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Proof of Theorem 1.5 For convenience of the reader, we shall repeat briefly the argument,
that is worked out in detail in [12]. We need to linearize the evolution Eq. (1.3). The most
complicated term is the linearization of Δu. Here, Δ is the Laplace–Beltrami operator on M

with respect to the metric g on the graph of u, given explicitly by

gij = −uiuj + f(u)2g̃ij.

From here one computes explicitly

Δh =
1

f(u)2
˜Δh +

1
f(u)2

̂Δh

+ g̃(˜∇u, ˜∇ h)
1

f(u)2(f(u)2 − | ˜∇ u |2
g̃
)
˜Δu

+ g̃(˜∇u, ˜∇ h)
1

f(u)2(f(u)2 − | ˜∇ u |2
g̃
)
̂Δu

− (m − 1)g̃(˜∇ u, ˜∇h)
f ′(u)

f(u)(f(u)2 − | ˜∇ u |2
g̃
)

+ g̃(˜∇u, ˜∇ h)
f(u)f ′(u)

(f(u)2 − | ˜∇ u |2
g̃
)2

(3.9)

where in the above ̂Δ is an operator acting on functions over M defined by

̂Δh = −
v2

f(u)2
˜∇2h

(

˜∇u, ˜∇u
)

= −
g̃jlulg̃

imum

f(u)2 − | ˜∇ u|2
g̃

(

hij − ˜Γk
ijhk

)

, (3.10)

where ˜∇2 denotes theHessian and the second expression is an expression in local coordinates.
Plugging in u = u0 + ω we obtain (writing ̂Δ0 for (3.10) with u0 instead of u, and writing
Δg(0) for the Laplace–Beltrami operator of g(0))

Δu = Δg(0)u0 + Δg(0)ω +
| ˜∇ u0|

2
g̃

f(u0)2(f(u0)2 − | ˜∇ u0|
2
g̃
)

(

˜Δω + ̂Δ0ω
)

+ F ′
1(ω, ˜∇ω) + F ′

2(ω, ˜∇ ω, ˜∇2
ω),

(3.11)

where F ′
1(ω, ˜∇ω) denotes an expression depending at most linearly on the entries in brack-

ets, with coefficients given in terms ofu0, ˜∇ u0 and ˜∇2
u0. The summand F ′

2(ω, ˜∇ω, ˜∇2
ω)

denotes an expression depending at least quadratically on the entries in brackets, with coef-

ficients given in terms of u0, ˜∇ u0 and ˜∇2
u0. On the other hand, (3.9) implies

Δg(0)ω =
1

f(u0)2

(

˜Δω + ̂Δ0ω
)

+ F ′′
1 (ω, ˜∇ω), (3.12)

where F ′′
1 (ω, ˜∇ω), similar to F ′

1(ω, ˜∇ω), denotes an expression depending at most linearly

on the entries in brackets, with coefficients given in terms ofu0, ˜∇ u0 and ˜∇2
u0. Combining

(3.11) and (3.12) we obtain

Δu = Δg(0)u0 +
f(u0)

2

(f(u0)2 − | ˜∇ u0|
2
g̃
)
Δg(0)ω

+ F ′
1(ω, ˜∇ ω) − f(u0)

2F ′′
1 (ω, ˜∇ ω) + F ′

2(ω, ˜∇ω, ˜∇2
ω),

(3.13)
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Linearizing similarly the remaining terms of (1.3) we obtain

(

∂t +
f(u0)

2

(f(u0)2 − | ˜∇ u0|
2
g̃
)
Δg(0)

)

ω

= −Δg(0)u0 +
f ′(u0)

f(u0)

(

m +
|˜∇u0|

2
g̃

f(u0)2 − |˜∇u0|
2
g̃

)

+H f(u0)
√

f(u0)2 − |˜∇u0|
2
g̃

+ F1(ω, ˜∇ ω) + F2(ω, ˜∇ω, ˜∇2
ω), (3.14)

where F1(ω, ˜∇ω), similar to F ′
1 and F ′′

1 , denotes an expression depending at most linearly on

the entries in brackets, with coefficients given in terms ofH,u0, ˜∇ u0 and ˜∇2
u0. Similarly,

F2(ω, ˜∇ω, ˜∇2
ω) denotes an expression depending at least quadratically on the entries in

brackets, with coefficients given in terms of H,u0, ˜∇ u0 and ˜∇2
u0.

Assuming u0 ∈ C2,α(M), we find in view of (3.9) and space-likeness condition (2.9)
that

L :=
f(u0)

2

(f(u0)2 − | ˜∇ u0|
2
g̃
)
Δg(0),

is uniformly elliptic in the sense of Proposition 3.6. Provided H ∈ Cα(M × [0, T ]), the
solution ω ∈ C2,α(M × [0, T ]) to (3.15) is obtained as a fixed point of the bounded map

Φ : C2,α(M × [0, T ]) → C2,α(M × [0, T ]),

ω �→ Q(F1(ω, ˜∇ ω) + F2(ω, ˜∇ω, ˜∇2
ω)).

(3.15)

The higher regularity assumption u0 ∈ C3,α(M) and H ∈ C�,α(M) with � � 1 implies,
exactly as in [12, Theorem 6.14], that the mapping above is a contraction on a closed subset
of C2,α(M × [0, T ]), if T > 0 is sufficiently small. Thus, we have proved existence of a
solution u ∈ C2,α(M × [0, T ]) for T > 0 sufficiently small.

Let us now prove that u ∈ C3,α, where we abbreviate Ck,α ≡ Ck,α(M × [0, T ]). That
gain in regularity is not a consequence of a fixed point argument, but rather of the Krylov–
Safonov estimates in Proposition 3.5 (ii). More precisely, u ∈ C2,α implies in view of (3.9)
that Δu is a uniformly elliptic operator with coefficients being C1,α. Moreover, u ∈ C2,α

andH ∈ C�,α(M)with � � 1 imply that the right-hand side of (1.3) is C1,α. Thus, applying
Proposition 3.5 (ii) directly to the evolution Eq. (1.3) implies that u ∈ C3,α.

Repeating the argument of the last paragraph allows for bootstrapping: Even if the initial
data is only u0 ∈ C3,α(M), we find that, provided H ∈ C�,α(M) for any � ∈ N0, u admits
the following Hölder regularity

u ∈ C3,α(M × [0, T ]) ∩ C�+2,α(M × (0, T ]).


�

Remark 3.7 Note that the regularity C3,α(M × [0, T ]) ∩ C�+2,α(M × (0, T ]) is due to the
initial condition u0 being merely C3,α(M); thus, one has that u(_, 0) = u0 ∈ C3,α(M).
But as it is usually the case for parabolic equations, the flow is instantaneously "smoothing"
meaning that, even if we start the flow with lower regularity, the solutions gains regularity
right away. It is also worth pointing out that if u0 ∈ C4,α(M) and H ∈ C2,α(M) then the
solution u ∈ C4,α(M × [0, T ]).
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4 Omori-Yau parabolic maximum principle

In order to study the behaviour of solutions of parabolic PDEs one usually proceeds by gaining
a priori estimates. One of the tools employed to obtain such estimates is the parabolic max-
imum principle. We will therefore formulate a parabolic maximum principle for manifolds
satisfying the Omori-Yau maximum principle.

4.1 The Omori-Yaumaximum principles

We denote by (X,gX) a Riemannian manifold non-necessarily compact, non-necessarily
complete. One says that the Riemannianmanifold (X,gX) satisfies the Omori-Yaumaximum
principle for the Laplacian if for any function u ∈ C2(X) with bounded supremum there is
a sequence {pk}k ⊂ X satisfying

u(pk) > sup
X

u −
1
k

and − ΔXu(pk) <
1
k
. (4.1)

Similarly, provided u has bounded infimum, there exists a sequence {p ′
k}k ⊂ M such that

u(p ′
k) < inf

X
u +

1
k

and − ΔXu(p ′
k) >

1
k
. (4.2)

The above definition can be find, for example, in [1, Definition 2.3].

Remark 4.1 We want to point out a difference with [1] in the different sign convention for
the Laplace–Beltrami operator.

The notion of a manifold satisfying the Omori-Yau maximum principle can be a bit
abstract. So next we point out some examples which are known to satisfy the required con-
dition. In [24, Theorem A’] Omori showed that the Omori-Yau maximum principle holds for
complete Riemannianmanifolds with sectional curvature bounded from below. Subsequently
[32, Theorem 1] Yau proved that the Omori-Yau maximum principle for the Laplacian holds
for complete Riemannian manifolds with Ricci curvature bounded from below. A detailed
description of the above can be also found in [1].

The previous examples seem to suggest a strict relation between the geometry of a mani-
fold and the Omori-Yau maximum principle. But it turns out that the Omori-Yau maximum
principle condition is actually more analytic than geometric. In particular, Pigola, Rigoli
and Setti showed in [26, Theorem 1.1] that a stochastically complete Riemannian manifold
satisfies the Omori-Yau maximum principle.

For completeness we recall here the notion of stochastically complete manifolds.

Definition 4.2 A Riemannian manifold (X,gX) is stochastically complete if the heat kernel
H of the (positive) Laplace–Beltrami operator ΔX, associated to gX, satisfies

∫

X
H(t,p, p̃) dvolgX

(p̃) = 1. (4.3)

4.2 An enveloping theorem and applications

Based on the Omori-Yau maximum principle above, the second named author proved in [6,
Proposition 3.1] jointly with Caldeira and Hartmann the following enveloping theorem, that
is formulated for Φ-manifolds but holds on all stochastically complete spaces with exactly
the same proof.

123



Annals of Global Analysis and Geometry (2023) 64 :11 Page 17 of 45 11

Proposition 4.3 Let (X,gX) be a Riemannian manifold satisfying the Omori-Yau maximum
principle. Consider any u ∈ C2,α(X × [0, T ]). Then

usup(t) := sup
X

u(·, t), uinf(t) := inf
X

u(·, t)

are locally Lipschitz and differentiable almost everywhere in (0, T). Moreover, at those dif-
ferentiable times t ∈ (0, T) we find, in the notation of (4.1) and (4.2),

∂

∂t
usup(t) � lim

ε→ 0+

(

lim sup
k→∞

∂u

∂t
(pk(t + ε), t + ε)

)

,

∂

∂t
uinf(t) � lim

ε→ 0+

(

lim inf
k→∞

∂u

∂t

(

p ′
k(t + ε), t + ε

)

)

.

(4.4)

Finally, we are in the position to prove the parabolic maximum principle for stochastically
complete manifolds.

Theorem 4.4 Let (X,gX(t)) be a family of Riemannian manifolds satisfying the Omori-Yau
maximum principle as above with t ∈ [0, T ]. Denote the corresponding family of Laplace–
Beltrami operators by Δs. Consider solutions u± ∈ C1,α(M × [0, T ])∩ C2,α(M × (0, T ]),
solving the differential inequalities

(

∂

∂t
+ Δt

)

u+ � 0,

(

∂

∂t
+ Δt

)

u− � 0. (4.5)

Then u+
sup(t) � u+

sup(0) and u−
inf(t) � u−

inf(0) for every t ∈ [0, T ].

Proof Note first by (4.1) and (4.2)

∂

∂t
u+

(

pk(t), t
)

� 1
k
,

∂

∂t
u−

(

p ′
k(t), t

)

� −
1
k
.

Then in view of Proposition 4.3 we find almost everywhere

∂

∂t
u+
sup(t) � 0,

∂

∂t
u−
inf(t) � 0.

The above shows that the functions u+
sup and u−

inf are decreasing and increasing, respectively,
in (0, T). The claim now follows by recalling that the functions u+

sup and u−
inf are continuous

in [0, T ] from Lemma 3.3. 
�

4.3 Omori-Yaumaximum principle along the flow

Our aim is to make use of the Omori-Yau maximum principle along the flow. This means
we have to make sure that a mean curvature flow (M,gt) satisfies the Omori-Yau maximum
principle for every t ∈ [0, T ]. It is worth noticing that the statements in Sect. 4.2 hold for a
(family of) Riemannian manifolds satisfying the Omori-Yau maximum principle. Therefore,
if we show that a mean curvature flow preserves the Omori-Yau maximum principle for all
of its time existence, then we can employ the Omori-Yau maximum principle to deduce a
priori estimates.

Due to the geometry involved in our problem, a control on the Ricci or sectional curvature
is not really at our disposal. Nonetheless, as mentioned in Sect. 4, stochastically complete
manifolds do satisfy the Omori-Yau maximum principle. Therefore, if we show that a mean
curvature flow stays stochastically complete then it will automatically satisfy the Omori-Yau
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maximum principle. Stochastic completeness looks like a "non-easy" to handle definition as
well, but it can be equivalently characterized by a volume growth condition, due toGrigor’yan
[15], cf. also Theorem 2.11 in [1].

Theorem 4.5 Let (X,gX) be a complete Riemannian manifold. Consider for some reference
point p ∈ X the geodesic ball BR(p) of radius R around p. If the function

R

log (Vol (BR(p)))
/∈ L1(1,∞) (4.6)

then (X,gX) is stochastically complete.

Thus, due to Grigor’yan’s result we have a geometric/analytic condition to ensure that a
complete Riemannian manifold is stochastically complete. This makes our work way easier,
since in order to make sure that the Omori-Yau maximum principle is satisfied at every time,
it is enough to prove that the assumptions in Theorem 4.5 are satisfied. Let us begin with an
easy observation.

Lemma 4.6 Let (X,gX) be a Riemannian manifold and consider a (0, 2)-tensor A over X.
Its norm |A|gX

with respect to gX is given in local coordinates by

|A|2gX
= gil

X g
jq
X AijAlq. (4.7)

Then for any two vector fields Y and Z, one has

|A(Y,Z)| � |A|gX
|Y|gX

|Z|gX
. (4.8)

Corollary 4.7 Let (M,g = F∗g) be the prescribed graphical mean curvature flow (1.1),
arising as a family of graphs of functions u over the Riemannian manifold (M, g̃). Let v

denote the associated family of gradient functions, as defined in Definition 2.3. Then, as long
as the flow exists and v is finite, there exist positive c,C > 0 (depending on v) such that for
any p,q ∈ M

c dg̃(p,q) � dg(p,q) � C dg̃(p,q). (4.9)

In the above dg̃ and dg denote the distance on M with respect to g̃ and the induced metric
g = F∗g, respectively.

Proof Let p and q be any two fixed points on M and consider a connecting differentiable
curve γ := γ(τ) : [0, 1] → M with γ(0) = p and γ(1) = q. Recall the curve length with
respect to g̃ is explicitly given by

|γ|g̃ =

∫1

0

√

g̃ (γ ′(τ),γ ′(τ)) d τ.

Equation (4.8) and the fact that the distance is by definition the infimum of the lengths of
paths joining p and q give

dg(p,q) �
∫1

0

√

g (γ ′(τ),γ ′(τ)) d τ �
√

|g|g̃

∫1

0

√

g̃ (γ ′(τ),γ ′(τ)) d τ.

Taking infimum over all such paths γ, we find

dg(p,q) �
√

|g|g̃ dg̃(p,q).
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The same holds with the roles of g and g̃ reversed. This leads to

1
√

|g̃|g
dg̃(p,q) � dg(p,q) �

√

|g|g̃ dg̃(p,q).

The only thing left to do is to estimate |g|g̃ and |g̃|g. In view of (4.7), and keeping in mind
that the metric tensor g can be expressed as in (2.3), we compute in local coordinates

|g|2g̃ = g̃ilg̃jm
(

−uiuj + f(u)2g̃ij

)(

−ulum + f(u)2g̃lm

)

= | ˜∇ u|4g̃ − 2f(u)2| ˜∇ u|2g̃ + f(u)4m

= (f(u)2 − | ˜∇ u|g̃)
2 + f(u)4(m − 1) =

(

f(u)2

v2

)2

+ f(u)4(m − 1)

� f(u)4 + f(u)4(m − 1) = f(u)4m � c1.

In the above the last inequality follows from v � 1 and assuming that f is uniformly bounded.
With similar arguments we compute, recalling that the inverse of the metric tensor g is
expressed as in (2.4)

|g̃|2g =
1

f(u)4

(

g̃il +
g̃iauag̃lbub

f(u)2 − | ˜∇ u|g̃

)(

g̃jm +
g̃jcucg̃mkuk

f(u)2 − | ˜∇ u|2
g̃

)

g̃ijg̃lm

=
1

f(u)4

⎛

⎜

⎝
m + 2

| ˜∇ u|2g̃

f(u)2 − | ˜∇ u|2
g̃

+
| ˜∇ u|4g̃

(

f(u)2 − | ˜∇ u|2
g̃

)2

⎞

⎟

⎠

=
1

f(u)4

⎛

⎝m − 1+

(

1+
| ˜∇ u|2g̃

f(u)2 − | ˜∇ u|2

)2
⎞

⎠

=
1

f(u)4
(m − 1+ v4) � c2v

4.

From the above expression we can further notice that |g̃|g is nonzero, since v � 1, thus
proving the claim. 
�

Proposition 4.8 Let (M,g = g(t)) be as above in Corollary 4.7. Then

dvolg =
f(u)m

v
dvolg̃ (4.10)

Proof There exists some λ ∈ C∞(M) so that dvolg = λ dvolg̃. By the local expression of

the volume form we conclude λ =
√

det(gg̃−1). By expressing the induced metric tensor g

in coordinates, cf. (2.4), one has

(gg̃−1)ij = −g̃jkuiuk + f(u)2δ
j
i = f(u)2

(

δ
j
i −

1
f(u)2

g̃kjukui

)

.

Let us setDuT := −1/f(u)2(u1, . . . ,um), where the lower indices denote partial derivatives
with respect to the coordinate frame (∂1, . . . , ∂m). This implies
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det
(

gg̃−1
)

= f(u)2m det
(

id+ ˜∇ u · DuT
)

= f(u)2m
(

1+ ˜∇ uT · Du
)

= f(u)2m

(

1−
| ˜∇ u|g̃

f(u)2

)

=
f(u)2m

v2
.


�

Proposition 4.9 Let (M,g = g(t)) be a prescribed graphical mean curvature flow as above
in Corollary 4.7. Assuming that (M, g̃) is stochastically complete, the flow (M,g(t)) stays
stochastically complete for each fixed t, as long as (M,g(t)) are space-like, i.e. as long as
the gradient function v(t) is finite. In particular, the Omori-Yau maximum principle holds
for every time.

Proof This is a straightforward consequence of Corollary 4.7 and Proposition 4.8. Together
they imply that volume of R-balls with respect to g = g(t) and with respect to g̃ are
comparable up to constants depending on v(t). Thus, by Theorem 4.5, (M,g = g(t)) is
also stochastically complete as long as v(t) is bounded, i.e. as long as (M,g(t)) are space-
like. This proves the claim 
�

5 Evolution equation for the gradient function

Our central aim is to prove that a space-like prescribed graphical mean curvature flow stays
uniformly space-like along the flow. To this end we will prove that the gradient function v,
defined in 2.3, satisfies a partial differential inequality of the form (4.5). Such an inequality
will follow from the next theorem.

Theorem 5.1 Let u(t) be a solution to the prescribed graphical mean curvature flow (1.3)
of an m-dimensional space-like Cauchy hypersurface. Then the gradient function v ≡ v(t)

for the graph of u(t), t ∈ [0, T ] satisfies the following evolution equation

(∂t + Δ)v = −‖ h ‖2v − RicN(μ,μ)v − 2
f ′(u)
f(u)

H+
f ′(u)
f(u)

H − V(H)

−
f ′(u)
f(u)

Hv2 + 2
f ′(u)
f(u)

g(∇u,∇v) + m
f ′′(u)
f(u)

v

−

(

f ′(u)
f(u)

)2

‖∇u‖2v −
f ′′(u)
f(u)

‖∇u‖2v − m

(

f ′(u)
f(u)

)2

v.

(5.1)

In the above V is a vector field over M so that1

DF(V) = gijg(∂0,DF(∂i))DF(∂j).

The above theorem is a direct consequence of the following propositions.

Proposition 5.2 The gradient function v evolves as

∂tv = V(H−H) − (H−H)
f ′(u)
f(u)

+ (H−H)
f ′(u)
f(u)

v2. (5.2)

1 Recall that g defines an inner product on F∗TN by (2.21).
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Proposition 5.3 The Laplacian of the gradient function v can be expressed as

Δv = −
f ′(u)
f(u)

H−
f ′(u)
f(u)

H v2 − V(H) + 2
f ′(u)
f(u)

g(∇u,∇v)

− ‖ h ‖2v − RicN(μ,μ)v + m
f ′′(u)
f(u)

v +

(

f ′(u)
f(u)

)

‖∇u‖2v

−
f ′′(u)
f(u)

‖∇u‖2v − 2

(

f ′(u)
f(u)

)

‖∇u‖2v − m

(

f ′(u)
f(u)

)2

v.

(5.3)

We will prove Propositions 5.2 and 5.3 in Sects. 5.1 and 5.2, respectively.

5.1 Time derivative of the gradient function

It is important to notice that the unit normal μ = μ(t) is a section of a t-dependent vector
bundle over M, namely F∗TN ≡ F(t)∗TN with F(t) : M → N being the graphical embed-
ding given by F(p, t) = (u(p, t),p) for any p ∈ M. The pull-back connection on F∗TN is
denoted by ∇F∗TN, as introduced in Sect. 2.3.

Our next aim is to treat the partial derivative in t, ∂t, as a vector field; this will be achieved
by following [30, Sect. 3.2] as well as [2, Sect. 2.3]. In Sect. 2.3 we have introduced the
pull-back bundle and the pull-back connection arising from an embedding F : M → N.
Moreover, as we have also done in the above, we have made the identification F = F(t). To
avoid confusion, in order to introduce a connection on a time-dependent vector bundle, we
denote by F a time-dependent embedding, that is F : M × [0, T ] → N. In particular, the
above means that for every fixed t ∈ [0, T ] we have F(_, t) = F(t) = F is an embedding.

Now we can proceed by pulling-back the vector bundle TN to M × [0, T ] by means of
the time-dependent embedding F . Such a bundle will be denoted, as in Sect. 2.3, by F∗TN

which is now a bundle over M × [0, T ]. In a similar fashion we pull-back the connection
∇ to F∗TN and we denote it by ∇F∗TN. This works exactly as it has already been done
in Sect. 2.3. Now, as in [2] we denote by S the vector bundle over M × [0, T ] given by
S = {v ∈ T(M × [0, T ]) |Dt(v) = 0}. By means of the time-dependent embedding F , the
vector bundle S gives rise to a sub-bundle DF(S) of F∗TN of rank m. Furthermore, since
F∗TN is trivially equipped with a metric, then one finds the orthogonal complement to
DF(S) which is denoted by N and it is of rank 1. Notice that for a fixed time t one has the
identifications DF(S) = DF(TM) and N = DF(TM)⊥ = span(μ). From the above one
deduced the following.

Remark 5.4 For every i = 1, . . . ,m = dimM, at a point (p, t) ∈ M × [0, T ], we obtain for
the differential of F

DF(∂t) = −(H−H)μ,

DF(∂i) = DF(∂i).
(5.4)

Also one can treat a partial t-derivative as a covariant derivative in the direction of the vector
field ∂t. At a point (p, t) ∈ M × [0, T ] for every σ ∈ Γ(F∗TN), given in local coordinates
by σ = σα∂α (recall, ∇ is the covariant derivative of (N,g)), with σα ∈ C∞(M × [0, T ])

∂tσ :=∇F∗TN
∂t

σ =
∂

∂t
σα · ∂α + σα · ∇DF(∂t)∂α,

∇F∗TN
∂i

σ = ∇F∗TN
∂i

σ.
(5.5)
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Finally, due to the symmetry of the second fundamental form associated to F (cf. [2, Propo-
sition 3]) one has

∇F∗TN
∂t

DF(∂i) = ∇F∗TN
∂i

DF(∂t) = −∂i(H−H) · μ − (H−H) · ∇F∗TN
∂i

μ. (5.6)

With the above machinery one can easily compute the t-evolution of the unit normal μ.

Proposition 5.5 For u being a solution of (1.3), the unit normal μ evolves as

∂tμ := ∇F∗TN
∂t

μ = −DF(∇(H−H)). (5.7)

Proof Viewing μ as a section of the pull-back bundle F∗TN, ∂tμ lies in Γ(F∗TN) as well.
Thus, taking (∂1, . . . , ∂m) as a local coordinate frameonTM,weget a local frame forF∗(TN)

given by (DF(∂t),DF(∂1), . . . ,DF(∂m)). We can therefore express ∂tμ ≡ ∇F∗TN
∂t

μwith
respect to that frame (recall that g defines an inner product on F∗TN by (2.21))

∂tμ = |DF(∂t)|
−1
g · g

(

∇F∗TN
∂t

μ,DF(∂t)
)

DF(∂t)

+ gijg
(

∇F∗TN
∂t

μ,DF(∂i)
)

DF(∂j).

From (5.4) the first term reads

g
(

∇F∗TN
∂t

μ,DF(∂t)
)

DF(∂s) = (H−H)2g
(

∇F∗TN
∂t

μ,μ
)

μ

=
1
2
(H−H)2 · ∂tg (μ,μ) · μ = 0,

(5.8)

where the second equality follows by the metric property of the pull-back connection, and
the last equality follows by μ being of unit length. Note that g (μ,DF(∂i)) = 0, since μ is
normal. We conclude again by the metric property of the pull-back connection ∇F∗TN, and
using (5.6) in the second equality

∂tμ = −gijg
(

μ,∇F∗TN
∂t

DF(∂i)
)

DF(∂j)

= −gij
(

−∂i(H−H)
)

g (μ,μ)DF(∂j) + gij(H−H)g
(

μ,∇F∗TN
∂i

μ
)

DF(∂j)

= −gij∂i(H−H)DF(∂j) +
1
2
gij(H−H)∂ig (μ,μ)DF(∂j),

where we used g(μ,μ) = −1 in the last equation. The second summand vanishes by unitarity
of μ, which is a similar argument as in (5.8), and thus the statement follows. 
�
We are now in the position to prove Proposition 5.2.

Proof of Proposition 5.2 Recall that, by definition v = −g(μ, ∂t) hence

∂tv = −g (∂tμ, ∂0) − g
(

μ,∇F∗TN
∂t

∂0

)

. (5.9)

Formula (5.7) implies that ∂tμ lies in Γ(F∗TN) and is tangential to the graph of u; that is
g (∂tμ,μ) = 0. Now (μ,DF(∂1), . . . ,DF(∂m)) is a local frame for F∗TN, with μ orthogonal
to the other frame elements and time-like. Thus, we can write

∂0 = −g(∂0,μ)μ + ∂�
0 = vμ + ∂�

0 , ∂�
0 := gijg (∂0,DF(∂i))DF(∂j). (5.10)

Defining a local vector field V ∈ Γ(TM) by V = gijg (∂0,DF(∂i)) ∂j, so thatDF(V) = ∂�
0 ,

we conclude from Proposition 5.5 (recall g = F∗g)
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g (∂tμ, ∂0) = −g (DF (∇(H−H)) ,DF(V))

= −g (∇(H−H),V) = −V(H−H).

For the second term in (5.9) let us express μ in the local frame (∂0, ∂1, . . . , ∂m)

μ = −g(μ, ∂0)∂0 + gijg(μ, ∂i)∂j = v∂0 + vbj∂j (5.11)

where bj : M → R, bj := g̃ijui/f(u)2, using (2.7) in the last equality. In particular, one
writes

∇F∗TN
∂t

∂0 = −(H−H)v∇∂0∂0 − (H−H)vbj∇∂j
∂0.

From equation (2.14) and applying (5.11) one concludes

∇F∗TN
∂t

∂0 = −
f ′(u)
f(u)

(H−H)μ + v
f ′(u)
f(u)

(H−H)∂0.

The result now follows by substituting the above in (5.9). 
�

5.2 Laplacian of the gradient function

In order to prove Theorem 5.1 it remains to compute Δv (recall Δ is the Laplacian with
respect to g = F∗g) at a fixed time t ∈ [0, T ]; for simplicity we will suppress the parameter
t. All the upcoming computations will be performed at a fixed point (p, t) ∈ M × [0, T ]. In
particular, t will be fixed and we choose an arbitrary point p ∈ M. Let us consider a local
parallel orthonormal frame at p (with respect to g), that is an orthonormal frame (ei)i of
TM over an open neighbourhood U, such that ∇ei

ej(p) = 0 for every i, j at the fixed point
p ∈ M (recall that∇ here denotes the Levi-Civita connection of F(t)(M); also the existence
of such a frame is a consequence of the existence of normal coordinates). Then we can write
for Δv at p

Δv = eieig(μ, ∂0) = ei(g(∇F∗TN
ei

μ, ∂0)) + ei(g(μ,∇F∗TN
ei

∂0)). (5.12)

The second summand in (5.12) will be computed using the next proposition (in 5.16). The
first summand is computed below in Lemma 5.8.

Let u be a solution of (1.3) and (ei)i a local parallel orthonormal frame at p ∈ M as
above. With respect to a local coordinate frame (∂k)k we can write ei = ek

i ∂k for some
smooth coefficients ek

i : U → R. Note also that ei(u) = −g (DF(ei), ∂0). We then obtain
the following useful formulae at p ∈ M (recall the definition in (2.23) and the fact that we
assumed ∇ei

ej(p) = 0)

− h(ei, ej)μ = II(ei, ej) = ∇F∗TN
ei

DF(ej), (5.13)

DF(ei) = −g (DF(ei), ∂0) ∂0 + ek
i ∂k = ei(u)∂0 + ek

i ∂k. (5.14)

Proposition 5.6 Let u be a solution of (1.3) and F the corresponding family of graphical
embeddings. For fixed t ∈ [0, T ]andp ∈ M, consider (ei)i to be a local parallel orthonormal
frame at p as above, that is ∇ei

ej(p) = 0 for every i, j. Then at p we have

(1) the covariant derivative of ∂0, as a section of F∗TN, can be expressed as

∇F∗TN
ei

∂0 =
f ′(u)
f(u)

DF(ei) +
f ′(u)
f(u)

g(DF(ei), ∂0)∂0

=
f ′(u)
f(u)

DF(ei) −
f ′(u)
f(u)

ei(u)∂0.

(5.15)

123



11 Page 24 of 45 Annals of Global Analysis and Geometry (2023) 64 :11

(2) For μ being the unit normal to the graph of u one has

g
(

μ,∇F∗TN
ei

∂0

)

= v
f ′(u)
f(u)

ei(u). (5.16)

(3) For every i and j ranging between 1 and m = dimM, one finds

ei

(

g
(

∂0,DF(ej)
))

=
f ′(u)
f(u)

δij +
f ′(u)
f(u)

ei(u)ej(u) + v h(ei, ej)I (5.17)

where δij denotes the Kronecker delta. In particular, for i = j, with the obvious summa-
tion convention over repeated indices, one concludes

ei (g (∂0,DF(ei))) = vH+
f ′(u)
f(u)

(

m + |∇u|2g

)

. (5.18)

Proof (1) From Eq. (5.14) we see that

∇F∗TN
ei

∂0 = ei(u)∇∂0∂0 + ek
i ∇∂k

∂0.

Equation (5.15) now follows by substituting the appropriate values of the covariant deriva-
tives on the right-hand side, described by the Christoffel symbols of (N,g) in (2.14), and
using (5.14) once more.

(2) Equation (5.16) is a direct consequence of (5.15) and the fact that μ is normal to the
graph of u, that is g (μ,DF(ei)) = 0 for every i = 1, . . . ,m.

(3) The metric property of the pull-back connection ∇F∗TN gives

ei

(

g
(

∂0,DF(ej)
))

= g
(

∇F∗TN
ei

∂0,DF(ei)
)

+ g
(

∂0,∇F∗TN
ei

DF(ej)
)

.

From Eqs. (5.15) and (5.13) we deduce

ei

(

g
(

∂0,DF(ej)
))

=
f ′(u)
f(u)

g
(

DF(ei),DF(ej)
)

−
f ′(u)
f(u)

ei(u)g
(

∂t,DF(ej)
)

− h(ei, ej)g (∂0,μ) .

By assumption, (ei)i is a local orthonormal frame, with respect to the metric
g = F∗g; thus, g

(

DF(ei),DF(ej)
)

= δij. Moreover, from Eq. (5.14) we compute
−g

(

∂0,DF(ej)
)

= ej(u). Finally, the result follows by recalling the definition of the
gradient function (cf. Definition 2.3).


�

Remark 5.7 Notice that Eq. (5.18) is nothing but (at p ∈ M)

Δu = −ei (ei(u)) = vH+
f ′(u)
f(u)

(

m + |∇u|2g

)

= vH+
f ′(u)
f(u)

(m + v2 − 1)

where we have used (i) in Proposition 2.5. This is exactly the same result as Proposition 2.12
in [12].

Lemma 5.8 In the notation of Proposition 5.6 we have at p

ei(g(∇F∗TN
ei

μ, ∂0)) = −ei(g(∂0,DF(ej)) h(ei, ej)

− g(∂0,DF(ej))ei(h(ei, ej)).
(5.19)
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Proof The result follows by the Leibniz rule once we prove that

g(∇F∗TN
ei

μ, ∂0) = −g(∂0,DF(ej)) h(ei, ej). (5.20)

To this end, notice that ∂0, as a section of F∗TN, decomposes with respect to the orthonormal
frame (μ,DF(e1), . . . ,DF(em)) as

∂0 = −g(∂0,μ)μ + g(∂0,DF(ej))DF(ej).

Substituting this into the left-hand side of (5.20), one finds

g(∇F∗TN
ei

μ, ∂0) = −g (∂0,μ)g
(

∇F∗TN
ei

μ,μ
)

+ g
(

∂0,DF(ej)
)

g
(

∇F∗TN
ei

μ,DF(ej)
)

.

The first summand now vanishes, since μ is of unit length. Using (5.13) we now conclude at
p ∈ M

g(∇F∗TN
ei

μ, ∂0) = −g
(

∂0,DF(ej)
)

h(ei, ej).


�
Lemma 5.9 In the notation of Proposition 5.6 we have at p 2

ei(h(ei, ej)) = ej(H) − RicN(DF(ej),μ)I (5.21)

with the obvious summation convention on repeated indices.

Proof From Eq. (2.27) in Proposition 2.13 we compute, by making use of the metric property
of the pull-back connection ∇F∗TN,

ei(h(ei, ej)) = − g(∇F∗TN
ei

DF(ei),∇F∗TN
ej

μ) − g(DF(ei),∇F∗TN
ei

∇F∗TN
ej

μ)

= − g(DF(ei),∇F∗TN
ei

∇F∗TN
ej

μ),

where the second equality follows from the fact that g(∇F∗TN
ei

DF(ei),∇F∗TN
ej

μ) = 0 due
to (5.13) and the fact that μ is of unit length, i.e. g (μ,μ) = −1.

Recall that, at p, the curvature form of the pull-back connection is the pull-back of the
curvature of the connection, that is

∇F∗TN
ei

∇F∗TN
ej

μ − ∇F∗TN
ej

∇F∗TN
ei

μ − ∇F∗TN
[ei,ej]

μ = RN
(

DF(ei),DF(ej)
)

μ.

Thus, using ∇F∗TN
[ei,ej]

μ = 0 due to naturality of the pull-back and the computations being

performed at p, we obtain (summing over double indices i)

ei

(

h(ei, ej)
)

= −g
(

∇F∗TN
ei

∇F∗TN
ej

μ,DF(ei)
)

= −RN
(

DF(ei),DF(ej),μ,DF(ei)
)

− g
(

∇F∗TN
ej

∇F∗TN
ei

μ,DF(ei)
)

= −RicN
(

DF(ej),μ
)

− ej

(

g
(

∇F∗TN
ei

μ,DF(ei)
))

+ g
(

∇F∗TN
ei

μ,∇F∗TN
ej

μ
)

= −RicN
(

DF(ej),μ
)

+ ej(H).

2 RicN applies to DF(ej) ∈ F∗TN similar to(2.21).
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In the above, the second equality is obtained by making use of (2.17). The first term in
the third equality is a consequence of (μ,DF(e1), . . . ,DF(em)) being an orthonormal basis
of TF(p)N with μ time-like. The second term is instead a mere application of the metric

property of the connection ∇F∗TN. Finally the fourth identity is the result of the formula
(2.27), Definition 2.14 and of μ being of unit length. 
�

We now conclude with the following expression for (5.12).

Proposition 5.10 Let u be a solution of (1.3). Then the Laplacian of the gradient function v

can be expressed in terms of a local vector field V = gijg (∂0,DF(∂i)) ∂j ∈ Γ(TM), such
that DF(V) = ∂�

0 , as follows:

Δv = −
f ′(u)
f(u)

H−
f ′(u)
f(u)

h(∇u,∇u) − v‖ h ‖2 − V(H) + RicN(DF(V),μ)

+
f ′(u)
f(u)

g(∇u,∇v) +
f ′′(u)
f(u)

‖∇u‖2v − 2

(

f ′(u)
f(u)

)2

‖∇u‖2v

−
f ′(u)
f(u)

H v2 − m

(

f ′(u)
f(u)

)2

v.

(5.22)

Proof Plugging (5.16), Lemmas 5.8 and 5.9 into (5.12) yields the following intermediate
expression that holds at p ∈ M

Δv = −ei(g(∂0,DF(ej)) h(ei, ej)

− g(∂0,DF(ej))
(

ej(H) − RicN(DF(ej),μ)
)

+ ei

(

v
f ′(u)
f(u)

ei(u)
)

.
(5.23)

Noticing that V = g (∂0,DF(ek)) ek with summation over k, we conclude from formula
(5.17), Lemmas 5.8 and 5.9

Δv = −
( f ′(u)

f(u)
δij +

f ′(u)
f(u)

ei(u)ej(u) + v h(ei, ej)
)

h(ei, ej)

− V(H) + RicN (DF(V),μ) + ei

(

v
f ′(u)
f(u)

ei(u)
)

= −
f ′(u)
f(u)

H−
f ′(u)
f(u)

h(∇u,∇u) − v‖ h ‖2

− V(H) + RicN (DF(V),μ) + ei

(

v
f ′(u)
f(u)

ei(u)
)

.

(5.24)

In order to conclude the statement, it remains to study the last term in (5.24). We compute
using Remark 5.7, arriving at an expression that holds globally

ei

(

v
f ′(u)
f(u)

ei(u)
)

= ei(v)
f ′(u)
f(u)

ei(u) + vei

(

f ′(u)
f(u)

)

ei(u) − v
f ′(u)
f(u)

Δu

= ei(v)ei(u)
f ′(u)
f(u)

+ v
f ′′(u)
f(u)

ei(u)ei(u) − v

(

f ′(u)
f(u)

)2

ei(u)ei(u)

− v2
f ′(u)
f(u)

H−v

(

f ′(u)
f(u)

)2

m − v

(

f ′(u)
f(u)

)2

|∇u|2g

= g (∇u,∇v)
f ′(u)
f(u)

+ v
f ′′(u)
f(u)

|∇u|2g − 2v

(

f ′(u)
f(u)

)2

|∇u|2g
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− v2
f ′(u)
f(u)

H−mv

(

f ′(u)
f(u)

)2

.


�

Notice that Proposition 5.10 is not yet a proof for Proposition 5.3. In particular, the terms
h (∇u,∇u) and RicN (DF(V),μ) appearing in (5.22) need to be simplified.

Proposition 5.11 Let u be a solution of (1.3). Then

h(∇u,∇u) = −g(∇u,∇v) −
f ′(u)
f(u)

|∇u|2v. (5.25)

Proof Notice that the statement is a direct consequence of a local identity

vi = −gjkujhki −
f ′(u)
f(u)

vui. (5.26)

Indeed, assuming (5.26) to hold locally, we find

g(∇u,∇v) = gimumvi = −gimumgjkuj hik −gimum
f ′(u)
f(u)

vui

= − h(∇u,∇u) −
f ′(u)
f(u)

|∇u|2gv.

This is precisely the statement after rearrangement. Let us therefore prove (5.26). By making
use of (2.11) one has

vvi =
1
2
∂iv

2 =
1
2
∂i(1+ |∇u|2) = g(∇∂i

∇u,∇u).

Furthermore, ∇∂i
∇u can be expressed locally as

∇∂i
∇u = ∂i(g

jkuk)∂j + gjkukΓ l
ij∂l.

By keeping in mind that ∂ig
jk = −gjlΓk

il − Γ
j
ilg

lk, one finds

g(∇∂i
∇u,∇u) = gjkuj(uki − Γ l

ikul).

The result now follows by substituting (2.28) and by noticing that

gjkujg̃ki =
v2

f(u)2
ui.


�

The only thing left to prove Proposition 5.3 is a formula for RicN (DF(V),μ).

Proposition 5.12 Let u be a solution for (1.3) and F the corresponding family of
graphical embeddings. Then we have the following formula for the vector field V =

gijg (∂0,DF(∂i)) ∂j ∈ Γ(TM), with DF(V) = ∂�
0

RicN(DF(V),μ) = −
f ′′(u)
f(u)

mv − vRicN(μ,μ). (5.27)
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Proof By definition of V we have ∂�
0 = DF(V) = ∂0 + g(∂0,μ)μ. Thus,

RicN(DF(V),μ) = RicN(∂0,μ) − vRicN(μ,μ)

= vRicN(∂0, ∂0) + vbi RicN(∂0, ∂i) − vRicN(μ,μ)

= − vm
f ′′(u)
f(u)

+ vRicN(μ,μ).

The second identity is obtained by considering the orthogonal decomposition of the unit
normal μ with respect to the local frame (∂0, ∂1, . . . , ∂m) of F∗TN (cf. formula 5.11); in
particular, bi = g̃ijuj/f(u)2. The last identity is a consequence of the values for the Ricci
tensor described in Corollary 2.8. 
�

6 Evolution equation for themean curvature

As before, let u(·, t) be a solution to the prescribed graphical mean curvature flow (1.3)
of an m-dimensional space-like Cauchy hypersurface. The solution induces a family of
embeddings F(t) : M → N with F(p, t) = (u(p, t),p) for any p ∈ M. The induced metric
g is defined by the pull-back g = F(t)∗g. We begin with the following basic evolution
equations for the metric tensor.

Proposition 6.1 The metric tensor (gij) and its inverse (gij), written in local coordinates,
satisfy the following evolution equations along (1.3)

∂tgij = 2(H−H) hij, (6.1)

∂tg
ij = −2(H−H)gik hkl glj. (6.2)

Proof Notice that (6.2) is a direct consequence of (6.1). So we only need to prove (6.1).
Using the same notation as in Sect. 5.1 we compute (see right below for the explanation of
the individual steps)

∂tgij = ∂tg
(

DF(∂i),DF(∂j)
)

= g
(

∇F∗TN
∂t

DF(∂i),DF(∂j)
)

+ g
(

DF(∂i),∇F∗TN
∂t

DF(∂j)
)

= g
(

∇F∗TN
∂i

DF(∂t),DF(∂j)
)

+ g
(

DF(∂i),∇F∗TN
∂i

DF(∂t)
)

= −(H−H)
(

g(∇F∗TN
∂i

μ,DF(∂j)) + g(DF(∂i),∇F∗TN
∂j

μ)
)

= 2 (H−H) hij .

In the above the first identity follows by definition of the induced metric tensor g = F∗g.
The second is just a consequence of the metric property of the pull-back derivative ∇F∗TN.
The third line comes from the commutativity [∂t, ∂i] = 0 of local coordinate fields. Finally
the last equality is a consequence of (5.6) and the fact that μ is normal, i.e. g (DF(X),μ) = 0
for any vector field X over M. 
�

Next we study the evolution of the scalar second fundamental form.
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Proposition 6.2 The tensor (hij) of the scalar second fundamental form satisfies the follow-
ing evolution equation (summing over double indices as usual) along (1.3)

∂t hij = (H−H)
(

gkl hik hjl −RN(μ,DF(∂i),DF(∂j),μ)
)

+ (H−H)ij − Γk
ij∂k (H−H)

= (H−H)
(

gkl hik hjl −RN(μ,DF(∂i),DF(∂j),μ)
)

+ ∇2
ij (H−H) .

(6.3)

Proof We compute with respect to a local coordinate frame (∂i)

∂thij = ∂t h(∂i, ∂j) = ∂tg
(

∇F∗TN
∂i

DF(∂j),μ
)

= g
(

∇F∗TN
∂t

∇F∗TN
∂i

DF(∂j),μ
)

+ g
(

∇F∗TN
∂i

DF(∂j),∇F∗TN
∂t

μ
)

= g
(

∇F∗TN
∂t

∇F∗TN
∂i

DF(∂j),μ
)

− hijg
(

μ,∇F∗TN
∂t

μ
)

+ g
(

DF(∇∂i
∂j),∇F∗TN

∂t
μ
)

= g
(

∇F∗TN
∂t

∇F∗TN
∂i

DF(∂j),μ
)

+ g
(

DF(∇∂i
∂j),∇F∗TN

∂t
μ
)

.

In the first line we just used (2.27). The second line is obtained by making use of the metric
property of the pull-back connection ∇F∗TN. The third is a consequence of (2.23). The last
equality follows from the fact that μ is of unit length, which implies vanishing of the second
term in the third line.
We shall now compute these two terms above. By Proposition 5.5

g
(

DF(∇∂i
∂j),∇F∗TN

∂t
μ
)

≡ g
(

DF(∇∂i
∂j), ∂tμ

)

= −g
(

∇∂i
∂j,∇ (H−H)

)

= −Γk
ij∂k (H−H) .

This computes the last term. For the first term we proceed as follows. Noting that that
[∂i, ∂t] = 0, we obtain from the definition of the Riemann curvature tensor

∇F∗TN
∂t

∇F∗TN
∂i

DF(∂j) − ∇F∗TN
∂i

∇F∗TN
∂t

DF(∂j) = RN (DF(∂t),DF(∂i))DF(∂j).

This implies directly

g
(

∇F∗TN
∂t

∇F∗TN
∂i

DF(∂j),μ
)

= RN
(

DF(∂t),DF(∂i),DF(∂j),μ
)

+ g
(

∇F∗TN
∂i

∇F∗TN
∂t

DF(∂j),μ
)

= −(H−H)RN
(

μ,DF(∂i),DF(∂j),μ
)

+ ∂i

(

g
(

∇F∗TN
∂j

DF(∂t),μ
))

− g
(

∇F∗TN
∂j

DF(∂t),∇F∗TN
∂i

μ
)

, (6.4)

where the second equality is a consequence of the (5.4), (5.6) and the metric property of
the pull-back connection. Let us now describe the second term on the right-hand side of the
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second equation in (6.4). From (5.6) we write

∂i

(

g
(

∇F∗TN
∂j

DF(∂t),μ
))

= −∂i

(

∂j (H−H)g(μ,μ)
)

− ∂i

(

(H−H)g
(

∇F∗TN
∂j

μ,μ
))

= ∂i∂j (H−H) ,

(6.5)

where in the second equation we used the fact that g (μ,μ) = −1.

To conclude the computation of (6.4), we need g
(

∇F∗TN
∂j

DF(∂t),∇F∗TN
∂i

μ
)

. To

express this wewill use Eq. (5.6) oncemore. Before presenting the expression let us notice the
following. In view of (5.4),∇F∗TN

∂i
μ = ∇F∗TN

∂i
μ is a section of the pull-back bundle F∗TN.

Hence it can be linearly decomposed in terms of the local frame (μ,DF(∂1), . . . ,DF(∂m)).
In particular, by keeping in mind that μ is a unit length time-like vector we conclude

∇F∗TN
∂i

μ = gjkg
(

∇F∗TN
∂i

μ,DF(∂j)
)

DF(∂k) = −gjk hij DF(∂k)

with the obvious summation over the indices j and k. Thus, we find by (5.4)

g
(

∇F∗TN
∂j

DF(∂s),∇F∗TN
∂i

μ
)

= −∂j (H−H) · g
(

μ,∇F∗TN
∂i

μ
)

− (H−H)g
(

∇F∗TN
∂j

μ,∇F∗TN
∂i

μ
)

= −(H−H)gkl hik hjl,

(6.6)

where we used g
(

μ,∇F∗TN
∂i

μ
)

= 0 by the metric property of the pull-back connection and

the fact that μ is of unit length. Equation (6.7) now follows by substituting (6.6) and (6.5) in
(6.4). 
�

Corollary 6.3 The mean curvature evolves along (1.3) by

(∂t + Δ)(H−H) = −(H−H)
(

‖ h ‖2 + RicN(μ,μ)
)

,

(∂t + Δ)(H−H)2 = −2 (H−H)2
(

‖ h ‖2 + RicN(μ,μ)
)

− 2|∇ (H−H) |2.

(6.7)

Proof The second evolution equation is a direct consequence of the first one. For the first
equation we compute by Propositions 6.1 and 6.2

∂t H =∂t

(

gij hij

)

= ∂tg
ij · hij +gij · ∂t hij

=− 2 (H−H) ‖ h ‖2 + gij∂t hij

=− 2 (H−H) ‖ h ‖2 + (H−H)
(

‖ h ‖2 − RicN(μ,μ)
)

− Δ (H−H) .


�

Remark 6.4 We want to point out a difference between the first equation in (6.7) and the
same evolution equation in the proof of [9, Proposition 4.6]. In the latter one sees an extra
term g

(∇H,μ
)

. Its presence is due to the function H being defined in [9] on the ambient
Lorentzian manifold (N,g) while in our case H is defined on (M, g̃). In particular, in our
case ∂tH is just vanishing.
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7 Evolution of the scalar second fundamental form

In this section we derive an evolution equation for the norm (with respect to g) of the scalar
second fundamental form. Thiswill play an essential role for the uniformC0 andC2-estimates
of u. We begin by recalling some useful formulae, to be consistent with other references we
will also write them in abstract index notation.
First we recall the Codazzi-Mainardi equation, cf. [21, Theorem 8.9].

Proposition 7.1 For every X, Y,Z ∈ Γ(TM) one has

∇X II(Y,Z) − ∇Y II(X,Z) = RN(DF(X),DF(Y))DF(Z) − DF(R(X,Y)Z). (7.1)

Corollary 7.2 For every X, Y,Z ∈ Γ(TM) one has

∇ h(X,Y,Z) − ∇ h(Y,X,Z) = RN(DF(X),DF(Y),DF(Z),μ). (7.2)

Proof The result follows by taking the inner product with the unit normal on both sides of
(7.1) and using the formula for the covariant derivative of tensors. 
�
Next we recall Gauß’ Theorema Egregium.

Theorem 7.3 For every X, Y,Z,W ∈ Γ(TM) one has

RN (DF(X),DF(Y),DF(Z),DF(W))

= RM(X, Y,Z,W) + h(Y,Z) h(X,W) − h(X,Z) h(Y,W).
(7.3)

Proof For a proof of this we refer to [21, Theorem 8.5], where we used (2.26) and (2.25).


�
Let A now be a (0, 2)-tensor over (M,g). Setting for every X,Y,Z,W ∈ Γ(TM)

∇2A(X, Y,Z,W) = ∇(∇A)(X,Y,Z,W),

one has by direct computation of ∇2A(X, Y,Z,W) and ∇2A(Y,X,Z,W)

∇2A(X,Y,Z,W) − ∇A(Y,X,Z,W) = A (R(Y,X)Z,W) + A (Z,R(Y,X)W)

= −A (R(X,Y)Z,W) − A (Z,R(X,Y)W) .
(7.4)

Next we give an expression for the well-known Simons identities (cf. [29, Theorem 4.2.1])
We begin by presenting how to interchange second-order covariant derivatives of the (scalar)
second fundamental form.

∇k∇l hij = ∇i∇j hkl +gpqRN
iklp hqj +gpqRN

ikjp hql − hkl RN
0ij0

− hkp gpqRN
lijq − hij RN

k0l0 − hip gpqRN
kjlq + ∇kRN

lij0 + ∇iR
N
kjl0

− gpq hkl hip hqj +gpq hil hkp hqj −gpq hkj hip hql +gpq hij hkp hql .

(7.5)

We want to point out a difference in signs with the classical result cited above due to a
different sign convention for the scalar second fundamental form h. By taking the trace of
(7.5) we find an expression for the Laplacian of the (scalar) second fundamental form which
is as follows:

Δ hij = −∇i∇j H− hij

(

‖ h ‖2 + RicN(μ,μ)
)

+ Hhik hkj

+ 2 hkl RN
kijl − hpj RN

ikkp + hip RN
kjkp

+ HRN
0ij0 − ∇kRN

kij0 − ∇iR
N
kjk0.

(7.6)
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By summing the above with (6.3) we find

(∂t + Δ) hij = −∇i∇jH −H
(

hik hkj −RN
0ij0

)

+ 2H hik hkj − hij

(

‖ h ‖2 + RicN(μ,μ)
)

+ 2 hkl RN
kijl − hjl RN

ikkl + hil RN
kjkl − ∇kRN

kij0 − ∇iR
N
kjk0

(7.7)

Remark 7.4 Due to different sign conventions, Eq. (7.7) has slight differences in signs with
the one in [9, Proposition 3.2 (i)].

Although the slight change in signs between Eq. (7.7) and the corresponding one in [9] we
can conclude by straightforward estimates the same inequality as [9, Proposition 3.2 (iii)],
which is the assertion of the final result in this section.

Proposition 7.5

(∂t + Δ) ‖ h ‖2 � −2‖∇ h ‖2 − ‖ h ‖4 + c0 ·
(

1+ ‖ h ‖2 + ‖∇2H‖2
)

� −2‖∇ h ‖2 − ‖ h ‖4 + c1 ·
(

1+ ‖ h ‖ + ‖ h ‖2
) (7.8)

where the constants

c0 = c0

(

m, v, ‖RN‖, ‖∇RN‖, ‖H‖∞

)

,

c1 = c1

(

m, v, ‖RN‖, ‖∇RN‖, ‖H‖∞, ‖H‖C2

)

,

depend on the entries in the brackets.

Proof We only indicate the proof idea. We conclude first from (7.6)

Δ‖ h ‖2 = −2‖∇ h ‖2 − 2 hij ∇i∇j H−2‖ h ‖2
(

‖ h ‖2 + RicN(μ,μ)
)

+ 2H hij hjk hki +4 hij hkl RN
kijl − 2 hij hlj RNikkl + 2 hij hil RN

kjkl

+ 2H hij RN
0ij0 − 2 hij ∇kRN

kij0 − 2 hij ∇iR
N
kjk0.

(7.9)

With similar arguments by (6.3) we infer

∂t‖ h ‖2 = −2 (H−H)
(

hij hjk hki +RN
0ij0 hi j

)

+ 2 hij ∇i∇j (H−H) . (7.10)

Summing up (7.9) and (7.10) we find the following evolution equation for the g-norm of the
scalar second fundamental form.

(∂s + Δ) ‖ h ‖2 = −2‖∇ h ‖2 − 2‖ h ‖2
(

‖ h ‖2 + RicN(μ,μ)
)

− 2 hij ∇i∇jH

+ 2H
(

hij hjk hki +RN
0ij0 hij

)

+ 4 hij hkl RN
kijl − 2 hij hjl RN

ikkl

+ 2 hij hil RN
kjkl − 2 hij ∇kRN

kij0 − 2 hij ∇RN
kjk0.

(7.11)

From here the first inequality follows by bounded geometry.
For the second inequality, the problem is controlling ‖∇2H‖2. We may want to use the

second displayed equation in the proof of [9, Proposition 4.7]; however, in their settingH is
a function on N. Instead, note that

‖∇2H‖2 = gikgjl∇2H(∂i, ∂j)∇2H(∂k, ∂l),
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∇2H(∂i, ∂j) = ∂i∂jH − ∇∇∂i
∂j
H = Hij − Γk

ijHk.

From [12, (2.6), (2.15)] we can conclude

Γk
ijHk = ˜Γk

ijHk +
f ′(u)
f(u)

(

uiHj + ujHi

)

+
v

f(u)2
g̃

(

˜∇u, ˜∇H
)

hij .

Thus, we find for some uniform constant c > 0, using (2.3) and uniform bounds on f and its
derivatives

‖∇2H‖ � cv2
(

‖˜∇2H‖g̃ + v2‖ h ‖‖˜∇H‖g̃

)

.

This yields the second inequality and proves the statement. 
�

8 C0-estimates: uniform bounds on the solution u

Consider now a solution u ∈ C3,α(M× [0, T ])∩C4,α(M× (0, T ]) of (1.3), which exists for
T > 0 sufficiently small by Theorem 1.5, provided H ∈ C2,α(M). We first prove a uniform
upper bound.

Proposition 8.1 Consider Setting 1.1 and impose Assumptions 1.4 (1), (2). Thenu is bounded
uniformly from above by usup(0).

Proof Notice that the prescribed mean curvature flow (1.3) can be written as

∂tu = −(H−H) v. (8.1)

The statement will follow once we prove that (H−H) � 0. Indeed, due to v � 1, ∂tu � 0
and thus u is non-increasing with upper bound usup(0).

Since (H−H)(t = 0) > 0, there exists some maximal interval [0, ε) ⊆ [0, T ] such that
(H−H)(t) > 0 for t ∈ [0, ε). If ε = T , then the right-hand side in (8.1) is negative and the
statement follows. Let us now assume that ε < T . From (6.7) we see that, by differentiating
in (0, ε],

(∂t + Δ)(H−H) � −c(H−H),

for some positive constant c, depending on bounded geometry and ‖h(t)‖ for t ∈ (0, ε].
Since u ∈ C3,α(M × [0, T ])∩ C4,α(M × (0, T ]), we note that ‖h(t)‖ is uniformly bounded
for t ∈ [0, ε]. These bounds need not be uniform in T (we have not proved this yet), but this
is not necessary for the argument here.

Using now the Omori-Yau maximum principle in the form (4.2), we conclude from the
enveloping theorem in Proposition 4.3 that

∂t(H−H)inf � −c(H−H)inf .

Integrating this differential inequality and the fact that (H−H)inf is locally Lipschitz yields
for t ∈ (0, ε]

(H−H)inf(t) � e−c(t−σ)(H−H)inf(σ),

for 0 < σ < t � ε. Since σ ∈ (0, ε), (H−H)(σ) > 0. Thus, (H−H)(t = ε) > 0 and
hence by maximality of the interval [0, ε), we conclude that ε = T , that is (H−H) > 0 on
M × [0, T ]. The statement now follows from (8.1). 
�
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For the uniform lower bounds the following lemma is useful.

Lemma 8.2 Let θ ∈ C1,α(M × [0, T ]) ∩ C2,α(M × (0, T ]). If θ satisfies the differential
inequality

(∂t + Δ)θ � −a2θ2 + b, (8.2)

with a > 0 and b constants, then θ is uniformly bounded from above.

Proof We begin by noticing in the inequality above we can always replace b by some positive
nonzero b2 > 0, which we henceforth do.

Furthermore, if supM θ(t) � b/a there is nothing to prove. Hence let us assume there
exists some t0 ∈ [0, T ] so that supM θ(t0) > b/a.

Since θ ∈ c1,α(M× [0, T ])∩C2,α(M× (0, T ]), from Proposition 4.3, θsup(t) is a locally
Lipschitz function and hence positive in a neighbourhood (t1, t2) ⊂ [0, T ] containing t0. Let
us then consider the minimal such t1 � 0. Now, by Lemma 3.3 we have that the function
θsup is continuous, thus either t1 = 0 or θsup(t1) = b/a.

Let t ∈ (t1, t2) and (pk(t))k ⊂ M a sequence satisfying the estimates (4.2) for the
Omori-Yau maximum principle. For k ∈ N large enough θ (pk(t), t)) > b/a. In particular,
at these points, θ satisfies the differential inequality

(∂t + Δ)θ (pk(t), t) � 0.

In conclusion, in view of Theorem 4.4,

θ(·, t) � θsup(t) � θsup(t1) =
b

a
I

thus providing the required uniform upper bound. 
�

Now we establish a lower bound on u for any finite T .

Proposition 8.3 Consider Setting 1.1 and impose Assumptions 1.4 (1), (2). Then ‖ h ‖ and H

are uniformly bounded. Moreover, u is bounded uniformly for finite times.

Proof In Theorem 9.3 in the next section we will prove that, as a consequence of the upper
bound in Proposition 8.1, v is uniformly bounded.
By playing with binomial formulae we find from inequality (7.8)

(∂t + Δ) ‖ h ‖2 � −a2‖ h ‖4 + b2, (8.3)

for some uniform a,b > 0. Note that a,b depend on v and thus uniform bounds on v from
Theorem 9.3 below are crucial. By Lemma 8.2, we conclude that ‖ h ‖ is uniformly bounded
and hence H is bounded uniformly as well. Thus, the right-hand side of (8.1) is uniformly
bounded and thus u is bounded uniformly for finite times. 
�

Deriving a uniform time-independent lower bound for u is harder and is usually done by
a barrier argument. In the non-compact setting the barrier argument is somewhat intricate
and we present here a different approach without using barriers.

Proposition 8.4 Consider Setting 1.1 and impose Assumptions 1.4 (1)–(3). Then ‖∂tu‖∞ is
exponentially decreasing. In particular, u is bounded uniformly.
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Proof As explained in Proposition 8.3, ‖ h ‖ is uniformly bounded. Anticipating uniform
space-likeness as asserted in Theorem 9.3, by the time-like convergence assumption we may
take δ ′ > 0 small enough such that RicN(μ,μ) � δ ′ > 0. By (6.7) we conclude

(∂t + Δ)(H−H)2 � −δ ′(H−H)2. (8.4)

By the Omori-Yau estimates (4.1) and Proposition. 4.3, we find

∂t(H−H)2sup � −δ ′(H−H)2sup. (8.5)

This differential inequality can be integrated and yields

0 � (H−H)2sup(t) � e−δ′(t−σ)(H−H)2sup(σ), (8.6)

for every 0 < σ < t. Since (H−H)2 ∈ C1,α(M × [0, T ]) ∩ C2,α(M × (0, T ]), Lemma 3.3
implies that (H−H)2sup is continuous. Therefore, we can take the limit for σ going to 0 in
(8.7) resulting in

0 � (H−H)2sup(t) � e−tδ′
(H−H)2sup(0), (8.7)

for every t ∈ [0, T ]. As already noted in the previous proposition, Theorem 9.3 asserts that
as a consequence of the upper bound in Proposition 8.1, v is uniformly bounded. Thus, by
(8.1) there exists a uniform constant c > 0 such that

‖∂tu‖∞ � ce−tδ′
. (8.8)

This proves the statement. 
�

9 C1-estimates: preserving the space-like property

In this section we will prove the first main result of this paper, namely that a prescribed mean
curvature flow stays uniformly space-like for as long as the flow exists, if u is uniformly
bounded from above. The argument presented here follows in spirit the work of Gerhardt in
[14] and is concluded by an application of the parabolic maximum principle. We begin by
noticing the following.

Proposition 9.1 If the gradient function v is uniformly bounded along the flow (1.3), then the
prescribed mean curvature flow (1.3) stays space-like.

Proof Assume there exists someK > 1 so that v = v(p, t) � K for every (p, t) ∈ M× [0, T ].
Note that the requirement K > 1 follows from Proposition 2.5 (ii). Equation (2.8) implies

f(u) � K

√

f(u)2 − |˜∇u|2
g̃
,

where ˜∇u is as before the gradient of u with respect to g̃. We conclude

|˜∇u|2g̃ �
(

1−
1
K2

)

f(u)2 < f(u)2.

Notice that the above is precisely the condition required for a graph to be space-like as pointed
out in [12, Remark 2.6]. 
�
Remark 9.2 Note that a solutionu ∈ C2,α(M×[0, T ]) is guaranteed to exist ifH ∈ C1,α(M)

and the initial condition is merely u0 ∈ C2,α(M).
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In order to prove that the flow stays space-like, it is therefore enough to prove that the
gradient function v is uniformly bounded along the flow. This is precisely themain conclusion
of this section, which we now put as a separate theorem

Theorem 9.3 Consider the flow (1.3)withH ∈ C1,α(M) and solutionu ∈ C2,α(M×[0, T ]).
Assume that u is uniformly bounded from above. Then the gradient function v is uniformly
bounded along the flow, with the bound depending only on the upper bound ofu. In particular,
the prescribed mean curvature flow stays space-like as long as the flow exists.

It is worth noticing that Theorem 9.3 is a statement about properties preserved along the
flow. Usually one deals with these problems by finding appropriate parabolic differential
inequalities and employing the parabolic maximum principle. Having a parabolic maximum
principle at our disposal (cf. Theorem 4.4), following along the same lines of the proof of
[14, Proposition 3.7], the reminder of this section will be devoted to gaining the claimed
parabolic differential inequalities. In order to do so, some preparation is needed.

9.1 Preliminaries

First we recall the evolution Eq. (1.3) for u. For H : M → R being a fixed prescribing
function, one can rewrite (1.3) in terms of v that is,

(∂t + Δ)u = Hv +
f ′(u)
f(u)

(m + v2 − 1). (9.1)

We will now proceed by presenting some estimates which will be useful for the proof of
Theorem 9.3, and hold for any given graphical embedding (not necessarily along the (1.3)
flow).

Proposition 9.4 Consider Setting 1.1. Assume the embeddings F(M) ≡ F(t)(M) are space-
like for t ∈ [0, T ]. Recall, g = F∗g denotes the induced metric on M, h the scalar second
fundamental and v the gradient function. Then there exists a constant c > 0 independent of
u, such that

|g(∇u,∇v)| � ‖ h ‖|∇u|2g + c|∇u|2gv. (9.2)

Proof In local coordinates one has

g(∇u,∇v) = gikukvi.

From Eq. (5.26) we infer

g(∇u,∇v) = −gikukgjmum hij −
f ′(u)
f(u)

gimumuiv

= −gikukgjmum hij −
f ′(u)
f(u)

|∇u|2g.

Recall, by Setting 1.1 there exists some constant c > 0 so that ‖f ′/f‖
∞

� c. Thus, we
conclude

|g(∇u,∇v)| � |gikukgjmum hij | +

∣

∣

∣

∣

f ′(u)
f(u)

∣

∣

∣

∣

|∇u|2gv � ‖ h ‖|∇u|2g + c|∇u|2gv,

where ‖ h ‖ denotes the norm of the scalar second fundamental form h with respect to the
metric g. 
�
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Next we present an estimate for RicN(μ,μ).

Proposition 9.5 We continue as in Proposition 9.4. Then there exists a constant c > 0
independent of u, such that

|RicN(μ,μ)| � cv2. (9.3)

Proof From the local expression of the unit normal μ in (2.7) we find

RicN(μ,μ) = v2 RicN(∂0, ∂0) +
2v2

f(u)2
RicN(∂0, ˜∇u) +

v2

f(u)4
RicN(˜∇u, ˜∇u).

Proposition 2.8 gives

RicN(μ,μ) = −mv2
f ′′(u)
f(u)

+
2v2

f(u)2
RicN(∂0, ˜∇u) +

v2

f(u)4
RicN(˜∇u, ˜∇u).

The second term vanishes due to Proposition 2.8. Again, from Proposition 2.8 we infer for
the third term

v2

f(u)4
RicN(˜∇u, ˜∇u) =

v2

f(u)4
˜Ric(˜∇u, ˜∇u) +

f ′′(u)
f(u)3

v2|˜∇u|2g̃ + (m − 1)
f ′(u)2

f(u)4
v2|˜∇u|2g̃.

We plug this back into the expression for RicN(μ,μ) and conclude from (iv) in Proposition
2.5

RicN(μ,μ) = mv2
f ′′(u)
f(u)

+
v2

f(u)4
˜Ric(˜∇u, ˜∇u)

+
f ′′(u)
f(u)

|∇u|2g + (m − 1)

(

f ′(u)
f(u)

)2

|∇u|2g.

By Setting 1.1 there exist some constants c1, c2, c3 > 0 so that

|f(x0)| � c1I

∣

∣

∣

∣

f ′(x0)
f(x0)

∣

∣

∣

∣

� c2I

∣

∣

∣

∣

f ′′(x0)
f(x0)

∣

∣

∣

∣

� c3I ∀ x0 ∈ R, (9.4)

By taking the absolute value and keeping in mind that (M, g̃) is of bounded geometry (i.e. in
particular ˜Ric(X,X) � c4g̃(X,X) for any vector field X and some uniform constant c4 > 0),
we obtain the following estimate

|RicN(μ,μ)| � mc3v
2 +

c4

f(u)4
v2 + c3|∇u|2g + (m − 1)c22|∇u|2g.

The statement now follows by noticing that |∇u|2g � v2 byProposition 2.5 and since |f(x0)| �
c1 > 0 is bounded uniformly from below away from zero. 
�

Next we prove that hypersurfaces of (N,g) arising as graphs of some Hölder regular
functions satisfy the mean curvature structure condition, cf. [4, chapter 3].

Proposition 9.6 We continue as in Proposition 9.4. Recall, H denotes the scalar mean cur-
vature and h the scalar second fundamental form. Then for any ε > 0 and some uniform
constant c > 0 (independent of u) we have

|H+ h(∇u,∇u)| � εv‖h‖ + cε−1v3. (9.5)
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Proof At any fixed (p, t) ∈ M × [0, T ] there exists an orthonormal (with respect to g) basis
{ei} of h-eigenvectors, i.e. for the Kronecker delta δij

h(ei, ej) = hiδij, g(ei, ej) = δij.

With respect to that basis we compute at (p, t) (writing (∇u)i := g(∇u, ei))

|H+ h(∇u,∇u)| =

∣

∣

∣

∣

∣

m
∑

i=1

hi +

m
∑

i=1

hi(∇u)2i

∣

∣

∣

∣

∣

�
m
∑

i=1

(1+ (∇u)2i√
εv

)√
εv|hi|

�
m
∑

i=1

(vε)−1
(

1+ (∇u)2i

)2
+ εv

m
∑

i=1

h2
i

� (vε)−1
(

m + 2|∇u|2g + |∇u|4g

)

+ εv‖h‖2.

By (2.12) we conclude for some c > 0 (independent of u and (p, t))

H+ h(∇u,∇u) � cε−1v3 + εv‖h‖2.

�

We will need one last estimate.

Proposition 9.7 We continue as in Proposition 9.4. Consider as above the (local) vector field
V on M, so that DF(V) = ∂�

0 . Then for every function H ∈ C1,α(M) there exists some
uniform constant c > 0 (independent of u) such that

|V(H)| � c‖∇u‖g‖H‖1,α. (9.6)

Proof It is easy to see that the condition DF(V) = ∂�
0 gives V = −

˜∇u
f(u)2

.
Therefore, in local coordinates, we obtain using (2.10) in the last estimate

|V(H)| =

∣

∣

∣

∣

1
f(u)2

g̃ijuiHj

∣

∣

∣

∣

� c|˜∇u|g̃‖H‖1,α � c|∇u|g‖H‖1,α,

where we used the fact that f > 0 is uniformly bounded away from zero. 
�

We are now ready to prove Theorem 9.3.

9.2 Proof of Theorem 9.3

We will use the ideas of the argument of [14] with some adaptations due to non-compact
geometry. In the upcoming computations we will systematically suppress the point (p, t) ∈
M × [0, T ] from notation. We consider some constants λ, ρ > 0, which we will specify later.

Let ϕ = eρeλu
. Assume, without loss of generality that u > 1, if it is not the case we

can consider u + C for some constant C > 0 large enough. An easy computation gives

(∂t + Δ)ϕ = −ρλ2eλu(1+ ρeλu)ϕ|∇u|2g + ρλeλuϕ(∂t + Δ)u. (9.7)

Let us now set w = ϕv. Therefore, we find (recall μ is defined in 2.7)

(∂t + Δ)w = v(∂t + Δ)ϕ + ϕ(∂t + Δ)v − 2g(∇ϕ,∇v)

= v(∂t + Δ)ϕ + ϕ(∂t + Δ)v − 2ρλeλuϕg(∇u,∇v).
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Substituting (9.7) and (5.1) in the above, we obtain

(∂t + Δ)w = I1 + I2.

where I1 and I2 are explicitly given as follows (recall μ is defined in (2.7))

I1 := −ρλ2eλu(1+ ρeλu)|∇u|2gϕv − ‖ h ‖2ϕv − V(H)ϕ − 2
f ′(u)
f(u)

Hϕ

− 2

(

ρλeλu −
f ′(u)
f(u)

)

g(∇u,∇v)ϕ −

(

f ′(u)
f(u)

)2

|∇u|2gϕv,

I2 := ρλeλuϕv(∂t + Δ)u − RicN(μ,μ)ϕ +
f ′(u)
f(u)

Hϕ −
f ′(u)
f(u)

Hϕv2

+ m
f ′′(u)
f(u)

ϕv −
f ′′(u)
f(u)

|∇u|2gϕv − m

(

f ′(u)
f(u)

)2

ϕv

First, we estimate I2 from above. By Setting 1.1 there exist some constants c1, c2 > 0 such
that the warping function f : R → R

+ satisfies for any x0 ∈ R

|f(x0)| � c1,

∣

∣

∣

∣

f ′(x0)
f(x0)

∣

∣

∣

∣

� c2,

∣

∣

∣

∣

f ′′(x0)
f(x0)

∣

∣

∣

∣

� c2.

From Eq. (9.1) we now deduce for some c3 > 0 depending on ‖H‖∞

(∂t + Δ)u � c3v
2.

Since |∇u|g � v by (iii) in Proposition 2.5, we arrive by Propositions 9.5 and 9.7 at the
following estimate of I2 (we write c > 0 for any, positive, uniform constant)

I2 � cρλeλuϕv2 + c|∇u|2gϕv + c|∇u|gϕ � cρλeλuϕv3.

The estimate of I1 is slightly more involved. Using the formula from Proposition (5.11)

h(∇u,∇u) = −g(∇u,∇v) −
f ′(u)
f(u)

|∇u|2v,

we can rewrite I1 as follows

I1 = −ρλ2eλu(1+ ρeλu)|∇u|2gϕv − ‖ h ‖2ϕv − 2
f ′(u)
f(u)

(

H+ h(∇u,∇u)
)

ϕ

− 3

(

f ′(u)
f(u)

)2

|∇u|2gϕv − m

(

f ′(u)
f(u)

)2

ϕv − 2ρλeλug(∇u,∇v)ϕ.

By Proposition 9.6 we find for some uniform constant c > 0 (in fact we will not differentiate
between all the, positive, uniform constants and denote them all by c)

I1 � −ρλ2eλu(1+ ρeλu)|∇u|2gϕv

−
(

1− 2

∣

∣

∣

∣

f ′(u)
f(u)

∣

∣

∣

∣

ε
)

‖ h ‖2ϕv − 3

(

f ′(u)
f(u)

)2

|∇u|2gϕv

+ 2c

∣

∣

∣

∣

f ′(u)
f(u)

∣

∣

∣

∣

ε−1ϕv3 − 2ρλeλug(∇u,∇v)ϕ.

(9.8)

We now want to estimate the last term above. By Proposition 9.4 we have for some uniform
constant c > 0

−2ρλeλug(∇u,∇v)ϕ � 2ρλeλu|g(∇u,∇v)|ϕ
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� 2ρλeλu
(

‖h‖|∇u|2g + c|∇u|2gv
)

ϕ.

We estimate this further for any ε ′ > 0 and using (2.12) in the last step

−2ρλeλug(∇u,∇v)ϕ �
2ρλeλu|∇u|2g
√

2(1− ε ′)v

√

2(1− ε ′)v‖ h ‖ϕ + 2cρλeλu|∇u|2gϕv

�
ρ2λ2e2λu|∇u|4g

(1− ε ′)v
ϕ + (1− ε ′)‖ h ‖2ϕv + 2cρλeλu|∇u|2gϕv

� ρ2λ2e2λu

(1− ε ′)
|∇u|2gϕv + (1− ε ′)‖ h ‖2ϕv + 2cρλeλu|∇u|2gϕv.

Choosing, for any given ε ′ ∈ (0, 1), an ε > 0 sufficiently small such that ε ′ > 2
∣

∣

∣

f′(u)
f(u)

∣

∣

∣ ε

and plugging the last estimate into (9.8), we arrive at

I1 � −ρλeλu
(

λ − 2c
)

|∇u|2gϕv − 3

(

f ′(u)
f(u)

)2

|∇u|2gϕv

+ 2c

∣

∣

∣

∣

f ′(u)
f(u)

∣

∣

∣

∣

ε−1ϕv3 +
ε ′

(1− ε ′)
ρ2λ2e2λu|∇u|2gϕv.

(9.9)

Set ε ′ = e−λu and ρ = 1/2. Choose λ > 0 so that for every λ > λ

ρ

1− e−λu
� 3

4
.

Then we can estimate I1 even further by (recall |∇u|g � v by Proposition 2.5)

I1 � −
1
8
λeλu

(

λ − c
)

|∇u|2gϕv + cλeλuϕv3.

We want to point out that the above estimates follows by considering λ to be large enough so
that the second and third term in (9.9) can be estimated by the second term in the equation
above.
Summarizing, we arrive at the following intermediate estimate

(∂t + Δ)w � −
1
8
λeλu

((

λ − c
)

|∇u|2g − cv2
)

w. (9.10)

We want to turn this into a differential inequality for the supremum

vsup(t) = sup
p∈M

v(p, t).

Let us assume that there exists some t0 ∈ [0, T ] such that vsup(t0) > 2, otherwise the
statement is trivial. Since by Proposition 4.3, vsup(t) is locally Lipschitz, vsup(t) > 2 in an
open interval I = (a,b) ⊂ [0, T ] containing t0. We take the minimal possible such a � 0,
such that by continuity of vsup(t) we have either a = 0 or vsup(a) = 2.

Consider t ∈ (a,b) and a sequence (pk(t)) ⊂ M satisfying (4.1). Then for k ∈ N

sufficiently large, v(pk(t), t) > 2 and we establish a differential evolution inequality for v

at those points as follows. We consider v and w evaluated at (pk(t), t) without making it
notationally explicit. Since v � 2, we have −4 � −v2 and from (i) in Proposition 2.5 we
find

|∇u|2g = v2 − 1 � v2 −
v2

4
=

3
4
v2. (9.11)
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Choosing λ > λ sufficiently large (note that these choices do not depend on u) the right-
hand side of (9.10), evaluated at (pk(t)) for k ∈ N sufficiently large, turns negative and we
conclude

(∂t + Δ)w(pk(t), t) � 0.

This implies by Proposition 4.3 for any t ∈ (a,b) in the limit k → ∞

∂twsup(t) � 0.

Thus, for any t ∈ (a,b) we conclude w(·, t) � wsup(t) � wsup(a). In particular, we find
for any (p, t) ∈ M × (a,b) and some constant c > 0, depending only on H, u(t = a) and

the ambient geometry, that (note that eρeλu
> 1)

v(p, t) � exp
(

ρeλusup(a)
)

vsup(a) < cvsup(a), (9.12)

where the second estimate holds, provided u is bounded uniformly from above. Now, since
we have either a = 0 or vsup(a) = 2, we conclude that v is uniformly bounded.

Corollary 9.8 We continue in the Setting 1.1. Assume thatu is uniformly bounded from above.
Then v is uniformly bounded and hence, provided f is uniformly bounded, as assumed in
Setting 1.1, | ˜∇ u |g̃ is uniformly bounded as well.

10 C2-estimates: bounds of the second fundamental form

Uniform boundedness of ‖h‖ and hence also of the mean curvature H has been established
already in Proposition 8.3. Now, as computed in the preceeding work by the first named
author [12, (2.15)]

hij = −
f(u)

√

f(u)2 − |˜∇u|2
g̃

(

uij − ˜Γk
ijuk − 2

f(u)f ′(u)
f(u)2

uiuj + f(u)f ′(u)g̃ij

)

. (10.1)

From here it is clear in view of uniform bounds of f and its derivatives, as well as Corollary
9.8 that each uij is uniformly bounded. We thus arrive at the C2 estimates

Proposition 10.1 We continue in the Setting 1.1. Assume that u is uniformly bounded from
above. Then ‖h‖ and hence also of the mean curvature H are uniformly bounded and hence

| ˜∇2
u |g̃ is uniformly bounded as well.

Taken altogether, results on the last three sections yield the following

Theorem 10.2 Consider Setting 1.1 and a solution u ∈ C4,α(M × (0, T ]) to (1.3).

(1) Impose Assumptions 1.4 (1) and (2). Thenu, | ˜∇u |g̃ and | ˜∇2
u |g̃ are bounded uniformly

for finite T > 0, with bounds possibly depending on T .

(2) Impose Assumptions 1.4 (1)–(3). Then u, | ˜∇ u |g̃ and | ˜∇2
u |g̃ are bounded uniformly

independent of T > 0. Moreover, ‖∂tu‖∞ is exponentially decreasing.
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11 Long-time existence and convergence

As before, we continue in the Setting 1.1 and consider a local solutionu to (1.3) extended to a
maximal time interval u ∈ C3,α(M× [0, T ])∩C4,α(M× (0, Tmax)). Let us assume without
loss of generality that Tmax > 0 is finite. The Hölder norm is bounded for each compact
interval in [0, Tmax), but may a priori blow up the closer we get to Tmax. The main point of
this section is show that a posteriori this does not happen.

We first use uniform estimates from Theorem 10.2 to establish uniform ellipticity in the
sense of (3.6) for the Laplacian Δ of g = g(t) = F(t)∗g. Recall also the constant Λ > 0 in
the definition of uniform ellipticity in (3.6).

Proposition 11.1 Consider a solution u ∈ C3,α(M× [0, T ])∩C4,α(M× (0, Tmax)) to (1.3).

(1) If u, | ˜∇u |g̃ and | ˜∇2
u |g̃ are bounded uniformly for any finite Tmax > 0, then Δ is

uniformly elliptic for each t ∈ [0, Tmax) with Λ > 0 bounded for any finite maximal time
Tmax.

(2) If u, | ˜∇u |g̃ and | ˜∇2
u |g̃ are bounded uniformly independent of Tmax > 0, then Δ is

uniformly elliptic for each t ∈ [0, Tmax)whereΛ > 0 can be chosen independent of Tmax.

Proof From (3.9) we obtain after cancellations

Δu =
1

f(u)2 − | ˜∇ u |2
g̃

(

˜Δ + ̂Δ
)

u

+
| ˜∇ u |2g̃

(f(u)2 − | ˜∇ u |2
g̃
)

(

f(u)f ′(u)
f(u)2 − | ˜∇ u |2

g̃

− (m − 1)
f ′(u)
f(u)

)

.

(11.1)

Thus, in view of uniform bounds, it suffices to prove uniform ellipticity for (˜Δ + ̂Δ). We
compute from (3.10) in local coordinates

˜Δ + ̂Δ =
1

f(u)2 − | ˜∇ u |2
g̃

(

−g̃ij −
g̃iquqg̃jmum

f(u)2 − | ˜∇ u |2
g̃

)

(

uij − ˜Γk
ijuk

)

From here we obtain for the symbol of (˜Δ + ̂Δ) in local coordinates

σ(˜Δ + ̂Δ)(p, ξ) =
1

f(u)2 − | ˜∇ u |2
g̃

(

g̃ijξiξj +
g̃iquqξig̃

jmumξj

f(u)2 − | ˜∇ u |2
g̃

)

=
1

f(u)2 − | ˜∇ u |2
g̃

(

‖ξ‖2g̃ +
g̃(du, ξ)2

f(u)2 − | ˜∇ u |2
g̃

) (11.2)

This implies uniform ellipticity as asserted. 
�
We can now establish Hölder regularity of the gradient function.

Proposition 11.2 Consider a solution u ∈ C3,α(M× [0, T ])∩C4,α(M× (0, Tmax)) to (1.3)
and assume that H is bounded.

(1) If u, | ˜∇ u |g̃ and | ˜∇2
u |g̃ are bounded uniformly for finite Tmax > 0, then

u, v ∈ Cα(M × [0, Tmax]),

with the Hölder norm bounded for finite Tmax > 0.
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(2) If u, | ˜∇ u |g̃ and | ˜∇2
u |g̃ are bounded uniformly independent of Tmax > 0, then

u, v ∈ Cα(M × [0, Tmax]),

with a Tmax-independent bound for the Hölder norm.

Proof Consider the evolution equation for the gradient function v, as derived in Theorem 5.1.
Since the right-hand side of (5.1) is bounded uniformly (with bounds possibly depending on T

depending on whether u, | ˜∇ u |g̃ and | ˜∇2
u |g̃ are bounded independent of T or not), Hölder

regularity follows by uniform ellipticity of Δ in Proposition 11.1 and the Krylov–Safonov
estimates in the first statement of Proposition 3.5. The statement for u follows in exactly the
same way from the evolution equation (1.3). 
�

We can now bootstrap to improve upon regularity of u.

Proposition 11.3 Consider a solution u ∈ C3,α(M× [0, T ])∩C4,α(M× (0, Tmax)) to (1.3).
Assume that H ∈ C�,α(M) for some � ∈ N0. Then the following is true.

(1) If u, | ˜∇ u |g̃ and | ˜∇2
u |g̃ are bounded uniformly for finite Tmax > 0, then

u ∈ C3,α(M × [0, T ]) ∩ C2+�,α(M × (0, Tmax]),

with the Hölder norm bounded for finite Tmax > 0.

(2) If u, | ˜∇ u |g̃ and | ˜∇2
u |g̃ are bounded uniformly independent of Tmax > 0, then

u ∈ C3,α(M × [0, T ]) ∩ C2+�,α(M × (0, Tmax]),

with a Tmax-independent bound for the Hölder norm.

Proof Consider the evolution Eq. (1.3) for the solutionu. By Proposition 11.2, the right-hand
side of (1.3) as well as the coefficients of Δ (cf. 11.1) lie in Cα(M × [0, Tmax]). Thus, by
Proposition 3.5 (ii), we conclude

u ∈ C2,α(M × [0, Tmax]).

Now we can bootstrap exactly as at the end of the proof of Theorem 1.5. 
�
Therefore, assuming that H ∈ C2,α(M), we have u ∈ C3,α(M × [0, T ]) ∩ C4,α(M ×

(0, Tmax]) and hence by Theorem 1.5 we can restart the flow with u(Tmax) ∈ C4,α(M) as a
new initial condition. Therefore, proving the long-time existence statement in Theorem 1.7.

It remains to discuss convergence under the conditions of Theorem 1.7 (ii). First we note
that exponential decay of ‖∂tu‖∞ implies thatu(t) admits awell-defined limitu∗ ∈ L∞(M)

as t → ∞. We need to conclude at least that u∗ ∈ C2(M) in order for u∗ to admit a well-
defined mean curvature H∗, which can then be shown to equal H. We can therefore prove
our final main result Theorem 1.8.

Proof of Theorem 1.8 As mentioned above, convergence to u∗ ∈ L∞(M) follows from the
exponential decay of ‖∂tu‖∞; therefore, it remains to prove that the limit is twice differen-
tiable in M. Let x : M → R

+ be a defining function of ∂M. Then, cf. [6, Proposition 11.2],
for any ε > 0 and α ′ < α the inclusion of weighted Hölder spaces

ι : C�+2,α(M) ↪→ x−εC�+2,α′
(M),

is compact. Consider the global solution u ∈ C3,α(M × [0, T ]) ∩ C�+2,α(M × (0,∞)),
whose existence follows by the previous Theorem 1.7. Since the sequence (u(t))t>0 ⊂
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C�+2,α(M) is uniformly bounded, by compactness of ι, there exists a convergent subsequence
(u(tn))n ⊂ x−εC�+2,α′

(M). Consequently the pointwise limitu∗ lies inx−εC�+2,α′
(M).

In particular, it admits a well-defined mean curvature H∗. By (8.7), H(tn)−H converges to
zero and hence indeed H∗ = H. 
�
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