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Preface

This course is devoted to phase-field fracture methods. Four different sessions are centered around
modeling, discretizations, solvers, adaptivity, optimization, simulations and current developments.

The key focus is on research work and teaching materials concerned with the accurate, efficient
and robust numerical modeling. These include relationships of model, discretization, and material
parameters and their influence on discretizations and the nonlinear (Newton-type methods) and
linear numerical solution. One application of such high-fidelity forward models is in optimal control,
where a cost functional is minimized by controlling Neumann boundary conditions. Therein, as a
side-project (which is itself novel), space-time phase-field fracture models have been developed and
rigorously mathematically proved. Emphasis in the entire course is on a fruitful mixture of theory,
algorithmic concepts and exercises. Besides these lecture notes, further materials1 are available,
such as for instance pfm-cracks https://github.com/tjhei/cracks with an overview given in
[76] as well as tutorial steps in DOpElib [67] http://www.dopelib.net.

The prerequisites are lectures in continuum mechanics, introduction to numerical methods,
finite elements, and numerical methods for ODEs and PDEs. In addition, functional analysis (FA)
and theory of PDEs is helpful, but for most parts not necessarily mandatory.

Discussions with many colleagues in our research work and funding from the German Research
Foundation within the Priority Program 1962 (DFG SPP 1962) within the subproject Optimiz-
ing Fracture Propagation using a Phase-Field Approach with the project number 314067056 (D.
Khimin, T. Wick), and support of the French-German University (V. Kosin) through the French-
German Doctoral college “Sophisticated Numerical and Testing Approaches" (CDFA-DFDK 19-04)
is gratefully acknowledged.

Hannover Denis Khimin
November 2023 Leon Kolditz

Viktor Kosin
Katrin Mang

Thomas Wick

1In the online version of these lecture notes, links, references, and URLs are active with hyperlinks, despite that
they are not specifically highlighted, which is for better reading purposes.
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Chapter 1

Introduction

1.1 Brief background

Fracture and damage computations are long-standing topics in practical field problems, experi-
mental studies, engineering, and applied mathematics. The seminal work by Francfort and Marigo
in 1998 opened the way for a variational formulation in terms of energy minimization of brittle
fracture [59], with a subsequent numerical implementation by Bourdin et al. [24]. Since then,
the idea has influenced numerous groups for modeling, discretizing and simulations of fracture
mechanics. In the year 2010 further thermodynamical arguments were given in [121] and [100] and
the name phase-field was established. Our own naming is phase-field fracture.

Over the years, advancements (not all can be listed here) have been made by different groups
and people [23, 27, 21, 35, 120, 5, 6, 4, 118, 177, 73, 64, 65, 99, 151, 103, 101, 102, 147, 48, 96, 47, 56].

Our own main contributions started in the year 2013 with [122] (see also [124]). The motivation
was to have a rigorous mathematical model for phase-field modeling in fractured porous media. Af-
terwards, we concentrated on investigations of the crack irreversibility constraint [123, 74, 166, 113],
efficient and robust numerical solutions [166, 167, 74, 34, 52], global-local multiscale formula-
tions [3, 2, 131], adaptivity [74, 165, 131, 110], incompressible and nearly incompressible solids
[108, 111, 113, 109, 17], multiphysics phase-field fracture [163, 169, 164, 105, 104], parameter esti-
mation [89, 132, 133, 134], and optimal control [87, 88, 86]. Very recently, we made advancements
in space-time phase-field fracture modeling including its rigorous justification of the governing
functional framework [88, 86].

Monographs and summaries are for example [25, 174, 57, 26, 72]. Our own summaries and
overviews are provided in [163, 49, 169]. Moreover, we contributed to a benchmark collection in
solid mechanics published in [145].

These lecture notes shall give a selection in a teaching fashion with a focus on classical numerical
topics such as modeling of the basic system, discretization, and numerical solution. Moreover,
phase-field fracture optimal control will be discussed. In the last part, outlooks to extensions
(either published or currently investigated) are given. Therein, brand-new research results by
setting up pfm-cracks [76] with the CARPIUC benchmark [37] are included as well.
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10 CHAPTER 1. INTRODUCTION

1.2 Phase-field fracture

Key idea The principal idea is to approximate (lower-dimensional) discontinuities in some ma-
terial with the help of an additional smoothed field. As shown in Figure 1.1, that is a smoothed
indicator variable varying from 0 (fracture/damage) to 1 (intact material) is used to approximate
the discontinuities in a displacement field (highlighted in Figure 1.2). The approximation width is
represented through a regularization parameter ε > 0.

Figure 1.1: Prototype setup: the unbroken domain is denoted by ΩR and C is the fracture. The
latter is approximated by the domain ΩF . The half thickness of ΩF is ε. The fracture boundary
is ∂ΩF and the outer boundary is ∂ΩD. The corresponding realization using phase-field is shown
in the right sub-figure. Here, the lower-dimensional fracture (φ = 0) is approximated with the
phase-field variable. The transition zone with 0 < φ < 1 has the thickness of ε on each side of the
fracture. Consequently, ΩF can be represented with the help of φ. Figure taken from [135] with
permission from Elsevier.

Figure 1.2: The crack is denoted in red color in the left snapshot of the phase-field. On the right
side, a 3D plot of the displacement field shows the discontinuity along the line (x, 0) for −1 ≤ x ≤ 0.
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Typical goals and questions The most immediate goals of the above idea is to address some
of the following questions:

1. Can we compute an (a priori unknown) fracture path?

2. Can we work with multiple fractures and fracture networks?

3. Does this fracture path depend on the numerical discretization method, mesh, input data,
boundary conditions?

4. How do boundary conditions influence the fracture path?

5. Under which conditions does φ ‘converge’ to the lower-dimensional surface? (Hint: Γ-
convergence; not covered in these lecture notes!)

6. The role of the regularization parameter ε (length scale) in mathematics and practical appli-
cations?

7. What are possible constitutive relations for the governing equations?

8. How do we design ‘good’ numerical schemes in terms of feasibility, accuracy, efficiency, and
robustness?

9. What is the relationship between regularization (i.e., ε and later an elasticity regularization
κ), discretization, and material parameters?

10. Is it possible to perform a rigorous numerical analysis of the proposed algorithms?

11. For which settings can we perform a mathematical analysis (well-posedness, a priori error
estimations, and so forth)?

12. What are advanced possibilities to further enhance the accuracy while keeping the computa-
tional cost at a reasonable level?

13. What are typical functionals of interest, i.e., in what physical quantities (entire solution?
Parts of a solution? Stress values? Local deflections and deformations?) is an engineer or
practitioner interested in?

14. Is it possible to apply the method from ‘simple’ academic test cases to practical field prob-
lems?

15. Can we determine with sufficient accuracy crack tip mechanics and the fracture speed?

16. Can we compute the fracture width, the fracture volume, and fracture length with sufficient
accuracy?

17. Can we apply further physics?

18. Can we estimate unknown parameters?

19. Can we control the crack path in certain directions or suppress it to avoid fracture?

20. Can we use phase-field to make predictions of practical relevance?
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Advantages and interest in phase-field fracture Phase-field fracture is a regularized ap-
proach that has (as many numerical methods) advantages and shortcomings. A list from the
authors’ experience is as follows:

• Continuum description based on first physical principles to determine the unknown crack
path. Thermodynamical analyses can be carried out;

• Fixed-mesh approach in which no re-meshing or update of basis functions to resolve the crack
path is needed;

• Application of classical Galerkin finite elements (FEM) or isogeometric analysis (IGA) in
space and time;

• Hard, but beautiful, mathematical and numerical questions arise;

• Computation and representation of nonplanar and complex crack patterns in two and three
spatial dimensions;

• The model allows for nucleation (however still mathematical discussions and improvements
ongoing), branching and merging; explicit calculation of stress intensity factors not necessary;

• Computation of fracture networks (see Figure 1.3) in possibly highly heterogeneous media.

Figure 1.3: Fracture network (initial configuration at left) with growing fractures (at right) using
a phase-field model. Red colors indicate the fracture (φ = 0) and blue colors the unbroken zone
(φ = 1). The transition zone is indicated in yellow/green. This computation has been done with
the model presented in [123].

Challenges and shortcomings

• The mesh (e.g., using finite elements) needs to resolve the interface to a certain accuracy,
i.e., the relationship between spatial discretization parameter and phase-field regularization
parameter, which comes at a computational cost;

• On the energy level, the formulation is non-convex which makes it challenging for both
theory and design of numerical algorithms. Specifically, robust monolithic solutions are very
challenging. Both partitioned (alternating minimization) and monolithic algorithms may
require many nonlinear and linear iterations, and result overall in a high computational cost;

• Accurate crack width computations require care;
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• Applying further physics (pressure, temperature) on the fracture interface are limited in their
accuracy by the smeared fracture transition zone Here, local mesh adaptivity helps to a great
extent in order to achieve sufficient accuracy, but still will not track the crack boundary in
an exact fashion as done in interface-tracking.

As demonstrated in numerous studies published in the literature, ideas have been proposed how to
cope with these challenges. In view of the enduring increasing popularity, it, however, seems that
the advantages outweigh the shortcomings for today’s applications.

1.3 Course structure
This one-day course is structured as follows:

• 10:00 - 11:30 Session 1, Exercise 1;

• 11:45 - 13:15 Session 2, Exercise 2;

• 14:30 - 16:00 Session 3, Exercise 3;

• 16:15 - 17:45 Session 4, Discussion.

Each class is around 45 minutes, followed by 45 minutes exercises. We also show numerical sim-
ulations, which can be discussed together in more detail, and for which it is useful (while not
mandatory) to have deal.II www.dealii.org with Trilinos [77] and p4est [36] to be installed, and
furthermore pfm-cracks [76].

1.4 Numerical road map from problem statements to output
functionals

In large parts of numerical modeling in these lecture notes, we follow the road map outlined in
[171][Section 12.3 and 12.4]1. We provide a road map from strong form problem statements to
postprocessing of quantities of interest measured in terms of goal functionals. Of course, not all
steps are always necessary. For instance, sometimes equations are already posed in a space-time
weak form. Sometimes, problems are linear and do not need a nonlinear solution.

1. Problem statement: Given the strong form including all problem data such as bound-
ary and initial conditions, model and material parameters, right hand sides, and also the
geometry.

2. Weak form: Design function spaces X and Y . Let U ∈ X be the trial function and let
Ψ ∈ Y be the test function. Derive a weak form:

Find U ∈ X : A(U)(Ψ) = F (Ψ) ∀Ψ ∈ Y.

3. Regularization: In case of non-smooth problems, e.g., variational inequalities (as phase-
field fracture) or vanishing coefficients, one option is to regularize the problem with some
regularization parameter ε > 0:

Find U ∈ X : Aε(U)(Ψ) = F (Ψ) ∀Ψ ∈ Y,

1https://thomaswick.org/links/Wi23_st_book_preprint_Aug_8_2023.pdf

www.dealii.org
https://thomaswick.org/links/Wi23_st_book_preprint_Aug_8_2023.pdf
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with U := Uε ∈ X := Xε and Ψ := Ψε ∈ Y := Yε.

4. Temporal discretization: Design semi-discrete function spaces Xr
k and Y r

k , where r ≥ 0
is the polynomial degree. Derive semi-discrete weak form

Find Uk ∈ Xr
k : A(Uk)(Ψk) = F (Ψk) ∀Ψk ∈ Y r

k .

5. Spatial discretization: Design fully discrete function spaces Xr,s
k,h and Y r,s

k,h , where s ≥ 1 is
the polynomial degree. Derive fully discrete weak form

Find Ukh ∈ Xr,s
k,h : A(Ukh)(Ψkh) = F (Ψkh) ∀Ψkh ∈ Y r,s

k,h .

6. Nonlinear solution: Define

g(Ukh)(Ψkh) := A(Ukh)(Ψkh)− F (Ψkh),

and solve g(Ukh)(Ψkh) = 0 with nonlinear methods such as fixed-point or Newton-type
methods.

7. Linear solution: Within g(Ukh)(Ψkh) = 0 linear systems, or in the case of linear problems
from the start, solve immediately A(Ukh)(Ψkh) = F (Ψkh) with direct, iterative, or multigrid
methods.

8. Postprocessing: Evaluate goal functionals J(Ukh), or errors in goal functionals J(U) −
J(Ukh) or errors in global norms ∥U − Ukh∥. Moreover, output the solution in terms of
graphical output, e.g., vtk.

9. Further loops, applications, verification, and validation: According to the postpro-
cessing, increase accuracy and efficiency by adaptivity in discretization errors, model errors,
linear and nonlinear solvers. Utilize such high fidelity numerical models g(Ukh)(Ψkh) within
model order reduction, parameter estimation, inverse problems, and optimal control, or for
validation in practical applications.
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1.5 Verifications and benchmarking
Developing numerical schemes require debugging and testing by various means. Two principle
concepts need to be distinguished:

1. Verification: Process to determine that a model discretization and implementation result
into a sufficiently accurate numerical solution Ukh;

2. Validation: Process to determine whether a certain model describes with sufficient accuracy
some specific given real world application within the scope of the intended use of the model.

In the following, we are interested in verification. From the scientific computing perspective two
types can be distinguished. First, double-checking the conceptional development of algorithms and
descrizations schemes. Second, debugging the programming code. A list of numerical concepts and
possible error sources is provided in [170][Chapter 2]. Finally, both can be approved (or disproved)
with the obtained numerical solution. Such a computational convergence analysis consists of basi-
cally three steps (with increasing level of difficulty). These steps hold true for classical norm-based
error-estimation ∥U − Ukh∥ as well as goal-oriented error estimation J(U)− J(Ukh).

1. Does the solution make sense?

• If possible test your code with an acknowledged benchmark configuration and/or man-
ufactured solution and verify whether J(Ukh) matches the benchmark values in a given
range and on a sequence of at least three meshes. This first step can be performed with
uniform and adaptive mesh refinement. In time-dependent problems, please compute
at least with three different time step sizes.

• If no benchmark configuration is available, study a simple, prototype configuration and
observe whether the solution makes sense.

2. Do the true error J(U)−J(Ukh) and the error estimator η descrease under mesh refinement?

• Compute J(U) either on a uniformly-refined super-fine mesh or even analytically (i.e.,
a manufactured solution). Compute the error J(U)− J(Ukh) and observe whether the
error is decreasing.

• Consider separately ηk (fixing the spatial mesh) and ηh (fixing the temporal mesh) and
observe their behavior.

• If a priori estimates are available, see if the orders of convergence are as expected. But be
careful, often goal functionals are nonlinear, for which rigorous a priori error estimates
might not be available.

3. Compare η and J(U)− J(Ukh) in terms of the effectivity index Ieff . Do we asymptotically
obtain values around Ieff ≈ 1? For nonlinear problems, one easily observes 0.1 ≤ Ieff ≤ 10,
which might be still okay depending on the problem statement.

In particular the last step No. 3 is often difficult when not all theoretical requirements (smooth-
ness of data and boundary conditions, regularity of the goal functional, regularity of the PDE,
smoothness of domains and boundaries) are fulfilled.
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Chapter 2

Modeling (Session 1)

In this chapter, the objective is to obtain phase-field fracture models in weak formulations. First, a
classical quasi-static model is derived in which ‘time’ arises in an incremental form and no true time
derivatives appear. Second, a space-time formulation is derived in which the crack irreversibility
constraint is kept in temporal form and an appropriate mathematical functional framework is
designed. In order to understand these derivations, a prototype model is discussed first. Mechanical
and thermo-dynamical aspects (such as energy splitting into tensile and compressice forces as well
as strain history functions [119]) of phase-field fracture will not be discussed in these lecture notes.
Overall, we mainly concentrate on typical numerical aspects such as rigorous derivations of the
Euler-Lagrange formulation from energy minimization, the mathematical relation to the obstacle
problem, and finally, the already mentioned space-time formulation.

2.1 Notation

We introduce the global notation used in these lecture notes. Specific definitions might be added
later when necessary.

2.1.1 Spatial domains, boundaries, fracture

Let d be the spatial dimension. In the following, let B ⊂ Rd, d = 2, 3 the total domain wherein
C := C(t) ⊂ Rd−1 denotes a (propagating) fracture (or multiple fractures) and Ω := Ω(t) ⊂ Rd is
the intact domain (Figure 2.1). A point in B is denoted by

x = (x1, . . . , xd).

The domain ΩF := ΩF (t) ⊂ Rd is the domain, which arises when C is approximated with a higher-
dimensional object, mainly determined by ε > 0. This introduces the internal boundary (interface)
∂C := ∂C(t) := ΩF ∩Ω. For the limit case (no transition zone, phase-field regularization parameter
ε = 0), it holds ΩF = C. Detailed discussions on how ΩF is constructed in practice can be found
in [163, 169].

17
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Figure 2.1: Setup of the notation: the unbroken domain is denoted by Ω and C is the fracture.
The latter one is approximated by the domain ΩF . The half thickness of ΩF is ε. The fracture
boundary is ∂C and the outer boundary is ∂B. The corresponding realization using phase-field is
shown in the right subfigure. Here, the lower-dimensional fracture (φ = 0) is approximated with
the phase-field variable. The transition zone with 0 < φ < 1 has the thickness of ε on each side of
the fracture. Consequently, ΩF can be represented in terms of φ.

The outer boundary may be decomposed into ∂B = ∂BHD ∪ ∂BND ∪ ∂BHN ∪ ∂BNN , where
∂BHD denotes homogeneous Dirichlet conditions, ∂BND denotes nonhomogeneous Dirichlet con-
ditions, ∂BHN denotes homogeneous Neumann conditions, and ∂BNN denotes nonhomogeneous
Neumann conditions. Not always do we deal simultaneously with all four situations, but seperately
all of them will appear in Chapter 5.

2.1.2 Time / loading intervals

The loading / time-interval is denoted by I := (0, T ) with the end time value T > 0.

2.1.3 Model, material and discretization parameters

Regularization and penalization parameters The most important model parameters are the
phase-field regularization parameter ε > 0 and the bulk regularization parameter κ > 0. Both are
linked; see e.g., [9, 30]. For some models, we use γ > 0 for denoting a penalization parameter for
treating the crack irreversibility constraint. In Section 3.2.2, the active set constant is denoted by
c > 0. Finally, in Chapter 4 the Tikhonov regularization parameter in phase-field fracture optimal
control is denoted by α > 0.

Material parameters The Lamé parameters are denoted with µ > 0 (shear modulus) and
λ > − 2

3µ with the unit Pa = N/m2 = kg/ms2. We denote with σs (often simply σ) the Cauchy
solid stress tensor with the unit Pa/m2. The critical energy release rate is denoted with Gc > 0
and the unit J/m2 = N/m. Poisson’s ratio is denoted with −1 ≤ νs ≤ 0.5 and is dimensionless.
Young’s modulus EY > 0 has the unit Pa = N/m2 = kg/ms2.

Spatial and temporal discretization The time (loading) step size is defined as kn = tn− tn−1

with k := maxn(kn), where

0 =: t0 < t1 < . . . < tn−1 < tn < . . . < tN := T.
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The time points tn can have non-uniform distances. The spatial discretization parameter, namely
the diagonal of a quadrilateral or hexahedral element, is denoted as usually by h, which is the
maximal diameter of all elements of the mesh decomposition.

2.1.4 Solution variables
The unknown solution variables are:

• vector-valued displacements u := u(x, t) : B × I → Rd;

• a smoothed scalar-valued indicator phase-field function φ := φ(x, t) : B × I → [0, 1]. That
indeed 0 ≤ φ ≤ 1 holds true is proven in Theorem [169].

The latter one describes the crack path in a smeared fashion. Specifically:

• φ = 0 denotes the crack region;

• φ = 1 characterizes the unbroken material;

• 0 < φ < 1 are intermediate values constituting a smooth transition zone dependent on the
regularization parameter ε. In engineering or physics, ε is often a so-called length-scale
parameter. We notice that in related fields that use phase-field methods such as phase
transitions in materials science, ε is a so-called interaction length. In two-phase flow, ε is
known as interfacial thickness. This may be justified since this zone weakens the material
and is a physical transition zone from the unbroken material to a fully damaged state.

We often consider several solution variables and then use U as joint variable. For instance, U =
(u, φ). Moreover, we notice that the solutions are dependent on the regularization parameter ε,
i.e.,

U := Uε.

2.1.5 Gradient, divergence, trace, Laplace
It is convenient to work with the nabla operator (see [33] for a concise overview) to define spatial
derivative expressions. The gradient of a single-valued function v : Rd → R reads:

∇v =

∂1v...
∂dv

 ,

where ∂iv := ∂v
∂xi

, where xi is the ith coordinate direction.
The gradient of a vector-valued function v : Rd → Rm is called Jacobian matrix and reads:

∇v =

∂1v1 . . . ∂dv1
...

...
∂1vm . . . ∂dvm

 .

The divergence is defined for vector-valued functions v : Rd → Rd:

div v := ∇ · v := ∇ ·

v1...
vd

 =

d∑
j=1

∂jvj .
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The divergence for a tensor σ ∈ Rd×d is defined as:

∇ · σ =
( d∑
j=1

∂σij
∂xj

)
1≤i≤d

.

The trace of a matrix A ∈ Rd×d is defined as

tr(A) =

d∑
i=1

aii.

Definition 1 (Laplace operator). The Laplace operator of a two-times continuously differentiable
scalar-valued function u : Rd → R is defined as

∇ · (∇u) = ∆u =

d∑
j=1

∂jju.

Definition 2. For a vector-valued function u : Rd → Rm, we define the Laplace operator component-
wise as

∆u = ∆

u1
...
um

 =


∑d

j=1 ∂jju1
...∑d

j=1 ∂jjum

 .

2.1.6 Functional frameworks
General notation

We adopt standard notation for the usual Lebesgue and Sobolev spaces [172, 1]. We denote in
the following D := B or D := Ω or D := ΩF . By Lp(D), 1 ≤ p ≤ ∞, we indicate the standard
Lebesgue space that consists of measurable functions u, which are Lebesgue-integrable to the p-th
power. The set Lp(D) forms a Banach space with the norm ∥u∥Lp(D):

∥u∥Lp(D) :=

(∫
D

|u(x)|p dx
) 1

p

, 1 ≤ p <∞,

∥u∥L∞(D) := ess sup |u(x)|.

We obtain the Hilbert space L2(D) for p = 2, equipped with the inner product

(u, v)L2(D) :=

∫
D

u(x)v(x) dx.

The Sobolev space Wm,p(D),m ∈ N, 1 ≤ p ≤ ∞ is the space of functions in Lp(D) that have
distributional derivatives of order up to m, which belong to Lp(D). This space is equipped with
the norm

∥u∥Wm,p(D) :=

 ∑
|α|≤m

∥Dαu∥pLp(D)

 1
p

, 1 ≤ p <∞,

∥u∥Wm,∞(D) := max
|α|≤m

∥Dαu∥L∞(D).
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Definition 3. The symbol α = (α1, . . . , αd) ∈ Nd denotes a multi-index with the properties

|α| :=
d∑

j=1

αj , Dα :=
∂|α|

∂xα1
1 · · · ∂xαd

d

.

If k ∈ N0, we define the set of all partial derivatives of order k:

Dku(x) := {Dαu(x) : |α| = k}.

For p = 2, Hm(D) :=Wm,2(D) is a Hilbert space equipped with the inner product

(u, v)Hm(D) :=
∑

|α|≤m

(Dαu,Dαv)L2(D),

and the norm || · ||Hm(D) [172]. Semi-norms are defined by

|u|Wm,p(D) :=

 ∑
|α|=m

∥Dαu∥pLp(D)

 1
p

, 1 ≤ p <∞,

|u|Wm,∞(D) := max
|α|=m

∥Dαu∥L∞(D).

Finally, we indicate the subspace Wm,p(D) of functions with zero trace on ∂X by Wm,p
0 (D).

Specifically, we define H1
0 (D) = {u ∈ H1(D) : u = 0 on ΓD ⊂ ∂X}.

Comments on space-time function spaces / almost all

For time-dependent weak formulations, one can work with space-time Sobolev spaces, so-called
Bochner spaces (e.g., [45, 172]). This would be the most elegant notation. We rather use fruitful
consequences of Lebuesgue measures, namely that L2 integrals in I = (0, T ) can be approximated
almost everywhere in I on the time-continuous level.

Definition 4 (Almost everywhere, a.e.). Let Ω ⊂ Rd be a Lebesgue-measurable open domain.
Measurable functions are defined almost everywhere, in short a.e., in Ω:

f(x) = g(x) a.e. Ω,

when there is Z ⊂ Ω such that the Lebesgue measure of Z is zero and

f(x) = g(x) for all x ∈ Ω \ Z.

Short: Almost everywhere means except on a set of Lebesgue measure zero.

Definition 5 (Almost all). On the time-continuous level I = (0, T ), rather than working with L2

integrals, we use the fact from Lebuesgue theory that such functions can be approximated for almost
all t ∈ I.

Remark 1. Clearly after time-discretization, we evaluate the semi-discrete problem for all n =
1, 2, 3, . . . , N .
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Notation for phase-field fracture problems

We frequently use the short notation

VB := H1(B), V 0
B := H1

0 (B).

For vector-valued function spaces (for instance the displacements u : B → Rd are vector-valued),
we use the same notation:

VB := H1(B)d, V 0
B := H1

0 (B)d.

The context should make clear whether we work in the scalar-valued or vector-valued case. Our
fundamental space for phase-field fracture is

Definition 6 (Governing spaces for displacements and phase-field). Let Vu := H1(B)d. The trial
space for the displacements is defined as:

V D
u := V D

u (B) := {u ∈ Vu| u = uD on ∂ΩD, u = 0 on ∂B \ ∂ΩD}.

The test space for the displacements is the classical H1
0 (B)d space and defined in our notation as

V 0
u := V 0

u (B) := {u ∈ Vu| u = 0 on ∂B}.

The trial and test space for the phase-field variable is

Vφ := Vφ(B) = H1(B).

These spaces are sufficient as prototype spaces. Often in applications, homogeneous Neumann
conditions ∂BN will also play a role in the displacements, which is then specifically indicated.

Remark 2. For general algorithmic concepts in which the boundary conditions do usually not
cause specific changes, we simply work with V .

We then seek
u ∈ V D

u ,

and

φ ∈ Vφ.

We introduce the convex set for including the variational inequality constraint in time, i.e., the
crack irreversibility constraint, for quasi-brittle fracture

K := K(φn−1) := {φ ∈ Vφ : 0 ≤ φn ≤ φn−1 ≤ 1 a.e. in B},

and in space-time quasi-brittle phase-field fracture, we have

K := K(φn−1) := {φ : ∂tφ ≤ 0 a.e. in I ×B}.

Here, we write on purpose φ without specifying the Hilbert space since further regularity assump-
tions are necessary [88] that exceed the intention of these lecture notes.

When useful, we work with the following convention:

Definition 7. We denote the product space by

X = V D
u × Vφ,

such that we seek U ∈ X, i.e., (u, φ) ∈ V D
u × Vφ. If necessary, we also use the notation XD =

X = V D
u × Vφ and X0 = V 0

u × Vφ.
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2.1.7 Notation for weak forms and related terminology
We briefly recall our important notation for representing weak variational forms:

1. Let f, g ∈ V d. Then the scalar product is denoted by:

(f, g) =

∫
B

f · g dx, f, g ∈ V d.

2. Let F,G ∈ V d×d. Then the scalar product for matrices is denoted by:

(F,G) =

∫
B

F : Gdx, F,G ∈ V d×d.

Here, : stands for the Frobenius scalar product.

3. Often, we use: Find u ∈ V such that

a(u, φ) = l(φ) ∀φ ∈ V.

Here a(u, φ) : V ×V → R is a bilinear form and l(φ) ∈ V ∗ is a linear form (linear functional).
Here V ∗ denotes the dual space V ∗ = L(V,R).

4. For nonlinear problems, the solution variable u ∈ V is nonlinear, while the test function is
still linear. We use the notation: Find u ∈ V such that

a(u)(φ) = l(φ) ∀φ ∈ V.

Here, a(u)(φ) is a so-called semi-linear form, where the first argument u ∈ V is nonlinear
and the second argument φ ∈ V is linear.

5. For (linear) PDE systems, we define the space X, e.g., X = V D
u × Vφ, and the notation is:

Find U = (u, φ) ∈ X such that

A(U,Ψ) = F (Ψ) ∀Ψ := (w,ψ) ∈ X0 := V 0
u × Vφ.

6. For nonlinear PDE systems, the notation is: Find U ∈ X such that

A(U)(Ψ) = F (Ψ) ∀Ψ ∈ X0.

Lastly, to notice is that we do not distinguish between scalar-valued, vector-valued, and tensor-
valued variables in these lecture notes by using bold letters, arrows, or similar notations. All
variables are in non-bold fonts. We expect the reader to distinguish them out of the context.
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2.2 Prerequisites in differentiation and integration

Very briefly, we list some fundamental results that are necessary throughout these lecture notes.

2.2.1 Gauss-Green theorem / divergence theorem

The Gauss-Green theorem or often known as divergence theorem. Let Ω ⊂ Rd an bounded, open
domain and ∂Ω of class C1.

Theorem 1 (Gauss-Green theorem / divergence theorem). Suppose that u := u(x) ∈ C1(Ω̄) with
x = (x1, . . . , xd). Then: ∫

Ω

uxi
dx =

∫
∂Ω

uni ds, for i = 1, . . . , d.

Here, ni is the ith component of the normal vector n. In compact notation, we have∫
Ω

div u dx =

∫
∂Ω

u · nds

for each vector field u ∈ C1(Ω̄;Rd).

Proof. Please see for example [95].

2.2.2 Integration by parts and Green’s formula

From the divergence theorem, we obtain immediately:

Proposition 1 (Integration by parts). Let u, v ∈ C1(Ω̄). Then:∫
Ω

uxi
v dx = −

∫
Ω

uvxi
dx+

∫
∂Ω

uvni ds, for i = 1, . . . , d.

In compact notation: ∫
Ω

∇uv dx = −
∫
Ω

u∇v dx+

∫
∂Ω

uvn ds.

Proof. Follows from the divergence theorem to uv.

We obtain some further results, which are useful, but are all based directly on integration by
parts.

Proposition 2 (Green’s formulae). Let u, v ∈ C2(Ω̄). Then it holds:∫
Ω

∆u dx =

∫
∂Ω

∂nu ds,∫
Ω

∇u · ∇v dx = −
∫
Ω

∆u v dx+

∫
∂Ω

v ∂nu ds.

Proof. Follows from integration by parts.
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2.2.3 Change of variables in Lebuesgue integrals

Theorem 2 (Integration by substitution / change of variables). Let B̂ ⊂ Rd be open. Let T̂ :

B̂ → Rd be a diffeomorphism in Rd. Then, the function f : T̂ (B̂) → R is Lebuesgue-integrable on
T̂ (B̂) if and only if the function x̂ ∈ B̂ → f(T̂ (x̂))|det(∇̂T̂ (x̂))| ∈ R is Lebuesgue-integrable on B̂.
Then, we have ∫

T̂ (B̂)

f(x) dx =

∫
B̂

f(T̂ (x̂))|det(∇̂T̂ (x̂))| dx̂.

Theorem 3. Let B ⊂ Rm be measurable and A ⊂ Rd be open. Let the function f : A × B → R
be Lebuesgue integrable in B for all fixed x ∈ A. Moreover, let f be continuously differentiable for
x ∈ A for almost all y ∈ B. We assume the bound g : B → R with ∥∇xf(x, y)∥ ≤ g(y) for all
x ∈ A and almost all y ∈ B. Then:

1. ∇xf(x, y) is Lebuesgue integrable on B for all fixed x ∈ A;

2. The parameter integral F (x) =
∫
B
f(x, y) dy is continuously differentiable with the derivative

∇F (x) =
∫
B

∇xf(x, y) dy.

2.2.4 Differentiation in Banach spaces
At several places, we need differentation in Banach spaces. From the literature, e.g., [158, 43, 162],
we cite some well-known results in this section.

Definition 8 (Directional derivative in a Banach space). Let V and W be normed vector spaces
and let U ⊂ V be non-empty. Let f : U →W be a given mapping. If the limit

f ′(u)(ϕ) := lim
h→0

f(u+ hϕ)− f(u)

h
, u ∈ U, ϕ ∈ V,

exists, then f ′(u)(ϕ) is called the directional derivative of the mapping f at u in direction ϕ. If the
directional derivative exists for all ϕ ∈ V , then f is called directionally differentiable at u.

Remark 3. Often, the direction ϕ is denoted by δu in order to highlight that the direction is
related with the variable u. This notation is useful, when several solution variables exist and
several directional derivatives need to be computed.

Remark 4. The definition of the directional derivative in Banach spaces is in agreement with the
definition of derivatives in R at x ∈ R (see [94]):

f ′(x) := lim
h→0

f(x+ h)− f(x)

h
,

and in Rd we have (see [95]) into the direction ϕ ∈ Rd:

f ′(x)(ϕ) := lim
h→0

f(x+ hϕ)− f(x)

h
.

A function is called differentiable when all directional derivatives exist in the point x ∈ Rd (similar
to the Gâteaux derivative). The derivatives in the directions ei, i = 1, . . . , d of the standard basis
are the well-known partial derivatives.
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Definition 9 (Gâteaux derivative). Let the assumptions hold as in Definition 8. A directional-
differentiable mapping as defined in Definition 8, is called Gâteaux-differentiable at u ∈ U , if there
exists a linear continuous mapping A : U →W such that

f ′(u)(ϕ) = A(ϕ),

holds true for all ϕ ∈ U . Then, A is the Gâteaux derivative of f at u and we write A = f ′(u).

Remark 5. The Gâteaux derivative is computed with the help of directional deriatives and it holds
f ′(u) ∈ L(U,W ). If W = R, then f ′(u) ∈ U∗.

Definition 10 (Fréchet derivative). A mapping f : U → W is Fréchet-differentiable at u ∈ U if
there exists an operator A ∈ L(U,W ) and a mapping r(u, ·) : U → W such that for each ϕ ∈ U
with u+ ϕ ∈ U , it holds:

f(u+ ϕ) = f(u) +A(ϕ) + r(u, ϕ),

with
∥r(u, ϕ)∥W

∥ϕ∥U
→ 0 for ∥ϕ∥U → 0.

The operator A(·) is the Fréchet derivative of f at u and we write A = f ′(u).

Definition 11 (Equivalent formulation denoting derivatives). In the literature and above, we have
(at least) three common notations and ways to compute directional derivatives:

f ′(u)(ϕ) = lim
h→0

f(u+ hϕ)− f(u)

h

=
d

dh
f(u+ hϕ)|h=0

= f(u+ ϕ)− f(u)− r(u, ϕ).

Example 1. The bilinear form a(u, φ) = (∇u,∇φ) is Fréchet-differentiable in the first argument
u (of course also in the second argument! But u is the variable we are interested in):

a(u+ ϕ, φ) = (∇(u+ ϕ),∇φ) = (∇u,∇φ)︸ ︷︷ ︸
=a(u,φ)

+ (∇ϕ,∇φ)︸ ︷︷ ︸
=a′

u(u,φ)(ϕ)

.

Here the remainder term is zero, i.e., r(u, ϕ) = 0, because the bilinear form is linear in u. Thus,
the Fréchet derivative of a(u, φ) = (∇u,∇φ) is a′u(u, φ)(ϕ) = (∇ϕ,∇φ).

2.2.5 Chain rules

The chain rule in Rd+1 is as follows:

Definition 12. Let the functions g : (a, b) → Rd+1 and f : Rd+1 → R and its composition
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h = f ◦ g ∈ R be given and specifically g(t, x) := (t, x) := (t, x1, x2, . . . , xd):

d

dt
h(t, x) =

d

dt
f(g(t, x)) =

d

dt
f(t, x)

=

d∑
j=0

∂jf(g(x)) · ∂tgj

=

d∑
j=0

∂jf(t, x1, . . . , xd) · ∂txj , where x0 := t

= ∂tf · ∂tt+
d∑

j=1

∂jf(t, x1, . . . , xd) · ∂txk

= ∂tf +∇f · (∂tx1, · · · , ∂txd)T

= ∂tf +∇f · v.

For instance d = 3 and time t, this means that we deal with a four-dimensional setting (t, x, y, z).

Remark 6. See also [95][page 54 and page 93] for definitions of the chain rule.

The chain rule in Banach spaces is [158, 43, 162]:

Definition 13. Let U, V,W be Banach spaces. Let U and V be open sets. We have the mappings
F : U → V and G : V →W . Let F be differentiable at u ∈ U and G be differentiable at F (u) ∈ V .
Then, the composition H = G ◦ F defined by H(u) = G(F (u)) with H : U → W is Fréchet
differentiable at u ∈ U and it holds

H ′(u) = G′(F (u))F ′(u).

More specifically, in a direction δu ∈ U , it holds

H ′(u)(δu) = G′(F (u))F ′(u)(δu).

Example 2. We apply the chain rule to an operator T : U →W :

T (u) = u3

then
T (u+ ϕ) = (u+ ϕ)3 = u3 + 3u2ϕ+ 3uϕ2 + ϕ3.

Here, we now have four terms to describe T (u), A(ϕ) and r(u, ϕ).

• The identification of T (u) = u3 is obvious.

• According to the theory A(ϕ) is a linear operator in ϕ. Therefore: A(ϕ) = 3u2ϕ.

• The rest goes into r(u, ϕ) = 3uϕ2 + ϕ3.

To check that we deal with a Fréchet derivative, we need to verify

∥r(u, ϕ)∥W
∥ϕ∥U

→ 0 for ∥ϕ∥U → 0.

Here, it is important to remark that u is fixed and we only vary in ϕ. Since we have ϕ2 and
ϕ3 in the nominator, but only ϕ in the denominator, one can indeed check that T (u) = u3 is
Fréchet-differentiable.
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Example 3. Let v ∈ V1 and u ∈ V2 be solution variables. For brevity, we neglect the governing
equation for v. Let u be determined by the semi-linear form

A(v, u)(φ) := (v∇u,∇φ) + (u3, φ).

Then, the directional derivative in direction (δv, δu) ∈ V1 × V2 is given by:

A′(v, u)((δv, δu), φ) = (δv∇u+ v∇δu,∇φ) + (3u2δu, φ),

using the product and chain rules, respectively. If v ∈ V1 would be given and not an unknown, then

A′(v, u)((δv, δu), φ) = (v∇δu,∇φ) + (3u2δu, φ).

2.3 A prototype model problem
The materials of this section are taken from [169][Section 2.3]. The main idea is to extract the
key components from established phase-field fracture models and to break them down to student
level pieces. To get started, we recall that we are interested in two solution variables, namely one
describing the displacements u and one indicating fracture φ. To determine both solution variables
u and φ we need two equations. Later, displacements are computed with the help of elasticity.
For the moment, however, we work with the Laplacian to make it as simple as possible. Let B
a domain with boundary ∂B with classical assumptions on their smoothness (e.g., [29]). Find
u : B → R such that

−∇ · (a∇u) = f in B, plus bc on ∂B, (2.1)

where ‘bc’ = ‘boundary conditions’ and with a material coefficient a > 0. Soon, we shall see that
in phase-field fracture, the parameter a depends on x ∈ B as well as on a second solution variable.

The phase-field function φ describes the crack path (φ = 1 for unbroken solid and φ = 0 for
a fully damaged material) and is in the limit a lower-dimensional manifold. Here, [24] proposed
to employ an Ambrosio-Tortorelli elliptic functional (1990/1992) [8, 9]. Further details will follow
later. For now, we are satisfied to know that we work with an elliptic functional, whose corre-
sponding PDE is very familiar to us (again a Laplacian with a reaction term and a parameter
ε > 0): Find φ : B → R such that

−ε∆φ− 1

ε
(1− φ) = g in B, plus bc on ∂B, (2.2)

where g : B → R is a right hand side force. One can establish that (2.2) is bounded in the H1

norm (see [169][Theorem 5]), which is the natural norm for this equation. Moreover, it can be
shown that 0 ≤ φ ≤ 1; see again [169][Theorem 5] (and also the literature [128, 58]). Together
with (2.2), this yields:

Proposition 3. Given equation (2.2) and assuming the later result from [169][Theorem 5] that φ
is indeed well defined in the H1 setting and 0 ≤ φ ≤ 1, it holds:

1. The variable φ is indeed an indicator function with values between 0 and 1.

2. The gradient ∇φ smoothes the transition from φ = 0 to φ = 1. For large ε, we have a
smoother (larger) transition zone. For small ε the transition zone becomes smaller and the
gradients ∇φ steeper, i.e., values φ = 0 and φ = 1 are accented and we loose smoothness in
the limit for ε→ 0.
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Proof. We refer to [169][Theorem 5] for the mathematical statements. The descriptive illustration
follows trivially. See also Figure 2.2.

Figure 2.2: Approximation of a fracture with phase-field. At left, the regularization parameter is
chosen as ε = h. At right, the regularization parameter is chosen as ε = 2h.

However, an additional constraint is the crack irreversibility (the crack cannot heal in time),
which is imposed as:

∂tφ ≤ 0. (2.3)

Consequently, the equation determining φ becomes an inequality and is linked to the constraint
(2.3) via a complementarity condition. Therefore, the system is very close to the well-known and
well-studied obstacle problem, see e.g., the classical books [51, 90, 91, 156, 155]. However, the two
main PDEs do not have any time derivatives, but only the constraint does. This constitutes a
difference to the standard obstacle problem.

With the help of these definitions, a simplified phase-field fracture problem can be formulated.
This allows us to identify important characteristic aspects of the full problem. To this end, we
study first:

Problem 1 (A simplified strong problem formulation). Let B be a domain with the boundary
∂B := ∂ΩHD ∪ ∂ΩND ∪ ∂ΩHN . Find a displacement function u : B × I → R and a phase-field
indicator function φ : B × I → [0, 1], such that

−∇ · (φ2∇u) = f in B × I, (u-equation) (2.4)

φ|∇u|2 − ε∆φ− 1

ε
(1− φ) ≤ 0 in B × I, (φ-equation) (2.5)

∂tφ ≤ 0 in B × I, (crack irreversibility) (2.6)[
φ|∇u|2 − ε∆φ− 1

ε
(1− φ)

]
· ∂tφ = 0 in B × I, (complementarity condition). (2.7)
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These equations are complemented with the following boundary and initial conditions:

u(x, t) = uD(x, t) on ∂ΩND × I,

u(x, t) = 0 on ∂ΩHD × I,

φ2∇u · n = 0 on ∂ΩHN × I,

ε∂nφ = 0 on ∂B × I,

φ(x, 0) = φ0 on B × {0},

with an initial fracture φ0 and with ε > 0 as the so-called phase-field regularization parameter.

Remark 7 (Coupling terms). Observing (2.1) and (2.2), we obtain Formulation 1 by setting
a = φ2 and g = −φ|∇u|2.

Remark 8 (Brief comments on the classification). The fully coupled system (2.4) to (2.7) is
nonlinear (to be specific: quasi-linear). If we decouple the system, the single expressions (2.4) and
(2.5) become linear. However, (2.5) - (2.7) forms an inequality and therefore, we nevertheless deal
with a nonlinear problem since the underlying space is only a convex set and not anymore a linear
function space.

Remark 9. The PDE (2.4) and (2.5) are not time-dependent, but the constraint (2.6) depends
on time. This constraint can be discretized using a backward difference quotient:

∂tφ ≈ φn − φn−1

k
≤ 0 ⇔ φn ≤ φn−1

where φn := φ(tn) and the time step size k = tn − tn−1. In these lecture notes, this constraint
shall be treated with a primal-dual active set method in Section 3.2.2, a summary (and literature
references) of alternatives is provided in [169][Chapter 5].

2.4 Excursus I: the obstacle problem
There are several striking similarities between the obstacle problem [51, 155, 90, 91, 70, 156] and
the previously introduced model. For this reason, we recapitulate known models and results for
an illustrative understanding.

Force f

Clothesline
• •

u(x)

Figure 2.3: Clothesline problem (Poisson problem in one dimension). Displacement u(x) induced
by a force f .

The classical Poisson problems reads: Find u : Ω → R such that

−∆u = f in Ω

u = 0 on ∂Ω.
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The obstacle problem is defined as

−∆u ≥ f in Ω, (PDE),
u ≥ g in Ω, (Inequality constraint),

(f +∆u)(u− g) = 0 in Ω, (Complementarity condition),
u = 0 on ∂Ω, (Boundary condition).

The obstacle problem is a free boundary problem that splits the domain Ω into two parts I (inactive
set) and A (active set):

• If f +∆u = 0, then we solve the PDE and the constraint is fulfilled (inactive), i.e., u > g in
the so-called inactive set I. In other words, the obstacle condition is not active.

• If f +∆u < 0, we are ‘sitting’ on the obstacle, i.e., u = g, and we are in the active set A.

• •

AI I

ConstraintPDE PDE

Figure 2.4: Obstacle problem: a clothesline touches the ground in the active set A in which the
obstacle condition is active. In the inactive set I, the PDE is solved.

In the contact problem of a membrane, we have an active set A = Ω\I, where the membrane
touches the table with A = {x ∈ Ω : u = g}. The active set is also called contact zone. The
inactive set is called I and the free boundary is defined as Γ := ∂A∩∂I. We define the sub-regions
as

• A = Ω \ I: active set or contact zone (we sit on the obstacle), defined by

A = {x ∈ Ω : u = g},

• I is the inactive set (we solve the PDE),

• Γ = ∂A ∩ ∂I is the free boundary.

2.4.1 Energy formulation
The potential energy E(u) can be defined as

E(u) =

∫
Ω

[µ(
√
1 + |∇u|2 − 1)− fu] dx

Taylor
≈

∫
Ω

[
µ

2
|∇u|2 − fu] dx,

with a material parameter µ > 0.

Problem 2 (Physical state). Physically, the state without any constraint can be formulated as

min
u∈V

E(u) with V := {v ∈ H1(Ω)| v = u0 on ∂Ω}.
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Problem 3. The minimization problem with a constraint can be written as

min
u∈V,u≥g

E(u), with g ∈ L2.

The admissible function space can be defined as follows:

K := {v ∈ H1(Ω)| v = u0 on ∂Ω, v ≥ g in Ω},

such that we can write:

min
u∈K

E(u).

Definition 14 (Convex set). We say K is a convex set if

u, v ∈ K : θu+ (1− θ)v ∈ K,

for 0 ≤ θ ≤ 1.

Definition 15 (Convex functional). A functional E : K → R is convex if and only if

E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v)

for all u, v ∈ K and 0 ≤ θ ≤ 1.

Using these definitions, we obtain:

Problem 4.

E(u) = min
v∈K

E(v),

where u ∈ K is the minimum of the energy functional.

2.4.2 Weak formulation
We derive a variational formulation in this section. Let θv + (1 − θ)u = u + θ(v − u) ∈ K with
θ ∈ [0, 1]. Then, we can follow by using the previously defined convex set properties:

E(u+ θ(v − u)) ≥ E(u)

⇒ d

dθ
E(u+ θ(v − u))|θ=0 ≥ d

dθ
E(u),

⇔ d

dθ
E(u+ θ(v − u))|θ=0 ≥ 0

⇒ d

dθ

∫
Ω

(µ
1

2
|∇(u+ θ(v − u))|2 − f(v − u)) dx|θ=0 ≥ 0

⇒
∫
Ω

(µ∇(u+ θ(v − u)) · ∇(v − u)− f(v − u)) dx|θ=0 ≥ 0

⇒
∫
Ω

(µ∇u · ∇(v − u)− f(v − u)) dx ≥ 0

⇔
∫
Ω

µ∇u · ∇(v − u) dx−
∫
Ω

f(v − u) dx ≥ 0

⇔
∫
Ω

µ∇u · ∇(v − u) dx−
∫
Ω

f(v − u) dx ≥ 0 ∀v ∈ K.
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In short hand notation, the last line is usually written as:

(µ∇u,∇(v − u)) ≥ (f, v − u).

With these calculations, we obtain the following variational form:

Problem 5 (Variational formulation of the obstacle problem). The obstacle problem in a VI
(variational inequality) formulation is given by: Find u ∈ K such that

(µ∇u,∇(v − u)) ≥ (f, v − u),

for K = {v ∈ H1|v = u0 on ∂Ω, v ≥ g in Ω}.

2.4.3 Strong formulation
Using the fundamental lemma of calculus of variations (e.g., [43]), we derive the strong form:

Problem 6 (Strong form). Find u : Ω → R, such that

−∇ · (µ∇u) ≥ f in Ω,

u ≥ g in Ω,

(∇ · (µ∇u) + f)(u− g) = 0 in Ω,

u = g on ∂Ω,

u = g on Γ,

µ∇u · n = µ∇g · n on Γ.

Remark 10 (Complementarity condition). The complementarity condition

(∇ · (µ∇u) + f)(u− g) = 0,

is a necessary condition since otherwise the first two inequalities have no direct relationship. In
the variational form this is ensured by the function space K.

2.4.4 Lagrange multiplier formulations
In optimization it is well-known to treat Lagrange multipliers directly as solution variables. They
serve as starting point for augmented Lagrangian formulations and the primal-dual active set
method. For phase-field fracture, the latter has been worked out in [93] and part of these lecture
notes in Chapter 3.

To begin and as background, it is of interest to work directly with the linear function space V
rather than with the closed convex set K. The prize to pay is a second solution variable (which is
more expensive in the solution approach though). To this end, a Lagrange multiplier p ∈ L2 as an
additional solution variable is introduced:

p =

{
0 if x ∈ I
−∇ · (µ∇u)− f if x ∈ A

With this definition it also becomes clear that the physical meaning of the Lagrange multiplier is
a force in this problem. This force acts against the PDE in order to fulfill the constraint u ≥ g.

Using the Lagrange multiplier, the strong form reads:
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Problem 7 (Lagrange multiplier strong form). Find u : Ω → R and p : Ω → R, such that

−∇ · (µ∇u)− p = f in Ω,

u ≥ g in Ω,

p ≥ 0 in Ω,

p(u− g) = 0 in Ω,

u = u0 on ∂Ω,

u = g on Γ,

µ∇u · n = µ∇g · n on Γ.

Remark 11. This formulation is clearly more expensive since the Lagrange multiplier is considered
to be a solution variable. Nonetheless, a recent implementation for phase-field fracture was done
in [113].

We now turn to the weak setting:

Problem 8 (Lagrange multiplier weak form). The weak form reads formally: Find {u, p} ∈ V ×N :

(µ∇u,∇ϕ)− (p, ϕ) = (f, ϕ) ∀ϕ ∈ V

(u− g, q − p) ≥ 0 ∀q ∈ N

where N := {q ∈ Q∗|q ≥ 0} with Q∗ being the dual space of a Hilbert space Q. For details see
[90][p. 38ff].

2.4.5 Penalization for numerical treatment of the obstacle constraint
In practice, we face the question, how to realize the obstacle constraint. One possibility (in its basic
form not the best!) is penalization, which is a well-known technique in nonlinear programming,
e.g., [155, 156]. The idea is to asymptotically fulfill the constraint by including an additional term
that acts against the optimization goal if the constraints are violated.

We introduce the penalty parameter γ > 0 (and have γ → ∞ in mind for later). As before:
Find u ∈ K:

(µ∇u,∇(v − u)) ≥ (f, v − u) ∀v ∈ K.

A penalized version reads: Find uγ ∈ H1
0 :

(µ∇uγ ,∇v)− γ

∫
Ω

[g − u]+v dx = (f, v) ∀v ∈ H1
0 .

Here, [x]+ = max(x, 0). Indeed we have

• uγ ≥ g yields 0 ≥ g − u. Thus [g − u]+ = 0

• uγ < g yields 0 < g − u. Thus [g − u]+ > 0

Remark 12 (Ill-conditioning). For large γ (which are necessary to enforce the constraint), the
system matrix becomes ill-conditioned, i.e., the condition number is large since some entries are
zero and others have their regular values. Therefore, the stability of the discrete system is heavily
affected resulting in a significant error propagation (e.g., round-off errors due to machine precision)
in the linear and nonlinear solution. Consequently, one has to find a trade-off between sufficiently
small and large γ. An extension is an augmented Lagrangian method or active set method. A
detailed discussion can be found for instance in [130].
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2.5 Kinematics and stress
In this section, we introduce basic ingredients of continuum mechanics such as displacements,
strain, stress and constitutive laws.

Definition 16 (Displacements). Let B ⊂ Rd and I ⊂ R. The displacement variable is denoted by
u := u(x, t) : B × I → Rd. In detail:

u := u(x, t) = (u1(x, t), . . . , ud(x, t)) : B × I → Rd.

Definition 17. The linearized strain tensor is denoted by

e = e(u) =
1

2
(∇u+∇uT ).

Example 4 (Gradient of displacements in R3). In R3 the gradient of displacements is a R3×3

matrix:

∇u =

∂xux ∂yux ∂zux
∂xuy ∂yuy ∂zuy
∂xuz ∂yuz ∂zuz

 .

Definition 18 (Linear-stress relationship). A well-known linear stress-strain relationship is given
by, e.g., [41, 140]:

σ := σ(u) = Ce(u).

The tensor C = (Cijkl)
3
i,j,k,l=1 is a fourth-order material tensor that is positive definite, i.e., there

exists a positive constant α > 0 such that for any symmetric matrix ξ with the entries ξij and any
point x ∈ B,

α|ξ|2 ≤ C(x)ξ : ξ =

d∑
i,j,k,l=1

Cijklξijξkl.

This reduces under the assumption of isotropy, homogeneity, and symmetry (see e.g. [140][p. 51])
to the following well-known law:

σ = Ce(u) = 2µe(u) + λtr(e(u))I, (2.8)

where I is the identity tensor and tr(·) the trace operator.

Definition 19. We denote by W (e(u)) the elastic (strain) energy density.

Example 5. Two examples of energy density functions are provided.

1. In the case of the Laplacian or Poisson equation, the energy density function is

W (e(u)) =
µ

2
|∇u|2,

where µ > 0 is a material parameter. The energy is defined as

Eb(u) =
1

2

∫
B

µ|∇u|2 dx−
∫
B

fu dx. (2.9)

The PDEs which we have to solve, are the Euler-Lagrange equations:

E′
b(u)(ψ) =

1

2

∫
B

µ∇u · ∇ψ dx−
∫
B

fψ dx. (2.10)
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2. For a general elastic model, we have

W (e(u)) = Ce(u) : e(u),

which is the energy density using the Frobenius scalar product. Further details on W (e(u))
can be found in the literature, e.g., [80].

Remark 13. Often, and in these lecture notes as well, C reduces to a few independent components
as in (2.8). As an example that sometimes several components of C are of interest, we point to
our own work [159] in which we computed 36 components (out of 81).

Definition 20. In engineering, material properties are often defined in terms of Young’s modulus
EY and the Poisson ratio νs. The relationship to the Lamé parameters µs and λs is as follows:

νs =
λs

2(λs + µs)
, EY =

µs(λs + 2µs)

λs + µs
,

µs =
EY

2(1 + νs)
, λs =

νsEY

(1 + νs)(1− 2νs)
.

Remark 14 (Signs of the solid material parameters). It can be shown that

EY , µs, λs > 0 and − 1 ≤ νs ≤ 0.5.

Further calculations (e.g., [139]), yield the refined choice:

−1 ≤ νs ≤ 0.5, EY , µs > 0, λs > −2

3
µs. (2.11)

As background we notice that Poisson’s ratio describes the ratio that a compressed material expands
into the two directions orthogonal to the compression direction. For νs → 0.5, an elastic material
becomes incompressible. For most materials, it holds 0.5 ≥ νs > 0. Some polymers have negative
νs, which means that they become thicker when they are stretched. Moreover, the bulk modulus is
often used, which is defined by k = λs +

2
3µs.

Definition 21. For a given small parameter κ > 0, let us define the degradation function in terms
of the phase-field function φ : B × I → [0, 1] as

g(φ) := (1− κ)φ2 + κ.

2.6 Modeling brittle fracture in a nutshell
We summarize the necessary notation to understand the following sections. A fundamental quantity
is the critical surface energy density Gc (e.g., [176]), which can be related to the so-called fracture
toughness.

Definition 22 (Critical energy release rate). The toughness (in this context better: critical energy
release rate) Gc is a fundamental quantity that describes the resistance of a material to break. In
other words, Gc is the energy required to create an infinitesimal crack at a point x ∈ B̄, where B
is the domain occupied by the material under consideration [176][Chapter 4].
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Definition 23 (Current energy release rate). The current energy release rate is denoted by G and
defined as

G := G(x) = −∂(U − V )

∂A
, x ∈ B, (2.12)

where U is the potential energy available in the specimen B ⊂ Rd to create new fractures, V is the
work associated to external forces and A is the fractured area. The current energy release rate has
the unit [G] = J/m2.

The propagation of a fracture can be divided into three cases, e.g., [176, 25]:

• G < Gc: current surface energy density smaller than critical;

• G = Gc: propagation, (stable) growth;

• G > Gc: unstable growth.

2.7 Griffith’s model

According to Griffith [69], a fracture propagates if the rate of elastic energy G decrease per unit
surface area of the incremental step is equal to the quasi-static critical energy release rate Gc. The
surface energy is a macroscopic description of the lattice debonding observed on the microscopic
level.

Prescription of crack growth is based on a competition between bulk (elastic) and crack energy
as modeled for brittle fracture:

Proposition 4. Griffith’s theory postulates:

• Surface energy is associated with surfaces where the deformation is discontinuous;

• A propagation criterion for these surfaces;

• An irreversibility condition for the fracture process.

Remark 15. Only recently, strong minimizers of Griffith’s model was rigorously established in
[44] for a 2D configuration.

In Griffith’s postulates, the fracture process is quasi-static and the laws hold true for brittle
fractures, e.g. glass, concrete (in contrast to ductile fracture, e.g. steel), with a preexisting and
well-defined crack path.

Definition 24 (Crack). A crack or fracture is defined as follows:

C(l) = C0 ∪ {x(s); 0 ≤ s ≤ l}.

An illustration is provided in Figure 2.5. The length of a sufficiently smooth curve can be computed
via the line integral L0 =

∫ xl

x0
ds.
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o

o

o

Length L0

C0

x0

xll

Figure 2.5: Old C0 and new part {x(s)} of a crack resulting in C(l). The new crack contains the
old crack.

Definition 25 (Bulk and surface energies). We define the potential and surface energies, respec-
tively:

Potential energy: P (t, l) := Eb(C(l), u0) → monotonically decreasing
Surface energy: Q(t, l) := Es(C(l))− Es(C0) → monotonically increasing

Here, u0 is a given initial displacement field. We shall investigate the trajectory of a crack along
its path:

t 7→ l(t),

where t is the time or loading step. The (current) energy release rate is defined as

G := −∂P
∂l
.

Proposition 5 (Griffith’s laws). Let l(t) be absolutely continuous in t, then Griffith’s law of crack
evolution is satisfied:

a) l(0) = 0 (initial crack);

b) ∂tl(t) ≥ 0 (crack can only grow; irreversibility);

c) G ≤ Gc (energy release rate is bounded by the critical energy release rate);

d) (−G+Gc)∂tl = 0 (complementarity condition; crack can only grow when energy release rate
is critical).

The proof can be found in Proposition 4.8 in [59].

2.8 Francfort and Marigo’s variational model for brittle frac-
ture

In the year 1998, Francfort and Marigo [59] generalized Griffith’s idea within a variational frame-
work and for which we briefly recapitulate the main ideas.
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2.8.1 Surface and bulk energies

In the following, we introduce the (crack) surface energy Es, which connects Gc with the energy
of current fracture.

Definition 26 (Surface energy). The surface energy of the crack C ⊂ B̄ is defined as:

Es(C) =
∫
C
Gc(s) ds = GcHd−1(C),

where H is the Hausdorff measure [71]. For smooth surfaces, the Hausdorff measure corresponds
to the length of a crack C (1D) in a 2D setting and the crack area (2D) in a 3D setting.

Remark 16. The interpretation of the previous definition is as follows. The higher Es(C), the
more material is fractured. Moreover, the larger Gc > 0, the more energy is required to create new
fractures. For Gc = ∞ the material cannot break.

Next, we define a second energy, the bulk energy. The interplay of surface and bulk energies
are key for a variational formulation of fracture.

Definition 27 (Bulk energy). The bulk energy is defined as

Eb(C, u) =
∫
Ω

W (e(u)) dx−
∫
Ω

fu dx.

In fracture settings, volume forces are often of minor importance and therefore f ≡ 0. Then:

Eb(C, u) =
∫
Ω

W (e(u)) dx.

In the following, elementary properties of the energy integrals are listed.

Proposition 6. The bulk and surface energies shall satisfy the following elementary properties:

a) Es is strictly monotonically increasing in C;

b) Eb is monotonically decreasing in C for any fixed u ∈ V D
u .

Proposition 7 (Total energy in B). Let C be a given crack and uD a given loading on ∂ΩD. Then
the total energy ET (C, u) is defined as

ET (C, u) = Eb(C, u) + Es(C).

Formally we obtain u ∈ V D
u by solving

min
u∈V D

u

ET (C, u). (2.13)

The functional ET (C, u) is nonlinear. Discussions, technical details and further information can
be found in [25].
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2.8.2 Evolution laws

Proposition 8 (Law 2.9 from Francfort and Marigo [59]). Let u(x, t) be a monotonically increasing
load on ∂ΩD with u(x, t) = tū(x), given ū, for t ≥ 0. Then C(t) for t ∈ I should satisfy:

1. Irreversibility (entropy inequality principle): C(t) is an increasing function in t, where C(t) =
C0 is the initial fracture for t = 0.

2. Energy minimization: For t ∈ I and τ ∈ I it holds

ET (C(t), u(t)) ≤ ET (C, u(t)) ∀ ∪τ<t C(τ) ⊂ C.

3. Constraint on the set of the solution:

ET (C(t), u(t)) ≤ ET (C(τ), u(t)) ∀τ < t.

This last law avoids admissibility of too many fracture solutions. For all details, we refer the
reader to [59].

With these laws, irreversible quasi-static fracture propagation with minimal energy can be
defined as a mapping t 7→ (u(t), C(t)) satisfying three conditions:

1. global stability: for every time t ∈ I, the solution (u(t), C(t)) yields minimal energy at time
t;

2. irreversibility: C(τ) ⊂ C(t) for 0 ≤ τ < t ≤ T ;

3. energy balance: increment in stored energy plus crack energy increase equals the work per-
formed by external forces (first law of thermodynamics).

Remark 17. For t → ∞ with a monotonically increasing load, a mechanical failure (thus total
cracking) of the specimen arises. Thermodynamic interpretations of the previous laws t → ∞ are
discussed in detail in [119].

Remark 18 (Entropy). Entropy characterizes the direction of energy transfer. In general, me-
chanical energy can be dissipated into other forms of energy. For instance, in fracture processes as
in these lecture notes, we consider dissipation of mechanical energy into crack energy. The contrary
is in general not true: once cracks (at least these cracks that we have in mind) are created, they
will not heal. Physically speaking, when entropy holds in the strict sense, crack energy cannot be
transformed back into mechanical energy. These considerations can be illustrated with a daily life
example: take your scissors and cut a sheet of paper. The cut in the paper will always remain and
the paper (if not cheating with adhesive tape) cannot be repaired.

2.8.3 Specific forms of the total energy

Employing Proposition 7, we provide two specific examples:

1. Given the displacement u : Ω → R as a scalar-valued function, we deal with

ET (C, u) =
1

2

∫
Ω

|∇u|2 dx+

∫
C
Gc(x) ds.



2.8. FRANCFORT AND MARIGO’S VARIATIONAL MODEL FOR BRITTLE FRACTURE41

2. Given u : Ω → Rd as the vector-valued elasticity, the energy functional is given as

ET (C, u) =
1

2

∫
Ω

σ(u) : e(u) dx+

∫
C
Gc(x) ds.

In the following, we discuss some properties and their consequences and treatments.

Methods for evaluating the crack surface integral

In principle, we could now compute fracture problems that are covered by the previous physical
laws. However Eb is defined on Ω ⊂ Rd and Es is defined in C ⊂ Rd−1. This causes numerical
and mathematical problems in terms of discretization and well-posedness, respectively. Because
the fracture C is an interface itself. In fact, extended/generalized finite elements [126, 60, 117, 15]
or boundary element methods [40, 136, 141, 115] represent the interface as a sharp line or area. In
phase-field, the main idea is to approximate Es via domain integrals that live on the entire domain
B.

Treatment of the surface energy: interface-capturing with elliptic functionals

Our problem belongs to the class of free discontinuity problems. Here, we seek an unknown pair:
(u,Γ), where Γ is varying in a class of closed subsets of a fixed open set B ⊂ Rd. Then, we seek
u : B\Γ → Rd by minimizing ET (C, u). That the limit case for ε = 0 is well-posed requires the
space of special functions of bounded variation, going back to [66] based mainly on ideas of di
Giorgi.

The idea of using elliptic functionals for approximation goes back to Modica and Mortola [125]
who approximated the perimeter functional with such a procedure. Ambrosio and Tortorelli [8, 9]
introduced an approximation procedure with an auxiliary variable φ. Beside fracture, other appli-
cations of this approximation procedure is image segmentation in which contours from input images
shall be reconstructed [127, 38, 39, 31] or in materials sciences [138]. A concise overview is provided
in [7][Introduction, Part I, page 3]. Further chapters in that book provide more information, for
instance from Alberti (in particular p. 99 - 101) and Braides, pages 171 - 180.

Proposition 9 (Elliptic approximation functional). To approximate the surface energy on the
interface C, in [8, 9], the following elliptic functional is proposed:

1

2

∫
B

Gc

(1
ε
(1− φ)2 + ε|∇φ|2

)
dx →

∫
C
Gc ds for ε→ 0.

Remark 19 (AT1 vs. AT2). The term (1 − φ)α with α = 2 is also known as part of a so-called
AT2 model1. In some works, the AT1 model with α = 1 is of interest, e.g., [28, 55].

Let us give some qualitative explanations of the choice of

1

2

∫
B

(
1

ε
(1− φ)2 + ε|∇φ|2

)
dx.

The first term is actually the term we are interested in, namely determining values that are 0
(crack) or 1 (unbroken solid). In fact for ε→ 0 we enforce the behavior of sharp changes between

1AT = Ambrosio-Tortorelli
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0 and 1 since the first term dominates. For regularity purposes, we add the gradient penalty term
smoothing the transition from 0 to 1. The larger ε, the smoother the transition zone. Proofs are
provided in [128, 58] and [169][Section 5.5].

We now apply the previous proposition to ET (u,C):

Proposition 10 (Regularized phase-field for Laplacian). The non-regularized energy functional
reads:

ET (u, C) =
1

2

∫
Ω

|∇u|2 dx+GcH
d−1(C).

Using Ambrosio-Tortorelli elliptic functionals, we replace the sharp lower-dimensional crack C by a
smoothed indicator function φ and we obtain with the help of Definition 21 the following regularized
version:

ET,ε(u, φ) =
1

2

∫
B

g(φ)|∇u|2 dx+
1

2

∫
B

Gc

(
1

ε
(1− φ)2 + ε|∇φ|2

)
dx

with u ∈ H1(B), uφ ∈ H1(B), and 0 ≤ φ ≤ 1.

Remark 20 (Regularization parameter κ). While using the elliptic surface approximation, we
also modified the bulk energy term by inserting the so-called degradation function g(φ) with the
regularization parameter κ in order to extend the bulk energy from Ω to B. This parameter is
numerically useful when φ→ 0 such that the discrete system matrix remains regular:

[(1− κ)φ2 + κ]|∇u|2 → κ|∇u|2 for φ = 0.

Mathematically, φ2|∇u|2 (thus κ = 0) works as well; see Braides 1998 [30] or [9]. In the latter
reference on page 107, there is however a discussion what might happen in the theory when κ = 0;
see further in [10]. For dynamic fracture, Borden et al. [21] also worked with κ = 0 because here,
the acceleration term ∂2t u is not weighted with g(φ) and thus provides non-zero matrix entries in
the discrete system.

Remark 21 (κ and ε). The investigation of κ and ε has been an important part of our numer-
ical work over the last years. A summary of our current findings and thoughts can be found in
[169][Section 5.5].

Proposition 11. Using Γ-convergence (e.g., again [30]) for ε→ 0:

ET,ε(u, φ) =

{
ET (u, C) if φ = 1 a.e. in B,

+∞, otherwise.

Proof. See [24][Section 2.1].

In a similar way, we obtain for linearized elasticity:

Proposition 12 (Regularized phase-field for linearized elasticity). The total energy functional
reads:

ET,ε(u, φ) =
1

2

∫
B

g(φ)σ(u) : e(u) dx+
1

2

∫
B

Gc

(1
ε
(1− φ)2 + ε|∇φ|2

)
dx

with u ∈ H1(B)d, φu ∈ H1(B)d, and 0 ≤ φ ≤ 1.
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2.9 Euler-Lagrange equations: derivation of weak forms

2.9.1 Euler-Lagrange equations without inequality constraint

For solving minET,ε(u, φ), we derive the first variation, resulting in the Euler-Lagrange equa-
tions. Of course, we only obtain stationary points rather than local minima. Starting with energy
minimization

min
u∈V D

u ,φ∈K
ET,ε(u, φ),

we obtain from differentiation the first variation:

E′
T,ε(u, φ)(w,ψ − φ) ≥ 0.

We deal with a VI in φ because of the irreversibility constraint 0 ≤ φn ≤ φn−1 ≤ 1. Let us assume
for the moment that we are interested in

E′
T,ε(u, φ)(w,ψ) = 0.

Then, we have

Lemma 1. The first variations for (u, φ) ∈ V D
u ×H1(B) are given by:

E′
T,ε,u(u, φ)(w) =

∫
B

g(φ)∇u · ∇w dx,

E′
T,ε,φ(u, φ)(ψ) =

∫
B

(1− κ)φ|∇u|2ψ dx+

∫
B

Gc

(
1

ε
(1− φ)(−ψ) + ε∇φ · ∇ψ

)
dx.

Proof. First, we notice that the directional derivative of f(u) := |∇u|2 into the direction w is
formally obtained with the help of the chain rule (e.g., [43]) and given by

f ′(u)(w) = lim
s→0

f(u+ sw)− f(u)

s

= [|∇u|2]′(w) =

(
d∑

i=1

(∂iu)
2

)′

(w) = 2

d∑
i=1

(∂iu)(∂iw)

= 2∇u · ∇w.

For the energy functional itself, we simply evaluate for u

E′
T,ε,u(u, φ)(w) = lim

s→0

ET,ε(u+ sw, φ)− ET,ε(u, φ)

s
.
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To this end, we obtain for variations in u, while fixing φ:

lim
s→0

ET,ε(u+ sw, φ)− ET,ε(u, φ)

s

= lim
s→0

(
1

2

∫
B

g(φ)|∇(u+ sw)|2 dx− 1

2

∫
B

g(φ)|∇u|2 dx
)
s−1

= lim
s→0

(
1

2

∫
B

g(φ)(|∇u|2 + 2s∇u · ∇w + s2|∇w|2) dx− 1

2

∫
B

g(φ)|∇u|2 dx
)
s−1

= lim
s→0

(
1

2

∫
B

g(φ)(2s∇u · ∇w + s2|∇w|2) dx
)
s−1

=

∫
B

g(φ)∇u · ∇w dx.

In the last step, we utilized

lim
s→0

1

2

∫
B

g(φ)s|∇w|2) dx = 0.

For the directional derivative into φ, while fixing u, we notice first

g′(φ)(ψ) = 2(1− κ)φψ.

Thus

E′
T,ε,φ(u, φ)(ψ) = lim

s→0

ET,ε(u, φ+ sψ)− ET,ε(u, φ)

s
.

Then, we obtain with the same differentiation rules as before

E′
T,ε,φ(u, φ)(ψ) =

1

2

∫
B

g′(φ)(ψ)|∇u|2 dx

+
1

2

∫
B

Gc

(
2
1

ε
(1− φ)(−ψ) + 2ε∇φ · ∇ψ

)
dx

=

∫
B

(1− κ)φψ|∇u|2 dx+

∫
B

Gc

(
− 1

ε
(1− φ)ψ + ε∇φ · ∇ψ

)
dx.

Writing the same contents in the usual notation, we obtain:

Problem 9. Introducing a semi-linear form A(·)(·) in which the first argument may be nonlinear
and the second argument is linear, we write the previous statements in the following notation:

A1(U)(Ψ) = E′
T,ε,u(u, φ)(w) = (g(φ)∇u,∇w)

A2(U)(Ψ) = E′
T,ε,φ(u, φ)(ψ) =

(
(1− κ)φ|∇u|2, ψ

)
− 1

ε
(Gc(1− φ), ψ) + ε(Gc∇φ,∇ψ).

These formulations are similar in their structure as earlier discussed in (2.4) and (2.5).
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2.9.2 Euler-Lagrange system for elasticity with crack irreversibility
In this section, we extend from the scalar-valued case from the Laplacian to elasticity, and second,
we consider the irreversibility constraint. The starting point now is Proposition 12 and the energy
minimization problem

min
u∈V D

u ,φ∈K
ET,ε(u, φ),

and the first variation:
E′

T,ε(u, φ)(w,ψ − φ) ≥ 0.

Then, we obtain

Proposition 13. We consider now vector-valued displacements u : B×I → Rd, namely elasticity.
The first variations for (u, φ) ∈ V D

u ×K are given by:

E′
T,ε,u(u, φ)(w) =

∫
B

g(φ)σ(u) : ∇w dx,

E′
T,ε,φ(u, φ)(ψ − φ) =

∫
B

(1− κ)φσ(u) : e(u)(ψ − φ) dx

+

∫
B

Gc

(
−1

ε
(1− φ)(ψ − φ) + ε∇φ · ∇(ψ − φ)

)
dx.

Proof. The proof follows from Lemma 1 by considering the convex set K and the steps from Section
2.4.2. Next, for the first integral, we notice that

σ(u) : e(u) =

d∑
i,j=1

σij(u)eij(u).

The directional derivative into the direction w = (w1, . . . , wd) (now vector-valued) is obtained
from applying the product rule to σ(u) : e(u):

(σ(u) : e(u))′(w) = σ′(u)(w) : e(u) + σ(u) : e(u)′(w).

The component-wise representation will yield the result. As example, we obtain for d = 3, for
instance

e(u)′(w) =
1

2
(∇w +∇wT ),

with

∇w =

∂xwx ∂ywx ∂zwx

∂xwy ∂ywy ∂zwy

∂xwz ∂ywz ∂zwz

 .
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2.10 A weak formulation of quasi-static brittle phase-field
fracture

With the previous derivations, we formulate the following problem statement for quasi-static brittle
phase-field fracture. To this end, we apply Proposition 13 to a loading sequence in time and we
obtain as coupled variational inequality system (CVIS)

Proposition 14 (CVIS for quasi-static brittle phase-field fracture). For the loading steps n =
1, 2, 3, . . . , N , given φn−1, set up K := K(φn−1), find U = (u, φ) := Un = (un, φn) ∈ V D

u × K
with φ(0) = φ0 such that

A(U)(Ψ− Φ) ≥ 0 ∀Ψ = (w,ψ) ∈ V 0
u ×K,

with Φ = (0, ψ) and the decomposition into single semi-linear forms

A(U)(Ψ− Φ) = A1(U)(Ψ) +A2(U)(Ψ− Φ),

and

A1(U)(Ψ) =

∫
B

g(φ)σ(u) : ∇w dx,

A2(U)(Ψ− Φ) =

∫
B

(1− κ)φσ(u) : e(u) · (ψ − φ) dx

−
∫
B

Gc

ε
(1− φ) · (ψ − φ) dx+

∫
B

Gcε∇φ · ∇(ψ − φ) dx.

Or alternatively using parentheses to represent integrals:

A1(U)(Ψ) = (g(φ)σ(u),∇w) ,
A2(U)(Ψ− Φ) = ((1− κ)φσ(u) : e(u), ψ − φ)

+

(
−Gc

ε
(1− φ), ψ − φ

)
+ (Gcε∇φ,∇(ψ − φ)).

The corresponding energy formulation is provided in Proposition 12.

Proof. We employ Proposition 13 for the loading sequence n = 1, 2, 3, . . . , N while definining the
convex set K := K(φn−1), and then obtain for each step tn the corresponding formulation.

2.11 A space-time phase-field fracture model
The main idea is to treat the irreversibility ∂tφ ≤ 0 in a time-continuous fashion. However, we
continue with the previous quasi-brittle fracture model. The extension to dynamic fracture with
time derivatives in the displacement PDE, e.g., [27], is possible to be designed in a space-time
fashion as well and partially addressed in these lecture notes. To formulate the space-time forward
problem, we first introduce some basic notation and then proceed with the construction of function
spaces and a space-time weak formulation. Afterwards, a space-time Galerkin discretization is
derived with discontinuous (dG) functions in time and a classical continuous Galerkin (cG) method
in space.
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2.11.1 Notation
Let2 Ω ⊂ R2 be a bounded domain with the partitioned boundary ∂Ω = ΓN

.
∪ ΓD. Here, the

Hausdorff measure for the Neumann boundary ΓN and the Dirichlet boundary ΓD is nonzero.
Further, we introduce V := H1

D(Ω;R2)×H1(Ω) for the displacement field u and the phase-field φ,
where

H1(Ω;R2) := {v ∈ L2(Ω;R2) : Dαv ∈ L2(Ω;R2) ∀α ∈ N2
0, |α| ≤ 1},

H1
D(Ω;R2) := {v ∈ H1(Ω;R2) : v|ΓD

= 0}.

For a bounded time interval I = [0, T ] we define the following temporal space:

X := {U = (u, φ) : U ∈ L2(I, V ), ∂tφ ∈ L2(I,H1(Ω)∗)}

where H1(Ω)∗ denotes the topological dual space to H1(Ω). On V and X we define the usual L2

scalar products

(U, V ) :=

∫
Ω

U · V dx ∀U, V ∈ V,

(U, V )I :=

∫
I

∫
Ω

U · V dxdt =

∫
I

(U(t), V (t)) dt ∀U, V ∈ X,

with the corresponding norms ∥ · ∥ and ∥ · ∥I , and in addition the restricted inner products

(U(t), V (t)){∂tφ(t)>0} :=

{
(U(t), V (t)), ∂tφ(t) > 0,

0, else,

(U, V ){∂tφ>0,I} :=

∫
I

(U(t), V (t)){∂tφ(t)>0} dt ∀U, V ∈ X.

Later we will use ( · , · ){φ(ti)>φ(tj)}, defined similar to ( · , · ){∂tφ(t)>0}.

2.11.2 Bochner spaces - space-time functions
For the correct function spaces for formulating time-dependent variational forms, we define the
Bochner integral. Let I := [0, T ] with 0 < T <∞ be a bounded time interval with end time value
T . For any Banach space X and 1 ≤ p ≤ ∞, the space

Lp(I,X)

denotes the space of Lp integrable functions f from the time interval I into X. This is a Banach
space, the so-called Bochner space, with the norm, see [172],

∥v∥Lp(I,X) :=
(∫

I

∥v(t)∥pX dt
)1/p

∥v∥L∞(I,X) := ess sup
t∈I

∥v(t)∥X .

2It is important to notice that the dimension is restricted to 2 due to Sobolev embedding theorems. More details
in [87, 88, 86]. This does not mean that three-dimensional problems cannot be addressed. Computationally, one
can simply try, but mathematically it is not rigorously justified, and certainly requires adjustments in the functional
framework.
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Example 6. For instance, we can define a H1-space in time:

H1(I,X) =
{
v ∈ L2(I,X)| ∂tv ∈ L2(I,X)

}
.

Functions that are even continuous in time, i.e., u : I → X, are contained in spaces like C(I;X)
with

∥u∥C(I;X) := max
0≤t≤T

∥u(t)∥ <∞.

Definition 28 (Weak derivative of space-time functions). Let u ∈ L1(I;X). A function v ∈
L1(I;X) is the weak derivative of v, denoted as

∂tu = v,

if ∫ T

0

∂tφ(t)u(t) dt = −
∫ T

0

φ(t)v(t) dt,

for all test functions φ ∈ C∞
c (I).

In particular, the following result holds:

Theorem 4 ([54]). Assume v ∈ L2(I,H1
0 ) and ∂tv ∈ L2(I,H−1). Then, v is continuous in time,

i.e.,
v ∈ C(I, L2),

(possibly redefined on a set of measure zero). Furthermore, the mapping

t 7→ ∥v(t)∥2L2(X)

is absolutely continuous with

d

dt
∥v(t)∥2L2(X) = 2⟨ d

dt
v(t), v(t)⟩,

for a.e. 0 ≤ t ≤ T .

Proof. See Evans [54], Theorem 3 in Section 5.9.2.

Remark 22. The importance of this theorem lies in the fact that now the point-wise prescription
of initial conditions makes sense in weak formulations.

Remark 23. More details of these spaces by means of the Bochner integral can be found in [45, 172]
and also [54].

2.11.3 Weak formulation
We introduce the space-time weak formulation in the following way:

Proposition 15. Given initial values U0 = (u0, φ0) ∈ V we seek U ∈ X that solves

(g(φ)Ce(u), e(Φu))I = 0,

Gcε(∇φ,∇Φφ)I −
Gc

ε
(1− φ,Φφ)I + (1− κ)(φCe(u) : e(u),Φφ)I

+ γ(∂tφ,Φφ){∂tφ>0,I} + η(∂tφ,Φφ)I = 0,

(2.14)
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for every test function Φ = (Φu,Φφ) ∈ X. By Φu:⊥ we denote the component of Φu that is
orthogonal to ΓN . In order to extend the displacements to the entire domain Ω (including the
broken area), as before, we employ the degradation function g(φ) := (1 − κ)φ2 + κ. Further C
represents the elasticity tensor as before.

Remark 24. The crack irreversibility constraint ∂tφ ≤ 0 is preserved on the time-continuous level
in the weak formulation (2.14) in order to implement a Galerkin discretization in time. This is
a minor deviation from the physics modeling point of view from many other phase-field fracture
formulations found in the literature. But it is major change in terms of mathematical modeling
and numerical modeling.

Remark 25 (Convexification). We observe that the numerical solution procsess of (2.14) is en-
hanced by strict positivity η > 0. In fact, it was shown for the quasi-static case (in phase-field
fracture optimal control) that the control-to-state mapping is single valued for sufficiently large
values of η [129]. This is due to the resulting strict convexity of the energy corresponding to the
equation. Unfortunately crack growth is also penalized by the convexification term η(∂tφ,Φφ)I .
Therefore we must select γ ≫ η to guarantee the dominance of the physically motivated term
γ(∂tφ,Φφ){∂tφ>0,I}.

2.12 A phase-field model for dynamic fracture (extensive ex-
ercise)

In this section, we concentrate on an extensive exercise that focuses on dynamic fracture. As
previously mentioned, space-time formulations are the most natural settings for dynamic fracture.

Remark 26. For a better adaptation to our lecture, the model is modified. Note, that the version
presented below is commonly not used in the literature in this specific form.

2.12.1 The model (partially incomplete - to be augmented in the exer-
cises)

Let Ω ⊂ Rd, d = 2 be open and let I := [0, T ] with T > 0 being the end time value. Find
u : Ω× I → R and φ : Ω× I → R such that

ρs∂
2
t u−∇ · (φ2∇u) = f in Ω× I,

∂2t φ+ φ|∇u|2 − ε∆φ+
1

ε
(1− φ) ≤ 0 in Ω× I,

∂tφ ≤ 0 in Ω× I,

u = 0 on ∂Ω× I,

ε∂nφ = 0 on ∂Ω× I,

u = u0 in Ω× {0},
∂tu = v0 in Ω× {0},
φ = φ0 in Ω× {0},

∂tφ = χ0 in Ω× {0}.
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2.12.2 Space-time formulation of the elastic wave equation
The above model consists of two wave equations, which are both space- and time-dependent. One
of the most elegant ways for a variational formulation (neglecting the inequality constraints for a
moment) is a space-time formulation. We briefly introduce the concept in this section.

Let us consider a second-order hyperbolic PDE as follows:

Problem 10. Let Ω ⊂ Rd be open and let I := [0, T ] with T > 0. Find u : Ω × I → R and
∂tu : Ω× I → R such that

ρ∂2t u−∇ · (a∇u) = f in Ω× I,

u = 0 on ∂ΩD × I,

a∂nu = 0 on ∂ΩN × I,

u = u0 in Ω× {0},
v = v0 in Ω× {0}.

We need proper functions spaces required for the weak formulation. Let us denote L2 and H1

as the usual Hilbert spaces and H−1 as the dual space to H1. For the initial functions u0 and v0
we assume:

• u0 ∈ H1
0 (Ω)

d;

• v0 ∈ L2(Ω)d.

For the right hand side (source term) we assume

• f ∈ L2(I,H−1(Ω)), where L2(·, ·) is a Bochner space; see Section 2.11.2.

We introduce the following short-hand notation:

• H := L2(Ω)d;

• V := H1
0 (Ω)

d;

• V ∗ is the dual space to V ;

• H̄ := L2(I,H);

• V̄ := {v ∈ L2(I, V )| ∂tv ∈ H̄}.

Remark 27. We note that the initial values are well-defined due to Theorem 4.

Theorem 5. If the operator A := −∇ · (a∇u) satisfies the coercivity estimate:

(Au, u) ≥ β∥u∥21, u ∈ V, β > 0,

then there exists a unique weak solution with the following properties:

• u ∈ V̄ ∩ C(Ī , V );

• ∂tu ∈ H̄ ∩ C(Ī , H);

• ∂2t u ∈ L2(I, V ∗).
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Proof. See Lions and Magenes [107] or Wloka [172].

Definition 29. The previous derivations allow us to define a compact space-time function space
for the wave equation:

X̄ := {v ∈ V̄ | v ∈ C(Ī , V ), ∂tv ∈ C(Ī , H), ∂2t v ∈ L2(I, V ∗)}.

To design a Galerkin time discretization, we need to get rid of the second-order time derivatives
and therefore usually the wave equation is re-written in terms of a mixed first-order system:

Problem 11. Let Ω ⊂ Rd be open and let I := [0, T ] with T > 0. Find u : Ω × I → R and
∂tu = v : Ω× I → R such that

ρ∂tv −∇ · (a∇u) = f in Ω× I,

ρ∂tu− ρv = 0 in Ω× I,

u = 0 on ∂ΩD × I,

a∂nu = 0 on ∂ΩN × I,

u = u0 in Ω× {0},
v = v0 in Ω× {0}.

To derive a space-time formulation, we first integrate formally in space. Below we explain why
we choose the notation for the test function in this way:

Av(U)(ψu) = (ρ∂tv, ψ
u) + (a∇u,∇ψu)− (f, ψu),

Au(U)(ψv) = (ρ∂tu, ψ
v)− (ρv, ψv).

And then in time:

Āv(U)(ψu) =

∫
I

((ρ∂tv, ψ
u) + (a∇u,∇ψu)− (f, ψu)) dt+ (v(0)− v0, ψ

u(0)),

Āu(U)(ψv) =

∫
I

((ρ∂tu, ψ
v)− (ρv, ψv)) dt+ (u(0)− u0, ψ

v(0)).

The total problem reads:

Problem 12. Find U = (u, v) ∈ Xu ×Xv with Xu = X and Xv := {w ∈ H̄|w ∈ C(Ī , H), ∂tw ∈
L2(I, V ∗)} such that

Ā(U)(Ψ) = 0 ∀Ψ = (ψu, ψv) ∈ Xu ×Xv,

where
Ā(U)(Ψ) := Āv(U)(ψu) + Āu(U)(ψv).

Such a formulation is the starting point for the discretization: either in space-time or using a
sequential time-stepping scheme and for instance FEM in space.

Remark 28. Be careful that the trial and test functions are switched in the wave equation. What
does this mean? Formally, we compute in the first equation v using as test function ψu which
belongs to the trial space of u. Vice versa for the second equation. That this choice can be justified
can be seen in the following: the variable u needs higher-order regularity in space, therefore we
work with the space Xu. Once differentiating in time, yields less regularity for v. In order to apply
the correct boundary conditions and partial integration in the first equation Āv (to determine v),
we need an object from the stronger space, namely Xu as test function.
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2.13 Exercises
Exercise 1. Given the energy functional in Proposition 12, derive the Euler-Lagrange equations.

Exercise 2. Describe the number and type of nonlinearities in Proposition 14. Can further non-
linearities arise? If yes, which ones?

Exercise 3. 1. Write φ2∇u component-wise.

2. Write φ|∇u|2 component-wise.

Exercise 4. Concerning he dynamic fracture model in Section 2.12.1, please select three exercises
you want to work on.

1. The dynamic fracture model in Section 2.12.1 is incomplete because the compatibility condi-
tion is missing. Please write down this condition.

2. Which coupling: volume or surface (interface)?

3. Is the model linear or nonlinear?

4. Is it a variational equation or variational inequality?

5. Is the model stationary or time-dependent?

6. Derive the weak formulation.

7. Formulate a compact semi-linear form to describe the weak form.

8. Using the compact semi-linear form, write down the compact abstract problem as a root-
finding problem.

9. Derive the energy formulation corresponding to the weak form?

10. Double-check that the energy derivative of the energy formulation yields the PDE in a weak
form (actually this is also known as Euler-Lagrange equations).

11. What does it mean that the energy formulation exists?

12. Manipulate the PDE such that no energy formulation exists.

13. Derive a quasi-static version by manipulating the above model.

14. How can we linearize the problem?

15. Use penalization, see Section 2.4.5 and rewrite the variational inequality as variational equa-
tion.

16. Space-time: In order to derive a Galerkin formulation for the discretization in space and
time, we need to get rid of the second-order derivatives in time. Write down a model with
first-order derivatives in time. How many solution variables do we have now?
Hint: For space-time formulations of second-order hyperbolic PDEs, we also refer to Section
2.12.2.



Chapter 3

Regularization, discretization and
numerical solution (Session 2)

In the previous chapter, we arrived at a coupled variational inequality system (CVIS), namely
Proposition 14. Therein, we deal with three nonlinearities: nonlinear coupling between displace-
ment and the phase-field systems, possible nonlinear constitutive laws, and the variational inequal-
ity constraint. The later needs to be regularized for which in the literature various methods have
been proposed; see [169][Chapter 5]. We pursue an approach to which a primal-dual active set
method can be applied [74, 93]. Afterwards, the resulting system is discretized with a adaptive
Galerkin finite element method, which is nowadays standard and for details we refer to classical
textbooks [32, 29, 42]. Adaptivity is based on a predictor-corrector approach by choosing a given
small regularization parameter ε while guaranteeing h < ε, where h is the local mesh size. The
resulting discrete systems are still nonlinear, for which we introduce a combined Newton primal-
dual active set method in which all nonlinearities are treated simultaneously. Inside, the linear
systems are solved with GMRES [142] and block-preconditioning using an algebraic multigrid
method; Trilinos [77]. The entire algorithms are fully parallel (MPI parallelization with scalability
tested on 1024 cores [75]) and to this end, we have a modern, efficient numerical solution at hand.
The resulting implementation is open-source in the pfm-cracks library [76] based on the finite
element library deal.II [14, 13]. For the space-time model that is discussed towards the end of
this chapter, we mention that this implementation is done in DOpElib [67] in which specifically the
predictor-corrector scheme and the parallel linear iterative solution have not yet been implemented.
Therein, we currently rely on the sparse direct solver Umfpack [46].

3.1 Regularization and first linearizations

3.1.1 Quasi-monolithic form: linearizing the degradation function

Proposition 14 has several nonlinearities, namely nonlinear coupling of variables in the displace-
ment PDE (partial differential equation) and the phase-field part, while the inequality constraint
introduces its own nonlinear behavior. A brief analysis of the coupling terms reveals that the
nonlinear behavior in the displacement equation is more severe (being of quasi-linear type; for
the definition of quasi-linear, we refer the reader to [54]) in comparison to the phase-field part,

53
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which is semi-linear only. Therefore, if linearizations are of interest, it is reasonble to address
the quasi-linear part first. Indeed, the fully monolithic system is a big challenge to be solved
[63, 168, 166, 96, 97, 103, 161, 68, 173]. We follow our prior work [74]1 and formulate a quasi-
monolithic system in which we linearize (φn)2 by using known information about older incremental
steps. In the first approach, we use an extrapolation for φn such that

φ̃n := φ̃n(φn−1, φn−2) = φn−2 tn − tn−1

tn−2 − tn−1
+ φn−1 tn − tn−2

tn−1 − tn−2
.

In a second approach, we simply use the solution from the previous timestep such that

φ̃n := φ̃n(φn−1) = φn−1.

Furthermore, the stress σ can be split into a compressive σ− and a tensile part σ+ (e.g., [121]) such
that the energy degradation only acts on the tensile stress, which introduces a third nonlinearity
in the system. With these modifications, we obtain the following modified form of Proposition 14.

Problem 13. (Linearized Euler-Lagrange equations with stress-splitting) For a given φ0 and for
every incremental step tn with n = 1, ..., N , find Un := {un, φn} ∈ V 0

u ×K such that it holds for
Φ := {0, φn} ∈ V 0

u ×K

A(Un)(Ψ− Φ) ≥ 0 ∀Ψ := {ψu, ψφ} ∈ V 0
u ×K ∩ L∞,

where A(Un)(Ψ− Φ) is defined as

A(Un)(Ψ− Φ) :=
(
g(φ̃n)σ+(un), e(ψu)

)
+
(
σ−(un), e(ψu)

)
+ (1− κ)(φnσ+(un) : e(un), ψφ − φn)

+GC

(
1

ε
(1− φn, ψφ − φn) + ε(∇φn,∇(ψφ − φn))

)
.

3.1.2 Complementarity system due to inequality constraint

To treat the inequality in Problem 13, we employ a Lagrange multiplier λn by following [90].
Initially, this Lagrange parameter exists in the dual space of H1(Ω), but in [157], the author states
that λn ∈ L2(Ω) for single constraint variational inequality problems with solution variables in
L2(Ω). We assume that the argumentation can be transferred to Problem 13 and a rigorous proof
is a goal for future work. With this, we can define

L2
−(Ω) :=

{
v ∈ L2(Ω) | v ≤ 0 a.e. in Ω

}
,

and
N+ :=

{
µ ∈ L2(Ω) | (µ, v)L2(Ω) ≤ 0 ∀v ∈ L2

−(Ω)
}
,

such that we can formulate a variational inequality system the classical L2 inner products and N+

as solution set for the Lagrange multiplier λn.

1Several parts of this chapter are close or copied from [93] for which permission from Elsevier is acknowledged.
We notice that some notation has been adjusted in order to have a self-contained notation of these lecture notes.
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Problem 14. For a given φ0 and for the incremental steps tn with n = 1, ..., N , find Un ∈ V 0
u ×Vφ

and λn ∈ N+ such that

A(Un)(Ψ) + (λn, ψφ) = 0 ∀Ψ ∈ V 0
u × Vφ ∩ L∞,

(λn − ξ, φn − φn−1) ≥ 0 ∀ξ ∈ N+,

where A(·)(·) is defined as before in Problem 13.

The numerical method, which is introduced in Section 3.2 to solve the inequality system, is
designed to treat the variational inequality

(λn − ξ, φn − φn−1) ≥ 0 ∀ξ ∈ N+,

in a complementarity formulation. The following result states the equivalence of the previous
variational inequality and a complementarity condition.

Lemma 2. The variational inequality

(λn − ξ, φn − φn−1) ≥ 0 ∀ξ ∈ N+, (3.1)

can equivalently be formulated as a complementarity condition of the form

C(φn, λn) := λn −max{0, λn + c(φn − φn−1)} = 0, (3.2)

for every c > 0 and the max operation defined as

max{0, λn + c(φn − φn−1)} =

{
0 in I,
λ+ c(φn − φn−1) in A,

where the inactive set I ⊂ Ω and, the active set A ⊂ Ω are defined such that

λn + c(φn − φn−1) ≤ 0 a.e. in I,
λn + c(φn − φn−1) > 0 a.e. in A.

These two situations can be explained as follows. For λn = 0 we are in the so-called inactive set,
namely we solve the PDE part of phase-field. In A the constraint is active, ‘we sit on the obstacle’,
and we deal with λn > 0. Note, that A and I do not need to be connected, but note that Ω \ I ∪A
is a null set. The sets can be understood as unions of all nonempty subsets of Ω with positive
Lebesgue measure, on which the relations > or ≤ are fulfilled almost everywhere.

Proof. The proof contains two major steps. Firstly, we prove the equivalence of (3.1) and a strong
formulation of the form

φn − φn−1 ≤ 0 a.e. in Ω, (3.3)
λn ≥ 0 a.e. in Ω, (3.4)

(λn, φn − φn−1) = 0. (3.5)

Secondly, we show that (3.3)-(3.5) can be equivalently formulated as (3.2).
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Step 1: (⇒) Assume that (3.1) is satisfied. For (3.3), we assume the existence of a subset
T ⊂ Ω with a positive Lebesgue measure such that it holds φn − φn−1 > 0 a.e. in T . We define

χ :=

{
2λn + 1 in T ,
λn in Ω \ T .

(3.6)

We have χ ∈ N+ and obtain that the variational inequality must hold for µ = χ. But it holds

(λn − χ, φn − φn−1) = (λn − χ, φn − φn−1)L2(T )

+ (λn − χ, φn − φn−1)L2(Ω\T )

= (λn − 2λn−1, φn − φn−1)L2(T )

+ (λn − λn, φn − φn−1)L2(Ω\T )

= (−λn − 1, φn − φn−1)L2(T )

= (λn + 1, φn−1 − φn)L2(T ) < 0,

since φn−1 − φn < 0 a.e. in T , λn ∈ N+ and λn + 1 > 0 a.e. in Ω. Summarizing, we obtain

(λn − χ, φn − φn−1) < 0,

which is a contradiction to the assumption that (3.1) is fulfilled. Thus, it must hold φn−φn−1 ≤ 0
a.e. in Ω. For (3.4), we assume λn < 0 a.e. in a subset O ⊂ Ω with a positive Lebesgue measure.
Then, we define

v :=

{
λn in O,
0 in Ω \ O.

Then, it holds v ≤ 0 a.e. in Ω. Thus, per definition of N+ and since λn ∈ N+, it must hold that
(λn, v) ≤ 0. But we find

(λn, v) =

∫
Ω

λnv dx

=

∫
O
λnv dx +

∫
Ω\O

λnv dx

=

∫
O
λnλn dx +

∫
Ω\O

λn · 0 dx

=

∫
O
(λn)2 dx > 0,

which is a contradiction. Thus, it must hold λn ≥ 0 a.e. in Ω.
Lastly, we derive (3.5). We choose ξ = 0. Then, we have ξ ∈ N+ We obtain

(λn − 0, φn − φn−1) = (λn, φn − φn−1) ≥ 0.

In a similar way, we can set ξ = 2λn to obtain

(λn − 2λn, φn − φn−1) = (−λn, φn − φn−1) = −(λn, φn − φn−1) ≥ 0,

which yields (λn, φn−φn−1) ≤ 0. Combining both inequalities finally leads to (λn, φn−φn−1) = 0.
(⇐) Now, we assume that (3.3)-(3.5) hold true. Firstly, (3.4) validates the choice of N+ as
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solution space for λn. Let v ∈ L2
− be arbitrary. Then, we obtain (λn, v) ≤ 0, and consequently

λn ∈ N+. Now, let µ ∈ N− be arbitrary. Due to (3.3), we have (µ, φn − φn−1) ≤ 0, and thus
(−µ, φn − φn−1) ≥ 0. In combination with (3.5) we find

(λn − µ, φn − φn−1) ≥ 0.

Since µ was chosen arbitrarily, we obtain (3.1).
Step 2: (⇒) Let (3.3)-(3.5) be fulfilled. We define A, B ⊂ Ω such that φn − φn−1 < 0 a.e. in

A and λn > 0 a.e. in B. As before, the sets A and B can be understood unions of all subsets on Ω
with positive Lebesgue measure, on which the relations > or ≤ are fulfilled almost everywhere. We
start by proving that A ∩B is a null set. For this, we assume that A ∩B has a positive Lebesgue
measure. We find λn > 0 a.e. in A ∩B, and φn − φn−1 < 0 a.e. in A ∩B. This yields

(λn, φn − φn−1)Ω = (λn, φn − φn−1)A∩B + (λn, φn − φn−1)Ω\A∩B

= (λn, φn − φn−1)A∩B < 0,

which is a contradiction to (3.5). Thus, A ∩ B is a null set. In a next step, we prove that
C(φn, λn) = 0 a.e. in Ω. It suffices to show that

C(φn, λn)
∣∣
A = 0 a.e. in A,

C(φn, λn)
∣∣
I = 0 a.e. in I,

hold true. In A, we have

λn ≥ λn + c(φn − φn−1) > 0 a.e. in A,

almost everywhere, which immediately yields λn > 0 a.e. in A. Due to previous findings, we
consequently have φn − φn−1 = 0 a.e. in A, and obtain

C(φn, λn)
∣∣
A = λn −max{0, λn + c(φn − φn−1)}
= λn − λn − c(φn − φn−1)

= −c(φn − φn−1) = 0,

a.e. in A. On I we have

c(φn − φn−1) ≤ λn + c(φn − φn−1) ≤ 0 a.e. in I,

which yields φn−φn−1 ≤ 0 a.e. in I. With the same argumentation as before, we conclude λn = 0
a.e. in I and obtain

C(φn, λn)
∣∣
I = λn −max{0, λn + c(φn − φn−1)} = λn − 0 = 0,

a.e. in I. Summarizing, (3.2) is fulfilled.
(⇐) Let (3.2) be fulfilled. As before, we have

λn + c(φn − φn−1) > 0 a.e. in A, (3.7)

and
C(φn, λn) = λn − λn − c(φn − φn−1) = −c(φn − φn−1) = 0,
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a.e. in A, which is equivalent to φn − φn−1 = 0 a.e. in A. Inserting this into (3.7) yields λn > 0
a.e. in A. On I we have λn + c(φn − φn−1) ≤ 0 a.e. in I, and thus, (3.2) yields λn = 0 a.e. in I.
Thus, we find φn − φn−1 ≤ 0 a.e. in Ω. To obtain (3.5), we observe

(λn, φn − φn−1) = (λn, φn − φn−1)A + (λn, φn − φn−1)I = (λn, 0)A + (0, φn − φn−1)I = 0.

With this, the proof is finished.

In the following, the final system is stated and this is the starting point for the primal-dual
active regularization.

Problem 15. (Variational system with complementarity condition) Given φ0 and for the incre-
mental steps tn with n = 1, ..., N , find Un = {un, φn} ∈ V 0

u × Vφ and λn ∈ N+ such that

A(Un)(Ψ) + (λn, ψφ) = 0 ∀Ψ = {ψu, ψφ} ∈ V 0
u × Vφ ∩ L∞,

C(φn, λn) = 0 a.e. in Ω,

with A(Un)(Ψ) and C(φn, λn) defined as before.

3.2 Nonlinear solutions: Newton scheme and primal dual ac-
tive set

In this short section, Newton’s method and the primal-dual active set method are introduced
on their respective continuous level formulations. Newton’s method is employed for the typical
nonlinear solution, while the primal-dual active set method (which can be related under suitable
mathematical assumptions being a semi-smooth Newton method [78]) is used for treating the
crack irreversibility constraint. After the spatial discretizations, the discrete nonlinear systems
are described in more detail, and specifically recent improvements on the choice of the active set
constant c.

3.2.1 Newton’s method
In each incremental step, the first equation of Problem 15 can be solved via a Newton method.
Considering incremental step n, we seek for Un := {un, φn} ∈ V 0

u ×Vφ and λn ∈ N+. The solution
Un is found via iterating over k = 1, 2, 3, . . . until convergence, such that

A′(Un,k)(δUn,k+1,Ψ) + (λn,k, ψφ) = −A(Un,k)(Ψ) ∀Ψ ∈ V 0
u × Vφ

with respect to
C(φn,k + δφn,k+1, λn,k) = 0 a.e. in Ω,

for the update δUn,k+1 and the Lagrange multiplier λn,k+1 and updating via

Un,k+1 = Un,k + δUn,k+1.

The Jacobian A′(Un,k)(δUn,k+1,Φ) is given by

A′(Un,k)(δUn,k+1,Ψ) =
(
g(φ̃n)σ+(δun,k+1), e(ψu)

)
+
(
σ−(δun,k+1), e(ψu)

)
+ (1− κ)

(
δφn,k+1σ+(un,k) : e(un,k), ψφ

)
+ (1− κ)

(
2φn,kσ+(δun,k+1) : e(un,k), ψφ

)
+GC

(
1

ε
(δφn,k+1, ψφ) + ε(∇δφn,k+1,∇ψφ)

)
,
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and A(Un,k)(Φ) is defined as before. To treat the complementarity condition, we introduce the
primal-dual active set method.

3.2.2 The primal-dual active set method
The primal-dual active set method (PDAS), introduced for constrained inequality systems in [19,
20, 82, 83], and shown under certain assumptions to be a semi-smooth Newton method [78],
and applied on the phase-field fracture model in [74], is based on considerations made in Section
3.1.2. The idea is to split the domain into two subdomains in each incremental step n. On one
subdomain, the inactive set In, the inequality constraint φn−φn−1 ≤ 0 is fulfilled strictly. On the
other subdomain, the active set An, it holds φn−φn−1 = 0. A priori, these two sets are not known
but combined with the previously introduced Newton method, we obtain a prediction algorithm.
Based on the complementarity condition, i.e., (3.2)

C(φn,k + δφn,k+1, λn,k) = 0,

we want to determine the active set An,k and the inactive set In,k such that

λn,k + c(φn,k − φn−1) > 0 a.e. in An,k, λn,k + c(φn,k − φn−1) ≤ 0 a.e. in In,k, (3.8)

and iterate until the active set does not change within two consecutive Newton iterations. As
before, An can be understood as the union of all subsets of Ω on which λn + c(φn − φn−1) > 0
is fulfilled almost everywhere. The inactive set In is then the complement of An with respect to
Ω. If An and In are known, we can set λn = 0 on In, see Lemma 2, and treat the problem as an
unconstrained problem. On An, we set φn = φn−1 and there is nothing to do (for the phase-field).
The resulting scheme is given in Algorithm 1.

Algorithm 1: (Primal-dual active set method)
Set iteration index k = 0;
while An,k ̸= An,k+1 do

Determine the active set An,k and inactive set In,k with (3.8) Find δUn,k+1 ∈ V 0
u × Vφ

and λn,k+1 ∈ N+ with solving

A′(Un,k)(δUn,k+1,Φ) + (λn,k+1, ψ) = −A(Un,k)(Φ), ∀Φ := {v, ψ} ∈ V 0
u × Vφ,

δφn,k+1 = 0 on Ak,

λn,k+1 = 0 on Ik;

Update the solution to obtain Un,k+1 via

Un,k+1 = Un,k + δUn,k+1;

Update iteration index k = k + 1;
end
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3.3 Spatial discretization with finite elements

3.3.1 Discrete system
We discretize Problem 15 using a finite element method with bilinear (2d) or trilinear (3d) ele-
ments Q1

c [42] for both, the displacement function and the phase-field function. By introducing H1

conforming discrete spaces, we once again use a Galerkin finite element scheme for the spatial dis-
cretization. In the following and specifically Chapter 5, we consider the two dimensional case only,
with quadrilateral elements K forming the mesh Th = {K}. Herein hK is the spatial discretization
parameter denoting the diameter of the element K. The set of shape functions Qs(K) is obtained
as bilinear transformations of functions defined on the master element K̂ = (0, 1)2, where Q̂s(K̂)
denotes the space tensor product polynomials up to degree s in d dimensions,

Q̂s(K̂) := span

{
d∏

i=1

x̂αi
i : αi ∈ {0, 1 . . . , s}

}
.

Especially, for s = 1 and d = 2 we have

Q̂1(K̂) = span{1, x̂1, x̂2, x̂1x̂2}.

The discrete function spaces read

V 0
uh :=

{
uh ∈ V 0

u , uh
∣∣
K

∈ [Qc
1(K)]

d
, ∀K ∈ Th

}
,

Vφh :=

{
φh ∈ Vφ, φh

∣∣
K

∈ Qc
1(K), ∀K ∈ Th

}
,

Nh :=

{
λh ∈ N+, λh

∣∣
K

∈ Qc
1(K), ∀K ∈ Th

}
,

where K ∈ Th is the finite element and Th denotes the decomposition of the domain Ω into a mesh,
e.g., [42]. The spatially discretized system is formulated as follows:

Problem 16. (Discretized system with complementarity condition) Given φ0
h and for the incre-

mental steps tn with n = 1, ..., N , find (unh, φ
n
h, λ

n
h) ∈ V 0

uh × Vφh ×Nh such that

A(unh, φ
n
h)(Φh) + (λnh, ψh) = 0 ∀Φh := (vh, ψh) ∈ V 0

uh × Vφh,

C(φn
h, λ

n
h) = 0 ∀x ∈ Ω,

with A(unh, φ
n
h)(vh, ψh) and C(φn

h, λ
n
h) defined as before in Lemma 2 with the point-wise maximum

operation.

Remark 29. We notice that the choice of the finite elements must be taken with greater care,
when it comes to saddle-point structures such as in the nearly-incompressible or incompressible
solids [113, 17, 108].

3.3.2 Parameter interactions
With regard to the discrete systems let us briefly make some comments. The bulk regularization
parameter κ is necessary to avoid irregularities in the system matrix. If the phase-field function φ
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is 0, we obtain zero-entries on the diagonal of the system matrix. To avoid this, we employ κ > 0.
We have to ensure that κ is not too large since it yields a perturbation of the physics of the system,
but it needs to be large enough to prevent irregularities. The second regularization parameter ε
appears due to the Ambrosio Tortorelli approximation [8, 9]. The Γ-convergence theory, e.g [30],
states on an energy-level that the regularized terms (under certain assumptions) converge to the
underlying unregularized model as ε → 0. A rigorous proof of pressurized phase-field fracture
of the one dimensional case is done in [53], a proof in higher dimensions is established in [150].
For the discretized problem, we also have to require h = o(ε) for the discretization parameter
h. Finding an optimal setting for the regularization parameters ε and κ, which yields the best
compromise between computational cost and Γ-convergence theory needs some work and is highly
test dependent [92]. In practice, we usually must choose h < ε and often realized with ε = 2h.
Finally, we refer to [169][Section 5.5] for more thoughts and facts on the interaction of ε, κ and h
and our summary provided in Section 3.5.

3.3.3 Discrete block matrix and discrete right hand side
The application of a Galerkin ansatz with primitive ansatz and test functions of the form

Φh,i =

[
χu
i

0

]
for i = 1, ..., Nu,

Φh,Nu+i =

[
0
χφ
i

]
for i = 1, ..., Nφ,

where Nu is the number of degrees of freedom in uh and Nφ is the number of degrees of freedom
in φh, leads to a system of the form[

M B
BT 0

] [
δUn,k+1

h

λk+1
h

]
=

[
F
0

]
,

where B is a mass matrix and M and F are given by

M =

[
Muu Muφ

Mφu Mφφ

]
, F =

[
Fu

Fφ

]
,

with the block entries

Muu
ij =

(
g(φ̃n)σ+(χu

j ), e(χ
u
i )
)
+
(
σ−(χu

j ), e(χ
u
i )
)
,

Mφu
ij = 2(1− κ)

(
φn,k
h σ+(χu

j ) : e(u
n,k
h ), χφ

i

)
,

Muφ
ij = 0,

Mφφ
ij = (1− κ)

(
σ+(un,kh ) : e(un,kh )χφ

j , χ
φ
i

)
+GC

(
1

ε

(
χφ
j , χ

φ
i

)
+ ε

(
∇χφ

j ,∇χ
φ
i

))
,

and

Fu
ij = −A(Un,k

h )(χu
i ) = −

([
(1− κ)(φ̃n

h)
2 + κ

]
σ+(un,kh ), e(χu

i )
)
−
(
σ−(un,kh ), e(χu

i )
)

Fφ
ij = −A(Un,k

h )(χφ
i ) = −(1− κ)

(
φn,k
h σ+(un,kh ) : e(un,kh ), χφ

i

)
−GC

(
1

ε

(
1− φn,k

h , χφ
i

)
+ ε

(
∇φn,k

h ,∇χφ
i

))
.
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We notice that the block Muφ
ij is zero due to the previously applied linearization in φ in the dis-

placement equation in Problem 13. Consequently, in the Newton system matrix, the corresponding
directional derivative vanishes and it holds Muφ

ij = 0. The main purpose is a robust nonlinear and
linear solution; see also Remark 33.

Since the un,kh , φn,k
h , λn,kh are element-wise of polynomial structure, we can compute the active

and inactive set point-wise:

An,k =
{
x |λn,kh (x) + c(φn,k

h (x)− φn−1
h (x)) > 0

}
,

In,k =
{
x |λn,kh (x) + c(φn,k

h (x)− φn−1
h (x)) ≤ 0

}
.

3.4 Predictor-corrector mesh adaptivity

This section is concerned with local mesh adaptivity with a focus on the crack path. Phase-field
approaches require fine meshes around the interface (here, the fracture) in order to provide solutions
of sufficient accuracy. However, the crack path is a priori unknown in most cases. Therefore,
uniform mesh refinement should be the method of choice. We present an approach suggested in
[74] in which the crack path is first predicted, followed by a second computation with the required
accuracy. The goal is quite simple: we want to refine exclusively the fracture zone in order to work
with a small regularization parameter ε.

3.4.1 The main algorithm

In the following we describe the predictor-corrector mesh refinement algorithm in more detail. The
basic idea is to pick a single, small ε, and then decide on an adaptive refinement level r for the
crack region that ensures h < ε. We then refine the mesh adaptively during the computation so
that it is on level r in the crack region. To handle fast growing cracks with a priori unknown paths,
we employ a predictor-corrector scheme that keeps repeating the current time step to guarantee
the finest mesh level r in the crack region.

Algorithm 1 (At a single time step tn). Let the solution to time step tn be given; see Figure 3.2
top left.

1. Solve the full problem with a prediction of the new crack path at time step tn+1; see Figure
3.2 top right.

2. If the crack is not resolved adequately, i.e., we have elements in which h > ε, we employ a
predictor-corrector cycle:

(a) First, we refine the mesh based on the new solution and interpolate the old solution (at
tn) onto the new mesh (Figure 3.2, bottom left). The refinement is done using a chosen
threshold 0 < C < 1 (C = 1 corresponds to global mesh refinement) for the phase-field
φ. Each element that has at least one support point with value φ(xi) < C will be refined
unless we are already at the maximum desired refinement level r.

(b) Then we solve for the solution at tn+1 again, but on the refined mesh (Figure 3.2, bottom
right).

(c) Go to (a) and repeat refinement until maximum refinement level is reached.
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Remark 30. The computational cost includes additional solves when the crack is growing, but the
method is robust and efficient as proven in several studies [74, 106].

In summary, our proposed predictor-corrector scheme - forcing the growing crack region to
always be resolved with a fine mesh - reads:

Algorithm 2 (Predictor-corrector mesh adaptivity). Choose a fixed refinement level r for the
crack region. On level r, determine h(r)max and pick an appropriate ε := ε(r) > h

(r)
max. Select a bound

0 < C < 1 for φ to be considered inside the crack. For each time step do:

1. Solve for solution (un+1, φn+1) at tn+1.

2. If elements need to be refined (element with level k < r has φn+1(x) < C):
refine and transfer solution from tn, go to 1.

Remark 31. The parameter ε needs to chosen relative to the largest element size h that can
appear on level r during the computation. For refinement of a quadrilateral mesh this quantity can
be computed from the set of coarse elements T using

h(r)max = max
T∈T

2−rhT

where hT is the size of element T .

3.4.2 Goals and illustrations
Proposition 16. The predictor-corrector algorithm asks for the following properties [74]:

1. Keep a single fixed, regularization parameter ε during the entire computation.
Most importantly ε is a model parameter, and we do not want to change the fracture model
during a computation! Decreasing ε (locally) during the computation will not allow for an
increase in the accuracy of the solution. While reducing ε would result in a thinner crack
mushy zone - thus changing the model. As a consequence, ε should not be changed during the
computation.

2. Ensure ε > h inside the crack region. It is required to have a sufficiently small mesh
size h to resolve the transition of the phase field variable. The width of this zone is controlled
by the choice of ε. Importantly, the ε-h relationship is only required to be satisfied inside or
directly around the current crack region and not in the whole computational domain.

3. Error is controlled by ε, not h: the interplay of model and discretization errors

In contrast to standard a-posteriori or goal-oriented adaptive mesh refinement, just refining
the mesh does not reduce the discretization error significantly. This is because the choice
of ε determines the width of the mushy zone around the crack path. Ideally, an adaptive
method would try to minimize ε and pick an appropriate h to minimize the discretization
error introduced by the mesh size.

4. No requirement of prior knowledge about the crack location(s). Typically, specif-
ically for more realistic problems, the final location of the cracks is unknown. While it is
an option to repeat the whole computation on a finer mesh that is determined using the first
computation, this is too expensive to be practical. Therefore, the predictor-corrector algorithm
should detect during the computation in which direction the cracks are growing.
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5. Handling fast growing cracks. Only adapting the mesh based on the current crack location
before moving on to the next time step may result that the adaptive mesh lags behind in time
and does not resolve the crack region adequately, in particular, if the crack is growing rapidly.

Figure 3.1: Functionality of predictor-corrector mesh refinement in two spatial dimensions: the
mesh grows with the fracture. Here the transition zone with 0 < φ < 1 determines the region in
which the mesh has to be refined. If the fracture (in red) grows faster than the fine mesh, such
that ε > h is violated, we first refine the mesh (the predictor step) according to the transition
zone and than perform a second computation to determine the precise fracture location inside the
refined mesh.

Figure 3.2: Predictor-corrector scheme: 1. advance in time, crack leaves fine mesh. 2. refine and
go back in time (interpolate old solution). 3. advance in time on new mesh. Repeat until mesh
doesn’t change anymore. Refinement is triggered for φ < C = 0.2 (green contour line) here.
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3.4.3 Performance

For the single edge notched shear test, we used an Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz
machine with two processors. The following results presented in Table 3.1 were obtained in [74].

Table 3.1: Single edge notched shear test: Comparison of computational cost for different refine-
ment strategies. The numbers in the prec/corr strategy indicate the phase-field threshold value
used for mesh refinement.

Strategy Time [s] Time [min] Number of loading steps DoFs: min/avg/max

global refinement 5036 84 151 50115
local prerefinement 1277 21 151 19746
predictor/corrector (0.8) 233 4 151+63 3315/4731/8286
predictor/corrector (0.6) 184 3 151+53 3315/4225/6666

Remark 32. We notice that the accuracy of the different simulations was comparable as shown in
[74]. Thus it is really worth to use predictor-corrector mesh refinement for this numerical example.

3.5 Relationship of material, model, and discretization pa-
rameters

As the governing phase-field regularization was taken from image segmentation in the early days
[24], an analysis of the governing parameters can be found in [22], with the result shown in the
left column in Table 3.2. A numerical analysis of a simplified problem statment was carried out
in [169][Section 5.5] yielding the results in column No. 2. In practice from experiences, reading
other papers, and numerous discussions on conferences, the third column is relevant and mostly
used. When it comes to physical interpretations of ε, then it seems to be some small fixed number
that is obtained from calibrations; see e.g., the overview [49] for general discussions and pointing
to specific references.

MATHEMATICALLY NUMERICALLY PRACTICE (often used) ENGINEERING
h ≪ κ ≪ ε h ≪ ε, h ≪ κ κ ∼ 10−10 and ε = 2h or ε = 4h ε length-scale (micro-cracks)

h = o(ε), h = o(κ), κ = o(ε)

Table 3.2: The sizes of h, κ and ε depend on each other.

Considering dynamic fracture (Section 2.12.2) or space-time formulations (Section 3.10), then
also the temporal discretization parameter ∆tm must be considered as well. Moreover, on the model
side the crack irreversibility penalization parameter γ (or active set constant c) have a relation
to the previously mentioned paramteres. Finally, in Chapter 4, we introduce the optimal control
Tikhonov regularization parameter α as well as an additional phase-field regularization parameter
η (with η ≪ γ) that are required for the sake of mathematical (not proven here, but known) and
numerical purposes. The latter reasons is necessary for obtaining stable computational results. It
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is clear, that a deeper inside from all directions, mathematical, numerical, and engineering wise
how to relate all parameters is of great interest.

3.6 Combined Newton scheme for discrete nonlinear systems

Given the fully discretized system, we can formulate a combined Newton method, namely address-
ing all nonlinearities simultaneously. This is implemented in pfm-cracks utilizing Algorithm 2.

Algorithm 2: (Primal-dual active set method with backtracking line search)
Set iteration index k = 0;
while

(
An,k−1 ̸= An,k

)
or
(
R̃(Un,k

h ) > TOLN

)
do

Assemble the residual R(Un,k
h );

Compute the active set An,k =

{
xi

∣∣∣∣ [B]
−1
ii

[
R(Un,k

h )
]
i
+ c(φn,k

h,i − φn−1
h,i ) > 0

}
Set

φn,k
h = φn−1

h on An,k;
Assemble the system matrix M (Newton Jacobian) and the right-hand side
F = R(Un,k

h );
Eliminate rows/columns in An,k from M and F to obtain M̃ and F̃ = R̃(Un,k

h ) ;
Solve the linear system M̃δUn,k+1

h = F̃ with GMRES and AMG preconditioner [76];
Choose maximum number of line search iterations lmax;
Choose line search damping parameter 0 < ω ≤ 1;
for l = 1 : lmax do

Update the solution with Un,k+1
h = Un,k

h + δUn,k+1
h ;

Assemble the new residual R̃(Un,k+1
h );

if ∥R̃(Un,k+1
h )∥2 < ∥R̃(Un,k

h )∥2 then
break;

end
else

Adjust the Newton update with δUn,k+1
h := ωlδUn,k+1

h ;
end

end
Update iteration index k = k + 1;

end

Remark 33. In line 8, the reduced linear system is solved with a GMRES (generalized minimal
residual) method [143] and algebraic multigrid preconditioning (AMG) [77]. In this work, the
implementation as it is from pfm-cracks [76] is utilized. In our numerical tests (Section 5.1), we
observe in all simulations between 10 − 40 linear iterations. This is in agreement with the results
obtained in [75][Table 1]. The main reason for the excellent performance is twofold. First, it is
the triangular block structure of M̃ due to the zero block Muφ

ij as previously discussed. Second, the
diagonal terms in M̃ are of elliptic type, which is well-known that multigrid methods perform very
well.



3.7. MODIFIED COMBINED NEWTON ACTIVE SET ALGORITHMS 67

Remark 34. The lines 9-19 describe a classical backtracking line search algorithm, where the
Newton update is damped with a damping parameter ω ∈ (0, 1], if the updated solution Un,k+1

h =

Un,k
h + δUn,k+1

h does not reduce the residual norm. In all experiments in Section 5.1, we use
lmax = 10 and ω = 0.6.

Remark 35. Note that we deal with two systems of equations in Algorithm 2: the global nonlinear
system and the reduced linear system. The nonlinear system consists of the matrix M and the
right-hand-side F . The reduced linear system, defined by the matrix M̃ and F̃ only contains the
equations of the nonlinear system, which belong to the inactive set. The residual of the full nonlinear
system is then given by R whereas R̃ denotes the residual of the reduced linear system. From an
implementation point of view, this is realized by setting constraints to the system such that we
enforce the phase-field to remain the same on the active degrees of freedom.

3.7 Modified combined Newton active set algorithms

This section is dedicated to presenting adjustments to the primal-dual active set method based on
an analysis of the active set constant c > 0 (see again Lemma 2 and Algorithm 1). In [85], the
authors prove for an obstacle problem that the primal-dual active set converges for any sufficiently
large c > 0. Furthermore, they point out that c only influences the first active set iteration in
theory. Similar observations were made in [81, 137, 146]. The authors state on the one hand that a
constant c of magnitude around the Youngs modulus is reasonable from an engineer’s perspective,
while they also point out on the other hand, that different settings for c do not affect the solution
but only the algorithmic performance. These results are a motivation to further investigate the
influence of c for our primal-dual active set phase-field fracture formulation. We start by pointing
out the bottleneck of the above described primal-dual active set algorithm. Specifically on fine
meshes, we often run into convergence issues of the active set, whereas the residual converges
comparably fast (see e.g., [74][Fig. 14]).

3.7.1 Investigation of the active set constant c

In the following, our objective is to illustrate the influence of the active set constant c and how to
adjust it to reduce the number of active set iterations. To this end, we begin with an investigation
of the role of the active set constant c in the algorithm. It is involved in the classification of the
active set Ak as a degree of freedom xi is classified as active (in iteration k within the current
incremental step), if

λkh,i + c(φk
h,i − φold

h,i ) > 0,

where φold
h,i is the value of the phase field solution of the previous incremental step at degree of

freedom i. We identify nine different situations, depending on the sign of λkh,i and (φk
h,i − φold

h,i ):

1. φk
h,i − φold

h,i = 0, and λkh,i > 0 ⇒ φk
h,i = φold

h,i , δφ
k+1
h,i = 0 and λk+1

h,i = B−1
ii Fi

2. φk
h,i − φold

h,i = 0, and λkh,i = 0 ⇒ δφk+1
h,i as solution of the system and λk+1

h,i = 0

3. φk
h,i − φold

h,i = 0, and λkh,i < 0 ⇒ φk
h,i = φold

h,i , δφ
k+1
h,i = 0 and λk+1

h,i = B−1
ii Fi

4. φk
h,i − φold

h,i > 0, and λkh,i > 0 ⇒ δφk+1
h,i = 0 and λk+1

h,i = B−1
ii Fi
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5. φk
h,i − φold

h,i > 0, and λkh,i = 0 ⇒ φk
h,i = φold

h,i , δφ
k+1
h,i = 0 and λk+1

h,i = B−1
ii Fi

6. φk
h,i − φold

h,i > 0, and λkh,i < 0 ⇒


φk
h,i = φold

h,i , δφ
k+1
i = 0,

λk+1
h,i = B−1

ii Fi

if |λkh,i| < c(φk
h,i − φold

h,i ),

δφk+1
h,i as solution, λk+1

h,i = 0 otherwise.

7. φk
h,i − φold

h,i < 0, and λkh,i > 0 ⇒


δφk+1

h,i as solution, λk+1
h,i = 0 if λkh,i ≤ |c(φk

h,i − φold
h,i )|,

φk
h,i = φold

h,i , δφ
k+1
h,i = 0,

λk+1
h,i = B−1

ii Fi

otherwise

8. φk
h,i − φold

h,i < 0, and λkh,i = 0 ⇒ δφk+1
h,i as solution, λk+1

h,i = 0

9. φk
h,i − φold

h,i < 0, and λkh,i < 0 ⇒ δφk+1
h,i as solution, λk+1

h,i = 0.

We observe that the active set constant c only has an influence on the classification when λkh,i and
φk
h,i−φold

h,i have different signs. In situation No. 6, φk
h,i shows crack healing behaviour, thus we do

not want to accept it as a solution and set it to φold
h,i . We achieve this, if

|λkh,i| < c(φk
h,i − φold

h,i ),

i.e.
|λkh,i|

(φk
h,i − φold

h,i )
< c.

In situation No. 7, we do not violate the constraint with the solution of the kth iteration, thus,
we still want to classify this degree of freedom as inactive. This can be achieved via

λkh,i ≤ c|(φk
h,i − φold

h,i )|,

i.e.
λkh,i

|(φk
h,i − φold

h,i )|
< c.

Summarizing, we can formulate a condition for c:∣∣∣∣∣ λkh,i
(φk

h,i − φold
h,i )

∣∣∣∣∣ < c.

Thus, any c larger than the lower bound is sufficiently large.

3.7.2 Proposed adjustments and definition of four cases
In the following, we propose four different cases for implementing the Newton active set algorithm.
The basis for these cases is Algorithm 2. For better readability and since the concepts are the
same in each incremental step, we drop the incremental index n. Both stopping criteria, i.e., if not
stated otherwise, require the active set to converge and the residual-norm to fall below a certain
tolerance. For our adjustment, we choose

c = ck := 2

∣∣∣∣∣ λkh,i
(φk

h,i − φold
h,i )

∣∣∣∣∣ ,
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thus, in contrast to before, c changes in every Newton iteration. This could be avoided by iterating
until convergence, saving the largest ck and then restarting the iteration. But this is an unnecessary
computational cost and in our opinion, a varying ck does not lead to any conflicts. In Section 5.1,
we will perform several experiments to observe the performance boost of this adjustment. Based
on the previous findings, we suggest four different cases:

• Case 1: We iterate as long as the active set does not change within 2 iterations with a
constant c = 10E, where E is Young’s modulus. Let k be the iteration index and Ak the
active set of iteration k, we stop, when Ak = Ak+1 and ∥R̃(Uk+1

h )∥2 < TOLN .

• Case 2: The classification of active/inactive set proceeds as in Case 1, but with the modified
c set as

c = ck = 2

∣∣∣∣∣ λkh,i
(φk

h,i − φold
h,i )

∣∣∣∣∣ .
Apart from this, everything is similar to Algorithm 2 including the stopping criteria: we
stop, when Ak = Ak+1 and ∥R̃(Uk+1

h )∥2 < TOLN .

• Case 3: The classification of the active/inactive set proceeds as in Case 1 with c = 10E.
But in this case, we weaken the active set stopping criterion, i.e. we do not enforce Ak = Ak+1

for termination anymore. Instead, we perform as much Newton active set iterations as needed
to achieve ∥R̃(Uk+1

h )∥2 < TOLN . When this is fulfilled, we only perform 10 more Newton
active set iterations until we stop. The number 10 is chosen heuristically based on our
experiences made in [93]. It is a compromise between sufficiently many iterations to guess
that we may have converged and computational cost by not adding too many additional
iterations.

• Case 4: The classification of the active/inactive set proceeds as in Case 1 with c = 10E.
But in this case, we completely omit the active set stopping criteria. This means, we do not
require Ak = Ak+1 but stop immediately as soon as ∥R̃(Uk+1

h )∥2 < TOLN is reached.

3.8 Linear solution
In this section, we concentrate on the linear systems arising at each Newton step. Formally,
Newton’s defect step reads

MU = F,

(respectively M̃Ũ = F̃ in the case of the primal dual active set method) and has the block structure

M =

(
Muu Muφ

Mφu Mφφ

)
, F =

(
Fu

Fφ

)
.

Therein, the Jacobian M is composed by the directional derivatives

Muu
i,j =

((
(1− κ)φ̃2 + κ

)
σ+(χu

j ), e(χ
u
i )
)
+ (σ−(χu

j ), e(χ
u
i )),

Mφu
i,j = 2(1− κ)(φ σ+(χu

j ) : e(u), χ
φ
i )

Muφ
i,j = 0,

Mφφ
i,j = (1− κ)(σ+(u) : e(u)χφ

j , χ
φ
i ) +Gc

(1
ε
(χφ

j , χ
φ
i ) + ε(∇χφ

j ,∇χ
φ
i )
)
.
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The term Muφ
i,j = 0 arises due to the linearization in the degradation function; see Section 3.1.1.

In a fully monolithic form [168, 166], this block would be non-zero. The Newton right hand side
F (the actual residual) consists of:

Fu
i = −Ã(Uk)(χ

u
i ), Fφ

i = −Ã(Uk)(χ
φ
i ).

In order to make iterative linear solvers efficient, we need to apply a preconditioner. First of all,
the linear systems MU = F are solved with GMRES (generalized minimal residual) [143, 142]. For
the preconditioner, we need to analyze the structure of the Jacobian M and specifically the block
entries. Here, it can be observed that the diagonal blocks mainly consist of elliptic terms (which
are besides mass matrices, the nicest entries one can have):

P−1 =

(
(Puu)−1 0

0 (Pφφ)−1

)
Indeed, in [74, 75], we found that a straighforward application of an AMG multigrid solver works
sufficiently well. Approximately, we have:

Puu ≈ −∇ · (φ2∇u), Pφφ ≈ ε∆φ− 1

ε
(1− φ),

which both are of elliptic type and are therefore ‘nice’ terms to deal with.

3.9 Parallelization
Working with the software library deal.II, parallelization is very well documented and very well
tested. The ‘standard implementation’ using MPI was applied to the previously described systems.
The meshes are handled with p4est (parallel dynamic management of a collection of adaptive
octrees). With these parts, the pfm-cracks code was parallelized with relative ease in the year
2015 [75], including adaptively refined meshes. Scalability studies for Sneddon’s example (see later
Chapter 5 for more descriptions) were conducted in [75] and shown in Table 3.3. Therein the
overall numerical solver is based on the descriptions of the previous sections.

NP
ref Dofs 16 32 64 128 256 512 1024 2048

1 867 2 2 2 2 2 2 2 2
2 3267 10 10 9 9 8 8 8 8
3 12675 13 13 13 13 12 12 19 19
4 49923 17 17 16 17 14 15 14 14
5 198’147 19 19 19 18 18 18 17 19
6 789’507 24 23 25 24 25 23 24 23
7 3’151’875 33 27 29 28 27 27 25 37
8 12’595’203 - - 31 31 33 32 30 32
9 50’356’227 - - 43 43 44 48 40 52

Table 3.3: Number of GMRES iterations of a single Newton step for the Sneddon 2d test with
global refinement. Iterations are nearly independent of problem size (h) and number of processors
NP . The relative residual is 1e-8.
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In Figure 3.3 a graphical illustration of four different processors is provided. Specifically, we
point to the distribution of the parts of domain to each processors in order to have loading bal-
ancing, e.g., each processors has a similar amount of computational work to do.

Figure 3.3: Exemplified visualization of parallel computing on 4 processors. The different sub-
domains are associated with different processors. Depending on mesh refinement, the workload for
each processor is adjusted dynamically at each time step.
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3.10 Space-time Galerkin finite element discretization
In this section, we start from Proposition 15. The new part is concerned with the temporal
discretization, which is based on a discontinuous Galerkin (dG) finite element method. The spatial
part is as before, i.e., using continuous Galerkin (cG) finite elements. Using dG, we need to
introduce jump terms, which require additional notations and make the problem statements rather
heavy. On the other hand, having a Galerkin scheme in time yields all the concepts we already have
for the spatial discretizations, such as best approximation properties, finite element error estimates,
consistent derivation of adjoints (Chapter 4), solver developments [61, 144], and an holistic view
on the model.

3.10.1 Temporal discretization
For T > 0, we partition I = [0, T ] into M left-open subintervals Im = (tm−1, tm] using the time
grid 0 = t0 < · · · < tM = T ,

I = {0} ∪ I1 ∪ · · · ∪ IM .
In order to apply discontinuous Galerkin methods, here dG(0), we define the space X0

k of piecewise
polynomials of degree 0,

X0
k := {V ∈ X : V (0) ∈ V and V |Im ∈ P0(Im, V ), m = 1, . . . ,M}. (3.9)

Consequently we seek a solution U in the space X0
k , where the subindex k indicates the time-

discretized function space. For the temporal jump terms arising from dicontinuous Galerkin meth-
ods we use the standard notation

V +
m := V (tm+), V −

m := V (tm−) = V (tm), [V ]m := V +
m − V −

m .

Remark 36. Since we use piece-wise constant functions in time (dG(0)), we have

∂tV = V −
m − V +

m−1 = 0 ∀V ∈ X0
k ∀m = 1, . . . ,M.

Next, the two equations from (2.14) are combined to form the discretized state equation. To
shorten the notation we sum up all, the energy-related terms in a semi-linear form a : Q×V×V → R,

a(U)(Φ) := g(φ) · (Ce(u), e(Φu))

+Gcε(∇φ,∇Φφ)−
Gc

ε
(1− φ,Φφ)

+ (1− κ)(φ · Ce(u) : e(u),Φφ).

For a given initial value U0 = (u0, φ0) ∈ V , the fully discretized state equation consists of finding
a function U ∈ X0

k that solves (3.10) for every Φ ∈ X0
k

0 =

M∑
m=1

[
γ(∂tφ,Φφ){∂tφ>0,Im} + η(∂tφ,Φφ)Im

]
(3.10a)

+

M−1∑
m=0

[
γ([φ]m,Φ

+
φ,m){φ−

m+1>φ−
m} + η([φ]m,Φ

+
φ,m)

]
(3.10b)

+

M∑
m=1

a(U(tm))(Φ(tm))∆tm (3.10c)

+ (u−0 − u0,Φ
−
u,0) + (φ−

0 − φ0,Φ
−
φ,0). (3.10d)
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The right-sided box rule has been used to approximate the time integral in (3.10c), where ∆tm :=
tm− tm−1. The jump terms in (3.10b) represent the discontinuities of the functions in X0

k . These
jump terms can be reformulated as

M∑
m=1

[
γ(φ+

m−1 − φ−
m−1,Φ

+
φ,m−1){φ−

m>φ−
m−1}

+ η(φ+
m−1 − φ−

m−1,Φ
+
φ,m−1)

]
. (3.11)

Additionally, because we are using a dG(0) scheme, our test functions satisfy

Φ+
m−1 = Φ−

m ∀m = 1, . . . ,M.

The first sum (3.10a) vanishes entirely by remark 36 and the two terms in (3.11) containing φ+
m−1

become (φ−
m,Φ

−
φ,m){φ−

m>φ−
m−1}

and (φ−
m,Φ

−
φ,m), respectively. In combination with (3.10b) and

(3.10d), the discrete state equation (3.10) reads

0 =

M∑
m=1

(
γ
[
(φ−

m,Φ
−
φ,m){φ−

m>φ−
m−1}

− (φ−
m−1,Φ

−
φ,m){φ−

m>φ−
m−1}

]
+ η
[
(φ−

m,Φ
−
φ,m)− (φ−

m−1,Φ
−
φ,m)

]
+ a(U(tm))(Φ(tm))∆tm

)
+ (u−0 − u0,Φ

−
u,0) + (φ−

0 − φ0,Φ
−
φ,0) ∀Φ ∈ X0

k .

(3.12)

We solve (3.12) by obtaining U−
0 = U(0) from the initial condition

(U(0),Φ−
0 ) = (U0,Φ

−
0 ) ∀Φ−

0 ∈ V. (3.13)

Then we obtain U(tm) for m = 1, . . . ,M from

0 = γ(φ(tm),Φφ(tm)){φ(tm)>φ(tm−1)} + η(φ(tm),Φφ(tm))

− γ(φ(tm−1),Φφ(tm)){φ(tm)>φ(tm−1)} − η(φ(tm−1),Φφ(tm))

+ a(U(tm))(Φ(tm))∆tm ∀Φ ∈ X0
k .

(3.14)

3.10.2 Spatial discretization
As in Section 3.3, we construct a finite element spaces Vh := Vuh × Vφh on the mesh Th as usual:

Vuh := {v ∈ H1
D(Ω;R2) : v|K ∈ Qs(K) for K ∈ Th},

Vφh := {v ∈ H1(Ω): v|K ∈ Qs(K) for K ∈ Th}.

Based on (3.9) we can use these preparations to define the fully discrete function space

X0
hk := {V ∈ X : Vh(0) ∈ Vh and V |Im ∈ P0(Im, Vh), m = 1, . . . ,M}.

In order to find a solution Uh for the fully discrete system we solve the initial condition

(Uh(0),Φ
−
h,0) = (Uh,0,Φ

−
h,0) ∀Φ−

h,0 ∈ Vh (3.15)

first, and then we obtain Uh(tm) for m = 1, . . . ,M by solving

0 = γ(φh(tm),Φφ,h(tm)){φh(tm)>φh(tm−1)} + η(φh(tm),Φφ,h(tm))

− γ(φh(tm−1),Φφ,h(tm)){φh(tm)>φh(tm−1)} − η(φh(tm−1),Φφ,h(tm))

+ a(Uh(tm))(Φh(tm))∆tm ∀Φh ∈ X0
hk.

(3.16)
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3.11 Excursus II: Numerical modeling and implementation
of the obstacle problem

In this section, we continue from Section 2.4 our developments in order to demonstrate regular-
ization and Newton’s method for a ‘simple’ model problem; namely the obstacle problem. The
obstacle setting shares important similarities with phase-field fracture as we discussed previously:
indeed the crack irreversibility constraint can be seen as an ‘obstacle’ condition in time. In the
following, several details of the discretization, implementation, and simulation results are provided.

3.11.1 Problem statement
As in Section 2.4, we consider Ω = (0, 1)2 and the following setting:

−∆u ≥ f in Ω,

u ≥ g in Ω,

(f +∆u)(g − u) = 0 in Ω,

u = 0 on ∂Ω,

with a right hand side f = −1. For comparison, we also recall the classical Poisson problem:

−∆u = f in Ω,

u = 0 on ∂Ω,

with f = −1. Plots of the numerical solutions are provided in Figure 3.4.

Variational forms

We set

a(u, φ) = (∇u,∇φ),
l(φ) = (f, φ).

Define a convex set:
K := {u ∈ H1

0 (Ω)|u ≥ g a.e. in Ω}
and V := H1

0 (Ω). Then:
u ∈ K : a(u, φ) ≥ l(φ) ∀φ ∈ K.

Regularization (penalization) of the inequality constraint

We regularize u ≥ g as follows:
γ([g − u]+, φ),

with the (simple) penalization parameter γ > 0.

Remark 37. Obviously, this term is non-smooth and renders the overall nonlinear problem for
which we need a nonlinear solver (for instance Newton).

Then:
u ∈ V : a(u, φ)− γ([g − u]+, φ) = l(φ) ∀φ ∈ V.
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Newton’s method

We now formulate a root-finding problem. Redefine from before:

aN (u)(φ) := a(u, φ)− γ([g − u]+, φ)− l(φ).

Then:
u ∈ V : aN (u)(φ) = 0 ∀φ ∈ V.

Newton: Initial guess u0 ∈ V . Then iteration: for k = 0, 1, 2, . . .:

uk ∈ V : a′N (uk)(δu, φ) = −aN (uk)(φ) ∀φ ∈ V

uk+1 = uk + ωδu

with a line search parameter ω ∈ (0, 1]. And with

a′N (uk)(δu, φ) := (∇δu,∇φ) + γ(δu, φ)B(uk)

with the set
B(uk) := {x ∈ Ω|uk(x) < g(x)}.

Discretization

We employ a conforming finite element method: Vh ⊂ V with Vh := {φ1, . . . , φM} and dim(Vh) =
M . Take as FEM, for instance, linear (bilinear) elements, i.e., hat functions in 1D.

For a usual linear problem, we would try to solve for uh,k ∈ Vh. Since the problem is nonlinear,
we cannot determine uh,k directly, but use the nonlinear Newton iteration. Here, we determine
δuh ∈ Vh, which means:

δuh =

M∑
j=1

ujφj .

Then:

uh,k ∈ Vh : a′N (uh,k)(δuh, φh) = −aN (uh,k)(φh) ∀φh ∈ Vh

uh,k+1 = uh,k + ωδuh

The defect solution (first line of Newton’s method) can be re-written as:

a′N (uh,k)(

M∑
j=1

ujφj , φh) = −aN (uh,k)(φh) ∀φh ∈ Vh

⇔
M∑
j=1

uj a
′
N (uh,k)(φj , φh) = −aN (uh,k)(φh) ∀φh ∈ Vh

⇔
M∑
j=1

uj a
′
N (uh,k)(φj , φi) = −aN (uh,k)(φi) i = 1, . . . ,M. ⇔ AδU = B.

Specifically,

A := (a′N (uh,k)(φj , φi))
M
i,j=1︸ ︷︷ ︸

∈RM×M

, δU = (uj)
M
j=1︸ ︷︷ ︸

∈RM

, B := aN (uh,k)(φi)
M
i=1︸ ︷︷ ︸

∈RM

.
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In explicit matrix notation:

A =

 (∇φ1,∇φ1) + γ(φ1, φ1)B . . . (∇φM ,∇φ1) + γ(φM , φ1)B
...

. . .
...

(∇φ1,∇φM ) + γ(φ1, φM )B . . . (∇φM ,∇φM ) + γ(φM , φM )B


Recall: test functions determine the row.

Details and discussions

We provide a bit more details in terms of heuristic discussions in this section. It is trivial to see
that:

(∇φ1,∇φ1) =

∫
Ω

∇φ1 · ∇φ1 dx → Laplacian,

and

γ(φ1, φ1) =

∫
Ω

φ1 · φ1 dx → (weighted) mass term.

For γ ≫ 0 (heavy enforcement of the constraint) and u ≪ g (large violations of the constraint),
the linear system in the defect of Newton’s method becomes ill-conditioned and Newton’s method
itself more nonlinear. Indeed

γ(φj , φi)B

only acts in rows and columns in which the constraint is violated. We therefore have a large
condition number

cond2(A) ≫ 1.

Furthermore, the condition numbers of the Laplacian and the mass term are:

(∇φj ,∇φi) ∼
1

h
, (φj , φi) ∼ h

and for the right hand (f, φi), it holds:

(f, φi) ∼ h.

For an asymptotic equilibrium we thus need:

γ ∼ 1

h2
.

In addition if we have material parameters (for instance Young’s modulus or the critical energy
release rate GC if we have the phase-field system in mind), which enter into the Laplacian

(α(x)∇φj ,∇φi).

From this we can follow that

γ ∼ α(x)

h2
.
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Implementation in DOpElib

For details on DOpElib within these lecture notes, we refer to [112][Chapter 15]. The programming
code used for this example can be found on

http://www.thomaswick.org/links/Example_Obstacle_Simple_Penalization.zip

and is based on the official DOpElib example dopelib/Examples/PDE/StatPDE/Example4/ (clas-
sical Poisson problem on the unit square).

• Some parameters are provided in dope.prm;

• The grid and important setups are in main.cc;

• The equations, g and γ are implemented in local_pde.h.

The number of DoFs is 4 225, the obstacle function is g = −0.01 and the penalization is chosen as
γ = γ̄

h2 with γ̄ = 0.1.

Figure 3.4: Left: 3d surface plot solution of the classical Poisson problem in (0, 1)2 and right hand
side f = −1, as in Section 3.11.1. Right: obstacle problem with g = −0.01 and simple penalization.

The nonlinear solver behaves as follows:

Newton step: 0 Residual (abs.): 2.4414e-04
Newton step: 0 Residual (rel.): 1.0000e+00
Newton step: 1 Residual (rel.): 9.7262e-01 LineSearch {2}
Newton step: 2 Residual (rel.): 4.8631e-01 LineSearch {1}
Newton step: 3 Residual (rel.): 2.6331e-01 LineSearch {0}
Newton step: 4 Residual (rel.): 5.1674e-03 LineSearch {0}
Newton step: 5 Residual (rel.): < 1.0000e-11 LineSearch {0}

http://www.thomaswick.org/links/Example_Obstacle_Simple_Penalization.zip
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Evaluating the solution in the middle point yields

u(0.5, 0.5) = −0.0148305.

This shows that the constraint works, but it slightly relaxed the solution. This is a well-known
shortcoming of simple penalization.

For a fair comparison, we briefly state the results for the classical Poisson problem:

Newton step: 0 Residual (abs.): 2.4414e-04
Newton step: 0 Residual (rel.): 1.0000e+00
Newton step: 1 Residual (rel.): < 1.0000e-11 LineSearch {0}

The solution value at the middle point is

u(0.5, 0.5) = −0.0736855.

Mesh refinement studies with γ = γ̄
h2

We now briefly investigate the behavior of the solution with respect to (uniform) mesh refinement.
The numbers of DoFs are

4225 (above), 33282, 132098

We run the same code as before and obtain for the middle point and number of Newton iterations:

DoFs u(0.5,0.5) Newton iter.
-----------------------------------------
4225 -0.0148305 5
33282 -0.0112206 10
132098 -0.0103052 19

Thus we observe a dependence on h of both the solution and the solver performance.

Mesh refinement studies with γ = γ̄
h2
coarse

Here, we remove the dependency of h in the penalization constraint. We take the coarsest hcoarse
and evaluate

γ =
γ̄

h2coarse
= 204.8

On the finer levels, we take the same γ. Then we obtain:

DoFs u(0.5,0.5) Newton iter.
-----------------------------------------
4225 -0.0148305 5
33282 -0.01483 6
132098 -0.0148299 6

Here, the nonlinear solver shows constant iteration numbers. Moreover, the middle point u(0.5, 0.5)
converges qualitatively. However, of course, the constraint itself g = −0.01 is not that well approx-
imated.
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Further implementation exercises

In order to study the previous problem in more detail, here are some tasks:

1. Refine the mesh and observe the Newton iteration numbers and the displacement value
u(0.5, 0.5).

2. Change γ. What do you observe?

3. Change g. For instance, g = −0.1 and g = −0.005. What do you observe?

4. Introduce a material coefficient in the Laplacian. What do you observe for the numerical
solution, the number of Newton iterations and u(0.5, 0.5)?

5. Implement an iteration scheme that allows to increase γ successively. Why is this useful?
What do you observe for the Newton iteration numbers and u(0.5, 0.5)?

3.12 Exercises
Exercise 5. Derive a staggered solution scheme for Proposition 14 and compare it with the
(quasi-) monolithic scheme presented in this chapter. What are differences of both schemes? What
are advantages and shortcomings of one or the other?

Exercise 6. 1. By formal Gauss elimination, derive a block-triangular system of M in Sec-
tion 3.8.

2. The matrix obtained by these elimentary operations, constitutes an (optimal) preconditioner
matrix P−1. Double-check that the result P−1M yields identities on the diagonal.

3. Discuss the differences to the block-diagonal preconditioner that is currently suggested in
Section 3.8.

Exercise 7. Calculate and verify all steps up to the linear system for the finite element discretiza-
tion of the obstacle problem in Section 3.11.
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Chapter 4

Optimization (Session 3)

In this section, we follow [87]1 and introduce an optimal control configuration based on the previ-
ously introduced space-time formulation. Therein a certain cost functional (e.g., matching a given
crack pattern φd) shall be minimized, while adapting the boundary conditions, i.e., the control
variables, in a certain way. For general overviews of PDE-based optimization, we refer the reader
to [79] and [18, 116].

In the following, we introduce the reduced solution approach. Here, the primal solution (state
variable) U is eliminated by a solution operator and represented through the control variable
q. Thus, the solution process is reduced to the control variable. Therein, the primal forward
problem plus three additional equations must be solved. Their combination yields the final solution
algorithm.

4.1 Optimization problem

In this chapter, we introduce separable NLP (Non-Linear Program) with a tracking type const
functional. The goal of this NLP is to find a suitable control q which leads to a desired crack path
described by a given phase-field fracture pattern φd. We introduce the space-time weak formulation
with some optimal control in the following way. Let Q := L2(ΓN ) be the function space for the
control function q and the space W := C(I,Q). Then, with the preliminary work carried out in
Section 3.10, we have

Proposition 17. Given initial values U0 = (u0, φ0) ∈ V and a control q ∈ W , we seek U ∈ X
that solves

(g(φ)Ce(u), e(Φu))I − (q,Φu:⊥)ΓN ,I = 0,

Gcε(∇φ,∇Φφ)I −
Gc

ε
(1− φ,Φφ)I + (1− κ)(φCe(u) : e(u),Φφ)I

+ γ(∂tφ,Φφ){∂tφ>0,I} + η(∂tφ,Φφ)I = 0,

(4.1)

for every test function Φ = (Φu,Φφ) ∈ X.

The discretized phase-field fracture system is given by

1Large parts are taken from [87] for which permission from Elsevier is gratefully acknowledged.

81
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Problem 17. Let the initial condition in weak form (see Section 3.10)

(U(0),Φ−
0 ) = (U0,Φ

−
0 ) ∀Φ−

0 ∈ V, (4.2)

be given. Then we compute U(tm) for m = 1, . . . ,M from

0 = γ(φ(tm),Φφ(tm)){φ(tm)>φ(tm−1)} + η(φ(tm),Φφ(tm))

− γ(φ(tm−1),Φφ(tm)){φ(tm)>φ(tm−1)} − η(φ(tm−1),Φφ(tm))

+ a(q(tm), U(tm))(Φ(tm))∆tm ∀Φ ∈ X0
k .

(4.3)

The resulting minimization problem reads as:

min
q,U

J (q, U) :=
1

2

M∑
m=1

∥φ(tm)− φd(tm)∥2 + α

2

M∑
m=1

∥q(tm)− qd(tm)∥2ΓN

s.t. (q, U) solve (4.2) and (4.3) for m = 1, . . . ,M ,

(4.4)

with (u0, φ0) ∈ V and (q, U) ∈ W × X. Here φd ∈ L∞(Ω) is some desired phase-field and qd is
a suitable nominal control used for numerical stabilization. The second sum denotes a classical
Tikhonov regularization with the positive parameter α. For functions that are non-negative and
weakly semi-continuous, it was shown in [128, Theorem 4.3] that there exists a global solution of
(4.4) in L2(I,Q)×X.

4.2 Reduced optimization problem

In order to apply the reduced approach to (4.4), we assume the existence of a solution operator
S : W → X for the PDE (4.1). Using this operator the state variable U can be eliminated from
the cost functional J (q, U) and we obtain a reduced cost functional j : W → R, j(q) := J (q, S(q)).
The NLP (4.4) is the replaced by the unconstrained optimization problem

min
q

j(q). (4.5)

Specifically, we have
j′(q)(δq) = 0 ∀δq ∈W,

for which the linear system (within Newton’s method) reads

j′′(q)(δq1, δq2) = −j′(q)(δq2) ∀δq1, δq2 ∈W.

To solve j′(q) = 0 by Newton’s method, we compute representations of j′ and j′′ using the es-
tablished approach in [18]. These representations require the solution of four auxiliary equations,
which involve the derivatives of the Lagrangian defined as L : W ×X0

k ×X0
k → R,

L(q, U, Z) := J (q, U)− γ(∂tφ, zφ){∂tφ>0,I} − η(∂tφ, zφ)I

−
∫
I

a(q(t), U(t))(Z(t)) dt

− η0(u(0)− u0, zu(0))− η(φ(0)− φ0, zφ(0)),

(4.6)
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in the continuous case and

L(q, U, Z) := J (q, U)−
M∑

m=1

(
γ(∂tφ, zφ){∂tφ>0,Im} + η(∂tφ, zφ)Im

)

−
M−1∑
m=0

(
γ([φ]m, z

+
φ,m){φ−

m+1>φ−
m} + η([φ]m, z

+
φ,m)

)
−
∫
I

a(q(t), U(t))(Z(t)) dt

− η0(u(0)− u0, zu(0))− η(φ(0)− φ0, zφ(0)),

(4.7)

within the dG(r) setting.

4.3 State, adjoint, tangent, adjoint Hessian

The four equations that must be solved in order to determine j′ and j′′ are presented in this
section.

1. State equation: given control q ∈W , find state U= S(q) ∈ X such that the PDE (4.1) holds:

L′
Z(q, U, Z)(Φ) = 0 ∀Φ ∈ X.

2. Adjoint equation: given control q ∈ W and state solution U = S(q), find adjoint solution
Z ∈ X such that

L′
U (q, U, Z)(Φ) = 0 ∀Φ ∈ X. (4.8)

3. Tangent equation: given control q ∈ W , state solution U = S(q), adjoint solution Z and a
direction δq ∈W , find δU ∈ X such that

L′′
qZ(q, U, Z)(δq,Φ) + L′′

UZ(q, U, Z)(δU,Φ) = 0 ∀Φ ∈ X. (4.9)

4. Adjoint Hessian equation: given control q ∈ W , state solution U = S(q), adjoint solution
Z ∈ X from (4.8), a direction δq ∈W , and δU ∈ X from (4.9), find δZ ∈ X such that

L′′
qU (q, U, Z)(δq,Φ) + L′′

UU (q, U, Z)(δU,Φ) + L′′
ZU (q, U, Z)(δZ,Φ) = 0 ∀Φ ∈ X. (4.10)

The representations of the derivatives that we require for Newton’s method are then obtained by
solving these equations in a specific order, see for example [18, 116]:

j′(q)(δq) = L′
q(q, U, Z)(δq) ∀δq ∈W,

j′′(q)(δq1, δq2) = L′′
qq(q, U, Z)(δq1, δq2) + L′′

Uq(q, U, Z)(δU, δq2)

+ L′′
Zq(q, U, Z)(δZ, δq2) ∀δq1, δq2 ∈W.

(4.11)
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4.4 Adjoint time-stepping scheme

In order to derive the adjoint time-stepping scheme we have to compute the derivative of L. We
formulate it directly in the weak form

L′
U (q, U, Z)(Φ) = J ′

U (q, U)(Φ)

− γ(∂tΦφ, zφ){∂tφ>0,I} − η(∂tΦφ, zφ)I

−
∫
I

a′U (q(t), U(t))(Φ(t), Z(t)) dt

− η0(Φu(0), zu(0))− η(Φφ(0), zφ(0)).

(4.12)

Herein the partial derivative of a reads

a′U (q, U)(Φ, Z) = ((1− κ)φ2 + κ) · (Ce(Φu), e(zu))

+ 2φ(1− κ)Φφ(Ce(u), e(zu))

+Gcε(∇Φφ,∇zφ) +
Gc

ε
(Φφ, zφ)

+ (1− κ)(Φφ · Ce(u) : e(u), zφ)
+ 2φ(1− κ)(Ce(Φu) : e(u), zφ).

(4.13)

The main problem now is that the time derivatives are applied to the test function Φ, which is
usual for the adjoint. Thus, we use integration by parts to convert the time derivatives to Z. Then
the second line in (4.12) becomes

γ(Φφ, ∂tzφ){∂tφ>0,I} + η(Φφ, ∂tzφ)I

+ γ(Φφ(0), zφ(0)){∂tφ(0)>0} + η(Φφ(0), zφ(0))

− γ(Φφ(T ), zφ(T )){∂tφ(T )>0} − η(Φφ(T ), zφ(T )).

(4.14)

In the next step we want to apply the procedure that we applied to the state equation, i.e state a
dG(0) formulation. This will require an approximation of ∂tφ(tm). While ∂tφ(tm) form = 1, . . . ,M
is easily approximated by the backward difference

∂tφ(tm) ≈ φ(tm)− φ(tm−1)

tm − tm−1
,

this procedure will not work for the first mesh point t0 = 0. The forward difference

∂tφ(0) ≈
φ(t1)− φ(t0)

t1 − t0
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is a good choice because it simplifies the condition ∂tφ(t0) > 0 to φ(t1) > φ(t0) and leads to
desired cancellations. Finally we obtain the derivative in a dG(0) setting.

L′
U (q, U, Z)(Φ) = J ′

U (q, U)(Φ)

− γ(Φ−
φ,M , z

−
φ,M ){φ(tM )>φ(tM−1)} − η(Φ−

φ,M , z
−
φ,M )

+

M∑
m=1

[
γ(Φ−

φ,m−1, z
+
φ,m−1 − z−φ,m−1){φ−

m>φ−
m−1}

+ η(Φ−
φ,m−1, z

+
φ,m−1 − z−φ,m−1)

]
−

M∑
m=1

a′U (q(tm), U(tm))(Φ(tm), Z(tm))∆tm

− η0(Φ
−
u,0, z

−
u,0).

(4.15)

From this point on, we make use of the separable structure of J (q, U) =
∑

m J(q(tm), U(tm)). We
begin the solution procedure by separating all terms related to the last time point tM from (4.15).

a′U (q(tM )U(tM ))(Φ(tM ), Z(tM ))∆tM

+ γ(Φ−
φ,M , z

−
φ,M ){φ−

m>φ−
m−1}

+ η(Φ−
φ,M , z

−
φ,M )

= J ′
U (q(tM ), U(tM ))(Φ(tM )) ∀Φ ∈ X0

k .

(4.16)

Next, we add up what is left, multiply by −1 and use the Xk0 property (z+φ,m−1 = z−φ,m) to obtain:

0 =

M∑
m=1

[
γ(Φ−

φ,m−1, z
−
φ,m−1 − z−φ,m){φ−

m>φ−
m−1}

+ η(Φ−
φ,m−1, z

−
φ,m−1 − z−φ,m)

]
+

M−1∑
m=1

a′U (q(tm), U(tm))(Φ(tm), Z(tm))∆tm

−
M−1∑
m=1

J ′
U (q(tm), U(tm))(Φ(tm))

+ η0(Φ
−
u,0, z

−
u,0) ∀Φ ∈ X0

k .

(4.17)

Now we want to rewrite the entire equation as a single sum in order to derive the equations that
are solved in each time step. Consequently, we separate the terms for m = 0 and shift down the
index of the first sum:

0 =

M−1∑
m=1

([
γ(Φ−

φ,m, z
−
φ,m − z−φ,m+1){φ−

m+1>φ−
m} + η(Φ−

φ,m, z
−
φ,m − z−φ,m+1)

]
+ a′U (q(tm), U(tm))(Φ(tm), Z(tm))∆tm

− J ′
U (q(tm), U(tm))(Φ(tm))

)
+ γ(Φ−

φ,0, z
−
φ,0 − z−φ,1){φ−

1 >φ−
0 } + η(Φ−

φ,0, z
−
φ,0 − z−φ,1)

+ η0(Φ
−
u,0, z

−
u,0).
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Finally we solve for m =M − 1,M − 2, . . . , 1 the equation

a′U (q(tm), U(tm))(Φ(tm), Z(tm))∆tm

+ γ(Φ−
φ,m, z

−
φ,m − z−φ,m+1){φ−

m+1>φ−
m} + η(Φ−

φ,m, z
−
φ,m − z−φ,m+1)

= J ′
U (q(tm), U(tm))(Φ(tm)) ∀Φ ∈ X0

k .

(4.18)

For m = 0 the three remaining terms are,

γ(Φ−
φ,0, z

−
φ,0 − z−φ,1){φ−

1 >φ−
0 } + η(Φ−

φ,0, z
−
φ,0 − z−φ,1) + η0(Φ

−
u,0, z

−
u,0) = 0. (4.19)

The last term of (4.19) can be omitted for η0 ≪ η small enough and the following equation can be
solved in its place:

(Φ−
φ,0, z

−
φ,1) = (Φ−

φ,0, z
−
φ,0). (4.20)

Remark 38 (Algorithmic realization). It can be helpful to add the initial condition (Φ−
u,0, z

−
u,1) =

(Φ−
u,0, z

−
u,0) to prevent singular matrices that would cause a loss of convergence in the linear solvers.

In total, (Φ−
0 , Z

−
1 ) = (Φ−

0 , Z
−
0 ) is used to replace (4.20).

4.5 Tangent time-stepping schemes

Similar to the state equation we start by solving the initial conditions,

(δu−0 ,Φ
−
u,0) = 0,

(δφ−
0 ,Φ

−
φ,0) = 0,

in short

(δU(t0),Φ
−
0 ) = 0 ∀Φ−

0 ∈ V. (4.21)

An application of the X0
k property to δφ+

m−1 leads to the following equation that is solved for
m = 1, . . . ,M

γ(δφ−
m,Φ

−
φ,m){φ−

m>φ−
m−1}

+ η(δφ−
m,Φ

−
φ,m)

+ a′U (q(tm), U(tm))(δU(tm),Φ(tm))∆tm

= η(δφ−
m−1,Φ

−
φ,m) + γ(δφ−

m−1,Φ
−
φ,m){φ−

m>φ−
m−1}

− a′q(q(tm), U(tm))(δq(tm),Φ(tm))∆tm ∀Φ ∈ X0
k .

(4.22)
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4.6 Adjoint Hessian time-stepping schemes
The procedure for the adjoint Hessian equation is similar to the adjoint equation. In dG(r) terms
the equation reads as

0 =

M∑
m=1

(
J ′′
UU (q(tm), U(tm))(δU(tm),Φ(tm))

− a′′UU (q(tm), U(tm))(δU(tm),Φ(tm), Z(tm))∆tm

− a′U (q(tm), U(tm))(Φ(tm), δZ(tm))∆tm

+ γ(Φ−
φ,m−1, δz

+
φ,m−1 − δz−φ,m−1){φ−

m>φ−
m−1}

+ η(Φ−
φ,m−1, δz

+
φ,m−1 − δz−φ,m−1)

)
− γ(Φ−

φ,M , δz
−
φ,M ){φ−

M>φ−
M−1}

− η(Φ−
φ,M , δz

−
φ,M )

− η0(Φ
−
u,0, δz

−
u,0) ∀Φ ∈ X0

k .

(4.23)

First we collect all containing the last time point tM and solve

0 = J ′′
UU (q(tM ), U(tM ))(δU(tM ),Φ(tM ))

− a′U (q(tM ), U(tM ))(Φ(tM ), δZ(tM ))∆tM

− a′′UU (q(tM ), U(tM ))(δU(tM ),Φ(tM ), Z(tM ))∆tM

− γ(Φ−
φ,M , δz

−
φ,M ){φ−

M>φ−
M−1}

− η(Φ−
φ,M , δz

−
φ,M ) ∀Φ ∈ X0

k .

(4.24)

Then (4.23) is reformulated as

0 =

M−1∑
m=1

(
J ′′
UU (q(tm), U(tm))(δU(tm),Φ(tm))

− a′′UU (q(tm), U(tm))(δU(tm),Φ(tm), Z(tm))∆tm

− a′U (q(tm), U(tm))(Φ(tm), δZ(tm))∆tm

)
+

M∑
m=1

(
γ(Φ−

φ,m−1, δz
+
φ,m−1 − δz−φ,m−1){φ−

m>φ−
m−1}

+ η(Φ−
φ,m−1, δz

+
φ,m−1 − δz−φ,m−1)

)
− η0(Φ

−
u,0, δz

−
u,0) ∀Φ ∈ X0

k .

(4.25)

Finally the index of the second sum is shifted and all terms corresponding to m = 0 are separated

0 =

M−1∑
m=1

(
J ′′
UU (q(tm), U(tm))(δU(tm),Φ(tm))

− a′′UU (q(tm), U(tm))(δU(tm),Φ(tm), Z(tm))∆tm

− a′U (q(tm), U(tm))(Φ(tm), δZ(tm))∆tm

+ γ(Φ−
φ,m, δz

+
φ,m − δz−φ,m){φ−

m+1>φ−
m}

+ η(Φ−
φ,m, δz

+
φ,m − δz−φ,m)

)
+ γ(Φ−

φ,0, δz
+
φ,0 − δz−φ,0){φ−

1 >φ−
0 } + η(Φ−

φ,0, δz
+
φ,0 − δz−φ,0)

− η0(Φ
−
u,0, δz

−
u,0) ∀Φ ∈ X0

k .

(4.26)
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As a result, we determine δZ(tm) for m =M − 1,M − 2, . . . , 1 from

0 = J ′′
UU (q(tm), U(tm))(δU(tm),Φ(tm))

− a′′UU (q(tm), U(tm))(δU(tm),Φ(tm), Z(tm))∆tm

− a′U (q(tm), U(tm))(Φ(tm), δZ(tm))∆tm

+ γ(Φ−
φ,m, δz

+
φ,m − δz−φ,m){φ−

m+1>φ−
m}

+ η(Φ−
φ,m, δz

+
φ,m − δz−φ,m) ∀Φ ∈ X0

k .

Consequently the only remaining terms in (4.26) are

γ(Φ−
φ,0, δz

+
φ,0 − δz−φ,0){φ−

1 >φ−
0 } + η(Φ−

φ,0, δz
+
φ,0 − δz−φ,0)− η0(Φ

−
u,0, δz

−
u,0). (4.27)

The final step is to use the assumption η0 ≪ η once more and eliminate the last term in the
equation (4.27):

(Φ−
φ,0, δz

−
φ,0) = (Φ−

φ,0, δz
−
φ,1),

(Φ−
u,0, δz

−
u,0) = (Φ−

u,0, δz
−
u,1).
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4.7 Final complete algorithm
The complete method given in Algorithm 3 is obtained by combining the optimization problem
statement and the space-time discretizations from the previous sections, as well as the resulting
time-stepping schemes for the four equations.

Algorithm 3: Overall space-time phase-field fracture control algorithm
Data: Domain Ω, mesh Th, number of time intervals M , parameters ε, κ, Gc, µ, λ, γ, η,

α, initial value U0, initial control guess q0.
Result: Optimal control q and admissible solution U .
1: Set k = 0 and qk = q0 and solve the state equation for U : L′

Z(q
k, U, Z)(Φ) = 0 ∀Φ.

Specifically, obtain U(t0) from (4.2) and then U(t1), . . . , U(tM ) from (4.3);
2: Solve the adjoint equation for Z: L′

U (q
k, U, Z)(Φ) = 0 ∀Φ. Obtain Z(tM ) from (4.16),

then Z(tM−1), . . . , Z(t1) from (4.18), and finally Z(t0) from (4.19);
3: Construct the coefficient vector f ∈ Rn for the reduced gradient ∇j(qk) by solving
Gf = [j′(qk)(qi)]

n
i=1. Here qi denotes the i-th basis function of the discrete control space

Qh and Gij = (qi, qj) defines the mass matrix. The derivatives j′(qk)(qi) for the right
hand side are computed from the representation (4.11);

while ∥f∥2 > TOL do
4: Obtain δq from the Newton equation, j′′(qk)(δq, qi) = −j′(qk)(qi) ∀qi, by minimizing
m(qk,d) = j(qk) + ⟨f ,d⟩+ 1

2 ⟨Hd,d⟩ for a vector d ∈ Rn using the CG-method
(matrix free). Here H ∈ Rn×n denotes the coefficient matrix of ∇2j(qk)δq;

for every CG step do
5: Solve the tangent equation for δU :
L′′
qZ(q

k, U, Z)(δq,Φ) + L′′
UZ(q

k, U, Z)(δU,Φ) = 0 ∀Φ. Obtain δU(t0) from (4.21)
and then δU(t1), . . . , δU(tM ) from (4.22);

6: Solve the adjoint Hessian equation for δZ:
L′′
qU (q

k, U, Z)(δq,Φ) + L′′
UU (q

k, U, Z)(δU,Φ) + L′′
ZU (q

k, U, Z)(δZ,Φ) = 0 ∀Φ.
Obtain δZ(tM ) from (4.24), then δZ(tM−1), . . . , δZ(t1) from (4.25), and finally
δZ(t0) from (4.26);

7: Construct the coefficient vector h ∈ Rn for ∇2j(qk)δq by solving
Gh = j′′(qk)(δq, qi)

n
i=1, where j′′(qk)(δq, qi) is represented via (4.11);

end
8: Choose a step length ν by an Armijo backtracking method;
9: Set qk+1 = qk + νδq;
10: Repeat steps 1, 2, 3 for the new control qk+1 to obtain f for ∇j(qk+1).;
11: Increment k = k + 1;

end
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4.8 Exercises
Exercise 8. 1. Discuss the physical meaning of (4.4).

2. Discuss and formulate other tracking type functionals, e.g., for the displacements.

3. Discuss and formulate other control variables q, e.g., in the right hand side or Dirichlet
boundary conditions.

Exercise 9. 1. Given the Lagrangian (4.6), calculate the directional derivative into the direc-
tion of u, namely derive the adjoint equation.

2. What does the adjoint tell us?

3. What are the properties of the adjoint?



Chapter 5

Numerical simulations and current
developments (Session 4)

In this chapter, we introduce some current developments made in our group and collaborations.
The focus is on numerical aspects such as iteration numbers, convergence studies, robustness in
parameters, and computational cost. We provide findings of recently published work, ongoing and
future research as well as links to research software developments.

5.1 Modified combined Newton scheme: improving nonlinear
efficiency

In the first example1, we test the performance of the modified active set approach proposed in
Section 3.7. For this, we consider a stationary benchmark test [145], where a constant pressure is
applied in the inner of a pre-existing crack in the middle of a domain, and only the crack width
varies. This test setup is motivated by Sneddon [148], and Sneddon and Lowengrub [149]. This
results into the system

Problem 18. (Linearized Euler-Lagrange equations with stress-splitting) Let pn ∈ L∞(Ω) be a
given pressure. For a given φ0 and for every incremental step tn with n = 1, ..., N , find Un :=
{un, φn} ∈ V 0

u ×K such that it holds for Φ := {0, φn} ∈ V 0
u ×K

A(Un)(Ψ− Φ) ≥ 0 ∀Ψ := {ψu, ψφ} ∈ V 0
u ×K ∩ L∞,

where A(Un)(Ψ− Φ) is defined as

A(Un)(Ψ− Φ) :=
(
g(φ̃n)σ+(un), e(ψu)

)
+
(
σ−(un), e(ψu)

)
+ ((φ̃n)2pn,divψu)

+ (1− κ)(φnσ+(un) : e(un), ψφ − φn)

+ 2(φnpn div un, ψφ − φn)

+GC

(
1

ε
(1− φn, ψφ − φn) + ε(∇φn,∇(ψφ − φn))

)
.

1Permission from Elsevier to reprint [93] is gratefully acknowledged.
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We restrict ourselves to a one dimensional fracture C on a two dimensional domain Ω =
(−10, 10)2 as depicted in Figure 5.1 on the left. The fracture is centered horizontally within Ω and
has a constant half crack length l0 = 0.25 and varying width. Precisely, the crack width corresponds
to 2h, where h is the minimal element diameter of the mesh. The mesh is pre-refined geometrically
in the crack zone, as depicted exemplarily for one adaptive refinement step in Figure 5.1 on the
right, where the crack zone is resolved with the smallest mesh size. The driving force is given by
a constant pressure ρ = 10−3 Pa in the inner crack. The parameter setting is given in Table 5.1.

(−10, 10)

(−10,−10) (10,−10)

(10, 10)

domain Ω

crack C

transition zone of size ϵ

(−4,−4)

(−4, 4)

(4,−4)

(4, 4)

Figure 5.1: Left: geometry of the two dimensional Sneddon test. Right: zoom-in to the pre-
refined crack zone in [−4, 4] × [−4, 4] with two global refinement steps and one local refinement
step (geometrically pre-refined). Reprinted from [93] with permission of Elsevier.

The spatial discretization parameter, i.e. the minimal element diameter, is set as

h = 0.022, 0.011, 0.0055, 0.0027, 0.0013.

The quantity of interest, called total crack volume (TCV), can be computed numerically via

TCV =

∫
Ω

u(x, y)∇φ(x, y) d(x, y).

The analytical solution [149] is given by

TCVref =
2πρl20
E′ .

The Figures 5.2 - 5.5 visualize the average active-set iterations required per time-step for Case
1-Case 4 and h = 0.022, 0.011, 0.0055, 0.0027. We observe, that with a smaller h, the number of
iterations can become comparatively large in Case 1 in comparison to the other cases. We also
ran a test with a minimal element diameter h = 0.0013 which leads to around 40 million degrees
of freedom. There, the Newton active set method did not achieve convergence within 500 Newton
active set iterations with Case 1 in the 2nd incremental step. In contrast, with the modified
constant c from Case 2, the Newton method terminates within 46, 26, 18, 7 and 4 iterations to
converge at each incremental step. With Case 3 10−11 Newton active set iterations are needed in
each timestep on each refinement level. With Case 4 only 1 iteration is needed. The latter shows
that the Newton method only needs 1 iteration to converge, which underlines the assumption that
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Parameter Definition Value
Ω Domain (−10, 10)2

h Diagonal element diameter test-dependent
l0 Half crack length 0.25

GC Material toughness 1.0

E Young’s modulus 1.0

µ Lamé parameter 0.42

λ Lamé parameter 0.28

ν Poisson’s ratio 0.2

p Applied pressure 10−3

ε Bandwidth of the initial crack 2h

κ Regularization parameter 10−10

Number of global refinements 2

Number of local refinements 5, 6, 7, 8, 9
TOLN Tolerance outer Newton solver 10−7

Tolerance inner linear solver ∥R̃(Un,k
h )∥210−8

Table 5.1: The setting of the material and numerical parameters for the Sneddon 2d test. Reprinted
from [93] with permission of Elsevier.

the active set stopping criterion is indeed the reason for the slow convergence in Case 1. The
speed-up coming along with Case 3, Case 4 and especially Case 2 has a noticeable impact in
the computation time, which is summarized for all settings in Table 5.2. The speed-up of Case
3 and Case 4 must be treated with caution since we do not iterate until full convergence of the
active set in these cases, which may lead to reduced accuracy.

Total wallclock time | Sneddon 2d
Case h = 0.022 | 4 cores h = 0.011 | 4 cores h = 0.0055 | 16 cores h = 0.0027 | 32 cores h = 0.0013 | 64 cores

Case 1 587.983s 2243.164s 2275.481s 11682.962s –
Case 2 161.765s 976.391s 784.019s 2590.394s 6562.554s

Case 3 117.775s 458.664s 572.438s 1228.499s 4132.350s

Case 4 22.833s 77.788s 87.405s 208.310s 940.686s

Table 5.2: Total wallclock time of the Sneddon 2d test for different refinement levels on different
numbers of cores. Reprinted from [93] with permission of Elsevier.

As it can be observed in Table 5.3, the error in the TCV is not affected, even though we
completely ignore the active set stopping criterion (Case 4). But in this case, we may obtain a
non-smooth phase-field solution. This phenomenon is depicted in Figure 5.6. The slight increase
of the TCV error for h < 0.0055 can be attributed to the fact that the analytical solution is based
on an infinite domain. Thus, the solution does not converge to the exact solution for h → 0 since
the domain-error due to the finite domain will become dominant if h is small enough, which is the
case for h < 0.0055, as we assume. This phenomenon was further investigated in [75].

Lastly, a brief parallel study is conducted. The framework is parallelized with MPI. Since it
is based on the pfm-cracks code [76], extensive scalability analyses can be found in [75]. We
compare the CPU time for one representative incremental step for h = 0.022 (168 609 degrees of
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Figure 5.2: Number of active set iterations for
Case 1-Case 4 and h = 0.022 in the Sneddon
2d test. Reprinted from [93] with permission of
Elsevier.
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Figure 5.3: Number of active set iterations for
Case 1 to Case 4 and h = 0.011 in the Sneddon
2d test. Reprinted from [93] with permission of
Elsevier.

1 2 3 4

0

20

40

60

time

#
A

ct
iv

e
se

t
it

er
at

io
ns

Case 1 | h = 0.0055

Case 2 | h = 0.0055

Case 3 | h = 0.0055

Case 4 | h = 0.0055

Figure 5.4: Number of active set iterations for
Case 1-Case 4 and h = 0.0055 in the Sneddon
2d test. Reprinted from [93] with permission of
Elsevier.
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Figure 5.5: Number of active set iterations for
Case 1-Case 4 and h = 0.0027 in the Sneddon
2d test. Reprinted from [93] with permission of
Elsevier.



5.2. SPACE-TIME PHASE-FIELD FRACTURE OPTIMAL CONTROL 95

TCV error | Sneddon 2d
Case h = 0.022 h = 0.011 h = 0.0055 h = 0.0027 h = 0.0013

Case 1 0.000173649 3.72255e-05 3.03573e-05 6.45367e-05 –
Case 2 0.000173649 3.72255e-05 3.03573e-05 6.45367e-05 8.19169e-05
Case 3 0.000173649 3.72255e-05 3.03573e-05 6.45367e-05 8.19169e-05
Case 4 0.000173649 5.33208e-05 3.03573e-05 6.14307e-05 8.19169e-05

Table 5.3: Error in the TCV for different mesh size parameters and Case 1 - Case 4. Reprinted
from [93] with permission of Elsevier.

Figure 5.6: Visualization of the nonsmooth phase-field solution of the two dimensional Sneddon
test with h = 0.011 and Case 4. Red represents the fully intact part of the domain, blue the
fully broken part and white stands for the transition zone. Reprinted from [93] with permission of
Elsevier.

freedom) computed on 1 core and 16 cores. On 1 core, the CPU time of one incremental step is
2386s (approx. 18h) and on 16 cores, the CPU time is 142s.

5.2 Space-time phase-field fracture optimal control
In this second numerical experiment2 we employ a tracking type cost functional (4.4) and solve
it by the formulations and algorithms laid out in Chapter 4. to compute an optimal control that
approximately generates a desired phase-field. The open source software libraries deal.II [12, 13]
and DOpElib [50] are used for the numerical calculations in this section.

Since a major part of the published work deals with forward phase-field fracture, where the
cracks propagate through large areas of the domain and even reach the domain boundaries, we
emphasize that short fractures are specifically considered in our optimal control settings. Especially
the desired crack pattern φd is set to be small enough such that we can clearly distinguish between
our optimal control final fractures and non-controlled fractures.

In this experiment we want to find an optimal control which connects some (but not all) initial
notches in a given domain. Herein we consider the rectangle Ω = (0, 2.2) × (0, 0.4) with four
initial horizontal notches N1 := (0.3, 0.5)×{0.2}, N2 := (0.7, 0.9)×{0.2}, N3 := (1.3, 1.5)×{0.2},
N4 := (1.7, 1.9) × {0.2}, see Fig. 5.7. By combining these notches N :=

⋃4
i=1 Ni we define the

initial phase-field as

φ0(x, y) :=

{
0, (x, y) ∈ N ,

1, else.

2Reprinting text, figures, and tables from [87] is gratefully acknowledged and with permission from Elsevier.
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ΓD

Γfree

ΓN

Γfree

Ω

↑ q ↑ q

φd φdN1 N2 N3 N4

Figure 5.7: Domain Ω = (0, 2.2) × (0, 0.4) with boundary partition ∂Ω = ΓD ∪ ΓN ∪ Γfree, four
initial notches N1, . . . ,N4, and the desired phase-field φd. Reprinted from [87], with permission
from Elsevier.

Table 5.4: Regularization and penalty parameters (left), model and material parameters (right).

Par. Definition Value

ε Regul. (crack) ≈ 4h 0.035
κ Regul. (crack) 1.0e−10
η Regul. (viscosity) 1.0e3
γ Penalty 1.0e5
α Tikhonov 2.1e−10

Par. Definition Value

Gc Fracture toughness 1.0
νs Poisson’s ratio 0.2
E Young’s modulus 1.00e6
q0 Initial control 1.0
qd Nominal control 6.53e3

The desired phase-field φd is defined as the connection of N1 with N2 and N3 with N4, thus we
write

φd(x, y) :=

{
0, x ∈ (0.5, 0.7) ∪ (1.5, 1.7) and y ∈ (0.2− 4h, 0.2 + 4h),

1, else.

We partition the boundary ∂Ω as shown in Fig. 5.7, and the spatial mesh consists of 352×64 square
elements with diameter h =

√
2×0.4/64 ≈ 0.00884. We discretize the time interval [0, 1] into 2001

equidistant time points, i.e., T = 1 and M = 2000. Table 5.4 contains all relevant parameters for
this experiment.

For a tolerance 2.0e−9 the results are shown in Table 5.5. The final optimal phase-field in
Fig. 5.8 (bottom) shows that the desired phase-field has been reached, because N1 is connected to
N2 and N3 is connected to N4. The corresponding optimal control force shown in Fig. 5.11 has
two maxima right between the notches that should be connected. This behaviour can be expected
from a mechanical standpoint. The decreasing control at the end points can explain the four cracks
propagating from both ends of each pair of connected notches. Due to the decreasing control we
get a different principal axis of tension which leads to a non-horizontal crack growth.
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Table 5.5: Experiment 3: number of CG iterations, residuals, cost terms and maximal force during
NLP iteration.

Iter CG Relative Absolute Cost Tracking Tikhonov Force
residual residual

0 – 1.0 2.00e−6 2.3850e−2 1.4302e−2 9.5483e−3 100.00
1 2 0.110 2.20e−7 1.2839e−2 1.2839e−2 3.4223e−8 6550.69
2 2 3.13e−2 6.27e−8 1.2428e−2 1.2309e−2 1.1897e−4 7899.32
3 2 1.22e−2 2.44e−8 1.2330e−2 1.2139e−2 1.9136e−4 8264.47
4 2 9.34e−3 1.87e−8 1.2292e−2 1.2066e−2 2.2519e−4 8403.51
5 2 1.44e−3 2.89e−9 1.2263e−2 1.2011e−2 2.5205e−4 8501.55
6 2 9.20e−4 1.84e−9 1.2261e−2 1.2006e−2 2.5478e−4 8514.26

0 0.5 1

Figure 5.8: Optimal phase-field φ at times 1400, 1800, and 2000. Reprinted from [87], with
permission from Elsevier.

−2.2e−3 2.2e−3 0 9.6e−3

−8.6e−8 8.6e−8 −2.3e−7 1.0e−7

Figure 5.9: Optimal displacement field u (top: x left, y right) and adjoint field zu (bottom: x left,
y right) at time 1800. Reprinted from [87], with permission from Elsevier.
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−1.5e−2 1.5e−2 −1.6e−3 5.5e−2
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Figure 5.10: Optimal displacement field u (top: x left, y right) and adjoint field zu (bottom: x
left, y right) at time 2000. Reprinted from [87], with permission from Elsevier.
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Figure 5.11: Optimal control force (solid) and nominal control force (dotted) on upper boundary
ΓN . Reprinted from [87], with permission from Elsevier.

The optimal displacement fields at the end time are shown in Fig. 5.10 (top). Both displacement
fields reach their maxima, similar to the control force, right at the two sections between the notches
N1−N2 and N3−N4. In Fig. 5.9 we present the displacement fields before the cracks join at time
step 1800.
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5.3 Phase-field fracture simulations on the CARPIUC bench-
mark

One important goal3 is to use numerical simulations to predict the behavior of components within
developments of new materials or work tools. 4 We can validate the quality and accuracy of those
simulations by a direct comparison with experimental data.

The CARPIUC benchmark [37] is a series of experiments that is specifically designed for the
validation of numerical models of mixed mode crack propagation in quasi-brittle materials and is
therefore perfectly suited to verify the several capabilities of phase-field fracture models. In this
campaign, square specimens made of mortar are fixed inside of a 6-axis testing machine, also called
"Hexapod". While the bottom boundary of the sample is kept steady, a varying combination of
vertical and horizontal translation, as well as in-plane rotation was applied. During the whole
test several thousand images were acquired, such that the measuring technique "digital image
correlation" (DIC) [153] allowed for the assessment of the displacement fields of the specimens for
the duration of the test.
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Figure 5.12: The measured displacement field of the IT2 test in [µm](top: y left, z right), reprinted
from [114] according to the Creative Commons Attribution 4.0 International Public License, and
the simulated displacement field of a sub-region of the sample in [mm](bottom: y left, z right).

3Continuing discussions and ongoing work with Amélie Fau and Francois Hild (ENS Université Paris-Saclay,
France) is gratefully acknowledged.

4This setting was newly implemented in pfm-cracks and the phase-field results shown in this section are not
published elsewhere.
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5.3.1 Computation 1: two notches

In the following we take the measured displacement of the top and bottom face of the sample,
acquired from [114], as the boundary conditions of our simulation, which were performed with
pfm-cracks. The direct comparison of the displacement field of the simulation and the displace-
ment field acquired from DIC is in Figure 5.12.

From the measured displacement field we can see two cracks propagating, one from the left
nodge to the bottom right corner and another from the right nodge to the top left corner. Not
only does the displacement field of the simulation match very well the measured one, but also
matches the phase-field solution the observed crack pattern; see Figure 5.13. Even though the
boundary conditions are not smooth and change continuously, the number of nonlinear iterations
are relatively low and comparable to synthetic tests, as for example the single edge nodge shear
test [168].

Figure 5.13: Solution of the phase-field variable for the IT2 test (left) and a comparison of the
number of Newton iterations per time step with the number of iterations of the linear solver (right).

5.3.2 Computation 2: right side notch

In another setup the experiment was controlled such that a crack is propagating from the right to
the left in form of a sinus curve up to the point, where the crack started to bifurcate; see Figure
5.14.

While the displacement fields around the bifurcation are very similar, it seems that the sim-
ulation did not properly capture the initialization of the crack. Moreover, from the phase-field
solution, Figure 5.15, we can see, that it is quite thick at the area of the nodge. But solutions
of previous time steps show, that the crack was captured well in the beginning, but was smeared
when the bifurcation started. This behaviour is presented in more detail in [175]. In comparison
to the two notch test, the computational cost increased. Not only are almost always more than 16
Newton iterations needed until convergence, but also does the number of iterations of the linear
solver increase significantly up to about 1400 iterations. This increase of linear iterations is related
to the moment before the crack started to bifurcate.
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Figure 5.14: The measured displacement field of the IT3 test in [µm](top: y left, z right), reprinted
from [114] according to the Creative Commons Attribution 4.0 International Public License, and
the simulated displacement field of a sub-region of the sample in [mm](bottom: y left, z right).

Figure 5.15: Solution of the phase-field variable for the IT3 test (left) and a comparison of the
number of Newton iterations per time step with the number of iterations of the linear solver (right).
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5.4 A predictor-corrector non-intrusive global-local approach

Often, the interest of numerical simulations is in some domain as we have seen previously, but
the ‘dynamics’ play a role in a smaller subdomain.5 However, due to the influence of boundary
conditions or changing dynamics, the ‘dynamics’ may evolve.

Previously, we already introduced predictor-corrector adaptivity (Section 3.4), where the focus
was on an accurate representation on the crack path and small regularization parameters ε. In this
section, we extend this concept to situations that the entire physics can change, such that the full-
physics problem is considered in some smaller subdomain. This situation is addressed with a non-
intrusive global-local approach [62]. This approach was extended to phase-field fracture in [64]. The
global (macroscale) problem is linearized elasticity without phase-field and the local (microscale)
problem is elasticity with stress-splitting (of the solid stress tensor; e.g., [121, 11, 152]) and phase-
field. The coupling between both domains is based on a non-overlapping domain decomposition
approach (see [154]) and Lagrange multipliers on the interface. An important role plays ‘non-
intrusiveness’, which means that existing codes shall not be changed and only the coupling on the
interface must be realized. This procedure shall also allow for easier coupling of different software
codes.

In phase-field fracture the crack however grows and the crack path is a priori unknown, which
leads to the problem that the global and local domains may change during the simulation time.
One approach is a predictor-corrector technique in which the new crack path is first predicted
and in a second calculation the actual solution is computed (corrected). This was first developed
for adaptive mesh refinement in [74]. In [131] this idea was extended to an adaptive predictor-
corrector scheme for a non-intrusive global-local approach. Therein, local fine-scale problems are
chosen dynamically depending on the fracture path.

Problem 19 (Macro-scale/global problem). Find u ∈ V D
u such that

AM (u)(w) = l(w) ∀w ∈ V 0
u ,

with AM (u)(w) := (σ(u),∇w) and l(w) := (f, w) and for instance the linearized stress tensor
σ(u) = 2µe(u) + λtr(e)I. We notice that no phase-field solution φ is sought.

On the microscale, the full phase-field model with nonlinear constitutive models is considered,
i.e., Proposition 14. Here, we have the CVIS

Problem 20 (Micro-scale/local problem). Find U = (u, φ) ∈ Vu × Vφ such that

Am(U)(Ψ− Φ) ≥ 0 Φ ∈ Vu × Vφ.

A challenge is linked to propagating fractures such that the crack may grow out of the fine-scale
problem. Consequently, the local and global subdomains are time-dependent and change during a
simulation. This is challenging in terms of an algorithmic realization and implementation because
the interface conditions between the local and global subdomains must be updated during time. A
flexible choice is provided by using Lagrange multipliers. For details, we refer the reader to [64].

5This section is largely taken from [169] for the mathematical descriptions. The numerical results are taken from
[131] with permission from Elsevier.
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Figure 5.16: Illustration of the predictor-corrector adaptive global-local approach for eight different
time points. Reprinted from [131] with permission from Elsevier.

The question remains how to determine the local and global subdomains for growing fractures.
Here, we base ourselves on the previous predictor-corrector suggested in [74]. The mode of oper-
ation for the global-local approach is illustrated in Figure 5.16. The basic adaptive global-local
algorithm is provided in the following and worked out in [131]. The numerical analysis is open and
not yet addressed.

From [131][Section 4], we extract the key algorithm and re-write the main steps in the notation
used in these lecture notes.

Algorithm 3 (Adaptive global-local scheme). The adaptive global-local scheme consists of the
following steps:

1. Solve the coupled global-local problem at time tn:

Find ũ ∈ Vu : AM (ũ)(w) = 0 w ∈ Vu

Find Ũ ∈ Vu × Vφ : Am(Ũ)(Ψ) = 0 Ψ ∈ Vu × Vφ.

2. Predictor step:

• If φ̃ < ηC at an internal edge ∂K of an global element KM and a local element Km of the
current decomposition Tn, then KM → Km to obtain a new global-local decomposition
Tn+1

• Else increment time n→ n+ 1 and go to Step 1.

3. Interpolate global solution u onto the newly assigned local mesh element Km. We notice that
u is now known on the new local element Km, but φ is not.

4. Corrector step: Solve on the new global-local decomposition Tn+1:

Find un+1 ∈ Vu : AM (un+1)(w) = 0 w ∈ Vu,

Find Un+1 ∈ Vu × Vφ : Am(Un+1)(Ψ) = 0 Ψ ∈ Vu × Vφ.
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5. Increment time n→ n+ 1 and go to Step 1.

Figure 5.17: Heterogeneous L-shaped panel test. (a) Geometry and loading setup with a structural
director a inclined under an angle ϕ = −15 (b) partitioning of domain into the heterogeneity and
homogeneity counterparts and (c) global finite element mesh without potential fictitious zones.
Reprinted from [131] with permission from Elsevier.

Figure 5.18: Maximum stress state in the heterogeneous L-shaped panel test. (a) Global stress
state and (b) single scale stress state. Reprinted from [131] with permission from Elsevier.
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Figure 5.19: Crack phase-field pattern for the transversely isotropic heterogeneous L-shaped panel
test with fiber direction angle of ϕ = −15◦. First row: local crack phase-field based on the adaptive
scheme; Second row: mesh evolution for local domain by considering the influence of inclusions;
Third row: resulting single scale phase-field solution at (a) ū = 0.15 mm, (b) ū = 0.324 mm, (c)
ū = 0.333 mm and (d) ū = 0.58 mm. Reprinted from [131] with permission from Elsevier.

Figure 5.20: Heterogeneous L-shaped panel test. (a) Comparison of the load-displacement curves
and (b) accumulated time-displacement curves. Reprinted from [131] with permission from Else-
vier.
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5.5 Ongoing developments
Ongoing and future developments in our group and collaborations include:

• Realization an implementation of the space-time phase-field fracture complementarity system
[86];

• A fully robust-efficient monolithic solution (in our opinion [166, 168, 63] can be further
improved; see also more recent developments [97, 96]);

• Extending matrix-free multigrid [84] to adaptive finite elements and using it as module in
multiphysics phase-field fracture such as IPACS [163];

• Parameter identification in phase-field fracture with digital image correlation (collaboration
between V. Kosin, A. Fau, C. Jailin, F. Hild, Wick; within the IRTG 2657 Leibniz University
Hannover and Université Paris-Saclay) [98];

• Extending the multiphysics phase-field fracture in-house code IPACS [163] to THMC (thermo-
hydro-mechanical-chemical) phase-field fracture;

• High-accuracy frameworks by transfer from interface-capturing phase-field fracture as crack
predictor, via mesh reconstruction, to sharp interface (interface-tracking) representations,
where additionally accurate physics can be described in sufficiently refined crack meshes
[160].

5.6 Open-access materials and research software engineering
Based on the open-source finite element library deal.II [13, 14, 16], three projects are currently
maintained and further developed:

• pfm-cracks [76];

• Phase-field fracture in DOpElib (Denis) [67];

• IPACS [163] (some moduls open-source; other in-house).



Chapter 6

Wrap-up: Quiz

In this final chapter, we consolidate what we learned through some questions:

1. Formulate a simplified phase-field fracture problem (Laplacian, scalar-valued).

2. Given the simplified strong form, derive a weak formulation.

3. How is the energy formulation given?

4. Provide a brief idea of Griffth’s model.

5. What was the achievement of Francfort and Marigo in 1998?

6. Describe in words the idea of phase-field fracture.

7. Describe in your own words the meaning and purpose of the phase-field variable.

8. What is the length scale parameter?

9. List some properties and purpose of the length scale parameter.

10. Please give some own examples in which damage or fracture arise in nature, research or daily
life.

11. What are challenges (or drawbacks) in using a phase-field method for fracture propagation?
Please give one or two examples.

12. Interprete the crack irreversibility constraint physically and give a relationship to the obstacle
problem.

13. Explain one method to treat the crack irreversibility constraint numerically.

14. What are typical difficulties when using (simple) penalization for regularizing an inequality
constraints?

15. What is the role of the penalization constant?

16. What are the active and non-active sets in the obstacle problem?

17. Describe the phase-field fracture complementarity system.

107
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18. What is a primal-dual active set formulation?

19. What is the role of the active set constant?

20. What is the difference between quasi-static and dynamic fracture modeling?

21. What are Euler-Lagrange equations?

22. What is a ‘stationary’ point?

23. Given a PDE on the continuous level, what are the key steps in the numerical solution
process?

24. What are solution algorithms to solve a coupled problem?

25. How can we decouple the displacement/phase-field problem? What do we observe?

26. What are solution algorithms to solve nonlinear problems?

27. Formulate a fixed-point (staggered) iteration.

28. What are the possibilities to improve the efficiency of the numerical solution?

29. List the type of nonlinearities arising in phase-field fracture.

30. Characterize the phase-field fracture problem in terms of the mathematical classifications
(type of coupling, nonlinearities, classical PDE or CVIS).

31. Formulate Newton’s method for solving the phase-field fracture problem.

32. Using a monolithic formulation for phase-field fracture, why do classical Newton methods
have difficulties?

33. Take a monolithic formulation and do a mathematical manipulation in order to linearize the
equations.

34. Give a simplified numerical analysis (key ideas) about the relationship between h and ε.

35. Why space-time modeling?

36. Formulate space-time phase-field fracture.

37. Which part(s) of the spatial discretization is(/are) tricky in phase-field fracture?

38. What is optimal control?

39. Give an example of phase-field fracture optimal control.

40. What is a cost functional?

41. Give examples of other cost functionals, which are different than presented.

42. Describe the solution process of the reduced optimization approach.

43. Describe the physics of the adjoint.



109

44. What is predictor-corrector mesh adaptivity?

45. What is the non-intrusive global-local approach?

46. What is predictor-corrector non-intrusive global-local?

47. Describe the differences between predictor-corrector mesh adaptivity and the predictor-
corrector global-local approach.

48. What is the challenge in the CARPIUC benchmark?

49. What is Sneddon’s benchmark?

50. Formulate the road map from a strong form (or weak form) phase-field fracture setting up
to output functionals. What steps need to be done?
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