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Topological defects are stable structures generated after a symmetry is sponta-
neously broken. Domain walls are surface-like defects with important cosmological
consequences, namely they dominate the energy contents of the universe for a large
sector of the parameter space. Their generation in our universe is well motivated by
beyond the standard model theories such as axions or string theory. When the initial
conditions generated during inflation are properly taken into account, the dynamics
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the currently observed value, and predicts anisotropic cosmic birefringence within
the reach of next-generation CMB polarization probes.
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Chapter 1

Introduction

Symmetries are at the core of our modern understanding of physics and cosmology.
Spontaneous symmetry breaking (SSB) is the phenomenon in which a stable state
of a system transforms nontrivially under some symmetries of the theory. That is,
those symmetries are present on the equations of motion (how that state behaves)
but not on the state itself. This concept originated from the study of condensed
matter physics and was later introduced into particle physics and cosmology.

Topological defects are stable states with non-minimal energy which can occur
in theories with spontaneously broken symmetries. Let us consider one of those
spiral telephone cords that landline or home phones used to have. Those cords are
coiled in just one direction (e.g. clockwise) but with continued use they tend to
tangle, at one point switching from coiling clockwise to counterclockwise. That is
a topological defect! The state has nonzero energy since the cord is overstretched,
and it is stable since in order to remove it we have to manually fix how it coils along
most of the cable length. This is different from just stretching the cord, which is
a state with nonzero energy but which returns to the minimum energy state the
moment whatever is holding the cord is removed. The existence and stability of
defects are given by the topology of the vacuum itself. In our example, by the fact
that the cord can coil either clockwise or counterclockwise. All physics students
have heard at some point of magnetic monopoles, but there are other types as well.
Topological defects are classified depending on their dimensionality in monopoles
(0D), strings (1D), domain walls (2D) and textures (3D).

Let us consider a scalar field whose potential has multiple minima of the same
energy. Then we can consider a state in which in some regions the field takes
one minimum while in others, a different one. The field must interpolate between
both, thus generating a region of nonzero energy called domain wall. In 3D
space, domain walls are surface-like structures with a finite thickness to them. If
we consider many of those patches with equal choices of potential minima, then we
obtain a domain wall network.

Spontaneously broken symmetries tend to be restored at high energies. If that is the
case, then as the universe expands and cools down, there will be a point in time at
which the symmetry becomes spontaneously broken again. If a phase transition like
this happens in our universe, it may lead to the generation of topological defects.
That can be a problem, as we have not observed any topological defect in our
universe yet. Domain walls are of particular interest—or worry—to cosmologists.
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Unless their tension, which is related to the mass of the underlying scalar field,
is incredibly small, domain wall networks quickly dominate the energy contents of
the universe, making the universe expansion anisotropic. That would definitely be
problem, as it is far from what we observe today. Axions are light pseudoscalar
particles which could take many roles in particle physics and cosmology, such as
constituting part or all of dark matter, solving naturalness problems, or driving
inflation. Axion theories are beyond the standard model, but well motivated, and
they lead to domain wall network formation at some point in the early universe.

The current cosmological paradigm is the standard big bang model. The current
universe is then understood via the ΛCDM model, which combines a cosmological
term with the structure formation by cold dark matter. This has been incredibly
successful at explaining the present observations, but it has several initial condition
problems. Isotropy and homogeneity are, at first, postulated via the cosmologi-
cal principle. An almost scale invariant distribution of matter anisotropies must
be present at the initial time in order for structures (galaxies and galaxy clusters)
to form as we observe them today. The big bang model considers a thermalized
universe, but during the early instants the universe expansion is so fast that ther-
malization cannot be reached in time. Inflation consists on a period of fast, ac-
celerated expansion instants after the beginning of the universe, and became the
ideal complementary theory to the big bang. It realizes homogeneity and isotropy
dynamically, leaves fields thermalized and with the distribution of anisotropies just
as needed for explaining the observations. As a bonus, if the phase transitions asso-
ciated with spontaneous symmetry breakings happen before inflation, the resulting
defect networks are stretched many times beyond the horizon, effectively rendering
them undetectable.

If the phase transition happens after inflation, then defect networks can form and
remain until the present time. For domain walls, that can be a problem, if their
tension too large. In the past literature, an initial condition bias was considered
and domain wall networks were seen to decay in a short amount of time, the most
plausible mechanism for generating that bias being inflation. However, the scale
invariant initial conditions had never been properly taken into account when study-
ing their dynamics. In this thesis we present the first study of the post inflationary
domain wall dynamics. What we found is exceptional—these post inflationary do-
main wall networks are very resilient to initial condition biases, and thus will not
decay unless other mechanisms force them to. This finding greatly constrains the-
ories which generate domain walls, unless other aspects of the theory are in place
to avoid wall domination.

The cosmic microwave background (CMB) is the light scattered from the primordial
plasma at recombination, when free electrons and protons combined to form neutral
hydrogen. The CMB light is one of our best probes into the early universe and has
been the gateway to precision cosmology, the era we currently live in which accu-
rate measurements of cosmological parameters have been reached. The CMB light
contains information not only about the universe at the time of recombination, but
also of the media it has propagated along. For example, we have precisely modeled
and measured the anisotropies induced in the CMB by the metric perturbations
sourced by the galaxies and galaxy clusters around us. The isotropic rotation of
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the CMB polarization has been first measured in recent years, which is an indica-
tion of parity-violating interactions. This is called cosmic birefringence, as it is as
if spacetime was filled with a medium of polarization-dependent refractive index.
Axions couple to light through a parity-violating coupling, and thus are now in the
limelight as the most plausible explanation for this rotation. By considering a sta-
ble domain wall network we can predict how much the CMB light is rotated. The
value of the isotropic cosmic birefringence is in line with the current experimental
hint, and the predicted anisotropic cosmic birefringence is well within the reach of
next-generation CMB polarization probes.

Let us now introduce the contents of this thesis. In Ch. 2 we will review standard
cosmology—the ΛCDM model, the thermal history of the universe, evidences for
dark matter as well as its open problems. In Ch. 3 we will study topological de-
fects in detail—which, when and whether they form. Axions are presented as the
most plausible class of theories leading to the domain wall formation. Domain wall
properties and dynamics are also explained up to what was known previous to our
research. In Ch. 4 we present the dynamics of unbiased domain walls, as well as
novel insights in regards to why an attractor solution is reached. In Ch. 5 we show
their biased dynamics. Domain wall network stability is quantified, and we study
how the network lifetime depends on the initial conditions and bias. In Ch. 6 we
do a review of CMB physics at the same time that we show the multiple signatures
which a domain wall network would leave—cosmic birefringence among them. The
summary and conclusions are written in Ch. 7.
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Chapter 2

Cosmology

Modern cosmology began with the development of the theory of general relativ-
ity by Einstein [7]. Thanks to the contributions of Hubble and Lemaitre, it was
discovered that there were galaxies other than ours, and they were receding with
larger velocities the more distant they were [8, 9]. This was the first evidence for
an expanding universe.

In 1964, Penzias and Wilson discovered an apparently homogeneous microwave
signal coming from the sky—the cosmic microwave background (CMB) [12]. Under
the big bang model, after electrons and protons combine to form neutral hydrogen,
photons decouple leaving a low energy background of light with fluctuations across
the sky. Those fluctuations are correlated to the matter fluctuations that had
served as seeds for the formation of structures like stars and galaxies. However, no
fluctuations were to be seen. This smoothness was puzzling and even seemed to go
against causality: how come regions very far apart on the sky all seemed to have
very similar temperatures?

The first proposal for abundant quantities of non-luminous matter was made by
Oort in 1932 after seeing that the motion of stars in the milky way could not be
explained by luminous matter alone [10]. Just one year later, Zwicky observed that
the velocities of the galaxies in the Coma cluster were much higher than expected
from luminous matter estimations [11]. The measurement of galaxy rotation curves
other than the Milky Way by Rubin and collaborators in 1970 became even further
evidence for dark matter [13], and its existence around galaxies and clusters be-
came widely accepted. Cold dark matter (CDM) could explain structure formation
even starting from comparatively small initial fluctuations [17] and would explain
why no anisotropies had been seen yet in the CMB.

In three independent papers, Starobinski, Guth and Sato proposed different models
of periods of rapid expansion (inflation) which explained the homogeneity of the
universe and also eliminated the need for fine tuning to explain the flatness of the
universe [14, 15, 16].

The long awaited observation of the CMB anisotropies was published in 1992 by
the COBE experiment [22]. Simultaneously, evidence started to pile up for accel-
erated expansion driven by some kind of dark energy. Redshift measurements of
H0, estimates of the age of the universe, constraints on cosmological parameters
from gravitational lensing, the amount of gas in galaxy clusters... [18, 19]. In
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1998, high redshift SNIa measurements sealed the deal [20, 21]. Two years later,
the Boomerang and Maxima-1 experiments observed the first of the CMB power
spectrum peaks [23]. This was the start of the current era of precision cosmology
in which the values of cosmological parameters are being measured to precision of
a few percents.

In this section we will do a review of the basics of cosmology and the ΛCDM model.
The reader is referred to more in-depth books about cosmology for a comprehensive
review [2, 5, 6].

2.1 The lambda CDM model
The ΛCDM is a model of the geometry and dynamics of the universe. There are
three key assumptions: [4]

1. The cosmological principle. The universe is homogeneous and isotropic.
Let us see what this means precisely.

• Observable properties of the universe are isotropic. Everything around
us appears to be highly anisotropic but it may be reasonable to assume
that physical magnitudes, when averaged over sufficiently large volumes,
appear to be direction independent for some observers. We know from
deep sky surveys and simulations that structures in the universe are usu-
ally smaller than 260 Mpc in size [24] while the size of the observable
universe is about 30 Gpc. Observers in an universal rest frame (called
fundamental observers) can thus realize this averaging process meaning-
fully. We observe a nonzero CMB dipole moment (light coming from one
hemisphere is red shifted while the other is blue shifted), which lets us
know our movement with respect to the rest frame. In this way, isotropy
is essentially testable.

• We can observe a fair sample of the whole universe, thus our position is
not preferred (homogeneity). This implies that if we moved somewhere
else we would observe the same physical laws and parameters as we do
now, which is essentially untestable.

Notice that homogeneity and isotropy are introduced in the model axiomat-
ically through the cosmological principle, but inflation can realize them dy-
namically. In this way, this first assumption can be either the cosmological
principle or inflation.

2. The only relevant interaction is gravity. This is a fair assumption to
make, since the strong force is confined and weak/electromagnetic forces can
be neglected over cosmological distances.

3. General relativity. We can derive the form of the metric just from the
high level of symmetry stated in the cosmological principle, but to obtain its
dynamics we need a theory of gravity. So far, the most successful theory of
gravity is general relativity.
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2.1.1 Geometry

Let us have gµν the metric tensor of our space, µ, ν = [0, 3]. For fundamental
observers we can identify the spatial part of this metric gij (i, j = [1, 3]) and its
time component g00. This defines a global time coordinate t which we call physi-
cal/cosmological time. The metric can be found as follows:

• Isotropy requires that all g0i and gi0 components are zero, otherwise they
would define a preferred direction.

• Homogeneity and isotropy implies that gij is invariant under SO(3), i.e. it has
rotational symmetry.

• 3-space can homogeneously stretch or shrink as a function of time, called the
scale factor a(t). This is because we have supposed homogeneity in space but
not in time.

• The time component g00 can take any constant value. We set |g00| = 1
so that physical time is equal to the proper time of fundamental observers.
This leaves two possible metric signatures, (+,−,−,−) and (−,+,+,+), for
g00 = +1 and −1 respectively. We will use the former.

Coordinates where all of the time dependence is isolated in the scale factor are called
comoving coordinates. Using the geodesic deviation equation it can be shown that
the line element takes the following form [34]

ds2 = dt2 − a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
. (2.1)

where K is the curvature of the space. This is the FLRW metric, short for Fried-
mann–Lemaître–Robertson–Walker. The curvature K > 0 corresponds to a closed
universe (spherical geometry). If K = 0 then the universe is flat (Euclidean geome-
try). If K < 0 then the universe is open (hyperbolic geometry). From observations
we know that our universe is exceptionally flat.

If the scale factor a(t) grows with time, that would imply an expanding universe
and vice versa. Distances measured in comoving coordinates do not change with
the universe expansion, but physical distances do,

dphysical = a(t)dcomoving. (2.2)

There is a constant factor which we may set at our convenience. It can be used
to make K dimensionless, normalizing it to either −1, 0 or +1, and thus making
a have dimensions of [length]. We will let K be dimensionful, and instead make a
dimensionless. For a reference time t0, we define a so that a(t0) = 1. The reference
time t0 is taken to be the present time, and the notation ©0 is used for variables
evaluated at the present. In this notation,

d = a(t)d0. (2.3)
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Photons move along null trajectories ds2 = 0. Let us consider a photon moving
radially towards an observer in the coordinate center. For that photon:

dt2 − a2(t)dr2 = 0 =⇒ dr

dt
= ± 1

a(t)
. (2.4)

Since the photon moves towards the center we take the − solution. If we denote its
time of emission by ti and its comoving radial coordinate at time of emission by ri,

rf − ri = −
∫ tf

ti

dt

a(t)
. (2.5)

The photon is detected at the coordinate center so rf = 0. We can define conformal
time as

dτ =
dt

a(t)
, (2.6)

so that ri = τf − τi. In terms of τ the line element becomes

ds2 = a2(t)

[
dτ 2 − dr2

1−Kr2
− r2dΩ2

]
. (2.7)

The factor a2 is a conformal transformation, thus the name conformal time. Time
derivatives are notated the following way:

d©
dt
≡ ©̇, d©

dτ
≡ ©′. (2.8)

All distances stretch or shrink proportionally to the scale factor, so the same also
applies to the wavelength of light λi = a(t)λf . We can define the redshift z as

1 + z ≡ λf
λi

=
1

a(t)
. (2.9)

The redshift quantifies the stretching of light: if the wavelength doubles since the
time of emission, the redshift will be 1 and so on. Redshift is achromatic—it is the
same for all wavelengths, thus we can use z as a time coordinate, just like t, τ or a.

Note that all of this analysis is only valid for a fundamental observer. It may be
odd to think that there is a preferred frame of reference, but keep in mind that even
if it is so for this particular realization (our universe), the theory as a whole is still
Lorentz invariant.

2.1.2 Dynamics

We are now interested in the dynamics of this system, that is, on the particular
form of a(t) depending on the matter-energy contents of the universe. The field
equations of general relativity are

Gµν + Λgµν = 8πGTµν , (2.10)
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where Gµν is the Einstein tensor, gµν is the metric tensor, Tµν is the stress–energy
tensor, Λ is the cosmological constant and G is the gravitational constant. It
is assumed that all forms of energy in the Universe can be described as perfect
fluids in adiabatic expansion with a total density ρ =

∑
i ρi and pressure P =∑

i Pi as defined in their rest frame. We can convince ourselves that this is a good
approximation since any heat transfer would define a preferred direction, which is
not allowed by isotropy. The corresponding stress-energy tensor is

T µν = Pgµν + (P + ρ)UµUν , (2.11)

where Uµ is the 4-velocity relative to a comoving observer. If we introduce the
FLRW metric and the perfect fluid stress-energy tensor into the field equations we
obtain two independent equations, called the first and second Friedmann equations(

ȧ

a

)2

=
8πG

3
ρ− K

a2
+

Λ

3
, (2.12)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
. (2.13)

We can obtain the continuity equation by taking the covariant derivative of the
stress-energy tensor

ρ̇i + 3
ȧ

a
(ρi + Pi) = 0. (2.14)

Energy conservation in flat space relies on time translation symmetry. The conti-
nuity equation adapts that concept to an expanding universe, where energy density
decreases as the universe expands and vice versa. Notice that this is not indepen-
dent from the Friedmann equations. Picking any two of the three will suffice, so
usually the first Friedmann equation and the continuity equation are chosen as they
are of first order in derivatives and thus easier to work with.

To solve this system we need to fix the equation of state, that is, how P and ρ are
related. The simplest would be something of the form

P = wρ −−−−−−−→
continuity eq.

ρ(t) = ρ0a
−3(1+w), (2.15)

where w is a dimensionless number. Conveniently, we can study the behaviour of
all matter contents with this simple of the equation of state.

• Non relativistic matter is called dust in this context. This includes regular
baryonic matter as well as dark matter. Their velocities are small, thus Pm �
ρm and consequently ρm(t) = ρm0a

−3. This is an intuitive result—if space
expands but the amount of matter remains constant, the energy density will
decrease proportionally to the volume (geometrical dilution).

• Relativistic matter is called radiation. To obtain its equation of state, we first
note that the trace of the perfect fluid stress-energy tensor is tr (T µνi ) = 3Pi−ρi
and the electromagnetic stress-energy tensor is traceless, so Pr = ρr/3. Using
statistical physics, the same result is obtained even for non electromagnetic
radiation. We then have wr = 1/3 and ρr(t) = ρr0a

−4. Intuitively, there is a
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factor a−3 due to geometrical dilution, and an extra a−1 factor because of the
expansion of its wavelength (redshift).

• About the cosmological constant, Lorentz invariance requires that in local
inertial coordinate systems, T µν of the vacuum must be proportional to the
Minkowski metric ηµν . In a general coordinate system, T µνΛ ∝ gµν . Comparing
this to the stress energy tensor of a perfect fluid, we see that PΛ = −ρΛ and
thus wΛ = −1 and ρΛ(t) = ρΛ0. Regardless of the universe expanding or
contracting its energy density stays the same.

An important parameter when talking about the expansion of the universe is the
Hubble parameter, also called Hubble rate or function

H(t) ≡ ȧ(t)

a(t)
. (2.16)

Its present value is the Hubble constant H0 = H(t0), which is what Hubble first
measured in 1929 when he observed the linear relationship between receeding ve-
locity and distance of galaxies v = H0l. The Hubble constant is parametrized in
terms of a dimensionless number h (“small h”)

H0 = 100h
km

s ·Mpc
. (2.17)

Early measurements could only narrow it down to h = 0.5 ∼ 1. Even though nowa-
days we know its value more precisely (0.67 ∼ 0.74), the 4 ∼ 6σ tension in its value
between different experiments has led cosmologists to keep using this parametriza-
tion. It became customary to use h−1Mpc as the unit of length or h−1M� as the
unit of mass so that the uncertainty in its value drops off the calculations.

The Hubble parameter has dimensions of [time]−1, so we can obtain a characteristic
time scale called the Hubble time tH by inverting its value

tH =
1

H(t)
. (2.18)

The conformal Hubble parameter H is defined as,

H(τ) ≡ a′(τ)

a(τ)
. (2.19)

The “classical” and conformal Hubble parameters are related

H(t) =
ȧ

a
=
a′

a2
=

1

a
H(τ). (2.20)

Inverting them leads to physical H−1 and comoving H−1 length scales, which are
called physical and comoving Hubble radius respectively. It is conventional in the
literature to just denote those length scales by the Hubble parameter inverses,
without the usage of other symbols.
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In this thesis we are only interested in comoving wavenumbers. The comoving
wavenumber corresponding to the Hubble horizon is

kH =
2π

H−1
= 2πaH. (2.21)

We can define an energy density for the cosmological constant as

ρΛ =
Λ

8πG
, (2.22)

so that the first Friedmann equation becomes(
ȧ

a

)2

=
8πG

3
ρ− K

a2
, ρ =

∑
i

ρi = ρr + ρm + ρΛ. (2.23)

It is customary define the critical density ρcr as

ρcr(t) ≡
3H2(t)

8πG
. (2.24)

If ρ > ρcr, then the universe will be closed (K > 0) and vice versa. This is an
important scale in cosmology, so it is used to convert the energy densities into
dimensionless quantities called the density parameters Ωi(t)

Ωi(t) =
ρi(t)

ρcr(t)
. (2.25)

Both are frequently used in their present values

ρcr0 =
3H0

2

8πG
, Ωi0 =

ρi(t0)

ρcr0

. (2.26)

We can substitute these in the first Friedmann equation to obtain

H2(a) = H0
2
[
Ωr0a

−4 + Ωm0a
−3 + ΩK0a

−2 + ΩΛ0

]
, (2.27)

where we have defined the density parameter of curvature as

ΩK0 ≡ −
K

a0
2H0

2 . (2.28)

Notice how, since we already used the continuity equation for Eq. (2.15), just one
equation suffices. If we set a = 1 we see that the sum of all density parameters
must be one

Ωr0 + Ωm0 + ΩK0 + ΩΛ0 = 1. (2.29)
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The values obtained for the cosmological parameters from CMB fluctuations by the
Planck collaboration are [26]

H0 = 67.66± 0.42 km/s/Mpc,

Ωm0 = 0.3111± 0.0056,

Ωc0h
2 = 0.11933± 0.00091,

Ωb0h
2 = 0.02242± 0.00014,

ΩΛ0 = 0.6889± 0.0056,

ΩK0 = 0.0007± 0.0037,

Ωr0h
2 = 2.47 · 10−5,

(2.30)

where Ωc0 represents cold DM and Ωb0 baryonic matter. Right now the universe
is dominated by the cosmological constant, but it was not always this way. It is
evident from Eq. (2.27) that as we go back in time there will be a period where Ωm

was the largest, and before that a period where Ωr dominated. From observatios we
know that the matter radiation equality (when Ωr = Ωm) happened at z ∼ 3400.
Since z ∼ 0.3 the cosmological constant started to dominate. During the radiation
dominated era, we can integrate Eq. (2.27) and dismiss the non-Ωr terms to find

(Radiation dominated era) a ∝ t1/2, H =
1

2t
. (2.31)

Similarly, for the matter dominated era,

(Matter dominated era) a ∝ t2/3, H =
2

3t
. (2.32)

If the cosmological constant dominates, then

(Cosmological constant) a ∝ eH0t, H = H0. (2.33)

2.2 Thermal history of the universe
We now shift our focus to the history of the universe. First, why is it called “thermal
history”? The universe is expanding, therefore it was denser and hotter in the past.
Particles collided frequently so we can assume that the universe was in a state of
thermal equilibrium, with an associated temperature T . What this means is that
there was enough energy in this plasma to generate through collisions any particles
of mass m < T . We are then free to use temperature T as a time coordinate,
just like t, τ , a or z. If we set the Boltzmann’s constant to unity kB = 1 then
we can measure temperature in units of energy. Processes in the early universe
(decouplings, symmetry breakings) occur at particular energies, which makes T an
extremely useful time coordinate.

For much of the early history of the universe the equation of state of a relativistic
ideal gas applies,

ρ(T ) =
π2

30
N (T )T 4, (2.34)
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where N (T ) = Nb(T ) + 7
8
Nf (T ). Nb(T ) and Nf (T ) are the effective number of

degrees of freedom of bosons and fermions with masses m ≤ T . Particles heavier
than the equilibrium temperature m � T decay and collisions are not energetic
enough to generate them, so their equilibrium density is exponentially suppressed.

Particles decouple from thermal equilibrium once their interaction rate Γ falls below
the Hubble expansion rate H. The decoupling temperature Td is defined as when
Γ(Td) ≈ H(Td). Heavy particles, those for which m � Td, decouple at negligible
densities since they have already decayed almost completely. Massless particles and
those for which m� Td will decouple with significant relic densities.

Several phase transitions occur in the early universe. This is nothing else that the
spontaneous symmetry breaking (SSB) of the theories that describe particles and
forces in our universe. From a field theoretical point of view, as the universe cools
down the effective Lagrangian changes. There is a transition energy after which the
symmetries of the vacuum states are not those of the full theory. We will study
SSB more in detail in Sec. 3.1.

Let us see the main events in the history of the universe:

• During the very first moments of the universe, we do not know what happened.
The Planck energy EP =

√
~c5/G = 1.2 · 1019 GeV sets the scale at which

general relativity breaks down and quantum gravity effects start to dominate
(Planck epoch). If all forces of nature unify at high energies, the gravity phase
transition will had happened during this epoch.

• Grand unified theories (GUT) are well motivated theoretically and propose
that electroweak and strong forces unify at TGUT ∼ 1016 GeV. If that is the
case, there will be a GUT phase transition at that energy scale. GUT transi-
tions are known to leave behind exotic relics like monopoles, exotic particles
and in some cases, small black holes, none of which we see nowadays. Infla-
tion is thought to happen either during or after the GUT transition, rapidly
expanding the universe and diluting the number density of relics into unde-
tectable levels. After inflation, the universe is very flat and homogeneous.
The potential energy of the inflaton field becomes standard model particles
through a process called reheating. During inflation, the inflaton field de-
velops small fluctuations, which then become the matter density fluctuations.

• At some point which we are unsure of, some process led to dark matter
production. Depending on the nature of dark matter, this process changes.
In the case of WIMPs they would just decouple from the plasma, leaving
a cosmic dark matter background. In the case of axions, the misalignment
mechanism could explain their present abundance.

• If baryons and antibaryons were to be generated at the same rate, they would
eventually completely annihilate into photons. Some unknown process in the
early universe (baryogenesis) introduced a baryon-antibaryon asymmetry that
led to the matter density and matter-to-photon ratio that we observe today.

• The mass of the Higgs boson is MH = 125 GeV so we expect that at TEW ≈
150 GeV the electroweak phase transition will take place. W and Z bosons
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obtain mass through the Higgs mechanism and decouple shortly after. For
temperatures above TEW the electroweak force had long range, but after the
decoupling of the force carriers the weak force becomes of short range.

• At TQCD ≈ 150 MeV the QCD phase transition takes place. The quarks that
have not decayed yet (up, down and strange) condense into hadrons—mostly
protons, neutrons and pions.

• At 1 MeV, neutrinos decouple. Since their mass is much smaller than this
decoupling temperature they do so with a high relic abundance. We call it the
cosmic neutrino background. During this early period where Ωr dominates,
neutrinos carried about 40% of the total energy density of the universe. We
have not directly measured it yet but its consequences are seen in the CMB
and the clustering of galaxies.

• At 100 keV, the energy of the photons becomes low enough that deuterium
does not get immediately photodissociated. This leads to a chain of reactions
in which protons and neutrons combine to form deuterium, helium and lithium
(big bang nucleosynthesis). Almost all neutrons end up in 4He, due to the
lack of stable nuclei with mass number 5 or 8 as well as the high Coulomb
barrier of the required reactions. Electrons, protons, neutrons and photons
were the last particles remaining in the equilibrium plasma.

• At 0.8 eV, the densities of matter and radiation became comparable (matter-
radiation equality).

• At 0.3 eV (z = 1100) electrons and protons combined to form hydrogen
atoms (recombination) and the amount of free charged particles decreased
considerably. The universe used to be opaque for photons as they scattered
off charged particles (Thomson scattering), but after recombination, photons
decoupled. Those free-streaming photons are what we now see as the CMB.

• At 4 meV the gravitational collapse of H, He and Li gas led to the formation
of the first structures (stars, quasars, etc). The energetic radiation from those
objects ionized the neutral hydrogen gas around them (reionization).

• At 0.33 meV, the universe becomes dilute enough for the cosmological con-
stant to dominate its expansion.
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2.3 Observational evidence for dark matter
Although no direct detection has been made yet, there are several observations
which can be explained by the existence of dark matter. The evidence is strong and
it is one of the driving factors for motivating theories beyond the standard model.

Galaxy rotation curves

The arms of spiral galaxies rotate around the galactic center. Ignoring their peculiar
velocities, stars at a distance R from the center will orbit with a speed

v(R) =

√
GM(R)

R
, (2.35)

where M(R) is the total mass contained in a sphere of radius R. Most of the lumi-
nous matter is in the galactic center, so we would expect v(R) ∝ R−1/2. However,
the observed velocity far from the center is approximately constant, implying that
M(R) = Rv0

2/G the mass continues increasing even if the visible disc fades. Dark
matter seems to represent about 80 ∼ 90% of the total mass of galaxies.

Gravitational lensing

Galaxy clusters are some of the largest gravitationally bound structures in the uni-
verse. They consist of hundreds to thousands of galaxies, which we observe in the
near-infrared and optical, and heated gas between the galaxies, which emit x-rays
via thermal bremsstrahlung. The gravitational well of very massive objects such
as galaxy clusters can bend the trajectory of light passing close to them (gravita-
tional lensing). Luminous objects behind a galaxy cluster can appear duplicated or
distorted forming an arc shape, whose radious of curvature is related to the mass
within the cluster, which gives a way of probing their mass just through gravita-
tional interaction. Telescope and lensing observations combined reveal that just 1%
of the total mass is in the galaxies, 9% is in the intracluster gas while dark matter
comprises the remaining 90% [39].

The lensing from small astrophysical objects is not enough to form measurable
arcs but can cause measurable changes in the brightness of objects behind them
(microlensing). Objects like brown dwarfs, neutron stars, black holes and rogue
planets (MACHOs) are non-luminous and in theory could be candidates for dark
matter. Several collaborations have searched for these objects in the Milky Way
halo through gravitational microlensing and concluded that their number density
is too low to be the dominant dark matter component [35].

Bullet cluster

The Bullet cluster is interesting since it reveals the aftermath of a galaxy cluster
collision. Distances between galaxies are large, so after the collision they were grav-
itationally slowed but otherwise unaltered. The intracluster gases were compressed
and shock heated, increasing its x-ray emissions. Its baryonic center of mass (from
x-ray observations) and its total center of mass (from gravitational lensing) are
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Figure 2.1: Composite image of the bullet cluster. In red, zones of high X-ray
emission. In blue, the mass distribution deduced from gravitational lensing. Credit:
NASA/D. Clowe et al. [38].

different with a certainty of 8σ [38]. In Fig. 2.1 we see how dark matter passed
right through after the collision. This result can not be explained with theories of
modified gravity (e.g. MOND) which assume that dark matter does not exist[33].

Large scale structure

Two effects dominate structure formation: gravitational interaction attracts matter
in the centres of masses, and the expansion of the universe drives structures away
from eachother. Simulations like the Millenium simulation revealed that, with the
currently known cosmological parameters, filaments of matter are formed on which
the number of structures is much larger, which is in agreement with the observations
of galaxy surveys [37]. The observed and simulated matter density power spectrums
are also in agreement for the measured cosmological parameters.

CMB and light element abundances

During the big bang nucleosynthesis protons and neutrons form deuterium, helium
and trace amounts of lithium and other light elements. This is the main generating
process of deuterium in the universe, as any deuterium produced or found in stars
immediately fuses into 4He. Studying the ratio of deuterium to hydrogen D/H in
areas of low stelar activity gives an upper bound for primordial deuterium levels.
It turns out that D/H is heavily dependent on the baryon density. From deuterium
observations it is seen that Ωbh

2 = 0.022, in agreement with CMB observations.
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2.4 Open problems
The ΛCDM model and inflation comprise the current paradigm of cosmology and
can successfully explain many cosmological observations. However, we know that it
is far from a fundamental theory—its three basic components (inflation, cold dark
matter and cosmological constant) are based just on cosmological observations with
no link to the standard model of particle physics. Despite extensive experimental
efforts, no direct detection of any dark matter particle candidates has been done
yet, which is puzzling as we do not know what mechanism is driving its couplings
to be so small. The value of Λ is tens of orders of magnitude smaller than the
contributions from the vacuum energy densities of the particle fields (cosmological
constant problem), which poses a serious fine tuning problem. Moreover, the par-
ticulars of the processes that happened during baryogenesis and the Planck epoch
are unknown.

Some present observations are of particular interest since, if no systematic error
is present, they go directly against the predictions of ΛCDM . The most notable
is the Hubble tension, a 4 ∼ 6σ tension between the model-independent direct
local measurements (Cepheids, SNIa, ...) and the ΛCDM dependent high redshift
indirect probes (CMB) [27].

H0,CMB = 67.27± 0.66,

H0,SNIa = 73.2± 1.3.
(2.36)

Another tension between the Planck CMB data and redshift surveys has been re-
ported, about the values of Ωm and the rate of growth of structure σ8 with a
statistical significance of 2σ [25].

Many observations are pointing out that the universe may violate the cosmological
principle [31]. The homogeneity scale (the argument that averaging over 260 Mpc
gives a homogeneous universe) may not be true as structures of up to 3 Gpc in size
have been found. Additionally, anisotropy at large scales is theoretically motivated
[32] and several observations support this idea [31]. The anomaly of most statistical
significance is the dipole anomaly. The CMB dipole is subtracted on the assumption
that it is simply due to our relative motion and fixes the CMB as the Universe’s rest
frame. However, recent low redshift measurements from quasars, radio sources and
supernova Ia reveal that, although the direction is the same, the dipole amplitude
is larger, disagreeing with the Planck CMB measurements at 4.9 σ [28, 29, 30].

The present evidence for new physics motivates the study for theories beyond the
standard models of both particle physics and cosmology, with the objective of ex-
plaining these open problems. Some of those theories, as we will see later, can lead
to the production of domain walls, which can have significant impact in cosmology.
The recent surge in hints of violations of the cosmological principle could be re-
lated to the presence of large scale inhomogeneities like domain walls, which further
motivates the study of their properties and dynamics.
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Chapter 3

Cosmological domain walls

Spontaneous symmetry breaking is at the core of our modern understanding of
physics and cosmology. Topological defects are stable structures generated after
spontaneous symmetry breaking and have important cosmological consequences.
Although ubiquitous in condensed matter physics, none have been yet observed in
a cosmological context, which has been key in imposing constraints in our models
such as when the symmetry breaking occurs (e.g. before inflation so that defects
are diluted away) or the parameters of axion models (e.g. to avoid the domain wall
problem).

In Sec. 3.1 we review spontaneous symmetry breaking and Nambu-Goldstone bosons.
In Sec. 3.2 we study what are topological defects, as well as why, when and which are
formed. In Sec. 3.3 we review the basics of axion models, which are well motivated
theories leading to domain wall network generation in the universe. In Sec. 3.4 we
delve into the dynamics and cosmological impact of domain walls networks.

3.1 Symmetry breaking
Symmetries are transformations of the fields that leave the equations of motion
unchanged. As they map solutions of the equations of motion to other equivalent
solutions, they simplify the study of a system by letting us focus on just one rep-
resentative solution. Symmetries are classified in different categories depending on
how they act on the field. A symmetry is global if it acts in the same way at every
point, and local if it acts differently at different places in space. Symmetries can
be continuous, like time and spatial translations, or discrete, like time reversal and
parity.

Transformations describing symmetries form a group: a mathematical structure
that lets us operate with them just as we would with number systems. I will not
do a full review of group theory, but let us review the minimum that the reader
should know in order to understand this thesis. A group is formed by a set and an
operation (in this case, symmetry composition) that takes two items from the set
and gives another element from the same set. The operation is associative, there is
an identity element and every element has an inverse. Group elements do not need
to be commutative.
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Discrete groups are formed by a discrete set of elements. In physics the most
notable example is the cyclic group, usually notated as Zn since it is isomorphic to
the additive group of integers modulo n. The smallest non-trivial cyclic group is
Z2, which we can visualize as left-right symmetry. Continuous groups, also called
Lie groups, are formed by an infinite set of elements. In physics, the orthogonal
and unitary groups are of particular importance.

• The orthogonal group O(n) is the group of n×n orthogonal matrices. We can
think of O(n) as the group of distance-preserving transformations in Euclidean
space of dimension n that also preserve a fixed point. The determinant of
an orthogonal matrix is ±1, each corresponding to a connected component of
O(n). SO(n) is the group of n×n orthogonal matrices of determinant +1. We
can visualize it as rotations in Euclidean space. The component of orthogonal
matrices with determinant −1 does not form a group and corresponds to the
reflections in Euclidean space.

• The unitary group U(n) is the group of n × n unitary matrices. U(1) corre-
sponds to the circle group, e.g. the complex unit circle under multiplication.
For n > 1 it becomes non-commutative, and is isomorphic to the multiplicative
group of complex numbers Cn. SU(n) is the group of n × n unitary matri-
ces with determinant +1. SU(2) is a double covering of SO(3) (rotations in
Euclidean 3D space).

The symmetries of the standard model are SU(3)×SU(2)×U(1), where SU(3) cor-
responds to the QCD color symmetry and SU(2)×U(1) to the electroweak sym-
metry. Grand unified theories are built first by finding a bigger group so that
SU(3)×SU(2)×U(1) becomes a subgroup. Two notable examples are SU(5) and
SO(10).

In the context of dynamics, it is conventional to define symmetries as the transfor-
mations which leave the Lagrangian unchanged

φ→ φ′, L(φ′, ∂φ′) = L(φ, ∂φ). (3.1)

Transformations which leave the Lagrangian unchanged also leave the equations
of motion unchanged, although the converse is not true [3]. For example, for a
massless scalar field, the transformation φ(x)→ eβφ(x) is a symmetry but rescales
the Lagrangian. We typically use the freedom to redefine the fields to bring the
Lagrangian in some canonical form. In this way, we can study the symmetries of
the system by studying the Lagrangian.

A necessary condition is that a symmetry should not change the results of an
experiment, i.e. the expected values of observables should not change

〈φ| Ô |φ〉 = 〈φ′| Ô′ |φ′〉 . (3.2)

It may happen that a system is mostly invariant under a symmetry, but not exactly.
There may be some small terms in the Lagrangian/Hamiltonian which do not follow
the same symmetries as the rest of the terms. Then we say that the symmetry is
explicitly broken. These terms may arise because of quantum effects, because
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of non renormalizable effects... In this case, the equations of motion are no longer
invariant.

Spontaneous symmetry breaking (SSB) is the phenomenon in which a stable
state of a system (for example the ground state) transforms nontrivially under some
symmetries of the theory. These symmetries are then said to be spontaneously
broken and the state is called the broken state. Phenomenologically we know that
those symmetries exist since they can be seen in the equations of motion, but the
stable states are not invariant under it. This is an idea that originated in condensed
matter physics, with Heisenberg’s theory of ferromagnets [40] and was then adopted
into quantum field theory by Baker and Glasgow [43, 44].

The broken state is characterized by a non zero expectation value of the field

〈0| φ̂ |0〉 6= 〈0′| φ̂ |0′〉 . (3.3)

If |0〉 is a broken state, then under the broken symmetry it transforms into |0′〉 which
by definition is different, has the same energy (since the Hamiltonian commutes with
the symmetry transformation) and is also a broken state. By repeatedly applying
the transformation we can find the set of broken states, all with the same energy.

The existence of a symmetry transformation implies a conservation law. In par-
ticular, for symmetries parametrized by continuous variables, the symmetry is as-
sociated with a current jµ(x, t) which obeys a local continuity equation ∂µj

µ = 0
(Noether’s theorem). This holds for a state regardless of it respecting the symmetry
of the system! In a broken state, this local conservation law impacts the excitations
at non-zero wave number and guarantees the appearance of massless modes known
in quantum field theory as Nambu-Goldstone bosons [41, 42]. If the symmetry
is explicitly broken the bosons will acquire a mass proportional to the size of the
explicit breaking term.

In order to understand it in more concrete terms, let us look at an example. The
Lagrangian of a complex scalar field Φ is

L =
1

2
(∂µΦ†)(∂µΦ)− V (Φ,Φ†). (3.4)

Let us consider V as the so-called mexican hat potential

V (Φ,Φ†) =
λ

4

(
Φ†Φ− η2

)2
, (3.5)

with λ, η > 0. This Lagrangian has U(1) symmetry, that is, rotational symme-
try around Φ = 0. We can see how the Lagrangian is invariant under a phase
transformation such as

Φ(x)→ eiαΦ(x). (3.6)

The field has a local maximum at Φ = 0 and minima on the circle |Φ| = η. Re-
gardless of whether Φ is a classical or quantum field, we can calculate its vacuum
expectation value classically. This is because the contribution of any quantum
term 〈0|Φ |0〉quantum = 0 will be zero due to the stability of the vacuum (tadpole
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condition). The classical field VEV is found on the potential minima

〈0|φ |0〉 = ηeiθ, (3.7)

where a phase θ has appeared, parametrizing the minima. We can see how, when
transforming the fields under Eq. (3.6), we go from one vacua to another one θ →
θ + α. That implies that the vacuum is not U(1) invariant and thus the symmetry
is spontaneously broken.

Figure 3.1: The potential of Eq. (3.5) with its massless (Nambu-Goldstone) and
massive modes highlighted.

Let us keep analyzing what this means. This potential just depends on the modulus
squared of the field V (Φ,Φ†) = V (|Φ|2) so the potential only varies in the radial
direction. We can write the field in the following way,

Φ = (η + s) exp

(
iφ√
2η

)
, (3.8)

so that s parametrizes movement in the radial direction and φ in the angular direc-
tion in field space. Its derivative is

∂µΦ =

[
∂µs+ i (η + s)

(
∂µφ√

2η

)]
exp

(
iφ√
2η

)
, (3.9)

and thus the Lagrangian becomes

L =
1

2
(∂µs)

2 + (η + s)2 1

2η2
(∂µφ)2 − λ

4

(
2ηs+ s2

)2

=
1

2
(∂µs)

2 − λη2s2 + Lanh.(s
3, s4)︸ ︷︷ ︸

Massive mode

+
1

2
(∂µφ)2︸ ︷︷ ︸

Massless mode

+Lint.(∂µφ, s).
(3.10)

We see how s behaves as a massive scalar while φ is massless, with some interaction
terms between s and φ. Notice that, despite the interaction terms, φ is always
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massless since it only appears in the lagrangian as ∂µφ, which has shift symmetry.
A mass term would have the form mφ2/2. Both modes and the potential can be
seen in Fig. 3.1.

Let us see what happens if this symmetry is explicitly broken by, for example, a
non renormalizable term of the form

LNR =
ΦN

MN−4
+ h.c., (3.11)

where M is the UV cutoff of our effective field theory. If we substitute Eq. (3.8)
into it we find that

LNR =
1

MN−4

(
η +

s√
2

)N
cos

(
Nφ√

2η

)
. (3.12)

We see that this term induces a sinusoidal potential for the angular mode, which
makes it massive.

3.2 Topological defects
In order to see some analytic topological defect solutions, let us consider the fol-
lowing quartic potential for the real scalar field.

V (φ) =
λ

4
(φ2 − η2)2. (3.13)

It is known as the double well potential. It has reflection symmetry across the
origin, that is, it is invariant under Z2. There are two broken states, φ = ±η.

Figure 3.2: The double well potential Eq. (3.13).

We can find the following static solution to its equations of motion [1]

φ(x) = η tanh

(√
λ

2
ηx

)
. (3.14)
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Figure 3.3: The domain wall solution of Eq. (3.14).

This is a domain wall, one kind of topological defect. We can see how it interpolates
between the two minima of the potential: at x → −∞ the field is in the negative
minima φ = −η and at x→ +∞, φ = +η. It has nonzero energy due to φ going over
the local potential maximum at φ = 0. Moreover, this solution is time-independent
and non-dissipative. Due to the Lorentz invariance of the theory, it can also be
boosted up to velocities up to the speed of light.

Its stability comes from the non-trivial topology of the vacuum manifold. To elimi-
nate the defect one would have to lift the field over the potential barrier so that all
field values are on the same minimum, but this would require a nonzero amount of
energy. In this case in particular, infinite energy, since the domain wall has infinite
spatial extension.

It is useful to introduce the concept of topological charge. The homogeneous solu-
tions φ(x) = ±η have topological charge 0, Eq. (3.14) has charge +1 and the defect
with opposite sign, charge −1. If two defects with opposite topological charge meet,
they annihilate.

3.2.1 Classification

As we have introduced earlier, the existence of topological defect solutions is deter-
mined by the topology of the vacuum manifold. Before seeing how this is formalized,
I think that it is pedagogical to gain some intuition of how defects look like and in
which situations they can appear.

Domain walls are two-dimensional objects which can form when a discrete sym-
metry is spontaneously broken. For example, the double well potential Eq. (3.13)
has broken Z2 symmetry and thus there are domain wall solutions. More generally,
these defects can appear when the vacuum manifold is disconnected. For example,
the mexican hat potential with an explicit symmetry breaking term like Eq. (3.11)
has N disconnected degenerate vacua, and thus it exhibits N distinct domain wall
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solutions. The effect of crossing a domain wall will be a shift of the field values,
from its value in one vacua to another.

Cosmic strings are one-dimensional objects which can form when a symmetry
with some rotational invarince along a plane in field space is spontaneously broken.
For example, the complex scalar field with a mexican hat potential showed broken
U(1) symmetry, and that system has cosmic string solutions. For a complex scalar
field, going around a string in position space will cause a shift in the phase of the
field θ → θ+ 2πn. If there is an explicit symmetry breaking term like Eq. (3.11) as
well, then we will have defects known as domain walls bounded by strings.

Monopoles are zero dimensional objects that can form when, for example, SO(3)
symmetry for a triplet of scalar fields is spontaneously broken. The usual intuition
for a monopole comes from electromagnetism, as something with nonzero magnetic
charge (i.e. nonzero magnetic flux if wrapped by a sphere). However, this is just
for local monopoles. For global monopoles, wrapping around them with a plane in
position space would lead to a phase shift of some of its field components, which is
similar to the string case but much harder to visualize.

Textures are objects that can form when a non-commutative Lie group (e.g, SU(n)
for n ≥ 2), is spontaneously broken. They consist of localized, twisted configura-
tions of fields which collapse and unwind on progressively larger scales [47].

The relationship between the topology of the vacuum manifold and topological
defect solutions was first shown by Kibble [76]. In algebraic topology, a way in
which topological spaces are classified is through homotopy theory. This is the
formal way to quantify whether a space is connected, has holes or voids. The
nth homotopy group πn(M) classifies qualitatively distinct mappings from the n-
dimensional sphere Sn into the manifoldM. A non-trivial homotopy group signals
that topological defects can be formed. The correspondence between defects and
homotopy group elements is one to one in most of the simple cases [1]. During this
thesis, Table. 3.1 will remain valid but I want to note that the general case is more
complicated, particularly when textures are involved [52].

Topological defect Dimension Vacuum has... Homotopy group
Domain walls 2 disconnected components π0(M)

Strings 1 unshrinkable loops π1(M)
Monopoles 0 unshrinkable surfaces π2(M)
Textures − unshrinkable hyper-surfaces π3(M)

Table 3.1: Correspondence between topological defects and homotopy groups.

Let us see how these concepts are defined. For a point x in a manifoldM we consider
all closed paths passing through that point f : [0, 1] →M, f(0) = f(1) = x. For
two paths f1, f2, we can build a third one f3 by path concatenation, that is, first
by traveling through f1 and then f2. This operation f1 ◦ f2 → f3 defines a product
within this set. Two paths are said to be homotopic at x if we can continuously
deform one into the other without losing contact with x. Any path homotopic to
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a representative f is placed into its homotopy class [f ]. These homotopy classes
form a group, called the fundamental group π1(M, x) of the manifold at x. The
group product is path concatenation under class multiplication [f1][f2] = [f ◦ g].
The identity is the homotopy class of all loops contractible to x (constant map)
and the inverse is obtained by reverting the direction in which the loop is traversed
[f ]−1 = [f−1].

The concept of a fundamental group can then be generalized into homotopy groups.
That is, maps f : [0, 1]n → M such that their boundary is f(δ[0, 1]n) = x can be
classified into homotopy classes πn(M, x), which under map concatenation form a
group πn(M, x). The case n = 0 is a bit peculiar since it is not a group, but a
pointed set. Let us consider maps from a single point intoM. If the mappings f1(·)
and f2(·) belong to the same connected component, they are homotopic f1 ∼ f2.
Thus, π0(M) is just the set of path connected components. In the case that π0(M)
is non-trivial, it means that the vacuum manifold is not path connected and there
will be domain wall solutions.

Let us apply these definitions to the previous example of the mexican hat potential
and prove the existence of defect solutions. Its vacuum manifold is the circle S1.
Elements of π1(S1) are determined by their winding number: how many times the
class elements loop around the circle. The winding number is an integer, which is
positive if looping clockwise and vice versa. We can use the winding number n to
identify each homotopy class [n]. The product of [n] with [m] is the class of paths
that first loop n times, and then m times. Thus, the product of homotopy classes
is equivalent to adding their winding numbers [n][m] = [n+m]. This implies that

π1(S1) = Z, (3.15)

which is non-trivial. This means that it has string defect solutions.

The analysis when an explicit symmetry breaking term like Eq. (3.11) is present
becomes a bit more complicated. The vacuum manifold becomes the cyclic group
ZN which is disconnected, so there will be domain wall solutions. Only trivial
paths can be defined and thus its fundamental group is also trivial, so there are
no exact string solutions. However, since the symmetry breaking term is small, we
can consider the vacuum manifold to be approximately S1, which has a nontrivial
fundamental group, and thus there will be approximate string solutions. In this
case, there will be NDW domain walls attached to each string, where NDW is the
number of degenerate vacua.

3.2.2 Production

The topology of the vacuum manifold will determine if defects can form, but that
alone does not guarantee their existence. The first mechanism by which defect
formation was shown to be causally unavoidable in cosmology is called the Kibble
mechanism [76, 77].

There is a tendency for symmetries to be restored at high temperatures [45]. A
scalar field whose VEV breaks the symmetry at low energy tends to acquire thermal
mass when it is in equilibrium with other particles. It is thought that at the
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beginning of the universe, the field will be in a phase in which its effective potential
is such that the symmetry is unbroken. As the universe expands and cools, the
effective potential changes until a point in which the symmetry is spontaneously
broken. In this way, SSBs in cosmology usually come together with associated
phase transitions.

Kibble stated that, since the universe is expanding and the speed of light is finite,
there is a limit to how far information could have travelled at the time of the phase
transition. This sets an upper bound for the correlation length ξ of the field values,
and thus implies that it is causally unavoidable for the field to choose different
vacua at scales larger than this correlation length during the phase transition. This
mechanism applies to all topological defects.

The Kibble mechanism was proposed before the introduction of inflationary theo-
ries, so this possibility was not considered. If the phase transition happens before
inflation, then even if a defect network is formed, it will be later stretched into
almost non-existence. On the other hand, if the phase transition happens after in-
flation, then the regular Kibble mechanism will not apply. Light scalar fields during
inflation develop fluctuations at very large scales, which in the simplest case leads
to a scale invariant spectrum of fluctuations.

The details of how topological defects form after inflation had been mostly neglected
in the literature. Early papers in the context of structure formation talk about “field
ordering through Kibble mechanism" and inflationary fluctuations as completely
separate cases [48, 50]. Papers in the context of domain wall evolution, even if they
try to consider their formation after inflation, fail to correctly take into account
the initial condition power spectrum [88, 89, 93]. This is despite an earlier paper
by Nagasawa and Yokoyama in which the initial fluctuation power spectrum is
properly set up, although the subsequent defect formation and network evolution
are not studied [86].

Thus, the study performed in this thesis of domain wall networks forming after
inflation sheds much needed light into the field of domain wall dynamics. In Ch. 4
we will see numerical results showing that, indeed, domain wall networks form as
well in the case with inflationary fluctuations. What we see from the simulations is
that the subhorizon fluctuations lead the field to choose different vacua at different
points in space, while the superhorizon fluctuations slightly inhibit defect formation,
effectively reducing the amount of domain walls per horizon, among other effects.

Knowing that defect networks can form as long as the phase transition happens
after inflation, it only remains to see which theories could lead to these symmetry
restorations and phase transitions at the early universe. Grand unified theories
predict the formation of monopoles, as the GUT group (for example, SU(5) or
SO(10)) is broken leaving U(1)EM as an unbroken subgroup. Grand unified theories
are formed by non-commutative Lie groups, which when spontaneously broken leads
to the formation of textures [47]. In the case of Peccei-Quinn theory, if global
U(1)PQ is spontaneously broken after inflation then cosmic strings will form. If
non-perturbative QCD effects become relevant, then U(1)PQ is explicitly broken
and domain walls appear between strings, which will collapse and annihilate if the
vacuum is unique.
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3.3 Axions
Axions are a class of hypothetical light pseudoscalar particles. It was first pos-
tulated as a pseudo-Nambu-Goldstone boson generated during the Peccei-Quinn
mechanism, a mechanism designed to solve the strong CP problem [54, 55, 56].
We will refer to this particle as the QCD axion. More generally, they are pseudo-
Nambu-Goldstone bosons associated with non-linearly realized approximate global
U(1) symmetries. These appear, for example, due to the compactification of extra
dimensions in string theories [67]. We will refer to these as axion-like particles, or
ALPs for short.

The spontaneous symmetry breakings associated with axion models may have hap-
pened in our universe. In particular, if they happen after inflation, they could lead
to the production of string-wall networks. Let us briefly review the basics of axion
physics, as we will refer to some particular axion models and experimental results
in the remainder of this thesis.

3.3.1 Theories leading to axions

When solving naturalness problems

The general QCD Lagrangian includes a CP-violating term [53]

LΘ = −Θ
αs
8π
GµνG̃µν , (3.16)

where −π ≤ Θ ≤ +π is a parameter quantifying the amount of CP violation, αs
is the strong fine structure constant, Gµν the color field strength tensor and G̃µν

its dual. This term induces a neutron electric dipole moment ∝ Θ, and stringent
experimental upper bounds on it imply that Θ, if nonzero, should be tiny |Θ| ≤
10−10. This is the strong CP problem—in principle we would expect Θ ∼ O(1),
and although there is nothing fundamentally wrong with having a very small value
of Θ, this poses a “naturalness” problem for the standard model.

The solution to naturalness problems usually come in the form of a dynamical
mechanism protecting the smallness of some parameters of the model. In 1977,
Peccei and Quinn postulated an elegant solution to the strong CP problem, which
was later shown to lead to a new particle, the QCD axion, independently by Wilczek
[56] and Weinberg [55]. A new scalar field, φ, is introduced, which has spontaneously
broken global U(1)PQ symmetry. This modifies the previous Lagrangian term as

L =

(
φ

fa
−Θ

)
αs
8π
GµνG̃µν , (3.17)

where fa is called the axion decay constant and is the scale of the spontaneous
symmetry breaking. The induced potential for φ has a minimum at Θfa, effectively
relaxing the QCD CP-violation to zero.

The way in how the field φ is introduced into the theory is model dependent, and so
are most properties of the associated QCD axion, e.g. its couplings to matter. There
are two archetypical models. The KSVZ model introduces additional quarks into
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the standard model [57, 58], while the DFSZ model is realized without introducing
additional fermions by assuming two Higgs doublets [59, 60]. Both are part of
the invisible axion models, since their couplings to matter are suppressed by 1/fa
and thus driven below the current experimental limits. One important property
of the QCD axion is that the decay constant and the axion mass are related as
mQCD ∝ 1/fa. For a general axion-like particle, this need not be the case.

Axion-like particles could also solve other naturalness problems. For example,
a pseudo-Nambu-Goldstone boson with a potential of the form V (φ) = Λ4[1 ±
cos(φ/fa)] can naturally give rise to an epoch of inflation in the early universe,
given sufficiently large fa and Λ [65]. The relaxion is an ALP with a linear poten-
tial V (φ) ∝ Λ3φ, which has been proposed as a solution to the weak scale hierarchy
problem [68].

In theories with extra dimensions

String theories are some of the most well developed quantum theories of gravity.
They are formulated in more than four dimensions, with all extra dimensions com-
pactified to less than the Planck length, explaining why we have not accessed them
yet in colliders and other experiments. High order antisymmetric tensor fields, upon
compactification, typically give rise to a large number of zero modes, depending on
the topology of the compact manifold. Even in the simplest cases, this leads to
hundreds of pseudoscalar fields with axion-like properties. This is known as string
axiverse [67]. Intuitively, we can think that, although the extra dimensions are
not accessible to us at low energies, fields can oscillate along the compactified di-
mensions, and those oscillations (with their associated energy levels, etc) manifest
themselves as scalar fields in the compactified theory. Depending on the particulars
of the string theory, one of these axions could also be the QCD axion.

3.3.2 Time evolution

The equation of motion of a scalar field in a homogeneous background is

φ̈+ 3H(t)φ̇− 1

a2
∇2φ+

dV (φ)

dφ
= 0. (3.18)

Its full derivation is shown in Sec. B.2. In the early universe, the spontaneously
broken symmetry associated with the axion is expected to be restored. The 3H(t)φ̇
term is called the Hubble friction term, and as long as the Hubble parameter is larger
than the axion mass H(t) � m it dominates, effectively freezing the evolution of
the field. The field rolls down the potential, and at t = tosc, H(tosc) ∼ m(tosc) it
begins to oscillate around the present vacuum value.

3.3.3 Axion dark matter

One of the most important observables connecting dark matter, particle physics and
cosmology is the so-called relic density, the currently observed cosmological density
of dark matter. Dark matter could have been in interaction with the thermal bath
before decoupling from it, or it could have been generated at a time in which its
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interaction rate was already low. In addition to that, dark matter need not be a
single particle species—as long as they have no charges, are long lived and interact
weakly with the standard model particles, the relic density could be the sum of
many different components.

Light axions are a compelling candidate for dark matter. A straightforward way
in which axion dark matter could be produced is the misalignment mechanism
[61, 62, 63]. The axion field value before oscilation is, in general, different from the
present value. We can parametrize it as

φ(ti)− φ(t0) = Θin
fa
NDW

, (3.19)

with Θin ∈ [0, π] a random parameter called the misalignment angle and NDW the
number of equivalent vacua. After the phase transition, the field potential energy
gets released as axion particles. If the axion model in consideration behaves as dark
matter, this could be part or most of the relic density.

The case closest to our interest is ultralight ALP dark matter, withm(tosc) = m(t0).
Unlike the QCD axion, m and fa are independent parameters. Taking the simple
harmonic approximation for the axion potential, it can be seen that [71]

[
Ωa0h

2
]

ALP
' 0.1 ·Θ2

in

(
fa/NDW

1017 GeV

)2 ( m

10−22 eV

)1/2

. (3.20)

Since the relic density has been very precisely measured, it can be used to set
constraints on axion models contributing to dark matter. I want to emphasize,
however, that axions need not be dark matter. In particular, if there is a spectrum
of axions, as is the case in string axiverse, only the lightest one (or more precisely,
only the ones which are long-lived) could contribute to the presently observed relic
density.

3.3.4 Experimental searches

Axions have a model-dependent coupling to photons of the form

Laγγ = −gaγγ
4
φFµνF̃

µν = gaγγφE ·B, (3.21)

where Fµν is the electromagnetic field-strength tensor, F̃µν its dual, and gaγγ the
axion-photon coupling [64]. In most models, gaγγ is nonzero, but suppressed with
the axion decay constant. For a general ALP,

gaγγ = cγ
αEM

πfa
, (3.22)

where cγ is the anomaly coefficient of O(1) and αEM is the fine-structure constant.
In the presence of background magnetic fields, Eq. (3.21) induces quantum mechan-
ical oscillations between photons and axions. The stronger and more coherent the
magnetic field, the larger the probability of conversion. The process which converts
axions into photons is called Primakoff effect. Most direct searches are based on



3.3. Axions 31

our ability to generate strong and coherent magnetic fields over laboratory scales,
trying to convert the elusive axions into the much more easily detectable photons.

The Sun may be a major source of axions, as thermal photons in the solar plasma
could be turned into axions by the large electromagnetic fields within. Haloscopes
are experiments which try to reconvert those solar axions into photons via large
magnetic fields. One of the most notable ones is the CERN Axion Solar Telescope
(CAST) [73], which will be followed up by the next-generation experiment IAXO
[74]. Light-shining-through-walls experiments aim a photon beam at an opaque
wall, with strong magnetic fields both before and after the wall. The probability of
a photon oscillating into an axion, crossing the wall and then being detected back
as a photon is ∝ gaγγ

2.

Figure 3.4: Exclusion plot for axion masses m vs axion-photon coupling gaγγ . In the
KSVZ and DFSZ axion models, the relationship between m and gaγγ is fixed by the
yellow band, but other QCD axion and ALP models can populate the rest of the
parameter space. Other solid regions are current experimental bounds. Red
corresponds to axion helioscopes and light-shining-through-walls experiments, green
corresponds to high energy astrophysical bounds, blue for ultra-deep surveys. Figure
courtesy of Ciaran O’Hare [72].

Supernovae can also be utilized to limit the axion coupling to standard model
particles. The argument revolves around the duration of the neutrino signal after
the supernova burst, as emission of new particles from the proto-neutron star core
would compete with the standard model neutrino production. If the axion coupling
to nucleons is too large, the core would cool too fast and the neutrino signal length
would be shortened. The field of experimental axion physics is very active, as it
can be seen in Fig. 3.4.
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3.4 Domain walls

3.4.1 Properties

Let us consider a real scalar field φ with a potential V (φ) which has degenerate
minima. Its Lagrangian will be

L =
1

2
(∂µφ)2 − V (φ). (3.23)

The equations of motion can be obtained from

∂µ
∂L

∂ (∂µφ)
− ∂L
∂φ

= 0. (3.24)

Let us consider a static domain wall solution orthogonal to the x axis φ(x). As it
is a static solution of the equations of motion, for the above Lagrangian we find

φ′′ − ∂V

∂φ
= 0 =⇒ 1

2
φ′2 − V (φ) = 0, (3.25)

where the prime indicates derivative with respect to x. Let us calulate the energy
momentum tensor of a domain wall solution. Its definition is

Tµν =
∂L

∂ (∂µφ)
∂νφ− gµνL. (3.26)

We can substitute Eq. (3.23) and Eq. (3.25) to obtain

Tµν = (∂µφ) (∂νφ)− gµνL = −δµxδνxφ′2 + gµνφ
′2, (3.27)

which, after raising one of the indices,

T µν = φ′2(x) diag (1, 0, 1, 1) . (3.28)

If we call the energy density ρ then it becomes

T µν = ρ diag (1, 0, 1, 1) . (3.29)

Something that must be noted from this expression is that it is independent of
time and tangential coordinates, as well as invariant under Lorentz boosts in the
tangential plane. This implies that only the transverse motion is observable. Even
if it has nonzero tangential velocity its energy density does not change.

The surface energy density is equal to the wall tension in the tangential directions,
which we notate with σW. The tension along the perpendicular direction is zero.

σW =

∫
T 0

0 dx =

∫
T 2

2 dx =

∫
T 3

3 dx, σx = 0. (3.30)

For a domain wall of thickness δW,

σW = ρδW. (3.31)
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In general, the properties of topological defects are rather insensitive to the details
of the underlying particle physics. This allows us to use simple models for their
study and then, if necessary, complement this analysis with a few comments about
more realistic cases. This motivates the study of a simple analytic solution, like the
one for the double well potential Eq. (3.13). We had two parameters: λ, which is the
quartic field coupling and η, the spontaneous symmetry breaking scale. The mass
of the particles of that field is m =

√
λη. In the analytic expression of the domain

wall solution Eq. (3.14) we could see how it is mostly localized, with a thickness δW
of about the inverse of its mass

δW ∼
(√

λη
)−1

∼ m−1. (3.32)

It is a static solution. Its total energy density is

ρ =
1

2
(∂xφ)2 ∼ λη4. (3.33)

If we calculate the wall tension we obtain

σW =

∫
φ′2(x) dx =

2
√

2

3

√
λη3. (3.34)

If we estimate the tension from the energy density as σW ∼ ρδW ∼
√
λη3 we obtain

qualitatively the same result. The tension can also be written in terms of the mass,
σW ∼ mη2. For a different potential, some order one numerical factors may appear
on these expressions but otherwise we expect their properties to stay the same.

Ipser, Sikivie and Vilenkin were the first to solve the field equations of general rela-
tivity for a domain wall. They found that its gravitational potential is nonsingular
and repulsive [80, 81]. Their result can be derived as well in the weak field approx-
imation, where the physical intuition is less obscured by the algebra. Starting from
the field equations of general relativity Eq. (2.10), we can do a weak stationary field
expansion gµν = ηµν + hµν(x

i), |hij| � |h00|, |h00| � 1. After some calculations,

∇2ϕ(x) = 4πG(T 0
0 −

∑
T ii ), (3.35)

where ϕ(x) is the gravitational potential. In the case that the T 0
0 is the largest

component of the stress-energy tensor, we recover Newton’s law of gravitation, for
which all potentials are attractive. If T ii is large, this need not be the case. For the
stress-energy tensor of a planar static domain wall like Eq. (3.29) one obtains

ϕ′′(x) = −4πGρ, (3.36)

which can be integrated to obtain

ϕ′(x) = −4πGσW. (3.37)

Although the numerical factors change with the wall shape, observers on either
side of a domain wall accelerate as ∼ GσW. It is precisely the wall tension what
determines how strong its gravitational repulsion will be.
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3.4.2 Dynamics

Let us first discuss Z2 walls. The initial shape of domain walls after the phase
transition is determined by the random variation of the scalar VEV. Thus we expect
walls to be very irregular, random surfaces. If a typical correlation length ξ can be
defined in the system, then the typical curvature radius of the domain walls will be
R ∼ ξ. In general, the system is dominated by a few infinitelly large domain walls
of very complicated topology [76].

After formation, tension σ produces a force per unit area f ∼ σ/R. Curved sections
tend to straighten, exchanging their gradient energy for kinetic energy, reaching very
large velocities. Depending on the model one can relax this mechanism, e.g. by
introducing a damping force due to particle scattering, or enhance it, e.g. with a
slight potential bias so that walls accelerate towards the true vacuum.

The total conformal area of domain walls decreases with time. If two domain walls
collide they annihilate. Also, closed domain walls whose radius is smaller than the
horizon R� H−1 shrink due to wall tension and collapse. These processes lead to
the production of φ particles, gravitational waves, or whatever particle is associated
with fields coupled to φ.

During radiation- and matter-dominated universes, the horizon grows faster than
the spacetime can expand. This is because H ∝ t−1 and thus the physical Hubble
radius H−1 ∝ t while physical distances expand as d ∝ t1/2 and d ∝ t2/3 for
radiation- and matter-dominated universes respectively. From the perspective of
momentum space, this implies that larger modes continuously enter the horizon.
Thus, in the evolution of the domain wall network there is an interplay between
annihilation and growth of the horizon.

The consequence is that, after a few Hubble times have passed, the system reachs
an attractor called the scaling solution [98, 99, 100, 103]. Each Hubble volume
ends up with about one domain wall. In 3D, and up to order 1 numerical factors, we
can estimate that the physical surface occupied by this domain wall will be approx-
imately H−2 contained within one Hubble volume H−3, resulting in the following
energy density

ρW ∼
σWH

−2

H−3
∼ σWH. (3.38)

The traditional explanation for why this state is reached is that domain walls reach
relativistic velocities and annihilate up to causality, thus only about one wall per
horizon can remain. In Sec. 4.3 we show how a scaling solution is also reached for
walls formed after inflation (i.e. with scale invariant initial conditions) but that
the amount of domain walls formed, as well as the amount present in the scaling
solution is less than that of the white noise initial condition case.

Early works found that, for white noise initial conditions, the simulations deviated
by some logarithmic factor from the scaling solution at late times [84] but this
was shown to be a numerical artifact due to the limited dynamical range of the
simulations [98, 105]. The case for scale invariant fluctuations is rather new and
was not studied in detail up to our work. For scale invariant initial conditions
the numerical artifacts are much larger. In Sec. 4.4 we present a systematic study
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of those numerical artifacts for the scale invariant initial condition case, showing
that for the ideal case of an infinite simulation with infinite resolution the scaling
solution should be preserved to great accuracy.

The dynamics of domain wall networks are highly nonlinear, so most results are
based on what can be seen in numerical simulations. Analytical results rely on
simplified models whose parameters are, in the end, fitted to simulation results.
First developed for the study of cosmic strings [94, 95], the one-scale model aims
to describe the macroscopic properties of the system through a characteristic scale
(either the typical domain wall separation length or the correlation length) and
the averaged domain wall velocity [101, 105, 108]. Although it is conceptually
simple, we do not expect it to be applicable for all cases. For example, with scale
invariant initial conditions, there is no typical correlation length (that is, there are
correlations at all scales). In Sec. 4.3.3 we study the power spectrum of the field,
which is closely related to the distances between domain walls, and in Sec. 4.5.2 we
show a new model which can explain the main qualitative behaviour of the domain
wall networks. I believe that the results discussed there are of great interest to
researchers interested in their analytical modelling.

A well studied property of domain wall networks is their stability. It has been
known that, under a small bias in the initial conditions, domain wall networks tend
to collapse and disappear [89, 90, 91, 93, 96, 107, 109]. We found that this was no
longer true in the scale invariant case. An in-depth analysis is presented in Ch. 5.

In the case of ZN walls there are more than two degenerate vacua and we would
expect the rise of cellular structures with linear junctions where several walls meet.
Depending on the model, those junctions may or may not contain strings. Naively
we could think that hexagonal equilibrium structures between multiple minima
could be reached, where the whole network would freeze, however simulations show
that their evolution is qualitatively similar to the Z2 case, although less likely to
decay when the number of vacua is increased [85]. Although the domain walls that
may have been formed in our universe need not necessarily be Z2, these results
showing their similar dynamics greatly motivate the study of this simpler model.
In the case of non-abelian walls, the energy dissipation rate is shown to be much
smaller than in ZN models and evidence for the formation of hexagonal equilibrium
structures was found [87]. This is due to the large number of different types of wall
junctions in the non abelian case.

3.4.3 Cosmological domain wall problem

Let us further analyze the cosmological impact of the energy density of a domain
wall network Eq. (3.38). During the radiation dominated universe, a ∼ t1/2 and
H ∼ a−2. Thus

ρW ∼ σWa
−2. (3.39)

Let us define its density parameter as

ΩW ≡
ρW

ρcr0

. (3.40)
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The a−2 dependence in Eq. (3.39) implies that ΩW dilutes with the universe expan-
sion at a slower rate than Ωr ∝ a−4 and Ωm ∝ a−3. Unless σW is sufficiently small,
domain walls will dominate the energy contents of the universe, which is not what
we observe. This was first pointed out by Zel’dovich, Kobzarev and Okun in 1974
and is called the cosmological domain wall problem [75].

We can make a naive estimate on the maximum value of σW in order to avoid
domain wall domination. If we require ΩW0 < 0.1, then

σW < (10 MeV)3 . (3.41)

A more stringent constraint can be derived from the isotropy of the CMB. If we
have about one domain wall per Hubble volume, then we can also estimate that the
average separation between walls is ∼ H−1. We can integrate the derivative of the
domain wall gravitational potential Eq. (3.37) along this typical distance to obtain
the typical change of gravitational potential

δϕ ∼ GσWH
−1. (3.42)

This will induce density and CMB temperature fluctuations of a similar size

δϕ ∼ δρm
ρm
∼ δT

T
. (3.43)

The CMB temperature fluctuations are small, of around

δT

T
. 10−5, (3.44)

which gives the following constraint on the tension

σW < (1 MeV)3 . (3.45)

This was the original estimation given by Zel’dovich et al on their original paper [75].
A similar bound can be obtained by considering the CMB distortions generated by
domain-wall-induced metric perturbations (Sachs-Wolfe effect) [137]. The tension
bound has been slightly improved by simulating the shape of the CMB anisotropies
induced by domain wall networks [140, 141]

σW < (0.92 MeV)3 . (3.46)

Before modern theories of structure formation were developed, topological defect
networks were an attractive feature as they were thought capable to act as seeds for
structure formation. However, it was quickly seen that the density perturbations
induced by domain walls were too small to account for the observable universe
without leading to wall domination [83]. Thus, modern studies of topological defects
as seeds for structure just focused on strings and textures [50]. Those were later
excluded, since if they were abundant enough to cause gravitational collapse they
would lead to a different shape of the CMB peaks than the one we currently observe.
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3.4.4 Avoiding wall domination

If domain walls dominate the energy contents of the universe before the present
time, it would lead to inhomogeneous expansion, with different Hubble patches
expanding at different rates. Thus, cosmologists must build their models with some
mechanism in mind to either make the domain wall network nondominant, make it
decay before it becomes dominant, or avoid its formation altogether. Some of the
proposed mechanisms are the following:

Domain wall formation before inflation. If the symmetry was broken before
or during inflation, then the network is stretched far beyond the present Hubble
radius and its energy density is diluted to a point in which it does not cause any
cosmological problems. Even if the network is formed after inflation, if there is a
second inflationary period the same result would happen.

Low enough tension. Even if a domain wall network is formed after inflation,
as long as the domain wall tension is under the bound presented in Eq. (3.46), it
does not represent a cosmological problem at the present time.

Symmetry nonrestoration. Symmetry restoration at high temperatures hap-
pens for a single scalar field [45] and is a general tendency for even more complex
models. However, one can contrive models in which it does not happen. Particu-
larly relevant for the topic of domain walls are some PQ models in which the scalar
field has no gauge interactions and the PQ symmetry is not restored until energies
of the order of the Planck mass [49, 92].

Trivial domain wall number. In the axion/dark matter context, domain walls
form during a second phase transition after cosmic strings have already formed.
Depending on the number of degenerate vacua, the domain wall number NDW could
be as low as one. In that case, only one domain wall attaches to each string
and the string-wall network collapses immediately after the QCD phase transition
[79]. The decay of the network could explain the observed dark matter density for
certain values of fa [106]. NDW = 1 is allowed in some axion models, notably the
KSVZ model. One can achieve NDW = 1 through model building, for example if
one associates the spontaneously broken discrete symmetry to a gauge symmetry,
the physical degeneracy among different vacua is removed, as they become gauge
equivalent. This is known as the Lazarides-Shafi mechanism [78]. Other models
have also been built under similar principles [110].

Potential bias. If there exists a small potential bias, then the vacua are only ap-
proximately degenerate. The true vacuum will tend to grow while the false vacuum
will tend to shrink. Let ∆ρv = ε 6= 0 be the difference between the energy density
of both vacua. This induces a force per unit area on the walls fε ∼ ε which becomes
dynamically important when it becomes comparable to the force induced by ten-
sion. As long as this happens before wall domination, domain walls will accelerate,
annihilate with eachother and the network will collapse [82, 114, 115].
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Population bias. If the probability distribution of the field values at the time
of domain wall formation has a preference for one vacuum over another, that could
lead to the decay of the network [89, 90]. The most common way to realize this
bias is through cosmological inflation, for which fluctuations of light scalar fields
develop at all scales. As we will show in Ch. 5, although the energy density of
these networks is ∼ 2 times lower than the energy density of networks generated
thermally (i.e. white noise initial conditions), networks generated after inflation are
very resilient to population biases.

Other scenarios. One can build a model with multiple scalar fields such that a
spectator field induces a non-trivial scalar potential to the spontaneously broken
field. This non-trivial potential can be such that string formation is not allowed and
thus no string-wall network is formed [112]. In models with associated instantons,
the instanton effects in the spontaneously broken scalar field can be such that the
domain wall network decays [104, 111]. One can also consider models in which
primordial black holes perforate the domain walls and destroy them [102].

We must keep in mind that, even if the domain wall network decays, that can lead to
other problems like particle/axion overproduction or gravitational wave production
after their annihilation [106]. Thus, a nondominant network that has not decayed
yet is an appealing candidate to avoid the domain wall problem. In Ch. 6 we
see how a stable domain wall network could explain the current hint for isotropic
cosmic birefringence and predict anisotropic cosmic birefringence within the current
experimental bounds.

3.4.5 Axionic domain walls

The bounds considered in Fig. 3.4 are for general QCD axions/ALPs without an
associated domain wall network. In this thesis we are interested in axions with
cosmologically viable domain wall networks, for which the axion-photon coupling
and the mass region of interest can be seen in Fig. 3.5.

Large axion-photon couplings are excluded due to astrophysical observations. For
example, the absence of an associated gamma-ray burst from the supernova SN1987A
implies [66]

gaγγ . 5.3 · 10−12GeV−1, (3.47)

although it has recently been suggested that this bound could be relaxed or even
removed completely [70]. The absence of irregularities in the X-ray power-law spec-
trum of the radio galaxy M87 gives an even more stringent bound [69]

gaγγ . 2.6 · 10−12GeV−1. (3.48)

In order for the domain wall network not to dominate the energy contents of the
universe,

(1 MeV)3 > σW ∼ 8mfa
2 ∼ 4 · 10−5mgaγγ

−2, (3.49)

which implies that cosmologically viable axions with domain wall networks must be
very light.
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Figure 3.5: Various constraints on ultralight axions, with stable domain walls not
bounded by strings, shaded regions are excluded. The purple and orange regions
above the two horizontal dashed lines are excluded due to the SN1987A (upper) and
M87 (lower) bounds, respectively. Also shown are the expected IAXO+ and
Fermi-LAT reaches in the blue (upper) and red (lower) dotted lines. The lower right
triangle (gray) region is excluded due to the domain wall problem. Figure from [147].
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Chapter 4

Domain walls after inflation

Although domain wall network dynamics had been studied in the past literature,
their dependence on the initial conditions has stayed unnoticed until now. In Sec. 4.1
we define the power spectrum of scalar fluctuations and see how it differs for a
field which is in thermal equilibrium vs for a light scalar field after inflation. The
network dynamics are highly nonlinear, so they are studied through simulations.
Our computational setup is explained in Sec. 4.2. In Sec. 4.3 we will see how the
dynamics of the network change when properly taking into account the inflationary
fluctuations. Dynamical range effects in the network dynamics had been noticed
previously but they become even more apparent for inflationary fluctuations. We
describe them in Sec. 4.4. Finally, in Sec. 4.5 I will present an argument for why
an attractor solution exists, and why it is different in the scale invariant initial
condition case.

4.1 Initial conditions
The scale dependence of the fluctuations can be characterized by the power spec-
trum P (k), which is defined as

〈φ(k)φ(q)〉 = (2π)dδ(d)(k + q)P (k), (4.1)

where the angle brackets mean an ensemble average, d is the number of dimensions.
φ(k) and φ(x) are the Fourier transforms of eachother

φ(k) =

∫
dxd e−ik·xφ(x), (4.2)

φ(x) =

∫
dkd

(2π)d
e−ik·xφ(k). (4.3)

Since the Lagrangian is invariant under spatial rotations, the power spectrum can
be written just as a function of k = |k|. If we substitute Eq. (4.3) twice into
Eq. (4.1) and remember that∫

dkd δ(d)(k + q)f(q) = f(k), (4.4)
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we obtain that the variance of fluctuations in position space can be expressed as

〈
φ(x)2

〉
=

∫
dkd

(2π)d
P (k) =

∫
d ln k P(k), (4.5)

where we have introduced P(k), the reduced power spectrum. Its relationship with
the power spectrum depends on the number of dimensions,

P2D(k) =
k2P (k)

2π
, P3D(k) =

k3P (k)

2π2
. (4.6)

Figure 4.1: White noise (left) and scale invariant (right) initial field fluctuations
(τ = 1/m). The box contains 1002 horizons. Both colorscale ranges are equal, and
fluctuations have been set so that the position space variance is equal in both cases to
σ ≈ 0.01.

A field in thermal equilibrium develops Gaussian fluctuations in all of their degrees
of freedom. Uncorrelated fluctuations are of the form

〈φ(x)φ(y)〉 = A · δ(d)(x− y), (4.7)

where A is a constant. This implies that the power spectrum is constant, and thus
the reduced power spectrum in 2D is

White noise: P2D(k) = C2k
2, (4.8)

where C2 is a constant determining the size of fluctuations. Fluctuations of this
type are what we call white noise or thermal fluctuations.

The spectrum of fluctuations acquired by a scalar field during inflation is very
different. In the simplest case in which the Hubble parameter is constant during
inflation, light quantum scalar fields develop fluctuations which are scale invariant

Scale invariant: P2D(k) = C0 constant, (4.9)
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where C0 is a constant determining the size of fluctuations. Please check Ap-
pendix A for the full derivation. These are what we call scale invariant or infla-
tionary fluctuations.

In Fig. 4.1 we can see snapshots of some initial conditions for both cases. We can
see how there are no apparent correlations in the white noise case, while for the
scale invariant case we have large regions of either negative or positive field values.

4.2 Computational setup
Since domain wall networks are highly nonlinear systems, the amount of information
that can be obtained analytically is very limited, so their dynamics are studied
through computer simulations. Let us review how cosmological lattice simulations
are set up.

Inflationary fluctuations are of quantum origin, but they become classical after hori-
zon exit, which lets us solve the equations of motion classically. We are interested
in the regime where domain walls do not dominate the energy contents of the uni-
verse. Although the role of backreaction in the context of matter inhomogeneities
has been brought up recently [51], in the regime of cosmologically viable domain
wall networks their backreaction should be negligible. Thus, their evolution can be
solved as fluctuations over a homogeneous, expanding background.

The Lagrangian for a scalar field φ with a quartic potential is,

L =
1

2
(∂µφ)2 − V (φ), V (φ) =

λ

4
(φ2 − η2)2, (4.10)

where λ is the quartic coupling and η is the field VEV after the spontaneous sym-
metry breaking. Since Zn walls behave similarly to Z2 walls and the dynamics are
not heavily dependent on the potential shape, we choose to use the double well
potential for its simplicity. We consider domain walls without strings, for which a
plausible generation mechanism is presented in [147]. The equation of motion of a
scalar field in a homogeneous background is,

φ̈+ 3
ȧ

a
φ̇− 1

a2
∇2φ+

dV (φ)

dφ
= 0. (4.11)

Its derivation, as well as the details about how it is solved in the lattice, are shown
in Appendix B.

In the program we need to use dimensionless variables, and it is convenient for those
variables to be of order one so that floating point errors are minimized. In particular,
the program time is dimensionless τpr = mτ , where τ is conformal time. Conformal
time (and in turn, program time) are not physical, we need to fix some normalization
with respect to t in order to make sense of them as standalone variables. Conformal
time is defined as dτ = dt/a(t). In the radiation dominated universe, a(t) = ai

√
t/ti

for some initial time ti. After integration, this leads to two arbitrary constants, τ0
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and t0,

τ − τ0 =
2t

1/2
i

ai
(t1/2 − t01/2). (4.12)

Both of them are set to zero. ai must also be fixed in order to make both the scale
factor and conformal time physical. It is convenient to set aosc = a(tosc) ≡ 1. The
time at which the field starts rolling down the potential is H(tosc) = m which, for
radiation dominated era, H = 1/(2t), gives tosc = 1/2m and thus

aosc = ai

(
tosc

ti

)1/2

=
ai

(2mti)1/2
≡ 1 =⇒ ai = (2mti)

1/2. (4.13)

This fixes the normalization of τ . In this and the next chapters, conformal times
are given in units of 1/m.

In this system we can identify two important scales—the horizon scale and the
domain wall width. Simulations are often performed in comoving coordinates with
a special normalization. In order to correctly solve the system, the box size needs
to be large enough to contain at least a few horizons and the resolution needs to be
fine enough so that there are at least a few cells per domain wall width. However,
during the radiation dominated era, in comoving coordinates the domain wall width
δW decreases in proportion to a−1 and the comoving horizon size RH0 increases in
proportion to a. Thus, the dynamical range at the beginning of the simulation
must be good enough to solve the evolution of the system for enough time until the
scaling solution is reached.

This is computationally challenging, and particularly during the early stages of
research these simulations could not be performed. The first simulation results
were published in 1989 by Press, Ryden and Spergel, and the trick they used to
resolve the system with limited computational power was making the comoving
domain wall width constant in time after domain wall formation. The domain wall
evolution was reported to be mostly unaffected by this change, but other aspects like
gravitational wave production or possible small scale structure can not be probed
with the Press-Ryden-Spergel setup. Thus, it is preferable to solve the equation of
motion as it is, without making any a priori assumptions of what does or does not
affect the domain wall dynamics.

From Eq. (3.29) we can see how the energy momentum tensor of a domain wall
is invariant under Lorentz boosts in the tangential plane, which implies that only
the transverse motion of the domain wall is observable. This motivates a setup in
which the field is homogeneous over one of the coordinates, and then solving the
3D equation of motion on a 2D slice. This lets us run faster simulations of higher
dynamical range, and then just gain more statistics by running multiple simulations
and averaging the results.

Modern computers have hardware capable of running multiple tasks at the same
time, which can be used to parallelize code. In our case, its appeal is that the
equation of motion can be solved faster without any approximations, which in
turn implies that the dynamical range can be improved at no time expense. Some
researchers [160, 161, 162] have pioneered the techniques of GPU acceleration in



4.3. DWs from scale invariant fluctuations 45

the context of cosmological lattice simulations, which depending on the computer
can reduce simulation times one or two orders of magnitude. Compared to past
GPU accelerated code architectures, mine improves the memory usage and reduces
the time each simulation takes. For more information about its implementation,
see Appendix C.

The simulation size Ncell is determined by the amount of field values taken for each
side of the discretized field matrix (box). NH is the number of horizons per side
of the box, which is changes with time. NH/Ncell at initial time determines the
resolution of the simulation. The simulation size, initial number of horizons and
number of repetitions chosen for each result in this thesis varies, as a compromise
between time, dynamical range and good statistics has to be reached. Traditionally,
only powers of two were chosen for Ncell (e.g. 4096 or 8192) since those were the
fastest matrix sizes to run a FFT algorithm on. However, modern FFT libraries
are very fast on any matrix size. Some of the 2D results on this thesis are for a
311042 matrix, and in 3D, for 9603, as those are the largest simulation sizes which
I can run with my code architecture on my 8 GB DRAM GPU. The details of the
simulation size and resolution are specified on each result as they are presented.

4.3 DWs from scale invariant fluctuations
In order to more easily understand what happens in the case of scale invariant initial
conditions, it is useful to see the results in contrast to the white noise ones.

4.3.1 Visualizing the network formation

Let us first visualize how the networks look like. The simulation starts at τosc = 1/m,
and at around τform = 5/m, the network has fully formed. At time τ = 10/m,
enough time has passed for the network to stabilize at the attractor solution.

Figure 4.2: Field snapshots at time τ = 10/m for white noise (left) and scale
invariant (right) initial conditions. The box contains 102 horizons.
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The initial conditions shown in Fig. 4.1 are left to evolve, and the resulting domain
wall network is shown at Fig. 4.2. Since the horizon size increases as ∝ τ in comov-
ing coordinates, the box now contains 102 horizons. In the scale invariant case, the
domain wall network becomes more sparce, with the superhorizon correlations turn-
ing into relatively straight domain wall segments spanning multiple Hubble radii
and voids occupying several Hubble volumes.

4.3.2 Length per horizon

There are many magnitudes one can compute in order to characterize the behaviour
of the system. For example, the average domain wall velocity, kinetic, potential or
gradient energies... One magnitude which is both fast to compute and easy to
interpret is the normalized domain wall length per Hubble volume. Since this is a
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Figure 4.3: Time evolution of the normalized domain wall length L for scale
invariant (blue) and white noise (orange) initial conditions. For large mτ , L
asymptotes to a certain value, which is interpreted as the system reaching an
attractor solution. Data from 311042 simulations, 16002 (4002) horizons at initial time
and 70 (10) averages for scale invariant (white noise) initial conditions.

magnitude which we will make extensive use of, for convenience, let us do a slight
abuse of notation and call it L, instead of something along the lines of L/H−1. In
2D, this magnitude can be computed by

L =
Total physical DW length

NH
2H−1

. (4.14)

This is a dimensionless quantity—if the total domain wall length on the numerator is
comoving (physical), then the Hubble radius on the denominator must be comoving
(physical) as well. The normalized domain wall length quantifies how many domain
walls there are within a Hubble volume, and thus for the scaling solution we expect
this to be of order 1.



4.3. DWs from scale invariant fluctuations 47

In Fig. 4.3 we can see how L evolves with time for both kinds of initial conditions.
As mτ becomes large, L asymptotes to a constant value, which we will call Lattr.
This is a convenient aspect of L, just by visual inspection we can see whether the
system has reached the scaling solution or not.

The way in how the domain wall length is calculated is by computing how many
contiguous cells have field values of opposite sign and then multiplying that by an
appropiate factor. Before the domain wall is fully formed, this calculation does not
make physical sense, which is why L takes very large values at early times. We can
also see some small bumps at values of τ ∼ 8/m, which correspond to large scalar
fluctuations at small scales. Those are the ripples between the domain walls which
can also be seen in Fig. 4.2. The initial spectrum of fluctuations can be set with
suppressed small scale correlations (an UV cut in momentum space) so that these
high frequency modes are not introduced into the system, and thus we do not need
to wait for them to decay. The large time behaviour of the system does not seem
to change significatively even if an initial UV cut is applied.

4.3.3 Field power spectrum

We can calculate the field power spectrum as defined in Eq. (4.6) after the domain
wall formation to see how the field correlations evolved with time.
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Figure 4.4: Reduced power spectrum P(k) normalized by the VEV squared η2

evaluated at time τ = 10/m for both scale invariant (blue) and white noise (orange)
initial conditions. Data from 311042 simulations of 12002 horizons in size. 100 (30)
averages taken for the scale invariant (white noise) case, the shaded regions are 1σ
confidence intervals from this average.

In Fig. 4.4 we can see the reduced power spectrum at τ = 10/m for both scale
invariant and white noise cases. Wavenumbers k are normalized by the one corre-
sponding to the horizon size kH , as defined in Eq. (2.21), in order to easily identify
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which k are sub-horizon (small scales, k/kH > 1) or super-horizon (large scales,
k/kH < 1). The wavenumber associated with domain wall width in our simulation
at that time is k/kH ∼ 16, for which we can see a drop in the slope of the power
spectrum, indicating that there is no small scale within the domain walls. The
horizon scale is k/kH = 1, and the value of the reduced power spectrum there is
correlated to the amount of domain walls at the attractor solution Lattr.

During domain wall formation (from τosc to τform), large scale fluctuations grow in
size. This is because due to these large scale correlations nearby field values will be
either mostly positive or mostly negative, and as the field rolls down the potential
it will do so coherently. One would, naively, expect the increase of values of P(k)
from τosc to τform to be in such a way that causality protects the shape of the power
spectrum at superhorizon scales. That is, if the initial power spectrum was scale
invariant at the initial time, to still be scale invariant at superhorizon scales after
domain wall formation. In other words, we would naively expect the scalar field
dynamics to be able to access small scale correlations (i.e. to form domain walls)
but not to generate nor suppress correlations at scales larger than the horizon.

In Fig. 4.4 we can see how the reduced power spectrum at superhorizon scales for
white noise is still approximately ∝ k2, but for the scale invariant case it is visibly
not constant. Surprisingly, the shape of the reduced power spectrum has developed
a slight tilt with time. We argue that the reason for this tilt is that, although
the power spectrum takes a simple form in momentum space, the evolution of
each individual k is not decoupled. The scalar field evolution is happening in the
position space, where fluctuations of all sizes stack up, and thus the aforementioned
“coherence” when rolling down the potential is not the same for all scales.

Let us estimate the increase of the values of the reduced power spectrum from the
initial time of oscillation τosc to the time of domain wall formation τform like

Pform(kR) ' Posc(kR) · 〈φ
2(x)〉form

R

〈φ2(x)〉osc
R

, (4.15)

where Posc(k) = C0 ∀k is the initial scale invariant reduced power spectrum, and
〈φ2(x)〉R is the position space field fluctuation variance averaged over a spatial region
of size R. Let us not get confused by this notation, (x) is the variable averaged
over, and 〈φ2(x)〉R is in essence a function of a wavenumber kR = 2π/R.

We can estimate that 〈φ2(x)〉form
R ' η2 since, after domain wall formation, the field

will fall to either minima and thus the field variance will be approximately the
VEV squared. For 〈φ2(x)〉osc

R we need to be a bit more careful. In order to avoid
discussions about the small scale fluctuations, which are of no interest to this effect,
let us compute this as its difference with respect to its value over a Hubble volume.
Then, for R > H−1, Posc(k) = C0,

〈
φ2(x)

〉osc

R
−
〈
φ2(x)

〉osc

H−1 =

∫ kH

kR

d ln k P(k) = C0 ln kH/kR > 0, (4.16)

where 〈φ2(x)〉osc
H−1 is some finite value. This implies that, even though the power
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spectrum is scale invariant, the real space fluctuation variance is larger on super-
horizon scales compared to that at horizon scales, with a logarithmic dependence
on the scale. After domain walls have formed, the reduced power spectrum becomes

Pform(kR) ' C0 ·
η2

〈φ2(x)〉osc
H−1 + C0 ln kH/kR

, (4.17)

which depends on k.

The scale invariant power spectrum is quite peculiar, namely because the real space
fluctuation variance tends to infinity for any nonzero C0 and no maximum nor
minimum momentum,

〈
φ2(x)

〉
=

∫ kmax

kmin

d ln k C0 = C0 ln kmax/kmin
kmax→∞−−−−−−→
kmin→0

∞. (4.18)

This could be problematic for the above argument—either we set a maximum and
minimum k, or otherwise C0 is ill-defined. In realistic scenarios there is a maximal
scale for which the fluctuations are scale invariant, related to the number of e-folds
of inflation, and small scale fluctuations are not scale invariant but rather ∝ k−2.
In any case, Eq. (4.17) can also be obtained for a reduced power spectrum of the
form

Posc(k) = Cεk
ε, |ε| � 1, (4.19)

for which we would obtain〈
φ2(x)

〉osc

R
−
〈
φ2(x)

〉osc

H−1 =

∫ kH

kR

d ln k Cεk
ε =
−Cε
1− ε (kH

ε − kRε)

=
−Cε
1− ε kH

ε

[
1−

(
kR
kH

)ε]
|ε|�1−−−→ (εCε) ln

kH
kR

(1 +O(ε)) .

(4.20)

If we then make ε tend to zero and define C0 ≡ εCε it would be like doing the
calculation for the scale invariant spectrum in a regularized form. If not, then
Eq. (4.20) shows that even with a slight blue or red tilt on the initial power spectrum,
after domain wall formation, the reduced power spectrum shape at superhorizon
scales after domain wall formation is still modified logarithmically on k.

4.3.4 3D simulations

Up until now, all results had been shown for 2D simulations. This is because we are
limited by memory size, and thus we can reach better dynamical range by taking
large 2D simulations and then many averages, rather than just one 3D simulation.
However, we want to know if the features and dynamics found in 2D simulations
are indeed similar to those in 3D simulations.

In Fig. 4.5 we can see the reduced power spectrum along constant z slices, one per
horizon in the z axis, for 3D simulations. We can see that, although the dynamical
range is worse and thus we cannot probe scales as large nor small as in Fig. 4.4, the
general features are remarkably similar to those seen in 2D simulations.
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Figure 4.5: Reduced power spectrum P(k) normalized by the VEV squared η2 in
3D simulations at time τ = 10/m. Computed along constant z slices, one per horizon
in the z axis, for both scale invariant (skyblue) and white noise (yellow) initial
conditions. Simulations are 9603, with 3003 horizons at initial time. One slice per
horizon in the z direction was taken and the results averaged over 5 simulations, the
shaded regions are 1σ confidence intervals from this average. For reference, the
reduced power spectrum for 2D, 311042 simulations of 12002 horizons at initial time,
with scale invariant (blue) and white noise (orange) initial conditions are also shown.

4.4 Deviations from the scaling solution
Some early papers [84, 93, 96, 97, 98] found some late time deviations from the
scaling solution in the case of white noise initial conditions. However, it was later
seen [99] that it was due to the limited dynamical range of the simulations, and not
a physical effect. The smallest wavelength that the simulation can resolve is the
side of one individual cell NH/Ncell, which corresponds to

kmax

kH
=

2πNcell

NH

, (4.21)

while the largest wavelength that can appear in the simulation corresponds to the
diagonal of the box

√
2NH , for which

kmin

kH
=

√
2π

NH

. (4.22)

In Fig. 4.3 we can see a slight increase for the normalized length ∆L/∆mτ even
in a simulation with a dynamical range large enough not to induce noticeable de-
viations from the scaling solution in white noise initial condition simulations. In
order to study if this is a physical effect or not, we performed several simulations
with different box sizes and measured the increase in each of them. One plausible
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hypothesis for this increase was the existence of some winding mode, that is, the
periodic boundary conditions were allowing field fluctuations to wind along the box,
which could induce an increase of the normalized domain wall length L with time.
In order to check that hypothesis, large simulations with an initial IR cut on the
initial conditions (i.e. the initial reduced power spectrum was set to zero for all
k ≤ kmin) were also performed, and the increase of L with time, measured.
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Figure 4.6: Linear increase of the normalized length L with time mτ for simulations
of constant resolution (NH/Ncell = 0.051 at initial time) but different size (in purple),
and for simulations of constant size (311042, 16002 horizons, resolution
NH/Ncell = 0.051) but with various IR cuts (in blue).

The results can be seen in Fig. 4.6. When the increase ∆L/∆mτ is plotted over
kmin/kH both results agree, suggesting that the problem is not the existence of
winding modes, but rather that the maximum correlation length is limited at the
initial time by the simulation size.

The kmin dependence in Fig. 4.6 is not perfectly linear in the log-log plot. Looking
at the data, it looks like even as kmin tends to zero, ∆L/∆mτ still has a nonzero
value. Let us divide the length increase into two different components,

∆L

∆mτ
=

[
∆L

∆mτ

]
IR

+

[
∆L

∆mτ

]
UV

, (4.23)

where [∆L/∆mτ ]IR is the length increase due to the presence of a kmin in the initial
power spectrum, and [∆L/∆mτ ]UV is the length increase due to the discretization
of the lattice. Let us suppose that [∆L/∆mτ ]IR has a power law dependence with
kmin and thus separate both contributions by doing a nonlinear regression to

∆L

∆mτ
= A

(
kmin

kH

)B
+

[
∆L

∆mτ

]
UV

, (4.24)
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where A, B and [∆L/∆mτ ]UV are the regression coefficients. This is done for several
simulation sets with different IR cuts and resolutions.
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Figure 4.7: Contributions to the linear increase of the normalized length with time
∆L/∆mτ corresponding to a kmin on the initial power spectrum (left) and to a
limited UV resolution (right). Both contributions are separated through a nonlinear
fit to Eq. (4.24). The values of ∆L/∆mτ come from 311042 simulations × 30
repetitions for each individual IR cut and resolution.

The results can be seen in Fig. 4.7. They suggest that as the dynamical range gets
better, the normalized length truly asymptotes to a constant value.

The reason why [∆L/∆mτ ]IR is more noticeable in the case of scale invariant initial
conditions is because fluctuations at superhorizon scales are larger. With white
noise initial conditions, even if a kmin exists, the correlations larger than the box size
are of smaller magnitude than for the scale invariant case. Notice that [∆L/∆mτ ]UV

is about one order of magnitude smaller than [∆L/∆mτ ]IR. This is to be expected:
as long as there are several field values per domain wall width, which is the smallest
scale in the system, the system should be being mostly correctly solved for.

4.5 Existence of an attractor solution
The existence of an attractor solution has remained solely as a phenomenological
truth in the study of domain walls. It was shown to exist for the one-scale model
[101], but we do not expect this model to remain valid for scale invariant conditions
as no characteristic scale can be properly defined. In this section I will present how,
for a certain generalized set of initial conditions, simulations show that an attractor
solution exists. We also found for which kinds of initial conditions the attractor
solution is not reached. The qualitative behaviour of the system can be derived
from a phenomenological model, which is developed in Sec. 4.5.2.

4.5.1 Generalized initial conditions

Let us consider an initial reduced power spectrum of the form

P(k) = Cnk
n, (4.25)
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where Cn is a constant coefficient that depends on the power n but not on k. The
case n = 0 corresponds to scale invariant initial conditions and n = 2 to white
noise. We are interested in the case in which the position space fluctuations are
constant in n. If we substitute Eq. (4.25) into Eq. (4.5) and set the position space
field standard deviation σ to be constant, we get

Cn =


σ2n

kmax
n − kmin

n , n 6= 0

σ2

ln (kmax/kmin)
, n = 0

(4.26)

where kmax and kmin depend on the size and resolution of the simulation. Their
values can be obtained from Eq. (4.21) and Eq. (4.22) respectively. Integrating up
to an unique kmin is not exactly true: all modes of wavelength NH (side of the box)
fit in the simulation but only some with

√
2NH (diagonal of the box) do so. There

is no need to worry too much about this, this integration is only realized to set
Cn in the code so that σ is constant and the results for different n can be easily
compared, but even if σ has a slight dependence on n the results remain mostly
unchanged.
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Figure 4.8: Value of the normalized domain wall length at the attractor solution
Lattr as a function of n. Lattr is estimated as the minimum value of L after domain
wall formation at τform ≈ 6/m. From a set of 2D, 40962 simulations with 3002

horizons at the starting time, 50 averages per value of n.

What we saw in the simulations is that all of these initial conditions led to an
attractor solution, with the amount of domain walls in it depending on the particular
value of n, as one can see in Fig. 4.8. A slight increase in L over mτ is observed
for most values of n, although from the study presented in Sec. 4.4 for n = 0 we
believe that this is not physical and that an attractor solution exists for this set of
initial conditions.
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The fact that an attractor solution is found for such a wide range of initial conditions
raises the following question: when is an attractor solution not reached? The fact
that L increased when an IR cut is introduced in the initial conditions gives us
an important clue. If one can define a characteristic wavenumber at superhorizon
scales kc from the power spectrum alone, then kc/kH will evolve with time, and
the system will not reach an attractor solution until this mode enters the horizon
and the fluctuation size at superhorizon scales becomes constant with time. In this
case, the initial power spectrum has the following form

P(k) =

{
C0, k > kcut

0, k < kcut.
(4.27)

Here, kcut/kH changes with time and the fluctuation size at superhorizon scale also
changes with time, which causes the domain wall length to grow. That can be
understood from Fig. 4.8: the attractor length for n = 0 is smaller than the one for
n > 0, so as the fluctuations at superhorizon scale become less and less correlated,
L grows.
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Figure 4.9: Normalized domain wall length L for two different power spectrums with
time dependent superhorizon fluctuations. In blue, P(k) = C0 with an infrared cutoff
at kcut/kH = 0.12 at initial time. In purple, P(k) = C0 + C2k

2 with a characteristic
scale Eq. (4.29) with values such that k02/kH = 1/7 at initial time. Data from 163842

simulations, 8002 horizons at initial time, 50 averages. The attractor values Lattr for
white noise and scale invariant initial conditions are shown in dashed lines.

We can also contrive some initial conditions so that L decreases with time. For
example, let us consider a power spectrum of the form

P(k) = C0 + C2k
2. (4.28)
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Here we can define a characteristic scale k02, the wavenumber at which both terms
are comparable in size

k02 =

√
C0

C2

. (4.29)

If k02/kH � 1, then the domain walls form mostly under Gaussian fluctuations, and
as k02/kH ∼ 1, the superhorizon fluctuations will be mostly scale invariant, which
will make the domain wall network decay until it reaches the n = 0 attractor. In
Fig. 4.9 we can see how that is indeed the case.

4.5.2 Phenomenological model

The qualitative behaviour of this system can be seen with a simple phenomenological
model. Our objective now is to build a differential equation in which the three main
dynamics of the system (expanding universe, domain wall annihilation, superhorizon
fluctuations) are taken into account.

Let us define L in three dimensional space as

L =
Total physical DW surface

NH
3 ·H−2

. (4.30)

This is a dimensionless quantity. We want to know how L changes with time for a
static domain wall network. That is, a network where the scalar field dynamics have
been switched off and is just following the universe expansion. The total physical
DW surface and the amount of Hubble horizons NH

3 have to be both evaluated
over the same volume. Both in the simulations and in the following argument, that
is a box of fixed comoving size.

In radiation dominated era, H ∝ τ−2 and a ∝ τ . The box size is constant in
comoving coordinates, but evolves ∝ a in physical coordinates. Thus, the number
of horizons on one side of the box evolves as NH ∝ a/H−1 ∝ τ−1. The total
comoving DW hypersurface is constant, and thus the total physical DW surface
evolves as ∝ a2 ∝ τ 2. Putting everything together, L will evolve as

L(τ) ∝ τ. (4.31)

When differentiating with respect to τ , results in the following,

∂L

∂τ
=
L

τ
. (4.32)

Now, in order to estimate the annihilation probability, imagine placing N straight
lines randomly on a plane. If none are parallel, they will intersect N(N − 1)/2
times, which motivates the inclusion of a term of the form L(L− Lattr)/τann in the
above equation,

∂L

∂τ
=
L

τ
− L2

τann

+ Lattr
L

τann

. (4.33)

Intuitively, it makes sense for the annihilation term to go as L2 since they annihilate
in pairs, as well as to have a linear correction to it. The solution to this differential
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equation is

L(τ) =
Lattr

1 + c1Lattr exp(−Lattrτ/τann)τ−1 +O
(
(Lattrτ/τann)−1) , (4.34)

where c1 is an integration constant which can be identified with the initial conditions
of the system. All of the time-dependent terms decay with time, and we see how
for τ � τann, this solution tends to a constant value.

L(τ � τann) = Lattr. (4.35)

Fluctuations at the superhorizon scale only affect the domain wall network evolution
through a localized bias which varies randomly for each Hubble sphere and in time
δ(x, τ). As we will see in Ch. 5, an overall bias induces an exponential decay of L
such as

L(τ) ∼ exp(−τ/τL) (4.36)

where τL is a characteristic lifetime that depends on the bias. The particulars of
the dependence of the lifetime with the bias δ are discussed in Sec. 5.1.4 but most
important for us is that the dependence is not linear. The above ODE is written in
terms of spatially averaged quantities. Even though the spatial average of the bias
is zero 〈δ〉 = 0 the spatial average of the lifetime will not be zero 〈τL〉 6= 0. This
motivates the inclusion of a term like −L/τL. The full ODE then becomes

∂L

∂τ
=
L

τ
− L2

τann

+
L

τann

(
Lattr −

τann

τL

)
, (4.37)

which at large τ tends to

L(τ � τann) = Lattr −
τann

τL
. (4.38)

The size of superhorizon fluctuations decreases with n, so we expect the lifetime τL
to increase with n. This explains qualitatively the results shown in Fig. 4.8.

τL is constant only when the superhorizon fluctuations remain constant in time.
For the two power spectrums discussed in Fig. 4.9, τL = τL(τ). If we solve the ODE
considering τL(τ) to be slowly varying, then the solution becomes

L(τ � τann) = Lattr −
τann

τL(τ)
, (4.39)

which is not constant. If τL becomes very small (e.g. due to the inclusion of an
overall bias), then the last term in Eq. (4.37) flips its sign and becomes negative,
with the solution of the ODE now becoming a decaying exponential

L(τ � τann) ∝ τ exp

(
− τ

τL

)
. (4.40)

I want to clarify that this model was not built with the objective of fitting the
simulation data, but rather to show that the qualitative behaviour of the system
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can be seen from just a simple model with easily interpretable terms. That is, there
is an attractor solution, and the value of the normalized length in this solution varies
with n due to the localized bias introduced by the superhorizon fluctuations. For
the sake of simplicity we introduced exponential decay through the −L/τL term in
the ODE, but actually the form of that term should be derived so that Eq. (4.40) is
a decaying exponential, without that extra τ factor. Additionally, if one wanted to
make this a predictive model, one would have to consider that τann and τL depend
on the velocities and the size of the voids in the network, which as well depend on
n. A model for the velocities would also need to be included, and the values of all
the coefficients would need to be fitted through simulations.
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Chapter 5

Domain wall stability with biased
initial conditions

If the initial distribution of field values at the time of oscillation is biased towards
one of the minima (population bias), the dynamics of the domain wall network will
change. It was seen that, for white noise initial conditions, even relatively small
biases lead to the rapid decay of the network [89, 90]. This was thus proposed as
a way to avoid wall domination, with inflation as a straightforward mechanism to
induce large-scale biases onto the system.

However, as we have seen, if inflationary initial conditions are properly taken into
account, the domain wall networks are generated differently. In Sec. 5.1 we will
see how networks with inflationary fluctuations are very stable, even for relatively
large biases. In Sec. 5.2 we will delve further into the behaviour of the system by
studying how the network formation and lifetime are affected by population biases
for a general power law power spectrum of initial fluctuations.

5.1 Stability for inflationary initial conditions
In order to more easily understand what happens in the case of scale invariant initial
conditions, let us see the results in contrast to the white noise ones.

5.1.1 Quantifying the bias size

The computer simulations have a limited box size. Although there may be local
biases, the field average at the whole simulation size is almost zero for both white
noise and scale invariant initial conditions. The way in how the bias is introduced
is by adding a fixed value δ to all of the field values at initial time.

The effect of this bias δ in the simulation will depend on how large the fluctuations
are. For this purpose we introduce the bias parameter bd,

bd ≡
〈φ〉√
〈φ2〉

=
δ

σ
, (5.1)

where σ is the standard deviation of the field values at the initial time.
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5.1.2 Visualizing the network decay

In Fig. 5.1 we can see how, in the absence of biases, the network is stable, but for
progressively larger biases the network becomes more and more sparse over time.
It is also worth noting that even for relatively large biases (bd = 0.5, bottom row)
the network still does not decay completely during the simulation time.

Figure 5.1: Snapshots of the domain wall network for bias parameter bd = 0 (top
row), 0.05 (middle row) and 0.5 (bottom row); at times mτ = 5 (left column),
mτ = 12 (middle column) and mτ = 20 (right column). Blue and red regions
correspond to φ > 0 and φ < 0 respectively. The initial fluctuation power spectrum is
scale invariant for all bias parameters. The box contains ∼ 402(102) horizons at time
mτ = 5(20).
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5.1.3 Quantifying the network decay

Normalized length

Following our studies in the past chapter, a straightforward way to quantify the
network decay is to see how the normalized domain wall length L, as defined in
Eq. (4.14), evolves with time for a network with nonzero bias.
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Figure 5.2: Time evolution of the normalized length L for various values of the bias
parameter bd for which the domain wall network forms and subsequently decays. The
values of bd are chosen differently for white noise (top) and scale invariant (bottom)
initial conditions, as the latter are more stable than the former. We can see how, in both
cases, the magnitude L follows an exponential decay law. From a set of 2D, 40962

simulations with 2002 horizons at initial time, 50 averages taken per bias parameter.
Field values are set such that the position space field variance is σ = 0.1. Very similar
results were found for σ = 0.01, 0.001 as well as when setting the white noise values in
Fourier space.
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If bd is too small, then the decay is not noticeable, but if it is too large, the network
will not form in the first place. In Fig. 5.2 we can see how L evolves with time, for
bias parameters chosen so that the network forms and subsequently decays.

The first thing to note is that the bias parameters studied for scale invariant ini-
tial conditions are about 2 orders of magnitude larger than those for white noise
initial conditions. That is to say, for bd =O(1), networks with white noise initial
conditions would not form altogether, and for bd =O(0.01), which leave networks
with scale invariant initial conditions almost unaffected, networks with white noise
initial conditions almost decay completely.

The second feature to note is that the decay seems to be exponential in τ . The
fact that the energy density ρ decays exponentially was first noticed in 1996 for
white noise initial conditions by Coulson et al [93]. We are studying L, which is
directly proportional to the energy density if appropiately normalized by the horizon
size. It is reassuring to see that the decay also follows an exponential law in the
scale invariant case—that suggests that although the networks are more stable, the
domain wall dynamics themselves remain unchanged.

Another aspect to note is that L at the time of domain wall formation (around
mτ = 5 ∼ 6) is reduced considerably for the decay-inducing biases in the scale
invariant initial condition case. This is because the bias are so large that domain
wall formation is severely hindered from the start.

We think that the reason why these network are so stable is because of the void
structure mentioned in Sec. 4.3.1. Even if domain wall formation is hindered due
to the bias, superhorizon correlations induce voids and relatively straight domain
walls which span several Hubble horizons. As the universe expands, these large
scale correlations keep entering the horizon and avoid the network from completely
decaying.

The consequences of these findings for axion cosmology are drastic—if a high energy
domain wall network is generated, an initial population bias will not be enough to
make it decay in time. On the other hand, the bound on domain wall tension is
relaxed. The initial domain wall length for O(1) bias parameter and scale invariant
fluctuations is ∼ 6 times smaller than for unbiased white noise, which means that
the σW < (0.92 MeV)3 bound from [140, 141] now becomes

σW < (1.7 MeV)3 . (5.2)

Volume ratio

Another interesting observable of the system is what we call the volume ratio r

r ≡ 2S−
S+ + S−

, (5.3)

where S+(S−) is the total area where field values of φ are positive (negative). Here,
r is defined so that it is bounded as r ∈ [0, 2]. For the unbiased case, the initial
value is r = 1 and we would expect it to remain constant and equal to 1 as time
goes on, given that the statistics are good enough.
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In Fig. 5.3 we can see how r evolves with time for the same decay-inducing biases
used in Fig. 5.2. The observed features are remarkably similar to those of the time
evolution of L, with an exponential decay law being followed in both cases. Inter-
estingly, the small ripples in L are not found in r, as small-scale scalar fluctuations
affect the way in how we calculate L but not r.
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Figure 5.3: Time evolution of the volume ratio r for various values of the bias
parameter bd for which the domain wall network forms and subsequently decays. The
values of bd are chosen differently for white noise (top) and scale invariant (bottom)
initial conditions, as the latter are more stable than the former. We can see how, in both
cases, the magnitude r follows an exponential decay law. From a set of 2D, 40962

simulations with 2002 horizons at initial time, 50 averages taken per bias parameter.
Field values are set such that the position space field variance is σ = 0.1. Very similar
results were found for σ = 0.01, 0.001 as well as when setting the white noise values in
Fourier space.
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5.1.4 Lifetime

Both L and r seem to follow exponential decay laws in τ , which inspires a compu-
tation of associated decay time scales, or lifetimes τL and τr like

L(τ) ∝ 10−τ/τL , (5.4)

r(τ) ∝ 10−τ/τr . (5.5)

Choosing a base 10 for the exponential lets us interpret the lifetimes more easily—for
one lifetime τL the normalized length will have decayed, on average, one order of
magnitude.

In Fig. 5.4 we can see the lifetimes for both scale invariant and white noise initial
conditions, for both L and r. Notice that, in the same way as in the previous plots,
the bd ranges of interest are also different for each initial condition setting.

At first glance, the results may look discouraging—both lifetimes do not match!
Indeed, these two time scales cannot be used straightforwardly to describe the
lifetime of the system in an unified way, and it is easy to gain an intuition of why
that is the case.

Let us consider an idealized case of a system that just has one infinitely long,
zigzagging but otherwise straight domain wall. As time goes on, the zigzags become
smoothed out and L will first decrease, then increase proportional to τ after it has
become straight enough. On the other hand, r stays constant. τL and τr are
the decay lifetimes of two magnitudes which are, geometrically, uncoupled, as one
quantifies something in d − 1 dimensions while the other is in d. The only thing
coupling the time evolutions of L and r are the network dynamics.

In Fig. 5.5 we can see the same lifetimes, but now plotted like τL as a function of τr.
We can see how the results for both initial condition settings approximately match
up. This is, again, reassuring. The ratio between τL and τr changes depending
on the relative amounts of smoothing and contraction of the domain walls. Even
if the different initial conditions make the networks more stable, we would expect
that the dynamics themselves do not change that much, and thus the results should
approximately match. The match is not exact, which tells us that the dynamics do
indeed change slightly with the initial conditions. This would have to be taken into
account in a detailed model of the network dynamics, if we were to build one.

Another important takeaway from this figure is that τL is not linear with τr. If their
relationship were linear, then we could just use one of them to describe the lifetime
of the system as a whole and obtain the other through some simple dimensionality
factor. However, that is not the case—the amounts of stretching and shrinking of
the domain walls change depending on the bias.

As a technical note, in the unbiased case, L increases slightly with time. Since
we have seen that this is a dynamical range effect, we estimate that the increase
will be mostly independent on the bias, and subtract this increase from the biased
simulation results before making the fit to τL.
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Figure 5.4: Lifetimes of the normalized length (τL, in purple) and volume ratio (τr, in
green) assuming exponential decay, for both white noise (top) and scale invariant
(bottom) initial conditions. Values of τL (τr) are computed as −1 times the inverse of
the slope of the base-10 logarithm of L (r) in the interval [τform, τend] = [6, 20] · 1/m. The
increase of L due to the limited dynamical range is estimated with unbiased simulations,
and then subtracted from the values of L in biased simulations before computing the
slope, with the assumption that this increase depends weakly on bd. Power law fits for
the lifetimes are shown in the legend. From a set of 2D, 40962 simulations with 2002

horizons at initial time, 50 averages taken per bias parameter. 1σ errorbars from
weighted least squares fit uncertainties. Field values are set such that the position space
field variance is σ = 0.1. Very similar results were found for σ = 0.01, 0.001 as well as
when setting the white noise values in Fourier space.
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Figure 5.5: Relationship between the lifetime of the normalized length (τL, y axis)
and volume ratio (τr, x axis), for both white noise (orange) and scale invariant (blue)
initial conditions. We can see how they are not proportional to eachother, but rather
follow a power law dependence between them. Fitted values are shown on the bottom
right corner. See Fig. 5.4 for the values of the chosen bias parameters bd as well as for
how the decay lifetimes are calculated.

5.1.5 Percolation theory
Consider a space of d dimensions with a certain regular tiling. Let us consider a
cubic lattice for simplicity, with a certain finite lattice spacing, and assume that
at each lattice site the physical system can be in one or two vacua, which we will
call [+] and [−]. The probability of a lattice site being in [+] is denoted by p,
with 0 ≤ p ≤ 1, while the probability for [−] is 1 − p. If there is no correlation
between the vacuum structures at any two different lattice sites, then we can apply
percolation theory to compute the critical threshold pc for which, as long as p < pc,
a percolating cluster (an infinitely connected cluster of [−] cells) can form.

This argument was used in early literature [1, 89, 90, 91, 93, 96] to analytically
describe whether the domain wall network is stable or not under a certain bias. That
is, as long as a percolating cluster forms, the network will be stable. However, this
argument cannot be used—the percolating threshold depends on the dimensionality,
on what we consider a first neighbour (bond vs site percolation) as well as on the
lattice shape. This is completely different from what we are studying! The scalar
field dynamics do not change depending on which discretization of the continuum
we choose, but the percolation thresholds are different, for example, for a square
lattice and for a triangular lattice. Furthermore, for a square/cubic lattice in 3D,
if unbiased (p = 0.5), an infinitely percolating cluster is found, while in 2D it is not
found. This radical change in behaviour with the number of dimensions is not what
we expect from the behaviour of the scalar field. Although part of the literature
has moved on from this percolation theory picture, no paper had yet disproven its
applicability to the study of domain wall networks.
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5.2 Stability for generalized initial conditions
Although the case of most cosmological interest are scale invariant initial conditions,
parametrizing the initial fluctuation power spectrum as in Sec. 4.5.1 lets us tran-
sition smoothly from the scale invariant to the white noise cases, and thus better
understand the behaviour of the system.

5.2.1 Computational setup

The reduced power spectrum of initial fluctuations is set to,

P(k) = Cnk
n, (5.6)

where Cn is defined as Eq. (4.26) so to make the position space fluctuation size
constant with n. The value n = 0 corresponds to scale invariance and n = 2
to white noise in 2D. Simulations are run for a set of 36 different n ∈ [−0.5, 3.0]
linearly spaced, as well as 36 different bias parameters, logarithmically spaced bd ∈
[1.5 · 10−4, 3]. The number of repetitions varies depending on the combination of n
and bd, being higher for the regions of stable domain wall formation (5 repetitions)
and visible decay (25 repetitions), for a total of ∼ 8000 repetitions.

Something that I glossed over in Sec. 4.5.1 was that, when studying these general-
ized initial conditions, I switched from setting random Gaussian noise in position
space to Fourier space. In unbiased simulations both are equivalent, but in biased
simulations, the Fourier space setting is preferred. This is because the small error of
the pseudorandom number generator accumulates over all field values when setting
them in position space, while when setting in Fourier space, the inverse Fourier
transform partially cancels them out. For a 163842 lattice size, without introducing
any bias nor correction, using the Kahan summation method to minimize numerical
error, I obtained,

〈φpr〉Pos. space ≈ 10−6

〈φpr〉Fourier ≈ 10−12,
(5.7)

where φpr is the dimensionless program field values. If the studied biases are large,
then this small accumulated error is not relevant, but in our case, σ = 0.01 and thus
the minimum bias δ applied to the field is of comparable size to this accumulated
error. If future research becomes interested in the behaviour for even smaller biases,
then I believe that a careful study of the pseudorandom number generator statistics
may be necessary.

5.2.2 Domain wall generation

The first magnitude we are interested in is the values of L and r at the time of
domain wall formation, τform = 6/m. The results can be seen in Fig. 5.6. We see
how, for L, both large biases and large superhorizon fluctuations hinder the domain
wall formation. The unbiased value of r is 1 for all values of n so the contours in
that case become simpler.
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5.2.3 Zones of decay

Another magnitude of interest is the increment of L or r from the time of domain
wall formation to the final time of the simulation, which I called ∆L and ∆r re-
spectively. The results can be seen in Fig. 5.7. Red zones are those of high network
decay. We can see how these form a diagonal line, and suggesting that the network
in the region of large superhorizon fluctuations, small bias, either does not decay
at all or does so beyond our computational reach.

The previously studied increase of L with time due to the limited dynamical range
appears in the top plot as a light blue region. I think that it is interesting how the
limited dynamical range effects are less noticeable, or maybe even unnoticeable, in
the ∆r plot (bottom half). Let us focus our attention to the light grey isolines,
∆L = 0.1 on the top, ∆r = 0 on the bottom plots. The objective of those isolines
is to make the result variance more easily visible. We can see how the ∆L =
0.1 isoline is mostly vertical, showing that the increase is indeed higher for larger
superhorizon fluctuations. On the other hand, the result variance for ∆r does not
have that dependence on n. Also interesting to note is how the blue shaded region
abruptly stops at n = 2, thus suggesting that the dynamical range effects are almost
unnoticeable for n > 2.

5.2.4 Lifetimes

Finally, we are interested in the lifetimes of L and r. The results can be seen in
Fig. 5.8. We can see both lifetimes have a simple dependence on bd and n, which
suggests to me that these are well chosen parameters to build an analytical model.

A quirk of the phenomenological model presented in Sec. 4.5.2 was that, even for a
global nonzero bias, only when the last term in Eq. (4.37) flips sign, then the system
can decay. Maybe with incredibly large statistics and precision we can disprove this
and find that even for very small biases, the system does slightly decay. However,
in Fig. 5.8 we can see two regions of large fluctuations of the lifetimes (bottom-left
quadrants), which did not seem to improve even when increasing the statistics. A
more careful study would be required, but these results are a hint that that model
quirk may actually be present in the realistic system as well. That is, for these
regions which large result variance of τL and τr, the network may be completely
stable even with a small, nonzero bias.
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Figure 5.6: Normalized length (L, top) and volume ratio (r, bottom) at the time of
domain wall formation τform = 6/m. Values from a set of 2D, 163842 simulations with
8002 horizons at initial time of varying initial condition spectral index n and bias
parameter bd. Computed values are shown with color, zones of the parameter space
where domain walls form are shown in either blue or purple, while zones in which
domain walls do not form altogether are shown in white. The low-bias values of L
increase with n since, for the unbiased case, L(τform) ≈ Lattr which depends on n.
Isolines are obtained by interpolation, shown for linear increments of both L and r.
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Figure 5.7: Increment of the normalized length (∆L, top) and volume ratio (∆r,
bottom) from the time of formation τform = 6/m to the end of the simulation
τend = 20/m. Values from a set of 2D, 163842 simulations with 8002 horizons at initial
time of varying initial condition spectral index n and bias parameter bd. Computed
values are shown with color, with zones of network decay appearing in red, stability in
white. The increase of L due to the limited dynamical range is shown in blue. Isolines
are obtained by interpolation, shown for logarithmic increments of both ∆L and ∆r. An
extra isoline for visualizing the result variance in the low-bias, high-cosmic variance zone
(bottom left quadrant) has been added in light grey, as well as the maximum values of
both ∆L and ∆r.
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Figure 5.8: Lifetimes of the normalized length (τL, top) and volume ratio (τr, bottom)
assuming exponential decay. Values from a set of 2D, 163842 simulations with 8002

horizons at initial time of varying initial condition spectral index n and bias parameter
bd. Values of τL(τr) are computed as −1 times the inverse of the slope of the base-10
logarithm of L(r) in the interval [τform, τend] = [6, 20] · 1/m. The increase of L due to the
limited dynamical range is estimated with unbiased simulations, and then subtracted
from the values of L in biased simulations before computing the slope, with the
assumption that this increase depends weakly on bd. The colorbar is in log scale. In the
cases where either L (after corrections) or r increased with time, its corresponding
lifetime was set to a very large value (∼ 105/m). Zones of stable network formation
appear in deep green, decay zones in light green, no formation in white. Isolines are
obtained by interpolation, shown for logarithmically spaced intervals. An extra isoline
for visualizing the result variance in the low-bias, high-cosmic variance zone (bottom left
quadrant) has been added in green.
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Chapter 6

DW network signatures in the CMB

The CMB has become a vital tool to probe the universe at the time of recombination.
Anisotropies of the CMB are directly related to the structure formation in the
universe, as galaxies and galaxy clusters formed from the same primordial density
fluctuations that left their imprint on the CMB. If a domain wall network already
existed during recombination, it would leave its mark on the CMB anisotropies. We
will review various of these signatures in Sec. 6.1.

CMB light is linearly polarized. It can be decomposed into parity-even E modes
and parity-odd B modes. In recent years, the B mode measurement accuracy has
improved considerably, which has led to the first hint of isotropic cosmic birefrin-
gence—the rotation of the polarization of the CMB light during its propagation.
Stable domain wall networks lead to nonzero isotropic and anisotropic cosmic bire-
fringence. We discuss this novel effect in detail in Sec. 6.2.

6.1 CMB anisotropies
At z > 1100 the universe was almost completely ionized, with photons, protons and
electrons tightly coupled via electromagnetic interactions. Photons scatter mostly
off electrons since the photon-proton scattering cross-section is suppressed by a
factor of (me/mp)

2 ∼ 10−6. As the universe expands and cools down, electrons and
protons combine to form neutral hydrogen, turning the universe transparent. This
process is known as recombination. It is a confusing name, since there has been
no previous “combination” period, but it is called like this for historical reasons.
Photons cease to scatter, and free stream in all directions. What we observe in our
experiments is the intersection of our past light cone with the surface of constant
cosmic time at z ∼ 1100, which is called the last scattering surface (LSS).

The transition from the opaque universe to the free-streaming photons was not
instantaneous, which implies that the LSS has a finite thickness. This is important
for two reasons: first, small angle anisotropies appear smeared out as this three-
dimensional LSS is projected onto the two-dimensional celestial sphere. This leads
to the damping of the small-scale acoustic peaks. Second, these last few scatters
determined the polarization of the CMB light, as the scattering amplitudes are
polarization-dependent.
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Temperature and polarization anisotropies were imprinted during this transitional
epoch at z ∼ 1100. Since the CMB spectrum is an extremely good blackbody
with a nearly constant temperature across the sky T0, it is studied in terms of its
temperature fluctuations Θ(n̂) = ∆T/T0. Their multipole expansion is defined as

Θlm =

∫
dn̂Y ∗lm(n̂)Θ(n̂), (6.1)

where n̂ is a unitary vector for the direction on the sky and Y ∗lm(n̂) are the spherical
harmonics. The TT power spectrum is defined as

〈Θ∗lmΘl′m′〉 = δll′δmm′C
TT
l . (6.2)

If the CMB fluctuations are Gaussian, then it is fully characterized by its power
spectrum [123]. Power spectrums of E modes (EE), B modes (BB) and their cross
correlations (TE, TB, EB) are defined similarly. We will see those in detail later in
Sec. 6.2.2 after we formally define E and B modes.

6.1.1 The acoustic peaks

The first domain wall constraint is found within the CMB acoustic peaks.

Prior to recombination, due to radiation pressure, the plasma undergoes acoustic
oscillations at subhorizon scales. Once the photons become free-streaming, the
former low and high density regions of the plasma are imprinted in the photon
energies. In the case of inflationary fluctuations, acoustic oscillations of a given
wave number k are all in phase and have a fixed amplitude at decoupling. Modes
caught at extrema of their oscillations become the peaks in the CMB temperature
power spectrum Fig. 6.1, forming a harmonic series based on the distance sound
can travel by recombination, the sound horizon.

Plenty of very interesting physics can be obtained from the size and position of
these peaks. Odd-numbered peaks (first, third, fifth...) are associated with how
much the plasma has fallen into gravitational potential wells, while even-numbered
peaks (second, fourth...) are associated with how the plasma rebounds, i.e. how
much it rarefies. Thus, the baryon contents of the universe are going to enhance
the size of odd-numbered peaks. The nonzero thickness of the LSS blurs small
scale fluctuations, which is why peaks at high multipoles are smaller in size. The
curvature of the universe affects the position of the peaks, as the characteristic
distance (the sound horizon) corresponds to a different angular amplitude depending
on how light rays propagate through spacetime.

Prior to the precise measurement of the first few peaks, two theories contended for
explaining the formation of structure on the universe: inflation and high energy
topological defects such as cosmic strings, also called field ordering theories. If
topological defects contribute significatively to the gravitational collapse and sub-
sequent structure formation, modes of a given wavenumber k are in general not
in phase and the distinctive series of acoustic peaks is blurred into one large peak
[138, 50]. We can understand this intuitively the following way. Although the time
evolution of the field is deterministic, defect network evolution is highly non-linear
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Figure 6.1: Current measurements of the angular power spectrum of the CMB
temperature and polarization anisotropies. Best-fit models of residual foregrounds plus
primary CMB anisotropy power for temperature datasets are also plotted. Projections
for next-generation CMB experiments (CMB-S4) are shown in grey. Figure from [130].

and thus different Fourier modes get mixed. The fact that a clear series of acoustic
peaks was observed greatly constrained all topological defect models, domain walls
among them.

6.1.2 Sachs-Wolfe effect

There are several processes which distort the CMB photon trajectories and energies
as we observe them today from the Solar System. Variations in the gravitational
potential (e.g. due to matter overdensities) will induce gravitational redshift onto
photons propagating through the potential well, which is seen as a change in the
photon energy. This is known as the Sachs-Wolfe effect [116]. In regular CMB
cosmology it is usually further divided into two types, non-integrated Sachs-Wolfe
effect, for the anisotropic distortion coming from the primordial matter overdensities
on the LSS; and integrated Sachs-Wolfe effect, for the isotropic distortion coming
from the many galaxies and clusters between the LSS and us.

Any kind of fluctuation of the metric will produce a Sachs-Wolfe effect. Of our
particular interest are domain walls, which depending on their tension will induce
stronger or weaker metric fluctuations. Considering that we have not directly seen
the Sachs-Wolfe effect induced by domain wall networks, their tension becomes
bounded by σW < (1 MeV)3 [137].
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6.1.3 Scalar, vector and tensor modes

The spacetime metric expanded in linear perturbation theory is,

gµν(τ, ~x) = ηµν(~x) + a2hµν(τ, ~x), (6.3)

where ~x is the comoving coordinate 3-vector, ηµν is the unperturbed (Minkowski)
metric, and hµν is the linear metric perturbation. As a symmetric 4×4 matrix, hµν
has 10 degrees of freedom, which can be expressed as a sum of scalar, vector and
tensor components. These refer to their transformation properties under rotations
in the background space, not under gauge transformations. The breakdown of these
modes is as follows [122, 135],

1 + 1 + 1 + 1 = 4 scalar (2 physical, 2 gauge),
2 + 2 = 4 vector (2 physical, 2 gauge),

2 = 2 tensor (2 physical).
(6.4)

The important thing about this decomposition is that, in linear perturbation the-
ory, scalar, vector and tensor modes evolve independently. Scalar modes correspond
to matter density perturbations. Vector and tensor modes, although they do per-
turb the CMB, do not contribute to density perturbations and thus for studying
structure formation one may just focus on the scalar modes. There is no way to
source primordial vector modes with a single scalar field, and thus in simple mod-
els of inflation, primordial vector perturbations vanish. Primordial tensor modes
correspond to gravitational waves. The prodution of an almost scale invariant back-
ground gravitational waves is a prediction of any cosmological inflationary model,
with their amplitude strongly depending on the energy scale of inflation [131].

Topological defects present during recombination can generate both vector and
tensor perturbations [139]. This was first studied in the context of defects seeding
structure formation, and thus domain walls were not studied in detail, as domain
walls which are the dominant component in structure formation lead to domain wall
domination. Years later and outside this structure formation context, simulations
were performed to see the impact of non-dominant domain wall networks in the
CMB anisotropies [140]. The individual constributions can be seen in Fig. 6.2.
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Figure 6.2: Comparison between the angular power spectra generated by domain
wall (purple lines) and by cosmic string (red lines) networks. From top to bottom,
TT, EE, TE and BB power spectra, as a function of the multipole moment l. The
left, middle and right panels represent the scalar, vector and tensor components,
respectively. Domain wall tension has been set so that it is non-dominant. From [140].

6.2 Cosmic birefringence
Axion fields are pseudoscalar fields which couple to photons via a Chern-Simons
coupling Eq. (3.21). If the axion field value changes, then the plane of linear polar-
ization rotates. Thus, light propagating through space with a position-dependent
axion field behaves as if space was filled with a birefringent material, reason why
this phenomenon is called cosmic birefringence (CB). A stable domain wall network
determines how the axion field changes as we move through space, and allows us to
calculate how much CB is induced upon the CMB light.

Understanding this requires us to follow a few steps. In Sec. 6.2.1 we will see why
only linear polarization is generated at the time of recombination. In Sec. 6.2.2 we
will define the polarization-related magnitudes which we can measure (the Stokes
parameters) as well as how they relate to the E and B mode decomposition. In
Sec. 6.2.3 we will see why the axion-photon coupling rotates linearly polarized light.
We will estimate both isotropic and anisotropic cosmic birefringence induced by a
domain wall network, and compare it to the present experimental data.
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6.2.1 Origin of CMB polarization

Photons at the time of recombination have an energy 3 orders of magnitude smaller
than the electron mass me, which implies that they scatter elastically via Thomson
scattering. This scattering is polarization dependent, which leads to a polariza-
tion of the CMB anisotropies when the fact that recombination does not occur
instantaneously is taken into account. The scattering cross section σT depends on
polarization as [129],

dσT
dΩ

=
e4

me
2
(ε̂i · ε̂f )2, (6.5)

where dΩ is the solid angle differential, e fundamental charge, ε̂i and ε̂f are the
initial and final polarization vectors respectively. We can think of this as if the
incident photon set up oscillations of the electron in the direction of the incident
polarization. Since light cannot be polarized along its direction of motion, only one
linear polarization state gets scattered. The scattered radiation intensity peaks in
the direction normal to, with polarization parallel to, the incident polarization.

In reality we have a multitude of photons scattering at the same time. If incoming
radiation were isotropic, then it would balance out so that the outgoing radiation
would remain unpolarized. But if it had a quadrupole variation in intensity or
temperature (i.e. peaks at π/2 separation), the scattered radiation becomes linearly
polarized, as seen in Fig. 6.3.

Figure 6.3: Thomson scattering of radiation with a quadrupole anisotropy generates
linear polarization. Blue (red) represents hot (cold) radiation. Adapted from [121].

If Thomson scattering is rapid, then photons randomize and light becomes unpo-
larized. Understanding the polarization of the CMB reduces to understanding the
quadrupolar temperature fluctuations at last scattering. Earlier we discussed scalar
vector and tensor perturbations in the context of metric perturbations, which are
directly related to the scalar (m = 0), vector (m = ±1) and tensor (m = ±2) per-
turbations of the quadrupole (l = 2) temperature anisotropy. Vector quadrupole
anisotropies are expected to be negligible, acoustic density perturbations generate
scalar quadrupole anisotropies, and gravitational waves generate tensor quadrupole
anisotropies. Each of these sources generates distinct polarization patterns. For the
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following sections we just need to remember that CMB light becomes linearly po-
larized after the last scattering, and that circular polarization cannot be generated
from Thomson scattering and quadrupole anisotropies alone.

6.2.2 E and B modes

Let us consider a monochromatic electromagnetic wave of frequency ω0 propagating
in the z-direction. Its electric field components (Ex, Ey) are

Ex = ax(t) cos[ω0t− θx(t)], Ey = ay(t) cos[ω0t− θy(t)]. (6.6)

The Stokes parameters are defined as the following time averages [120]

I ≡
〈
ax

2
〉

+
〈
ay

2
〉
,

Q ≡
〈
ax

2
〉
−
〈
ay

2
〉
,

U ≡ 〈2axay cos(θx − θy)〉 ,
V ≡ 〈2axay sin(θx − θy)〉 .

(6.7)

I is positive definite and gives the radiation intensity. Q, U , and V can take either
sign and describe the polarization state. For unpolarized radiation, Ex and Ey are
uncorrelated and thus Q = U = V = 0. I and V are physical observables, but Q
and U depend on the axes in relation to which the linear polarization is defined.
After a rotation α around the z-axis,

Q′ = Q cos(2α) + U sin(2α),

U ′ = −Q sin(2α) + U cos(2α).
(6.8)

We can see how linear polarization behaves as a tensor under spatial rotations.
In spherical polar coordinates (θ, ϕ) the metric is gab = diag(1, sin2 θ) and the
polarization tensor Pab becomes

Pab(n̂) =
1

2

(
Q(n̂) −U(n̂) sin θ

−U(n̂) sin θ −Q(n̂) sin2 θ

)
. (6.9)

The sin θ factors appear since the basis is othogonal but not orthonormal. Since
circular polarization cannot be generated during Thomson scattering, we expect
V = 0 for the CMB and will not consider it further. Just as a scalar function
can be expanded in terms of spherical harmonics, the polarization tensor can be
expanded in terms of two sets of orthonormal tensor harmonics [120]

Pab(n̂)

T0

=
∞∑
l=2

l∑
m=−l

[
ElmY

E
lmab(n̂) +BlmY

B
lmab(n̂)

]
, (6.10)
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where T0 is the mean CMB temperature and the expansion coefficients are

Elm =
1

T0

∫
dn̂ Pab(n̂)Y E ab ∗

lm (n̂), (6.11a)

Blm =
1

T0

∫
dn̂ Pab(n̂)Y B ab ∗

lm (n̂). (6.11b)

We can now give the expressions for the remaining power spectrums,

〈E∗lmEl′m′〉 = δll′δmm′C
EE
l , (6.12a)

〈B∗lmBl′m′〉 = δll′δmm′C
BB
l , (6.12b)

〈E∗lmBl′m′〉 = δll′δmm′C
EB
l , (6.12c)

〈Θ∗lmEl′m′〉 = δll′δmm′C
TE
l , (6.12d)

〈Θ∗lmBl′m′〉 = δll′δmm′C
TB
l . (6.12e)

These E and B modes have nothing to do with the electric and magnetic fields. The
E modes are parity-even, while B modes are parity-odd. Scalar perturbations pro-
duce exclusively E mode polarization, while tensor perturbations produce B modes
as well. The foregrounds (dust clouds, galaxies etc between the LSS and our detec-
tors) can also produce B modes, and thus the foregrounds must be well understood
and subtracted to obtain the primordial signal. If primordial B modes are detected,
that would be an indirect detection of the gravitational wave background at the
time of recombination.

If it were not for the fact that Q and U Stokes parameters are much smaller than the
anisotropies of I, measuring polarization would not pose a particular experimen-
tal challenge. Most detectors are polarization sensitive or can easily be made so.
However, as we have seen in Fig. 6.1, primordial E modes and B modes from the fore-
grounds are orders of magnitude smaller than the temperature anisotropies, which
has motivated the development of polarization-exclusive probes such as Polarbear
[126], the South Pole Telescope [127] and BICEP2/Keck [128]. Future experiments
such as CMB-S4 [130], the Simons Observatory [132], PICO [133], and LiteBIRD
[134] are designed to greatly improve current measurements.

The primary target of CMB polarization experiments is the detection of primordial
tensor perturbations, but other fundamental physics can be studied by improved B-
mode measurements, such as the sum of neutrino masses, the number of relativistic
particle species in the early universe, possible modifications of gravity, annihilation
rates of dark matter candidates, and of course cosmic birefringence [130].

6.2.3 CB in the presence of a varying axion field

The effects of a parity-violating term in the electromagnetic Lagrangian were first
studied by Carroll and Field [117, 118] and then applied to the axion photon cou-
pling one year later by Harari and Sikivie [119]. The complete Lagrangian of the
electromagnetic tensor, axion field and their coupling is

L = −1

4
FµνF

µν +
1

2
∂µφ∂

µφ+
1

4
gaγγφFµνF̃

µν . (6.13)
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If the coupling term were not to be there, we would just have the Maxwell equations
in vacuum and the massless Klein-Gordon equation. The coupling term modifies
these equations like (in purple) [119],

∇ · E =
ρ

ε0
=⇒ ∇ · E = gaγγ∇φ ·B, (6.14a)

∇ ·B = 0 =⇒ ∇ ·B = 0, (6.14b)

∇× E = −∂B
∂t

=⇒ ∇× E = −∂B
∂t
, (6.14c)

∇×B = µ0j +
∂E

∂t
=⇒ ∇×B = gaγγ

[
E×∇φ−B

∂φ

∂t

]
+
∂E

∂t
, (6.14d)

� φ = 0 =⇒ � φ = −gaγγE ·B, (6.14e)

where � ≡ ∂µ∂
µ is the d’Alembert operator, ε0 and µ0 the vacuum permittivity

and permeability respectively. If we take the curl of Eq. (6.14c) and Eq. (6.14d),
for the Maxwell’s equations in vacuum (left side), we arrive at free wave equations
for E and B. If we do the same for the coupled equations (right side) and neglect
second order derivatives of φ we obtain [119]

�E = 0 =⇒ �

[
E +

1

2
gaγγφB

]
=

1

2
gaγγφ�B, (6.15a)

�B = 0 =⇒ �

[
B− 1

2
gaγγφE

]
= −1

2
gaγγφ�E. (6.15b)

Suppose that during the propagation of the CMB photon from the LSS to us,
the ALP field value changes in time and space slowly enough compared to the
frequency of the photon. Then, at lowest order of perturbation, the right hand side
of Eq. (6.15a) and Eq. (6.15b) are negligible and thus the combinationsE+gaγγφB/2
and B − gaγγφE/2 are now the ones satisfying free wave equations. What this
implies is that, as the axion field changes in value ∆φ along the trajectory of an
electromagnetic wave, E and B rotate by an angle ∆Φ given by

∆Φ =
1

2
gaγγ∆φ. (6.16)

A common heuristic given in the literature is that a change on the axion field
makes the phase velocities of right- and left-handed states of photons different, and
thus linearly polarized light (which consists on both states superposed) changes its
polarization plane. However, I hope that the above derivation clarified the origin of
cosmic birefringence and how it does not require introducing circular polarization
to be understood.

If we substitute the expression of gaγγ in terms of the anomaly coefficient Eq. (3.22)
and suppose that axion domain walls have existed from the time of recombination
to the present, then the net rotation of the polarization is

∆Φ(Ω) ' 0.42cγ

(
φtoday − φLSS(Ω)

2πfa

)
[deg], (6.17)



82 Chapter 6. DW network signatures in the CMB

where φtoday and φLSS are the axion field values at the solar system today and at the
LSS respectively, and Ω the angular direction in by polar coordinates. A natural
expectation for the anomaly coefficient is cγ ∼ O(1), but in principle it can be
an arbitrary number. If cγ is very large, strong electromagnetic effects occur on
astronomical scales irrespective of the value of fa, provided the involved axion field
is massless or extremely light [119].

The isotropic cosmic birefringence angle β can be obtained by integrating Eq. (6.17)
across the sky

β =
1

4π

∫
dΩ ∆Φ(Ω). (6.18)

We measure CMB polarization through the Stokes parameters, and then we can
compute the E (parity-even) and B (parity-odd) modes from those. Let us denote
with a prime the values of the power spectrum coefficients after the cosmic birefrin-
gence rotation. The TE, EE and BB power spectra are parity-even. Their values
change with cosmic birefringence as [124]

Cl
′TE = CTE

l cos(2β), (6.19a)
Cl
′EE = CEE

l cos2(2β) + CBB
l sin2(2β), (6.19b)

Cl
′BB = CBB

l cos2(2β) + CEE
l sin2(2β). (6.19c)

However, these changes are hard to detect since the power spectra before the rota-
tion are nonzero. The TB and EB power spectra are parity-odd. If parity is not
violated in the temperature distribution at recombination, then TB and EB power
spectra are zero before the rotation, but afterwards their values become

Cl
′TB = CTE

l sin(2β), (6.20a)

Cl
′EB =

1

2
(CEE

l − CBB
l ) sin(4β). (6.20b)

Thus, a measurement of nonzero TB or EB would imply nonzero isotropic cosmic
birefringence. One major challenge comes from detector calibration, as miscalibra-
tion of the polarization detectors can also result in nonzero EB, as well as from the
foreground contribution. After taking those into account, the current observational
value is [152]

β = 0.30± 0.11 [deg]. (6.21)

If the axion field φ varies in value along the LSS, then the rotation of polarization ∆Φ
will also vary depending on the angle. This phenomenon is called anisotropic cosmic
birefringence. Let us define the anisotropic part of the rotation of the polarization

∆Φ̃ ≡ ∆Φ− β. (6.22)

We can expand ∆Φ̃ in spherical harmonics,

Φ̃lm =

∫
dΩ∆Φ̃(Ω)Y ∗lm(Ω), (6.23)
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and define the power spectrum as usual

〈Φ̃∗lmΦ̃l′m′〉 = δll′δmm′C
ΦΦ
l . (6.24)

The power spectrum coefficients are correlated to β as [147]

CΦΦ
l ∝ β2. (6.25)

To compute this power spectrum, first a self-calibration is performed. That is, β is
obtained so that TB and EB power spectra are minimized, and then this value is
subtracted. The polarization maps become sensitive just to anisotropic rotations.
The current best bound is from the BICEP/Keck collaboration [136]

l(l + 1)CΦΦ
l

2π
≤ 0.014 [deg2]. (6.26)

6.2.4 CB induced by a stable DW network

If a domain wall network is present at recombination, that means that the value of
the field along the LSS varies in a predictable way. For this to be cosmologically
viable, we need to be within the white region of Fig. 3.5, or otherwise a stable
domain wall network would dominate the energy contents of the universe, or would
have been measured already. Our results in Ch. 5 are important here—even if a
bias is present, the network will not decay and the amount of domain walls per
horizon will not change significatively.

The angle shift along a certain line of sight Ω just depends on which vacuum the
axion field was at that angle in the LSS. ∆Φ = 0 if the vacuum at that angle in the
LSS is the same as ours, ∆Φ = cγαEM if the vacuum is different from ours. If we
average over the whole space, the result is nonzero,

β =
1

2
cγαEM ≈ 0.21cγ [deg]. (6.27)

For cγ ∼ O(1) this value is very close to the current experimental value Eq. (6.21).

The calculation of the anisotropic cosmic birefringence is a bit more involved. We
can map the reduced power spectrum of domain walls P(k) obtained in Ch. 4 to
CΦΦ
l via the flat-sky approximation [125],√

l(l + 1)

dL
←→ k, (6.28a)

l(l + 1)CΦΦ
l

2πβ2
←→ P(k)

η2
, (6.28b)

where dL is the comoving distance to the LSS and η is the axion field VEV. Our pre-
vious results for the domain wall power spectrum, with the corresponding mapped
l and CΦΦ

l are shown in Fig. 6.4. The predicted CΦΦ
l for each l for a scale invariant

domain wall network can be seen from the values taken in the right y axis by the
red line. The prediction is barely above the experimental bound (black line with
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arrow), but let us keep in mind that this power spectrum is for an unbiased network.
For a bias O(1) the predicted CΦΦ

l is reduced.

The measurements of the isotropic and anisotropic cosmic birefringences will im-
prove considerably in next-generation experiments. As we can see in Fig. 6.4,
CMB-S4 [130], the Simons Observatory [132], PICO [133], and LiteBIRD [134]
all are expected to have enough sensitivity to check whether the anisotropic cos-
mic birefringence matches the prediction considering a stable scale invariant do-
main wall network. The literature has boomed recently, with many other papers
considering the expected cosmic birefringence by different kinds of axion fields
[142, 145, 146, 148, 150, 153, 155] as well as axion strings [144, 149, 151, 156].

Figure 6.4: Reduced power spectrum of the scalar field at τ = 10/m with scale
invariant (red) and white noise (blue) initial conditions in the absence of bias. In
addition to what we had shown in Fig. 4.4, the multipole l and the angular power
spectrum l(l + 1)CΦΦ

l /2π in the flat-sky approximation [125] of the anisotropic cosmic
birefringence induced by axion domain walls are also shown. The horizontal solid
black line shows the current CΦΦ

l bound by BICEP/Keck [128]. Oblique discontinuous
lines in blue correspond to the expected 1σ statistical uncertainties (i.e. experimental
noise) for next generation experiments, supposing a white noise power spectrum. The
horizontal discontinuous line in pink is the uncertainty for LiteBIRD supposing a scale
invariant spectrum. Uncertainties for Simons, CMB-S4 and PICO are all past the plot
axis limits and below that of LiteBIRD, thus all four next-generation experiments
would be able to probe the predicted anisotropic cosmic birefringence. Uncertainties
adapted from [143].
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Chapter 7

Summary

Historically, the study of domain walls has been neglected in comparison to the other
types of defects. Seen as an undesirable aspect of the models, most of the literature
up until now has revolved around finding ways of making domain walls decay.
However, decaying domain walls have their own set of challenges and it is nontrivial
to make convincing models following that route. Axiverse predicts hundreds of axion
fields, of which several could form domain walls after inflation. Depending on the
particulars of the underlying string theory, consequences of their decay (particle
and gravitational wave production) or their stability (energy domination, cosmic
birefringence) could add up.

The monograph by Vilenkin and Shellard is now more than 20 years old, and with
no other reviews on the subject, reading through domain wall literature can feel
like navigating a labyrinth of assumptions and different model quirks that leaves
the reader wondering to which extent each result can be used in conjunction to the
others. One of my objectives with this thesis was presenting, in my opinion, a well
needed English review of the field, hopefully laying the foundations upon which
modern studies of domain walls can be built on.

We have showed how many of the established truths in the field were wrong or vastly
incomplete. First of all, percolation theory is not an apt method to study biased
networks analytically. The scaling solution does not just appear from domain wall
annihilation and the existence of a causal horizon, it appears as a result of a careful
balance between the universe expansion and an annihilation rate which depends
on the fluctuations at superhorizon scales. That is to say, it was thought that
the existence of an attractor solution meant that initial conditions were quickly
forgotten, but we saw that the initial conditions leave a characteristic imprint on
the network dynamics and on the details of the attractor solution itself. The Kibble
mechanism is insufficient to argue for the causal inevitability of the formation of
domain wall networks in the cosmological context. Furthermore, the details of
domain wall formation depend heavily on the initial condition power spectrum and
overall population bias. For large superhorizon fluctuations (spectral index n close
or lower than zero, i.e. scale invariant) the networks are exceptionally stable, thanks
to the presence of voids spanning multiple horizons in size. The presence of an
overall population bias affects those networks by inhibiting domain wall formation
in the first place, more than by making it decay afterwards.
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Within the field of subdominant domain walls, there are various plausible research
lines after our findings. One could search for mechanisms that induce domain wall
decay even with inflationary initial conditions (e.g. a potential bias), inhibit the
undesirable consequences of a stable network (e.g. dynamic ways of keeping all
pseudoscalar field masses low) or avoid their formation altogether (e.g. mechanisms
to drive the domain wall formation period prior to inflation).

On the other hand, the recent surge of hints for anisotropy at cosmological scales
gives a riskier but nevertheless interesting research line in studying the universe
dynamics. That is, universe dynamics under some cases of domain wall dominance
(e.g. a locally dominating but very sparse network, or a network which dominated
in the past but that became subdominant later on). It seems like non-FLRW and
anisotropic cosmology will be a key research line going forward, so it is reasonable
to think that domain walls may play their role in there as well.

From the various novel results in this thesis, I would like to emphasize two of them.
First, if domain walls form after inflation, they are very resilient to population
biases. Secondly, a subdominant stable domain wall network is a cosmologically
viable explanation for the current observed hint of isotropic cosmic birefringence
and is within observational bounds for the anisotropic cosmic birefringence.

The direct search for dark matter and axions has received few positive results de-
spite sustained efforts. This leads me to believe that the next hint for axion physics
will probably be found elsewhere. The physics behind the CMB B modes is fas-
cinating and next generation experiments like CMB-S4, the Simons Observatory,
PICO and LiteBIRD are expected to vastly improve our current knowledge. If
primordial B-modes are convincingly detected, then funding for CMB polarization
experiments will further increase. The current hint for isotropic cosmic birefrin-
gence points to the existence of parity-violating interactions. An improvement of
both isotropic and anisotropic measurements will put additional constraints onto
the axion model parameter space, which could in turn guide future axion direct
detection experiments.
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Appendix A

Scalar field fluctuations during
inflation

Inflationary theories are a well motivated class of beyond the standard model the-
ories, presenting a plausible solution for the flatness problem, the horizon problem
and the exotic relic problem, and realizing dynamically the cosmological principle.
One of the most interesting features of inflation is that it predicts the generation
of scale invariant power spectrums for the density perturbations, the inflaton field
perturbations as well as the perturbations of other scalar fields. Even though the
theory was not engineered for it, this explains the almost scale invariant density
perturbation spectrum seen in CMB observations [26].

In this thesis we have studied the properties and dynamics of domain wall networks
generated from a scale invariant power spectrum. In this annex we will derive
how this scale invariant spectrum of perturbations is generated on a scalar field
quantized on the de Sitter background (i.e. in an universe with constant Hubble
parameter H).

A.1 Action quadratic in the perturbations
We are interested in the perturbations a the scalar field which will later lead to
domain wall network formation, e.g. an axion/ALP field. Let us call this field φ
and its potential, V (φ). Its action is,

S =

∫
d4x
√−g

[
1

2
gµν∂µφ∂νφ− V (φ)

]
, (A.1)

where g ≡ det(gµν). When evaluating it on the unperturbed FLRW metric,

S =

∫
d4x

[
1

2
a2
(
(φ′)2 − (∇φ)2

)
− a4V (φ)

]
, (A.2)

where the prime denotes derivatives with respect to conformal time τ . In a general
case we would have to consider coupled fluctuations of the field δφ and the metric
δgµν . Axion fields of our interest (i.e. ones that do not lead to domain wall domi-
nation) have subdominant energy and thus their effect on the metric is negligible.
Let us write the scalar field values φ as their average φ̄ plus perturbations around
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it δφ. For convenience, let us define f as

f(τ,x) ≡ a(τ)δφ(τ,x), (A.3)

and thus
φ(τ,x) = φ̄(τ) +

f(τ,x)

a(τ)
. (A.4)

To study the linearised dynamics of φ, we need the action at quadratic order in
fluctuations. We can substitute this into the scalar field action and keep only the
terms quadratic in f ,

S ' 1

2

∫
d4x

[
(f ′)2 − (∇f)2 − 2Hff ′ +

(
H2 − a2∂

2V

∂φ2

)
f 2

]
. (A.5)

If we integrate the ff ′ term by parts,

S ' 1

2

∫
d4x

[
(f ′)2 − (∇f)2 +

(
a′′

a
− a2∂

2V

∂φ2

)
f 2

]
. (A.6)

In the de Sitter background, H = constant, a ∝ eHt and

a′′

a
' 2a′aH

a
= 2a2H2 =

2

τ 2
. (A.7)

The axion mass is protected by its shift symmetry, so it is assumed to be very light.
Since its mass is much smaller than the Hubble parameter, we can see how the
a2∂2V/∂φ2 term is subdominant,

a2

∣∣∣∣∂2V

∂φ2

∣∣∣∣ ' m

H2τ 2
� 2

τ 2
. (A.8)

With these, the action simplifies to

S '
∫

d4x
1

2

[
(f ′)2 − (∇f)2 +

a′′

a
f 2

]
. (A.9)

The above action implies the following equation of motion, called the Mukhanov-
Sasaki equation (MS equation)

f ′′k + ω2
k(τ)fk = 0, (A.10)

where
ω2
k(τ) ≡ k2 − a′′

a
, k ≡ |k|. (A.11)

In the de Sitter background (i.e. substituting Eq. (A.7)), the frequencies take the
following form

ω2
k(τ) = k2 − 2

τ 2
. (A.12)
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A.2 Canonical quantization of the scalar field
Let us perform the canonical quantization of the scalar field in the Heisenberg
picture, where operators vary in time while states are time-independent. The mo-
mentum conjugate to f is

π ≡ ∂L
∂f ′

= f ′ (A.13)

First, we promote the fields f(τ,x) and π(τ,x) to quantum operators, f̂(τ,x) and
π̂(τ,x). The operators satisfy the following commutation relation at equal times

[f̂(τ,x), π̂(τ,y)] = iδ(3)(x− y). (A.14)

The delta function is a signature of locality, it implies that modes at different points
in space are independent and thus their operators commute. If we Fourier transform
Eq. (A.14) we find a similar expression but for the wavenumbers,

[f̂k(τ), π̂q(τ)] = iδ(3)(k− q). (A.15)

Let us now write the operator f̂ in terms of its corresponding creation and annihi-
lation operators â† and â,

f̂k(τ) = fk(τ)âk + f ∗k (τ)â†k. (A.16)

fk(t) and f ∗k (t) are called the mode functions and they are two linearly independent
solutions of the MS equation. Since the frequencies ωk(t), as defined in Eq. (A.12),
only depend on k, the mode functions are direction independent as well. The
creation and annihilation operators â and â† are, in general, direction dependent.

In order to obtain the normalization of the mode functions we substitute Eq. (A.16)
into Eq. (A.15), which yields

W [fk]× [âk, â
†
q] = δ(3)(k− q), (A.17)

where we have defined the Wronskian W [fk] as

W [fk] = −i(fkḟ ∗k − ḟkf ∗k ). (A.18)

We can choose to normalize fk such that W [fk] ≡ 1, and thus Eq. (A.17) becomes

[âk, â
†
q] = δ(3)(k− q). (A.19)

The quantum states in the Hilbert space are constructed by defining the vacuum
state |0〉 via

âk |0〉 = 0, ∀k, (A.20)

and by producing excited states through the application of creation operators â†.
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A.3 The vacuum state, initial conditions and mode
functions

In order to define the vacuum state we need to fix the mode functions. Although
in general this is ambiguous, in the case of the de Sitter background there is a
preferred choice. Since at sufficiently early times all modes of cosmological interest
were deep inside the horizon, their wavenumbers were large and thus their associated
frequencies Eq. (A.12) were time-independent,

ω2
k(τ) ' k2 − 2

τ 2
−→ k2, (A.21)

and thus Eq. (A.10) reduces to the equation for a free field in Minkowski space,

f ′′k + k2fk ' 0. (A.22)

This has two independent solutions in the form of plane waves of frequency k

fk(τ) ∝ e∓ikτ . (A.23)

Only the positive frequency mode (the minus sign on the above equation) corre-
sponds to the ground state of the Hamiltonian. This corresponds to the following
initial condition

lim
τ→−∞

fk(τ) =
1√
2k
e−ikτ , (A.24)

which defines a preferable set of mode functions as well as an unique physical
vacuum, called the Bunch-Davies vacuum.

The MS equation on the de Sitter background,

f ′′k (τ) +

(
k2 − 2

τ 2

)
fk(τ) = 0. (A.25)

has the following exact solution,

fk(τ) = α
e−ikτ√

2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 +

i

kτ

)
, (A.26)

where α and β are constants determined by the initial conditions. Taking the limit
for τ → −∞ and comparing the result to Eq. (A.24) gives α = 1 and β = 0, and
thus the mode function becomes

fk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
. (A.27)
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A.4 Power spectrum of scalar fluctuations

We are interested in the quantum statistics of f̂(τ,x),

f̂(τ,x) =

∫
d3k

(2π)3/2

[
fk(τ)âk + f ∗k (τ)â†k

]
eik·x. (A.28)

Its expectation value vanishes,

〈f̂〉 ≡ 〈0| f̂ |0〉 = 0. (A.29)

However, its variance is nonzero due to quantum fluctuations,

〈|f̂ |〉 ≡ 〈0| f̂ †(τ,0)f̂(τ,0) |0〉

=

∫
d3k

(2π)3/2

∫
d3q

(2π)3/2
〈0| (f ∗k (τ)â†k + fk(τ)âk)(fq(τ)âq + f ∗q (τ)â†q) |0〉

=

∫
d3k

∫
d3q

1

(2π)3
fk(τ)f ∗q (τ) 〈0| [âk, â†q] |0〉

=

∫
d3k
|fk(τ)|2
(2π)3

=

∫
d ln k

k3|fk(τ)|2
2π2

≡
∫

d ln k Pf (k, τ)

(A.30)

where we have defined the reduced power spectrum of scalar field fluctuations Pδφ
as in Eq. (4.6) and, since δφ = f/a,

Pf (k, τ) ≡ a2Pδφ(k, τ). (A.31)

If we substitute the mode function Eq. (A.27) we find that the reduced power
spectrum of fluctuations of a quantum scalar field during inflation is

Pδφ(k, τ) =

(
H

2π

)2
(

1 +

(
k

aH

)2
)
. (A.32)

The second term in Eq. (A.32) becomes negligible soon after the horizon crossing
k = aH. Thus, we approximate the shape of the reduced power spectrum at horizon
crossing by this asymptotic value, evaluated at k = aH,

Pδφ(k, τ) '
(
H

2π

)2
∣∣∣∣∣
k=aH

(A.33)

Different modes exit the horizon at slightly different times. In a realistic case, the
background is quasi-de Sitter, which means that H varies slightly during inflation,
implying that the spectrum will not be exactly scale invariant but it will have a
slight tilt with k. However, for our purposes, considering it scale invariant is a very
good approximation.
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Appendix B

The lattice simulation

Cosmological lattice simulations solve for the evolution of the scalar field in dis-
cretized time and space intervals. In Sec. B.1 we will derive the scalar field equation
of motion in the expanding universe and in Sec. B.2 we convert it to program vari-
ables and see how it can be solved in discretized timesteps. In Sec. B.3 we explain
how the normalized domain wall length is calculated.

B.1 Scalar field equation of motion
The action of a scalar field φ is,

S =

∫
d4x
√−g

(
1

2
gµν∂µφ∂νφ− V (φ)

)
, (B.1)

where g is the metric determinant. Let us calculate its variation δS with respect to
δφ,

δS =

∫
d4x
√−g

[
δ

(
1

2
gµν∂µφ∂νφ

)
− δV (φ)

]
=

∫
d4x
√−g

[
1

2
gµνδ (∂µφ∂νφ)− ∂V (φ)

∂φ
δφ

]
=

∫
d4x
√−g

[
gµν∂µ(δφ)∂νφ−

∂V (φ)

∂φ
δφ

]
=

∫
d4x

[
∂µ(
√−ggµνδφ∂νφ)︸ ︷︷ ︸

total derivative → 0

−δφ∂µ(
√−ggµν∂νφ)−√−g∂V (φ)

∂φ
δφ

]

= −
∫

d4x

[
∂µ(
√−ggµν∂νφ) +

√−g∂V (φ)

∂φ

]
δφ

(B.2)

where we have used that gµν is symmetric. We are interested in the extrema of δS
when varying with respect to δφ, for which the term within brackets must be zero
∀φ,

1√−g∂µ(
√−ggµν∂νφ) +

∂V (φ)

∂φ
= 0. (B.3)

If gµν = ηµν the Minkowski metric and V (φ) a quartic potential, then we just
reach the usual Klein-Gordon equation. The leftmost term in Eq. (B.3) is usually
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called the Laplace-Bertrani operator ∇µ∇µφ ≡ ∂µ(
√−ggµν∂νφ)/

√−g and is the
generalization of the d’Alembertian � ≡ ∂µ∂

µ for a general metric space.

The FLRW metric in our chosen metric signature, is

gµν =


1 0 0 0
0 −a2 0 0
0 0 −a2 0
0 0 0 −a2

 , gµν =


1 0 0 0
0 −1/a2 0 0
0 0 −1/a2 0
0 0 0 −1/a2

 , (B.4)

thus g = −a6 and
√−g = a3. Let us separate temporal and spatial components in

Eq. (B.3)
1

a3
∂t(a

3∂tφ)− 1

a3
∂i

(
a3 1

a2
∂iφ

)
+

dV (φ)

dφ
= 0, (B.5)

where t is the (physical) time component and i the three spatial (comoving) com-
ponents. Notating time derivatives as

d©
dt
≡ ©̇, (B.6)

we reach the final expression for the equation of motion (EOM),

φ̈+ 3
ȧ

a
φ̇− 1

a2
∇2φ+

dV (φ)

dφ
= 0. (B.7)

B.2 Time and space discretization

B.2.1 Program variables

Floating point errors can be minimized if quantities in the program do not vary
wildly in order of magnitude. Thus, program variables are normalized to make
them dimensionless and of order 1. Let us use the subindex pr to indicate program
variables. Let us define the rescaled variables as

φpr ≡ Aarφ, ~xpr ≡ B~x, dtpr ≡ Basdt, (B.8)

where the rescaling coefficients are A, B, r and s. If we substitute in Eq. (B.7) and
go from physical to program time derivatives (notated with a prime) we get,

φ′′pr +(s−2r+3)
a′

a
φ′pr−a−2s−2∇2

prφpr−
[
r(s− r + 2)

(
a′

a

)2

+ r
a′′

a

]
φpr +

dVpr

dφpr

= 0,

(B.9)
where the program potential is defined as

Vpr ≡
A2

B2
a−2s+2rV. (B.10)

This reveals something very interesting: if we choose the rescalings so that

s ≡ 2r − 3, (B.11)
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then the term with the first derivative of the field will vanish, which is beneficial
for the computation of the field evolution. This technique was first introduced to
cosmological lattice simulations by the LATTICEEASY code [158].

A dominant potential term of the form

V =
C

n
φn, (B.12)

enters the equation of motion as

dVpr

dφpr

= CA2−nB−2︸ ︷︷ ︸
≡1

a

≡0︷ ︸︸ ︷
−2s+ r(2− n)φn−1. (B.13)

In order to simplify it as much as possible, the braced terms are set to 1 and 0
respectively. We are still free to choose either A or B however we want. If we
set A = 1/η, where η is the field VEV, then considering all of the aforementioned
conditions, the rescaling coefficients become,

A =
1

η
, B =

√
Cη−1+n/2, r =

6

2 + n
, s = 3

2− n
2 + n

. (B.14)

In this thesis we have studied the double well potential,

V =
1

4
λ(φ2 − η2)2, (B.15)

in which case C = λ and n = 4. For those,

A =
1

η
, B =

√
λη = m, r = 1, s = −1, (B.16)

and then the equation of motion becomes,

φ′′pr −
a′′

a
φpr −∇2

prφpr + (φ2
pr − a2)φpr = 0. (B.17)

Let us look again at the rescaled variables for our particular case,

φpr ≡
a

η
φ, ~xpr ≡ m~x, dtpr ≡

m

a
asdt. (B.18)

Going through the A, B, r and s is useful if we are interested in a different potential,
or if we want to make a code valid for any potential. Most importantly, I think that
it is valuable to see why the φ′pr term can be removed, and how it is not dependent
on the potential choice. If one is just interested in quartic potentials, then building
the code in terms of Eq. (B.17) and Eq. (B.18) is enough.

B.2.2 The staggered leapfrog method

We want to solve the differential equation in finite timesteps. In order to solve a
second order in time equation for φpr, we need to store the value of φpr and its first
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time derivative φ′pr at each step, and then use those to calculate the values of φ′′pr.

There are many ways of proceeding. Symplectic integrators are interesting as they
conserve the energy, but they can be slow. The staggered leapfrog method is a good
balance between precision and speed, as it is faster but less precise than symplectic
or Runge-Kutta methods. The idea of the staggered leapfrog method is to store in
the code the values of the field and its derivatives at different times, separated by
∆t/2, where ∆t is the timestep. Schematically, the iterations look like,

φ(t) = φ(t−∆t) + ∆t φ′(t−∆t/2),

φ̇(t+ ∆t/2) = φ̇(t−∆t/2) + ∆t φ′′[φ(t)],

φ(t+ ∆t) = φ(t) + ∆t φ′(t+ ∆t/2),

. . .

(B.19)

where pr subindices have been ommitted for simplicity. This method relies on being
able to calculate the second derivative of the field in terms of the field φ′′[φ(t)].
Accuracy and stability are lost if φ′′ also depends on φ′, which is why we removed
that term with the rescalings.

If the timestep is too large, the integration will be unstable. The condition for the
timestep is

∆t� 1√
d

NH

Ncell

, (B.20)

where d is the number of dimensions, NH the number of Hubble horizons along one
of the sides, and Ncell the number of field values taken per side. This condition is
known as the Courant condition [158].

B.3 Normalized domain wall length
The definition of 2D normalized domain wall length is,

L =
Total physical DW length

NH
2H−1

. (B.21)

If this is written in terms of program variables, we get,

L =
Lcounttpr

NHiNcell

, (B.22)

where NHi is the number of horizons along one side of the box at initial time, and
Lcount is a dimensionless number, the total domain wall length in the simulation
taking one cell side as the unit length.

The estimation of Lcount can be made pretty naively. We can just sweep through x
and y directions, and add one to Lcount each time contiguous values of the field φ
change sign. In pseudocode, that is
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for (0<x<Ncell) {
for (0<y<Ncell) {

if ( phi(x,y)*phi(x+1,y) < 0 ) Lcount++;
if ( phi(x,y)*phi(x,y+1) < 0 ) Lcount++;

}
}

This estimate can be improved by considering blocks of 4 field values instead of just
2. In the following figure, red means positive values and blue, negative values. The
thick black line represents the domain wall. There are more possible combinations
of positive and negative values, but there are only 4 possible contributions to Lcount.

φa φb

φd φc

Lcount+=1

DW

φa φb

φd φc

Lcount+=1/
√

2

φa φb

φd φc

Lcount+=
√

2

φa φb

φd φc

Lcount+=0

This computation can be done rather efficiently. In pseudocode,

for (0<x<Ncell) {
for (0<y<Ncell) {

a = phi(x,y);
b = phi(x+1,y);
c = phi(x+1,y+1);
d = phi(x,y+1);
if(a*b*c*d<0) Lcount += 1/sqrt(2);
else if(a*c<0) Lcount += 1;
else if(a*b<0) Lcount += sqrt(2);

}
}

We could compute Lcount more precisely, by interpolating the field values or by
considering larger field value blocks. However, the above is precise enough for our
purposes, at a small computational cost.
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Appendix C

GPU-accelerated lattice simulations

In Ch. B we have seen how the evolution of a scalar field in an expanding uni-
verse can be solved by discretizing the problem in both space (lattice) and time
(timesteps). The amount of hubble horizons that can be computed each time is
limited by the grid size, which in turn is limited by the hardware. We have to run
many simulations in order to have enough statistics, as well as to study the evo-
lution under different initial conditions. Any code speedups will directly translate
into better statistics and better granularity in the final data.

Using parallel programming for optimizing cosmological lattice simulations is an
established practice [158, 160, 161, 162]. In this chapter I will explain the basics of
both CPU and GPU parallelization as well as how my code improves on previous
implementations for both the 2D and 3D cases.

Before continuing, let me do a brief summary of the speedups that I obtained in my
laptop1. Compared to the single threaded code, GPU parallelized code ran ∼ 100
times faster for the 2D case and ∼ 200 times faster for the 3D case. 2D simulations
(maximum grid size 311042) up to time mτend = 20 take about 2 minutes and
about 4 minutes for the 3D case (maximum grid size 9603, mτend = 15). The large
granularity and high resolution obtained in the figures in Sec. 5.2 was thanks to
these GPU acceleration techniques. If I had used single threaded code, it would
have taken 4 years instead of the 2 weeks that were required.

C.1 GPU vs CPU parallel computing
The central processing unit (CPU) is the main component of a computer, being
in charge of reading and writing data, performing logical operations and controlling
all of the other components. Most modern computers have many CPUs, which are
commonly called cores. Programs are broken down into processes, which in turn are
composed of threads. Each core can take one thread at a time, and the data each
thread operates on is independent. If a program is designed so that some or all of
their threads can run at the same time (i.e. in parallel) the program’s performance
will increase.

The graphics processing unit (GPU) is a coprocessor present in most modern
computers. With thousands of cores, arrays of data are processed simultaneously

1Intel i7-10875H @2.3GHz x16, NVIDIA GeForce RTX 2070m Super.
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under the same instructions. This makes GPUs exceptionally good at image and
video processing, thus their development was linked to video games and 3D render-
ing. Since the early 2000s, general purpose programming in GPUs (GPGPU)
has been on the rise. As long as the program can be written in this "single instruc-
tion, multiple data" format, GPUs can be used to speed up applications, scientific
simulations, artificial intelligence (AI), machine learning, cryptocurrency mining,
etc.

CPU parallelization consists just on identifying which parts of the code can run in
parallel (i.e. do not require previous data to run) and marking them as such. In this
way, one can usually parallelize a serial code with relatively little restructuring. On
the other hand, GPU parallelization usually requires restructuring the code. GPUs
are incredibly fast at computing but comparatively slow at reading data, so design-
ing the code usually revolves around minimizing read/write time and maximizing
the memory bandwidths.

However, CPU parallelization is not all advantages. Dividing the program in more
threads comes at a cost (overhead). Since the resources are all shared, switching be-
tween threads (context switching) requires some time. For O(10) cores the speedups
are linear with the number of cores, but that scaling gets worse from O(50) and
beyond, up to the point where adding more threads could even make the program
slower. In a GPU, resources are partitioned so context switching is virtually free.
Programs can be designed so that the slow read/write speeds (memory latency)
are hidden under other calculations, making the speedup linear with the number of
cores even for large GPU clusters.

A difference that is not usually emphasized, but that is important for simulations,
is that modern (64 bit) computers are designed to perform operations at double
precission while GPUs operate at float precission. Using doubles on current GPUs
other than those from the NVIDIA Tesla series and higher will result in significant
slowdowns.

The fixed pattern under which data are read is called a stencil, and simulations
like cosmological lattice simulations form part of what are called iterative stencil
loops. In our case, the stencil has 2N+1 data points− the center value and its first
neighbours N . The bigger the stencil gets, the more efficient GPU parallelization
becomes. In the end, depending on the particulars of the code, the best method
varies. Cosmological lattice simulations are best programmed for a GPU, since the
same data instructions are run on millions of data points at a time.

As for how to implement each of this methods in a code, for CPU parallelization,
the most commonly used library is MPI [166]. For GPU parallelization, CUDA
[165] is the most popular language, although it is propietary software that only
works with NVIDIA cards. For other brands, OpenCL is used [164] although as it
is less specialized it is said to be less efficient.
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C.2 Past published codes
The widely acclaimed LATTICEEASY [158] was released together with a MPI
version called CLUSTEREASY. LATTICEEASY uses an order 1 stencil and a
staggered leapfrog algorithm, which could be said to be a naive solution but it is
good enough for many situations. The first GPGPU implementation of a lattice
simulation was in 2009, called CUDAEASY [160]. To account for the decreased
accuracy of GPU’s floating point precission, it used a bigger, second order stencil
[157]. Years later, the same author developed a Python implementation of this code,
PyCOOL [161], now with a symplectic integrator to achieve better energy conser-
vation. In 2017, Correia and Martins studied the main bottlenecks of an OpenCL
implementation of the PRS algorithm [162]. Although the code was not named nor
made public, we know from their findings that the main bottleneck is memory usage
and that single precision is preferred over double for GPU simulations, as it is faster,
less memory intensive and yields good enough results. Recently, the pseudolibrary
CosmoLattice [163] was made public. It uses object oriented programming to
completely separate the physics from its implementation and allows the user to run
simulations with any number of coupled scalar and gauge fields. Its aim seems to
be versatility more than speed, although it allows for MPI parallelization. My code
uses an order 1 stencil and a staggered leapfrog algorithm, and is programmed in
C++ and CUDA.

I cannot do a direct speed comparison with CUDAEASY nor PyCOOL since the
codes are not available anymore, but in my laptop, a 3D simulation runs 200 times
faster than with LATTICEEASY and 12 times faster than with CLUSTEREASY.
I would estimate that it is O(10) faster than PyCOOL since that is the usual
factor by which Python is slower than C++, and slightly faster than CUDAEASY
since my code achieves better memory usage and coalescence. Of course, each code
has different objectives−I designed this code to be as fast as possible just for the
simple case of an uncoupled single scalar field, while past published codes are more
versatile.

C.3 Code architecture
In order to better understand how the code was designed, we need to understand the
basics of CUDA. In this section I will do a brief review of the CUDA programming
model, and afterwards I will explain the 2D and 3D code architectures.

C.3.1 CUDA programming model

Memory size and speed are inversely correlated. As capacity increases, any two
points in the memory get physically further apart and thus reading data becomes
slower. This long standing problem in computing engineering was solved by making
different levels of memory. In the case of a computer it is usually divided in 5
levels. From the fastest to the slowest we have the L1, L2 and L3 CPU caches,
RAM and finally SSD/HDD. When programming for a CPU (e.g. in C++) and we
load something−opening a file or defining a new variable−we do not decide where
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that is stored, the compiler will do it automatically. Memory management in a
CPU us usually a black box.

In the same way, GPUs have multiple levels of memory−register, constant/texture,
shared and global. Programming in CUDA is different from other languages because
there is no black box, the programmer is in charge of the memory management2.
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RAMLattice::Lattice()
: memSize(N*sizeof(float))
{

field = new float[N];

Register

one core executes
one thread

memory

memory

memory

A kernel is a function that will be executed in parallel in the GPU. For that purpose,
it is subdivided in smaller units, called blocks and threads. Global memory can be
accessed by all threads in a kernel, is the biggest (O(GB)) but relatively slow.
Shared memory is smaller (O(MB)) but faster and can be accessed by all threads
within a block. Register memory is the smallest (O(KB)) and fastest, and is used by
each individual thread. Each thread is executed by one core. GPUs have thousands
of cores so kernels are usually called with thousands of threads. Threads from each

2We deal with this simple register/shared/global system when programming but the compiler
still manages a lot on the back: virtual register memory may overflow from the hardware registers
to the L1 cache, shared memory and L1 cache share the same hardware memory, global memory
resides in both L2 cache and DRAM...
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block are executed in groups of 32 called warps. Each thread within a warp must
have the exact same instructions, only the data they act on is different.

When a warp wants to load data from global memory, bandwidth is maximized if
each data point is physically next to one another. This is called a coalesced read.
If that is not the case, it is called a strided read and the data will be read in serial,
which is slower.
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2D and 3D arrays are stored as 1D arrays in memory. Let me, for ease of visual-
ization, use 6 instead of 32 in the diagrams. The above figure shows a 2D matrix,
contiguous values in memory are represented by similar colors. We can see how
reading any row (constant y) will coalesce while reading any column (constant x)
will not.

Let us finish by giving a basic CUDA programming workflow. First, we identify
which part of the code can be parallelized. Then, we divide it into equal chunks
and assign each one to one block. Afterwards, we program the threads so that when
bundled into warps memory reads and writes are coalesced. We avoid using if-else
blocks that may cause threads within a warp to execute different instructions (i.e.
to diverge). Once this structure is in place, we can more or less keep programming
as we would usually do in C++ or other languages.

C.3.2 Periodic boundary conditions

A problem that all lattice simulations−parallelized or not−have to solve is how
to efficiently implement periodic boundary conditions. When calculating the first
neighbours of a field value at the border, one has to somehow loop around and take
them from the opposite side of the matrix. There are three main ways to tackle
this:

With conditionals. We can add a few if() conditions to every iteration over
the field values to check whether we are in the border or not.

Programming each side separately. We can loop just over the inside of the
matrix and program each side and corner separately.
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Padding the matrix. We can make the matrix one elements wider on each side
and update them after each iteration with the values on the opposite side.

I suppose that the creators of LATTICEEASY also tested this, since they chose the
fastest method: programming each side separately. The consequences of choosing
other methods are drastic. In my computer, for a small 2D simulation, the border
method is 15% slower and the conditionals method is 60% slower.

C.3.3 2D tiling

In order to parallelize the field evolution it is standard to divide the 2D matrix into
tiles. We can make the tile size a multiple of 32 and read/write in rows so that
all data accesses within the tile are coalesced. However, for each tile there will be
strips of neighbouring field values which are read but not updated, called halos
[157].
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Tile halos

There are various ways to solve this problem:

Read the halos separately. If we were to do this, the reads for the top and
bottom sides would be coalesced but not for the left nor right sides, so we can
expect this to be slow.

Overlap the tiles. This is the solution CUDAEASY [160] opted for. Periodic
boundary conditions are implemented with a border and tiles overlap by two ele-
ments. By doing this, the tile size is effectively two items smaller and thus outer
threads only do memory loads and perform no calculations. Except for when the
border is updated, all reads and writes are coalesced.

Use a mesh. The halos are stored in a separate array which I called mesh. This
achieves 100% read/write coalescing and is more memory efficient than the other
methods. This method has never been applied to cosmological lattice simulations,
and although I came up with it by myself, it may have been used previously in
other kinds of iterative stencil simulations.

When programming any lattice simulation we need to write the evolved field
values to a different matrix than the one we are reading from. This is because
we need to access contiguous field values to solve the differential equation, and if we
write the evolved values on the same matrix we read we will not solve it correctly.
With the mesh method, we do not need two copies of the lattice, just one lattice
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and two meshes. For a 642 tile size, this method uses 30% less memory than the
others, which allows us to run bigger simulations on the same hardware. Another
benefit of using a mesh is that it also solves the problem of implementing periodic
boundary conditions.

As long as the tile side is a multiple of 32, the mesh can be indexed in many ways.
In my case, I used a 3D array so that x = [0, 32n) covers one side length, y = [0, 4)
indicates which side it corresponds to (0 for the left side, 1 for the right side etc.)
and z = [0, n. of blocks) indicates which tile it corresponds to.

In a schematic way, this is what each block does each iteration:

1. The values of the field φ and its derivative φ̇ within the tile are loaded from
field and deriv in global memory to shared memory.

2. The corresponding halos of φ are loaded from mesh_in in global memory to
shared memory.

3. Staggered leapfrog is used to evolve the field and derivative values.

4. Evolved values are saved to field, deriv and mesh_out.

5. Pointers for mesh_in and mesh_out are swapped.

C.3.4 3D tiling

One could think that the 3D case would be tiled by many small cubes, but that
would be a bad idea. In [157] it was proven that the most efficient way to parallelize
iterative stencil simulations in 3D with CUDA was by tiling as usual on the xy plane
and then sweeping through the z direction.

We can see an example of how that would work in the above figure. Each tile first
loads three slices and solves the equation in the middle slice. Then it loads one new
slice on the bottom, unloads the one on the top and the cycle keeps repeating until
the whole z dimension of the matrix has been gone through.

For solving the halo problem, CUDAEASY opted for overlapping tiles as well in
this case. I used the mesh method. In this case, the mesh is a 4D array (same as
before + one more parameter for the z direction) and we need two more arrays for
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the top and bottom layers. For 322 tiles and a 9603 lattice, this method uses 25%
less memory, which is very important since after parallelizing the simulation size is
mostly limited by the DRAM capacity.

One may also try to implement this sweeping scheme in the 2D case, as that would
make the mesh smaller and thus more memory efficient. I found that, although
that was the case, a naive implementation rendered the code 120% slower. Careful
profiling of the global memory reads, as well as tuning the width/height of each
individual read may turn the sweeping method into the most efficient 2D code
architecture.
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