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Abstract: Atom interferometry with ultracold atoms for inertial sensing

In light pulse atom interferometry wave packets are spatially separated and recombined in a
coherent manner by interacting with laser pulses. Typically, two photon transitions are used to
perform Rabi oscillations between two internal or/and external states to construct atom-optical
elements, like beam splitters or mirrors. The phase difference accumulated between two atomic
trajectories can be used to measure quantities such as accelerations or rotations. The velocity
distribution and size of the employed atomic sources can significantly limit the efficiency of
the atom-light interactions and thus the performance of the interferometer. To overcome this
limitation, ensembles with momentum distributions far below the recoil of a photon are used,
such as collimated Bose-Einstein condensates (BEC).
Exploiting the properties of a BEC opens up a wide range of possibilities for new techniques
and concepts, especially for increasing the sensitivity of measurements performed in small
volumes. This work presents some of these novelties. The technique of an innovative (re-)launch
mechanism helps to effectively increase the available interferometry time in compact gravimeter
setups. A symmetric large momentum transfer in the form of a twin-lattice enables the
enclosure of large space-time areas suitable for rotation measurements with high sensitivities.
The exploitation of a BEC in combination with momentum transfer by double Bragg diffraction
contributed to the development of a new concept. Using a single BEC, it is possible to create
two simultaneous interferometers, which are employed to differentiate between rotations and
accelerations. Its symmetry allows this geometry to be extended to form the basis of a six-axis
quantum inertial measurement unit. Last but not least, the (re-)launch in combination with
the symmetric splitting also provides the basis for a multi-loop atom interferometer. With this
concept, an area can be enclosed that offers unique scalability for rotational sensors.
Each atom interferometer is affected by the quality of its interrogating light fields. Therefore
specific detrimental effects are pointed out in this work and possible mitigation strategies are
presented subsequently. One way to reduce the susceptibility of light beams to distortions at
apertures is to change their profile from the commonly used Gaussian profile to a more locally
limited intensity distribution. For this purpose, the application of flat-top beam profiles is
investigated. This brings the added benefit of a uniform power distribution, which helps to
increase the beam area in which the ensemble of atoms can be manipulated with the same
properties. Imperfections can also lead to position-dependent dipole forces that have a parasitic
effect on the output of an interferometer. Especially for large momentum transfer techniques
this has proven to be a limitation which can necessitate a compensation mechanism. To this
end, a laser system is constructed that achieves the required high laser powers and includes
additional frequency components.
Many of the interferometry methods and concepts introduced are well suited for compact or
transportable systems. For this purpose, a laser system based on telecommunication fiber
components is presented, which represents an all-in-one solution for the generation, preparation
and subsequent beam splitting of ultracold atoms. Inspired by all of the above, the future
vision of a quantum sensor for inertial navigation applications is discussed.
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CHAPTER 1
Introduction

In his doctoral thesis defended in 1924, Louis Victor Pierre Raymond, 7th Duc de Broglie
(1892-1987) developed the idea that for matter as well as for radiation, especially for light,
it is required to introduce the corpuscle and the wave concept simultaneously [Bro24]. He
formulated the hypothesis that also particles can be assigned a wavelength which depends
on its momentum 𝑝. For the associated wavelength 𝜆 named after him, he postulated the
well-known formula 𝜆 = ℎ/𝑝, where ℎ denotes Planck’s constant. According to this definition,
matter waves were defined analogous to light waves. The existence of this wave-like behavior
was demonstrated for the first time in 1927 in the famous Davisson-Germer experiment by
Clinton Joseph Davisson and Lester Halbert Germer in the form of experimental evidence of
interference phenomena with electrons [Dav27]. Such experiments were crucial to the field of
matter-wave interference, which is now at the center of quantum physics, but they also revealed
two major challenges. First, due to the relatively high temperature of the most accessible
particles, the typical de Broglie wavelengths 𝜆 are much smaller than a nanometer and thus
several orders of magnitude smaller than those of visible light. This makes it difficult to
observe the wave-like behavior of heavier particles. Second, particles are usually scattered
or absorbed by solid matter, which complicates the realization of coherent manipulations as well.

One step in the direction of overcoming the first problem was based on the use of a thermal
atomic beam that could be split, sent on two or more paths, and recombined to overlap and
interfere in space and time using small mechanical transmission structures [Kei88; Kei91;
Car91]. The second challenge was addressed with the development of laser cooling, trapping
of neutral atoms, and exploiting the electric dipole interaction with near resonant light fields
to diffract atoms on gratings called optical lattices rather than solid matter [Ash78; Phi85;
Raa87]. This opened up new possibilities for the construction of atomic interferometers and
laid the foundation for their use in measuring inertial forces with high accuracy and precision.
As a first application in this direction, a gravimeter based on the interference of laser-cooled
sodium atoms was demonstrated [Kas91]. The basis for atom interferometry is the generation
of superposition states of massive particles, which can subsequently be made to interfere. A
single particle follows two space-time trajectories during an interferometer sequence, which
can be influenced by a variety of effects. All interactions that take place with the particle
during this time affect the measured output phase difference at the end of the sequence. With
appropriate evaluation, this phase measurement can make it possible to determine quantities
like for example the acceleration due to gravity. This makes interferometry a useful technique
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Chapter 1 Introduction 2

for investigating a wide range of possible applications, ranging from fundamental physics to
inertial navigation.

Shortly after the appearance of de Broglie’s work, another, no less amazing quantum effect
was predicted by Albert Einstein in 1925 [Ein25]. Based on the work of Satyendra Nath
Bose, it was possible to postulate an extreme aggregate state of a system of indistinguishable
particles in which the vast majority of particles are in the same quantum mechanical state,
today known as a Bose-Einstein condensate (BEC) [Bos24]. In contrast to the matter waves
postulated by de Broglie, it was not until 70 years later that this state could be produced in a
real experiment in an atomic gas. In 1995, this was achieved three times in different groups for
small ultracold, dilute gas clouds of rubidium [And95], lithium [Bra95], and sodium [Dav95].
Bose-Einstein condensation can be explained using the wave-like behavior of particles described
by de Broglies wavelength definition. At thermal energies, gaseous atoms move at high veloc-
ities, and the wavelengths are tiny compared to all other relevant length scales. Therefore,
quantum effects are usually negligible under these conditions. However, if the atomic velocity is
reduced sufficiently and the motion of the atoms in a gas is greatly slowed down, the quantum
wave nature begins to play a crucial role, since the matter waves of the individual atoms
are no longer independent but begin to overlap. In simplified terms, the de Broglie wave-
lengths of the atoms become about as large as the average distance between the individual atoms.

Interference between two freely expanding Bose-Einstein condensates (BEC) was observed for
the first time by their overlap [And97]. This experiment validated the notion of the BEC as
a macroscopic matter wave source for atom interferometers providing benefits in the form of
a slowly expanding wave function, large spatial coherence, and possibilities of using a larger
number of coherent manipulation techniques. [Den00; Bir95; Bon03]. Thanks to the availability
of exceptional control over these ultracold ensembles, a wide range of techniques opened up:
from strategies for preparing the initial example to the use of methods capable of transmitting
large portions of photon momentum [Chu86; Ben96; Amm97; Chi11; McD14].

While BECs can overcome many problems that limit the performance of interferometers op-
erated with ensembles of higher effective temperatures there are still challenges remaining.
These can be due to the properties of the atomic source itself, the applied light fields, or the
measurement environment. For example, any force that accelerates, expands, or shifts the
ultracold atomic ensemble places a constraint on the interferometer [Szi12; Dic13].

For that matter the extent and homogeneity of the interrogating light fields themselves play
an important role. The atom-light interaction in such an optical potential that contains two
counter-propagating frequency components can typically only transfer momentum along its
propagation. Simplified, one can assume now two cases: The atomic ensemble has a forward
velocity parallel or perpendicular to this momentum transfer. Figure 1.2 illustrates this concept,
showing on the left side an ensemble moving along the direction of the light fields (black arrow),
which then transfers momentum in the same or opposite direction (red arrows).
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Figure 1.1: Idealized interrogation of an atomic ensemble within an optical potential consisting
of the collimated propagation of a normal distribution and containing two counter-propagating
frequency components. Left: The atomic ensemble moves along the direction of the propagated
potential (black arrow) while in turn momentum is transferred in the same or exactly opposite
direction (red arrow) Right: The ensemble moves perpendicular to the propagating potential (black
arrow) and the momentum is therefore also transmitted perpendicular to it (red arrows).

On the right side, where the ensemble moves instead perpendicular to the light field (black
arrow), momentum is therefore transferred perpendicular to this direction (red arrows). A
conceptual difference is that the direction of momentum transfer is not selective, but occurs
simultaneously on both sides, since there is no preferred direction as in the parallel motion of
atoms along the propagated potential. This distinction illustrates in a simple way how different
center-of-mass motions can have an effect on the interferometer relying on this interaction.
An optical manipulation of the atoms is only possible as long as they are at a position with
sufficient optical power. Therefore, the normal distribution shown here as an example with an
intensity decreasing towards the edge provides only a suboptimal choice with that respect.

The conceptual model can also be extended to multidimensional manipulations. The most
simple route is to combine two light fields with different propagation directions, as shown
schematically in figure 1.2. In this way, the optical potentials can be used either sequentially,
for example separated in time, or simultaneously for momentum transfer. If the ensemble is
interrogated multiple times at different positions within the optical potential, a more uniformly
distributed intensity can be desirable. An idealized example is shown in figure 1.2 on the right,
where two so-called flat-top intensity distributions illustrate the concept of creating a region
of constant intensity. Such a configuration can be advantageous because it greatly simplifies
intensity-dependent optical manipulations while providing sharper intensity gradients at the
edges. [Mie18].

Apart from the overall determining shape of the intensity and phase distribution, perturbations
of the light field also have a great influence on the atom-light interaction. The (relative) phase
of the light field is an especially important factor and wavefront aberrations are one of the
largest uncertainty factors in today’s atom interferometers [Lou11; Sch15; Bad18; Böh22].
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Figure 1.2: Idealized interrogation of an atomic ensemble in a crossed optical potential consisting
of the collimated propagation of two different intensity distributions, each direction containing
two oppositely propagating frequency components. Left: In a simple approach momentum can be
imparted individually to the atomic ensemble in four different directions. Either along or against
the direction of motion or perpendicular to it. Right: When the two gaussian shaped optical
potentials are replaced by flat-top distributions a region of more constant intensity is created. Such
a configuration provides advantages for intensity-dependent optical manipulations while providing
sharper intensity gradients at the edges.

Another important aspect affecting performance are parasitic influences caused by less than
ideal measurement environments. In the past, many approaches have been taken to over-
come limitations like common-mode vibration noise or systematic effects in order to increase
the precision and/or accuracy of the performed measurements. Differential or gradiometric
concepts have emerged that rely on the formation of pairs of atomic ensembles, preferably
from a single source than from separate sources. This has been prominently implemented at
large baselines [Ove22]. However, in combination with ultracold atoms, there are also many
advantages in more compact setups, especially for controlled initial splitting with subsequent
manipulations [Per19; Mül08a; Bar19].

A large number of today’s applications of atom interferometers are based on the measurement
of accelerations and/or rotations derived from the detected phase difference. All of them have in
common that their sensitivity scales with the time used for the interferometer, the transferred
photonic momentum and, in the case of rotations, with the enclosed area by the interferometer
trajectories. With the right choice of parameters, they have gained the ability to detect small
changes in inertial quantities, which has led to the development of numerous applications
such as the measurement of geophysical effects [Pet01; Mén18; Sav18; Sto11; Ber15], nav-
igation [Hog07; Che18], or even a proposed measurement of gravitational waves [Dim09; Lor19a].

Following on from all these developments and discoveries, the results presented in this thesis
are intended to further advance atom interferometry with BECs. First, its basic concepts,
including prerequisites and employed techniques, are discussed in chapter 2. Based on these
principles, four different publications are presented in chapter 3 which can be subdivided
into two methods and two schemes. The first of those methods is the realization of a compact
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fountain gravimeter that utilizes an innovative launch mechanism based on Bloch oscillations
and double Bragg diffraction to effectively increase the available interferometry time [Abe16].
The second method provides a symmetric large momentum transfer by a twin lattice enclosing
large space-time areas suitable for rotation measurements with high sensitivities [Geb21]. Both
methods employ beam-splitting light fields in a single direction only, either, along the direction
of gravitational acceleration or perpendicular to it. The use of an initial double diffraction pulse
in this horizontal direction followed by three successive pulses in the vertical direction allows the
construction of two simultaneous interferometers. Within such a geometry, it is then possible
to distinguish between rotational and acceleration components based on their combined initial
phases [Ger20]. Due to the symmetry of this scheme it can be extended to a six-axis quantum
inertial measurement unit. The combination of the method of the above-mentioned (re-)launch
with the symmetric splitting enables still another scheme. This has led to the concept of a
multi-loop atom interferometer with scalable area [Sch21]. Here, the atoms are again coherently
manipulated by two perpendicular aligned optical lattices, with a vertical light field serving
only for relaunch, while a horizontal field realizes splitting, redirection and recombination.

The above concepts and schemes are generally influenced by the quality of the laser light field
used for the atom-optical manipulations. Therefore, performance limitations based on the
detrimental effects are pointed out and possible mitigation strategies are presented subsequently
in chapter 4. In an effort to generate a laser beam with a uniform intensity and phase distri-
bution, a flat-top beam shaping optic is presented and characterized. It follows the idea that
such a beam shape offers many advantages for atom interferometry, such as less susceptibility
to distortion at apertures than the commonly used Gaussian beams and a uniform power
distribution, which is useful when the atomic ensemble is interrogated at different positions
within the beam. Despite all efforts to improve the beam quality, a realistic optical potential
will still show small disturbances. When using high intensity laser beams, which are often
required for large momentum transfer techniques within optical lattices, those imperfections
can lead to position-dependent dipole forces that parasitically affect the output of an interfer-
ometer. The remainder of this chapter presents a high-power laser system that incorporates a
compensation mechanism for this effect. Since the laser sources are one of the most important
and complex components for atom interferometry, many efforts are also being made to simplify
and miniaturize these systems. Thanks to an intensive and decade-long development in the field
of optical fiber components for telecommunication, all optical manipulation and preparation
techniques described in the beginning for the atomic species of rubidium can be realized with
the help of these components. In the last section of this chapter, a laser system inspired by this
concept is presented, that allows to generate ultracold atoms, combine different beam splitting
methods, and detect the output phase of the interferometer as an all-in-one solution.

In chapter 5, the findings and results of this thesis are summarized. Furthermore, it describes
the respective advantages of the presented techniques in the context of compact application
possibilities and provides an estimation of the individually achievable sensitivities from the
point of view of the current state of the art.
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The final chapter 6 highlights a potential application based on the differential BEC interferome-
ter, in the form of multi-axis inertial sensing. The goal here is the technological development of a
compact, hybrid six-axis quantum inertial measurement unit. It plans to utilize both a compact
fiber-based laser system based on the concept presented in this thesis and flat-top-shaped
interrogation beams.



CHAPTER 2
A brief introduction to atom interferometry with ultracold atoms

This chapter first introduces the concept of Bose-Einstein condensation, explains how to
create such ensembles experimentally and prepare them as a suitable matter wave source
for interferometry. This is followed by explanations of coherent atom-light interactions in
terms of Raman and Bragg diffraction and their application in a Mach-Zehnder like atom
interferometer. The two aforementioned techniques have differences and similarities, for example,
Bragg diffraction has a relatively strong velocity selectivity of the process due to the rather
low energy splitting of the involved momentum states. Therefore, it is particularly dependent
on the low velocity dispersion of ultracold ensembles for the achievable manipulation fidelity.
In addition, Bragg pulses leave the atoms in the same electronic state, which can make the
interferometer phase more insensitive to influences acting in this regard. Raman pulses, on
the other hand, are suitable for much broader thermal distributions and leave the atoms in
a superposition of different electronic states. This can have advantages at the expense of
noise resistance, such as going in favor of easier and faster readout or sensitivity towards state
dependent effects.

2.1 Bose-Einstein condensates
Historically cold atom interferometers have been mostly operated with thermal sources at a
temperature equivalent on the order of 1 µK or less. While such sources allow high atomic flux,
they typically have a large momentum width. In recent years many interferometric applications
have shown the need for lower momentum widths to reach high fidelities for beamsplitting
operations. A simple approach to achieve this goal was to velocity select the source cloud,
which resulted in a smaller momentum width but reduced the atomic flux [Mül08a; Pet01].
A different approach is to create a source with a lower momentum width from the start, for
example a Bose-Einstein condensates (BEC) at the cost of lower cycle rates [Hug07]. This has
historically led to more complexity due to the additional number of steps required.

A complete theoretical description of BECs will be owed in this section. It should therefore
only be mentioned that reference [Pes95] provides a good introduction using quantum field
theory. For use as a source for atom interferometry, it is often sufficient to approximate the
correlations between the particles by the mean-field theory and to neglect fluctuations of the
bosonic field [Mey01]. BECs show potential especially when the state of the art for precision
measurements is challenged. Particularly in combination with long interrogation times and/or
large momentum transfer [Hen21]. It represents an extreme state of matter, where a large
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fraction of bosons occupy the lowest quantum state. In the wave-duality picture single particles
can be described by the so-called thermal de Broglie wavelength with

𝜆T =

√︃
2𝜋~2

𝑚𝑘B𝑇
, (2.1)

where 𝑚 defines the mass of the particle, ~ the reduced Planck constant and 𝑘B the Boltzmann
constant. As the temperature 𝑇 decreases, microscopic quantum mechanical phenomena, in par-
ticular wavefunction interference, become macroscopically visible. Bose-Einstein condensation
occurs when the individual wave packets begin to spatially overlap and the total system can be
described by one single wave function. To achieve this for a uniform three-dimensional Bose
gas consisting of 𝑁 non-interacting particles in a volume 𝑉 with the particle density 𝑛 = 𝑁/𝑉 ,
a critical temperature for the transition can be defined as follows [Pet08]

𝑇C =
(︂

𝑛

𝜁(3/2)

)︂2/3 2𝜋~2

𝑚𝑘B
, (2.2)

with the Riemann zeta function 𝜁(3/2) ≈ 2.6124. The transition to the BEC takes place below
this critical temperature. To simplify the definition, the phase space density 𝜌 = 𝑛𝜆3

T can
be introduced as the number of particles contained within a volume equal to the cube of the
thermal de Broglie wavelength. According to equation 2.2 the phase transition to a BEC now
occurs at 𝜌 = 𝜁(3/2). This helps to see that low temperatures and high particle densities are
both necessary for condensation.

One advantage of using BECs as a source for atom interferometry is that the expansion rate
of the freely evolving atomic cloud after its formation is significantly reduced, so that its size
during the interferometry time does not become too large compared to its initial size. Sub-recoil
velocities allow individual momentum-separated ports to be detected one at a time. The low
expansion rate also offers the possibility for precise position control and helps to circumvent
systematic effects such as wavefront distortions. If the initial rates are not sufficiently low, they
can be further reduced by using collimation techniques, as explained in the next section 2.1.2.
With these properties, coherent manipulations such as Bragg (for reference see subsection 2.2.1)
or Raman (for reference see subsection 2.2.3) diffraction or Bloch oscillations [Ben96; Cla06;
Mül09; Cla09; McD13] can be employed with high fidelity. An upper limit to the sensitivity of
atom interferometers is found in the quantum projection noise or so-called standard quantum
limit (SQL), which scales with 1/𝐶 defined by the contrast of the interferometer and 1/𝑁

defined by the number of atoms involved .

The atomic flux of BEC experiments is typically lower compared to velocity filtered or even
thermal clouds. An often mentioned disadvantage herefore is the time-consuming evaporation
process and the resulting higher loss of atoms. This triggered the development of faster [Rud15;
Ven22] or even continuous [Che22] BEC generation. But to date, only a few measurements



Chapter 2 A brief introduction to atom interferometry with ultracold atoms 9

with high sensitivity below the SQL [Gau09; Sor14; Jan22] have been performed. When
atom numbers 𝑁 cannot or should not be increased further, achieving sensitivities beyond
this limit requires the preparation of entangled atomic ensembles. Surpassing the SQL with
measurements based on internal degrees of freedom has been demonstrated for ultracold atomic
ensembles [Ler10; Lou10; Hos16] and specifically also Bose-Einstein condensates [Gro10; Rie10;
Lüc11]. To preserve the nonclassical correlations during interferometry, high efficiency of the
coherent manipulations is required, which can be made possible thanks to the coherence proper-
ties of a BEC. Instead of entangling internal states, it was recently shown that the preparation
of momentum-entangled sources can also be achieved by transferring entangled twin-Fock states
in the spin degree of freedom of a BEC into the momentum space of momentum-entangled
atoms [And21]. However, the control or suppression of noise sources above the SQL is not
trivial and often already requires special care [Yve03].

2.1.1 Atom-chip based generation
To generate a cloud of cold atoms and further evaporate them until condensation a dedicated
setup is needed. Since the first generation of a BEC in 1995, most experiments have shared
the need to generate trapping potentials that use magnetic and optical fields. Additionally
the atoms are placed under high-vacuum (HV) or ultra-high vacuum (UHV) conditions, to
reduce collisions with background particles. Therefore, preparation and manipulation often
takes place in actively pumped chambers using Non-Evaporable Getter pumps (NEG) and/or
Ion Getter Pumps (IGP). A solution to generate most of the relevant magnetic field gradients
and curvatures with high trap frequencies up to the kHz regime are so-called atom chips. An
example of a setup utilizing this technology is the device explained below, which was used to
obtain the experimental results presented in this thesis. To generate a BEC of 87Rb atoms in
this setup, the following steps are performed: First of all the atoms are captured from a thermal
background, generated by a rubidium dispenser, and slowed down in successive cooling stages,
starting with Doppler cooling in a 3D magneto-optical trap. A process based on the polarization
gradient cooling effect, often called optical molasses, helps to adress atoms below the achievable
effective Doppler temperature limit of 𝑇D = ~𝛾/(2𝑘B) with velocities comparable to a few
multiples of the recoil velocity 𝑣r = ~𝑘/𝑚. Here 𝛾 defines the natural linewidth of the used
transition and 𝑘 the wave number of the employed laser light field. After optically pumping the
atoms to the Zeeman state with the highest possible magnetic moment, they are transferred into
an Ioffe-Pritchard type magnetic potential, which contributes to the compression of the atomic
cloud and to the increase of its density. Finally, various evaporative cooling stages remove the
’hottest’ particles from the cloud, and subsequent re-thermalization by elastic collisions leads to
an increased phase space density. At the end of this sequence, phase transition to a BEC is
achieved, followed by an optional adiabatic decompression of the trap.

The entire device whose operation is described here is called QUANTUS-1. The name is derived
from the project name QUANTengase Unter Schwerelosigkeit, which translates as quantum
gases under microgravity and refers to a long-standing collaborative project between several
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German universities funded by the German Aerospace Center (Deutsches Zentrum für Luft- und
Raumfahrt). The total setup includes everything that is needed to generate ultracold atoms and
perform matter-wave interferometry. Over time, it was used for various experiments, resulting
in a considerable number of publications [Abe16; Geb21; Zoe10; Mün13; Ahl16; Kan21], to
name some of them. Most of the assembled components are located inside a capsule that can
be used for experiments under microgravity conditions in the drop tower at the Zentrum für
angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) located in Bremen. In the
center of the capsule, surrounded by coils, is the ultra-high vacuum chamber containing an atom
chip device. A depiction can be seen in figure 2.1. Together with macroscopic pairs of coils, the
atom chip provides the magnetic fields necessary to trap and manipulate atoms by providing
high-gradient magnetic potentials near its surface through microfabricated current-carrying
wires. Typically the atoms are located several hundred micrometer from the chip’s surface
at this time. To cool the atoms to condensation, high densities are required, which in turn
requires strong confinement. Such a configuration therefore allows very efficient evaporative
cooling of the ensemble at comparably low currents.

50 mm

𝑦

𝑧

𝑥

light fields for
MOT operation

atom chip with
copper mount

MOT coils &
water cooling

Bias coils

detection camera

Figure 2.1: Section through the y-z plane of the vacuum chamber of the QUANTUS-1 experiment.
It consists of a six-way cross made of non-magnetic steel extended by two tubes at a 45 degree angle
and is surrounded by magnetic coils with an atom chip in the center. Optical access for cooling,
trapping and manipulating the atoms is provided through viewports equipped with anti-reflection
coated windows from seven directions and is only blocked from the top by the atom chip. The laser
light beams for the operation of the MOT are depicted in red and components are labeled with
arrows, while others are omitted for better visibility.

The atom chip itself is mounted on a copper structure that provides sufficient thermal manage-
ment, and features various geometric wire structures that are used to control different magnetic
potential shapes. As an additional feature its surface is coated with a reflective layer so that
it can act as a mirror for an applied light field. There are a total of four pairs of coils on the
chamber, three of them for providing homogeneous fields and one pair for generating a magnetic
field gradient. The largest of them, the magneto-optical-trap (MOT) coil pair, is oriented in an
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anti-Helmholtz configuration and generates a quadrupole field. Due to the applied current, the
coils heat up during operation, so a water cooling circuit helps to control the temperature. The
other three pairs are smaller and connected in Helmholtz configuration to provide homogeneous
offset fields in all three directions. The largest pair of this set, labelled bias coils, is located
inside the MOT coil pair as highlighted in figure 2.1. The remaining two pairs are smaller and
closer to the center of the assembly.

The pressure in the vacuum chamber is maintained at a constant level below 1 × 10−11 mbar
with the help of an ion getter pump and a non-evaporable getter material. The chamber consists
of a six-way cross made of non-magnetic steel extended by two tubes at a 45-degree angle
thus providing optical access through viewports. Four of them are used to direct the light
fields for the operation of the MOT to a position just below the atom chip. The beams are
shown in figure 2.1, with two of them aligned along the 𝑥-axis in the opposite direction and
two at a 45 degree angle between the 𝑦- and 𝑧-axis. The propagation axis of the light field
in the 𝑥-direction is shared with the detection light field and the first camera for absorption
imaging. A second imaging axis is shared with the beams in the 45 degree direction and shown
in more detail later in figure 4.2. The detection mechanism itself can be understood as a
projection of the shadow of the atom cloud onto the camera sensor. By subtracting this image
from an identically taken image without the presence of the atoms, corrected by a dark image,
the two-dimensional atom density distribution can be reconstructed. The four cooling light
fields, which decelerate the atoms in all three spatial directions, are operated in a mirror MOT
configuration in which two of the beams reflect off the surface coating of the atom chip. There
are three other optical access points used for the coherent manipulation operations required for
interferometry. One of these is aligned along the 𝑦-axis and the other two along the 𝑧-axis, in
the chosen coordinate system. To serve as a source for supplying a current controlled atomic
vapor to the vacuum chamber, a rubidium dispenser is attached inside the bottom part of
the chamber. Magnetic stray fields can adversely affect the preparation of the atoms, the
interferometry or other coherent manipulation steps. Consequently the vacuum assembly is
surrounded by a magnetic shield from a material with a very high relative permeability, which
is used to significantly suppress influences of external magnetic fields. Only in some places holes
remain for the electrical and fiber connections as well as for the vacuum tube in the upper part,
which is connected to the vacuum pumps. The shielding consists of individual, overlapping
components and can be removed individually to gain access to the chamber.

2.1.2 State preparation of atomic ensembles
The creation of an ensemble optimally prepared for atom interferometry begins with the release
of the condensate from its final trap. Typically, remaining offset velocities or induced center of
mass and size oscillations are unwanted effects. For example a non-zero velocity in the beam
splitter direction can degrade the symmetry and fidelity of a following beam splitter operation.
By tuning parameters such as the timing of the release and the trap fields used, these effects can
be reduced. The release trap usually also determines the initial mean-field energy and and thus
the kinetic energy in the far-field of the ensemble expansion. If not sufficiently compensated,
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atomic interactions can also lead to undesired phase shifts. After the release of the ensemble
from its final magnetic trap subsequent state preparation helps to ensure optimal properties
for atom interferometry. The techniques mentioned in the following help to reduce unwanted
effects from residual magnetic fields and the expansion of the atomic cloud itself.

Adiabatic rapid passage
While the atoms are in a magnetically sensitive state for trapping and cooling, during inter-
ferometry this can be detrimental due to their susceptibility to possible parasitic magnetic
fields. A robust and often used technique for coherent population transfer between quantum
mechanical states, for example, Zeeman sublevels is the adiabatic rapid passage. This involves
tuning the electromagnetic radiation above or below the resonant frequency of a particular
transition and then sweeping it through the resonance [Cam84]. With this approach the atoms
can be transferred into the non-magnetic 𝑚𝐹 state. In practice, this transfer is realized in the
QUANTUS-1 setup by sweeping a suitable radio frequency (RF), which is directly applied via a
wire structure on the atom chip. The efficiency reaches more than 90%, resulting from losses at
avoided crossings, and takes around 10 ms. Using the non-magnetic state removes the influence
of magnetic fields to first order. Higher order contributions, like second-order Zeeman effects,
are therefore still present and may not always be negligible.

Stern-Gerlach type deflection
The remaining atoms that are not transferred by the adiabatic rapid passage can still have
detrimental effects for interferometry. Since they overlap spatially with the interfering states,
they cannot be distinguished by an absorption detection system, which can lead to contrast
loss or noise at the interferometer output. One solution is to apply an inhomogeneous magnetic
field gradient that spatially separates all 𝑚𝐹 sublevels of the hyperfine state, making them
distinguishable by their density distributions. Thanks to the atom-chip design, such splitting
can be conveniently realized by the large field gradients that can be generated. Since this
technique makes use of the famous findings of Otto Stern and Walther Gerlach it is called
Stern-Gerlach type deflection [Ger22].

Delta-kick collimation
The mean field energy from the atomic interactions of the condensate gets converted into kinetic
energy until the expansion reaches a ballistic regime of only kinetic energy. Although low
expansion rates of the atomic ensemble are desirable for atom interferometry, it is sometimes
advantageous to start with a large expansion rate if a subsequent lensing mechanism is applied.
This technique, called delta-kick collimation (DKC), reduces the atomic velocity by conversion of
kinetic into potential energy. The expansion of the atoms is slowed down and ideally collimated
by a position-dependent force. This can be generated by a harmonic potential applied after a
certain expansion time, analogous to a lens in optics. In this way, the larger initial expansion
for a short time leads to an adjustable cloud size tailored to a desired spatial extension with
a resulting final small expansion. The concept is realized by applying a potential of either
the initial magnetic trap or an optical field [Chu86; Amm97; Mün13; Mor99; Kov15a]. The
expansion can be increased, decreased or ideally stopped by the choice of timing. A small
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momentum width can lead not only to higher diffraction efficiency, but also to a smaller spatial
extent, which reduces the systematic uncertainties associated with the size of the atomic cloud.

Feshbach resonances
The high density of an ultracold atomic ensemble above a certain atom number 𝑁 can lead to
unwanted atomic interactions and to the so-called mean-field shift, a non-linear bias shift in
the interferometer. After sufficient time this potential energy converts to kinetic energy during
free expansion and leads to a broadened velocity distribution. This can be mitigated by tuning
the atomic interactions via magnetic fields to achieve Feshbach resonances [Fat08].

2.2 The Mach-Zehnder-type atom interferometer
Atom interferometry relies on the quantum superposition of different position and momentum
states for the center-of-mass motion of single atoms or atomic ensembles. The foundation was
laid by the so-called Ramsey experiment, in which an oscillating magnetic field was applied to
a molecular beam for a certain time 𝜏p, turned off for a time 𝑇 , and then applied again for
a time 𝜏p [Ram50]. By choosing the proper frequency, time, and amplitude of the oscillating
field, it was possible to create a superposition that could evolve at a different frequency than
the electromagnetic field and accumulate a phase 𝜑 with respect to the driving electromagnetic
radiation. The two interactions are called 𝜋/2 pulses because they represent a half transition
probability to an excited state. The interaction that causes a complete transition is accordingly
denoted 𝜋. In atom interferometry the roles of light and matter are reversed compared to
traditional optical interferometers. Nowadays it is based on the interference of wave packets
that are interrogated with individual laser pulses that act as beam splitters and mirrors. Ac-
cording to this principle it is possible to devise experiments that are suitable for high-precision
measurements of fundamental constants such as the fine structure constant or inertial sensors
like accelerometers and gyroscopes.

One common employed closed interferometer scheme is based on the Mach-Zehnder geometry.
Here the incident wave packet is subsequently split, reflected, and recombined by interacting
with three successive light pulses driving velocity-sensitive Bragg (see section 2.2.1) or Raman
(see section 2.2.3) processes [Kas91]. The operating principle of the Mach-Zehnder-type like
atom interferometer (MZI) is outlined in the figure 2.2. The incident cold or ultracold atomic
wave packet is split onto two paths using an initial 𝜋/2-pulse (I) that creates a superposition of
two different momentum states |𝑝0⟩ and |𝑝1⟩. Those are reflected after a free propagation time 𝑇

with a 𝜋-pulse (II), and superimposed after an additional time 𝑇 with a second 𝜋/2-pulse (III).
The wave packets evolving along the two branches acquire a phase during the interferometry
sequence which depends on their central position relative to the laser wavefronts when they
are diffracted by the laser pulses. Each pulse is typically applied by two beams from opposite
sides [Pet01]. At each process 𝑗 = I, II or III, a phase 𝜑𝑗 is imprinted, giving rise to the so-called
laser phase 𝜑L = 𝜑I − 2𝜑II + 𝜑III [Bor04]. In leading order, the total measured phase shift 𝜑 of
the interferometer depends, apart from the laser phase 𝜑L, via two contributions 𝜑a and 𝜑r on
the motion of the atoms with respect to a reference [Bon06].



Chapter 2 A brief introduction to atom interferometry with ultracold atoms 14

𝑡

𝑧

𝜑

�⃗�
eff �⃗�

𝑇 𝑇𝜏p 𝜏p 𝜏p

𝜋/2 𝜋 𝜋/2

|𝑝1⟩
|𝑝0⟩

Figure 2.2: Space-time diagram of a Mach-Zehnder-type atom interferometer under the influence
of the gravitational acceleration �⃗�. The individual pulses are symbolized by wavy lines and the
momentum states are represented by dashed, dotted and solid lines. The sequence is realised by
three individual impulses symbolised by temporally separated wavy lines. It consists of a 𝜋/2-pulse
to split the atomic wave function, a 𝜋-pulse to mirror the imprinted momentum and a second
𝜋/2-pulse to project the probability amplitudes onto classical populations. The trajectories of the
individual interferometer states |𝑝0⟩ and |𝑝1⟩ are depicted by (dotted) lines.

The contribution 𝜑a can be identified with a shift due to accelerations, which is sensitive to forces
in the direction of the beam splitters. The other shift 𝜑r, caused by rotations, depends on the
enclosed areas of the interferometer trajectories. The response of the interferometer output also
depends on other external (parasitic) influences that can lead to a change in phase 𝛿𝜑. With the
help of the sensitivity function formalism, explained in more detail in section 2.3, the influence
of several noise contributions onto the interferometer can be calculated. Ideally, without the
influence of external forces or noise contributions, the measured phase shift 𝜑 between the
two arms is zero. Figure 2.2 shows a simplified space-time diagram of a Mach-Zehnder-type
geometry under the influence of the gravitational acceleration along the 𝑧-axis, neglecting
parasitic trajectories and assuming that the pulse interaction time 𝜏 is much smaller than the
free propagation time 𝑇 . In the example case shown here, two counter-propagating light fields
(depicted in red) form an effective momentum transfer �⃗�eff , which is oriented opposite to the
gravitational acceleration �⃗�.

The measured phase shift due to this acceleration can be calculated as follows

𝜑a = �⃗�eff �⃗�𝑇 2. (2.3)

As can be seen, the scaling of the interferometer phase shift depends on two adjustable param-
eters. First, linearly with the transferred momentum 𝑛�⃗�eff ≈ 2𝑛�⃗� and second, quadratically
with the free evolution time 𝑇 , which describes the time between each diffraction process. Here
𝑘 = 2𝜋/𝜆 denotes the wavenumber of a 𝑛-th order diffraction process, which describes the
number of photon pairs of the process involved, driven by counter-propagating laser beams.
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The approximation is explained in the next section 2.2.1. Summarized it can be said that the
displacement of the wave packets is determined mainly by the amount of momentum transmitted
during the sequence and its duration.

The second leading order phase contribution 𝜑r, linked to rotations Ω⃗, only arises when the
interferometer encloses an area due to a non-vanishing mean velocity �⃗� of the atoms, not aligned
with �⃗�eff . This can be understood as the atomic Sagnac effect [Rie91]. The phase shift in this
case calculates as follows

𝜑r(�⃗�) = 2�⃗�eff · (Ω⃗ × �⃗�)𝑇 2. (2.4)

While it scales with the transferred momentum �⃗�eff and the free evolution time 𝑇 as before, it
also depends on the velocity �⃗� of the atomic ensemble.

2.2.1 Stimulated Bragg transitions
Atom interferometers typically utilize stimulated two-photon transitions that are able to split
or recombine the atomic trajectories. Compared to light interferometers, these transitions act
as the matter wave analogue to beam splitters and mirrors. The following explanations in the
rest of this chapter refer to the 87Rb isotope used in this work. For more details on the energy
level splittings see the D2 transition hyperfine structure shown in figure 4.20.

The so-called Bragg diffraction, originates in the scattering of electromagnetic waves from
crystals [Bir95; Kun96] but can also be applied to matter waves [Koz99; Tor00]. It can couple
two atomic momentum states (|𝑝0⟩ and |𝑝1⟩) via a third and intermediate state. This coupling
is typically realized with the help of two laser frequencies 𝜔1 and 𝜔2 that fulfill the following
resonance condition of

Δ𝜔 = 𝜔1 − 𝜔2 = 𝜔𝑘eff . (2.5)

Here 𝜔𝑘eff = ~𝑘2
eff

2𝑚 denotes the recoil frequency of the atomic species. For the process itself an
atom in state |𝐹 = 2⟩ absorps a photon at frequency 𝜔1 and is transferred via the intermediate
state |𝐹 ′ = 1⟩ back to |𝐹 = 2⟩ by emitting a photon at frequency 𝜔2 in the opposite direction.
The energy difference ~Δ𝜔 of the process is given by the the two light fields involved, which
is maximized for counterpropagating laser beams, when both wave vectors point in opposite
directions. This stimulated Bragg diffraction can also be represented by a transition between the
two momentum states |𝑝0⟩ and |𝑝1⟩, which equals a transfer of 2~𝑘 on the energy-momentum
parabola (see figure 2.3 on the left). Typically a global detuning 𝛥 is introduced that is large
compared to the effective coupling, given by the effective Rabi frequency [Mül08a; Mül08b].
This allows the population of the intermediate state to be largely neglected and spontaneous
emission to be reduced.
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Figure 2.3: Energy-momentum diagrams for single and double Bragg transitions. Left: First-order
single Bragg transition. An atom interacts with two counterpropagating light fields of frequencies 𝜔1
and 𝜔2. It absorbs a photon with energy ~𝜔1 and emits a photon with energy ~𝜔2 in the opposite
direction. Therefore, it changes its initial state |𝐹 = 2⟩ via the intermediate state |𝐹 ′ = 1⟩ to the
final state |𝐹 = 2⟩. This causes a total energy difference of ~Δ𝜔, the recoil energy. This process
transfers a total momentum of ~𝑘eff ≈ 2~𝑘. Right: First-order double Bragg transition. If an atom
interacts simultaneously with two pairs of counterpropagating light fields of frequencies 𝜔1 and
𝜔2 each, symmetric momentum transfer to the states |±2~𝑘⟩ is enabled. The resonance condition
follows the same principles as for single Bragg diffraction, while the total momentum transfer is
doubled. For both cases a global detuning 𝛥 prevents population of the intermediate state. (The
axis are not shown to scale)

In the case of such a transition, the frequency difference Δ𝜔 is typically on the order of kilohertz.
For a Raman transition, as shown in subsection 2.2.3, this difference is larger and is of the
order of gigahertz. Nevertheless, it is still relatively small compared to the absolute values of 𝜔1
and 𝜔2, which are hundreds of terrahertz. This leads to the definition of the approximation of
~|⃗𝑘| ≡ ~|⃗𝑘1| ≈ ~|⃗𝑘2|. In the desired case of applying counter-propagating light fields �⃗�1 = −�⃗�2
to an atomic ensemble, the total momentum transfer can be expressed as ~𝑘eff ≈ 2~𝑘. Moreover
this difference is also very small compared to the absolute value of 𝜔1 and 𝜔2 and can there-
fore often be derived from a single laser source, for example by using acousto-optical modulation.

A first order diffraction process happens purely between the initial state |𝐹 = 2, 𝑝 = 𝑝0⟩ and
the final state |𝐹 = 2, 𝑝 = 𝑝0 + 2~𝑘⟩. Any initial offset momentum must be taken into account,
which can be intuitively explained as a Doppler shift resulting from the motion of the atoms
relative to the light fields. It is zero for atoms at rest and otherwise shifts the initial state on
the parabola, which changes the resonance condition to Δ𝜔 = 𝜔𝑘eff + 𝜔D. Technically, this can
be compensated, for example, by introducing an additional frequency component 𝜔D into the
acousto-optical modulation.
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The scheme in figure 2.3 does not depict higher-order or off-resonant transitions, which can
in turn lead to unwanted populations of other states. In Bragg diffraction, these are most
pronounced in the so-called Raman-Nath and Kapitza-Dirac regimes [Mül08b; Gad09]. Here
the optical pulse durations are shorter and in the Kapitza-Dirac regime also the intensities are
higher. Apart from unwanted off-resonant transitions, Bragg diffraction can also be realized by
scattering 𝑛 pairs of photons which corresponds to a transition between the momentum states
|𝑝0⟩ and |𝑝𝑛⟩ leading to higher order diffraction. The required resonance condition in this case
changes to Δ𝜔 = 𝑛𝜔𝑘eff , so any intermediate momentum state is not resonant and therefore
should ideally not be populated.

2.2.2 Double Bragg diffraction
Due to energy momentum conservation the direction of the diffraction process is always oriented
in the same direction as the light field with the higher absolute frequency value. For example
in figure 2.3 case towards �⃗�1, because 𝜔1 > 𝜔2. Applying a second set of opposite light fields
with opposite directions, a combination of �⃗�1 and −�⃗�2 as well as −�⃗�1 and �⃗�2 is obtained. Now
the atomic ensemble can interact with both frequency pairs simultaneously and symmetric
momentum transfer is enabled. Such a coupling, called double Bragg diffraction [Chi11; Ahl16],
is schematically shown in the energy-momentum diagram in figure 2.3 on the right side.

In the case of a first order diffraction process the initial state |𝐹 = 2, 𝑝 = 0⟩ is coupled to
|𝐹 = 2, 𝑝 = ±2~𝑘⟩. The coupling strength for single and double diffraction is defined by inten-
sity, pulse shape and time 𝜏p. The ratio of these parameters defines whether a clean oscillation
from the initial to the target state is possible or if multiple states are populated. Because
for double diffraction these oscillations take place in an effective three-level system, a higher
velocity selectivity compared to single diffraction has to be taken into account. The frequency
of the effective Rabi oscillation is also different and reads ΩeffDD =

√
2Ωeff [Gie13]. Note that

in double diffraction a complete transfer from |𝑝 = 0⟩ to |𝑝 = ±2~𝑘⟩ is referred to a 𝜋/2 pulse,
opposite to single diffraction where it denotes a superposition between |𝑝 = 0⟩ and |𝑝 = 2~𝑘⟩.

In order to technically realize the superposition of the required four frequency components, the
overlap of two light beams propagating in opposite directions is a suitable solution. Another
commonly used method is the retro-reflection of the superposition of two perpendicular polarized
light fields �⃗�1 and �⃗�2 at a combination of a quarter-wave plate and a mirror. This configuration
creates two perpendicular polarized sets of ±�⃗�1 and ∓�⃗�2 and suppresses many unwanted
systematic effects like disturbances due to copropagating transitions, standing waves or specific
laser phase noise [Gie13]. In such a retroreflective arrangement, when the atomic ensemble is
initially at rest, both counter-propagating optical lattices are equally relevant to the diffraction
process, resulting in double diffraction. This process is therefore of particular importance for
applications where the atoms are not naturally subjected to (large) accelerations, which is often
the case in microgravity environments. But also for earthbound inertial sensors, whose beam
splitter axis is aligned in horizontal direction orthogonal to gravity, the atoms normally have no
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initial velocity in this direction. Achieving double diffraction for an initial ensmble that is not
at rest is also possible but requires an additional frequency component, as shown in [Mal10].

2.2.3 Stimulated Raman transitions
The process of a stimulated Raman transition is similar to the Bragg transition described
earlier in subsection 2.2.1. These type of beam splitters were first introduced for optical
molasses [Phi91; Sal90]. The atom undergoes a two-photon scattering event controlled by two
frequencies 𝜔1 and 𝜔2, that fulfill the resonance condition Δ𝜔 = 𝜔1 − 𝜔2. The transition is simi-
larly represented on the two energy-momentum parabolas, as seen in figure 2.4 on the left. Note
that in addition to the transition between the two momentum states |𝑝0⟩ and |𝑝1⟩, there is also
a change of the internal state from |𝐹 = 2⟩ to |𝐹 = 1⟩, which is not the case for Bragg transitions.

When considering the individual one-photon transitions, the existence of spontaneous emission
cannot be disregarded. In this case, atoms from the intermediate state |𝐹 ′ = 1⟩ can also decay
back to the initial state |𝐹 = 2⟩. In order to maintain the coherence of the transition, this effect
should not occur, which is why also in the Raman case a detuning 𝛥 is chosen with respect to
the intermediate state. Since energy and momentum have to be conserved the energy difference
~Δ𝜔 has to be equal to the kinetic energy ~𝜔𝑘eff gained through the momentum transfer plus
the energy difference of the internal states ~𝜔HFS, namely the hyperfine splitting between the
coupled states |𝐹 = 2⟩ and |𝐹 = 1⟩. This definition assumes that no other effects shift the
atomic energy levels. The total momentum transfer for a Raman transition is maximum for
counter-propagating light fields �⃗�1 = −�⃗�2 and can be expressed as ~𝑘eff ≈ 2~𝑘, as for the
Bragg case. However, the resonance condition can be formulated somewhat differently, due to
a non-negligible AC stark shift contribution 𝜔AC as

Δ𝜔 = 𝜔1 − 𝜔2 = −𝜔𝑘eff + 𝜔HFS + 𝜔AC. (2.6)

Note that here, as in the Bragg case, the initial momentum is assumed to be zero, otherwise
the resonance condition must contain an additional Doppler term 𝜔D.
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Figure 2.4: Energy-momentum diagrams for single and double Raman transitions. Left: First-
order single Raman transition. The process is similar to Bragg scattering. Two counterpropagating
light fields of frequencies 𝜔1 and 𝜔2 with a total energy difference of ~Δ𝜔 transfer a total momentum
of 2~𝑘. The main difference is found in the change of the internal state from |𝐹 = 2⟩ to |𝐹 = 1⟩
during the process. Right: First-order double Raman transition with symmetric momentum transfer
to the states |±2~𝑘⟩. The same internal change of state occurs as in single Raman diffraction. To
maintain the coherence of the transition, spontaneous emission must be suppressed. Therefore a
detuning 𝛥 is chosen with respect to the intermediate state |𝐹 ′ = 1⟩, analogous to Bragg diffraction.
(The axis are not shown to scale)

The individual Raman light fields, defined by their orders of magnitude larger frequency
difference compared to the Bragg case, exert energy shifts on the atomic system through
non-resonant coupling. This changes the frequency of the two-photon transition by the so
called one-photon AC-Stark shift. In the case of the atomic species 87Rb this shift can be
conveniently compensated by choosing a suitable intensity ratio 𝐼2/𝐼1 of the two applied laser
light fields. With the correct ratio the exerted energy shifts onto the atomic system can result
in a differential shift of

𝜔AC ≡ 𝜔AC,|𝐹 =1⟩ − 𝜔AC,|𝐹 =2⟩ = 0. (2.7)

It should be noted that the two-photon AC-Stark shift, caused by coupling of off-resonant
two-photon transitions, can still lead to non-neglilible effects like phase shifts during the
interferometer sequence affecting its output phase.

2.2.4 Double Raman diffraction
Assuming that the atomic ensemble is at rest with an initial momentum 𝑝0 = 0 in the direction
of the interrogating light fields, double diffraction processes can also be realized for symmetric
two-photon Raman transitions [Ber15; Mal10; Lév09; Jaf18]. The energy-momentum parabola
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in figure 2.4 on the right helps to visualize a first-order process. The two counterpropagating
frequency pairs of 𝜔1 and 𝜔2, are equally relevant for the process, leading to double diffraction.
When an atom interacts with the two pairs of counterpropagating light fields of ±�⃗�1 and
∓�⃗�2, it gains the same portions of momentum 2~𝑘 as for single diffraction, associated to the
recoil frequency 𝜔𝑘eff . The additional pair of laser frequencies not only drives a process in
the opposite direction, but also off-resonant transitions, which are not shown for better visibility.
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Figure 2.5: Two examples of higher order double Raman diffraction. Left: The energy-momentum
level scheme illustrates a third order (𝑛 = 3) transition that transfers a total of ±6~𝑘 of momentum.
Non-resonant states are represented by dashed levels. The final internal state has changed from
|𝐹 = 2⟩ to |𝐹 = 1⟩. Right: An initial double diffraction beam splitter (𝑚 = 0) transfers the wave
packet from the state |𝑝 = 0⟩ to the state |𝑝 = ±2~𝑘⟩, like a first order diffraction pulse (𝑛 = 1).
Afterwards the sequential transfer (𝑚 = 1) to a total of ±4~𝑘 of momentum is shown. In this case
the final internal state has not changed. Higher order transitions are possible, but like non-resonant
transitions they are not displayed. (The axis are not shown to scale)

Compared to Raman single diffraction, these transitions are much more important since their
detuning is on the order of Δ𝜔, similar to single Bragg diffraction, and must be considered
for loss and efficiency reasons. For a first order Raman double diffraction process the initial
state |𝐹 = 2, 𝑝 = 0⟩ is coupled to |𝐹 = 1, 𝑝 = ±2~𝑘⟩ if all relevant light field parameters are
appropriately chosen. The coupling strength is hereby defined in the same way as for double
Bragg diffraction. As indicated in the section 2.2.1 on Bragg single diffraction, it is possible to
transfer momentum portions of 2𝑛~𝑘 by scattering 𝑛 photon pairs. For illustration purposes,
the process of sequential and higher-order double Raman diffraction is explained below as an
example. The general resonance condition for a 𝑛th order Raman transition is defined as

Δ𝜔𝑛 = 𝜔1 − 𝜔2 = (−1)𝑛 · 𝑛𝜔𝑘eff + 𝜔HFS + 𝜔AC. (2.8)
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An energy-momentum level scheme is shown in figure 2.5 on the left and illustrates a third order
(𝑛 = 3) transition that transfers a total of ±6~𝑘 of momentum [Har20]. The non-resonant states
|𝑝 = ±2~𝑘⟩ and |𝑝 = ±4~𝑘⟩ are not populated in this case. The AC stark shift contribution 𝜔AC
can be omitted if it is sufficiently compensated as described previously. The hyperfine splitting
𝜔HFS defines the splitting between |𝐹 = 2⟩ and |𝐹 = 1⟩, in the same way as for single Raman
diffraction. Working with higher order transitions typically comes with two major disadvantages.
The first is a quadratic increase in needed laser intensity 𝐼𝑛

1,2 and the second is a decrease
in transfer efficiency [Mül08a; Gie16; Geb20]. Another option of increasing the transferred
momentum is found in sequential transitions, where the need for higher laser intensities can be
circumvented, but at the cost of using multiples of the pulse duration time (𝑚 + 1) · 𝜏p. To
realize a 𝑚th order sequential transition the resonance condition reads

Δ𝜔𝑚 = 𝜔1 − 𝜔𝑚+2 = (−1)𝑚+1 · (2𝑚 + 1)𝜔𝑘eff + 𝜔HFS + 𝜔AC. (2.9)

First of all, an initial double diffraction beam splitter (𝑚 = 0) transfers the wave packet
from the state |𝑝 = 0⟩ to the state |𝑝 = ±2~𝑘⟩ (𝑚 = 0), like a first order diffraction pulse
(𝑛 = 1). A subsequent Doppler-detuned effective single Raman diffraction pulse (𝑚 = 1) further
transfers the population from |𝑝 = ±2~𝑘⟩ to |𝑝 = ±4~𝑘⟩. The energy-momentum level scheme
in figure 2.5 on the right illustrates such a sequential transfer with a total of ±4~𝑘 transferred
momentum. Higher order resonance conditions follow the relation from equation 2.9.

2.3 Sensitivity function formalism
The response function of an atom interferometer to time-varying phases, frequencies and chirps
during interrogation can be described by the sensitivity function formalism [Che08; Bon15]. A
change of phase for example from one beam splitter pulse to the next, caused by noise processes,
would directly influence the difference laser phase 𝜑L and lead to a fluctuation of the output
port population 𝑃 (𝜑) of the interferometer, defined by the total occuring phase shift 𝜑. The
sum over all occurring phase changes 𝛿𝑃 (𝜑) during the total interferometer sequence duration
𝜏tot = 2𝑇 + 3𝜏p + 4𝑚𝜏p is given by the following time integral

𝛿𝑃 (𝜑) = 1
2

� 𝜑(𝑡0+𝜏tot)

𝜑(𝑡0)
𝑔(𝑡) 𝑑𝜑L(𝑡). (2.10)

It introduces the sensitivity function 𝑔(𝑡), which describes the change in 𝑃 (𝜑) after an infinites-
imally small jump in phase 𝛿𝜑L that occurs at time 𝑡 after the start of the interferometer
sequence. This function can be defined as

𝑔(𝑡) = 2 lim
𝛿𝜑L→0

𝛿𝑃 (𝛿𝜑L,𝑡)
𝛿𝜑L

. (2.11)

In the case of the Mach-Zehnder sequence introduced in the section 2.2, the sensitivity function
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for first-order diffraction (𝑚 = 0) reads

𝑔MZ(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− sin(Ωeff𝑡) 0 < 𝑡 ≤ 𝜏p

−1 𝜏p < 𝑡 ≤ 𝑇 + 𝜏p

sin
(︀
2Ωeff

(︀
𝑡 − 𝑇 − 3

2𝜏p
)︀)︀

𝑇 + 𝜏p < 𝑡 ≤ 𝑇 + 2𝜏p

1 𝑇 + 2𝜏p < 𝑡 < 2𝑇 + 2𝜏p

− sin(Ωeff(𝑡 − 2𝑇 − 3𝜏p)) 2𝑇 + 2𝜏p < 𝑡 ≤ 2𝑇 + 3𝜏p

0 otherwise.

(2.12)

Where 𝜏p defines an equal time length of the three interferometry pulses of the sequence and
Ωeff = 𝜋

2𝜏p
the corresponding fixed effective Rabi frequency. This definition is chosen analogous

to calculations where Ωeff is defined by the different pulse lengths in the interferometer, which
determines whether they are 𝜋/2- or 𝜋-pulses. In the here shown case this is realized by
matching the amplitude of the pulse.

To measure absolute inertial effects using an interferometer, a reference is needed. Any motion
on it directly couples inertial noise to the measured interferometer phase shift 𝜑. The sensitivity
function 𝑔(𝑡) shows how the resulting phase-continuous frequency changes of the laser or
frequency shifts of the atomic resonances affect the interferometer phase and is related to the
velocities of the atoms relative to their inertial reference. In an application case, this reference
can be the retro-reflecting element of the interrogating laser light field. If its dynamic motion,
for example vibrations of the mirror surface, is recorded during the time 𝜏tot and weighted
according to the time dependent sensitivity function 𝑔(𝑡), the phase shift that occurred during
that measurement cycle can be calculated. In this case the acceleration sensitivity function
𝑓(𝑡) provides the response from the phase continuous chirp of the laser and correlates the
accelerations of the atoms relative to this reference. It is the integral of the sensitivity function
and calculated for the 𝜈-piecewise defined function as follows

𝑓𝜈(𝑡) =
� 𝑡

𝑡1

−𝑔𝜈(𝑡)𝑑𝑡 + 𝑓𝜈−1(𝑡1) for 𝑡1 < 𝑡 ≤ 𝑡2. (2.13)

Any coupling through the inertial reference with a frequency larger than the interferometer
cycle frequency 𝑓cycle and lower than its corner frequency 𝑓corner = 1

𝜏tot
except for certain

bands will distort the interferometer phase and decrease its measurement sensitivity. For the
Mach-Zehnder sequence the piecewise defined acceleration sensitivity function 𝑓(𝑡) evaluates to
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𝑓MZ(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Ωeff

(1 − cos (Ωeff𝑡)) 0 < 𝑡 ≤ 𝜏p
1

Ωeff
+ 𝑡 − 𝜏p 𝜏p < 𝑡 ≤ 𝑇 + 𝜏p

𝑇 + 1
Ωeff

(︀
1 − 1

2 cos
(︀
2Ωeff

(︀
𝑇 − 𝑡 − 3

2𝜏p
)︀)︀)︀

𝑇 + 𝜏p < 𝑡 ≤ 𝑇 + 2𝜏p
1

Ωeff
+ 2𝑇 + 2𝜏p − 𝑡 𝑇 + 2𝜏p < 𝑡 < 2𝑇 + 2𝜏p

1
Ωeff

(1 − cos (Ωeff (𝑡 − 2𝑇 + 𝜏p))) 2𝑇 + 2𝜏p < 𝑡 ≤ 2𝑇 + 3𝜏p

0 otherwise.

(2.14)

Figure 2.6 shows example sensitivity functions 𝑔MZ(𝑡) (left) and 𝑓MZ(𝑡) (right). Interferometer
geometries that seek to maximize their sensitivity may rely on increasing their differential kinetic
momentum. As presented in section 3.2 this can be realized by using higher-order or sequential
higher-order diffraction, as well as combinations with Bloch oscillations. In principle, this
also changes the corresponding sensitivity functions due to the required additional atom-light
interactions [Déc19]. The following case examines sequential first-order diffraction (𝑚 = 1),
introducing a total of four additional pulses of equal length 𝜏p. This example is chosen because it
corresponds to the twin-lattice sequence described later in section 3.2. Note that the additional
momentum transfer due to Bloch oscillations is not considered in this treatment. The sensitivity
functions 𝑔(𝑡) and 𝑓(𝑡) are modified in the following way,
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Figure 2.6: Sensitivity functions for a Mach-Zehnder type atom interferometer. Left: The
time dependent sensitivity function 𝑔MZ(𝑡) shows how phase-continuous frequency changes of the
laser or frequency shifts of the atomic resonances, for example Zeeman or light shifts, affect the
interferometer phase with respect to their occurence. Right: The acceleration sensitivity function
𝑓MZ(𝑡) is defined as the piecewise integral of the sensitivity function and provides the response from
a phase-continuous chirp of the laser frequency and correlates the accelerations of the atoms relative
to their inertial reference. The times 𝜏p of the individual pulses are shown strongly exaggerated
compared to typical times for 𝑇 to show the functional dependencies.
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𝑔seqMZ(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− sin(Ωeff𝑡) 0 < 𝑡 ≤ 𝜏p

−1 − sin(Ωeff(𝑡 − 𝜏p)) 𝜏p < 𝑡 ≤ 2𝜏p

−2 2𝜏p < 𝑡 < 𝑇 + 2𝜏p

−1 + sin(Ωeff(𝑡 − 𝑇 − 3𝜏p)) 𝑇 + 2𝜏p < 𝑡 ≤ 𝑇 + 3𝜏p

sin
(︀
2Ωeff

(︀
𝑡 − 𝑇 − 7

2𝜏p
)︀)︀

𝑇 + 3𝜏p < 𝑡 ≤ 𝑇 + 4𝜏p

1 + sin(Ωeff(𝑡 − 𝑇 − 4𝜏p)) 𝑇 + 4𝜏p < 𝑡 ≤ 𝑇 + 5𝜏p

2 𝑇 + 5𝜏p < 𝑡 ≤ 2𝑇 + 5𝜏p

1 + sin(Ωeff(𝑡 − 2𝑇 − 4𝜏p)) 2𝑇 + 5𝜏p < 𝑡 ≤ 2𝑇 + 6𝜏p

sin(Ωeff(𝑡 − 2𝑇 − 5𝜏p)) 2𝑇 + 6𝜏p < 𝑡 ≤ 2𝑇 + 7𝜏p

0 otherwise

(2.15)

and

𝑓seqMZ(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Ωeff

(1 − cos (Ωeff𝑡)) 0 < 𝑡 ≤ 𝜏p
1

Ωeff
(2 − cos (Ωeff (𝜏p − 𝑡))) + 𝑡 − 𝜏p 𝜏p < 𝑡 ≤ 2𝜏p

2
Ωeff

+ 2𝑡 − 3𝜏p 2𝜏p < 𝑡 < 𝑇 + 2𝜏p

𝑇 + 1
Ωeff

(2 + cos (Ωeff (𝑇 + 3𝜏p − 𝑡))) + 𝑡 − 𝜏p 𝑇 + 2𝜏p < 𝑡 ≤ 𝑇 + 3𝜏p

2𝑇 + 1
2Ωeff

(︀
6 + cos

(︀
2Ωeff

(︀
𝑇 + 7

2𝜏p − 𝑡
)︀)︀)︀

+ 2𝜏p 𝑇 + 3𝜏p < 𝑡 ≤ 𝑇 + 4𝜏p

3𝑇 + 1
Ωeff

(2 + cos (Ωeff (𝑇 + 4𝜏p − 𝑡))) − 𝑡 + 6𝜏p 𝑇 + 4𝜏p < 𝑡 ≤ 𝑇 + 5𝜏p

4𝑇 + 2
Ωeff

+ 11𝜏p − 2𝑡 𝑇 + 5𝜏p < 𝑡 ≤ 2𝑇 + 5𝜏p

2𝑇 + 1
Ωeff

(2 + cos (Ωeff (2𝑇 + 4𝜏p − 𝑡))) − 𝑡 + 6𝜏p 2𝑇 + 5𝜏p < 𝑡 ≤ 2𝑇 + 6𝜏p
1

Ωeff
(1 + cos (Ωeff (2𝑇 + 5𝜏p − 𝑡))) 2𝑇 + 6𝜏p < 𝑡 ≤ 2𝑇 + 7𝜏p

0 otherwise.

(2.16)

Figure 2.7 shows example sensitivity functions 𝑔seqMZ(𝑡) (left) and 𝑓seqMZ(𝑡) (right).

To obtain the frequency dependence of the interference signal to a phase noise contribution of
frequency 𝜔𝜑L, the response function of the interferometer in Fourier space must be known.
In the case of a measured electronic noise spectrum this can be obtained with the help of the
Fourier transform of the sensitivity function. Based on the introduction of a modulation of the
laser phase, that can be written down in the form of 𝜑L(𝑡) = 𝐴𝜑L cos(𝜔𝜑L𝑡 + 𝜃𝜑L) [Bar14] and
the interferometer phase is influenced as follows

𝛿𝜑 = 𝐴𝜑L𝜔𝜑LIm[𝐺(𝜔𝜑L)] cos 𝜃𝜑L. (2.17)
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Figure 2.7: Sensitivity functions for a sequential Mach-Zehnder type atom interferomter. Left:
The time dependent sensitivity function 𝑔seqMZ(𝑡) shows a factor of two larger response compared
to the function 𝑔MZ(𝑡). Right: The shape of the acceleration sensitivity function 𝑓seqMZ(𝑡) exhibits
less modified behavior due to its more continous pattern. Also here the times 𝜏p of the individual
pulses are shown strongly exaggerated compared to typical times for 𝑇 to show the functional
dependencies.

Here 𝐺(𝜔𝜑L) is defined as the Fourier transform of the sensitivity function

𝐺(𝜔𝜑L) =
�

𝑒−𝑖𝜔𝜑L𝑡𝑔(𝑡) 𝑑𝑡. (2.18)

If the phase 𝜃𝜑L, introduced as the modulation of the laser phase, is randomly distributed and
can be averaged, it is possible to deduce a weight function. It is called the velocity transfer
function and transforms the laser phase noise into interferometric phase noise as follows

𝐻(𝜔𝜑L) = 𝜔𝜑L𝐺(𝜔𝜑L). (2.19)

If the phase noise density 𝑆𝜑(2𝜋𝑓𝜑L) is known or measured, its effect can be estimated by
calculating the root mean squared phase of the interferometer phase as follows

(𝜎rms
𝜑 )2 =

� ∞

0
|𝐻(2𝜋𝑓𝜑L)|2𝑆𝜑(2𝜋𝑓𝜑L) 𝑑𝑓𝜑L. (2.20)

Typically atom interferometers are operated in a repetitive mode, yielding single phase measure-
ments separated by a cycle time 𝑡cycle. This allows to define the Allan variance [All66] for longer
measurement series containing 𝑛tot measurements with the cycle frequency 𝑓cycle = 1/𝑡cycle in
the form of the following sum
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𝜎2
𝜑(𝑢 · 𝑡cycle) = 1

𝑢 · 𝑡cycle

∞∑︁
𝑛=1

|𝐻(2𝜋𝑛tot𝑓cycle)|2𝑆𝜑(2𝜋𝑛tot𝑓cycle), (2.21)

where 𝑢 · 𝑡cycle is the observation time typical for the Allan variance defined by an integer
multiple 𝑢 of the measurement cycle time 𝑡cycle.

To get a complete expression of the transfer function as defined in equation 2.19 the Fourier
transformed analytic form of the sensitivity function 2.12 can be calculated as defined in
equation 2.18 to

𝐺MZ(𝜔𝜑L) = 4𝑖Ωeff
𝜔2

𝜑L − Ω2
eff

sin
(︂

𝜔𝜑L(𝑇 + 2𝜏p)
2

)︂(︂
cos
(︂

𝜔𝜑L(𝑇 + 2𝜏p)
2

)︂
+ Ωeff

𝜔𝜑L
sin
(︂

𝜔𝜑L𝑇

2

)︂)︂
.

(2.22)

Also for the sequential Mach-Zehnder geometry the Fourier transformed function of equation 2.15
can be calculated and determined to

𝐺seqMZ(𝜔𝜑L) = 2/(𝜔5
𝜑L − 5𝜔3

𝜑L + 4𝜔𝜑LΩ4
eff) exp(𝑖(𝑇 + (7𝜏p)/2)𝜔𝜑L)

· [(𝜔4
𝜑L − 5𝜔2

𝜑L + 4Ω4
eff) cos((3𝜏p𝜔𝜑L)/2)

+ 𝜔𝜑L(−Ωeff(𝜔2
𝜑L − 4Ω2

eff + (−3𝜔2
𝜑L + 6Ω2

eff − 2(𝜔2
𝜑L − 4Ω2

eff) cos(𝜏p𝜔𝜑L)) cos(𝜏pΩeff))
· sin((𝜏p𝜔𝜑L)/2) + 𝜔𝜑L cos((𝜏p𝜔𝜑L)/2)(−3Ω2

eff − 2(𝜔2
𝜑L − 4Ω2

eff) cos(𝜏p𝜔𝜑L)) sin(𝜏pΩeff))
+ (𝜔2

𝜑L − 4Ω2
eff) cos((𝜏p𝜔𝜑L)/2)((𝜔𝜑L − Ωeff)(𝜔𝜑L + Ωeff) + 2 cos((𝑇 + 2𝜏p)𝜔𝜑L)

· (−𝜔2
𝜑L + Ω2

eff + 𝑖𝜔𝜑LΩeff cos(𝜏pΩeff) + 𝜔2
𝜑L sin(𝜏pΩeff))

− 𝜔𝜑L(2𝑖Ωeff cos((𝑇 + 3𝜏p)𝜔𝜑L) cos2(𝜏pΩeff) + 2Ωeff sin((𝑇 + 3𝜏p)𝜔𝜑L) sin2(𝜏pΩeff)
+ exp(𝑖(𝑇 + 3𝜏p)𝜔𝜑L)𝜔𝜑L sin(2𝜏pΩeff)))]. (2.23)

If the source of noise is not derived from changes of the laser frequency 𝜔𝜑L, but rather from
inertial contributions like vibrations that manifest in the form of accelerations, the frequency
𝜔𝜑L can be replaced by a Doppler detuning 𝜔D = �⃗�eff �⃗�(𝑡), in an analogous view. From the
integration of the acceleration the time dependence of the velocity can be calculated and by
averaging over all phase components the transfer function can be rewritten in the form of

𝐻𝑎(𝜔𝜑L) = 1
𝑇 4𝜔4

𝜑L
𝐻(𝜔𝜑L). (2.24)

The velocity and acceleration transfer functions for the Mach-Zehnder and sequential Mach-
Zehnder geometry are visualized in figure 2.8 for an exemplary choice of the parameters
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Figure 2.8: Sensitivity transfer functions for the Mach-Zehnder geometry compared to the
sequential Mach-Zehnder geometry. The values chosen for the free evolution time are 𝑇 = 15 ms
and for the pulse time 𝜏p = 25 µs. For comparison the total interferometry time is set to be
equal, realized by reducing the free evolution time 𝑇 for the sequential geometry by 2𝜏p. Left:
Absolute square of the two velocity transfer functions |𝐻(𝜔𝜑L)|2 with the conversion 𝜔𝜑L = 2𝜋𝑓𝜑L.
The first sensitivity maximum for both is reached at the corner frequency 𝑓corner ≈ 33 Hz (red
circles) and experiences minima which depend on the free evolution time 𝑇 and pulse time 𝜏p. For
high frequencies the function exhibits a low pass behaviour porportional to 𝛼(Ωeff/𝜔𝜑L)2. Right:
Absolute square of the two acceleration transfer functions |𝐻𝑎(𝜔𝜑L)|2. It illustrates the same earlier
low pass behaviour after the corner frequency 𝑓corner proportional to 𝛼/(𝑇 4𝜔4

𝜑L) until, in a second
decline the sensitivity drops proportional to 2𝛼/(𝑇 4𝜔4

𝜑L) · (Ωeff/𝜔𝜑L)2. Only the curves for 𝛼 = 1
are shown here for better visibility.

𝑇 = 15 ms and 𝜏p = 25 µs. On the left graph the absolute square of the two velocity transfer
functions show a similar behaviour with the difference that the sequential function yields higher
values due to the larger transferred momentum. The first sensitivity maximum for both is
reached at the corner frequency 𝑓corner and experiences minima which depend on the chosen
values of the free evolution time 𝑇 and the pulse time 𝜏p. For high frequencies the sensitivity
drops proportional to 2𝛼(Ωeff/𝜔𝜑L)2 illustrating the low pass behaviour. The parameter 𝛼

takes the different amplitudes into account and evaluatues to 𝛼 = 1 for the Mach-Zehnder and
𝛼 = 4 for the sequential Mach-Zehnder geometry. On the right graph the acceleration transfer
functions shows the response to accelerations. As an example, one can consider the mirror
motion, which is interpreted without correlation or compensation as the motion of the inertial
reference in a retro-reflective geometry. It illustrates the earlier low pass behaviour after the
corner frequency 𝑓corner proportional to 𝛼/(𝑇 4𝜔4

𝜑L) until, in a second decline the sensitivity
drops proportional to 2𝛼/(𝑇 4𝜔4

𝜑L) · (Ωeff/𝜔𝜑L)2.



CHAPTER 3
Advanced atom interferometry methods for inertial sensing

Expanding on the previously explained fundamentals of atom interferometry with Bose-Einstein
condensates and the associated preparation and manipulation techniques, the following chapter
presents results from four different publications that were published during my doctoral studies.
These combine innovative realizations of different coherent optical manipulations of condensed
atoms and interferometer concepts based on them.

Simplified, the achievable inertial sensitivity of an atom interferometer is proportional to the
spatial separation of the wave packets and can be enlarged by increasing either the interaction
time or the amount of transferred momentum as introduced in section 2.2. In the presence
of a gravitational field the available time 2𝑇 between coherent splitting and recombination
can be a limiting factor since it is constrained by the available free fall distance. This time
can be further reduced significantly by additional operations. For example, by the time 𝜏prep
needed for possible state preparation (see section 2.1.2), and the time 𝜏det needed for spatial
separation of the output, for instance when using an absorption detection method. This is
especially true when the employed setup features a short drop distance. This limitation has
motivated efforts to achieve large sensitivities by confining and levitating matter waves in tight
waveguides or traps and perform interferometry there [Ket92; Sau01; Arn04; Wu07; Moa20;
Krz22]. As a result, long interrogation times can be achieved and large spatial separations
are targeted. However, these methods usually bring additional challenges, often related to
the enclosing potential. An alternative approach to increase the time the atoms remain in an
interferometer without the need for levitation is presented in the following section 3.1. It relies
on an efficient and versatile (re-)launch mechanism based on the coherent momentum transfer
by Bloch oscillations combined with double Bragg diffraction.

A different way to enhance the inertial sensitivity scaling is to increase the velocity separation
between the two interferometer arms. To achieve this, depending on the measured quantity
or geometry, it can be advantageous to use double instead of single diffraction pulses or even
higher order or sequential diffraction. The limitation for these different techniques is often
given by atom loss caused by non-ideal beam splitter efficiencies. Another alternative approach
is to increase the transferred momentum 𝑘eff with the use of accelerated optical lattices, where
the atomic ensemble suffers significantly less losses but is subject to dephasing effects due to
light shifts [Mül09; Cla09; McD13]. In section 3.2 of this chapter a twin-lattice realization
is presented. It is based on a combination of double Bragg beam splitters, which realize the

28
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symmetric momentum splitting of the initial atomic ensemble, and accelerating them along
both interferometer arms with the help of Bloch oscillations. Overall, this scheme provides
opportunities for large momentum transfer on short time scales and can be of particular interest
for increasing the sensitivity of rotational measurements. Thus, it also offers a perspective for
inertial sensors of small size.

The third section 3.3 presents the studies on a scheme that can be used to measure and
discriminate between rotations and accelerations from a single measurement sequence. For
this purpose, the excellent motion control of BECs is combined with the precise momentum
transfer by double Bragg diffraction. First, two counter-propagating ensembles are formed by
symmetrically splitting an initial wave packet. These subsequently feed two simultaneously
operated Mach-Zehnder interferometers driven by a second optical lattice moving perpendicular
to the first one. This method helps to avoid the complexity of two independent BEC sources
and can be extended using a third optical lattice, which is promising for the use in a six-axis
quantum inertial measurement unit.

The last section 3.4 discusses a multi-loop geometry that combines the relaunch mechanism,
with the symmetric momentum transfer of the twin lattice. Since the sensitivity to rotation
based on the Sagnac effect scales with the enclosed area of the interferometer, it is advantageous
to increase it by performing loops. To this end, the scheme uses two perpendicularly aligned
lattice light fields, one carrying out the relaunch operation and the other performing the
interferometer pulse sequence.

3.1 Atom-chip fountain gravimeter
On earth any object in free fall experiences a steady gain in speed, caused by the gravitational
acceleration. This is also true for atoms used for interferometry and limits the time available to
interrogate and detect them. Therefore, increasing the sensitivity by extending the free-fall
time initially seems to contradict a compact setup. A possible solution here is provided by the
implementation of a relaunch, similar to a vertical throw, which redirects the motion of the
atoms and sends them on a parabolic trajectory in time. Based on this idea, an atom-chip based
fountain gravimeter has been published in [Abe16]. Here, the available time before the relaunch
is used exclusively for preparation (𝜏prep), so that the remaining time after the launch can be
used for interferometry (2𝑇 ) and detection (𝜏det) of the output ports. For a first overview, the
flow diagram in figure 3.1 simplifies the necessary steps that have to be performed.
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Atom-chip
prepared BEC

vertical lattice
(𝜈1 & 𝜈2)

parabolic relaunch

Double Bragg &
Bloch oscillations

MZI sequence

Single Bragg/Raman

vertical acceleration
component 𝑎𝑧 = 𝑔

Figure 3.1: Flow diagram of the atom-chip fountain gravimeter sequence. The prepared BEC
is manipulated by a vertical optical lattice with frequency components 𝜈1 and 𝜈2. The individual
applied techniques inside the lattice are highlighted by a red background.

First of all a BEC is generated by the atom chip source, explained in section 2.1.1. While
its current-carrying wires are capable of generating the high magnetic gradients required for
condensation, its coated surface acts as a retro-reflective mirror for the vertical optical lattice,
which consists of two frequency components 𝜈1 and 𝜈2. The coherent manipulations are realized
with this optical lattice aligned along the 𝑧-axis, which coincides with the direction of gravity.
These manipulations include the combination of double Bragg diffraction and Bloch oscillations.
As well as single Raman or Bragg diffraction for the subsequently operated Mach-Zehnder like
atom interferometer. The measured interferometric phase shift in the end can be related to the
gravitational acceleration 𝑔.

A non-scale depiction of the geometric arrangement illustrates the used setup of the experimental
realization, shown in figure 3.2 on the left hand side. It depicts the atom-chip at the top, the
light field diameter in red and an exemplary image of the manipulated atomic ensemble in the
form of an absorption image.

While so far only the very rough mode of operation has been shown, the details of the in-
dividual steps are explained in the following using example parameters. First an ultracold
atomic ensemble is generated and released a few hundred micrometer below the atom chip
surface. Afterwards state preparation is performed for a typical time of 𝜏prep ≈ 33 ms. This
includes delta-kick collimation, adiabatic rapid passage to a non-magnetic state and the Stern-
Gerlach-type deflection as theoretically introduced in section 2.1.2. During this time the
condensate accelerates along the direction of gravity �⃗� for a total distance of roughly 6 mm
away from its initial position. To be able to read out the interferometer phase at the end of
each sequence, absorption images are taken in the 𝑦-𝑧-plane by a CCD camera. The light field
required for this operation is aligned along the imaging axis (𝑥-axis). The maximum detectable
area is defined by the size of the camera sensor and the imaging system, thus limiting the
time available before the atomic ensemble leaves this area. To extend the time of the Mach-
Zehnder interferometer sequence, without increasing the free fall distance, the coherent relaunch
is implemented. The corresponding space-time trajectories are depicted in figure 3.2 on the right.

The linearly polarized light fields of frequencies 𝜈1 and 𝜈2 driving the interferometer process are
guided to the experimental vacuum chamber through a single-mode polarization-maintaining
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Figure 3.2: Left: Geometric representation of the vertical light field for the atom-chip gravimeter
sequence. The magnetic fields of the chip are used for state preparation and its coating serves as a
retro-reflector for light propagating in the 𝑧-direction thus creating moving lattices, which induce
Bragg diffraction or Bloch oscillations. As an example of the detection method, one absorption
image of a BEC in form of a density distribution is featured in the background. Right: Space-time
trajectories of the wave packets of the atom-chip based fountain gravimeter with the relaunch after
the time 𝜏prep and the subsequent Mach-Zehnder sequence. The individual pulses are symbolized by
wavy lines. Note that beam splitter �⃗�eff points in the same direction as �⃗� and no area is enclosed by
the interferometer.

optical fiber and retro-reflected from the coating of the horizontally aligned atom chip surface.
The retro-reflection helps to provide relative phase stability and accuracy for the two-photon
processes and defines the surface of the atom chip as the inertial reference for the performed
measurement. The absolute frequency 𝛥𝜈(𝑡) can be controlled by acousto-optical modulation
which allows to compensate the frequency shifts of the free falling ensemble caused by Doppler
detuning.

The relaunch mechanism itself can be divided into three steps that help to circumvent the
large loss contribution of the atoms when crossing the zero momentum state |𝑝 = 0⟩. This
reversal point cannot be avoided in principle, but its influence can be reduced. First of all the
ensemble of atoms is adiabatically loaded into a downward moving optical lattice, decelerated
by chirping the frequency 𝜈2(𝑡) and released to a momentum of |𝑝 = −8~𝑘⟩. Afterwards a
double Bragg diffraction pulse 2.2.2 drives a transition between the |𝑝 = −8~𝑘⟩ and |𝑝 = +8~𝑘⟩
momentum states, which allows a subsequent acceleration of the ensemble, but now in the
opposite direction (upwards). If the atoms would be solely decelerated and accelerated by
Bloch oscillations, without the double Bragg diffraction pulse in between, large losses due to
the population of multiple different momentum states around zero relative momentum would
occur. After this relaunch the ensemble is interrogated along the 𝑧-direction by a three pulse
interferometer as described in section 2.2. At the end of the sequence, the output phase of
the interferometer is measured by counting the atoms in each output port, which can then be
related to the acceleration component 𝑎𝑧 = 𝑔 following equation 2.3. Generally speaking, the
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free fall rate of the BEC is measured by chirping the difference of the laser frequencies at a rate
𝛽 so that the lattice motion exactly matches the acceleration of the atoms. It follows that the
measured phase shift 𝜑a = (�⃗�eff · �⃗� − 2𝜋𝛽)𝑇 2 becomes zero independently of 𝑇 for the special
case of 𝛽 = �⃗�eff · �⃗�/(2𝜋), in which only one output port of the interferometer is occupied.

In the proof-of-principle measurement presented in [Abe16] an intrinsic sensitivity limit of
(Δ𝑔/𝑔)/

√
Hz = 1.7 × 10−7 could be achieved. The available time for interferometry could be

increased by a factor of 5 from 2𝑇 ≈ 10 ms to 2𝑇 ≈ 50 ms on the same baseline of |𝑧| ≤ 7 mm.
The pulse time 𝜏p is neglected here because it is smaller by at least two orders of magnitude.
This measurement is already limited by the largest systematic uncertainty given by the residual
magnetic stray fields in the setup. With an improved parameter set, explained in more detail
in [Abe16], achieving sensitivites on the order of (Δ𝑔/𝑔)/

√
Hz = 10−9 seem feasible.

In summary, this BEC-based fountain gravimeter is able to realize tens of milliseconds of free
fall on a baseline of less than one centimeter. Not only does it show how to miniaturize an
already compact scheme of an atom interferometer, but it also opens up the possibility of
increasing its sensitivity at the same time. Because the relaunch technique is not exclusive
to such compact setups, it also offers advantages for a transportable gravimeter, as presented
in [Hei20] or the multi-loop scheme in section 3.4.

3.2 Twin-lattice atom interferometry
Another way to improve the sensitivity scaling of an atom interferometer is to increase the veloc-
ity separation between its arms. This can be achieved by increasing the transmitted momentum
𝑘eff during beam splitter operations. One possibility for achieving this is to form symmetric
interferometers featuring matter waves with large relative momentum Δ𝑝 by employing two
counterpropagating optical lattices. For this purpose, this section describes the individual steps
of a so-called twin-lattice sequence implementation, as published in reference [Geb21]. The flow
diagram in figure 3.3 visualizes the simplified steps schematically in the same way as in the
other sections of this chapter. In the beginning the BEC is generated and prepared by the atom
chip source. All subsequent optical manipulations are implemented with a single retro-reflected
horizontal light field, consisting of the frequencies 𝜔1 and 𝜔2, which is aligned perpendicular
to gravity. Due to the beam being aligned horizontally there is a vanishing velocity in beam
splitter direction, which directly entails symmetric diffraction through double Bragg 2.2.2 or
double Raman processes 2.2.4. After the generation and release of the BEC, together with
Bloch oscillations, they allow for a large symmetric momentum transfer and the generation of a
Mach-Zehnder like sequence. The individual steps contain further details and are explained in
the following section 3.2.1. The final measured output phase is sensitive to accelerations acting
on the retro-reflection mirror and also to rotations around �⃗� × �⃗�𝑦, where �⃗�𝑦 defines the unity
vector pointing along the direction of the 𝑦-axis.
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Figure 3.3: Flow diagram of the twin-lattice atom interferometer sequence. The prepared BEC is
manipulated by a horizontal optical lattice containing the frequencies 𝜔1 and 𝜔2. The individual
applied techniques inside the lattice are highlighted by a green background.

The geometric realisation and the space-time diagram are summarized in figure 3.4. The two
incoming frequencies 𝜔1 and 𝜔2 are directed into the vacuum chamber via an optical fiber
so that they are combined into a single beam with orthogonally aligned linear polarizations.
The total light field is retro-reflected on a combination of a quarter wave plate and a separate
mirror, located outside the vacuum chamber, creating two counterpropagating optical lattices.
This configuration helps to partially suppress losses caused by parasitic standing waves as
well as systematic effects like laser phase noise and wavefront distortions. The symmetry of
the geometry also lowers the laser power requirements compared to an asymmetric scheme.
For the same momentum transfer, accelerating only a single interferometer arm would require
larger optical lattice depths, which can result in higher atomic losses due to spontaneous
scattering. The original atomic ensemble as well as the individual output ports are measured
using absorption detection. On the right side of the figure 3.4 it can be seen that the atomic
trajectories enclose a space-time area, which is also reflected in an actual geometric area 𝐴.
Equation 2.4 shows how part of the output phase shift 𝜑r of the atom interferometer depends
on rotations, which can be rewritten to show that the sensitivity to these rotations also scales
with the enclosed area as

𝜑r = 2𝐸

~𝑐2 �⃗�Ω⃗, (3.1)

which shows the linearly dependancy on the area vector �⃗�. It can be concluded that a large
enlargement of this area, as made possible by the twin-lattice technique, is advantageous for
achieving higher measurement sensitivities. It is also clear from the formula that the measured
phase shift depends on the energy value 𝐸. For optical interferometers this is 𝐸ph = ~𝜔 and for
atom interferometers it reads 𝐸at = 𝑚𝑐2. Here 𝜔 describes the angular frequency of the total
employed laser light field, 𝑐 the speed of light and 𝑚 the mass of the exploited atomic species.
Since typically 𝐸at ≫ 𝐸ph, the induced rotational phase shift in an atom interferometer must
be much larger than in its optical analogue for equal areas 𝐴.
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Figure 3.4: Left: Geometric representation of the horizontal light field for the twin-lattice
interferometer sequence. The chip’s magnetic fields are used for state preparation, but instead of
using the surface coating as a retroreflector, as done in the fountain gravimeter, a combination
of a mirror and a quarter wave located outside the vacuum chamber is used. The reflected beam
containing two cross-polarized frequencies 𝜔1 and 𝜔2 propagates along the 𝑦-axis, creating two
moving lattices. As an example of the detection method, one absorption image of a BEC showing
its density distribution is featured in the background. Right: Space-time trajectories of the
wave packets during the twin-lattice interferometer with the symmetric momentum transfer in
±𝑦-direction, exemplary depicted for a momentum transfers of Δ𝑝 = 408~𝑘, a time 2𝑇 = 12.1 ms
and the time 𝛿𝑇 = 0. The individual pulses are symbolized by wavy lines and the momentum states
are represented by dashed, dotted and solid lines. The 𝑦-axis is scaled in mm and the zoom in shows
the three output ports separated in space. The space-time area enclosed by the interferometer also
illustrates that a geometrical region is enclosed, allowing sensitivity to rotations.

So far, however, very different enclosed areas have been achieved. The twin-lattice interferom-
eter achieved an area of 𝐴 = 7.6 × 10−6 m2 [Geb20], a juggling fountain configuration along
with a four-pulse sequence an area of 𝐴 = 11 × 10−4 m2 [Sav18; Dut16] and a trapped-atom
interferometer 𝐴 = 0.5 × 10−6 m2 [Moa20]. Comparing this to light interferometers, which have
shown areas like 𝐴 = 16 m2 [Sch11], there are obviously still orders of magnitude difference.
Nevertheless, the smaller areas of atom interferometers can be realised much more compactly
compared to their photonic counterpart and in principle offer higher sensitivities.

3.2.1 Proof of principle performance
In the following, an exemplary twin-lattice sequence is described to serve as a proof of principle.
It begins with the generation of a BEC of up to 1.5 × 104 atoms of 87Rb in the magnetic
state |𝐹 = 2, 𝑚𝐹 = 2⟩ generated using the trapping and cooling functions of the atom chip, as
detailed in section 2.1.1. After release a state preparation is performed, including delta-kick
collimation followed by an adiabatic rapid passage to the non-magnetic state |𝐹 = 2, 𝑚𝐹 = 0⟩.
The large momentum transfer itself is based on two counter-propagating lattices via Bloch
oscillations [Ben96; Cla06; Mül09; Cla09; McD13], realized by sweeping the frequency difference
between 𝜔1(𝑡) and 𝜔2(𝑡). Before the atoms are loaded into these lattices, the initial degeneracy
between them must be lifted. This is done by a sequential double Bragg diffraction 𝜋/2-pulse
that creates an initial momentum superposition of |𝑝 = ±4~𝑘⟩. Details of the involved steps and
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limitations are also discussed in [Ahl16]. Although the beam splitting and recombination pulses
can theoretically also be realized with Raman transitions, only Bragg transitions are used here.
Subsequently, the two ensembles are adiabatically loaded into their respective co-propagating
lattice counterpart for a time 𝜏load = 200 µs and then accelerated. In this way a maximum
momentum separation between the two interferometer arms of up to Δ𝑝 = 408 ~𝑘 is achieved.
These temporal steps are symbolized in figure 3.4 on the right with wavy lines for the double
diffraction processes and shaded areas for the Bloch oscillations. To mirror the momentum
states for the second half of the interferometer a three pulse combination is applied that inverts
the atomic momentum to |𝑝 = ∓4~𝑘⟩ that can be summarized as a sequential double Bragg
𝜋-pulse. Afterwards the ensembles are accelerated again to the same momentum separation Δ𝑝

as before and decelerated again down to |𝑝 = ±4~𝑘⟩ to be able to close the interferometer with
a final sequential double Bragg 𝜋/2-pulse. The difference now is that the trajectories point
towards each other to allow spatial overlap. The interferometer is closed by a final sequential
double Bragg diffraction 𝜋/2-pulse. After a waiting time of 𝜏det = 9 ms the three wave pack-
ets leaving the interferometer have spatially separated and can be imaged using absorption
detection. In the exemplary setup the twin-lattice sequence can be realized with a total inter-
ferometer time of up to 2𝑇 = 12.1 ms, of which the atoms spend up to 8 ms in the optical lattice.

A common technique to determine the performance of the interferometer in terms of amplitude,
offset and contrast is the stepwise increase of the laser phase 𝜑L (see section 2.2) and then
measure the sinusoidal oscillations of the output populations that occur. However, in the case
of twin-lattice configuration this is not possible due to the symmetric imprinting onto both
interferometer arms. Nonetheless, the inertial vibrations present on the non-vibration-isolated
experimental apparatus, corresponding to a background noise of about 10−2 m/s2/

√
Hz, shift

the output phase 𝜑 of the interferometer by more than 2𝜋 from one experimental shot to the
next. This effect is already visible for an interferometer without Bloch oscillations, a total
momentum separation of Δ𝑝 = 8 ~𝑘 and a free evolution time of 2𝑇 = 10 ms.

Taking the assumption into account, that the random changes in phase are corresponding
to white phase noise, one can still perform a statistical analysis to obtain the performance
values [Gei11]. Repeating the same sequence for a sufficient amount of cycles creates a statistical
distribution of the output port population, which can be split into equidistant intervals resulting
in a histogram as also depicted in figure 3.5. The output phase 𝜑 can be extracted, modulo 2𝜋,
from the normalized output population in the following way

𝑃 (𝜑) = 𝑃0 − A · cos(𝜑) = 𝑁A
𝑁A + 𝑁B

. (3.2)

Here 𝑃0 defines the offset of the distribution, A its amplitude and 𝑁A and 𝑁B the populations
of the inner and the two outer output ports. It is worth mentioning that in the case of
interferometry with double diffraction, the atom numbers in the two outer ports are added and
treated as one. Without additional influences, the population of those changes symmetrically.
The visible double peak structure results from the fact that the probability to find an output
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state at the top or bottom of a sinusoidal pattern is larger than at the mid position. As a
fitting routine to this data set a kernel density estimation (KDE) is chosen [Rud82], which is
shown in blue in figure 3.5. This routine helps to make more sophisticated statements about
the population based on the finite data sample at hand, especially for the extracted amplitude,
offset and contrast values. Its adjustable parameter is the bandwidth, which determines how
smooth the output appears. For further analysis, the two peaks on either side of the distribution
are represented by a Gaussian fit in green and red with

𝑓Gauss(𝑃 ) = 𝑎0 · exp
(︂

−(𝑃 − 𝑃0)2

𝜎2

)︂
. (3.3)

Here 𝑎0 defines the amplitude, 𝑃0 the center shift, and 𝜎2 the standard deviation of the fit.
Both fitted distributions show consistency with the KDE estimation. Therefore to extract the
contrast 𝐶 = A/𝑃0 = 0.87 from this data set and the corresponding fit information, the offset
𝑃0 and amplitude A of the signal are calculated as depicted by the annotations in figure 3.5.
In general, it can be assumed that the similar broadening of the Gaussian curves is dominated
by technical and non-inertial noise contributions. One possibility to estimate the effect on the
interferometer phase is based on the standard deviation as follows 𝜎𝜑 = 2𝜎/𝐶 ≈ 100 mrad.
This contribution appears relatively large, but in this case it is still smaller than the inertial
contributions.
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Figure 3.5: Histogram distribution (20 bins of equal distance) of the output signal of the twin-
lattice interferometer sequence with a momentum transfer of Δ𝑝 = 8 ~𝑘 with a time 2𝑇 = 10 ms
for a total of 350 measurement cycles. The output phase 𝜑 of the interferometer is perturbed by
more than 2𝜋 from one experimental shot to the next, leading to the formation of the double peak
structure. From the offset 𝑃0 and amplitude A the contrast of 𝐶 = 0.87 is calculated. The data set
is fitted by a KDE (in blue) and two additional gaussian fits for the two peaks (green and blue)
giving an estimate for the technical noise.
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Statistical evaluations based on such histogram data require a sufficient number of points
over typically several hundred experimental cycles. In addition it is necessary that the double
peak structure can be sufficiently separated from each other. This may not always be given
especially in the case of large technical noise or small amplitudes A, which is observed for larger
momentum separations Δ𝑝. An alternative way to make statements about the performance
values of the interferometer is to add a temporal asymmetry 𝛿𝑇 , which changes the spatial
overlap at the last beam splitter pulse [Kov15b]. This delay is added to the second duration of
𝑇 and leads to a decrease of the spread of 𝑃 (𝜑) and thus to a reduction of the contrast. The
decrease itself depends on the coherence length of the atomic ensemble, while the remaining
spread is dominated by non-inertial and technical noise components. For a sufficiently large
asymmetry value 𝛿𝑇 , the interferometer is operated in an open configuration and the contrast
𝐶 vanishes, leaving only those noise contributions.
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Figure 3.6: Measured atom number fluctuations 2
√

2𝜎𝑃 at the twin-lattice interferometer in
dependence of an introduced asymmetry 𝛿𝑇 for increasing maximum transferred relative momenta Δ𝑝
and corresponding Gaussian fits for 40 data points each. The data sets are presented in two
graphs with different axis scaling for better overview. The interferometer time is always fixed to
2𝑇 = 12.1 ms. The contrast itself is proportional to the calculated values of 𝜎𝑃 . The asymmetry
𝛿𝑇 leads to a varying spatial overlap at the last beamsplitter pulse of the sequence. For larger
values of maximum relative momenta Δ𝑝 the widths and maxima of the fits decrease. (adapted
from [Geb21])

For each individual value of 𝛿𝑇 , a corresponding contrast value can be estimated based on
the standard deviation 𝜎𝑃 of the normalized population spread for a sufficiently large enough
data set [Mül08a]. Figure 3.6 shows these measured fluctuations for twin-lattice sequences in
terms of the calculated deviations 2

√
2𝜎𝑃 as a function of the temporal asymmetry for different

magnitudes of the maximum momentum separations Δ𝑝. The data sets are presented in two
graphs with different axis scaling for better overview. For each momentum value, the asymmetry
𝛿𝑇 is varied and the different values of 2

√
2𝜎𝑃 are fitted by Gaussian envelopes, analogous to

equation 3.3, to obtain their widths 𝜎𝛿𝑇 (Δ𝑝). According to the publications [Geb21; Kov15b]
the contrast and its dependance on the asymmetry 𝛿𝑇 can be directly related to the transferred
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momentum Δ𝑝 as follows

𝐶(Δ𝑝, 𝛿𝑇 ) = 2
√

2𝜎𝑃 (𝛿𝑇 ) · exp
(︃

−1
2

(︂
Δ𝑝

~

)︂2
𝜎2

𝑣𝛿𝑇 2

)︃
. (3.4)

Here, the value for 𝜎𝑣 represents the momentum width of the atomic ensemble along the
direction of the twin-lattice light field, which is measured to 𝜎𝑣 = 0.18 ± 0.03 mm/s. The
individual fits confirm that the largest value is always found near 𝛿𝑇 = 0, corresponding to
a fully closed interferometer, and that its maximum is reduced for larger momentum values
Δ𝑝. It is also observable that the width of these fits 𝜎𝛿𝑇 decreases for these values, which is a
result of the lower spatial overlap of the wavepackets at the output ports for larger transferred
momentum values.
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Figure 3.7: Coherence time evaluation for the twin-lattice interferometer. The calculated
widths 𝜎𝛿𝑇 of the envelopes from figure 3.6 show a decay with the inverse of the maximum
relative momentum Δ𝑝 for a constant spatial coherence length. The line represents the theoretically
calculated fit 𝜎𝛿𝑇 = ~/(𝜎𝑣Δ𝑝) with a value of 𝜎𝑣 = (0.18 ± 0.03) mm/s and the corresponding
uncertainty as a gray shaded area. (adapted from [Geb21])

To better illustrate the dependencies of the individual widths 𝜎𝛿𝑇 , obtained from the data sets
shown in figure 3.6, they can be plotted as a function of the transferred momentum as depicted
in figure 3.7. The emerging inverse porportionality shows not only how the width decreases,
but also how the spatial coherence length is affected for higher transferred momentum values.
The solid line depicts the corresponding theoretical values obtained with 𝜎𝛿𝑇 = ~/(𝜎𝑣Δ𝑝). The
gray shaded area depicts the uncertainty of the momentum width 𝜎𝑣. Overall the agreement
between the theoretical calculated curve and the data points indicates that the performed
coherent manipulations do not reduce the spatial coherence length of the atomic ensemble
contributing to the interference signal.
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3.2.2 Contrast reduction analysis
The atom number fluctuations 2

√
2𝜎𝑃 for the realisations of the twin-lattice interferometers

shown in figure 3.6 represent the sum of technical, or non-inertial noise sources plus inertial
contributions. A decrease in peak contrast 𝐶 was observed with increasing number of Bloch
oscillations and thus maximum achieved momentum separation Δ𝑝. For further analysis, their
dependence is shown in figure 3.8.
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Figure 3.8: Dependence of the experimentally determined contrast 𝐶 values (blue dots) on the
maximum relative momentum Δ𝑝 together with theoretical models based on atom losses due to
non-adiabatic transitions (black diamonds) and local inhomogeneous dipole forces due to light field
distortions (red triangles). Both combined (orange pentagons) are used to model the experimentally
determined contrast. Only a single parameter describing the magnitude of the intensity perturbations
was used for fitting. The best agreement was obtained with 9% variations of the lattice depth 𝑉0.
The shaded areas represent confidence intervals of the simulation, determined by atom number and
lattice depth uncertainty. (adapted from [Geb21])

Three main parameters change between the different experimental sequences. These are the
remaining detected atomic number 𝑁 , the lattice depth 𝑉0 and the maximum relative momen-
tum Δ𝑝, which leads to different spatial trajectories. Looking directly at the absorption images
of the output ports, it can be found that fewer atoms 𝑁 are detected for larger pulse separation
sequences. A decreasing number of atoms is not only a reason for higher noise contributions,
but also directly affects the achievable interferometric contrast [Chi11]. Nevertheless, it cannot
alone explain the observed contrast loss. Instead, many additional effects related to the spatial
quality of the applied light fields lead to loss of contrast in the interferometer and/or loss of
interfering atoms.

In general, all atom-optical diffraction mechanisms suffer mainly from three types of imperfec-
tions: (i) The loss of output port populations, (ii) the emergence of spurious interferometer
paths and (iii) additional phase errors [Jen22]. Since the gaussian shaped beam of the twin
lattice is passing by design close to the atom chip source, a clipping of the beam can be observed.
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The resulting imperfect laser beam profile leads to different dephasing processes, caused by the
spatially varying intensity distribution. In this context, it is important to mention that the
relevant perturbations are below the expansion size of the atomic ensemble. Consequently the
atomic trajectories of the interferometer arms are differently influenced by these path-dependent
effects. A more detailed numerical analysis of the influence of such spatially varying intensity
fluctuations on the twin-lattice interferometer contrast can be found in the supplementary
material of [Geb21] and in the doctoral thesis of J.-N. Kirsten-Siemß [Sie23]. In this thesis
a model of an ideal Gaussian beam profile of the interferometry light beam is distorted by
diffraction at the edge of the atom chip. The hereby arising path-dependent dipole forces act
on the atoms via the gradient of the distorted beam potential. They are caused by the energy
shift of an atomic state by an amount proportional to the local laser intensity. The potential
can be written with the normalized intensity distribution as

𝑈(𝑗,Δ𝑝) = 𝑉0(Δ𝑝)𝐼(𝑗)
𝐼0

, (3.5)

in dependence of the relative momentum separation Δ𝑝 and the lattice depth 𝑉0. Integration
of the dipole force for the duration 2𝑇 along the right and left arm of the interferometer can
result in a differential momentum Δ𝑚𝑗,𝑎 = 𝑚𝑗,left − 𝑚𝑗,right between them, with 𝑗 = {𝑦,𝑧} and
𝑎 = {left, right} defining the two arms. This yields

𝑚𝑗,𝑎(2𝑇,Δ𝑝) = −
� 2𝑇

0

𝜕

𝜕𝑗
𝑈(𝑦𝑎(𝑡,Δ𝑝),𝑧𝑎(𝑡,Δ𝑝))d𝑡

= −𝑉0(Δ𝑝)
𝐼0

� 2𝑇

0

𝜕

𝜕𝑗
𝐼(𝑦𝑎(𝑡,Δ𝑝),𝑧𝑎(𝑡,Δ𝑝))d𝑡. (3.6)

This connection implies that the local intensity changes affect the differential momentum and
in turn can lead to a spatially dependant phase difference 𝛿𝜙𝑗 = Δ𝑚𝑗

𝑗
~ that is linked to the

initial density distribution of the atomic cloud. The effective interferometric contrast 𝐶 for a
particular Δ𝑚𝑗(Δ𝑝) can be predicted by integrating the atomic density distribution

𝐶(Δ𝑝) =
⃒⃒⃒⃒�

|𝛹(0~𝑘,±2~𝑘)(𝑦,𝑧,𝑡 = 2𝑇 )|2 exp(− 𝑖

~
(Δ𝑚𝑦𝑦 + Δ𝑚𝑧𝑧))d𝑦d𝑧

⃒⃒⃒⃒
. (3.7)

This approach, using a parameter-dependent phase, is based on [Eks93]. The function
𝛹(0~𝑘,±2~𝑘)(𝑦,𝑧,𝑡 = 2𝑇 ) describes the ensemble density of the interfering wave packets at the
end of the sequence 𝑡 = 2𝑇 at the output ports with momenta 0~𝑘 and ±2~𝑘 modeled by
Thomas-Fermi density distributions. In theory, the initial spatial as well as the velocity distri-
bution should be accounted for, but to simplify the problem, the effect of the initial velocity
distribution on the different trajectories is neglected. To account for the spatial extent of
the initial atomic ensemble, 1360 single particle trajectories with different positions at 𝑡 = 0
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inside the Thomas-Fermi radius are calculated. The final contrast values 𝐶(Δ𝑝) are therefore
providing averaged results of those individual, weighted contrast values. If the atoms propagate
on different trajectories through a distored light field the gradient 𝜕

𝜕𝑗 𝑈(𝑗) of the distorted beam
potential lets them experience path-dependant dipole forces.

This model of the distorted gaussian light field is used in combination with the model for the
atomic losses due to spontaneous emission and Landau-Zener losses to model the observed
contrast behavior, as shown in figure 3.8 in orange. Only a single parameter describing the
magnitude of the intensity perturbations was used for fitting. The best agreement was obtained
with a value of rounded 9% of the lattice depth 𝑉0.

While the symmetric momentum transfer together with the observed spatial coherence up to a
maximum splitting of Δ𝑝 = 408 ~𝑘 already represents one of the largest momentum separations
in an interferometer reported to date, strategies can still be developed that should make it
possible to go beyond this. Chapter 4 presents two of those, namely the application of a
flat-top shaped beam profile with less susceptibility to distortions and a frequency compensation
technique for light shift effects.

3.3 Differential interferometry using a Bose-Einstein condensate
Twin-lattice interferometry offers potential to be used for inertial sensing by forming symmetric
interferometers featuring matter waves with large relative momentum. However, it is not able
to distinguish between rotational phase shifts and those caused by accelerations of its inertial
reference. In particular, in the presence of high vibrational noise, no measurement of rotations
could be performed. If no vibration damping systems are available to suppress the movement
of the reference, the acting accelerations could be measured with an external sensor and the
inertia-induced phase shift can be calculated with a correlation algorithm (for reference see
section 2.3). Such an approach not only increases the complexity of the system, but also requires
good knowledge of mechanical transfer functions. Therefore, it seems beneficial to find ways to
already intrinsically suppress such influences and to distinguish between inertial effects in a
single measurement run.

For such a case, a differential measurement geometry is presented in the following, which is
based on the combination of two perpendicular beam splitter axes. The main idea is to use two
simultaneous interferometers generated from a single BEC and read out their two individual
phases [Ger20]. In the following, it is referred to as a dual BEC interferometer, whose flow
diagram in figure 3.9 illustrates the techniques used in the order described below.
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Figure 3.9: Flow diagram of a dual BEC atom interferometer sequence. The prepared BEC
is manipulated by two perpendicular oriented optical lattices containing the frequencies 𝜔1 and
𝜔2 and 𝜈1 and 𝜈2 respectively. The horizontally aligned lattice (green) is used for an initial
splitting, while the vertically aligned lattice (red) provides the necessary interrogation steps for two
simultaneously operated interferometer sequences. With the help of the combined measured phase
shifts, a distinction between rotation and acceleration components is made possible.

The experimental implementation of the used light fields can be understood as a combination of
the individually described fields from sections 3.1 and 3.2. They consists of two retro-reflected
combined optical lattices, as schematically shown in figure 3.10 on the left. In this illustration,
the horizontally aligned lattice (𝜔1 and 𝜔2) is used for an initial splitting, while the vertically
aligned lattice (𝜈1 and 𝜈2) provides the necessary interrogation steps for interferometry. Ap-
plying the first half of the concept from section 3.2, it is possible to split an initial BEC into
two wave packets in horizontal direction using the precise momentum transfer of double Bragg
diffraction with the possible addition of Bloch oscillations. Afterwards they separate apart
from each other with a relative velocity �⃗�sep. The two ensembles can then be used for two
Mach-Zehnder interferometers operated simultaneously. The approach of generating two sources
for two interferometers from a single ensemble of atoms has also been of interest in previous
publications [Per19; Mül08a; Bar19; Ase17]. It can avoid issues connected to using multiple
sources, such as uncertainties in initial velocities and positions causing systematic errors in the
differential output signal of the two interferometers [Ber15; Gau09; Dur06]. Since the splitting
velocity �⃗�sep is orders of magnitude larger than the expansion rate of the ensembles, they can
be well distinguished even after a time of flight on the order of milliseconds.

Figure 3.10 on the right shows how the trajectories of the two realized interferometers enclose
two different regions (shaded areas), symbolized in a sketch below the atom chip representation.
A detailed step-by-step overview of the sequence together with a proof of principle measurement
follows in subsection 3.3.2. Nevertheless, the concept of phase sensitivities will already be
explained here. In general, the output phase of each of the two interferometers is sensitive
to a variety of effects, many of the unwanted ones are already suppressed in common mode
due to the symmetrical nature of their origin. Section 2.2 only introduced and explained the
basic concept how accelerations or rotations individually affect the measured interferometer
phase shift 𝜑. In the case of the dual BEC interferometer this can be exploited in a different
way to differentiate between accelerations and rotations by adding or subtracting the half sum
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Figure 3.10: Left: Setup of the dual BEC atom interferometer. The combination of two vertically
aligned retro-reflected light fields (red and green arrows) allows the manipulation of an atomic
ensemble along two axes. Right: Schematic description of the dual BEC interferometer. The
𝑧-axis is aligned parallel to gravity �⃗�. An initial BEC is split via double Bragg diffraction (green
arrows) into two wave packets separating in 𝑦-direction with the velocity 𝑣sep apart from each other.
Two Mach-Zehnder-type interferometers are formed by three successive light pulses I, II and III
(red arrows), separated by intervals of time 𝑇 . The light pulses induce Bragg diffraction in an
optical lattice retro-reflected from the atom chip located at the top. The enclosead areas of the
interferometer trajectories are shown shaded in gray. The atomic densities at the output ports of
the interferometers are detected via imaging the absorption of light propagating in the 𝑥-direction
and pointing in the plane, and exploited to determine the number of atoms in the output ports
𝑁1,2

A,B.

of the individual output phase shifts. This has the added advantage of suppressing ambient
acceleration noise for the rotation phase and ambient rotation noise for the acceleration phase.

The total phase shift of the two interferometers can be formulated as 𝜑𝑖 = 𝜑𝑎,𝑖 + 𝜑𝑟,𝑖(�⃗�) + 𝜑L,𝑖,
where 𝜑𝑎,𝑖 (see equation 2.3) denotates the phase contributions due to accelerations, 𝜑𝑟,𝑖 (see
equation 2.4) the contributions due to rotations and 𝜑L,𝑖 the laser phase contributions. If one
calculates the half sum 𝜑sum and half difference 𝜑diff as follows

𝜑sum = 1
2(𝜑1(�⃗�) + 𝜑2(−�⃗�))

= 1
2(�⃗�eff · �⃗�𝑇 2 + 2�⃗�eff ·

(︂
Ω⃗ × �⃗�sep

2

)︂
𝑇 2 + 𝜑L,1

+ �⃗�eff · �⃗�𝑇 2 + 2�⃗�eff ·
(︂

Ω⃗ × − �⃗�sep
2

)︂
𝑇 2 + 𝜑L,2)

= �⃗�eff · �⃗�𝑇 2 + 𝜑L,1 + 𝜑L,2, (3.8)
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and

𝜑diff = 1
2(𝜑1(�⃗�) − 𝜑2(−�⃗�))

= 1
2(�⃗�eff · �⃗�𝑇 2 + 2�⃗�eff ·

(︂
Ω⃗ × �⃗�sep

2

)︂
𝑇 2 + 𝜑L,1

− �⃗�eff · �⃗�𝑇 2 − 2�⃗�eff ·
(︂

Ω⃗ × − �⃗�sep
2

)︂
𝑇 2 − 𝜑L,2)

= 2�⃗�eff ·
(︂

Ω⃗ × �⃗�sep
2

)︂
𝑇 2, (3.9)

one obtains two expressions that allow to distinguish between the rotation phase 𝜑𝑟 and
the acceleration phase 𝜑𝑎 components, as they again resemble the original definitions of the
equation 2.3 and 2.4. For the expression of 𝜑diff the laser phase contributions 𝜑L,1 and 𝜑L,2
are assumed to be equal due to the fact that both interferometers are operated in the same
light field. Equation 3.9 shows that the differential phase 𝜑diff only depends on one velocity
�⃗�sep. This is true to first order, because this velocity is solely generated by the well controllable
momentum transfer of the splitting process. The output phase is therefore independent of any
initial velocity �⃗�0 of the atomic ensemble. In the case of equation 3.8 for the sum phase 𝜑sum
spurios contributions due to a non zero initial velocity �⃗�0 may arise. These are neglected in the
formula, because they can be reduced by the well-controlled release of the BEC from its mag-
netic trap. It has been shown that this can be less than ±𝑣0 = 60 𝜇m/s per shot [Rud16; Abe17].

3.3.1 Multi-axis operation
The concept of the dual BEC interferometer can be taken further to measure six degrees of
freedom, more precisely Ω𝑥, Ω𝑦 and Ω𝑧, as well as 𝑎𝑥, 𝑎𝑦 and 𝑎𝑧. The most simple option is
to create two wave packets along three perpendicular axes which can subsequently be used
for interferometry. This leads to the scheme shown in figure 3.11. If these three sets are
combined and successively measure all three components of Ω⃗ and �⃗� they form the basis for
a complete quantum inertial measurement unit. As can be seen three perpendicular oriented
optical lattice light fields are needed, ideally in a symmetric configuration. To explain the
general concept in more detail, it is assumed in the following that the original atomic ensemble
is at rest and that no (constant) accelerations or rotations are present. This corresponds to
a microgravity environment such as would exist on the ISS or on a satellite [Agu14; Ave20; Fry21].
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Figure 3.11: Three perpendicular oriented optical lattices in orange (along 𝑥-axis), green (along
𝑦-axis) and red (along 𝑧-axis) help to form an extension of the dual BEC scheme to successively
detect all three components of Ω⃗ and �⃗�. For illustration purposes it is assumed that the original
atomic ensemble is at rest and that no (constant) accelerations or rotations act on it. (a) This
scheme shows the initial trajectories from figure 3.10 (right) without the influence of the gravitational
acceleration �⃗�. The output phase is sensitive to accelerations 𝑎𝑧 and rotations Ω𝑥 (b) Employing
a double diffraction process to create two initial wave packets along the 𝑧-axis and an additional
optical lattice (orange arrows) along the 𝑥-axis creates two interferometers that are in total sensitive
to Ω𝑦 and 𝑎𝑥. (c) In order to measure the remaining components Ω𝑧 and 𝑎𝑦 as well, the direction
of the initial splitting process is changed again to generate the initial wave packets along the 𝑥-axis.

Since all three axes are occupied by beam-splitting light fields in this configuration, absorption
imaging of the final population distributions can only be performed off-axis, e.g. under an
angle of 45° with respect to any of the coordinate axes, by an additional light field. The
projection of these on a single CCD camera would still be sufficient for all three geometries
if the final separation is large enough. A typical initial ensemble has a size of roughly 20 µm
and an expansion rate of about 0.3 mm/s, corresponding to a delta-kick collimated BEC. With
a separation velocity of 𝑣sep = 94 mm/s, the detected atomic clouds should therefore be well
separated and individually resolvable after less then 1 ms. If the use of an additional light field
is to be avoided, the detection of the output port populations can also be carried out with the
aid of fluorescence detection, whereby the light field required for this can be applied via one of
the existing optical access points.

In order to understand the exact functioning of the multi-axis operations, the individual steps
are explained in more detail. First of all first-order or higher-order double diffraction generates
two wave packets (see section 2.2.2 or 2.2.4), each with a velocity of �⃗�sep/2 and travelling
perpendicular to the respective acceleration component that is to be measured. For an increase
of the interferometry areas 𝐴𝑖, and consequently the achievable rotational phase sensitivity,
transferring more momentum during this splitting can be preferable. In this context, the use of
a twin lattice, as described in section 3.2, is an option. To achieve constant lattice depths during
this operation, without the need of changing the overall laser power, exploiting non-gaussian
beam profiles with more homogeneous intensity distributions is appealing.
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For example, a flat-top, as shown in the section 4.1, would make this possible. After the initial
wave packet splitting the Mach-Zehnder sequence is applied for all geometries using light pulses
driving again either Bragg or Raman processes inside the second optical lattice. This lattice is
perpendicular oriented to the respective �⃗�sep and the initial splitting. To enhance the sensitivity
of one or all of the interferometers, employing higher order diffraction processes is also possible
here. The measurement of all six degrees of freedom can potentially be performed in one
single experimental run, but one has to take into account, that the individual diffraction orders
may parasitically interact. The intended modus operandi of a six-axis inertial measurement is
therefore sequential, helping to avoid problems associated with crosstalk between diffraction
processes along different measurement axes and reducing the absolute demand for laser power.

As an example of such crosstalk, the first order diffraction pulse of geometry (a) in figure 3.11
along the 𝑧-axis (red arrows) that is meant to perform the beam splitting operation would also
interact with the two wave packets created in geometry (c) as both wave packet sets have the
same relative velocity along the splitting 𝑧-axis (in this case ideally zero). Therefore one would
end up with more than the typical 𝑛 = 6 interferometric output ports 𝑁𝑛

A,B.

In the presence of a constant acceleration, for example the gravitational acceleration �⃗� acting
along the direction of the 𝑧-axis, the geometry is changed as can be seen in figure 3.12. In order
not to go beyond the scope of further consideration, it is assumed that the orientation of the
geometry does not change during operation. In principle, with an active position adjustment,
the coordinate system can always be oriented so that one axis points in the direction of the
largest constant acceleration component. Perpendicular to gravity the retro-reflected light field
naturally induces double diffraction, but in the direction of gravity this is true only when the
atomic ensemble is not yet accelerated. As can be seen in figure 3.12 (a), the two ensembles
moving apart in the 𝑦-direction acquire an additional velocity component in the 𝑧-direction, so
that the interferometry pulses (red arrows) lead to single instead of double diffraction processes.
Due to the time taken by state preparation (see section 2.1.2) before the first splitting, the
ensemble is usually also not at rest for the initial splitting. This presents a challenge for the
geometry (b) from figure 3.12. Nevertheless, double diffraction can be achievied by adding an
additional frequency component [Mal10].
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Figure 3.12: The geometries shown in figure 3.11 change in the presence of a constant acceleration
acting, in this example gravity �⃗� is pointing along the direction of the 𝑧-axis. The resulting changes
are described individually. (a) The two ensembles moving apart in the 𝑦-direction acquire an
additional velocity component in the 𝑧-direction, so that the interferometry pulses (red arrows)
lead to single diffraction transitions instead of double diffraction processes. (b) The initial splitting
cannot be performed without additonal steps, like an accelerated optical lattice or a relaunch.
Furthermore the enclosed geometric areas of the two interferometers are not equal. (c) The initial
splitting and the Mach-Zehnder sequence can be applied largely unperturbed since �⃗� is perpendicular
to both interrogating light fields. As an alternative to the geometry (b), the two geometries shown
in (d) and (e) can be used. In this case the measurement of all six degrees of freedom of Ω⃗ and �⃗�
can be performed with four measurements in total. The difference is that in this case Ω𝑧 and 𝑎𝑧 are
determined twice. With the shown orientation, all initial splitting processes naturally occur with
double diffraction, while only the interferometry pulses oriented in the 𝑧-direction lead to single
diffraction. (adapted from [Ger20])

Another approach would be to implement the fountain sequence as described in scetion 3.1,
which launches the initial ensemble back to the position of nearly zero relative velocity where
double diffraction naturally occurs. Also, it is important to note that the enclosed areas
of the two interferometers may not be equal (𝐴1 ̸= 𝐴2), resulting in imperfect suppression
of rotational noise in the sum phase 𝜑sum. For the difference signal 𝜑diff the acceleration
noise is still suppressed. To compensate for this drawback, a hybrid approach in the form
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of a classical accelerometer could help to remove the influence of �⃗� from this phase by correlation.

To circumvent the mentioned issues from geometry (b) in figure 3.12 it may make more sense
to realize four measurements instead of three. Replacing (b) with (d) and (e) also yields a
measurement set of all six degrees of freedom, with the difference that Ω𝑧 and 𝑎𝑧 are determined
twice. Depending on the application, this double determination of the rotational component
Ω𝑧 can provide an additional advantage. In inertial navigation, for example, it is the most
important component. With the orientation shown, all initial splitting processes naturally
occur with double diffraction, while the interferometry pulses oriented in the 𝑧-direction lead
to single diffraction.

When considering to use the presented scheme for navigation purposes, the additional influence
of a dynamic environment must be considered. Chapter 6 deals with such an approach
and therefore provides deeper explanations. An immediate effect is the modification of the
interferometer trajectories in different, possibly unequal ways. One implication already visible
under the influence of the gravitational acceleration can be seen in geometries (c) and (e) in
figure 3.12. Because of the curvature there, the area vectors �⃗�1,2 do not point in the same
direction. This means that the measured phase difference 𝜑diff based on equation 3.9 cannot
be directly translated into the rotation component around the 𝑧-axis. Therefore in order to
calculate the quantity Ω𝑧, it is also necessary to know the acceleration component along this
axis, which shows that this information is needed from at least one other measurement.

3.3.2 Proof of principle performance
To demonstrate the correlation and noise reduction capabilities of the dual BEC interferometer,
a sample measurement set is performed based on the geometry shown in figure 3.10 on the
right. It starts with the generation of a BEC of up to 1.5 × 104 atoms of 87Rb in the magnetic
state |𝐹 = 2, 𝑚𝐹 = 2⟩ generated using the trapping and cooling functions of the atom chip.
After release a state preparation is performend, including delta-kick collimation followed by an
adiabatic rapid passage to the non-magnetic state |𝐹 = 2, 𝑚𝐹 = 0⟩. Afterwards the ensemble
is symmetrically split using first-order double Bragg diffraction along the 𝑦-axis. After the
splitting process, two wave packets travel apart from each other with a relative velocity of
𝑣sep = 4~𝑘/𝑚 along the direction of the splitting pulse, while being forced on a parabolic
trajectory due to the gravitational acceleration �⃗� acting along the 𝑧-axis. Here 𝑚 denotes
the atomic mass of 87Rb. The two individual wave packets are interrogated by a common
optical lattice travelling in vertical direction along the 𝑧-axis in the manner of three successive
first-order Bragg processes (I, II and III) to realize a Mach-Zehnder type sequence, as introduced
in section 2.2. The lattice itself is formed by retro-reflecting the light beam from the coating
surface of the atom-chip, which is depicted in figure 3.10 on the left. While the Bragg light
pulses are separated in time by 𝑇 , an additional time 𝜏det is needed for the atomic wave packets
to separate before their populations 𝑁1,2

A,B can be detected using absorption detection.



Chapter 3 Advanced atom interferometry methods for inertial sensing 49

Table 3.1: Parameters of the dual BEC interferometer defined as follows: beam diameter 𝑑 of the
vertically aligned gaussian shaped beam (shown in red in figure 3.10); detected atom number 𝑁 ;
initial effective temperature of the ensemble; pulse separation time 𝑇 ; mean contrast 𝐶; separation
velocity 𝑣sep; momentum ~𝑘eff transferred within the Mach-Zehnder sequence; and experimental
cycle time 𝑡cycle. The parameter set is in principle limited by the achievable space-time area of the
interferometer, bounded by the beam diameter, which represents the maximum distance at which
optical manipulations are still possible.

𝑑
[mm]

𝑁 eff. temp.
[nK]

𝑇
[ms]

𝐶 𝑣sep
[~𝑘/𝑚]

~𝑘eff
[~𝑘]

𝑡cycle
[s]

6.6 7.5 · 103 50 5 0.64 4 2 15

The most important operating parameters are summarized in table 3.1. To obtain data on the
contrast of the interferometer and its noise properties, repeated measurements of the above
experimental sequence with a stepwise increase 2𝜋/14 between 0 and 2𝜋 of the laser phases
𝜑L,𝑖 are performed and the two sets of initial populations 𝑃 (𝜑𝑖) are recorded. In the absence of
forces, this stepwise increase would typically lead to a sinusoidal fringe pattern of the output
port populations, as explained in section 3.2.1. However the experiment is performed at the
same non-vibration-isolated experimental apparatus and, hence, the sinusoidal dependence
is not visible. Still modulo 2𝜋, the individual output phases 𝜑𝑖 can be extracted from the
normalized output population analogously as follows

𝑃 (𝜑𝑖) = 𝑃0 − A · cos(𝜑𝑖) = 𝑁 𝑖
A

𝑁 𝑖
A + 𝑁 𝑖

B
, (3.10)

where 𝑁 𝑖
A and 𝑁 𝑖

B describe the atom numbers in the two output ports of the 𝑖-th interferometer
and their sum 𝑁 =

∑︀2
𝑖=1(𝑁 𝑖

A + 𝑁 𝑖
B) represents the total detected number of atoms.

The obtained data points for 246 experimental cycles are shown in figure 3.13. On the left
side the output populations of the two interferometers (black and blue points) are plotted
against the step-wise increased relative laser phase. Subsequently they are binned into two
histograms with 20 bins each. Due to the statistical nature of the scattered data two double
peak structures are formed. To extract the amplitudes A of the interferometric signal and its
mean 𝑃0 a kernel density estimation is applied (compare to section 3.2.1 and figure 3.5). While
the offset value 𝑃0 is determined to be the same for both data sets, the two amplitudes are
different. This allows to determine two individual contrast values 𝐶1 = 0.67 and 𝐶2 = 0.59 and
a mean contrast of 𝐶 = A/𝑃0 = 0.64. Limitations that reduce this contrast value are first of all
the achievable efficiencies of the individual Bragg processes. Furthermore remaining atoms in
magnetic sub-states 𝑚𝐹 ̸= 0 that are affected by the linear Zeeman effect, spontaneous emission
processes during atom-light interaction and spurious thermal background atoms contribute as
well.
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Figure 3.13: Output signals 𝑃 (𝜑𝑖) of the two Mach-Zehnder interferometers from fig. 3.10 in
the form of the normalized output port populations 𝑁 𝑖

A/(𝑁 𝑖
A + 𝑁 𝑖

B). The signals are obtained by
increasing the relative laser phase 𝜑L in steps of 2𝜋/14 between 0 and 2𝜋. Due to the presence of
vibrational noise the expected sinusoidal response is washed out (left-hand side). The histogram
analysis with a corresponding fit based on a kernel density estimation (KDE) reveals a characteristic
double peak structure reflecting the sinusoidal dependence of the interference signal on 𝜑L instead
(right-hand side). The contrast 𝐶 = A/𝑃0, given by the amplitude A of the signal divided by its
mean 𝑃0, is extracted from the KDE fitting routine of the distribution analogous to section 3.2.
(taken from [Ger20])

An additional problem may arise if the propagation of the Gaussian shaped interferometry
beam is not completely centered on the 𝑧-axis, which corresponds to the release position of
the BEC on the axis. This results in different pulse amplitudes for the Bragg processes and
therefore affects their efficiency. In the here presented case the largest separation of the wave
packets in 𝑦-direction is on the order of 600 µm, which is relatively small compared to the
6.6 mm diameter of the beam. Consequently, only minor variations of the diffraction efficiency
due to the different positions of the wave packets within the beam profile are expected, and the
observed difference is more likely attributed to imperfections of the retro-reflection coating of
the atom chip for the optical lattice, which is causing intensity fluctuations across the beam.
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Figure 3.14: Overlapping Allan deviation of the differential phase 𝜑r for a dual BEC interferometer
sequence with the parameters from table 3.1. The noise per experimental cycle can be estimated
by the starting value of 𝜎𝜑r = 16.4 ± 2 mrad. The solid line depicts an estimation of the quantum
projection noise 𝜎qpn(𝑡), with the shaded area defining an uncertainty band due to the atom
number determination in the experiment. The functional dependence of 1/

√
𝑡 agrees well with

signal averaging in the presence of white noise. The peak at around 400 s, matches the modulation
frequency of the air condition in the laboratory. (taken from [Ger20])

To calculate the differential phase 𝜑diff out of this data set the phases 𝜑1,2 for each interferometer
time series are calculated separately by solving equation 3.10 for 𝜑𝑖 and inserting the normalized
populations 𝑃 , offsets 𝑃0, and amplitudes A, as depicted in figure 3.13. Afterwards taking the
half difference according to equation 3.9 leads to one differential phase 𝜑diff per experimental
cycle.

To assess information about the temporal characteristics of the signal the Allan deviation [All66]
of this phase is calculated and shown in figure 3.14. From the starting point of this devi-
ation, which is at the cycle time of 𝑡cycle = 15 s, a single-shot phase noise equivalent of
𝜎𝜑r = 16.4 ± 2 mrad can be obtained. Taking into account that the phase noise of the individual
interferometer phases 𝜑1 and 𝜑2 is larger than 2𝜋 one can estimate that contributions from
vibrational accelerations and the laser phase are suppressed by at least 22 dB in the differential
phase 𝜑diff . At 𝑡 = 405 s of integration time the Allan deviation shows a distinct peak or bump
which matches the modulation frequency of the air condition present in the laboratory. After
an integration time of 𝑡 = 1020 s a value of 𝜎𝜑r = 2.0 ± 1 mrad is reached.

To answer the question of what limits the measured phase sensitivities, they can be compared
to the following estimate of quantum projection noise 𝜎qpn, which serves as an upper bound,

𝜎qpn(𝑡) = 1
2

⎯⎸⎸⎷ 1

(𝐶1

√︁
𝑁1

A + 𝑁1
B)2

+ 1

(𝐶2

√︁
𝑁2

A + 𝑁2
B)2

√︂
𝑡cycle

𝑡
. (3.11)
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Here 𝑡cycle defines the time of experimental run and 𝑡 the time of integration. The estimate
is shown in figure 3.14 as a solid line with an uncertainty band in the form of a shaded area.
This region is mainly determined by the uncertainty of the measured atomic number, which is
estimated with a deviation of ±50 % from the actual detected number of 𝑁 𝑖

A and 𝑁 𝑖
B. Overall, it

is evident from the graph that the data points follow a 1/
√

𝑡 integration behavior and, except for
the peak around 𝑡 = 405 s, are close to the calculated limit defined by the quantum projection
noise.

3.3.3 Sensitivity limit estimation
The calculated phase noise equivalents 𝜎𝜑r can be used to estimate intrinsic sensitivities 𝜎r(𝑡)
with respect to rotations. For this purpose, they must be multiplied by the response or scaling
factor of the interferometer to rotational changes Ω, which is defined by the equation 3.9 and is
as follows

𝜎r(𝑡) = 𝜎𝜑r(𝑡) · 1
𝑘eff𝑣sep𝑇 2 . (3.12)

This yields a single-shot sensitivity of 1.7 ·10−3 rad/s at 𝑡 = 15 s and a sensitivity of 2 ·10−4 rad/s
after 𝑡 = 1020 s of integration time. The largest rotation contribution to the described measure-
ment is the average angular speed of Earth’s rotation. In an inertial reference frame it can be
calculated to roughly 7.2 · 10−5 rad/s, which means that in the shown measurement it is not
resolvable.

To estimate the quantum projection noise limited sensitivity 𝜎r(𝑡), the same approach as in
equation 3.12 can be followed, except that the phase noise equivalent 𝜎𝜑r is replaced by the
quantum projection noise 𝜎qpn(𝑡). This approach also applies analogously to accelerations and
leads to the following equations

𝜎r(𝑡) = 𝜎qpn(𝑡) · 1
𝑘eff𝑣sep𝑇 2

= 1
2

⎯⎸⎸⎷ 1

(𝐶1

√︁
𝑁1

A + 𝑁1
B)2

+ 1

(𝐶2

√︁
𝑁2

A + 𝑁2
B)2

√︂
𝑡cycle

𝑡

1
𝑘eff𝑣sep𝑇 2 , (3.13)

𝜎a(𝑡) = 𝜎qpn(𝑡) · 1
𝑘eff𝑇 2

= 1
2

⎯⎸⎸⎷ 1

(𝐶1

√︁
𝑁1

A + 𝑁1
B)2

+ 1

(𝐶2

√︁
𝑁2

A + 𝑁2
B)2

√︂
𝑡cycle

𝑡

1
𝑘eff𝑇 2 . (3.14)

In the publication [Ger20] such sensitivity limits for two other scenarios based on different
parameter sets of the dual BEC interferometer geometry are presented and calculated. As
it turned out, one constraint that must be taken into account is the limited area defined
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by the diameter of the lattice light beam 𝑑 ≥ 𝑣sep · 2𝑇 , symbolized by the red cylinder in
figure 3.10 on the left. Assuming that the ensemble starts at the geometric center of the
crossed beams and the available laser intensities are able to maintain coherent manipulations
at the maximum distance for a given diameter 𝑑. Higher velocities 𝑣sep imply a shorter time
𝑇 and allow higher repetition rates which can be beneficial for an inertial navigation sensor.
Of course, this only becomes important when the experimental cycle time 𝑡cycle is of the
same order of magnitude as the pulse separation time 𝑇 . While extending the time 𝑇 has
in principle the advantage of increasing the acceleration and rotation sensitivity quadrati-
cally, to optimize a given system, the values for 𝑇 and 𝑣sep can be designed so that the atomic
trajectories fit within the range given by the two crossed retro-reflected light fields (red & green).

Table 3.2: Two parameter sets for the calculated quantum projection noise limited sensitivities of
the dual BEC interferometer 𝜎a

√
𝑡 and 𝜎r

√
𝑡. It should be noted that, for ease of comparison, these

are presented as the slope of the functions defined in equation 3.14 and 3.13, which conveniently
also reflect the value at 𝑡 = 1 s. The input values are defined as the vertically aligned full-width-
half-maximum of a flat-top shaped beam with diameter 𝑑, the detected atom number 𝑁 , the pulse
separation time 𝑇 , a mean contrast 𝐶, a separation velocity 𝑣sep, a momentum ~𝑘eff transferred
within the Mach-Zehnder sequence, and an experimental cycle time 𝑡cycle.

𝑑
[mm]

𝑁 𝑇
[ms]

𝐶 𝑣sep
[~𝑘/𝑚]

~𝑘eff
[~𝑘]

𝑡cycle
[s]

𝜎a
√

𝑡
[(m/s2)/

√
Hz]

𝜎r
√

𝑡
[(rad/s)/

√
Hz]

15 105 25 0.5 32 16 2 1.1 · 10−7 5.9 · 10−7

50 106 125 0.5 32 96 2 2.3 · 10−10 1.2 · 10−9

The choice of the two sets of parameters is explained below, and the values are summarized
in table 3.2. For the first one, it is reviewed which realistic parameters can be chosen within
an example volume of 4 cm3 of a cube, which should contain all operations of the dual BEC
interferometer. A separation velocity of 𝑣sep = 32 ~𝑘 and a time 𝑇 = 25 ms are chosen such
that the beam diameter 𝑑 = 15 mm approximately corresponds to the (vertical) baseline of
the interferometer (1

2𝑔(2𝑇 )2 ≈ 12 mm). To achieve a more uniform distribution of laser power,
one could envision the use of a flat-top laser beam here, which is explored in more detail in
section 4.1. The estimation for the contrast is based on the achieved values for the twin-lattice
sequence, shown in figure 3.6. For a momentum transfer of ~𝑘eff = 16 ~𝑘 it is reasonable to
estimate it to be 𝐶 = 0.5. The total cycle time of 𝑡cycle = 2 s and atom number are based on
the reported atomic flux of 𝑁 = 105 per 1.6 s from the report [Rud15], which has a techno-
logically similar setup based on an atom chip. These assumed parameters lead to a quantum
projection noise limited acceleration sensitivity of approximately 𝜎a

√
𝑡 ≈ 10−7 (m/s2)/

√
Hz and

a rotational sensitivity limit of approximately 𝜎r
√

𝑡 ≈ 10−7 (rad/s)/
√

Hz.

A navigation grade inertial measurement unit based on ring laser gyroscopes, achieves a noise
densitiy of 1.2 × 10−6 (m/s2)/

√
Hz based on the angular random walk for accelerations and

a noise density of 7.3 × 10−7 (rad/s)/
√

Hz for rotations [iNAT-RQT-4002, iMAR Navigation].
In comparison, the previously computed values alone are not directly outstanding, but they do
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show possible applications in the field of inertial navigation, which is discussed in more detail
later in the outlook section 6.1 of this thesis.

In contrast, higher sensitivities are often needed to study geophysical effects, such as the Earth’s
rotation. For these high-resolution can be performed by large ring laser structures [Sch11;
Bev16], which can theoretically achieve sensitivities on the order of 10−11 (rad/s)/

√
Hz. In

order for the dual BEC interferometer to be competitive, the parameter set must be adjusted.
An envisioned system in which it is implemented must be larger than the volume of the cube
before with only a few cubic centimeters. The following values are chosen so that they do not
appear completely unrealistic. The pulse separation time is therefore increased to 𝑇 = 125 ms,
which corresponds to a fall distance of about 35 cm for the atoms. Also the chosen beam
diameter of the flat-top shaped laser beam is increased to 𝑑 = 50 mm. An improved atom
number of 𝑁 = 106 and an enhanced momentum transfer of ~𝑘eff = 96 ~𝑘 in the interferometer
are assumed as well. This larger momentum transfer and beam diameter also require higher
laser powers, which is, however, in the order of magnitude of the achievable powers of frequency-
doubled fiber laser systems, as shown in section 4.2. In units, this would correspond to a
laser power of 10 W which translates to a constant lattice depth of about 𝑉0 = 9 𝐸r, in units
of recoil energy, if 90% of the total power is uniformly distributed over the flat-top shaped beam.

With these challenging parameters at hand, quantum projection noise limited acceleration
sensitivities on the order of 𝜎a

√
𝑡 ≈ 10−10 (m/s2)/

√
Hz and also rotation sensitivities of

𝜎r
√

𝑡 ≈ 10−9 (rad/s)/
√

Hz could be achievable with the presented dual BEC interferometer. At
some point, however, the scaling of these values reaches its technical maximum, which in this
estimate was limited by the diameter of the light beam. This in turn is defined by the available
laser power, as mentioned above.

3.4 Multi-loop atomic Sagnac interferometry
It would be desirable to combine all the advantages of the approaches and techniques introduced
in this chapter without their disadvantages or limitations. To move in this direction, a multi-loop
atom interferometer in the following section employs the relaunch mechanism from section 3.1
combined with the large momentum transfer through a twin lattice from section 3.2, but is not
restrained by small finite laser beam diameters as explained for the dual BEC interferometer in
section 3.3.

To increase the measurement sensitivity of light interferometers without increasing the setup size,
multiple loops can be formed. To realize an equivalent for matter-wave interferometers, several
approaches have been proposed. One of them is to confine matter waves in tight waveguides,
analogous to light in a fiber optic gyroscope. In this manner, long interrogation times and
larger total enclosed areas, and thus higher sensitivities, can be achieved without having to
increase the actual geometric area. Thus, compact but not always sensitive devices could be
realized. [Arn04; Wu07; Moa20; Krz22]. While such fully guided or trapped systems have their
benefits, they can also suffer from systematic effects of the guiding or trapping potential itself.
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An alternative approach that attempts to take advantage of the same benefits, but without the
constant confinement, is the multi-loop atom interferometer published in [Sch21] and presented
here. It employs several different light pulses to form a scalable area.

Atom-chip
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horizontal lattice
(𝜔1 & 𝜔2)

vertical lattice
(𝜈1 & 𝜈2)
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Figure 3.15: Flow diagram of a multi-loop atomic Sagnac interferometer sequence. The prepared
BEC is manipulated by two perpendicular oriented optical lattices containing the frequencies 𝜔1
and 𝜔2 as well as 𝜈1 and 𝜈2 respectively. The individual techniques applied inside the lattice are
highlighted by a green or red background. A four-pulse sequence (𝜋/2-𝜋-𝜋-𝜋/2) is used instead of
the Mach-Zehnder sequence frequently mentioned before. The relaunch process is always performed
within the vertical lattice, while the interferometer pulses are applied within the horizontal lattice.
The sequence can be repeated by forming 2𝑛 loop iterations, where 𝑛 = 1 defines one loop in this
flow diagram. For more details on the sequence, refer to the space-time diagram 3.17.

The approach uses free-falling atomic ensembles, implements a four-pulse interferometer se-
quence, and includes the ability to relaunch after each one, as shown in the flow diagram in
figure 3.15. After each relaunch the atoms follow the same trajectories as before, multiplying
the effectively enclosed geometric area. The geometry itself is shown in figure 3.16. It utilizes
the same combination of light fields as before for the dual BEC interferometer from section 3.3.
Under the simple assumption of neglecting loss of atoms and loss of contrast, which may scale
with the number of loops due to imperfections in the atom-light interactions, a linear increase
in the quantum projection noise limit of the sensitivity per cycle is obtained.

The detailed sequence can be understood as follows. First a BEC is generated below the atom
chip, released from its trap and prepared as explained in section 3.2.1. After this step the atoms
have moved a certain distance away from the horizontally aligned atom chip. Subsequently the
ensemble is launched upwards by the light field consisting of 𝜈1 and 𝜈2 (red arrows) in the same
way as explained for the fountain gravimeter in section 3.1. After the launched ensemble reaches
the position (a) a horizontal beam splitting operation is applied with the retro-reflected light
field consisting of 𝜔1 and 𝜔2 (green arrows), that interacts with the wave packet and forms two
individual ones drifting apart with a momentum of 𝑝 = ±~𝑘/(2𝑚). After the drift time 𝑇 , the
two ensembles have reached the points (b) and (d) and the horizontal light field is applied again
to invert their momentum. After having reached these two outermost points of the geometry
the atoms drop until they reach the position (c) at a time 2𝑇 . Here, at their lowest point their
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Figure 3.16: Trajectories of the multi-loop scheme within the the atom chip setup as employed in
sections 3.1, 3.2 and 3.3. First, the atomic ensemble is created and prepared, during this time it
falls in the direction of 𝑧. Afterwards it is launched upwards towards position (a) where a beam
splitting pulse leads to a coherent superposition of two momentum states (blue, brown) that separate
symmetrically apart (1). After they reach positions (b) and (d), their momentum is reversed and
they are deflected toward each other (2). Arriving at position (c), another relaunch sends the wave
packets back on their way (3). At position (b) and (d) a mirror operation directs them back to
the start (4). At this position (a), after the interferometer has enclosed the area 𝐴 (shaded region)
twice, it can either be closed with a final beam splitter, or another relaunch starts a new loop. After
a number of 2𝑛 loop iterations, the output ports below position (a) can be seen in the form of three
black arrows. Adapted from [Sch21].

momentum is reversed again by a relaunch operation. Following the trajectories of the first loop
upwards again the ensembles reach the position of horizontal momentum reversal again after a
time 3𝑇 and are directed back towards the starting position (a) of the initial splitting operation.
This completes the second loop after the time 4𝑇 and opens up two possibilities at this point.
Either the interferometer is closed by a final beam splitting operation that afterwards allows
for the detection of three output port populations, or all previous operations are repeated to
form another 2𝑛 loop.

As described, the two light fields used serve different purposes. While one focuses on the launch
process, the other applies beam-splitting and recombination pulses. With some adaption such
a scheme is also of interest for operation with a high-finesse optical resonator. In this case the
beam-splitting and recombination light field is enhanced by the cavity setup to improve spatial
filtering of the coherent manipulation beam [Ber21].

An important quantity for rotational measurements based on the Sagnac effect is the effective
enclosed area. In the case of this multi-loop scheme, it is enclosed by the atomic trajectories,
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as shown in gray in figure 3.16, and can be calculated to

𝐴 = 𝑛
~�⃗�eff
𝑚

�⃗�𝑇 3, (3.15)

with the effective wave vector �⃗�eff originating from the green light field (𝜔1 and 𝜔2) and �⃗�

defining the local gravitational acceleration.
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Figure 3.17: Space-time diagram of the multi-loop (𝑛 = 1) geometry together with the timings of
the intensities of the interferometer pulses (𝜋/2 and 𝜋) applied in the horizontal lattice (green) and
the relaunch in the vertical lattice (red). The positions (a), (b), (c), and (d) correspond to their
respective equivalents in Figure 3.16. The entire sequence takes the time 4𝑇 , with the relaunch
halfway through this at 2𝑇 . The space-time trajectories of a possible second loop (𝑛 =2) are shown
opaque. Preparation and detection time of the atoms, as well as the initial launch at the beginning
of the sequence are neglected. Adapted from [Sch21].

For a better visualization of the individual steps and timings of the sequence, a space-time
diagram with two loops (𝑛 = 1) and the possible extension to four loops (𝑛 = 2) is shown in
figure 3.17. The phase shift measured by an atom interferometer originating from the Sagnac
effect is generally described in equation 3.1. In the present case for this explicit scheme it is
similarly calculated to

𝜑r = 2𝑛(�⃗�eff × �⃗�)Ω⃗𝑇 3. (3.16)

An interesting detail to note here is that the manipulations within the vertical light field (𝜈1 and
𝜈2) are used only for the relaunch process and therefore need to be considered only indirectly
for this calculation.
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Analogous to the calculation for the dual BEC interferometer sequence in section 3.3.3, the
potentially achievable rotation sensitivity for the multi-loop geometry, limited by the quantum
projection noise, can be estimated based on the measured phase shift from equation 3.16 as
follows

𝜎r(𝑡) = 1
𝐶

√
𝑁2𝑛(𝑘eff𝑔𝑇 3)

√︂
𝑡cycle

𝑡
. (3.17)

The presented multi-loop scheme implicitly assumes that the velocity vector of the relaunch
is aligned parallel to gravity, which can lead to undesired phase shifts in case of a non-ideal
alignment. Due to the inherent symmetry many other spurious shifts are already suppressed,
but still timing jitter or gravity gradients may degrade the sensitivity of the measurement. A
detailed analysis of different requirements on these parameters can be found in [Sch21].

3.5 Similarities and unique features of the methods and concepts
In order to try to compare the described methods and concepts with each other, individual
advantages and limitations are listed in the table 3.3. However, these points represent only
a limited selection of the most prominent properties and do not allow an equal comparison.
Nevertheless, this shows that depending on the targeted measurement, a selection can be made
in which existing disadvantages may not come into play. Some obvious applications, such as
the use of the re-launch process in a fountain gravimeter or the twin-lattice interferometer for a
highly sensitive rotation sensor, seem clear. However, these are not limited to such uses and can
therefore also be useful in other areas. Another application example from the field of inertial
navigation is presented later in section 6.1 and describes the use of the multi-axis dual BEC
interferometer concept in a compact sensor setup.



Chapter 3 Advanced atom interferometry methods for inertial sensing 59

Table 3.3: Summary of the benefits and limitations of the different interferometry methods and
concepts presented in this chapter. The points represent a limited selection of the most prominent
properties and do not provide an equivalent comparison. They show distinctive characteristic
features which can help to identify possible applications or implementations.

Benefits Limitations
Fountain

• relaunch operation helps to increase
available interferometer time

• compact, retro-reflected lattice light
beam configuration

• output phase sensitive to accelera-
tions, but rotations can cause sys-
tematic effects

• atom-chip coated surface defines
quality of light field

Twin lattice

• large enclosed area 𝐴 due to the sym-
metric momentum transfer Δ𝑝

• area tunable by parameters 𝑇 and
Δ𝑝

• retro-reflection of lattice light beam
can suppress systematic effects

• major advantage for rotational mea-
surements only

• distortions of the light field have
shown to limit the sensitivity scaling

Dual BEC

• single initial BEC based differential
scheme

• vibration noise suppressed rotation
measurement

• rotation noise suppressed accelera-
tion measurement

• easily extendable to multi-axis oper-
ation

• achievable beam sizes limit the inter-
ferometer area and thus the achiev-
able sensitivities under the influence
of gravitational acceleration

• dynamic environments influence the
differential readout method

Multi-loop

• enclosed area 𝐴 can be tuned to ei-
ther operate larger scale or compact
sensors

• only requires single beam splitting
zone of finite size

• multiple loops 𝑛 increase area 𝐴 and
sensitivity, but not size

• can be extended to measure the local
gravitational acceleration or tilts

• high relaunch efficiency is crucial for
multi-loop operation

• non-ideal alignment of relaunch di-
rection can lead to undesired phase
shifts



CHAPTER 4
Tackling detrimental effects in the atom-light interaction

Measurement of inertial signals with an atom interferometer can be negatively influenced by
different effects, some of them can be common-mode suppressed, while others cannot. In the
case of the geometries presented in chapter 3, these can be vibrations of the inertial reference,
laser phase noise, temporal and spatial intensity fluctuations of the laser beam. The so-called
detection noise can usually be decomposed into contributions with different scalings with respect
to the atomic number 𝑁 [Ita93; San99]. For example, contributions from technical noise such
as noise in electronics or scattered light fluctuations scale with the inverse of the atomic number
1/𝑁 . Contributions dominated by quantum projection noise, as an expression of the proba-
bilistic nature of measuring a quantum superposition, scale with 1/

√
𝑁 . Other contributions

arising for example from optical noise due to laser frequency and intensity fluctuations scale
independent of 𝑁 .

The optical noise can be a dominant negative effect for the atom-light interaction. In chap-
ter 3.2.2, this was strongly demonstrated by the contrast loss in the twin-lattice interferometer,
where the perturbations of the laser light field used for the atom-light interactions limit an even
larger momentum transfer. In addition, the (relative) phase of the light field should not be
neglected either, and even today wavefront aberrations are one of the major uncertainty factors
in atom interferometers [Lou11; Sch15; Bad18; Böh22]. To date, the supply of laser frequencies
with the required agility for quantum optical experiments has often been provided by large
laboratory setups. For the future, the need has arisen to move such setups from the laboratory
to field applications in the form of transportable or mobile experiments. Here, the environment
and the desired compactness pose further challenges [Bar14; Hei20; Fry21; Bec18; Bon19].

Therefore it seems to be an important task to reduce the influence of technical shortcomings of
the employed light fields. Some methods already exist, such as common-mode suppression or
the implementation of high-finesse optical resonators [Ber21; Pan23a], which in turn increase
the complexity of the setup and also set limits depending on the application. In the case of
an optical resonator, for example, one limit is the tunable frequency range. In the following
chapter, three further topics are presented, which are dedicated to individual problems of light
field generation, but are not mutually exclusive.

60
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1. Generation of a collimated homogeneous beam profile based on flat-top shaping
optics [Mie18]: For this purpose, an aspherical lens based beam shaping setup is analysed
with respect to its applicability for atom interferometry. The measured intensity and
phase profiles are presented and their influences on an atom interferometer are explained.
Finally, the comparison with a Gaussian light field is made and the temporal stability is
investigated.

2. Compensation of light shift effects based on the combination of two oppositely
detuned light fields away from the atomic resonance frequency [Kov15b]:
This method is integrated into a laser system that enables detuning of several hundred
GHz while generating high optical powers and multiple frequencies. Its performance is
presented with special attention to low-loss light beam superposition.

3. Stable generation of all laser frequencies required for the production of a cold
atomic ensemble or quantum degenerate gas and the subsequent coherent
manipulation in the form of Raman and Bragg transitions via single and/or
double diffraction: This is to be realized in a compact laser system that combines the
reliability and robustness of telecom components with frequency doubling by Periodically
Poled Lithium Niobate (PPLN) crystals. It provides the ability to combine internal and
external state manipulations with only a single laser source. This enables for example
the removal of spurious atoms through blow-away pulses and interferometer topologies
that are sensitive to the gravitational redshift. As an application example, double Raman
processes of different order are realized and their performance is presented.

4.1 Flat-top beams for the coherent manipulation of atoms
Since the sensitivity and accuracy of atom interferometers, especially when employing large
momentum transfer techniques, crucially depends on the spatial beam profile and phase uni-
formity of the applied light field, it seems logical to investigate and try to improve it. The
commonly used interrogation light field for atom interferometry is based on the propagation of
a collimated Gaussian beam, as is true for all measurements presented in chapter 3. Instead,
the use of a collimated flat-top beam profile may offer the advantage of providing constant
light intensities for interacting atoms at different positions in the beam. This is a good basis
for coherent manipulations which typically scale with the optical potential. It also has the
advantage of being less susceptible to distortion at apertures or edges than a Gaussian beam
profile, since the amplitude of the flat top decreases much faster at edges. Avoiding distortions
is crucial since they immediately decrease the interferometer contrast, and ultimately lead to a
loss in signal-to-noise ratio. Moreover, they can also cause phase inhomogeneities and lead to
systematics or diffraction phase effects that are not negligible. In the case of multiple atom-light
interactions that imprint different phases in each operation, for example when using techniques
with large momentum transfer, such effects are amplified. Therefore, it is important to obtain
a homogeneous intensity and phase profile.

The size of the interrogated cold atomic ensemble is also of importance, because when it reaches
the order of magnitude of distortions in the light field, the transition probability distributions
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are broadened and more effects are sampled. For comparison with quantitative results obtained
later, it is mentioned that this size can range from a few micrometers (typical for BECs)
to centimeters (typical for laser cooled atom clouds) and depends on effective temperatures,
expansion rates, and observation times.

Theoretically a flattened Gaussian beam can be expressed as a finite sum of 𝑁 Laguerre-Gauss
beams, whose field can be written as

𝑈𝑁 (𝜌) = 𝐴0

𝑁∑︁
𝑛=0

𝑐(𝑁)
𝑛 𝐿𝑛

(︂
2(𝑁 + 1)𝜌2

𝑤2
0

)︂
exp

(︂
−(𝑁 + 1)𝜌2

𝑤2
0

)︂
, (4.1)

where 𝜌 is the radial coordinate and 𝑤0 the radius of the beam [Gor94; Bag96; Bor01]. 𝐿𝑛

describes the 𝑛-th Laguerre polynomial and the corresponding coefficient is defined as

𝑐(𝑁)
𝑛 = (−1)𝑛

𝑁∑︁
𝑚=𝑛

1
2𝑚

(︂
𝑚

𝑘

)︂
. (4.2)

In contrast to a Gaussian beam, a flat-top beam is not a free-space mode, meaning that
the shape of its intensity profile will change. While a Gaussian beam with few high spatial
frequencies, will tend to keep its shape during propagation, a beam that is flat in intensity
with sharp edges is likely to see its profile deteriorate more quickly for the same propagation
distance.

A different approach to better compare the propagation of the intensity profile of a flat-top
beam to a Gaussian beam is to express its shape with the Fermi-Dirac (FD) function

𝑔FD(𝜌) = 𝑔0

(︂
1 + exp

(︂
𝛽

(︂
𝜌

𝑤0
− 1
)︂)︂)︂−1

, (4.3)

with 𝑤0 setting the length scale, equivalent to a Gaussian beam, and the dimensionless
parameter 𝛽 defining the shape of the function, where 𝛽 → ∞ represents a perfect flat square.
The normalization constant 𝑔0 can be adequately approximated for 𝛽 ≫ 1 by a Taylor expansion

𝑔−1
0 = 𝜋𝑤2

0

(︂
1 + exp(−𝛽)−1 + 1

3𝜋2𝛽−2 + O(𝛽−4)
)︂

, (4.4)

which is the case of interest [Hof00].

If one assumes that the output beam from the beam shaping optics is a plane wave, the
propagating beam can be modelled by using Kirchhoff’s diffraction theory and the Fresnel
approximation [She06].

The optical amplitude of the radial beam profile 𝑟 is calculated after passing the initial output
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aperture with a radius 𝑤max after the propagation distance 𝑑 to

𝑢(𝑟,𝑁F) =
� 𝑤max

0
𝑔FD(𝑟)𝐽0
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2𝜋𝑁F
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𝑅2
0

)︂
exp
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𝑖𝜋𝑁F

(︂
𝜌

𝑅0

)︂2
)︃

𝜌

𝑅0
d𝜌. (4.5)

Here 𝐽0(𝑥) is the Bessel function of order zero and 𝑁F describes the dimensionless Fresnel
number

𝑁F = 𝑤2
0

𝜆𝑑
, (4.6)

with 𝜆 as the optical wavelength. This number is the main parameter for the diffraction theory
and therefore has a large influence on the propagation behaviour. An overall phase was omitted
and the intensity was normalized to its plateau. For better representation, the modelled shapes
before and after propagation for different values of 𝛽 and the initial parameters 𝑤0 = 7.7 mm
Full Width at Half Maximum (FWHM) and 780.24 nm, which correspond to the technical data
of the beam shaping optics used later, are shown in figure 4.1.

After propagation ring-shaped structures appear at the edges of the beam. These structures
amplify after longer propagation distances and are more distinct for flat-top beams with
steeper edges, respective larger 𝛽 parameters, as visible for the two different simulated beam
propagations. Finally, at large propagation distances, these ring-shaped structures will reseal
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Figure 4.1: Theoretical prediction of a flat-top beam profile after propagation of distances
𝑑 = 0 m, 𝑑 = 0.5 m, 𝑑 = 1 m and 𝑑 = 50 m. The model is based on the Fermi-Dirac function and
Kirchhoff’s diffraction theory with the Fresnel approximation and initial parameters 𝑤0 = 7.7 mm
and 𝜆 = 780.24 nm. Left: Normalized optical amplitude of the radial beam profile with the
parameter 𝛽 = 56. In a simplified picture this parameter describes the steepness of the slope of the
flat-top profile. Right: For a larger value of 𝛽 = 150, the propagated beam profile exhibits larger
distortions that start at the edges and increase as the propagation progresses.
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and the beam shape will resume a Gaussian-like intensity distribution. Additionally these
structures appear after much shorter propagation distances for smaller beam diameters. All of
the aforementioned points clearly illustrate the importance of controlling the output intensity
shape of the flat-top beam to obtain a useful range of propagation. The choice of initial beam
diameter and 𝛽 parameter directly influence the degradation of the propagated profile.

4.1.1 Flat-top beam shaping optics
As mentioned in the introduction of this chapter clipping mechanisms at edges or apertures
close to the optical beam path can have a severe influence on an atom interferometer. In
the vacuum chamber setup shown in figure 4.2, the light beam (displayed in red) propagates
horizontally below the atom chip. Due to the atom chip’s property of generating high magnetic
field gradients close to its surface, the prepared atomic ensemble is located only a few hundred
micrometers below it. Thanks to the vertically oriented gravitational field the atomic ensemble
starts to accelerate towards the center of the beam after its release from the magnetic trap.
For ground-based setups that do not use trapped or guided geometries [Arn04; Krz22], the
interrogation time 𝑇 is ultimately limited by the detectable free fall distance, with exceptions
such as through the schemes presented in sections 3.1 and 3.4.

50 mm

y

z

flat-top telescope

second camera

accelerometer

retro-reflection
mirror

𝜆/4

Figure 4.2: Half-section through the 𝑦-𝑧 plane of the experimental vacuum chamber with externally
attached components. This includes an additional detection axis along the 45 degree angle relative to
the horizontal plane shared with the light fields for MOT operation. The flat-top telescope assembly
is connected horizontally and is opposite to the retroreflection combination consisting of mirror
and quarter-wave plate. A commercially available accelerometer [Titan TACCL-N1, Nanometrics]
attached to the top of the mirror can measure vibrations acting on it. The path of the light beam
is shown by a red line and the detectable interferometer area under the atom chip is roughly shown
by a white rectangle.

The idea of making compact interferometers possible by moving the optical beam path close to
the production site (for example the atom chip) therefore seems favourable. This may come
with the tradeoff of creating perturbations that induce spatially variable dipole forces and can
ultimately lead to a contrast and sensitivity loss, as explained in subsection 3.2.2. A flat-top
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beam has the advantage of being less susceptible to such distortions than a Gaussian beam,
since the amplitude of its spatial profile decreases much faster at its edges.

A simple approach for achieving a flat-top beam is by transmitting a Gaussian shaped beam
through an apodizing filter. It locally reduces the intensity of an incident beam in order
to achieve the desired distribution. This filtering is not very efficient since it intrinsically
generates a large loss of intensity. Alternatively, a set of aspheric optical components can be
used to redistribute the intensity of the beam as it propagates through the assembly. Different
properties of the diffractive elements are used to modify the shape of the incident collimated
Gaussian wave to obtain a desired intensity distribution after a certain propagation. Typically,
aspheric lenses are effective in producing complex intensity distributions in a given plane, but
are not optimal for obtaining a constant profile, like a flat-top, after long propagation distances.
The commercially available TopShape LongDistance beam shaper by the Asphericon GmbH
[TSM25-10-LD-B-780, Asphericon] advertises a collimated flat-top beam output up to a
working distance of at least 1 m. Its principle is based on the refractive beam shaping concept,
introduced by Frieden and Kreutzer [Fri65; Kre69], and consists of two plano-aspheric lenses.
The first aspheric surface changes the incoming plane wave with a Gaussian intensity profile
by ray mapping, so that an uniform intensity distribution is generated. The second aspheric
surface collimates the output beam again to obtain the flat-top beam profile. Important points
that affect the output quality of the flat-top beam are the size, collimation and relative position
of the input beam. Therefore a mechanical assembly as shown in figure 4.3 is constructed to
mount the beam shaping optics.

30 mm

fiber connection

two-axis tilt

𝑥-𝑧 translation

𝑓 = 88 mm

flat-top shaper
2:1 telescope

right angle
mirror mount

connection to
experimental chamber

Figure 4.3: Mechanical assembly of the flat-top beam shaping optics for connection to the
experimental vacuum chamber. A single large mode area photonic crystal fiber outputs light from a
FC/PC fiber connection. The divergent output light is collimated by a custom designed aspheric
lens with an EFL of 𝑓 = 88 mm connected to and serving as an input for the flat-top beam shaper.
To obtain a symmetric output profile the position of the fiber connector can be adjusted by a
two-axis tilt and a two-axis 𝑥-𝑧 translation. The output of the flat-top beam shaper is demagnified
by a 2:1 telescope which is mounted directly at the output side. Two right angle mirrors enable the
adjustment, especially beam walking, of the flat-top beam with respect to the interrogated atomic
ensemble.

In the case presented here, a single photonic crystal fiber with a large mode area [LMA-PM-
10, NKT Photonics] and a mode-field diameter of 1/e2 = 8.5 ± 0.1 µm outputs light with a
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wavelength of 780 nm at a FC/PC connector that is mounted inside an adapter [SM1FC, Thor-
labs]. The divergent output light is collimated by a custom aspheric lens [200286-000-03A,
Asphericon], designed with an Effective Focal Length (EFL) of 𝑓 = 88 mm to a theoretical
Gaussian beam width of 1/e2 = 10.000 ± 0.015 mm. The calculated wavefront map of the de-
signed lens demonstrates a value of the wavefront error which is below the RMS value for a lens
with a diffraction limited performance. Therefore, a point source assumed to be the output of
the single mode fiber and located at the front focal point of the lens should be ideally collimated.

To be able to obtain a symmetric flat-top beam profile after collimation, the relative position
of the fiber output with respect to the lens is adjusted in two stages. The first stage is a flexure
mount [IXF1.0, siskiyou] that provides a two-axis tilt aligment with minimum controllable
motion of ±0.001° for pitch and yaw. The second stage [ST1XY-A/M, Thorlabs] allows for
𝑥-𝑧 translation in the plane of the lens that centers the tilt compensated input wavefront to the
geometrical center of the lens. The collimation lens itself is directly connected to the flat-top
beamshaper [TSM25-10-LD-B-780, Aspericon], mounted together in a 30 mm cage system
assembly and positioned by translation in 𝑦-direction at a distance of 88.0 ± 0.1 mm. The
FWHM of the flat-top beam is specified to be between 15.2 mm to 15.7 mm and demagnified
by a 2:1 telescope [BeamExpander, Asphericon] which is also mounted directly at the output
side of the flat-top beam shaper. This optional reduction relaxes the requirement of achievable
maximum laser power for coherent manipulations, since it effectively increases the intensity on
the flat-top plateau by a factor of four. The last part of the mechanical assembly consists of two
right angle mirror mounts [KCB1E/M, Thorlabs] with mounted elliptical mirrors [BBE1-E03,
Thorlabs]. They enable the adjustment, especially beam walking, of the flat-top beam with
respect to the interrogated atomic ensemble. The full setup is connected with an adapter plate
to the experimental vacuum chamber as shown in figure 4.2. In the following sections, values of
the generated flat-top beam such as collimation, intensity and phase profile are quantified and
their influence on atom interferometry is discussed.

4.1.2 Flat-top intensity profile
In reality, the propagation shape of the intensity and phase profile is determined by many
more factors than the propagation theory explained in the previous section can predict. Most
effects can be listed under the collective term of production tolerances and resulting imper-
fections. Depending on the number of optical elements and manufacturing techniques, these
differ in size and shape. Experimentally, this usually leads to more distortions of the beam profile.

In figure 4.4 the measured flat-top profile after a propagation distance of 𝑑 = 0.243 m is shown
and compared to the theoretic prediction from equation 4.5 with the parameter 𝛽 = 95 chosen
to match the experimentally determined slope of the profile for different propagation distances.
It should be noted that in the setup, as explained in the section before, the 2:1 telescope reduces
the initial radius parameter 𝑤0 by a factor two. The intensities of both the experimental
and the theoretical beam profile are normalized to the plateau of the non-propagated flat-top
beam. The 𝛽 = 95 parameter is obtained by matching the measured experimental slope to the
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calculated profile from equation 4.5. This chosen value for the optic design lies between the two
shown in figure 4.1 and therefore provides a compromise between steepness of the slope and
flatness of the plateau. For the theoretical profile at propagation distances of up to 0.5 m, the
largest intensity changes occur only at the edges of its plateau, with 80% of the profile being
changed by less than 5%. From the comparison of the measured data with this theoretical
profile, it becomes clear that the dominant deviations must come from something other than
the propagation simulated by the diffraction theory, quite possibly the optical imperfections of
the beam shaping optics used.
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Figure 4.4: Theoretical prediction of the propagated flat-top beam profile compared to an
experimentally obtained profile after a propagation distance of 𝑑 = 0.243 m. The initial parameters
𝑤0 = 3.7 mm and 𝜆 = 780.24 nm are obtained experimentally. The value for 𝛽 = 95 is matched
according to the measured experimental slope. This value seems to be a good compromise between
a steep slope and flatness of the plateau. However, it is obvious that the simulated propagation
using diffraction theory cannot model the perturbations on the intensity profile alone.

4.1.3 Influence of the intensity profile
To measure the quality of the intensity distribution of the flat-top beam a simple optical setup
is devised. The assembly of the components for beam shaping, described in subsection 4.1.1 and
shown in figure 4.3, is placed on an optical table and its output profile measured at different
distances. A schematic overview is shown in figure 4.5.
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Δy

flat-top

lens

Figure 4.5: Schematic setup of the intensity profile measurement of the flat-top beam. The output
profile is measured at a fixed propagation distance 𝑑 by a beam profiler placed on a translation
stage with an adjustable distance Δ𝑦. It should be noted that the exact lens configuration inside
the flat-top beam shaper and the beam reducer is subject to actual conceptual implementation by
the manufacturer.
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The beam is detected by a beam profiler with an active area of 11.3 × 11.3 mm [S-WCD-LCM,
DataRay], which captures individual images of the 2D intensity distribution in the 𝑥-𝑧-plane of
the propagation direction at a distance 𝑑. The camera itself is placed on a translation stage that
is controlled by a motorized actuator [LTA-HS, Newport] and a motion controller [ESP300,
Newport]. The actuator allows for a maximum total travel distance Δ𝑦 = 50 mm with a reso-
lution of 0.035 µm and a guaranteed directional repeatability of 0.5 µm. In a first measurement,
the beam profile is evaluated at two different fixed points. Those roughly correspond to the
optical distances the light has to travel until the two-photon interrogation position with the
atomic ensemble at 𝑑1 = 243 mm and 𝑑2 = 615 mm after retro-reflection. From these two
positions, the beam collimation is calculated to a divergence beam half-angle of 0.0204 ± 0.0028°
by measuring the radial distance of the points where the intensity has dropped to 1/e2 of its
maximum. Additionally, the profile is measured with ±Δ𝑦 = 4 mm and a step size of 40 µm to
obtain more pictures in the direction of propagation and be able to compile a profile in the
𝑦-𝑧-plane. The area defined by ±Δ𝑦 incorporates the largest separation of the trajectories
generated by a relative momentum of Δ𝑝 = 408~𝑘 of the twin-lattice interferometer introduced
in section 3.2. The obtained 𝑥-𝑧 and 𝑦-𝑧 intensity distributions can be seen in figure 4.6. The
left picture displays the normalized distribution after the propagation distance of 𝑑1 = 243 mm
and the right picture the normalized intensity distribution along the propagation direction
𝑑1 ± Δ𝑦 with four example trajectories of a twin-lattice interferometer with different relative
momentum transfers. The two-dimensional intensity distribution shows various features, for
example concentric ring-shaped structures, which are created by the polishing process during the
manufacture of the aspherical beam shaping optics. The apparent periodic structure of peaks
and valleys on these rings is also due to induced oscillations during polishing and thus represents
a technical limitation of the manufacturing process. In addition, the characteristic hexagonal
structure of the fiber is visible in the center of the beam, even after 1 m of propagation. On
the left side of the intensity profile, an additional interference pattern covers the beam profile,
which will be explained in subsection 4.1.5. In addition, smaller dots identified as dust par-
ticles interfere with the pattern, but can be neglected since they are located on the camera screen.

Overall, the intensity pattern varies spatially up to ± 20% but much less along the direction
of light travel, as seen in figure 4.6 on the right. On the scale of atomic trajectories of the
twin-lattice interferometer, the propagated intensity distribution varies less than ± 1%. The
working distance of the beam shaping optics is advertised with up to 1 m, which is more than
the measured distance 𝑑2 = 0.615 m. In this region, the fluctuations of the intensity pattern
are increased up to ± 25%, but the enveloping profile and especially the slope are consistent
with the theoretical prediction.

To analyze the influence of the intensity distribution on the interferometer, the measured profile
is compared to the model of a clipped beam from subsection 3.2.2. In this context, it should be
noted that wavefront distortions appear as amplitude fluctuations after propagation because
spatial phase and amplitude fluctuations mix during this process [Bad18; Rou14]. The flat-top
light field is represented by a two-dimensional map of the measured intensity distribution as
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Figure 4.6: Sections through the measured intensity profiles of the flat-top beam along the 𝑥-𝑧
plane and the 𝑦-𝑧 plane. Left: Two-dimensional representation of the intensity profile after a
propagation distance of 243 mm. Right: Cut along the red line of the left profile in the direction of
beam propagation through 200 individual images of the intensity profile. The example trajectories
for a twin-lattice interferometer, introduced in section 3.2, with a relative momentum transfer of
Δ𝑝 = 24~𝑘, 128~𝑘, 208~𝑘, and 408~𝑘 are plotted for order of magnitude, starting with smaller and
then increasing separation. The intensity is normalized to the maximum pixel value.

displayed in figure 4.6 on the right. Due to the small atomic movement in 𝑥-direction the beam
profile is assumend to be constant in this direction. A three-dimensional simulation including
this data is possible, but beyond the scope of this analysis.

The modelled data grid in [Geb21] based on the Gaussian beam clipped at the edge of the atom
chip is populated with points at distances below the Thomas-Fermi radius. This translates into a
grid size in the 𝑦-direction of 3.9 µm and in the 𝑧-direction of 0.5 µm. To achieve the comparable
sampling rate as in the simulation with the Gaussian light field, the grid size of the measured
data must be interpolated. Of course, distortions smaller than the originally grid size are then
neglected. For the measured profile of the flat-top beam, it is interpolated in the 𝑦-direction
from 40 µm by a factor of 10 to 4 µm and in the 𝑧-direction from 5.5 µm by a factor of 5 to 1.1 µm.

Nevertheless, the grid size in 𝑧-direction is already smaller than the calculated Thomas-Fermi
radius of the initial propagated ensemble of about 30 µm. The changes of the profile in the
𝑦-direction, which is direction of propagation, can be estimated as small at these distances.
The result from the simulated contrast values from equation 3.7 in dependence of the relative
transferred momentum Δ𝑝 is shown in figure 4.7. The modelled dependence of the contrast on
the light field is combined with the same atom loss model, as described in the supplement of
reference [Geb21] and shown in figure 3.8 to account for the two presumed dominant effects
contributing to the experimentally observed loss of contrast.
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Figure 4.7: Theoretical analysis of the achievable contrast values 𝐶 for a twin lattice interferometer
with different momentum transfers Δ𝑝 operated with a flat-top beam or a distorted Gaussian beam.
The input for the simulations are the measured flat-top profile shown in figure 4.6 on the right or
a simulated Gaussian beam profile clipped at the edge of the atom chip. The atomic loss model
is calculated for both light fields with the same parameters from section 3.2. The shaded areas
represent confidence intervals of the simulations, determined by atom number and lattice depth
uncertainties.

This comparison shows an overall expected lower contrast loss for the flat-top case. However,
it should be taken with special caution, since it is based on the one hand on a numerical
simulation of a clipped Gaussian beam profile whose distortion was adjusted to an exper-
imentally observed contrast loss, and on the other hand on a measured flat-top profile. It
remains to be seen to what extent the contrast loss for the latter can be confirmed experimentally.

There is an additional assumption that needs to be taken into consideration when comparing
these simulations to measured data, which is the aspect of retro-reflection. The optical lattice
is generated through the superposition of two counter-propagating light fields, realized by
the reflection of an incoming laser beam featuring two frequencies with linear orthogonal
polarizations at a quarter-wave plate and mirror combination, see figure 3.4 for reference. The
input for the contrast loss curves presented, in the form of the simulated and the measured
light field, represents only the incident light field and neglects the influence of the reflected
component. Measuring the overlapped light field with a beam profiler is more difficult, but
could be realized by taking two sets of intensity data at 𝑑1 ± Δ𝑦 and 𝑑2 ± Δ𝑦, which are added
together. In this case, special attention would have to be paid to the quality of the alignment,
since the combined light field should be optimized either with a set of pinholes or by feedback
into the optical fiber. If the acquired data sets do not reflect this fact, the combined light fields
are not a good substitution.



Chapter 4 Tackling detrimental effects in the atom-light interaction 71

4.1.4 Influence of the phase profile
Atom interferometers measures parameters of interest by comparing the phase accumulated
by atoms as they traverse either of two trajectories, known as the arms of the interferometer.
During two-photon interactions, the relative phase of the counter-propagating laser light fields
is imprinted on the matter wave, giving rise to the laser phase 𝜑L. This phase directly influences
the measured output phase of the interferometer (for reference see section 2.2). Ideally, the
relative phase of the counter-propagating beams should be zero, which is not always the case in
reality. To determine this, the propagated wavefronts can be measured. This can be typically
done using the two methods of light interferometry and direct wavefront sensing. To characterize
the profile of the presented flat-top beam shaping optics setup and estimate its influence for an
atom interferometer both methods are explored.

2:1 Δy

flat-top

lens

y

window λ/4

Figure 4.8: Schematic setup of the phase profile measurement of the flat-top beam. The setup in
principle resembles an optical Michelson interferometer where the length of one of the arms can be
adjusted by a translation stage by Δ𝑦. In this configuration, the interference pattern resulting from
the beam overlap at the central polarizing beam splitter and detected by a beam profiling camera
can be used to extract the phase information. Alternatively, if the upper arm is blocked (green
box), a Shack-Hartmann sensor can be used to obtain information about the propagated wavefront.
To model the optical configuration for twin-lattice interferometry, comparable optical elements in
the form of two vacuum viewports, a quarter-wave plate, and two mirrors are used in the setup.

For this reason, the measurement setup shown in figure 4.8 and described below is used in two
different configurations. The first is based on a Michelson interferometer and the second utilizes
a Shack-Hartmann Sensor (SHS). To measure the same accumulated phase difference for both,
the setup presented must include slight modifications. If a SHS is placed as the sensor in the
figure, the light from the top arm is blocked (green part in figure 4.8), while two corresponding
wavefront images at two positions 𝑑2 and 𝑑1 are captured. Afterwards these two images are
subtracted from each other.

The Michelson interferometer, on the contrary, evaluates single beam images with a beam
camera as a sensor. The evaluation procedure is explained in detail later in this section.
In principal this allows to compare two independent measurements of the same measurand
(wavefront aberrations) without having to make major changes to the setup. Two exemplary
wavefront images, one taken with the SHS method and one with the Michelson setup, are
presented in figure 4.9 and suggest a comparable performance.

The SHS measures wavefronts with an array of lenslets. Different local inclinations can be
measured and the entire wavefront can be reconstructed by an automated software alogrithm.
The sensor [SHScam UHR, Optocraft] used for the measurement consists of a CCD camera
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head [TM 4200 CL, Pulnix] with 2048 × 2048 pixels of size 7.4 µm × 7.4 µm and a matrix of
100 × 100 microlenses with 𝑓 = 4.73 mm and a size of 150 µm × 150 µm each, optimized to a
wavelength of 780 nm together with an anti-reflective coating. The image evaluation is carried
out by the proprietary software, which outputs a set of 36 Zernike polynomials. When using the
flat-top beam at the experimental vacuum chamber, as shown in figure 4.2, the first distance
between the exit aperture of the telescope (depicted in light blue) and the atomic ensemble
(located inside the white rectangle) is roughly 𝑑1 = 243 mm. This corresponds to the common
path the wavefront has traveled and is adjusted in the measurement setup to the position where
the light hits the sensor for the first time. The second distance the light travels after being
retro-reflected and reaching the ensemble again is 𝑑2 = 615 mm. Therefore the distance over
which the phase difference is accumulated is set to 𝑦 = (𝑑2 − 𝑑1)/2 = 186 mm. When the longer
arm of the setup is moved by Δ𝑦, the relative phase between two different propagation distances
is measured in addition to the optical defects. The optical elements used in the measurement
setup correspond to the components at the experimental vacuum chamber in type and quality.
Nevertheless, differences due to contamination of the surfaces or deformation of the windows
by the vacuum itself cannot be excluded.

To generate wavefront data from the signal measured with the Michelson interferometer a phase
extraction sequence must be performed. The applied technique is based on a Fourier-spectrum
analysis of the mesaured fringe pattern, as developed in reference [Tak82]. The distance 𝑦

over which the phase difference is accumulated is adjusted as described before for the SHS
measurement. Instead of the SHS, the beam camera [S-WCD-LCM, DataRay] used for the
characterization of the intensity profile is positioned as the sensor. As already mentioned, rather
than taking two separate images, only one image is taken. The fringe pattern created by the
interference of the light from the two arms can be seen in figure 4.10 on the top left. Horizontally
aligned fringes covering the intensity profile of the flat-top beam, with superimposed interference
fringes due to optical reflections can be seen. Some overlaying intensity modulations due to
dust particles are also visible. Such a pattern is created only when one of the arms is slightly
tilted with respect to the other, which is otherwise oriented perpendicular to the sensor. In
general the interference pattern is a superposition of the phase 𝜑1,2 and amplitude 𝐸1,2 of the
two individual beams coming from the two arms. For field and intensity this gives [Mie19]

𝐸((𝑥,𝑧) = 𝐸1(𝑥,𝑧) exp(𝑖𝜑1(𝑥,𝑧)) + 𝐸2(𝑥,𝑧) exp[𝑖𝜑2(𝑥,𝑧)] (4.7)
𝐼(𝑥,𝑧) = 𝐸2

1(𝑥,𝑧) + 𝐸2
2(𝑥,𝑧) + 2𝐸1(𝑥,𝑧)𝐸2(𝑥,𝑧) cos[𝜑1(𝑥,𝑧) − 𝜑2(𝑥,𝑧)]. (4.8)

If the amplitudes of the two light fields are uniform, the phase difference can be directly inferred.
However, when the amplitude of the beam varies, the extracted phase information is modulated.
Therefore it is difficult to recover only the relative phase of the two beams. The introduced tilt
helps to eliminate this modulation and allows to choose a suitable and resolvable value for the
distance between each fringe. The two-dimensional pattern can be described by the following
expression
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Figure 4.9: Comparison of two phase profiles as measured by the SHS and the phase extraction
from the Michelson interference pattern. The corresponding root-mean-square (RMS) and peak-to-
valley (PV) values are noted at the top of the images. Left: Two images captured by the SHS at the
positions 𝑑2 and 𝑑1 are subtracted from each other. The resulting image illustrates the accumulated
phase difference over the propagation distance 𝑦. Right: Wavefront image as obtained from the
algorithm schematically explained in figure 4.10. It should be noted that the two profiles were not
obtained on the same day, which could have resulted in different absolute values due to thermal
changes of the alignment of the setup.

𝑔(𝑥,𝑧) = 𝑎(𝑥,𝑧) + 𝑏(𝑥,𝑧) cos[2𝜋𝑓0𝑥 + 𝜑(𝑥,𝑧)], (4.9)

where the desired phase information is stored in the term 𝜑(𝑥,𝑧), 𝑓0 denotes the spatial frequency
of the fringes and 𝑎(𝑥,𝑧) and 𝑏(𝑥,𝑧) represent unwanted variations due to imperfect intensity
profiles of the beams. Typically these variations and the phase term 𝜑(𝑥,𝑧) vary much slower
than the frequency 𝑓0, which makes it easy to separate them in Fourier space. The equation 4.9
can be rewritten as

𝑔(𝑥,𝑧) = 𝑎(𝑥,𝑧) + 𝑏(𝑥,𝑧) exp[2𝜋𝑓0𝑥] + 𝑐*(𝑥,𝑧) exp[−2𝜋𝑓0𝑥], (4.10)

where * denotes the complex conjugate and

𝑐(𝑥,𝑧) = 1
2𝑏(𝑥,𝑧) exp[𝑖𝜑(𝑥,𝑧)]. (4.11)
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Figure 4.10: Algorithm for wavefront aberration analysis based on Michelson interference fringe
detection using the setup shown in figure 4.8. The following steps are performed: The measured
interference pattern is aligned horizontally. A 2D Fourier transformation is performed (1). The
first order detectable maximum is selected and an inverse 2D Fourier transformation is performed
(2). To remove phase discontinuities and ensure that all appropriate multiples of 2𝜋 are included in
the signal, a phase unwrapping algorithm is applied (3). The final wavefront image is obtained by
subtracting the first three Zernike polynomials (4).

The 2D Fourier transform of equation 4.10 yields

𝐺(𝑓𝑥,𝑓𝑧) = 𝐴(𝑓𝑥,𝑓𝑧) + 𝐶(𝑓𝑥 − 𝑓0,𝑓𝑧) + 𝐶*(𝑓𝑥 + 𝑓0,𝑓𝑧), (4.12)

with 𝑓𝑥 and 𝑓𝑧 denoting the spatial frequencies in the respective directions and 𝐺, 𝐴 and
𝐶 represent the Fourier transformed signals of 𝑔, 𝑎 and 𝑐. The visual representation of this
transformation can be seen in figure 4.10 on the bottom left, where the spatial separation
becomes visible. One of the side spectra is selected, for example 𝐶(𝑓𝑥 − 𝑓0,𝑓𝑧), and shifted
by 𝑓0 towards the origin 𝐶(𝑓𝑥,𝑓𝑧). The inverse Fourier transform of this selected part helps
to obtain 𝑐(𝑥,𝑧) without the unwanted background variations of 𝑎(𝑥,𝑧). With the help of the
complex logarithm of equation 4.11, the phase in the imaginary part can also be completely
separated from the unwanted amplitude variations of 𝑏(𝑥,𝑧) as follows

log[𝑐(𝑥,𝑧)] = log[(1/2)𝑏(𝑥,𝑧)] + 𝑖𝜑(𝑥,𝑧). (4.13)

The top middle plot in figure 4.10 shows the output of this operation. The obtained phase is
indeterminate to a factor of 2𝜋. To remove the visible non-physical discontinuities and obtain
a continuous phase distribution a correction algorithms often labelled as ’phase unwrapping’
is applied. To recover the information sampled in the discrete wrapped phase, the algorithm
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searches for the correct integer number of phase cycles to add to each phase measurement
to obtain the correct slant range distance. The result is displayed at the bottom right and
decomposed into a set of 36 Zernike polynomials. In a final step, the first three of these
polynomials, associated with piston, 𝑥-tilt and 𝑧-tilt are subtracted. This compensates incorrect
centering of the chosen area of interest before the inverse Fourier transformation. The resulting
phase distribution, as shown in the plot on the top right, constitutes the obtained relative
phase difference over the distance 𝑦 = 186 mm ± Δ𝑦. It should be noted that both presented
methods are technically limited by resolution and are therefore not suitable for resolving all
high frequencies of phase noise or phase discontinuities.

Following the phase extraction method explained above, based on the Michelson interference
setup, an obtained wavefront image after 𝑦 = 186 mm is shown in figure 4.11 on the left and a
stack of multiple images over a distance of Δ𝑦 = ±4 mm with a step size of 250 µm between
two neighboring images on the right. The wavefront distortion or equivalently transmitted
wavefront error is often quantitatively described by deviations from a perfectly plane wave and
typically specified in dependence of 𝜆 = 780 nm, which describes the nominal wavelength. Its
Peak-to-Valley (PV) value at a fixed 𝑦 position is measured to 𝜆/3.8 and the Root-Mean-Square
(RMS) value to 𝜆/20.6, which are two common units typically used to measure surface accuracy
of optics. The PV value only compares two local points of the profile and ignores curvature,

Figure 4.11: Sections through the measured phase profiles of the flat-top beam along the 𝑥-𝑧
plane and the 𝑦-𝑧 plane. Left: Two-dimensional representation of the wavefront after a propagation
distance of the difference phase of 𝑦 = 186 mm, as obtained by the phase extraction algorithm
explained in 4.10. Right: Cut along the red line of the left profile in the direction of beam
propagation in the form of an extrapolated stack of multiple images over a distance of Δ𝑦 = ±4 mm
with a step size of 250 µm between two adjacent images. The example trajectories of a twin lattice
interferometer are plotted for order of magnitude as done in figure 4.6.
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therefore it is difficult to give an accurate representation of the phase front profile. The RMS
on the other hand is calculated using the standard deviation of the height relative to a reference
using all of the data points.

Most commercial optical components are typically only specified with a PV value at a reference
wavelength and a so-called scratch-dig value that refers to the cosmetic quality of the optical
surface. Optic tests beyond these specified values or classifications according to other more
quantitative approaches are more costly and are therefore often only performed after appropriate
custom order. Nevertheless, it still seems important to mention at least these values, since all
defects of the wavefront caused by transmission or reflection are included in the measurement.
Table 4.1 summarizes the individual specifications of the optics used. Since the values are on
the order of the measured wavefront error they should not be neglected and show currently
imposed limitations. Furthermore, it is shown that the flat-top wavefront is not limited by the
original profile of the fiber and the subsequent beam shaping optics.

Table 4.1: Specified surface quality of commercially available optical components used for the
phase profile measurement. These values are generally described by manufacturers as high to
very high. It should be mentioned that these are by no means achievable qualitative limits, but
improvements over them require significantly more complex manufacturing and are therefore usually
not available from stock.

vacuum win-
dow/viewport

quarter-wave
plate (𝜆/4)

mirror

PV @633 nm < 𝜆/8 < 𝜆/4 < 𝜆/10
scratch-dig 20-10 60-40 10-5

On the right side of figure 4.11, the evolution of the wavefront over the same range as the
intensity profile in figure 4.6 shows larger relative deviations along the 𝑦-direction. The most
likely reason for this behavior are vibrations, which affects the underlying interference pattern
used for phase extraction more than the intensity profile. Nonetheless adapting the same
model as explained in paragraph 4.1.3 and integrating the difference phase along the atomic
trajectories leads to an estimated differential phase uncertainty of < 60 mrad for the largest
relative momentum transfer Δ𝑝 of 408 ~𝑘. For an initial calculated position jitter of ±20 µm
this value deviates by a maximum of ±3 mrad. However, it remains to be mentioned that the
step size of the phase measurement, which is by a factor of 6.25 larger than that of the intensity
measurement, and the above-mentioned undetectable high-frequency phase fluctuations limit
this estimate.

4.1.5 Comparison with a Gaussian light field
To illustrate the differences in the performance of a Gaussian beam compared to the previously
studied flat-top beam shaping optics, the individual profiles are measured after propagation
through the vacuum setup as presented in subsection 4.1.1. By placing a beam profiling
camera [S-WCD-LCM, DataRay] at the position of the retro-reflection mirror, the beam pro-
file can be captured after it has passed all apertures of the chamber and the edge of the atom chip.
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With an alignment procedure that moves the beam down parallel to the 𝑧-axis, which is aligned
with the surface of the atom chip, it is possible to achieve a position far enough away that
almost no clipping effects are observed for either beam shape.

For a Gaussian beam with a measured 1/𝑒2 diameter of 5 mm, diffraction effects are still visible
even after a parallel shift of the center of the beam of more than 4.4 mm below the chip surface
centered at 𝑧 = 0. A visual representation can be seen as a normalized intensity distribution in
figure 4.12 where clipping effects between a distance of 0 mm to 3 mm can be observed.
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Figure 4.12: Left: Normalized intensity profile of the Gaussian beam with a 1/𝑒2 radius of
2.5 mm after propagation through the vacuum chamber, as illustrated in figure 4.2 shown by the
red line. The beam is horizontally aligned at a distance of 𝑧 = 4.4 mm below the atom chip, which
is positioned at 𝑧 = 0. This distance is chosen so that the visible overlapping effects are almost no
longer visible. Only a barely visible diffraction pattern remains in the distance between the beam
center and the atom chip. Right: Integrated normalized intensity profile of the Gaussian beam
along the 𝑥-axis.

For a flat-top beam with a radius parameter of 𝑤0 = 3.7 mm whose center is positioned only
3.7 mm below the chip’s surface large diffraction effects are visible as shown in figure 4.13 on
the left in the form of a normalized intensity distribution. Shifting the beam parallel downward
by an additional 0.8 mm yields a distribution without visible parasitic patterns, as seen in
figure 4.13 on the right. To put this in perspective, compared to the Gaussian beam profile, a
flat-top beam can be positioned much closer to the surface with even less visible distortions of
its distribution.

Another important note in this regard is that real collimating optics used for Gaussian beam
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propagation can show deviations compared to the theoretical model of a Gaussian envelope.
In particular, for the light amplitude farther from the center, the measured value tends to
be higher than predicted by a pure Gaussian profile. Such behavior amplifies any negative
influences caused by clipping at apertures or edges.

Figure 4.13: Normalized intensity profile of the flat-top beam with a radius parameter of
𝑤0 = 3.7 mm after propagation through the vacuum chamber, as illustrated in figure 4.2. Left: The
beam is horizontally aligned at a distance of 𝑧 = 3.7 mm below the atom chip which is positioned
at 𝑧 = 0. At this position diffraction effects are clearly visible. Right: A horizontal shift of the
beam by 0.8 mm to a position of 𝑧 = 4.5 mm results in an intensity profile that no longer shows
visible diffraction patterns.

To measure the effect of the individual intensity distributions for beam splitter operation, the
population transfer of a double Bragg process into the states |𝑝 = ±2~𝑘⟩ is measured. The
process is not adjusted to resemble a 𝜋/2 or 𝜋 transition but rather to map fluctuations of
the individual beam profiles in the form of varying normalized output port population 𝑃±2~𝑘.
A BEC is generated below the atom chip and released from its final magnetic trap. After a
certain stepwise adjusted free fall time, defining the distance 𝑧, a light pulse with constant
intensity if applied. Figure 4.14 shows the results for a flat-top profile versus a Gaussian profile.
Each scan is repeated three times and the corresponding standard deviations are shown as error
bars. The enveloping profiles verify the 𝑧-distance to the surface of the atom chip measured
by beam profile camera, determined by the known relative position of the final trap and the
free fall time. For the flat-top beam, the intensity plateau is reached after less than 2 mm,
confirming that it is positioned much closer to the chip surface than the Gaussian beam. Since
the population transfer depends on the light field intensity and the duration of the applied pulse,
from a simple theoretic assumption it should be possible to achieve higher transfer efficiencies
with the Gaussian profile near the chip surface by increasing one or both of these parameters.
Comparing the two beam profiles presented, more than a factor of 2.5 higher power is required
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to achieve the same intensity at the 1/𝑒2 position of the Gaussian beam as at any position on
the plateau of the flat-top beam. In reality time and power cannot be adjusted independently
from other possibly unwanted effetcs like velocity selectivity or stray light effects.
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Figure 4.14: Comparison of the beam splitter capabilities in an atom interferometer between the
flat-top and the Gaussian beam profiles. The laser intensity is kept constant while the free fall
time is stepwise adjusted, resulting in an increasing fall distance of the atomic ensemble in the
beam. This way fluctuations of the individual beam profiles are mapped in the form of a varying
normalized output port population 𝑃±2~𝑘. Left: The flat-top profile shows fluctuations with an
average standard deviation of 𝜎 = 0.044 for repeated measurements. The plateau of the flat-top is
reached after a distance of 𝑧 = 1.7 mm with 𝑃±2~𝑘 = 0.545 ± 0.055. Since intensity and time of the
pulse were not adjusted to a specific transfer, this value does not represent the maximum achievable
efficiency. Right: The profile is fitted by a Gaussian envelope (analogous to equation 3.3) and
shows fluctuations with an average standard deviation of 𝜎 = 0.010 for repeated measurements.
At distances larger than 7.5 mm, the fitting algorithm is no longer able to reliably distinguish the
individual atomic clouds from each other due to the small separation time available, resulting in an
underestimation of the normalized population.

On the one hand, the varying population transfer may map the intensity distribution of the retro-
reflected field, similar to the profile shown in figure 4.4. On the other hand the fluctuations, as
represented by the standard deviations, are larger than with the Gaussian beam. Finding a clear
explanation is difficult, as there can be different reasons for this behavior. Many of them can be
ruled out based on common features, since the same laser light coupled into the individual fibers
shares a common source and the same optics are used at the experimental vacuum chamber.
One possible difference lies in the design of the beam shaping optics. While the Gaussian
collimator consists of a two-lens system within a common non-magnetic steel housing, the
flat-top optics are more modular, for reference see subsection 4.1.1. This setup was chosen so
that the system would be flexible enough to adjust the two-axis tilt and 𝑥-𝑦 displacement to an
optimized wavefront profile. However, this makes the system more susceptible to perturtbations,
which affects the relative position of the optical components to each other.
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To quantify these, the temporal stability of the Gaussian beam used as input for the flat-top
beam shaper and the actual flat-top beam shaper is analyzed by taking two sets of 50 images.
Each image is separated in time by the typical experimental repetition rate of 𝑡cycle = 15 s.
They are generated by illuminating the beam profiling camera for a typical pulse duration of
220 µs.

Figure 4.15: Comparison of the temporal-spatial stability of the Gaussian beam used as input for
the flat-top beam shaper and the actual flat-top beam shaper output. The images are generated
by illuminating the beam profile camera for a pulse duration of 220 µs. The average of 50 of these
images is calculated and subtracted from a single reference image. The intensity scale shows the
difference between the mean and the individual picture divided by the pixel values of the mean
picture. Left: Temporal variations of the Gaussian beam with large changes at the edges of the
profile, which is attributed to a large uncertainty due to the low illuminance at this location. Right:
Temporal deviations of the flat-top beam with changes at the edge for the same reason, but also
with interference-like patterns closer to the center with large deviations.

To determine the deviations, the average of these 50 images is calculated and subtracted from
the invidual images. Two images generated in this way, showing the deviation from the mean
in a normalized manner, are shown in figure 4.15. For both, the deviations at the edges of
the profile seem to be large, which is due to a large uncertainty caused by the low illuminance
at these positions. In the middle region of the Gaussian beam, however, the deviations from
the mean are apparently more constant and smaller in amplitude than in the middle region of
the flat-top beam. The apparent interference pattern can already be observed on the images
in figure 4.13 but less prominent. This temporally unstable pattern has a large effect on
the amplitude of the beam splitter and therefore suggests a more stable and rigid structural
beam shaper. The determined critical component was found in the described setup between
fiber output and first collimating lens. An ideal future setup would therefore first reduce the
wavefront error to a minimum by adjusting the relative positions of the individual optical
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components and aftwerwards tightly fix the connection between them to eliminate the observed
temporal spatial instabilities.

4.2 High power lattice laser system with active light shift compensation
Light field imperfections can lead to different dephasing processes caused by a spatially varying
intensity distribution and variable dipole forces along the interferometer arms [Mor93; Mül95;
Dei08; Cro09]. The atomic trajectories governed by the spatial distribution of atoms are
differently influenced by these often path-dependent effects. One direct observation is the loss of
contrast as shown in subsection 3.2.2 and 4.1.3. Reasons for existing imperfections are manifold
and can range from mere clipping of the light beam over manufacturing tolerances of the beam
shaping optics or transmittive elements in the optical path to the evolution of the wavefront
(for reference see subsection 4.1.2).

The spatial profile of the light field affects the atom-light interaction in a position dependent
manner and consequently the measured phase of the interferometer. The static influence of
intensity and phase imperfections was studied in the sections before. In the following, an active
suppression of the resulting light shifts is presented by adding a light field of the same power
that introduces a shift of opposite sign so that the frequency dependent shift of the other field
is approximately compensated.

𝑓

𝐸

𝜔2 𝜔1

𝜔3

𝛿𝜔

87Rb D2-line

𝛥 𝛥

Figure 4.16: Required frequencies to realize a light shift compensation mechanism for a twin lattice.
The combined light field should contain two of the frequencies (𝜔1 and 𝜔2) with linear orthogonal
polarization, that generate the lattice potential and a third component 𝜔3. The power of the third
frequency component is equal to their sum and enables the compensation. The frequencies are
oppositely tuned from the 87Rb D2-line resonance by 𝛥, with the relation 𝛥 ≫ 𝛿𝜔. The frequency
axis 𝑓 is shown not to scale.

Atom-optical operations like higher-order Bragg diffraction as well as manipulations in an optical
lattice via Bloch oscillations typically require coherent light sources with high optical powers.
This is especially true for the large momentum transfer techniques developed within the twin
lattice (see section 3.2). In addition, sufficient global detuning 𝛥 away from the atomic reso-
nance to reduce spontaneous emission and high quality of the optical mode field become relevant.
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One experiment realizing atom interferometers with long interaction times and large momentum
beam splitters has demonstrated the importance of absolute light shift compensation [Kov15b].
There the quantum superposition principle was studied on the half-meter scale, and the ob-
served contrast almost completely disappeared when working without compensation. A direct
outcome was the development of a laser system with low phase noise, large optical output
power, frequency flexibility from tens to hundreds of megahertz, and an optical spectrum that
contains multiple frequency components separated by tens of gigahertz or more [Kim20].

For example, operation of a light-shift compensated twin-lattice interferometer in a retro-
reflected configuration requires three separate frequencies combined into a single beam. The
above mentioned requirements must be met, and the total light field should contain two of the
frequencies (𝜔1 and 𝜔2) with linear orthogonal polarization, and a frequency component 𝜔3
with equal power. As shown in the figure 4.16, these frequencies need to be oppositely tuned
from the 87Rb D2-line resonance by 𝛥, with the relation 𝛥 ≫ 𝛿𝜔.

beam trap

telescope

fiber input

AOM 3

interference filter

fiber output

AOM 1

AOM 2

SHG resonator

dichroic mirror

beam trap

PD
dPD

Figure 4.17: Setup for frequency doubling, distribution and overlapping of two individual laser
beams on a custom honeycomb breadboard (600 mm×600 mm) to generate a single high power, light
shift compensated laser beam. The main components are labelled with the following abbreviations:
differential Photodiode (dPD), Photodiode (PD), Second Harmonic Generation (SHG), Acousto-
Optical Modulator (AOM).

To realize this, a laser system is set up based on two commercially available fiber lasers [AD-
JUSTIK C15, NKT Photonics], with a narrow linewidth of less than 15 kHz, that are amplified
in two separate fiber amplifiers [Koheras BOOSTIK, NKT Photonics] to an optical power of
15 W and 10 W. The output wavelength of these lasers is at the C-band of optical communica-
tions technology at a wavelength of 𝜆 ≈ 1560 nm and can be thermally tuned by up to 1000 pm.
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This established technology makes it relatively easy to acquire high optical output powers. A
disadvantage is that the typically interrogated hyperfine transitions of rubidium are not close
to this wavelength, but can be reached after a frequency doubling, which is also explained and
exploited in section 4.3. The thermal fine tuning of the fundamental wavelengths of the two
lasers is manufactured in a way that they can be oppositely detuned by 𝛥 between 100 GHz to
260 GHz. For the maximum value this corresponds to 779.71 nm and 780.77 nm, which is com-
monly referred to as the blue and red detuned light fields. Without any external stabilization,
the two fiber lasers already provide an absolute frequency stability of changes below 10 MHz for
roughly one hour at laboratory room temperature with approximately 20.0 ± 0.1 °C. This is
significantly less than their absolute frequency difference in the range of several hundred GHz.

For the purpose of frequency doubling, distribution and overlapping of the two individual laser
beams an optical assembly is set up on a custom honeycomb breadboard. A more detailed
overview of the system can be found in the reference [Che21]. It consists of two stages, the
first of which is used for frequency doubling of the fundamental light fields (𝜆 ≈ 1560 nm). The
second stage is employed for frequency as well as amplitude modulation and distribution of the
frequency-doubled light fields (𝜆 ≈ 780 nm). The first stage can be seen in figure 4.17 in the
top part and features a mirror set up of two bow-tie cavities [custom SHG resonator, Agile
Optic] that serve the purpose of Second Harmonic Generation (SHG) of the two fundamental
light fields [Han18; Sha21]. To realize this doubling process, a MgO:PPLN crystal is placed
inside the cavity, on which the light field is focused. To this end, the fiber output of the
amplified fundamental light field is connected to a two stage telescope assembly that focuses
the beam to a beam waist of 280 µm at the position of the crystal inside the bow-tie cavity.
Before entering the cavity housing the light field’s polarisation is cleaned by a Polarizing Beam
Splitter cube (PBS) and matched with one of the crystal axis by an optical half wave plate
(𝜆/2). To enable stable frequency doubling, the optical path inside the cavity is stabilized
with respect to the coupled fundamental wavelength. This is done by means of a piezoelectric
actuator attached to one of the four cavity mirrors and controlled by a proportional-integral
(PI) controller. The herefore required error signal is generated using a Hänsch-Coulliaud lock
scheme [Han80]. For this purpose a dispersion-type error signal is generated from the phase
shift upon reflection of the light from the cavity detected by a differential Photodiode (dPD).
An additional single photodiode (PD) is monitoring a fraction of the frequency-doubled light
and helps to identify the correct lock position of the error signal. As long as the resonance
condition is fulfilled the entire fundamental pump light is coupled into the cavity. If this is not
the case the cavity turns reflective and the majority of the light is dumped in a beam trap
[BT620/M, Thorlabs] for safety reasons. One SHG cavity frequency doubles the 15 W input
for the purpose of creating the needed power for all optical lattice operations, while the second
cavity doubles the 10 W input to create a light field with opposite light shift nulling the total
light shift. To distinguish these two from each other they will be referred to ’lattice light field’
and ’compensation light field’ in the following. Their individual output powers can be seen in
figure 4.18, with a notable difference in conversion efficiency.
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Figure 4.18: Comparison of the conversion efficiencies of the frequency doubling cavities. Left:
Frequency-doubled output power as a function of input power for each cavity. The maximum input
power of 10 W for the compensation light field is frequency doubled to 3.7 W and 15 W for the
lattice light to 7.5 W, respectively. The dashed lines represent the linear trend (fit) as a guide to
the eye. Due to the detectable power range of the dPD, the doubling of the lattice light could not
be operated below 10 W for a selected lock set point. Right: Conversion efficiency (corresponding
to frequency doubled power divided by input power) in dependance of the input power for each
cavity. The dashed lines show the estimated trend for the conversion efficiencies and represent the
same fit as in the left graph. This more clearly indicates an underperforming frequency-doubled
output power for the compensation light field.

This could not be linked to the comparable parameters of incoupling efficiency 86 % to 94 %
and finesse F = 85.6 to 86.2 for both cavities. Thus, an underperforming frequency doubling in
the PPLN crystal is the most likely candidate to explain this deviation.

The two cavities emit frequency-doubled as well as fundamental laser light. Therefore, before
entering the second stage of the system, as seen in figure 4.17 in the bottom part, those are
separated at a dichroic mirror [DMSP1180, Thorlabs]. More than 99.7 % of the fundamental
light is reflected and directed towards a beam trap [BTC30, Thorlabs], where it is absorbed.
The dichroic mirror also has a > 97.9 % transmission for the frequency-doubled light. To
operate a light shift compensated twin-lattice interferometer, the three separate frequencies are
generated and controlled as follows. Two of them 𝜔1 and 𝜔2 are generated from the output of
one of the cavities with the help of double pass setups using two Acousto-Optical Modulators
(AOM) 1 and 2. Afterwards they are overlapped at a PBS with orthogonal polarizations. The
third frequency 𝜔3, the compensation light field, is generated from the other cavity output
and modulated onto by AOM 3 in a single pass configuration. The main purpose of these
modulators is twofold. On the one hand, they ensure that the frequency of the laser light field
always remains in resonance with the desired atom-optical manipulations and on the other hand,
they allow the overall power to be adjusted. In addition, the double-pass configuration helps
to reduce the angular dependence of frequency modulations that affects the beam path and
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reduces beam overlap and fiber coupling efficiency. While acousto-optic frequency modulation is
on the order of kHz or MHz (𝛿𝜔), the frequency spacing 𝛥 between the lattice light frequencies
and the compensation frequency can be set in the much larger range of 100 GHz to 260 GHz.
For optimal operation, the magnitude of the optical power of the two lattice light fields 𝜔1 and
𝜔2 should be equal, as well as their sum should be equal to the power of the compensation
light 𝜔3. The superposition of these three frequencies is explained in detail in the following
section 4.2.1. After superposition the combined light field is mode matched by a telescope
assembly to a fiber collimator and coupled into a single large mode area photonic crystal fiber
[LMA-PM-10, NKT Photonics] that is able to guide high optical powers of up to 6 W to the
vacuum chamber containing the atomic clouds to be interrogated.

4.2.1 Beam superposition
To realize the light shift compensation using the additional light field of frequency 𝜔3 it must
be superimposed with the actual lattice light field. With orthogonal polarization of 𝜔1 and 𝜔2,
which must be preserved, the use of a polarizing beam splitter is not an option. Alternatively, a
non-polarizing beamsplitter comes with the cost of losing 50 % optical power. Another possibil-
ity would be a dichroic mirror, as employed in the section before to separate the fundamental
and frequency-doubled light, but its transmission/reflection bandwidth is not spectrally narrow
enough.

As a proposed new solution an interference filter in the form of a substrate coated by Ion Beam
Sputtering (IBS) with a narrow transmission line, tunable by the incident angle of the beam,
is used [IF 780 nm/6° (B-06650), LASEROPTIK]. The beam superposition itself is done by
transmitting the frequencies 𝜔1 and 𝜔2 through the interference filter, while simultaneously
reflecting 𝜔3. The coating of the filter is designed for a center wavelength of 𝜆 ≈ 780 nm. Due
to the difference of 1 nm between the lattice and compensation light field the performance away
from the design optimum must be investigated. Since the reflection bands to the left and right
of the transmission peak of the filter are spectrally broader, the reflection adjustment is easier
compared to the transmission at an angle of 6 ± 2°. A Lorentz fit of the measured transmission
data helps to quantify its bandwidth following

𝑓Lorentz(𝑥) = 𝑎0

(︀1
2𝛤
)︀2

(𝑥 − 𝑥0)2 +
(︀1

2𝛤
)︀2 , (4.14)

where 𝑎0 defines the amplitude of the curve, 𝑥0 its center shift and 𝛤 the FWHM, calculated
to 𝛤 = 11.25 ± 0.22 mrad. To be able to supply enough optical power the transmission is
tested successfully with up to 3.8 W of laser light at a wavelength of 𝜆 = 780.77 nm with a
collimated Gaussian beam waist of 1.4 ± 0.1 mm. By tuning the wavelength of the laser light
and setting the mirror angle to maximum transmittance, a linear relationship between the
two can be demonstrated for the operating range. The corresponding coefficient is calculated
to 28.43 mrad/nm and allows to determine the wavelength dependent transmission relation
as shown in figure 4.19 on the left. The corresponding FWHM of the Lorentz fit, analogous
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to equation 4.14, yields a value of 𝛤 = 0.396 ± 0.004 nm, which is much smaller than the
separability of a dichroic mirror, for example.

FWHM

779 780 781 782
0

0.2

0.4

0.6

0.8

1

Wavelength [nm]

Tr
an

sm
is

si
on

780.6 780.8 781

0.94

0.96

0.98

1

Wavelength [nm]

M
ax

tr
an

sm
is

si
on

Figure 4.19: Performance of the interference filter for the superposition of the lattice light field
with the compensation light field. Left: Normalized transmission in dependance of the incoming
wavelength for a fixed incident angle of the beam. The corresponding FWHM of a Lorentz fit returns
a value of 𝛤 = 0.396 ± 0.004 nm. Right: Maximum transmission values for different wavelengths
and individually optimized incident angles, corresponding to the maximum of the Lorentz fit on the
left graph. The transmission percentage decreases further away from the design wavelength of the
interference filter. Assuming a linear dependancy for this range a maximum transmission between
98 % and 94 % is obtained.

By setting the transmission wavelength to different values and optimizing the incidence angles
individually, the corresponding maxima of the Lorentz fits can be plotted as shown in 4.19 on
the right. It is observable that the transmission percentage decreases further away from the
design wavelength, which is expected. Assuming a linear dependancy for this small range of
0.55 nm a maximum transmission between 98 % and 94 % is obtained.

In the presented case the frequencies 𝜔1 and 𝜔2 are transmitted through the interference filter
and frequency 𝜔3 is reflected. In principle, these roles can also be reversed, since no significant
difference in the conservation of the individual polarization-extinction ratios is found for either
transmission or reflection. As a quantitative measure of overlap, the efficiency of coupling
into a polarization-maintaining single-mode fiber is performed as a test. The coupled power
depends strongly on the angle and position of the beam relative to the coupling lens and fiber
facet [Tom81] and can therefore serve as an ideal metric for beam overlap. Comparing the
two light field powers before the superposition with the powers in the coupled fiber results
in an overall fraction of 85 % for the transmitted light field and 89 % for the reflected light
field. Taking into account the losses at the additional optical elements in the optical beam path
after superposition (see figure 4.17), the finite mode matching quality to the fiber and the loss
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channel due to the Fresnel reflection, this represents an overall low-loss realization. For the
requirements of optical powers of more than 1 Watt and relative polarisation preservation, the
superposition at an interference filter provides a unique and effective solution.

4.2.2 Alternative ways of generating light shift compensated lattice light fields
An alternative way to create a single lattice light beam containing all necessary frequency
components for light shift compensation is to overlap the frequency-doubled compensation
light field (𝜆 ≈ 780 nm) with the fundamental input light of the lattice light field before it is
itself frequency-doubled (𝜆 ≈ 1560 nm). At this point, a dichroic mirror can be used, which is
technically less demanding because the individual wavelengths are separated by many hundreds
of nanometers. This would mean that the compensation light field additionally needs to pass
through the second resonator once again without being frequency doubled. Whereby the com-
bined output beam would then be a superposition of two frequency-doubled light fields. One
drawback of this setup is that the subsequent modulation by AOMs 1 and 2, which generates
the frequencies 𝜔1 and 𝜔2 as before, is applied to both light fields, creating an additional
(unwanted) lattice pair. Furthermore, the optical path length of the compensation light field is
significantly extended and additional effort is required to achieve the ideal minimization of the
path length difference.

The design presented in [Kim20] follows a similar approach, with the difference that initially a
total of four indidivually modulatable light fields are generated at a wavelength of 𝜆 ≈ 1560 nm.
Subsequently, two of them are frequency-doubled (single pass through PPLN non-linear crys-
tals) and each superimposed with one of the other two. In this way, individually controllable,
so-called negatively detuned ’red’ and positively detuned ’blue’ Bragg pairs are obtained. For
technical reasons, such a system can in principle enable higher optical powers and generates a
total of four optical frequencies in the final beam, but it also requires twice the number of fiber
amplifiers and doubling stages. Since all of the proposed approaches have individual advantages
and disadvantages, it remains a case-by-case decision which path to take.

For reference, it should be mentioned that the subsection 4.3.2 explains more theoretical
background of the differential light shift and its compensation for the case of a light field used
for (double) Raman diffraction.

4.3 Compact fiber-based laser system for coherent manipulations
To perform atom interferometry experiments with ultracold atoms different optical frequency
components are necessary. The range of their applications extends from the capture and cooling
of the atomic ensemble to its manipulation and detection. Most of the laser systems built to
date for this purpose take up a lot of space on optical tables and suffer from environmental
perturbations, for example in the form of dealigment or coupling to noise sources. A promising
solution to improve this situation can be the use of fiber-based telecommunication components.
In particular, when using atomic rubidium as a source for atom interferometry, which has
favorable transition frequencies close to the wavelength of 𝜆 = 780 nm. The system described
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in the following enables the generation of all optical frequencies displayed in the hyperfine
structure diagram in figure 4.20.
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Figure 4.20: D2 transition hyperfine structure of 85Rb and 87Rb, with frequency splittings between
the hyperfine energy levels. The colored arrows depict all transitions employed for the initial cooling,
trapping and manipulation of the 87Rb atoms. The respective splits are based on the amount of
the shifts, but are not shown to scale. The color coding (green, red, blue) reflects three different
laser sources, with each task labeled next to the transition.

A notable advantage of this system is the flexibility to drive Raman and Bragg transitions via
single and/or double diffraction in a retro-reflective setup without the need for modifications
other than electronic sequence control. This makes it easy to study interferometry topologies
based on a combination of Raman and Bragg beam splitters by utilizing control over both
internal and external states and exploit their complementary advantages [Ber15; Say22]. The
following list gives a few examples where such investigations are of interest. They illustrate
why the use of a flexible laser system as presented in this section can be advantageous.

• Tests of quantum-clock interferometry in a twin paradox like experiment with a superpo-
sition of two different internal states and magic Bragg diffraction [Lor19b]

• Testing the universality of the gravitational redshift by creating an internal superposition
within the interferometer sequence, corresponding to an initialization of a clock [Rou20]

• Atom-interferometric tests of the universality of free fall and gravitational redshift without
a superposition of internal states using double Raman and double Bragg diffraction [Ufr20]

• Removal of spurious paths in Mach-Zehnder like atom interferometers by utilizing Raman
diffraction as blow-away pulses [Pet01; Har20]
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Figure 4.21: Schematic setup of the fiber based generation of all transition frequencies shown in
figure 4.20. Fiber connections are shown in black color, the red and blue lines show the propagation
of the laser light in free space. The system is divided into three color coded modules which take on
different tasks of the laser system. The blue shaded area on the left contains three single-frequency
lasers emitting light in the C-band of optical communications technology. One of them is locked
to the 85Rb D2 line as a reference, and the other two are offset locked onto it. In the gray shaded
area the light of one path is frequency modulated, frequncy filtered, amplified and finally frequency
doubled. In the other path the light is first frequency doubled and afterwards amplified. The
last module in orange on the right side shows the distribution to eight different optical fibers,
which guide the individual amplitude and frequency modulated light fields to the experimental
chamber. Any electric and electronic connections between the components are neglected for better
visibility. The individual components are labelled with the following abbreviations: External
Cavity single-frequency Laser (ECL), Electro-Optical Modulator (EOM), Photodiode (PD), Second
Harmonic Generation (SHG), Fiber Bragg Grating (FBG), Acousto-Optical Modulator (AOM),
Polarizing Beam Splitter (PBS), half wave plate (𝜆/2), Magneto Optical Trap (MOT).

The following part of this section will mostly focus on its design, setup, characterization and
implementation. As a first demonstration, the capabilities for double Raman diffraction are
presented in the end. The scheme of this fiber based setup in figure 4.21 shows the three color
coded modules with different purposes. The blue shaded area on the left contains three laser
sources in the form of pigtailed External Cavity single-frequency Lasers (ECL) [SFL1550P-CUS-
1560.5NM, Thorlabs] with a typical linewidth of 50 kHz and output power of 40 mW mounted
in butterfly laser diode mounts [LM14S2, Thorlabs]. They are powered by current drivers
developed at the Institute of Quantum Optics in Hannover. These drivers are designed to fit
into an 8-bit parallel bus system and can be connected to other cards for different purposes to
create a stack. While the hardware part of this system is based around the bus system to enable
a simple hardware interface, the software part allows for a user interface and translates the user
commands to hardware instructions. In the following this will be referred to as the TBus system.
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The ECLs are connected to temperature controllers [TEC-1091, Meerstetter], which allow
the diodes to be temperature stabilized to better than 0.01 °C. Furthermore the tuning of these
temperatures allows to shift the setpoint of the output wavelength of the emitted laser light
fields to the desired values at a wavelength of 𝜆 ≈ 1560 nm. The three output light fields are
fiber coupled by design and pass three separate optical isolators [IO-G-1550-APC, Thorlabs]
with an isolation better than 30 dB. The first light field serves as an absolute reference to
which the employed other two lasers can be offset locked to. For that reason its frequency is
stabilized onto the crossover transition of |52𝑆1/2, 𝐹 = 3⟩ → |5𝑃3/2, 𝐹 =′ 4⟩ of 85Rb with the
help of frequency modulation transfer spectroscopy. This locking is realized by modulating
the laser light at 12.5 MHz with a fiber-connected 1550 nm band 10 GHz Electro-Optical phase
Modulator (EOM) [MPZ-LN-10, iXblue Photonics]. The modulation signal is provided by
a frequency controller card that is located inside the TBus system, which also provides the
necessary infrastructure to frequency stabilize the reference laser light.

40 mm

SHG

𝜆/2 Rb vapor cell

photodiode

fiber coupler

𝜆/4

retro-reflection mirror

Figure 4.22: Setup of the spectroscopy unit for the generation of an absolute frequency reference
based on the 85Rb D2 line. The input light is connected via a fiber to a wavelength conversion
module, where it is frequency doubled. After passing through a half-wave plate, a small portion of
the light output is split at a PBS and coupled into a single-mode fiber. The remaining light passes
through a rubidium vapor cell, is retroreflected at a quarter-wave plate and a mirror combination,
and finally passes back through the PBS to a photodiode where the spectroscopy signal can be
electronically recorded.

Since all transitions shown in figure 4.20 are close to the wavelength of 𝜆 ≈ 780 nm, the light
emitted by all ECLs must be frequency doubled. In the case of the reference laser this is
done with a wavelength conversion module [RMA1702010010, HC Photonics]. This waveguide
mixer is based on the principle of second harmonic generation (SHG) inside a PPLN. After
this doubling the laser beam probes 85Rb atoms contained as a vapor inside a glass cell in
the configuration shown in figure 4.22. Here also additional optical elements like half- and
quarter-wave plates (𝜆/2 and 𝜆/4), three adjustable mirror mounts with mirrors and two PBS
are shown. Additionally a portion of the light inside this module is coupled into an optical fiber
[PMC-780-5.1-NA012-3-APC-100-P, Schäfter + Kirchhoff] for monitoring the frequency
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spectrum of the reference laser light and debugging purposes. The second part of the light
beam is detected after retro-reflection on a photodiode whose signal is fed back to the frequency
controller card. This signal is demodulated and the zero crossing of the obtained error signal,
with a signal-to-noise ratio of around 20, is used as input for a PI controller to modulate the
current of the initial laser diode. In this way the output wavelength of the ’ECL reference’
is stabilized onto the 85Rb atomic transition mentioned before and can serve as an absolute
frequency reference.

Due to technical limitations of the electronics used, the absolute position of the locking point
may shift by a few hundred kHz over time, but since the FWHM of the natural linewidth
𝛤 = 2𝜋 · 6.065 MHz of the 87Rb D2 transition used is relatively wide, this is acceptable. The
control bandwidth is sufficient for all operations shown in figure 4.20 with their respective
single photon detunings. The long-term stability is given by the frequency reference used,
which can be the signal of the 100 MHz oscillator also used later [DLR-100-50G SN 11FR07-05,
Wenzel Associates]. For this application, its deviations are in a negligible order of magnitude.

To be able to adress the specific atomic transitions, the other two ECLs are to be stabilized
against this reference frequency, and for this reason 10 % of the light from the reference laser
is diverted and combined with 1 % from each of the other lasers. These lasers are called by
different names corresponding to their main tasks in the system. The two new resulting light
fields are detected on two fiber-coupled photodiodes [FGA01FC, Thorlabs]. Their electronic
beat outputs individually pass through a powered Bias-Tee [ZX85-12G-S+, Mini-circuits]
whose RF output port is connected to an amplifier [ZJL-7G, Minicircuits]. The amplifier
output frequency is divided by a factor of two by a prescaler [FPS-2-12, RF BAY] for the
’ECL Raman/cooling’ and by a factor of six [FPS-6-12, RF BAY] for the ’ECL repump’. The
outputs from the two prescalers are at the end used as input to the frequency controller card,
which in addition already has the task of locking the reference laser. This input is converted
using a frequency counter on the board and used as input to a control loop that outputs
changes in laser current that are added to or subtracted from the output of each laser current
driver depending on defined setpoints. In this way, the laser frequencies of the two ECLs
are locked with respect to the absolute frequency reference supplied by the ’ECL reference’.
The repump ECL diode is locked with an offset of 2710.932 MHz, which can be calculated
from the difference in transition frequencies as shown in blue in figure 4.20. Apart from the
division factor of six mentioned above, it must also be taken into account that all light fields
undergo a frequency doubling before driving the transitions shown in the figure. Additionally
an amount of 80 MHz must be added for the two offset locked lasers due to diffraction by
AOMs explained later in this paragraph. This leads to an actual detected beat frequency of
451.489 MHz. The Raman/cooling ECL diode can not be locked with a constant offset value
since it needs to performs more than one task. These tasks, represented by the red transition
arrows in the figure 4.20, are called optical pumping (beat frequency of 353.205 MHz), laser
cooling (beat frequency of 292.292 MHz), detection (beat frequency of 286.542 MHz) and Raman
or Bragg diffraction (𝛥Raman and 𝛥Bragg). Therefore its lock setpoint is dynamically changed
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during successive operations. The biggest frequency jump is defined by the global detuning
values 𝛥Raman,Bragg. In the here presented case the maximum achievable values are around
𝛥Raman,Bragg < 2 GHz on time scales of the order of milliseconds, limited by the detectable
beat frequency.

The grey shaded area in figure 4.21 defines the second stage of the full laser system and serves
three main purposes: modulation, amplification and frequency doubling. Two of the ECL
diodes from the first stage, the repump ECL and Raman/cooling ECL, are fiber connected
to this module. The light field of the repump ECL is frequency doubled inside a wavelength
conversion module [WH-0780-000-F-B-C, NTT Electronics] and afterwards amplified by a
high-gain semiconductor optical amplifier [SOA-780-20-YY-30dB, Innolume GmbH] to a typi-
cal output power of 120 mW before leaving the module fiber-coupled. In parallel the light from
the Raman/cooling ECL is undergoing a more complex modulation scheme, which is detailed
in figure 4.23.
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Figure 4.23: Flowchart of the steps to generate the frequencies needed for Raman diffraction based
on electro-optical modulation. The optical components are highlighted by a blue background and
the electronic components by a red background. Red arrows symbolize fiber connections, orange
arrows free space propagation and blue arrows electronic connections. Briefly, the original light
field is first modulated by an EOM supplied with a frequency of 6.835 GHz, creating sidebands.
An optical filter in the form of an FBG suppresses all unwanted sidebands, leaving the carrier and
only one sideband. These are frequency doubled by generating the sum frequency and the second
harmonic. The output spectrum is monitored by a Fabry-Pérot cavity and fed to the experiment.

To drive the process of a stimulated Raman transition usually two phase-locked laser light fields
are required, typically derived from two separate sources. A complementary approach is to
make use of the electro-optic effect [Kaw07], for example with an EOM or its more elaborate
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version the I/Q modulator for single-sideband generation [Zhu18; Pan23b]. Especially a low-
phase noise implementation for the hyperfine splitting is mandatory. In the implementation
presented here, an EOM with a bandwidth of up to 12 GHz [MPZ-LN-10, iXblue Photonics]
is used, which can add a modulation frequency of 6.835 GHz. It is supplied by a frequency
reference of 100 MHz generated by stress-compensated-cut ovenized oscillators [DLR-100-50G
SN 11FR07-05, Wenzel Associates]. From an earlier measurement, a phase noise of less
than −90 dBc/Hz was determined [Wen10]. Its integrated phase noise density as well as those
of the other used components is shown in table 4.2. The output of 100 MHz is multiplied by
a factor of 69 within a frequency chain [GMU69124LN, RUPPtronik] to reach 6.9 GHz. This
frequency is mixed [M3005LE, Advanced Microwave] with 65 MHz from a Direct Digital Syn-
thesizer (DDS) [AD9958, Analog Devices], which is located on a DDS card module inside
the above mentioned TBus system. The resulting electronic spectrum is filtered to feature only
the frequency of 6.835 GHz, which is realized with a combline bandpass filter [CB 6776, BSC
Filters Ltd] that suppresses the unwanted frequencies produced in the mixing process, as well
as the fundamental frequencies. Mainly the frequency at 6.9 GHz is still visible but suppressed
by more than 24 dBc, while 6.966 GHz is suppressed by more than 26 dBc and 6.768 GHz by
more than 30 dBc. An even higher suppression would be achieved if the mixing would be done
with a frequency of 7 GHz. The not suppressed frequency of 𝜆RF = 6.835 GHz is afterwards
amplified by a low phase noise amplifier [AMF-5F-04000800-07-10P-LPN, NARDA-MITEQ] and
fed to the EOM.

However, the so modulated light field also features unwanted frequency components in the
form of parasitic sidebands that are detrimental to atom interferometers, as they produce
both a systematic measurement bias and spatial variations in fringe contrast [Car12; Wan17;
Sar22; Jia22]. The here presented system features a solution where these frequencies are filtered
optically with the help of an ultra-narrowband tunable optical filter based on the concept
of a Fiber Bragg Grating (FBG) [TFN-1560.482-N6.8-IL3.5-20-C1P-C, TeraXion] [Mac21].

To be able to drive Raman transitions for 87Rb between the ground state hyperfine levels
|52𝑆1/2, 𝐹 = 2⟩ and |52𝑆1/2, 𝐹 = 1⟩, two frequencies are needed whose difference corresponds
to the frequency spacing between the states (for reference see section 2.2.3). Therefore the
filter bandwidth is custom designed with a center wavelength at 𝜆 = 1560.482 nm, a tuning
range of ±20 GHz and a reflection bandwidth of 19 GHz with −20 dB suppression. In this way,
the filter can be tuned by temperature to a setpoint where only the carrier frequency and
one of the modulated sidebands are selected to pass through to the following fiber amplifier
[CEFA-C-BO-HP, Keopsys], which amplifies the two frequencies to an optical power of up to
1 W. If additional suppression is needed multiple FBGs can be used to further increase the
attenuation of undesired frequencies [Ram20]. Subsequently, the light field is frequency doubled
in a wavelength conversion module [WH-0780-000-F-B-C, NTT Electronics] in the same way
as the other light fields before, with the difference that the two frequencies now contribute not
only to the second harmonic generation, but also to Sum Frequency Generation (SFG). With
the help of a scanning Fabry-Pérot interferometer [SA210-5B, Thorlabs] with a Free Spectral
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Range (FSR) of 10 GHz the generated optical spectrum can be observed, as can be seen in
figure 4.24. Apart from the spectral properties, the amplitudes and amplitude ratios of the
individual frequencies can be measured, assuming a linear response of the used Si photodiode,
which is similar to the model [FDS100, Thorlabs]. Normally, the photocurrent of a such a
diode can be assumed to be linear with respect to the incident light at the optical powers used.
At a normal operating point the achievable range of linearity can be higher than nine orders of
magnitude, as stated in reference [Ham14].

The frequencies 𝜔1 and 𝜔2 represent the ones labelled with ’Raman’ in figure 4.20. Their
intensity ratio 𝐼1/𝐼2 is chosen so that the resulting differential AC Stark shift 𝜔AC becomes zero
for a chosen global detuning 𝛥Raman. The other, unwanted visible peaks 𝜔−2, created by SFG
between the carrier and the imperfectly filtered sideband frequency, and 𝜔2S, created by SHG
of the unfiltered sideband, are suppressed by more than 21 dB. The remaining two frequency
components (𝜔1 and 𝜔2) can additionally be power stabilized [Wan22]. One of the reasons why
an unfiltered spectrum is undesired is the presence of multiple pairs of frequencies that can
drive resonant two-photon Raman transitions. In this case the effective Rabi frequency contains
a spatial dependence with a periodicity of 𝜆RF/2. With the present filtering this dependancy
can typically be reduced below an experimental noise level [Zhu18]. The unwanted sidebands
can also induce a position dependent phase shift in the atom interferometer signal, which can
be numerically calculated [Car12], if the herefore needed parameters can be estimated. But
with the shown optical filtering, this is not necessary.
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Figure 4.24: Optical spectrum obtained with the Fabry-Pérot interferometer shown in figure 4.23
including the Raman frequencies 𝜔1 and 𝜔2. The other, unwanted visible peaks 𝜔-2, created by
SFG between the carrier and the before filtered sideband frequencies, and 𝜔2S, created by SHG of
the unfiltered sideband, are suppressed by more than 21 dB. The distance between two identical
peaks is known as the free spectral range (FSR) of the scanning interferometer. The asymmetric
shape of the peaks is technically due to the scanning piezo crystal on the cavity mirror. The width
of the peaks is also limited by the finesse of the cavity, which is not important in this case.
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The third and final stage shaded in yellow in figure 4.21 serves the purpose of frequency and
amplitude modulation as well as distribution of the light fields into eight different optical fibers
[PMC-800-5.1-NA012-3-APC-660-P, Schäfter + Kirchhoff]. This is realized by splitting
and overlapping the two incoming beams with a PBS and 𝜆/2 combination. To direct the
individual beams, dielectric mirrors inside long-term stable, kinematic mirror mounts [POLARIS-
K05, Thorlabs] are employed. The five AOMs [MT80-A1.5-VIS, AA Opto Electronic] are
used to generate the frequencies required for Bragg transitions and to control the amplitude
of the light fields. The AOMs are supplied by RF frequencies from DDS card modules inside
the TBus system amplified by 1 W power amplifiers [AMPA-B-30, AA Opto Electronic]. By
controlling the amplitude of these RF fields the pulse shape of the individual diffraction pulses
can be adjusted. In addition, custom built mechanical shutters based on stepper motors [AM
1020-V-3-16-01, Faulhaber] and controlled by a dedicated card inside the TBus system
block light beams as needed during certain parts of the experimental sequence. The light fields
coupled into the eight optical fibers serve different purposes that are explained in the following.

• MOT: Four fibers are reserved for the different optical steps for the generation of Bose-
Einstein condensates that include laser cooling, trapping and optical pumping. Since these
steps are crucial for the operation of the Magneto-Optical Trap (MOT) they are labelled
with this abbreviation. Two of the fiber-coupled light fields are previously superimposed
with the required frequencies for repumping. The four light fields are guided via the
polarisation maintaining fibers to the respective viewports of the experimental vacuum
chamber and allow the operation of a mirror-MOT configuration [Rei99].

• First/Second Detection: Two fibers enable the detection of the final atom popula-
tion 𝑃 (𝜑) through absorption imaging at the end of every sequence. Herefore two light
fields are guided to two different viewports at the experimental chamber. The image
itself is acquired with a collimated resonant light field that is pulsed in the direction
of the atomic ensemble onto a CMOS camera sensor [Grasshopper GS3-U3-89S6M-C,
FLIR]. To obtain not only 2D but 3D information about the atomic distribution a second
absorption picture can be taken in a subsequent, identical experimental sequence from a
different angle of obervation. Therefore the second light field is connected to a different
view port opposite to a CCD camera sensor [Grasshopper GS3-U3-15S5M-C, FLIR].

• Diffraction capabilities: Two polarization-maintaining optical fibers guide individual
light fields into the experimental chamber, allowing single or double diffraction techniques
to be performed. The incoupled light fields differ in the fact that one contains the
frequency and amplitude modulated output signal from one AOM and the other contains
two superimposed output signals from two individual AOMs. Therefore, the first coupled
light field is meant to enable single and double Raman or single Bragg diffraction. The
second additionally enables double Bragg diffraction in the twin-lattice configuration with
two perpendicularly polarized light fields. Since both light fields are guided in a single
fiber, a retro-reflective setup is assumed for implementation.
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4.3.1 Non-inertial phase noise contributions
The light field most affected by phase noise is the one used for Raman diffraction and generated
as described in the previous section. In the further course it is referred to as the Raman
light field. To find a measure of this influence on the interferometer phase, the sensitivity
function formalism from section 2.3 can be applied. To quantify these non-inertial phase noise
contributions the standard deviation of the phase noise density [Che08] of the light field and
the used electronic components are measured with a commercial phase noise analyzer [FSWP8,
Rohde & Schwarz]. In total the phase noise densities of the local oscillator, the stable reference
frequency of 100 MHz, the reference chain at 6.9 GHz, the used Direct Digital Synthesizer
(DDS) at 65 MHz and the Raman light field at 6.835 GHz are investigated. Afterwards, they
are weighted as derived in equation 2.20 with the help of the transfer function defined in
equation 2.19 to calculate 𝜎rms

𝜑 . The free evolution time of the interferometer chosen for
this purpose is 𝑇 = 15 ms and the pulse duration 𝜏p = 25 µs in agreement with the order of
magnitude of the values given in chapter 3.

The measurement setup for the beat frequency of the light field at 6.835 GHz consists of a
fiber-coupled photodiode [FGA01FC, Thorlabs], supplied with a bias voltage [ZX85-12G-S+,
Mini-circuits] and amplified with two amplifiers [ZVE-8G+, Mini-circuits and ZJL-7G+,
Mini-circuits]. The output beat signal is then used to measure the phase noise density with
the commercial phase noise analyzer. The spectra of the weighted and unweighted phase noise
density can be seen in figure 4.25.
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Figure 4.25: Phase noise density of the beat frequency of the Raman light field, detected with a
photodiode [FGA01FC, Thorlabs] and measured with a commercial phase noise analyzer [FSWP8,
Rohde & Schwarz]. The measured phase noise density, shown in black, is weighted with the
sensitivity transfer function for a Mach-Zehnder type interferometer. The resulting weighted phase
noise density is shown in blue. The chosen free evolution time of the interferometer is 𝑇 = 15 ms
and the pulse duration time 𝜏p = 25 µs. The integrated weighted phase noise density over the
measurement range shown is calculated as 𝜎rms

𝜑 = 6.21 mrad.
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The measured weighted (𝜎rms
𝜑 ) and unweighted (

�
𝑆𝜑 𝑑𝑓𝜑L) integrated phase noise densities

of the crucial electronic components used to generate the Raman light field, as detailed in
figure 4.23, and the values for its beat are summarized in table 4.2. More details on the
individual measurements can be found in the reference [Ris18].

Table 4.2: Table of the integrated phase noise densities of the electronic components that are part
of the optical frequency generation (see figure 4.24) and the values measured for the Raman light
field.

stable reference
(100 MHz)

reference chain
(6.9 GHz)

DDS
(65 MHz)

light field
(6.835 GHz)

unweighted
�

𝑆𝜑 𝑑𝑓𝜑L 0.04 mrad 1.81 mrad 2.58 mrad 16.49 mrad
weighted 𝜎rms

𝜑 0.02 mrad 0.66 mrad 1.47 mrad 6.21 mrad

4.3.2 Implementation of double Raman diffraction
Comparing the two different mechanisms of Bragg and Raman diffraction, as introduced in
subsections 2.2.1 and 2.2.3, the latter can offer advantages, such as state-selective manipulation
and detection without spatial resolution. A case to be highlighted here is interferometry with the
symmetric case of double Raman diffraction [Mal10; Lév09; Zho15], where the interfering atoms
remain in the same internal electronic state during the sequence, allowing electronic readout,
noise suppression, and elimination of spurious paths by Raman blow-away pulses [Har20].
To support such an interesting approach, the performance of (higher order) double Raman
diffraction processes is demonstrated below as an application example of the system.

As explained in subsection 2.2.3 the herefore necessary transition frequencies are affected by
the one-photon AC-Stark shift. To experimentally cancel this differential shift for the used
atomic species 87Rb the following steps are taken. Considering

𝜔AC ≡ 𝜔AC,|𝑒⟩ − 𝜔AC,|𝑔⟩ = 0, (4.15)

it is needed to tune 𝜔AC,|𝑒⟩ = 𝜔AC,|𝑔⟩. Since these terms both include the single light field
Rabi frequencies Ω1 and Ω2 it is possible to calculate an optimal ratio. Solving the AC-Stark
couplings for the relation Ω2/Ω1 and making use of the proportionality Ω𝑖 ∝ √

𝐼𝑖, where 𝐼𝑖

defines the individual light field intensities, the following intensity ratio is obtained using the
Clebsch-Gordon coefficients [Ste01]

𝐼2
𝐼1

= Ω2
Ω1

=

(︁
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−
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1
60𝛥 + 1
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5(𝛥−𝐷13)

)︁ . (4.16)

For better readability, the following temporary definition is used in this formula 𝛥
.= 𝛥Raman.

The values 𝐷12 and 𝐷13 define the fixed transition frequencies from the |52P3/2, 𝐹 = 1⟩ to the
|52P3/2, 𝐹 = 2⟩ state and respectively to |52P3/2, 𝐹 = 3⟩. Additionally, 𝜔eg ≈ 𝜔HFS specifies
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Figure 4.26: Compensation of the differential AC-Stark shift 𝜔AC in a Raman light field. Left:
Sideband intensity ratio 𝐼2/𝐼1 as a function of the detuning 𝛥Raman required to satisfy the equation
𝜔AC,|𝑒⟩ = 𝜔AC,|𝑔⟩ for the respective energy levels of 87Rb. The red point marks a detuning of
𝛥Raman = 1.18 GHz, which translates into a theoretical sideband ratio of 𝐼2/𝐼1 = 1.80749. Right:
A microwave pulse with the transition frequency of 𝜔HFS = 6.834 682 GHz depopulates the initial
state |52S1/2, 𝐹 = 2⟩. Additionally applying a non-resonant Raman light field with an intensity
ratio 𝐼2/𝐼1 creates an AC-Stark shift that reduces the amount of transferred atoms, resulting in
more remaining atoms in the initial state. The maximum depopulation is realized at an intensity
ratio of 𝐼2/𝐼1 = 1.804 ± 0.065, fitted by a Gaussian envelope.

the hyperfine splitting between |52S1/2, 𝐹 = 1⟩ and |52S1/2, 𝐹 = 2⟩, neglecting Zeeman shift
contributions. This relation can be represented as a function of 𝛥Raman in figure 4.26 in the
graph on the left. To reduce spontaneous emission and have relatively equal light intensities a
convenient working spot can be found for example at 𝛥Raman = 1.18 GHz, marked by a red
point, which translates into a theoretical sideband ratio of 𝐼2/𝐼1 = 1.80749. Experimentally
the intensity ratio can be controlled by the modulation amplitude applied to the EOM. The
resulting spectrum can be observed with the Fabry-Pérot interferometer as explained in sec-
tion 4.3 and is shown in figure 4.24. The experimentally matching intensity ratio that achieves
𝜔AC,|𝑒⟩ = 𝜔AC,|𝑔⟩ for a fixed detuning 𝛥Raman can be found in the following way. A microwave
pulse with the correct pulse length and a transition frequency of 𝜔HFS = 6.834 682 GHz can
properly depopulate the initial state |52S1/2, 𝐹 = 2⟩ to |52S1/2, 𝐹 = 1⟩. Additionally applying a
non-resonant Raman light field with an arbitrary intensity ratio 𝐼2/𝐼1 creates an AC-Stark shift
that reduces the amount of transferred atoms, resulting in more remaining atoms in the initial
state. The light field itself is detuned by 1 MHz away from the desired transition frequency
to avoid stimulated two-photon Raman processes. Changing the intensity ratio as shown in
figure 4.26 on the right indicates a minimum at 𝐼2/𝐼1 = 1.804 ± 0.065, fitted by a Gaussian
envelope analogous to equation 3.3.
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To reduce the effects of unwanted residual magnetic fields, as explained in subsection 2.1.2,
the following shown measurements are exclusively operated with 𝑚𝐹 = 0 states and Doppler-
insensitive transitions with Δ𝑚𝐹 = 0. Therefore the linear Zeeman shift vanishes, but
the second-order Zeeman shift induces an additional contribution Δ𝜔clock to the transition
frequency 𝜔HFS between the 𝑚𝐹 = 0 sublevels of the two hyperfine ground states, often referred
to as ’clock transition’. This becomes apparent by a measured difference frequency between the
theoretical value 𝜔HFS of the microwave pulse and the experimentally adjusted one. Using the
Breit-Rabi formula

Δ𝜔clock = (𝑔𝐽 − 𝑔𝐼)2𝜇2
B

2~Δ𝐸HFS
𝐵2, (4.17)

with the fine structur Landé factor 𝑔𝐽 , the nuclear 𝑔-factor 𝑔𝐼 , the Bohr magneton 𝜇B and the
hyperfine splitting Δ𝐸HFS = 𝐴52 S1/2

(𝐼 + 1/2), this difference can be linked to a clock transi-
tion Zeeman shift of Δ𝜔clock/𝐵2 = 2𝜋 · 575.146 Hz/G2. The measured difference frequency of
7 ± 1 kHz translates therefore to a magnetic field value of 𝐵 ≈ 3.5 ± 0.1 G. This value contains
the contribution of the homogenous quantization field value generated at the experiment by a pair
of coils in Helmholtz configuration and residual field contributions like the Earth’s magnetic field.

As a demonstration, first-order double Raman beamsplitters are realized in the following. The
experimental setup is analogous to that of the twin lattice from section 3.2 and features retro-
reflection at the 𝜆/4 and mirror combination. The transfer itself is generated by two pairs of
counter-propagating frequencies 𝜔1 and 𝜔2. The pairs can be distinguished by their polarization
combination, so that in the retro-reflective arrangement, the two frequencies are first applied in
parallel polarization and then rotated by the 𝜆/4 plate to suppress spurious coupling. For more
information, see section 2.2.4 and the energy level scheme in figure 2.4 on the right. Before
detection of the output port population, a Stern-Gerlach type deflection pulse is applied to
prevent atoms with nonzero magnetic moment from overlapping with the zero momentum
output port. The deflection is realized by applying an inhomogeneous magnetic field gradient
perpendicular to the direction of diffraction that spatially separates the different 𝑚𝐹 ̸= 0
sub-states. Figure 4.27 on the left represents a final density distribution obtained from the
absorption image after appyling a first order (𝑛 = 1) double Raman 𝜋/2 pulse. The different 𝑚𝐹

states are highlighted by white circles and the symmetric splitting into the |𝐹 = 1, 𝑝 = ±2~𝑘⟩
is indicated by arrows. Since the absorption detection is resonant only for atoms in the |𝐹 = 2⟩
state, additional repumping cycles totaling 200 µs are required to transfer them from |𝐹 = 1⟩
to |𝐹 = 2⟩ before the detection light field is applied (see level scheme in figure 4.20). Due to
this, the detected spatial distribution is broadened for the |𝐹 = 2, 𝑝 = ±2~𝑘⟩ states compared
to the |𝐹 = 2, 𝑝 = 0~𝑘⟩.
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Figure 4.27: Examples of atomic density distributions after double Raman diffraction. Left:
Final distribution in the form of an absorption image taken after applying a first order (𝑛 = 1)
double Raman 𝜋/2 pulse and a subsequent Stern-Gerlach type deflection pulse. Different 𝑚𝐹

states are highlighted by white circles and the symmetric splitting into the |𝐹 = 1, 𝑝 = ±2~𝑘⟩ states
is indicated by arrows. The distribution is broadened for the |𝐹 = 1, 𝑝 = ±2~𝑘⟩ states due to
the absorption detection only working on the |𝐹 = 2⟩ state, which needed additional repumping
cycles before the application of detection light. Right: Density distribution after a first order
sequential transfer 𝑚 = 1 of two consecutive pulses into the |𝐹 = 2, 𝑝 = ±4~𝑘⟩ states, including the
Stern-Gerlach splitting for residual 𝑚𝐹 -states.

For a closer analysis the effective Rabi frequency ΩeffDD is determined by measuring the oscilla-
tion between |𝐹 = 1, 𝑝 = ±2~𝑘⟩ and |𝐹 = 2, 𝑝 = ±4~𝑘⟩. To first occupy the |𝐹 = 1, 𝑝 = ±2~𝑘⟩
states, an initial 𝜋/2 pulse is applied, symmetrically transferring atoms there from the
|𝐹 = 2, 𝑝 = 0~𝑘⟩ state. Afterwards a second pulse of time 𝜏p is applied, sequentially transferring
the population to 𝑃±4~k. The corresponding energy level scheme can be seen in figure 2.5 on the
right. Since the atoms in the |𝐹 = 1⟩ state can only be detected with the additional repumping
cycles, a measurement can also be performed by observing the population in 𝑃±4~k alone. To
compensate for changes in the initial amount of atoms the residual, non-diffracted atoms 𝑁0 in
the |𝐹 = 2, 𝑝 = 0⟩ state are included in the following definition

𝑃±4~k(𝜏p) = 𝑁±4~𝑘(𝜏p)
𝑁±4~𝑘(𝜏p) + 𝑁0

≡ sin(ΩeffDD𝜏p)2

sin(ΩeffDD𝜏p)2 + 𝑛0
, (4.18)

where 𝑛0 defines the reduced oscillation amplitude linked to the atom number 𝑁0. The atom
number 𝑁0 includes the spurious amount of atoms in the 𝑚𝐹 ̸= 0 states. These remaining
atoms can potentially be spatially separated by a Stern-Gerlach splitting, which was not done
for the presented measurement, which limited the maximum transfer to max(𝑃±4~k(𝜏p)) ≈ 0.8.
Therefore, the maximum amplitude of this oscillation is not a good indicator for the fidelity of
the diffraction processes.

The separation of the momentum states is exemplary shown in figure 4.27 on the right in the
form of an absorption image of the respective atomic density distributions taken at the time of
maximum population transfer into |𝐹 = 2, 𝑝 = ±4~𝑘⟩. For reference, it should be mentioned
here that the total time of a pulse in the sequence is 8 · 𝜏p, due to the definition of the temporal
Gaussian pulse width as 𝜎𝜏p = 𝜏p/8 at the experimental control.
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Figure 4.28: Measured population oscillations of 𝑃±4~k(𝜏p) in dependance of the pulse time 𝜏p
of the second pulse for first order sequential 𝑚 = 1 double Raman diffraction. The fit follows the
definition from equation 4.18. From it the time 𝜏𝜋 is determined and the effective Rabi frequency is
calculated according to equation 4.19 to ΩeffDD = 2𝜋 · 7.165 ± 0.033 kHz.

The resulting oscillation of 𝑃±4~k(𝜏p) can be seen in figure 4.28. From the applied fit function,
the first minimum can be determined to be at a time 𝜏𝜋 ≈ 70 µs. Subsequently, the effective
Rabi frequency can be calculated as follows

ΩeffDD = 𝜋

𝜏𝜋
= 𝜋

69.78 ± 0.32 µs = 2𝜋 · (7.165 ± 0.033 kHz). (4.19)

Finally to demonstrate third order Raman double diffration, atoms are transferred from
|𝐹 = 2, 𝑝 = 0~𝑘⟩ into the states |𝐹 = 1, 𝑝 = ±6~𝑘⟩ as shown in the energy level scheme in
figure 2.5 on the left. To visualize the atomic density distributions additional repumping cycles
totaling 200 µs are applied to transfer atoms from |𝐹 = 1⟩ to |𝐹 = 2⟩ before the detection light
field is applied. The corresponding final distributions are displayed in figure 4.29 through
absorption imaging. Since the time 𝜏p is not optimised for a specific transfer, a considerable
number of atoms remain in the state |𝐹 = 2, 𝑝 = 0~𝑘⟩. Moreover, visible losses exist, possibly
into the |𝐹 = 1, 𝑝 = ±2~𝑘⟩ states.

300 µm

Figure 4.29: Density distribution in the form of an absorption image after applying a third
order (𝑛 = 3) double Raman diffraction pulse. The symmetric splitting is symbolized by arrows
indicating the in principle non-populated states |𝐹 = 1, 𝑝 = ±2~𝑘⟩ and |𝐹 = 1, 𝑝 = ±4~𝑘⟩, with
visible losses. The distributions appear broadened for the targeted |𝐹 = 1, 𝑝 = ±6~𝑘⟩ states due to
the additionally needed repumping cycles before the application of the detection light.
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4.3.3 Performance summary
Overall, important points about the performance of the laser system and its exemplary ap-
plication for Raman double diffraction can be summarized as follows. The Raman light field
exhibits comparable phase noise to that shown in [Ram20], which uses a similar setup with
a single-sideband via an IQ modulator. This is limited mainly in the RF design and in the
choice of microwave components that drive the modulation. In particular, a gain could be
obtained by choosing a DDS with lower phase noise. Significant phase shifts also result from
differential light shifts due to a changing ratio between sideband and carrier power. These were
not measured, but were estimated to be as high as a few percent. Therefore, a stability analysis
of the compensation point 𝐼2/𝐼1 and a possible stabilization based on this analysis is suggested.

Altogether, the system is able to provide all laser frequencies needed for the generation of
ultracold atoms and to perform Bragg and Raman diffraction with them. Examples of different
cases of double Raman diffraction, including higher order diffraction, show a flexible spectrum
of possible applications. The performance shown with BECs indicates that high beam splitting
efficiencies can be achieved with an applied Stern-Gerlach deflection, which is a good basis for
high-contrast atom interferometry. Overall, it shows that such a system is very well suited for
coherently manipulating the atomic species rubidium, as it provides the tunable, phase-stable
and efficient light sources necessary for this purpose.



CHAPTER 5
Summary

The work presented in this thesis aims to improve interferometry with ultracold atomic ensem-
bles and its use for inertial sensing by exploiting novel atom-optical manipulation techniques
and schemes. Achievable inertial sensitivities are proportional to the spatial separation of the
employed wave packets and can be enlarged by increasing either the interaction time or the
amount of transferred momentum. To this end, a (re-)launch mechanism effectively helped to
increase the available interferometry time and allowed the realization of a compact fountain
gravimeter. To achieve a symmetric large momentum transfer, an optical twin-lattice potential
enables large space-time areas suitable for rotation measurements with high sensitivities across
short baselines. A common feature of both methods are the light fields that are applied from
only a single direction, either along gravity or perpendicular to it.

Efforts to implement the previously presented methods in new atom interferometer concepts
led to the creation of a so-called dual BEC and a multi-loop scheme. For this purpose, at least
two perpendicularly aligned light fields were combined in each case. The first implementation
introduced a differential interferometer scheme formed from a single Bose-Einstein condensate.
The use of an initial double diffraction pulse from one direction, followed by three successive
pulses, allowed the discrimination between rotational and acceleration components using the
combined output phases of two interferometers. In this way, the complexity of two BEC sources
is avoided and the measurement can be extended to six-axis due to its symmetry. The combina-
tion of the above mentioned method of the (re-)launching mechanism with symmetric splitting
allowed a second implementation in the form of the concept of an atomic Sagnac interferometer
with multiple loops. By using loops, the enclosed space-time area can be effectively increased
without requiring a larger setup, analogous to light interferometers that use multiple fiber
loops. Neglecting contrast and atomic losses, which can scale with the number of loops due
to imperfections in the atom-light interactions, the result is a linear increase in the quantum
projection noise limited sensitivity per cycle.

In view of such potential limitations caused by the quality of the employed light fields, possible
mitigation strategies were investigated. A motivating factor was the loss of contrast observed
for the twin-lattice interferometer. Spatial distortions were shown to limit the current beam
splitter efficiency and thus the scaling of the method. In search of optical potentials propagating
with uniform intensity and phase distribution without being susceptible to distortion, a flat-top
shaped beam was investigated. Due to the shape of the intensity distribution, it is less prone to
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clipping at apertures, and its uniform power distribution can be useful for addressing the atomic
ensemble equally at different positions in the beam. The shaping optics studied have shown
that collimated beam profiles useful for atom interferometry can be produced at propagation
distances up to 1 m. However the profile still featured intensity distortions stemming from the
aspherical shaping components themselves. The measured phase front deviations are on the
order of 𝜆/20 for root-mean-square values and of 𝜆/3 for peak-to-valley. This is on the same
order of magnitude as specified for the high quality optical components typically employed
in atom interferometer experiments. The study also found that the relative positions of each
beam shaping component to each other have a critical influence on the wavefront profile. Only
rigid fixed connections between them can eliminate temporal and spatial instabilities. Even
with such a monolithic approach, it cannot be ruled out that spatially fixed imperfections still
remain in the light field. Those can, among other things, lead to position-dependent dipole
forces that have a parasitic effect on the output of an interferometer. To compensate for these
light-shift based effects, the generation of two light fields detuned by hundreds of GHz in
opposite directions with respect to the atomic resonance frequency and several watts of power
was presented. By superimposing three individually frequency and amplitude controllable
light fields in a single beam, the necessary optical lattice depths for large momentum transfer
techniques with active light shift compensation can be generated.

Inspired by the concept of providing a relatively compact and robust all-in-one solution for the
generation of ultracold atoms, combination of different beam-splitting techniques, and detection
of the output phase of the interferometer, a fiber-based laser system was built. It offers the
reliability and robustness of frequency-doubled telecommunication components and the ability
to combine internal and external state manipulations with only a single laser source. As a
demonstration, the novel technique of a modulation-based and optically filtered light field for
sequential and third-order double Raman diffraction was shown.

All of the techniques and schemes presented in this work share the ability to achieve compet-
itive measurement sensitivity for atom interferometers operating in comparatively compact
devices. The fountain gravimeter, for example, realized tens of milliseconds of free fall on a
distance of less than 1 cm. With a differential momentum of 408 photon recoils, the twin-lattice
interferometer enclosed an area of more than 7 mm2 on a baseline of less than 3 mm in fewer
than 13 ms. To draw a comparison between the different interferometer types presented in
this thesis, a square area of 1 cm2 is chosen as the basis for their geometries, neglecting the
comparably small spatial extent of the atomic ensembles. The constraint is such that all
manipulations and detection of the output phase signal must be based in this area. With
this, the individual shot-noise-limited achievable sensitivities to accelerations and rotations
are calculated. The results and the underlying parameters are summarized in table 5.1. Since
some of the concepts use a combination of atom-light interactions generated by light fields
propagating in perpendicular directions, those that imprint laser phase contributions for the
interferometer phase are highlighted in red. Although the chosen area may seem small, it turns
out that the achievable sensitivity limits are in the order of 10−8 (m/s2)/

√
Hz for accelerations
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Table 5.1: Sensitivity limit estimations for accelerations (𝜎a
√

𝑡) and rotations (𝜎r
√

𝑡) for the four
different geometries presented in this thesis. The calculations are based on the operation with 87Rb
atoms, a number of 𝑁 detected atoms, an interferometer pulse separation time 𝑇 , a contrast 𝐶, 2𝑛
loops, and two effective wave numbers 𝑘eff,↑ and 𝑘eff,↔ for their respective directions of momentum
transfer. The two values for the fountain represent the transfer during relauch and MZI sequence.
The atom-light interactions that contribute to the measured total phase shift 𝜑 are highlighted in
red. The parameters are chosen with the overall constraint of performing all manipulations and
detecting the output phase signal within the area of 1 cm2. For simplicity finite pulse durations are
neglected and a cycle time of 1 s is assumed, which is in the same order of magnitude as the atomic
flux achievable with current atom chip based BEC sources [Rud15].

𝑁 𝑇
[ms]

𝐶 𝑛 ~𝑘eff,↑
[~𝑘]

~𝑘eff,↔
[~𝑘]

𝜎a
√

𝑡
[(m/s2)/

√
Hz]

𝜎r
√

𝑡
[(rad/s)/

√
Hz]

Fountain 105 35.0 0.7 - 60 & 8 - 5.7 · 10−8 -
Twin lattice 105 24.2 0.5 - - 808 - 8.0 · 10−9

Dual BEC 105 25.0 0.5 - 16 32 7.9 · 10−8 4.2 · 10−7

Multi-loop 105 24.0 0.5 6 60 64 - 7.5 · 10−9

and 10−7 to 10−9 (rad/s)/
√

Hz for rotations. Depending on the application, such sensitivities
can already be considered sufficient, which is put into perspective using the example of quantum
inertial navigation in the outlook section 6.2.

One promising candidate for such an application is the dual BEC geometry with the possibility
of extending its measurement along all three axes. The other techniques presented in this
thesis still offer individual advantages for compact deployment. These include, for example, the
relaunch capability implemented in the multi-loop and fountain geometry, which allows the
same baseline to be used over and over again, or the optimal use of available space through
scalable large momentum transfer in a twin lattice. In particular, the application range of the
twin-lattice and multi-loop geometry is not limited to compact devices. Rather, they offer an
excellent perspective for achieving unprecedented sensitivities on longer baselines. Especially in
combination with delta-kick collimated BECs, the potential in the field of metrology increases
significantly.



CHAPTER 6
Outlook

The position of an object in space at a given time can be considered as a spatial and temporal
information. Often great efforts are made to obtain them as accurately as possible. Nowadays,
the need for navigation is increasing, the dependency on location services is growing and their
applications are constantly expanding. Although the use of Global Navigation Satellite Systems
(GNSS), often represented by the Global Positioning System (GPS), is widespread, problems
with accuracy, availability and also security have begun to come to the fore in current practical
applications. Indoors, underground, or even in cities, GPS cannot provide continuous and accu-
rate services due to signal loss or overlap. Therefore, the biggest challenge for next-generation
navigation technology is high availability and credibility.

To tackle this challenge and to be able to navigate without a GNSS link, the construction of
an inertial measurement unit (IMU) based on (ultra)cold atoms is a promising option. Such
a unit should measure the acceleration and angular velocity along all three axes of motion,
representing the fundamental part of inertial navigation. To date, few attempts have been made
to fully explore the potential of atom interferometers for field applications or to make them
useful as a technology for navigation. There have been recent efforts to bring quantum sensors
based on atom interferometry out of the laboratory to real-world applications [Bon19; Abe23],
as well as advances toward field-ready atom interferometers [Nar22]. However, the actual design
and, in particular, the implications of its use in dynamic environments is a relatively new
area [Boc17; Bla20].

In the following, this outlook adresses the questions why hybridization of an inertial measurement
can be a useful tool and how an implementation of a gyro-stabilized quantum navigation sensor
based on the dual BEC interferometer can look like.

6.1 Hybrid inertial navigation
Most atom interferometers sense along one direction, for example only a single axes of rotation
and/or acceleration is measured at a time. However, for full inertial navigation, it is necessary
to reconstruct the three-dimensional trajectory of a moving body. Therefore, only the simul-
taneous measurement of accelerations and rotations in three mutually orthogonal directions
forms the basis of a complete inertial measurement unit. Recent concepts have been tackling
this problem [Bar19; Ger20], but are typically operated in a pulsed manner. Therefore, they
have a smaller bandwidth than mechanical devices used for navigation and suffer from low
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repetition rates. This also results in dead times during which inertial measurements cannot
be performed. There are efforts to circumvent this problem based on a common interrogation
scheme [Sav18; Dut16] or recapturing the atoms after the interferometer sequence [Rak14], but
they are accompanied by increased instrument and sequence complexity.

The performance of atom interferometers is often limited by the characteristics of the employed
laser light field. A directly observable effect is the efficiency and stability of the individual
beam splitters, which require a strict phase relationship between the counter-propagating light
fields. Changes in this relationship directly influence the measured phase difference. Therefore,
it is a requirement to generate the light fields with the necessary stability and quality within
robust setups. An example of a fiber-based laser system, which is supposed to provide the
necessary capabilities for navigation purposes, is shown in the following section in figure 6.3.

An additional related challenge in dynamic or seismically noisy environment, typically encoun-
tered in navigation scenarios, is that the influence of inertial effects acting on the matter waves
and the phase reference of the interferometer are indistinguishable. Vibrations coupling into
a retro-reflection mirror shift the wave-front phase relative to the incoming beam and add
an additional phase contribution. As a consequence, seismic noise contributes significantly
to the instability of quantum inertial sensors and often inhibits the interferometer readout
due to phase ambiguities. In addition to the contributions of quantum projection noise and
technical noise, this contribution of inertial noise is a dominant factor in phase uncertainties.
To counteract or reduce this influence, there are two common techniques: first, vibration
attenuation systems that reduce the amount of spurious movement of the inertial reference, and
second, post-correction methods that detect the motion with an external sensor and apply a
transfer function (see section 2.3) to calculate the inertially induced phase shift. The additional
use of a classical external sensor can bring further advantages in the form of hybridization, as
shown by the flow diagram in figure 6.1 and explained below.

The classical sensors often exhibit broader bandwidths, but suffer from long-term bias and scale
factor drifts. This is where they can benefit from quantum sensors. The combination of their
signals enables the correction of systematic errors (for example with the help of the Kalman
filter formalism [Che18]), offsets and drifts of the classical sensor by providing a hybrid signal
with no such bias. This hybridization therefore provides continuous measurements without
dead times and a high dynamic range. In fact, commercially available classical sensors such
as the Titan Accelerometer or the Trillium Seismometer from Nanometrics Inc. have already
been employed in combination with atom interferometers [Gei11; Le 08; Lau14; Bar16; Ten21;
Tem22]. Recently a new class of optomechanical sensors with small form factors has shown
potential to perform well in portable and compact quantum inertial sensor units [Guz14; Hin20;
Ric20].

When developing a navigation-compatible quantum sensor, it must be taken into account that
the ensemble of atoms used will be accelerated in different directions for short periods of time.
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For the application of beam splitters, the relative velocity between the freely falling atoms and
the moving reference frame must be known to some degree to control the phase measurement.
A common method is to apply a phase-continuous chirp to maintain the transition resonance
condition as the atoms accelerate relative to their inertial reference. However, if the system
experiences multiple translational accelerations, this chirp must be changed from cycle to cycle.
By applying a high-pass filter to the acceleration signal measured by a classical sensor, the AC
acceleration can be used to adjust the laser frequencies accordingly. This can be implemented
by a real-time solution [Tem22], as shown in figure 6.1 on the left. Doing so is particularly
important if there is otherwise a risk of signal loss or degradation, for example due to phase
ambiguity or reduced contrast. An ultimate limitation is that it is impossible to extract the
phase information when the atomic trajectories leave the laser beam due to the experienced
acceleration before the interferometer is closed.

camera

N
1
A

N
1
B

N
2
A

N
2
B

atom chip

laser(s)

Hybrid signal output

signal

(pulsed)

signal + bias

(continuous)

bias

high-pass

AC acceleration

𝑓MZ(𝑡)

classical sensors

quantum sensor

Figure 6.1: Flow diagram of the operating principle of a hybrid inertial navigation system. Classical
sensors typically allow for continuous measurements, but suffer from long-term bias. These can be
isolated and discarded/corrected by correlation with a quantum sensor to produce a hybrid signal.
Furthermore, a real-time system can help to detect AC accelerations by high-passing. Through
calculation of the response using the transfer function 𝑓MZ(𝑡), laser frequency and phase can be
adjusted accordingly.

Another effect to consider results from rotations that change the direction of the beam-splitting
light pulses and impart offset velocities to the atoms. This can result in the wave packets
not overlapping at the last pulse and the interferometer not being able to close completely,
resulting in a loss of interferometric contrast. A common solution is to use a tilting mirror as
an inertial reference. It has been shown that this can eliminate, for example, the influence of
the Coriolis force caused by the Earth’s rotation [Lan12]. Alternatively, an inertial platform,
often called a gyroscopic platform, can be used to hold the sensor in a fixed orientation in
space despite rotational changes. Such an approach can also be understood as a form of
hybridization, since a classical gyroscope can provide the input for the orientation of the inertial
platform, while the quantum sensor measures and corrects the remaining rotational components.
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6.2 Experimental platform of a gyro-stabilized quantum navigation sensor
In the practical development of a navigation-compatible (hybrid) quantum inertial measurement
unit, many challenges must be considered that are not present in static laboratory setups.
This starts with compactness, which is critical for such an application, and continues with
reduced complexity and power consumption. Yet all the influences of the dynamic environment,
described in the section before, should also be taken into account. A sensor design and setup
that tackles these challenges is discussed in the following.

The basis for this development is the multi-axis scheme of the dual BEC interferometer presented
in subsection 3.3.1. An idea of what the future sensor head for its implementation might look
like is shown in figure 6.2. As explained in chapter 5, considerable sensitivities can already be
achieved in areas the size of square centimeters. Nowadays, the available technology still mostly
determines the size of the device. Nevertheless, the sensor head presented here constitutes
already a significant compactification.

2D+ MOT atom chip & IGP
connections

main chamber &
3D MOT assembly

beam shaping
telescopes camera

Figure 6.2: Construction model of the sensor head of the experimental platform within an outer
support frame. The structure shown includes all vacuum components, which consist mainly of
the 2D+ MOT and the 3D MOT chamber with the atom chip inside. Components attached to it
such as the four beam shaping optics and the detection camera are also shown. The main missing
components are an enclosing magnetic shield, and the gyro stabilized base, which are not shown for
display reasons. The human arm on the right illustrates the size of the setup.

The chosen design goal of this setup is to achieve an absolute acceleration accuracy below
1 × 10−6 (m/s2)/

√
Hz and an absolute rotation rate accuracy below 5 × 10−9 (rad/s)/

√
Hz. The

most demanding component is the rotation requirement (compare to table 5.1). As a com-
parative example, a navigation grade IMU based on ring laser gyroscopes [iNAT-RQT-4002,
iMAR Navigation] achieves a noise density of 7.3 × 10−7 (rad/s)/

√
Hz based on the angular

random walk and a bias instability of 4.8 × 10−9 (rad/s)/
√

Hz. In addition a tactical grade
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IMU based on MEMS technology [3DM-GQTM-45, LORD Corporation] achieves a noise density
of 3.4 × 10−5 (rad/s)/

√
Hz and a bias instability of 2.4 × 10−5 (rad/s)/

√
Hz. Therefore, it is a

much greater challenge to overcome the performance of the former.

The goal is to compete with the above values while targeting lower bias instabilities with
hybridization to open up a field of applications not covered by conventional sensors alone. To
achieve this, new developments and innovations are needed in the areas listed below:

1. Miniaturized vacuum technology components
2. Gyro-stabilized platform for position control
3. Atom-chip technology
4. Optomechanical acceleration sensors for integration with mirror reference surfaces
5. Laser system with integrated fiber optics
6. Monolithic flat-top beam shaping optics
7. Control electronics

The following brief overview discusses the state of the art in these important areas, as well as
the challenges and limitations to date.

1. Miniaturized vacuum technology components
For atom interferometry ulta-high vacuum environments are often necessary. Therefore, minia-
turization of the vacuum chamber and the required pumping system are critical to the realization
of a compact sensor. To make this possible, different miniaturization concepts are used, for
example the use of non-evaporable getter material, which is applied to the inside of the vacuum
chamber by means of cathode sputtering and a compact integrated ion getter pump. The use of
low-outgassing, non-adhesive and vacuum-compatible joining techniques to produce customized
vacuum chambers will also contribute. Additively manufactured chambers have been shown
to operate at a pressure below 10−10 mbar [Coo21]. As this technology advances, it will be
possible to achieve increasingly smaller form factors.

2. Gyro-stabilized platform
An inertial platform, also called a gyroscopic platform or stabilized platform, uses gyroscopes
to hold a platform in a fixed orientation in space despite movement of the mount to which it
is attached. This can then be used to stabilize the mounted inertial quantum measurement
unit [Bid18]. While this stabilization can be limited, the atom interferometer allows the residual
rotational components to be measured.
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3. Atom-chip technology
Atom chips represent a robust and mature technology for the generation of BECs. In combination
with laser cooling techniques, they generate magnetic field configurations so that the atoms can
be trapped, cooled and manipulated. Atom chips benefit from new developments, particularly
in surface quality, thermal management, the use of non-magnetic materials with low outgassing
rates, novel wire structures and the use of new types of coatings [Chr19; Kas19].

4. Optomechanical acceleration sensors
The technology of optomechanical accelerometers [Guz14; Hin20; Ric20] is a promising approach
to implement an accelerometer directly at the reference surface of the atom interferometer. In
the application case these are the mirror surfaces and the atom chip. Only sensors with a small
form factor make this possible. The volume of only a few cubic millimeters of such sensors
therefore offers great opportunities for miniaturization. Current designs include a drum head
resonator shape whose movement can be read out optically directly behind the mirror surface.

5. Laser system with integrated fiber optics
Based on the design of the fiber laser system from section 4.3, a new commercial prototype
system [KVANTUM, NKT Photonics] is developed and shown in figure 6.3. It is based on a
modular approach, where each module is assigned an individual task. The modules, powered
via a common backplane, are designed to contain electro- and acousto-optical components and
are interconnected with optical fibers. Narrow-band laser sources in the telecommunications
wavelength range are used with subsequent amplification, modulation, optical filtering and
frequency doubling. Together they provide the necessary light fields, required for the production
of a quantum degenerate gas and its subsequent coherent manipulation. In addition to
compactness, the main focus lies also on power consumption and frequency and amplitude
stability of the produced light fields.

fiber
laser

EOM+FBG
fiber

amplifier

SHG

AOM fiber
laser

EOM+FBG
fiber

amplifier

SHG

AOM fiber
laser

Figure 6.3: Fully fiber-based laser system consisting of a series of modules interconnected with
optical polarization-maintaining fibers (from left to right). Each module performs an individual
task, step by step and analogously to the section 4.3. The same abbreviation notation is used in
the image as in this section. Shortly summarized, three individual fiber laser sources (red, green,
and blue shaded areas) provide the necessary light fields, required for the production of a BEC and
its subsequent coherent manipulation. The total system fits into a standard 19-inch rack module.
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6. Monolithic flat-top beam shaping optics
Based on the concept from section 4.1 and the need to maximize the interferometry volume
in a small setup, flat-top beams are chosen. The results obtained in section 4.1.5 regarding
temporal and spatial intensity instability suggest the construction of a monolithic beam shaping
element, which should be less susceptible to vibrations.

7. Control electronics: Advanced Real-Time Infrastructure for Quantum physics (ARTIQ)
Much of the overall development of compact electronics for experiment control is already
implemented within the ARTIQ framework [Kul18; Kas20]. The sequence code is compiled and
executed on dedicated Field-Programmable Gate Array (FPGA) hardware with nanosecond
timing resolution and sub-microsecond latency. The time-critical code (a kernel) running on
the FPGA (the core device) can than be interfaced via programming language from a computer
using a Remote Procedure Call (RPC) mechanism. First and foremost, the following hardware
must still be developed: Current drivers, piezo drivers, electronics for laser control and the
corresponding firmware. In addition, real-time capable control boards as well as boards for the
generation of high-frequency signals and boards for digital and analog inputs and outputs are
required.

At the end of this section, it remains to mention that the previously listed areas only cover parts
of a fully functioning sensor system. There are still many open challenges and subtleties to
master. In particular, the operating principle of the signal readout, the hybridisation with the
optomechanical acceleration sensors and the gyro-stabilised platform require a more detailed
investigation and explanation. Together with the associated position and sequence control, all
this would go beyond the scope of this outlook.

This being said, it can be claimed that throughout the history of technology, there have always
been methods that have replaced earlier ones. However, such processes often take time and
require extensive development and qualification. Sensors based on atom interferometry are now
at a stage where they can be used in the fields of inertial and gravity measurements. In recent
years, transportable commercial quantum gravimeters have been developed, by the companies
AOsense [AOS], M Squared Lasers [Las] and Muquans [Muq]. It therefore remains to be seen
when the first quantum navigation compatible sensors will appear on the market.
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