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Abstract

This thesis deals with metric measure spaces satisfying an RCD(K,N)
condition, which means that the space has a lower Ricci curvature bound
K ∈ R and an upper dimension bound N ∈ [1,∞) in a synthetic sense. Such
a space (X, d,m) always admits a canonical locally Lipschitz continuous heat
kernel ρ, which gives the following heat kernel embedding for any t > 0:

Φt : X −→ L2(m)

x 7−→ (y 7→ ρ(x, y, t)).

The space (X, d,m) is said to be an isometrically heat kernel immersing
space, if there exists a real-valued function c(t) such that for any t > 0,√

c(t)Φt is an isometric immersion. A main result states that any compact
isometrically heat kernel immersing RCD(K,N) space is isometric to an un-
weighted closed smooth Riemannian manifold. This is justified by a more
general result: if a compact non-collapsed RCD(K,N) space has an isomet-
rically immersing eigenmap, then the space is isometric to an unweighted
closed Riemannian manifold.

As an application, we first prove that the smoothness of strongly har-
monic RCD(K,N) spaces, which is defined as RCD(K,N) spaces (X, d,m)
such that its ρ is a function depends only on t and the distance d(x, y).

Another application is that, we give a C∞-compactness theorem for
M(K,n,D, τ ). Here M(K,n,D, τ ) is the set of isometry classes of smooth
closed n-dimensional Riemannian manifolds (Mn, g) with Ricci curvature
bounded below by K, diameter not more than D, bearing an isometric im-
mersing eigenmap F : Mn → Rm with coordinates having L2 norm not less
than τ . This is even new in the submanifold theory.

These results are based on [H23] and [H unpublished].
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1 Introduction

1.1 Ricci curvature and Ricci limit spaces

Suppose (Mn, g) is an n-dimensional Riemannian manifold. Let us indicate by
∇ the corresponding Levi-Civita connection of (Mn, g). The Riemannian curvature
of (Mn, g) is a map which takes smooth vector fields X,Y, Z and T and returns
the smooth function

Rmg(X,Y, Z, T ) := g(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, T ).

For each point p ∈ M , Rmg induces a multilinear map (Rmg)p : TpM
n × TpM

n ×
TpM

n × TpM
n → R. Given any unit vector v = vn ∈ TpM

n, we take an orthonor-
mal basis {v1, . . . , vn−1} of the hyperplane in TpM

n orthogonal to v. The Ricci
curvature in the direction v at p ∈Mn is defined as

(Ricg)p(v) =
1

n− 1

n−1∑
i=1

(Rmg)p(v, vi, v, vi),

and the scalar curvature at p ∈Mn is defined as

(Scalg)p =
1

n

n∑
i=1

(Ricg)p(vi).

The manifold (Mn, g) is said to have a lower Ricci curvature bound K ∈ R if
for any p ∈Mn it holds that

(Ricg)p(v) ⩾ Kg(v, v), ∀v ∈ TpM
n.

When the space is provided with a lower Ricci curvature bound and an up-
per dimension bound, one may get plenty of information about the topology
and geometry of it. For example we have Bonnet-Myers estimate on the diam-
eter, Bishop-Gromov inequality on volume monotonicity [G81], Li-Yau heat kernel
bounds [LY86], and the Cheeger-Gromoll splitting principle [CG71].

Using the Bishop-Gromov volume comparison theorem, in [G81] Gromov also
gave a precompactness result for the set of metric spaces J (K,n,D) under the
Gromov-Hausdorff topology, where J (K,n,D) is the family of isometry classes
of n-dimensional Riemannian manifolds bearing a lower Ricci curvature bound
K ∈ R and an upper diameter bound D > 0.

The Gromov-Hausdorff limit spaces of sequences in J (K,n,D) are know as
Ricci limit spaces, which are not Riemannian manifolds in general. With the help
of a significant research program carried out by Cheeger-Colding [ChCo96, ChCo1,
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ChCo2, ChCo3] in 90’s on Ricci limit spaces, it is now known to us that Ricci
limit spaces enjoy some analytical and structural properties of smooth Riemannian
manifolds with a lower Ricci curvature bound.

This motivates us to study a more general class of metric measure spaces,
namely RCD(K,N) metric measure spaces, explained in the next section.

1.2 Metric measure spaces satisfying the RCD(K,N) con-
dition

In this thesis, a triple (X, d,m) is said to be a metric measure space if (X, d)
is a complete separable metric space and m is a nonnegative Borel measure with
full support on X and being finite on any bounded subset of X.

In the first decade of this century, Sturm [St06a, St06b] and Lott-Villani [LV09]
independently defined a notion of a lower Ricci curvature bound K ∈ R and an
upper dimension bound N ∈ [1,∞] for metric measure spaces in a synthetic sense,
which is named as the CD(K,N) condition. A metric measure space is said to
be an RCD(K,N) space if it satisfies the CD(K,N) condition, and its associated
H1,2-Sobolev space is a Hilbert space. The precise definition of RCD(K,N) spaces
(and the equivalent ones) can be found in [AGS14b, AMS19, G13, G15, EKS15].

As an example, any weighted Riemannian manifold (Mn, dg, e
−fvolg) such that

f ∈ C∞(Mn) and that RicN ⩾ Kg, is an RCD(K,N) space, where RicN is the
Bakry-Émery N -Ricci curvature tensor defined by

RicN :=

 Ricg +Hessg(f)− df⊗df
N−n

if N > n,

Ricg if N = n and f is a constant,
−∞ otherwise.

In the sequel, we always assume that N is finite.
Given an RCD(K,N) space (X, d,m), with the aid of a work by Bruè-Semola

[BS20], there exists a unique n ∈ [1, N ]∩N, which is called the essential dimension
of (X, d,m) and is denoted by n := dimd,m(X), such that the n-dimensional regular
set Rn (see Definition 2.24) satisfies that m = θHn⌞Rn for some Borel function θ
(see [AHT18]), where Hn is the n-dimensional Hausdorff measure. It is remark-
able that the canonical Riemannian metric g on (X, d,m) is also well-defined due
to a work by Gigli-Pasqualetto [GP16] (see also [AHPT21, Proposition 3.2] and
Definition 2.28). Then its m-a.e. pointwise Hilbert-Schmidt norm |g|HS is equal to√
n.
Let us introduce a special restricted class of RCD(K,N) spaces introduced in

[DG18] by De Philippis-Gigli as a synthetic counterpart of volume non-collapsed
Gromov-Hausdorff limit spaces of Riemannian manifolds with a constant dimen-
sion and a lower Ricci curvature bound. The definition is simple: an RCD(K,N)
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space is said to be non-collapsed if the reference measure m is HN . It can be
easily shown that in this case N must be an integer. Non-collapsed RCD(K,N)
spaces have nicer properties than general RCD(K,N) spaces. See also for instance
[ABS19, KM21].

Note that for any RCD(K,N) space (X, d,m), it also admits the heat flow
semigroup {ht}t>0, which gives the solution to the following equation.

d

dt
ht(f) = ∆htf in L2(m), ∀f ∈ L2(m).

Thanks to works by Sturm [St95, St96] and by Jiang-Li-Zhang [JLZ16], the heat
kernel on (X, d,m) has a locally Lipschitz representative ρ with Gaussian estimates
(see Theorem 2.8). This allows us to construct Φt analogously as

Φt : X −→ L2(m)

x 7−→ (y 7−→ ρ(x, y, t)),

which also naturally induces the pull back metric gt := Φ∗
t (gL2(m)).

One can also generalize formula (1.2) to this setting with the Lp
loc convergence as

follows, which plays a key role in proving equivalence between weakly non-collapsed
RCD(K,N) spaces and non-collapsed RCD(K,N) spaces. See [AHPT21, Theorem
5.10] and [BGHZ23, Theorem 3.11] for the proof.

Theorem 1.1. Let (X, d,m) be an RCD(K,N) space with dimd,m(X) = n, then
for any p ∈ [1,∞) and any bounded Borel set A ⊂ X, we have the following
convergence in Lp(A,m):∣∣tm(B√

t(·))gt − c(n)g
∣∣
HS

→ 0, as t ↓ 0,

where c(n) is a constant depending only on n.

1.3 Isometric immersions on Riemannian manifolds

Let (Mn, g) be an n-dimensional closed, that is, compact without boundary,
Riemannian manifold. A map

F :Mn −→ Rm

p 7−→ (ϕ1(p), . . . , ϕm(p))

is said to be an isometrically immersing eigenmap if each ϕi is a non-constant
eigenfunction of −∆ and F is an isometric immersion in the following sense:

F ∗gRm =
m∑
i=1

dϕi ⊗ dϕi = g. (1.1)
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Let us recall a theorem of Takahashi in [Ta66] as follows: if (Mn, g) is addi-
tionally homogeneous and irreducible, then for any eigenspace V corresponding to
some non-zero eigenvalue of −∆, there exists an L2(volg)-orthogonal basis {ϕi}mi=1

(m = dim(V )) of V realizing (1.1).
Besides, (Mn, g) can be also smoothly embedded into an infinite dimensional

Hilbert space by using its heat kernel ρ :Mn ×Mn × (0,∞) → (0,∞). More pre-
cisely, Bérard and Bérard-Besson-Gallot [B85, BBG94] proved that the following
map, which is called the t-time heat kernel mapping in this thesis,

Φt :M
n −→ L2(volg)

x 7−→ (y 7−→ ρ(x, y, t)) ,

is a smooth embedding. Moreover, one can use Φt to pull-back the flat Riemannian
metric gL2 on L2(volg) to get a metric tensor gt := Φ∗

t (gL2) with the following
asymptotic formula (compare Theorem 1.1):

4(8π)
n
2 t

n+2
2 gt = g − 2t

3

(
Ricg −

1

2
Scalgg

)
+O(t2), t ↓ 0. (1.2)

Again when (Mn, g) is additionally homogeneous and irreducible, it again fol-
lows from Takahashi’s theorem that there exists a non-negative function c(t) such
that for all t > 0,

√
c(t)Φt is an isometric immersion.

The observations above lead us to ask the following two questions.

Question 1.2. How to characterize a manifold admitting an isometrically im-
mersing eigenmap?

Question 1.3. How to characterize a manifold such that each t-time heat kernel
mapping is an isometric immersion after a normalization?

Note that if each t-time heat kernel mapping of a closed Riemannian manifold
(Mn, g) is an isometric immersion after a normalization, then (Mn, g) admits an
isometrically immersing eigenmap. Standard spectral theory of elliptic operators
implies that there exists an orthonormal basis {φi}∞i=1 in L2(volg) such that each
φi is an eigenfunction of −∆ with corresponding eigenvalue λi, and that {λi}∞i=1

satisfies
0 = λ0 < λ1 ⩽ λ2 ⩽ · · · ⩽ λi → ∞.

Then the classical estimates for eigenvalues λi show that

g = c(t)gt = c(t)
∞∑
i=1

e−2λitdφi ⊗ dφi, ∀t > 0. (1.3)
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These estimates also allow us to let t → ∞ in (1.3) to get (1.1) with ϕi =
limt→∞ c(t)e−λ1tφi (i = 1, · · · ,m), where m is the dimension of the eigenspace
corresponding to λ1.

The main purposes of the thesis are to give positive answers to the both ques-
tions above in the setting of RCD(K,N) metric measure spaces.

1.4 Harmonic manifolds

In n-dimensional Euclidean space Rn, there exist harmonic functions which
only depend on the geodesic distance. For instance when n > 2, the function
f(x1, . . . , xn) = (x21 + · · · + x2n)

1−n/2 is harmonic on Rn \ {0}. In regard to this
fact, Ruse attempted to find harmonic functions on Riemannian manifolds with
the same property and introduced the notion of harmonic manifold in 1930. His
consideration gave the first historical definition of harmonic manifold as follows.

Definition 1.4. A Riemannian manifold (Mn, g) is said to be harmonic if its
volume density function θp :=

√
| det gij| at each point p is a radial function.

Nowadays many equivalent definitions exist. See [B78, DR92, W50] as follows.

Theorem 1.5. A complete n-dimensional Riemannian manifold (Mn, g) is har-
monic if and only if either of the following condition holds.

(1) For any point p ∈Mn and the distance function dp := dg(p, ·), ∆d2p is radial
for any small r > 0.

(2) For any p ∈ Mn there exists a nonconstant radial harmonic function in a
punctured neighborhood of p.

(3) Every small geodesic sphere in Mn has constant mean curvature.

(4) Every harmonic function satisfies the mean value property.

When the space is connected and simply connected, there are many interesting
characterizations about harmonic manifolds.

Theorem 1.6 ([CH11, Theorem 3], [CH12, Theorem 1]). A connected, simply
connected and complete Riemannian manifold is harmonic if and only if the volume
of the intersection of two geodesic balls depends only on the distance between the
centers and the radii of the balls.

Theorem 1.7 ([S90, Theorem 1.1]). A connected, simply connected and complete
Riemannian manifold (Mn, g) is harmonic if and only if the heat kernel ρ(x, y, t)
is a function only of t and the distance dg(x, y), i.e., it is of the form ρ(x, y, t) =
ρ(dg(x, y), t).
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Given a Riemannian manifold (Mn, g), if Hi (i = 1, 2) are two functions on
Mn ×Mn such that for any x ∈ Mn the functions Hx

i (·) := Hi(x, ·) (i = 1, 2) are
L2-integrable functions, then their convolution H1 ∗H2 :M

n×Mn → R is defined
by

H1 ∗H2(x, y) =

ˆ
Mn

H1(x, z)H2(y, z)dvolg(z).

A function H : Mn ×Mn → R is called radial kernel if H(x, y) depends only on
the geodesic distance between x and y, that is, if H = h ◦ dg, where h : R+ → R
is an arbitrary function.

Theorem 1.8 ([S90, Proposition 2.1]). A connected, simply connected and com-
plete Riemannian manifold is harmonic if and only if the convolution of the radial
kernel functions H1 = h1 ◦dg and H2 = h2 ◦dg is a radial kernel function whenever
h1, h2 are smooth functions on R+ with compact support.

It should be emphasized that compact connected, simply connected harmonic
manifolds are also good examples of IHKI spaces due to Remark 5.2.

As in the previous section, it is also natural to ask the following question.

Question 1.9. How to characterize an RCD(K,N) space satisfying the conditions
in Theorem 1.6-1.8?

1.5 Contributions

1.5.1 Isometrically heat kernel immersing RCD(K,N) spaces

In connection with Question 1.3 in this setting, let us provide the following
definition.

Definition 1.10 (Isometrically heat kernel immersing RCD(K,N) spaces). An
RCD(K,N) space (X, d,m) is said to be an isometrically heat kernel immersing
space, or briefly an IHKI space if there exists a non-negative function c(t), such
that

√
c(t)Φt is an isometric immersion for all t > 0, namely

c(t)gt =
(√

c(t) Φt

)∗ (
gL2(m)

)
= g, ∀t > 0.

.

The simplest example of IHKI spaces are Euclidean spaces. On Rn, it is obvious
that

gR
n

t =
cR

n

1

t
n+2
2

gRn , with cR
n

1 =

ˆ
Rn

(
∂

∂x1
ρR

n

(x, y, t)

)2

dLn(y). (1.4)

Let us introduce the first main result of this thesis.
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Theorem 1.11. Let (X, d,m) be an RCD(K,N) space. Then the following two
conditions are equivalent.

(1) There exist sequences {ti} ⊂ R and {si} ⊂ R such that ti → t0 for some
t0 > 0 and that siΦti is an isometric immersion for any i.

(2) (X, d,m) is an IHKI RCD(K,N) space.

Remark 1.12. Theorem 1.11 is sharp in the following sense: there exists a closed
Riemannain manifold (Mn, g) such that it is not IHKI and that cΦt0 is an isometric
immersion for some c > 0 and some t0 > 0. See Example 7.3.

Recalling that gt plays a role of a “regularization” of an RCD(K,N) space as
discussed in [BGHZ23], it is expected that IHKI RCD(K,N) spaces have nice reg-
ularity properties. Along this, we end this subsection by collecting such regularity
results as follows.

Theorem 1.13. Let (X, d,m) be an IHKI RCD(K,N) space with dimd,m(X) =
n ⩾ 1, then there exists c > 0 such that m = cHn and that (X, d,m) is an
RCD(K,n) space. In particular, (X, d,Hn) is a non-collapsed RCD(K,n) space.

Theorem 1.14. Assume that (X, d,m) is a non-compact IHKI RCD(0, N) space
with dimd,m(X) = n ⩾ 2, then (X, d,m) is isometric to (Rn, dRn , cHn) for some
c > 0.

Let us emphasize that in the compact setting we will be able to provide the best
regularity result, namely the smoothness result (see Theorem 1.16 and Corollary
1.18).

1.5.2 Isometrically immersing eigenmaps on RCD(K,N) spaces

In order to discuss a finite dimensional analogue of the IHKI condition, let us
recall the following definition.

Definition 1.15 (Isometric immersion [H21, Definition 3.1]). Let m ∈ N+ and let
(X, d,m) be an RCD(K,N) space. A map

Φ : X −→ Rm

x 7−→ (ϕ1(x), . . . , ϕm(x))

is said to be an isometric immersion if it is locally Lipschitz and

Φ∗gRm :=
m∑
i=1

dϕi ⊗ dϕi = g (1.5)
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We are now ready to give an answer to Question 1.2 in the nonsmooth setting.

Theorem 1.16. Let (X, d,Hn) be a compact non-collapsed RCD(K,n) space. If
there exists an isometric immersion

Φ : X −→ Rm

x 7−→ (ϕ1(x), . . . , ϕm(x))

such that each ϕi is an eigenfunction of −∆ (i = 1, . . . ,m), then (X, d) is isometric
to an n-dimensional smooth closed Riemannian manifold (Mn, g).

It is emphasized again that the theorem above greatly improves a bi-Lipschitz
regularity result proved in [H21] and seems to provide the smoothness for a much
wider class of RCD spaces than existing results as far as the author knows (see for
instance [K15b, GR18, MW19] for the special cases).

Remark 1.17. An isometrically immersing eigenmap may not be an embedding in
general. See for instance [L81, Theorem 5].

As a corollary of Theorem 1.16, we obtain the following result, meaning that
any compact IHKI RCD(K,N) space must be smooth.

Corollary 1.18. Let (X, d,Hn) be a compact non-collapsed IHKI RCD(K,n)
space. Let E be the eigenspace with some non-zero corresponding eigenvalue λ
of −∆. Then by taking {ϕi}mi=1 (m = dim(E)) as an L2(m)-orthonormal basis of
E, the map

Φ : X −→ Rm

x 7−→
√

Hn(X)

m
(ϕ1, · · · , ϕm),

satisfies that
Φ(X) ⊂ Sm−1 and nΦ∗gRm = λg.

In particular, (X, d) is isometric to an n-dimensional smooth closed Riemannian
manifold (Mn, g).

1.5.3 Harmonic RCD(K,N) spaces

In order to answer Question 1.9, we consider the following special class of
RCD(K,N) spaces.

Definition 1.19 (Strongly harmonic RCD(K,N) space). A metric measure space
(X, d,m) is said to be a strongly harmonic RCD(K,N) space if it satisfies the
following two conditions.

1. It is an RCD(K,N) space.
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2. There exists a real valued function H : [0,∞) × [0,∞) → R such that the
heat kernel ρ of (X, d,m) satisfies

ρ(x, y, t) = H(d(x, y), t), ∀x, y ∈ X, ∀t > 0. (1.6)

Similar to IHKI RCD(K,N) spaces, the condition of strong harmonicity also
carries nice regularity and rigidity properties. Firstly we have

Theorem 1.20. Let (X, d,m) be a strongly harmonic RCD(K,N) space with
dimd,m(X) = n. Then m = cHn for some constant c > 0 and (X, d,Hn) is a
non-collapsed RCD(K,n) space.

In order to get the smoothness of a strongly harmonic RCD(K,N) space, a
weaker condition is stated as follows.

Definition 1.21 (Radically symmetric RCD(K,N) space). A metric measure
space (X, d,m) is said to be a radically symmetric RCD(K,N) space if it satisfies
the following conditions.

1. It is an RCD(K,N) space.

2. There exists a real valued function F : [0,∞)× [0,∞) → R and non-constant
eigenfunctions {ϕi}mi=1 such that

m∑
i=1

ϕi(x)ϕi(y) = F (d(x, y)), ∀x, y ∈ X. (1.7)

Theorem 1.22. Let (X, d,Hn) be a compact non-collapsed radically symmetric
RCD(K,n) space. Then (X, d) is isometric to an n-dimensional smooth closed
Riemannian manifold (Mn, g).

Corollary 1.23. Assume (X, d,m) is a compact strongly harmonic RCD(K,n)
space with dimd,m(X) = n. Then (X, d) is isometric to an n-dimensional smooth
closed Riemannian manifold (Mn, g).

Finally, we also obtain a similar result for strongly harmonic RCD(0, N) spaces
to Theorem 1.13 as follows.

Theorem 1.24. Let (X, d,m) be a non-compact harmonic RCD(0, N) space with
dimd,m(X) = n, then (X, d) is isometric to (Rn, dRn).
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1.5.4 Diffeomorphic finiteness theorems

As an application of Theorem 1.16, in Section 6 we first study some special
isometry classes of closed Riemannian manifolds admitting isometrically immersing
τ -eigenmaps.

Definition 1.25 (Isometrically immersing τ -eigenmap on Riemannian manifolds).
Let (Mn, g) be an n-dimensional closed Riemannian manifold and let τ > 0. A
map

F :Mn −→ Rm

p 7−→ (ϕ1(p), . . . , ϕm(p)) ,

is said to be a τ -eigenmap into Rm if each ϕi is a non-constant eigenfunction of
−∆ and

min
1⩽i⩽m

‖ϕi‖L2(volg) ⩾ τ.

If in addition F is an isometric immersion, then it is said to be an isometrically
immersing τ -eigenmap into Rm.

Definition 1.26 (Isometric immersion via τ -eigenmaps). For all K ∈ R, D, τ >
0, denote by M(K,n,D, τ ) the set of isometry classes of n-dimensional closed
Riemannian manifolds (Mn, g) such that the Ricci curvature is bounded below by
K, that the diameter is bounded above by D and that there exists an isometrically
immersing τ -eigenmap into Rm for some m ∈ N.

Our main result about M(K,n,D, τ ) is stated as follows.

Theorem 1.27. M(K,n,D, τ ) is compact in C∞-topology. That is, for any se-
quence of Riemannian manifolds {(Mn

i , gi)} ⊂ M(K,n,D, τ ), after passing to a
subsequence, there exists a Riemannian manifold (Mn, g) ∈ M(K,n,D, τ ) and
diffeomorphisms ψi : M

n → Mn
i , such that {ψ∗

i gi} Ck-converges to g on (Mn, g)
for any k ∈ N.

Finally in order to introduce an improved finiteness result from [H21], let us
introduce the following definition.

Definition 1.28 (Almost isometric immersion via τ -eigenmap). For all K ∈ R,
D, τ > 0, ϵ ⩾ 0, denote by N (K,n,D, τ, ϵ) the set of isometry classes of n-
dimensional closed Riemannian manifolds (Mn, g) such that the Ricci curvature
is bounded below by K, that the diameter is bounded above by D and that there
exists a τ -eigenmap FMn into Rm for some m ∈ N with

1

volg(Mn)

ˆ
Mn

|F ∗
MngRm − g| dvolg ⩽ ϵ.

10



Note that N (K,n,D, τ, 0) = M(K,n,D, τ ). Combining the intrinsic Reifen-
berg method established in [ChCo1, Appendix A] by Cheeger-Colding, with The-
orem 1.16 gives us the following diffeomorphic finiteness theorem.

Theorem 1.29. There exists ϵ = ϵ(K,n,D, τ ) > 0 such that N (K,n,D, τ, ϵ) has
finitely many members up to diffeomorphism.

1.6 Outline of the proofs

The proofs of Theorems 1.13, 1.14, 1.20 and 1.24 are based on blow up and blow
down arguments. See also the proofs of [AHPT21, Theorem 2.19] and [BGHZ23,
Theorem 3.11] for related arguments.

The most delicate part of this thesis is in the proofs of Theorems 1.16 and
1.22, which make the full use of the equations for eigenfunctions, i.e. ∆ϕi = −µiϕi

(i = 1, . . . ,m). Note that one can easily obtain L∞-bounds of the Laplacian and
of the gradient of each ϕi from the estimates in [J14, JLZ16, ZZ19, AHPT21] (see
also Proposition 2.10).

In order to explain it more precisely, let us start with the following key equation:

m∑
i=1

|∇ϕi|2 = n. (1.8)

Since the lower bound of each ∆|∇ϕi|2 comes directly from Bochner inequality
(see (2.1)), (1.8) then guarantees the upper bound of each ∆|∇ϕi|2 due to the
following equality:

∆|∇ϕi|2 =
m∑
j ̸=i

−∆|∇ϕj|2.

Therefore we have a uniform L∞-bound of all |∇〈∇ϕi,∇ϕj〉|, which implies the
C1,1 differentiable structure of the space. Indeed, locally one can pick {ui}mi=1

consisting of linear combinations of eigenfunctions ϕi and construct a bi-Lipschitz
map x 7→ (u1(x), . . . , un(x)) which satisfies the following PDE:

m∑
j,k=1

〈∇uj,∇uk〉
∂2ϕi

∂uj∂uk
+

n∑
j=1

∆uj
∂ϕi

∂uj
+ µiϕi = 0.

Then the smoothness of the space is justified by applying the elliptic regularity
theory.

Finally, a similar technique as in the proof of Theorem 1.16 allows us to control
each higher order covariant derivative of the Riemannian metric g of (Mn, g) ∈ M
quantitatively. Thus we can then apply a theorem of Hebey-Herzlish proved in
[HH97] to get the desired smooth compactness result, Theorem 1.27.
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2 Notation and preliminary results

Throughout this thesis we will use standard notation in this topic. For example

• Denote by C(K1, . . . , Kn) a positive constant depending on K1, . . . , Kn, and
Ψ = Ψ(ϵ1, . . . , ϵk|c1, . . . cj) some nonnegative function determined by ϵ1, . . . , ϵk,
c1, . . . , cj such that

lim
ϵ1,...,ϵk→0

Ψ = 0, for any fixed c1, . . . cj.

• Denote by ωn the n-dimensional Hausdorff measure of the unit ball in Rn

which coincides with the usual volume of a unit ball in Rn, and by Ln the
standard Lebesgue measure on Rn.

We may use superscripts or subscripts when it is necessary to distinguish ob-
jects (for example, the Riemannian metrics, the gradients, etc.) on different spaces
in this thesis.

2.1 Metric spaces

We fix some basic definitions and notation about metric spaces in this subsec-
tion. Let (X, d) be a complete separable metric space.

Denote by Lip(X, d) (resp. Lipb(X, d), Lipc(X, d), C(X), Cc(X)) the set of all
Lipschitz functions (resp. bounded Lipschitz functions, compactly supported Lip-
schitz functions, continuous functions, compactly supported continuous functions)
on (X, d).

For any f ∈ Lip(X, d), the local Lipschitz constant of f at a point x ∈ X is
defined by

lip f(x) =

lim sup
y→x

|f(y)− f(x)|
d(y, x)

if x ∈ X is not isolated,

0 otherwise.

If (X, d) is compact, then the diameter of X is defined by

diam(X, d) := sup
x,y∈X

d(x, y).

For a map f : X → Y from (X, d) to another complete metric space (Y, dY ), f
is said to be C-bi-Lipschitz from X to f(X) for some C ⩾ 1 if

C−1d(x1, x2) ⩽ dY (f(x1), f(x2)) ⩽ Cd(x1, x2), ∀x1, x2 ∈ X.

We also denote by BR(x) the set {y ∈ X : d(x, y) < R}, and by Bϵ(A) the
set {x ∈ X : d(x,A) < ϵ} for any A ⊂ X, ϵ > 0. In particular, denote by
Br(0n) := {x ∈ Rn : |x| < r} for any r > 0.

12



2.2 RCD(K,N) spaces: definition and basic properties

Let (X, d,m) be a metric measure space.

Definition 2.1 (Cheeger energy). The Cheeger energy Ch: L2(m) → [0,∞] is
defined by

Ch(f) := inf
{fi}

{
lim inf
i→∞

ˆ
X

|lip fi |2dm
}
,

where the infimum is taken among all sequences {fi} satisfying fi ∈ Lipb(X, d) ∩
L2(m) and ‖fi − f‖L2(m) → 0.

The domain of the Cheeger energy, denoted by D(Ch), is the set of all f ∈
L2(m) with Ch(f) < ∞. It is dense in L2(m), and is a Banach space when

equipped with the norm
√

Ch(·) + ‖·‖2L2(m). This Banach space is the Sobolev

space H1,2(X, d,m). In addition, for any f ∈ H1,2(X, d,m), by taking a minimzing
sequence {fi} and using Mazur’s lemma, one can identify a unique |Df | ∈ L2(m)
such that

Ch(f) =

ˆ
X

|Df |2dm.

This |Df | is called the minimal relaxed slope of f and satisfies the locality property,
that is, for any other h ∈ H1,2(X, d,m), we have |Df | = |Dh| m-a.e. on {x ∈ X :
f = h}.

In particular, (X, d,m) is said to be infinitesimally Hilbertian if H1,2(X, d,m)
is a Hilbert space. In this case, for any f, h ∈ H1,2(X, d,m), the following L1(m)
integrable function is well-defined [AGS14b]:

〈∇f,∇h〉 := lim
ϵ→0

|D(f + ϵh)|2 − |Df |2

2ϵ
.

Remark 2.2. For any f ∈ H1,2(X, d,m), it is clear that

|∇f |2 := 〈∇f,∇f〉 = |Df |2, m-a.e.

Definition 2.3 (The Laplacian [G15]). Assume that (X, d,m) is infinitesimally
Hilbertian. The domain of Laplacian, namely D(∆), is defined as the set of all
f ∈ H1,2(X, d,m) such that

ˆ
X

〈∇f,∇φ〉dm = −
ˆ
X

hφdm, ∀φ ∈ H1,2(X, d,m),

for some h ∈ L2(m). In particular, denote by ∆f := h for any f ∈ D(∆) because
h is unique if it exists.
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We are now ready to introduce the definition of RCD(K,N) spaces. The follow-
ing is an equivalent definition with the one proposed in [G15], and the equivalence
is proved in [AGS15, EKS15]. See also [AMS19].

Definition 2.4. Let K ∈ R and N ∈ [1,∞). (X, d,m) is said to be an RCD(K,N)
space if and only if it satisfies the following conditions.

1. (X, d,m) is infinitesimally Hilbertian.

2. There exists x ∈ X and C > 0, such that for any r > 0, m(Br(x)) ⩽ CeCr2 .

3. (Sobolev to Lipschitz property) If f ∈ H1,2(X, d,m) with |Df | ⩽ 1 m-a.e.,
then f has a 1-Lipschitz representative, that is, there exists a 1-Lipschitz
function h such that h = f m-a.e.

4. (Bochner inequality) For any f ∈ D(∆) with ∆f ∈ H1,2(X, d,m), the fol-
lowing holds for any φ ∈ TestF (X, d,m) with φ ⩾ 0,

1

2

ˆ
X

|∇f |2∆φdm ⩾
ˆ
X

φ

(
〈∇f,∇∆f〉+K|∇f |2 + (∆f)2

N

)
dm, (2.1)

where TestF (X, d,m) is the class of test functions defined by

TestF (X, d,m) := {f ∈ Lip(X, d)∩D(∆)∩L∞(m) : ∆f ∈ H1,2(X, d,m)∩L∞(m)}.
If in addition m = HN , then (X, d,m) is said to be a non-collapsed RCD(K,N)

space.

For the class of test functions on an RCD(K,N) space (X, d,m), by [S14],

1. |∇f |2 ∈ H1,2(X, d,m) for any f ∈ TestF (X, d,m).

2. Define TestF+(X, d,m) := {f ∈ TestF (X, d,m) : f ⩾ 0} andH1,2
+ (X, d,m) :=

{f ∈ H1,2(X, d,m) : f ⩾ 0 m-a.e.}. Then TestF+(X, d,m) (resp. TestF (X, d,m))
is dense in H1,2

+ (X, d,m) (resp. H1,2(X, d,m)).

The following inequality is a generalization of the Bishop-Gromov inequality
in Riemannian geometry.

Theorem 2.5 (Bishop-Gromov inequality [LV09, St06b]). Assume that (X, d,m)
is an RCD(K,N) space. Then the following holds for any x ∈ X.

1. If N > 1, K 6= 0, r < R ⩽ π

√
N − 1

K ∨ 0
, then

m (BR(x))

m (Br(x))
⩽

´ R

0
VK,Ndt´ r

0
VK,Ndt

, where

VK,N(t) :=

 sin
(
t
√
K/(N − 1)

)N−1

, if K > 0,

sinh
(
t
√
−K/(N − 1)

)N−1

, if K < 0.
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2. If N = 1 and K ⩽ 0, or N ∈ (1,∞) and K = 0, then
m (BR(x))

m (Br(x))
⩽
(
R

r

)N

.

Remark 2.6. (2.2) and (2.3) are direct consequences of Theorem 2.5, where (2.3)
is a combination of (2.2) and the fact that Br(x) ⊂ Br+d(x,y)(y).

m(BR(x))

m(Br(x))
⩽ C(K,N) exp

(
C(K,N)

R

r

)
, ∀x ∈ X, ∀r < R. (2.2)

m(Br(x))

m(Br(y))
⩽ C(K,N) exp

(
C(K,N)

r + d(x, y)

r

)
, ∀x, y ∈ X, ∀r > 0. (2.3)

For an RCD(K,N) space (X, d,m), the heat flow {ht : L
2(m) → L2(m)}t>0 as-

sociated with its Cheeger energy is defined by: for any f ∈ L2(m), {htf}t>0 satisfies
the following properties.

1. (Solution to the heat equation) For any t > 0, htf ∈ D(∆) and
d

dt
ht(f) =

∆htf in L2(m).

2. (Semigroup property) For any s, t > 0, ht+sf = ht(hsf).

3. (Contraction on L2(m)) ‖htf‖L2(m) ⩽ ‖f‖L2(m) , ∀t > 0.

4. (Commutative with ∆) If f ∈ D(∆), then for any t > 0, ht(∆f) = ∆(htf).

For any p ∈ [1,∞], {ht}t>0 also acts on L
p(m) as a linear family of contractions,

namely
‖htφ‖Lp(m) ⩽ ‖φ‖Lp(m) , ∀t > 0, ∀φ ∈ Lp(m). (2.4)

Set 1̂ ∈ L∞(m) as (the equivalence class in m-a.e. sense of) the function on
X identically equal to 1. It is now worth pointing out the following stochastic
completeness of RCD(K,N) spaces:

ht(1̂) ≡ 1̂, ∀t > 0.

Sturm’s works [St95, St96] guarantee the existence of a locally Hölder contin-
uous representative ρ on X × X × (0,∞) of the heat kernel for (X, d,m). More
precisely, the solution to the heat equation can be expressed by using ρ as follows:

ht(f) =

ˆ
X

ρ(x, y, t)f(y)dm(y), ∀f ∈ L2(m).

Remark 2.7 (Rescaled RCD space). For any RCD(K,N) space (X, d,m) and any
a, b ∈ (0,∞), the rescaled space (X, ad, bm) is an RCD(a−1K,N) space whose heat
kernel ρ̃ can be written as ρ̃(x, y, t) = b−1ρ(x, y, a−2t).
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The locally Hölder continuity of the heat kernel on RCD(K,N) spaces is im-
proved to be locally Lipschitz due to the following Jiang-Li-Zhang’s [JLZ16] esti-
mates.

Theorem 2.8. Let (X, d,m) be an RCD(K,N) space. Given any ϵ > 0, there
exist positive constants Ci = Ci(K,N, ϵ), i = 1, 2, 3, 4 such that the heat kernel ρ
satisfies the following estimates.

1

C1

exp

(
−d2(x, y)

(4− ϵ)t
− C2t

)
⩽ m

(
B√

t(y)
)
ρ(x, y, t) ⩽ C1 exp

(
−d2(x, y)

(4 + ϵ)t
+ C2t

)
holds for all t > 0, and all x, y ∈ X and

|∇xρ(x, y, t)| ⩽
C3√

t m
(
B√

t(x)
) exp(−d2(x, y)

(4 + ϵ)t
+ C4t

)
holds for all t > 0 and m-a.e. x, y ∈ X.

Remark 2.9. The results of [D97] are also applicable to RCD(K,N) spaces. In
particular, under the assumption of Theorem 2.8, for any x, y ∈ X, the function
t 7→ ρ(x, y, t) is analytic. Moreover, for any n ⩾ 1, t ∈ (0, 1), and x, y ∈ X, the
Bishop-Gromov inequality (2.2), Theorem 2.8 and [D97, Theorem 4] give that,∣∣∣∣ ∂n∂tnρ(x, y, t)

∣∣∣∣ ⩽ C(K,N)n!

tn
(
m(B√

t(x))m(B√
t(y))

)− 1
2 exp

(
−d2(x, y)

100t

)
. (2.5)

For a compact RCD(K,N) space (X, d,m), by [J14, JLZ16], its heat kernel ρ
can be expressed as follows, (see also [AHPT21, Appendix]).

ρ(x, y, t) =
∞∑
i=0

e−µitϕi(x)ϕi(y), (2.6)

where eigenvalues of −∆ counted with multiplicities and the corresponding eigen-
functions are denoted as follows.

0 = µ0 < µ1 ⩽ µ2 ⩽ · · · → +∞,

−∆ϕi = µiϕi,

{ϕi}i∈N : an orthonormal basis of L2(m).

(2.7)

We may use the notation (2.7) in Proposition 2.10, Proposition 2.13 without
any attention.

The following estimates can be obtained by the Gaussian estimates (Theorem
2.8) and are useful in this thesis. See [AHPT21, Appendix] and [ZZ19].
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Proposition 2.10. Let (X, d,m) be a compact RCD(K,N) space with m(X) = 1,
then there exist Cj = Cj(K,N, diam(X, d)) (j = 5, 6), such that for all i ⩾ 1,

‖ϕi‖L∞(m) ⩽ C5µ
N/4
i , ‖|∇ϕi|‖L∞(m) ⩽ C5µ

(N+2)/4
i , C6i

2/N ⩽ µi ⩽ C5i
2.

The rest of this subsection is based on [GH18, GR20]. We first introduce some
basic knowledges of the Euclidean cone over metric measure spaces. Then the
background of the product space of metric measure spaces follows.

Definition 2.11 (Euclidean cone as a metric measure space). Let (X, d,m) be an
RCD(N−2, N−1) space with N ⩾ 2. We define the Euclidean cone over (X, d,m)
as the metric measure space

(
C(X), dC(X),mC(X)

)
as follows.

1. The space C(X) is defined as C(X) := [0,∞)×X/ ({0} ×X). The origin is
denoted by o∗.

2. For any two points (r, x) and (s, y), the distance between them is defined as

dC(X) ((r, x), (s, y)) :=
√
r2 + s2 − 2rs cos (d(x, y)).

3. The measure of C(X) is defined as dmC(X)(r, x) = rN−1dr ⊗ dm(x).

Remark 2.12. If (X, d,m) is an RCD(N − 2, N − 1) space, then it has an upper
diameter bound π due to [St06b, Corollary 2.6] and [O07, Theorem 4.3]. In addi-
tion, by [K15a, Theorem 1.1],

(
C(X), dC(X),mC(X)

)
is an RCD(0, N) space if and

only if (X, d,m) is an RCD(N − 2, N − 1) space.

By [GH18, Definition 3.8, Proposition 3.12], for any f ∈ H1,2
(
C(X), dC(X),mC(X)

)
,

it holds that(
f (x) : r 7−→ f(r, x)

)
∈ H1,2(R, dR, rN−1L1), m-a.e. x ∈ X,(

f (r) : x 7−→ f(r, x)
)
∈ H1,2(X, d,m), rN−1L1-a.e. r ∈ R,

and that |∇f |2C(X) can be written as

|∇f |2C(X) (r, x) =
∣∣∇f (x)

∣∣2
R (r) +

1

r2
∣∣∇f (r)

∣∣2
X
(x) mC(X)-a.e. (r, x) ∈ C(X).

Thus for any f1, f2 ∈ H1,2
(
C(X), dC(X),mC(X)

)
, it can be readily checked that

for mC(X)-a.e. (r, x) ∈ C(X),

〈∇f1,∇f2〉C(X) (r, x) =
〈
∇f (x)

1 ,∇f (x)
2

〉
R
(r) +

1

r2

〈
∇f (r)

1 ,∇f (r)
2

〉
X
(x). (2.8)

In addition, the heat kernel ρC(X) on
(
C(X), dC(X),mC(X)

)
has the following

explicit expression as [D02, Theorem 6.20].
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Proposition 2.13. Let (X, d,m) be a compact RCD(N − 2, N − 1) space with
N ⩾ 3. Let α = (2−N)/2, νj =

√
α2 + µj for j ∈ N. Then ρC(X) can be written

as follows:

ρC(X) ((r1, x1), (r2, x2), t) = (r1r2)
α

∞∑
j=0

1

2t
exp

(
−r

2
1 + r22
4t

)
Iνj

(r1r2
2t

)
ϕj(x1)ϕj(x2).

(2.9)
Here Iν is a modified Bessel function defined by

Iν(z) =
∞∑
k=0

1

k!Γ(ν + k + 1)

(z
2

)2k+ν

. (2.10)

Proof. We claim that for any f ∈ Cc(C(X)), by using ρC(X) defined in (2.9), htf
can be expressed as follows.

htf(r1, x1) =

ˆ
C(X)

ρC(X)((r1, x1), (r2, x2), t)f(r2, x2)dmC(X)(r2, x2). (2.11)

Then we are done by combining (2.4) and the fact that Cc(C(X)) is dense in
L2
(
mC(X)

)
.

To show (2.11), we first set ui(r) =
´
X
f(r, x)ϕi(x)dm(x) (i = 0, 1, · · · ). For

any r ∈ (0,∞), since f (r) is continuous, by Parseval’s identity we have

∞∑
i=0

u2i (r) =

ˆ
X

∞∑
i=0

u2i (r)ϕ
2
i (x)dm(x) =

ˆ
X

f 2(r, x)dm(x).

Letting fk(r) :=
k∑

i=0

rN−1u2i (r), and using the dominated convergence theorem, we

get

lim
k→∞

ˆ
(0,∞)

fk(r)dr =

ˆ
(0,∞)

ˆ
X

rN−1f 2(r, x)dm(x)dr.

This yields

lim
k→∞

ˆ
C(X)

(
f(r, x)−

k∑
i=0

ui(r)ϕi(x)

)2

dmC(X)(r, x)

= lim
k→∞

(ˆ
(0,∞)

ˆ
X

rN−1f 2(r, x)dm(x)dr −
ˆ
(0,∞)

fk(r)dr

)
= 0.

Therefore f(r, x) =
∞∑
i=0

ui(r)ϕi(x) for mC(X)-a.e. (r, x) ∈ C(X). Applying the

separation of variables in classical ways like [Ta96, Chapter 8], we complete the
proof of (2.11).
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Definition 2.14 (Cartesian product as a metric measure space). Let (X, dX ,mX),
(Y, dY ,mY ) be two metric measure spaces. The product metric measure space
(X × Y, dX×Y ,mX×Y ) is defined as the product space X × Y equipped with the
distance

dX×Y ((x1, y1), (x2, y2)) =
√
d2X(x1, x2) + d2Y (y1, y2), ∀(x1, y1), (x2, y2) ∈ X × Y,

and the measure dmX×Y := dmX ⊗ dmY .

Since [GR20, Proposition 4.1] applies for RCD(K,∞) spaces, for any f ∈
H1,2 (X × Y, dX×Y ,mX×Y ), it holds that(

f (x) : y 7−→ f(x, y)
)
∈ H1,2(Y, dY ,mY ), mX-a.e. x ∈ X,(

f (y) : x 7−→ f(x, y)
)
∈ H1,2(X, dX ,mX), mY -a.e. y ∈ Y ,

and |∇f |2X×Y can be expressed as

|∇f |2X×Y (x, y) =
∣∣∇f (y)

∣∣2
X
(x) +

∣∣∇f (x)
∣∣2
Y
(y), mX×Y -a.e. (x, y) ∈ X × Y. (2.12)

Thus for any f1, f2 ∈ H1,2 (X × Y, dX×Y ,mX×Y ), we have the following for
mX×Y -a.e. (x, y) ∈ X × Y :

〈∇f1,∇f2〉X×Y (x, y) =
〈
∇f (y)

1 ,∇f (y)
2

〉
X
(x) +

〈
∇f (x)

1 ,∇f (x)
2

〉
Y
(y). (2.13)

It also follows from [GR20, Corollary 4.2] that for any f ∈ L2(mX×Y ),

hX×Y
t f = hX

t

(
hY
t f

(x)
)
= hY

t

(
hX
t f

(y)
)
.

As a result, ρX×Y has an explicit expression as follows.

ρX×Y ((x1, y1), (x2, y2), t) = ρX(x1, x2, t)ρ
Y (y1, y2, t). (2.14)

2.3 First and second order calculus on RCD(K,N) spaces

This subsection is based on [G18]. We assume that (X, d,m) is an RCD(K,N)
space in this subsection.

Definition 2.15 (Lp-normed L∞-module). For any p ∈ [1,∞], a quadruplet
(M , ‖·‖M , ·, | · |) is said to be an Lp-normed L∞-module if it satisfies the following
conditions.

1. The normed vector space (M , ‖·‖M ) is a Banach space.
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2. The multiplication by L∞-functions · : L∞(m)× M → M is a bilinear map
such that for every f, h ∈ L∞(m) and every v ∈ M , it holds that

f · (h · v) = (fh) · v, 1̂ · v = v.

3. The pointwise norm | · | : M → Lp(m) satisfies that for every f ∈ L∞(m)
and every v ∈ M , it holds that

|v| ⩾ 0, |f · v| = |f‖v| m-a.e., and ‖v‖M = ‖|v|‖Lp(m) .

In particular, (M , ‖·‖M , ·, | · |) is said briefly to be a module when p = 2.

Remark 2.16. The homogeneity and subadditivity of | · | follows directly from
Definition 2.15. Write fv instead of f · v later on for simplicity.

To construct the cotangent module, the first step is to define a pre-cotangent
module Pcm. Elements of Pcm are of the form {(Ei, fi)}ni=1 where {Ei}ni=1 is some
Borel partition of X and {fi}ni=1 ⊂ H1,2(X, d,m). Secondly, define an equivalence
relation on Pcm as follows.

{(Ei, fi)}ni=1 ∼ {(Fi, hi)}mj=1 if and only if for any i, j, |Dfi| = |Dhj| holds m-a.e. on Ei ∩ Fj.

Denote by [Ei, fi]i the equivalence class of {(Ei, fi)}ni=1 and by χE the charac-
teristic function of E for any Borel set E ⊂ X.

With the help of the locality of minimal relaxed slopes, the following operations
on the quotient Pcm/ ∼ are well-defined:

[Ei, fi]i + [Fj, gj]j := [Ei ∩ Fj, fi + gj]i,j ,

α [Ei, fi]i := [Ei, αfi]i ,(∑
j

αjχFj

)
· [Ei, fi]i := [Ei ∩ Fj, αjfi]i,j ,

|[Ei, fi]i| :=
∑
i

χEi
|Dfi| m-a.e. in X,

‖[Ei, fi]i‖ := ‖|[Ei, fi]i|‖L2(m) =

(∑
i

ˆ
Ei

|Dfi|2dm

) 1
2

.

Let
(
L2(T ∗(X, d,m)), ‖ · ‖L2(T ∗(X,d,m))

)
be the completion of (Pcm/ ∼, ‖·‖). The

multiplication · and the pointwise norm | · | in Definition 2.15 can be continuously
extended to

· : L∞(m)× L2(T ∗(X, d,m)) → L2(T ∗(X, d,m)),

| · | : L2(T ∗(X, d,m)) → L2(m).
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Then the construction of the module
(
L2(T ∗(X, d,m)), ‖·‖L2(T ∗(X,d,m)) , ·, | · |

)
is

completed. We write L2(T ∗(X, d,m)) for short if no ambiguity is caused.

Theorem 2.17 (Uniqueness of cotangent module). There is a unique couple
(L2(T ∗(X, d,m)), d), where L2(T ∗(X, d,m)) is a module and d : H1,2(X, d,m) →
L2(T ∗(X, d,m)) is a linear operator such that |df | = |Df | holds m-a.e. for every
f ∈ H1,2(X, d,m). Uniqueness is intended up to unique isomorphism: if another
couple (M , d′) satisfies the same properties, then there exists a unique module
isomorphism ζ : L2(T ∗(X, d,m)) → M such that ζ ◦ d = d′.

In this thesis, L2 (T ∗(X, d,m)) and d are called the cotangent module and the
differential respectively. Elements of L2 (T ∗(X, d,m)) are called 1-forms.

Likewise, the tangent module L2(T (X, d,m)) can be defined as a module gen-
erated by {∇f : f ∈ H1,2(X, d,m)}, where ∇f satisfies that

dh(∇f) = 〈∇h,∇f〉 m-a.e., ∀ h ∈ H1,2(X, d,m).

L2(T (X, d,m)) is the dual module of L2(T ∗(X, d,m)), and its elements are
called vector fields.

Let us recall the construction of the tensor product of L2(T ∗(X, d,m)) with
itself in [G18].

For any f ∈ L∞(m), f1, f2 ∈ TestF (X, d,m), the tensor fdf1⊗ df2 is defined as

fdf1 ⊗ df2(η1, η2) := fdf1(η1)df2(η2), ∀η1, η2 ∈ L2(T (X, d,m)).

Set

Test(T ∗)⊗2(X, d,m) :=

{
k∑

i=1

f1,idf2,i ⊗ df3,i : k ∈ N, fj,i ∈ TestF (X, d,m)

}
.

and define the L∞(m)-bilinear norm

〈·, ·〉 : Test(T ∗)⊗2(X, d,m)× Test(T ∗)⊗2(X, d,m) → L2(m)

as

〈df1⊗df2, df3⊗df4〉 := 〈∇f1,∇f3〉〈∇f2,∇f4〉, ∀fi ∈ TestF (X, d,m) (i = 1, 2, 3, 4).

The pointwise Hilbert-Schmidt norm is then defined as

|·|HS : Test(T ∗)⊗2(X, d,m) −→ L2(m)

A 7−→ |A|HS :=
√

〈A,A〉.
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For any p ∈ [1,∞], adapting a similar continuous extension procedure of
Test(T ∗)⊗2(X, d,m) with respect to the norm ‖|·|HS‖Lp(m) gives a construction of

the Lp-normed L∞-module Lp((T ∗)⊗2(X, d,m)).
In addition, denote by Lp

loc(T
∗(X, d,m)) the collection of 1-forms ω with |ω| ∈

Lp
loc(m). Here Lp

loc(m) is the set of all functions f such that f ∈ Lp (BR(x),m) for
any BR(x) ⊂ X. Similarly for other vector fields and other tensors.

The end of this subsection is aimed at recalling definitions of two kinds of
tensor fields.

Theorem 2.18 (The Hessian [G18]). For any f ∈ TestF (X, d,m), there exists a
unique T ∈ L2 ((T ∗)⊗2(X, d,m)), called the Hessian of f , denoted by Hess f , such
that for all fi ∈ TestF (X, d,m) (i = 1, 2),

2T (∇f1,∇f2) = 〈∇f1,∇〈∇f2,∇f〉〉+ 〈∇f2,∇〈∇f1,∇f〉〉 − 〈∇f,∇〈∇f1,∇f2〉〉
(2.15)

holds for m-a.e. x ∈ X. Moreover, the following holds for any f ∈ TestF (X, d,m),
φ ∈ TestF+(X, d,m).

1

2

ˆ
X

∆φ · |∇f |2dm ⩾
ˆ
X

φ
(
|Hess f |2HS + 〈∇∆f,∇f〉+K|∇f |2

)
dm. (2.16)

Since TestF (X, d,m) is dense in D(∆), Hess f ∈ L2 ((T ∗)⊗2(X, d,m)) is well-
defined for any f ∈ D(∆). In addition, if fi ∈ TestF (X, d,m) (i = 1, 2), then
〈∇f1,∇f2〉 ∈ H1,2(X, d,m), and the following holds for any φ ∈ H1,2(X, d,m).

〈∇φ,∇〈∇f1,∇f2〉〉 = Hess f1 (∇f2,∇φ) + Hess f2 (∇f1,∇φ) m-a.e. (2.17)

Definition 2.19 (The Riemannian metric). A tensor field ḡ ∈ L∞
loc((T

∗)⊗2(X, d,m))
is said to be a (resp. semi) Riemannian metric on (X, d,m) if it satisfies the fol-
lowing properties.

1. (Symmetry) ḡ(V,W ) = ḡ(W,V ) m-a.e. for any V,W ∈ L2(T (X, d,m)).

2. (Non (resp. Non semi-) degeneracy) For any V ∈ L2(T (X, d,m)), it holds
that

ḡ (V, V ) > 0 (resp. ḡ (V, V ) ⩾ 0) m-a.e. on {|V | > 0} .

2.4 Convergence of RCD(K,N) spaces

For a sequence of pointed RCD(K,N) spaces (Xi, di,mi, xi), the equivalence
between pointed measured Gromov Hausdorff (pmGH) convergence and pointed
measured Gromov (pmG) convergence is established in [GMS13]. We only in-
troduce the definition of pmGH convergence and a precompactness theorem of a
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sequence of pointed RCD(K,N) spaces. It is remarkable that for compact metric
measure spaces there is a more convenient convergence named measured Gromov-
Hausdorff (mGH) convergence (see [F87]).

Definition 2.20 (Pointed measured Gromov-Hausdorff (pmGH) convergence). A
sequence of pointed metric measure spaces {(Xi, di,mi, xi)} is said to be convergent
to a pointed metric measure space (X∞, d∞,m∞, x∞) in the pointed measured
Gromov-Hausdorff (pmGH) sense, if there exists a complete separable metric space
(Y, dY ) and a sequence of isometric embeddings {ιi : Xi → Y }i∈N∪{∞}, such that

1. dY (ιi(xi), ι∞(x∞)) → 0,

2. for any R, ϵ > 0, there exists N > 0, such that for any i > N , we have
ι∞
(
BX∞

R (x∞)
)
⊂ BY

ϵ

(
ιi
(
BXi

R (xi)
))

and ιi
(
BXi

R (xi)
)
⊂ BY

ϵ

(
ι∞
(
BX∞

R (x∞)
))
,

3. for every f ∈ Cc(Y ), lim
i→∞

´
Y
fd(ιi)♯mi =

´
Y
fd(ι∞)♯m∞.

In particular, we say that Xi 3 x′i → x′∞ ∈ X∞ if dY (ιi(x
′
i), ι∞(x′∞)) → 0.

Definition 2.21 (Measured Gromov-Hausdorff convergence). Let {(Xi, di,mi)} be
a sequence of compact metric measure spaces with supi diam(Xi, di) < ∞. Then
{(Xi, di,mi)} is said to be convergent to a metric measure space (X∞, d∞,m∞) in
the measured Gromov-Hausdorff (mGH) sense if there exists a sequence of points
{xi ∈ Xi}i∈N∪{∞}, such that

(Xi, di,mi, xi)
pmGH−−−→ (X∞, d∞,m∞, x∞).

Theorem 2.22 (Precompactness of pointed RCD(K,N) spaces under pmGH
convergence [GMS13]). Let {(Xi, di,mi, xi)} be a sequence of pointed RCD(K,N)
spaces such that

0 < lim inf
i→∞

mi

(
BXi

1 (xi)
)
⩽ lim sup

i→∞
mi

(
BXi

1 (xi)
)
<∞.

Then there exists a subsequence
{(
Xi(j), di(j),mi(j), xi(j)

)}
, such that it pmGH con-

verges to a pointed RCD(K,N) space (X∞, d∞,m∞, x∞).

Especially, non-collapsed pmGH convergent sequences of non-collapsed RCD(K,N)
spaces preserve the Hausdorff measure.

Theorem 2.23 (Continuity of Hausdorff measure [DG18, Theorem 1.3]). If a se-
quence of pointed non-collapsed RCD(K,N) spaces

{(
Xi, di,HN , xi

)}
pmGH con-

verges to a pointed RCD(K,N) space (X∞, d∞,m∞, x∞) and satisfies infi HN
(
BXi

1 (xi)
)
>

0, then m∞ = HN .
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It is also worth recalling the following definition.

Definition 2.24 (Regular set). Let (X, d,m) be an RCD(K,N) space. Given any
integer k ∈ [1, N ], the k-dimensional regular set Rk := Rk(X) of X is defined as
the set of all points of x such that(
X,

1

ri
d,

m

m(Bri(x))
, x

)
pmGH−−−→

(
Rk, dRk ,

1

ωk

Lk, 0k

)
∀{ri} ⊂ (0,∞) with ri → 0.

It is time to introduce the definition of the essential dimension of RCD spaces.
Compare [CN12].

Theorem 2.25 (Essential dimension [BS20]). Let (X, d,m) be an RCD(K,N)
space which is not a single point. Then there exists a unique n ∈ N ∩ [1, N ] such
that m(X \Rn) = 0. The essential dimension dimd,m(X) of (X, d,m) is defined as
this n.

Remark 2.26. Under the assumption of Theorem 2.25, for any m ∈ N+, define the
Bishop-Gromov density of (X, d,m) as

ϑm(X, d,m) : X −→ [0,∞]

x 7−→

lim
r→0

m(Br(x))

ωmrm
, if it exists,

∞, otherwise.

The measure m then can be represented as ϑn(X, d,m)(x)Hn⌞Rn. Moreover,
m(Rn \ R∗

n) = 0, where R∗
n := {x ∈ Rn : ϑn(X, d,m) ∈ (0,∞)}. See [AHT18].

In particular, for non-collapsed RCD(K,N) spaces, the following statement
holds.

Theorem 2.27 (Bishop inequality [DG18, Corollary 1.7]). Let (X, d,HN) be a
non-collapsed RCD(K,N) space. Then dimd,HN (X) = N ∈ N, and ϑN(X, d,HN) ⩽
1 holds for any x ∈ X. Moreover, the equality holds if and only if x ∈ RN .

Given an RCD(K,N) space (X, d,m), there is a canonical Riemannian metric
g in the following sense.

Theorem 2.28 (The canonical Riemannian metric [GP16, AHPT21]). There ex-
ists a unique Riemannian metric g such that for any f1, f2 ∈ H1,2(X, d,m), it holds
that

g (∇f1,∇f2) = 〈∇f1,∇f2〉 m-a.e. in X.

Moreover, |g|HS =
√

dimd,m(X) m-a.e. in X.
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Let us use this canonical Riemannian metric to define the trace as

Tr : L2
loc

(
(T ∗)⊗2(X, d,m)

)
−→ L2

loc

(
(T ∗)⊗2(X, d,m)

)
T 7−→ 〈T, g〉.

The convergence of functions and tensor fields on pmGH convergent pointed
RCD(K,N) spaces are also well-defined as in [GMS13], [H15, Definition 1.1] and
[AH17, AST16]. In the rest of this subsection, we fix a pmGH convergence of
RCD(K,N) spaces

(Xi, di,mi, xi)
pmGH−−−→ (X∞, d∞,m∞, x∞),

and use the notation in Definition 2.20.

Theorem 2.29 (Arzelà-Ascoli theorem). Suppose fi ∈ C(Xi) (i ∈ N) such that
{fi} satisfies the following two conditions.

1. (Locally uniformly bounded) For any R > 0 it holds that

sup
i

sup
yi∈BR(xi)

|hi(yi)| <∞.

2. (Locally equicontinuous) For any ϵ, R ∈ (0,∞), there exists δ ∈ (0, 1) such
that for any i ∈ N it holds that

|fi(yi)− fi(zi)| < ϵ, ∀yi, zi ∈ BR(xi) such that di(xi, yi) < δ.

Then after passing to a subsequence, there exists f∞ ∈ C(X∞) such that {fi}
pointwisely converges to f∞ in the following sense:

fi(yi) → f∞(y) whenever Xi 3 yi → y ∈ X∞.

Definition 2.30 (L2-convergence of functions defined on varying spaces). A se-
quence {fi : Xi → R} is said to be L2-weakly convergent to f∞ ∈ L2(m∞) if

sup
i

‖fi‖L2(mi)
<∞,

lim
i→∞

ˆ
Y

hfid(ιi)♯mi =

ˆ
Y

hf∞d(ι∞)♯m∞, ∀h ∈ Cc(Y ).

If moreover {fi} satisfies lim supi→∞ ‖fi‖L2(mi)
⩽ ‖f‖L2(m∞), then {fi} is said to

be L2-strongly convergent to f .
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Definition 2.31 (H1,2-convergence of functions defined on varying spaces). A se-
quence {fi : Xi → R} is said to beH1,2-weakly convergent to f∞ ∈ H1,2(X∞, d∞,m∞)
if

fi
L2-weakly−−−−−→ f and sup

i
ChXi(fi) <∞.

If moreover, {fi} satisfies

lim sup
i→∞

‖fi‖L2(mi)
⩽ ‖f‖L2(m∞) and lim sup

i→∞
ChXi(fi) = ChX∞(f∞),

then {fi} is said to be H1,2-strongly convergent to f .

Definition 2.32 (Convergence of tensor fields defined on varying spaces). Let
Ti ∈ L2

loc ((T
∗)⊗2(Xi, di,mi)), (i ∈ N). For any R > 0, {Ti} is said to be L2-weakly

convergent to T∞ ∈ L2
(
(T ∗)⊗2(BX∞

R (x∞), d∞,m∞)
)
on BX∞

R (x∞) if it satisfies the
following conditions.

1. (Uniform upper L2 bound) supi ‖|Ti|HS‖L2
(
B

Xi
R (xi),mi

) <∞.

2. For any fj,i ∈ TestF (Xi, di,mi) (i ∈ N, j = 1, 2) such that {fj,i} L2-strongly
converges to fj,∞ ∈ TestF (X∞, d∞,m∞) (j = 1, 2) and that

sup
i,j

(
‖fj,i‖L∞(mi)

+
∥∥|∇Xifj,i|

∥∥
L∞(mi)

+
∥∥∆Xifj,i

∥∥
L∞(mi)

)
<∞,

we have {χ
B

Xi
R (xi)

〈Ti, df1,i ⊗ df2,i〉} L2-weakly converges to χBX∞
R (x∞)〈T∞, df1,∞⊗

df2,∞〉.

If moreover, lim supi→∞ ‖|Ti|HS‖L2
(
B

Xi
R (xi),mi

) ⩽ ‖|T∞|HS‖L2(BX∞
R (x∞),m∞), then {Ti}

is said to be L2-strongly convergent to T∞ on BX∞
R (x∞).

The following two theorems are based on [AH18, GMS13, AST16].

Theorem 2.33 (Compactness of Sobolev functions). If moreover

sup
i

diam(Xi, di) <∞,

then for any fi ∈ H1,2 (Xi, di,mi) i ∈ N with supi ‖fi‖H1,2(Xi,di,mi) <∞, there exists
f∞ ∈ H1,2 (X∞, d∞,m∞), and a subsequence of {fi} which is still denoted as {fi}
such that {fi} L2-strongly converges to f∞ and

lim inf
i→∞

ˆ
Xi

∣∣∇Xifi
∣∣2 dmi ⩾

ˆ
X∞

∣∣∇X∞f∞
∣∣2 dm∞.
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Theorem 2.34 (Stability of Laplacian). Let {(Xi, di,mi)}, (X∞, d∞,m∞) be taken
as in Theorem 2.33. Let fi ∈ D

(
∆Xi

)
with

sup
i

(
‖fi‖H1,2(Xi,di,mi) +

∥∥∆Xifi
∥∥
L2(mi)

)
<∞.

If {fi} L2-strongly converges to f (by Theorem 2.33 f∞ ∈ H1,2(X∞, d∞,m∞)),
then the following statements hold.

1. f∞ ∈ D(∆X∞).

2. {∆Xifi} L2-weakly converges to ∆X∞f∞.

3. {
∣∣∇Xifi

∣∣} L2-strongly converges to
∣∣∇X∞f∞

∣∣.
Let us recall three convergences to end this section.

Theorem 2.35 (Pointwise convergence of heat kernels [AHT18, Theorem 3.3]).
The heat kernels ρi of (Xi, di,mi) satisfy

lim
i→∞

ρi(xi, yi, ti) = ρ∞(x∞, y∞, t)

whenever Xi ×Xi × (0,∞) 3 (xi, yi, ti) → (x∞, y∞, t) ∈ X∞ ×X∞ × (0,∞).

Theorem 2.36 (H1,2-strong convergence of heat kernels [AHPT21, Theorem
2.19]). For any {ti} ⊂ (0,∞) with ti → t0 ∈ (0,∞) and any {yi} with Xi 3 yi →
y∞ ∈ X∞, {ρi(·, yi, ti)} H1,2-strongly converges to ρ∞(·, y∞, t) ∈ H1,2(X∞, d∞,m∞).

Theorem 2.37 (Lower semicontinuity of essential dimension [K19, Theorem 1.5]).

lim inf
i→∞

dimdi,mi
(Xi) ⩽ dimd∞,m∞(X∞).
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3 The isometric immersion into L2 space via heat

kernel

Recently the equivalence between weakly non-collapsed RCD spaces and non-
collapsed RCD spaces is proved in [BGHZ23, Theorem 1.3], which states as follows.

Theorem 3.1. Assume that (X, d,m) is an RCD(K,N) space. If

m

({
x ∈ X : lim sup

r→0+

m(Br(x))

rN
<∞

})
> 0,

then m = cHN for some c > 0. Therefore, (X, d, c−1m) is a non-collapsed
RCD(K,N) space.

The key to prove Theorem 3.1 is Theorem 3.2, and the asymptotic formula
(Theorem 1.1) of gt plays an important role in the proof of Theorem 3.2. The
precise definition of gt shall be given in Theorem 3.3.

Theorem 3.2 ([BGHZ23, Theorem 1.5, Theorem 2.22]). Assume that (X, d,Hn)
is an RCD(K,N) space with dimd,m(X) = n and U is a connected open subset of
X such that for any compact subset A ⊂ U ,

inf
r∈(0,1),x∈A

Hn (Br(x))

rn
> 0. (3.1)

Then for any f ∈ TestF (X, d,Hn), any φ ∈ D(∆) with φ ⩾ 0, supp(φ) ⊂ U and
∆φ ∈ L∞(Hn), it holds that

1

2

ˆ
U

|∇f |2∆φ dHn ⩾
ˆ
U

φ

(
〈∇f,∇∆f〉+K|∇f |2 + (∆f)2

n

)
dHn.

In addition, for a weakly non-collapsed (and is now non-collapsed) RCD(K,n)
space (X, d,Hn), it follows from [DG18, Theorem 1.12] that

∆f = 〈Hess f, g〉 m-a.e., ∀f ∈ D(∆).

3.1 The pullback metric gt

In [Ta66], Takahashi proves that any compact homogeneous irreducible Rie-
mannian manifold (Mn, g) is IHKI, which is even true provided that (Mn, g) is a
non-compact homogeneous irreducible Riemannian manifold.
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To generalize such isometric immersions to RCD(K,N) spaces, let us first intro-
duce the following locally Lipschitz t-time heat kernel mapping on an RCD(K,N)
space (X, d,m) by using its heat kernel ρ analogously :

Φt : X −→ L2(m)

x 7−→ (y 7→ ρ(x, y, t)) ,

which is well-defined due to the estimates in Theorem 2.8.
The natural pull-back semi-Riemannian metric of the flat metric of L2(m),

namely gt := (Φt)
∗(gL2(m)), is defined as follows, see [AHPT21, Proposition 4.7]

and [BGHZ23, Proposition 3.7].

Theorem 3.3 (The pull-back semi-Riemannian metrics). For all t > 0, there is a
unique semi-Riemannian metric gt ∈ L∞

loc ((T
∗)⊗2(X, d,m)) such that

1. For any ηi ∈ L2 (T ∗(X, d,m)) with bounded support (i = 1, 2),

ˆ
X

〈gt, η1 ⊗ η2〉 dm =

ˆ
X

ˆ
X

〈dxρ(x, y, t), η1〉 〈dxρ(x, y, t), η2〉 dm(x)dm(y).

In particular, if (X, d,m) is compact, then gt =
∞∑
i=1

e−2µitdϕi ⊗ dϕi.

2. For any t ∈ (0, 1), the rescaled semi-Riemannian metric tm(B√
t(·))gt satis-

fies
tm(B√

t(·))gt ⩽ C(K,N)g, (3.2)

which means that for any η ∈ L2 (T ∗(X, d,m)), it holds that

tm(B√
t(x))〈gt, η ⊗ η〉(x) ⩽ C(K,N)|η|2(x) m-a.e. x ∈ X.

The rest part of this subsection proves Theorem 1.11. The following inequality
is needed. See for instance [AHPT21, Lemma 2.3] and [BGHZ23, Lemma 2.7].

Lemma 3.4. Let (X, d,m) be an RCD(K,N) space. Then for any α ∈ R, β > 0
and any x ∈ X, it holds that

ˆ
X

m
(
B√

t(y)
)α

exp

(
−βd

2(x, y)

t

)
dm(y) ⩽ C (K,N, α, β)m

(
B√

t(x)
)α+1

. (3.3)

Remark 3.5. When (X, d,m) is an RCD(0, N) space, by [JLZ16, Corollary 1.1] and
Lemma 3.4, (3.2) becomes

tm(B√
t(·))gt ⩽ C(N)g, ∀t > 0. (3.4)
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Jiang’s gradient estimate [J14, Theorem 3.1] is also important in this thesis,
which states as follows.

Theorem 3.6. Let (X, d,m) be an RCD(K,N) space and Ω be an open subset. If
for some u ∈ D(∆)∩L∞(Ω,m), ∆u ∈ L∞(Ω,m), then for every BR(x) with R ⩽ 1
and B8R(x) ⋐ Ω, it holds that

‖|∇u|‖L∞(BR(x),m) ⩽ C(K,N)

(
1

R
‖u‖L∞(B8R(x),m) +R ‖∆u‖L∞(B8R(x),m)

)
. (3.5)

Finally, we need the following proposition.

Proposition 3.7. Suppose that (X, d,m) is an RCD(K,N) space which is not a
single point. Then for any t > 0,

m ({x ∈ X : |gt|HS > 0}) > 0.

Proof. Assume by contradiction the existence of t0 > 0 such that m({x ∈ X :
|gt0 |HS > 0}) = 0. Clearly this implies |∇xρ(x, y, t0)| = 0, m-a.e. x, y ∈ X. For
any fixed x ∈ X, the locally Lipschitz continuity of y 7→ ρ(x, y, t0) as well as
the Sobolev to Lipschitz property then yields that Φt0 ≡ c1̂ for some constant
c. Therefore, it follows from the stochastic completeness of RCD(K,N) spaces
that m(X) < ∞. Without loss of generality, assume that m(X) = 1. Notice that
Φ2t0(x) = ht0(Φt0(x)) ≡ 1̂, which implies ρ(x, y, t) ≡ 1 on X × X × [t0, 2t0] by
(2.4). Then applying Remark 2.9 shows that

ρ(x, y, t) = 1, ∀(x, y, t) ∈ X ×X × (0,∞).

As a consequence, for any f ∈ L2(m), we have

htf =

ˆ
X

ρ(x, y, t)fdm =

ˆ
X

fdm, ∀t > 0.

Since htf converges to f in L2(m) as t→ 0, f is nothing but a constant function,
which is enough to conclude that X is a single point. A contradiction.

Proof of Theorem 1.11. Let n = dimd,m(X). For any fixed BR(x0) ⊂ X, set

f : (0,∞) −→ [0,∞)

t 7−→ nm(BR(x0))

ˆ
BR(x0)

〈gt, gt〉dm−
(ˆ

BR(x0)

〈g, gt〉dm
)2

.

Since we can rescale the space, it suffices to show that f is analytic at any
t ∈ (0, 1). Because then by applying Proposition 3.7 we are done.
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For any m ⩾ 1, the commutativity of
∂

∂t
and ∆ allows us to fix an arbitrary

y ∈ X and apply Theorem 3.6 on B8
√
t(x) for u : z 7→ ∂m

∂tm
ρ(z, y, t). (2.5) then

implies

‖|∇u|‖L∞(B√
t(x),m) ⩽

C(K,N)m!

tm+ 1
2

sup
z∈B8

√
t(x)

(
m(B√

t(z))m(B√
t(y))

)− 1
2 exp

(
−d2(z, y)

100t

)
.

Using (2.3), for any z ∈ B8
√
t(x), we know

m
(
B√

t(x)
)

m
(
B√

t(z)
) ⩽ C(K,N) exp

(√
t+ d(x, z)√

t

)
⩽ C(K,N).

This as well as the inequality −d2(z, y) ⩽ d2(z, x)− d2(x, y)

2
implies that for m-a.e.

x ∈ X,∣∣∣∣∇x
∂m

∂tm
ρ(x, y, t)

∣∣∣∣ ⩽ C(K,N)m!

tm+ 1
2

(
m(B√

t(x))m(B√
t(y))

)− 1
2 exp

(
−d2(x, y)

200t

)
.

(3.6)
Let f = nm(BR(x0))f1 − f 2

2 , with f2(t) =
´
BR(x0)

〈g, gt〉dm. We only give a

proof of the analyticity of f1, since the analyticity of f2 will follow from similar
arguments.

Rewrite f1 as

f1(t) =

ˆ
BR(x0)

ˆ
X

ˆ
X

〈∇xρ(x, y, t),∇xρ(x, z, t)〉2 dm(z)dm(y)dm(x).

It is enough to estimate derivatives of each order of f1 at any fixed t ∈ (0, 1).
We first show that f1 is differentiable.

For any sufficiently small s,
f1(t+ s)− f1(t)

s
can be written as the sum of the

integrals of functions like〈
∇x

ρ(x, y, t+ s)− ρ(x, y, t)

s
,∇xρ(x, z, t)

〉
〈∇xρ(x, y, t+ s),∇xρ(x, z, t+ s)〉

(3.7)
on BR(x0)×X ×X.

In order to use the dominated convergence theorem, we need estimates of∣∣∣∣∇x
ρ(x, y, t+ s)− ρ(x, y, t)

s

∣∣∣∣ and |∇xρ(x, y, t+ s)| for any sufficiently small s. By
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Theorem 2.8 and the Bishop-Gromov inequality, for m-a.e. x ∈ X,

|∇xρ(x, y, t+ s)| ⩽ C(K,N)√
t+ s m

(
B√

t+s(x)
) exp(− d2(x, y)

100(t+ s)

)
⩽ C(K,N)√

t m
(
B√

t(x)
) m

(
B√

t(x)
)

m
(
B√

t+s(x)
) exp(−d2(x, y)

200t

)
⩽ C(K,N)√

t m
(
B√

t(x)
) exp(−d2(x, y)

200t

)
.

(3.8)

The last inequality of (3.8) is obvious when s > 0, and is guaranteed by the
Bishop-Gromov inequality when s < 0.

Applying (3.6), Theorem 3.6 and the Lagrange mean value theorem, the fol-
lowing estimate can also be obtained as in (3.8):∣∣∣∣∇x

(
ρ(x, y, t+ s)− ρ(x, y, t)

s
− ∂

∂t
ρ(x, y, t)

)∣∣∣∣
⩽ C(K,N)2!|s|

t
5
2

(
m
(
B√

t(x)
)
m
(
B√

t(y)
))− 1

2 exp

(
−d2(x, y)

300t

)
.

(3.9)

Therefore the L1(m⊗m⊗m) convergence of (3.7) as s→ 0 can be verified by
(3.8), (3.9) and Lemma 3.4. The limit of (3.7) as s→ 0 is actually

ˆ
BR(x0)×X×X

〈
∇x

∂

∂t
ρ(x, y, t),∇xρ(x, z, t)

〉
〈∇xρ(x, y, t),∇xρ(x, z, t)〉 dm(z)dm(y)dm(x).

The proof of any higher order differentiability of f1 can follow from similar
arguments as above.

On the other hand, the higher order derivatives of f1 shall be written as

f
(m)
1 (t) =

m∑
k=0

k∑
i=0

m−k∑
j=0

ˆ
BR(x0)

ˆ
X

ˆ
X

Ik,iIm−k,jdm(z)dm(y)dm(x),

where

Ik,i =

〈
∇x

∂i

∂ti
ρ(x, y, t),∇x

∂k−i

∂tk−i
ρ(x, z, t)

〉
.

Letting

Ii =

∣∣∣∣∇x
∂i

∂ti
ρ(x, y, t)

∣∣∣∣ , Ji =

∣∣∣∣∇x
∂i

∂ti
ρ(x, z, t)

∣∣∣∣ ,
we obtain

|Ik,iIm−k,j| ⩽ IiIjJk−iJm−k−j, m-a.e.
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Finally Theorem 2.8, Lemma 3.4 and (3.6) yield that∣∣∣∣ˆ
X

IiIjdm(y)

∣∣∣∣ ⩽ C(K,N)
i!j!

ti+j+1
,

∣∣∣∣ˆ
X

Jk−iJm−k−jdm(z)

∣∣∣∣ ⩽ C(K,N)
(k − i)!(m− k − j)!

tm−i−j+1
.

Thus |f (m)
1 (t)| ⩽ m(BR(x0))C(K,N)m!t−(m+2). This completes the proof.

3.2 A regularity result about IHKI RCD(K,N) spaces

This subsection is aimed at proving Theorem 1.13. The following statement
is trivial for the pmGH convergence of geodesic spaces, which is frequently used
in the proof of Theorem 1.13. We shall call no extra attention to this well-known
fact in this thesis.

Fact 3.8. Assume that (X, d,m) is an RCD(K,N) space and is not a single point.
Then for any sequence of points {xi} ⊂ X, and any {ri} with ri → 0, after passing

to a subsequence, the pmGH limit of

{(
Xi,

1

ri
di,

m

m(Bri(xi))
, xi

)}
is not a single

point.

Let us fix an IHKI RCD(K,N) space (X, d,m) which is not a single point.
According to Proposition 3.7, we make a convention that there exists a function
c(t) such that

c(t)gt = g, ∀t > 0,

in the rest of this subsection.

Proof of Theorem 1.13. The proof consists of three steps.
Step 1 There exists c̃ > 0, such that

lim
r→0

m(Br(x))

rn
= c̃, ∀x ∈ R∗

n, (3.10)

and the function c satisfies

lim
t→0

tn+2

c(t2)
= c̃−1ωnc

Rn

1 . (3.11)

Fix x ∈ R∗
n. From the very definition of R∗

n, lim
r→0

r−nm(Br(x)) = c̃ for some

c̃ = c̃(x) > 0. For any {ri} with ri → 0, we have

(Xi, di,mi, x) :=

(
X,

1

ri
d,

m

m(Bri(x))
, x

)
pmGH−−−→

(
Rn, dRn ,

1

ωn

Ln, 0n

)
. (3.12)
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On each Xi, c(r
2
i t)g

Xi
t = r2im(Bri(x))gXi

. By [BGHZ23, Theorem 3.11], {gXi
t }

L2-strongly converges to ωng
Rn

t on any BR(0n) ⊂ Rn, from which we know

lim
i→∞

r2i
m(Bri(x))

c(r2i t)
= ωnc

Rn

t .

Since the above limit does not depend on the choice of the sequence {ri}, we have

lim
r→0

r2
m(Br(x))

c(r2t)
= lim

r→0

m(Br(x))

rn
rn+2

c(r2t)
= ωnc

Rn

t . (3.13)

As a result, we get (3.11). Observe that the limit in (3.13) also does not depend
on the choice of x ∈ R∗

n, which suffices to show (3.10).
Step 2 m = c̃Hn, for the constant c̃ obtained in Step 1.
Reprising the same arguments as in Step 1, we know that Rn = R∗

n (In fact,
L2-strong convergence of {gXi

t } on any BR(0n) ⊂ Rn is also valid when x ∈ Rn by
[BGHZ23, Theorem 3.11]). This implies m = c̃Hn⌞Rn. To complete the proof of
Step 2, we need nothing but Hn � m, which, together with Theorem 2.25 would
give Hn(X \ Rn) = 0. This is sufficient to conclude.

For any x ∈ X \ Rn, and any sequence {ri} with ri → 0, after passing to a
subsequence, there exists a pointed RCD(0, N) space (X∞, d∞,m∞, x∞) such that

(Xi, di,mi, x) :=

(
X,

1

ri
d,

m

m(Bri(x))
, x

)
pmGH−−−→ (X∞, d∞,m∞, x∞).

When i is sufficiently large, recall again on each Xi, c(r
2
i t)g

Xi
t = r2im(Bri(x))gXi

.
In particular, we know from Theorem 3.3 that r2im(Bri(x)) ⩽ C(K,N)c(r2i t). Since
(X∞, d∞) is not a single point, using Theorems 2.36 and 2.37, and (3.11), we see

lim
i→∞

m(Bri(x))

rni
∈ (0, C(K,N)) .

In particular,

C(K,N) ⩾ lim sup
r→0

m(Br(x))

rn
⩾ lim inf

r→0

m(Br(x))

rn
> 0. (3.14)

Set

Xτ :=

{
x ∈ X : lim inf

r→0

m(Br(x))

rn
⩾ τ

}
,

and notice that X =
⋃

τ>0Xτ by (3.14). Applying [AT04, Theorem 2.4.3] then
implies

Hn⌞Xτ � m⌞Xτ , ∀τ > 0,
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from which we conclude.
Step 3 (X, d,Hn) is an RCD(K,n) space.
Without loss of generality, assume m = Hn. We first treat the case that

(X, d,Hn) is compact. By Theorem 3.2, it suffices to show

inf
x∈X

inf
s∈(0,1)

Hn(Bs(x))

sn
> 0. (3.15)

Assume on the contrary that (3.15) does not hold, then for any ϵ > 0, there
exists xϵ ∈ X, such that inf

s∈(0,1)
s−nHn(Bs(xϵ)) < ϵ. By (2.2),

Hn(Br(xϵ))

rn
< ϵ, for some r = r(ϵ) ⩽ Ψ(ϵ|K,N, diam(X, d),Hn(X)) .

As a consequence, there exists a sequence {xi} ⊂ X, a sequence {ri} ⊂ (0,∞)
with ri → 0 and a pointed RCD (0, N) space (X∞, d∞,m∞, x∞), such that

lim
i→∞

Hn(Bri(xi))

rni
= 0, (3.16)

and

(Xi, di,mi, xi) :=

(
Xi,

1

ri
d,

m

m (Bri(xi))
, xi

)
pmGH−−−→ (X∞, d∞,m∞, x∞).

Again c(r2i t)g
Xi
t = r2im (Bri(xi)) gXi

on each Xi, and
{
gXi
t

}
L2-strongly con-

verges to 0 on BR(x∞) for any R > 0 by (3.16), which contradicts Proposition
3.7.

As for the non-compact case, it suffices to repeat Step 1-3 and apply Theorem
3.2 again on any BR(x) ⊂ X.

3.3 Non-compact IHKI RCD(0, n) spaces

We start by proving the following theorem in this subsection.

Theorem 3.9. Suppose (X, d,Hn−1) is a non-collapsed RCD(n − 2, n − 1) space

with n ⩾ 2. If g
C(X)
1 ⩾ cgC(X) for some c > 0, then (X, d) is isometric to

(Sn−1, dSn−1).

We need some preparations. According to Remark 2.12,
(
C(X), dC(X),mC(X)

)
is an RCD(0, n) space. In addition, by applying Theorem 2.27, Theorem 3.1
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and the splitting theorem for RCD(0, n) spaces (see [G13, Theorem 1.4], [G14]),(
C(X), dC(X),mC(X)

)
is also non-collapsed, which means that mC(X) = Hn.

To fix the notation, we use (2.7), and set α = (2 − n)/2, νj =
√
α2 + µj

for every j ∈ N. It is notable that µ1 ⩾ n by [K15b, Corollary 1.3]. For any
RCD(K,N) space (Y, dY ,mY ), we define

ρYt : Y −→ (0,∞)

y 7−→ ρY (y, y, t).

The validity of limit processes in the proof of Theorem 3.9 can be verified by
the following estimates. We check one of them for reader’s convenience.

Lemma 3.10. There exists C = C(n, diam(X, d)), such that the following esti-
mates hold.

1. sup
x∈X

∞∑
j=k

Iνj(r)ϕ
2
j(x) ⩽ C

(r
2

)k 1
2(n−1)

, ∀r ∈ (0, 1), ∀k ∈ N+.

2. Iνj(r)µj ⩽ Cj2
(r
2

)νj
⩽ Cj2

(r
2

)j 1
n−1

, ∀r ∈ (0, 1), ∀j ∈ N.

3.
∞∑
j=k

Iνj(r)µj ⩽ C
(r
2

)k 1
2(n−1)

, ∀r ∈ (0, 1), ∀k ∈ N+.

Proof of 1. According to Proposition 2.10, there exists C = C(n, diam(X, d)), such
that for any x ∈ X,

∞∑
j=k

Iνj(r)ϕ
2
j(x) ⩽ C

∞∑
j=k

Iνj(r)j
n−1

= C
∞∑
j=k

jn−1

∞∑
l=0

1

l!Γ(νj + l + 1)

(r
2

)2l+νj

⩽ C

∞∑
j=k

jn−1
(r
2

)νj
exp

(
r2

4

)

⩽ C
∞∑
j=k

jn−1
(r
2

)j 1
n−1

⩽ C
(r
2

)k 1
2(n−1) ∞∑

j=k

jn−1
(r
2

)j 1
2(n−1)

⩽ C
(r
2

)k 1
2(n−1)

.
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Notice that (C(X), dC(X),Hn) has maximal volume growth, and its blow down
is itself. Applying the large time behavior of the heat kernel [JLZ16, Theorem 1.3]
shows

ρ
C(X)
t ≡ nωn

Hn−1(X)
(4πt)−

n
2 , ∀t > 0. (3.17)

Lemma 3.11 and Lemma 3.12 are also useful in the proof of Theorem 3.9.

Lemma 3.11. Let (Yi, di,mi) be two RCD(K,N) spaces such that ρYi
2t are constant

functions for some t > 0 (i = 1, 2). Then on Y1 × Y2,

gY1×Y2
t (y1, y2) = ρY1

2t (y1)g
Y2
t (y2) + ρY2

2t (y2)g
Y1
t (y1).

That is, for any f ∈ Lipc (Y1 × Y2, dY1×Y2), denote by f (y1) : y2 7→ f(y1, y2) for any
fixed y1, and f

(y2) : y1 7→ f(y1, y2) for any fixed y2, it holds that

gY1×Y2
t

(
∇Y1×Y2f,∇Y1×Y2f

)
(y1, y2)

= ρY1
2t (y1)g

Y2
t

(
∇Y2f (y1),∇Y2f (y1)

)
(y2) + ρY2

2t (y2)g
Y1
t

(
∇Y1f (y2),∇Y1f (y2)

)
(y1),

for mY1×Y2-a.e. (y1, y2) in Y1 × Y2.

Proof. Recalling (2.13),(2.14) and the definition of gY1×Y2
t in Theorem 3.3, we have

gY1×Y2
t (y1, y2)

=

ˆ
Y1×Y2

1∑
i=0

ρYi+1(yi+1, y
′
i+1, t)dy2−i

ρY2−i(y2−i, y
′
2−i, t)

⊗
1∑

i=0

ρYi+1(yi+1, y
′
i+1, t)dy2−i

ρY2−i(y2−i, y
′
2−i, t)dm1(y

′
1)dm2(y

′
2)

= ρY1
2t (y1)g

Y2
t (y2) + ρY2

2t (y2)g
Y1
t (y1) + I1(y1, y2) + I2(y1, y2),

where

I1(y1, y2) =
1

4

ˆ
Y1×Y2

dy1
(
ρY1(y1, y

′
1, t)
)2 ⊗ dy2

(
ρY2(y2, y

′
2, t)
)2

dm1(y
′
1)dm2(y

′
2),

I2(y1, y2) =
1

4

ˆ
Y1×Y2

dy2
(
ρY2(y2, y

′
2, t)
)2 ⊗ dy1

(
ρY1(y1, y

′
1, t)
)2

dm1(y
′
1)dm2(y

′
2),

By our assumption, for i = 1, 2, we have(
yi 7→ dyi

ˆ
Yi

(
ρYi(yi, y

′
i, t)
)2

dmi(y
′
i)

)
= 0 in L2(T ∗(Yi, di,mi)).

Therefore I1(y1, y2) = 0 and I2(y1, y2) = 0 follow from the local Hille’s theorem
(see for example [BGHZ23, Proposition 3.4]).
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Lemma 3.12. Under the assumption of Lemma 3.11, if moreover there exist
c1, c2, t > 0, such that gY1

t = c1gY1 and

gY1×Y2
t ⩾ c2gY1×Y2 (resp. gY1×Y2

t = c2gY1×Y2),

then there exists c3 > 0, such that

gY2
t ⩾ c3gY2 (resp. gY2

t = c3gY2).

Proof. Since the proofs of both cases are almost the same, we only give the proof
of in the case that gY1×Y2

t ⩾ c2gY1×Y2 .
Fix a ball BY1

R (ỹ1) ⊂ Y1, by [MN19, Lemma 3.1], there exists a cut-off function
ϕ ∈ Lipc(Y1, d1) such that

ϕ|
B

Y1
R (ỹ1)

≡ 1, ϕ|
Y1\B

Y1
2R(ỹ1)

≡ 0.

Now for any φ ∈ H1,2(Y2, d2,m2), set f : (y1, y2) 7→ ϕ(y1)φ(y2). Then it follows
from (2.12) and Lemma 3.11 that for mY1×Y2-a.e. (x, y) in B

Y1
R (ỹ1)× Y2,

ρY1
2t (y1)g

Y2
t

(
∇Y2φ,∇Y2φ

)
(y2)

= ϕ2(y1)ρ
Y1
2t (y1)g

Y2
t

(
∇Y2φ,∇Y2φ

)
(y2) + c1φ

2(y2)ρ
Y2
2t (y2) |∇ϕ|

2 (y1)

= ρY1
2t (y1)g

Y2
t

(
∇Y2f (y1),∇Y2f (y1)

)
(y2) + ρY2

2t (y2)g
Y1
t

(
∇Y1f (y2),∇Y1f (y2)

)
(y1)

= gY1×Y2
t

(
∇Y1×Y2f,∇Y1×Y2f

)
(y1, y2)

⩾ c2gY1×Y2

(
∇Y1×Y2f,∇Y1×Y2f

)
(y1, y2) = c2|∇Y2φ|2(y2).

In particular,

ρY1
2t (y1)g

Y2
t

(
∇Y2φ,∇Y2φ

)
(y2) ⩾ c2|∇Y2φ|2(y2), m2-a.e. y2 ∈ Y2.

Since φ ∈ H1,2(Y2, d2,m2) is taken to be arbitrary, we complete the proof by

setting c3 := c2
(
ρY1
2t

)−1
.

Proof of Theorem 3.9. We start by considering the case that n ⩾ 4.
For any fixed (r0, x0) ∈ C(X) and any φ ∈ Lip(X, d), take f ∈ C∞((0,∞))

such that suppf ∈ (r0/4, 3r0) and f ≡ 1 on (r0/2, 2r0). Then Proposition 2.13

and (2.8) yield that for Hn-a.e. (r, x) ∈ B
C(X)
r0/2

(r0, x0),
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cr−2 |∇φ|2 (x) = c |∇(fφ)|2C(X) (r, x)

⩽ g
C(X)
1 (∇(fφ),∇(fφ)) (r, x)

=
1

4
r2α

∞∑
j=1

ˆ ∞

0

s exp

(
−r

2 + s2

2

)
Iνj

(rs
2

)2
ds 〈∇(fφ),∇ϕj〉2C(X) (r, x)

=
1

4
r2α−4

∞∑
j=1

ˆ ∞

0

s exp

(
−r

2 + s2

2

)
Iνj

(rs
2

)2
ds 〈∇φ,∇ϕj〉2 (x)

=
1

2
r2α−4

∞∑
j=1

exp

(
−r

2

2

)
Iνj

(
r2

2

)
〈∇φ,∇ϕj〉2 (x),

(3.18)

where the last equality follows from the semigroup property of {hC(X)
t }t>0.

In the remaining part of the proof, we just denote by | · | the pointwise norm
on L2(T ∗(X, d,Hn−1)) for notation convenience.

Combining the fact that |〈∇φ,∇ϕj〉| ⩽ |∇φ||∇ϕj|, Hn−1-a.e. in X, with last
equality of (3.18) implies

c |∇φ|2 ⩽ 1

2
r−n

∞∑
j=1

exp

(
−r

2

2

)
Iνj

(
r2

2

)
|∇φ|2 |∇ϕj|2 Hn-a.e. (r, x) ∈ B

C(X)
r0/2

(r0, x0).

In particular, taking φ = d(x0, ·) which satisfies that |∇φ| ≡ 1, we have

c ⩽ 1

2
r−n exp

(
−r

2

2

) ∞∑
j=1

Iνj

(
r2

2

)
|∇ϕj|2 Hn-a.e. (r, x) ∈ B

C(X)
r0/2

(r0, x0). (3.19)

Integration of (3.19) on X then gives

cHn−1(X) ⩽ 1

2
r−n exp

(
−r

2

2

) ∞∑
j=1

Iνj

(
r2

2

)
µj L1-a.e. r ∈ (r0/2, 2r0). (3.20)

In fact, (3.20) holds for any r > 0 due to the arbitrarity of r0 > 0, which is still
denoted as (3.20).

If n ⩾ 4 and µ1 > n − 1, then νj ⩾ ν1 > n/2, for all j ∈ N+. However,
Lemma 3.10 implies that the right hand side of (3.20) vanishes as r → 0. Thus a
contradiction occurs. Therefore µ1 = n− 1 when n ⩾ 4.

By Theorem 3.1 and Obata’s first eigenvalue rigidity theorem [K15b, Theorem
1.2], there exists a non-collapsed RCD(n − 3, n − 2) space (X ′, dX′ ,Hn−2), such

that
(
C(X), dC(X)

)
is isometric to

(
R× C(X ′),

√
d2R + d2C(X′)

)
.
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From (2.14) and (3.17), we know

ρ
C(X)
t ≡ nωn

Hn−1(X)
(4πt)

n−1
2 .

Using Lemmas 3.11 and 3.12, we see that g
C(X′)
1 ⩾ c′gC(X′) for some c′ > 0. It

is now sufficient to deal with the case that n = 3.
Repeating the previous arguments, we have µ1 = 2. We claim that µ2 = 2. If

µ2 > 2, then the integration of (3.19) on any measurable set Ω ⊂ X yields

cH2(Ω) ⩽ Cr−2

∞∑
j=1

Iνj

(
r2

2t

)ˆ
Ω

|∇ϕj|2 dH2

⩽ Cr−2Iν1

(
r2

2t

)ˆ
Ω

|∇ϕ1|2 dH2 + r−2

∞∑
j=2

Iνj

(
r2

2t

)ˆ
X

|∇ϕj|2 dH2

→ C

ˆ
Ω

|∇ϕ1|2 dH2 as r → 0.

for some C = C(n, diam(X, d)). The arbitrarity of Ω, together with the Lebesgue
differentiation theorem shows that |∇ϕ1|2 ⩾ c0 := c−1C > 0, H2-a.e.

Consider the Laplacian of ϕα
1 for any even integer α, and calculate as follows:

∆ϕα
1 = α(α− 1)|∇ϕ1|2ϕα−2

1 + αϕα−1
1 ∆ϕ1

= α(α− 1)|∇ϕ1|2ϕα−2
1 − αϕα−1

1 (n− 1)ϕ1

= αϕα−2
1

(
(α− 1)|∇ϕ1|2 − (n− 1)ϕ2

1

)
⩾ αϕα−2

1 ((α− 1)c0 − C(n, diam(X, d))) , H2-a.e.

As a result, the integer α can be chosen to be sufficiently large such that
ϕα
1 is superharmonic. However, any superharmonic function on a compact RCD

space must be a constant function (see for instance [GR19, Theorem 2.3]). A
contradiction. Therefore µ2 = 2.

According to [K15b, Theorem 1.4], (X, d) must be isometric to either (S2, dS2)

or
(
S2
+, dS2+

)
. Thus

(
C(X), dC(X)

)
must be isometric to either (R3, dR3) or

(
R3

+, dR3
+

)
.

Notice that on Rn
+ := {(x1, · · · , xn) ∈ Rn : xn > 0},

g
Rn
+

t

(
∂

∂xn
,
∂

∂xn

)
(x1, · · · , xn) = cnt

−n+2
2

1− exp
(
−x2

n

2t

)
2

+
x2n
4t

exp(−x
2
n

2t
)

 .

It is clear that

lim
x3→0+

g
R3
+

t

(
∂

∂x3
,
∂

∂x3

)
(x1, x2, x3) = 0,

40



which contradicts our assumption.
When n = 2, set Y = C(X)×R, and notice that gY1 ⩾ c′gY for some c′ > 0 by

(3.17), Lemma 3.11 and Lemma 3.12, which shall be verified in the same way as
previous arguments. Thus (Y, dY ) must be isometric to (R3, dR3) and

(
C(X), dC(X)

)
must be isometric to (R2, dR2).

As an application of Theorem 3.9, we prove Theorem 1.14.

Proof of Theorem 1.14. It follows from Theorem 1.13 that m = cHn for some
c > 0, and (X, d,Hn) is an RCD(0, n) space. Without loss of generality, we may
assume that m = Hn.

The subsequent blow-down arguments in this proof are almost the same as that
in the proof of Theorem 1.13, and we omit the details.

Take {ri} with ri → ∞, and a pointed RCD(0, n) space (X∞, d∞,m∞, x∞) such
that

(Xi, di,mi, x) :=

(
X,

1

ri
d,

m

m (Bri(x))
, x

)
pmGH−−−→ (X∞, d∞,m∞, x∞).

Again on eachXi, c(r
2
i t)g

Xi
t = r2im (Bri(x)) gXi

. Applying (3.4) and Proposition
3.7 implies that

e(t)gX∞
t = gX∞ , ∀t > 0, (3.21)

where the function e = e(t) is defined as

e(t) := lim
i→∞

c(r2i t)

r2im(Bri(x))
.

Therefore, Theorem 1.13 implies that m∞ = c̃Hn for some c̃ > 0. In particular,
it follows from [BGHZ23, Theorem 1.6] that

mi =
m

m(Bri(x))
= ciHn

di

for some c̃i > 0 whenever i is sufficiently large. It is clear that limi→∞ c̃i = c̃.
Since now

m(B2ri(x))

m(Bri(x))
= mi

(
BXi

2 (x)
)
= ciHn

di

(
BXi

2 (x)
)
= ci

1

rni
m(B2ri(x)),

which yields that

lim
i→∞

m(Bri(x))

rni
= c̃−1. (3.22)
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As a result, combining [DG16, Theorem 1.1] with (3.21) and (3.22) yields that
(X∞, d∞,Hn) is an IHKI RCD(0, n) space, and is an Euclidean cone. Hence it
follows directly from Theorem 3.9 that (X∞, d∞) is isometric to (Rn, dRn). Finally,
it remains to use the volume rigidity theorem for non-collapsed almost RCD(0, n)
spaces [DG18, Theorem 1.6] to conclude.

The following corollary can be proved by using similar arguments as in the
proof of Theorem 1.14.

Corollary 3.13. Let (X, d,Hn) be a non-collapsed RCD(0, n) space. If there exists
a function c(t) such that

1. c(t)gt ⩾ g, ∀t > 0,

2. lim inf
t→∞

t−(n+2)c(t2) > 0.

Then (X, d) is isometric to (Rn, dRn).
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4 The isometric immersion into Euclidean space

The main purpose of this section is to prove Theorem 1.16. To begin with, let
us recall a useful result (Theorem 4.3) in [H21], which plays a important role in
this section.

Definition 4.1 (Regular map). Let (X, d,m) be an RCD(K,N) space. Then a
map F := (φ1, . . . , φk) : X → Rk is said to be regular if each φi is in D(∆) with
∆φi ∈ L∞(m).

Definition 4.2 (Locally uniformly δ-isometric immersion). Let (X, d,m) be an
RCD(K,N) space and F := (φ1, . . . , φk) : X → Rk be a locally Lipschitz map. F
is said to be a locally uniformly δ-isometric immersion on Br(x0) ⊂ X if for any
x ∈ Br(x0) it holds that

1

m(Bs(x))

ˆ
Bδ−1s(x)

|F ∗gRk − gX |dm < δ, ∀s ∈ (0, r).

Theorem 4.3 ([H21, Theorem 3.4]). Let (X, d,m) be an RCD(K,N) space with
dimd,m(X) = n and let F := (φ1, . . . , φk) : X → Rk be a regular map with

k∑
i=1

‖|∇φi|‖L∞(m) ⩽ C.

If F is a locally uniformly δ-isometric immersion on some ball B4r(x0) ⊂ X. Then
the following statements hold.

1. For any s ∈ (0, r), dGH(Bs(x0), Bs(0n)) ⩽ Ψ(δ|K,N, k, C)s, where dGH is the
Gromov-Hausdorff distance.

2. F |Br(x0) is (1+Ψ(δ|K,N, k, C))-bi-Lipschitz from Br(x0) to F (Br(x0)) ⊂ Rk.

From now on, we let (X, d,Hn) be a fixed compact non-collapsed RCD(K,n)
space, and we assume that

g =
m∑
i=1

dϕi ⊗ dϕi, (4.1)

where g is the canonical Riemannian metric of (X, d,Hn) and each ϕi is an eigen-
function of −∆ with corresponding eigenvalue µi (i = 1, . . . ,m). To fix the nota-
tion, denote by C a constant with

C = C
(
K,m, n, diam(X, d),Hn(X), µ1, . . . , µm, ‖ϕ1‖L2(Hn) , . . . , ‖ϕm‖L2(Hn)

)
,

which may vary from line to line, and by Mn×n(R) the set of all n×n real matrices
equipped with the Euclidean metric on Rn2

, and by In the n× n identity matrix.
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Lemma 4.4. Each 〈∇ϕi,∇ϕj〉 is a Lipschitz function (i, j = 1, . . . ,m). In par-
ticular,

m∑
i,j=1

‖|∇ 〈∇ϕi,∇ϕj〉 |‖L∞(Hn) ⩽ C. (4.2)

Proof. We first show that |∇ϕ1|2 ∈ Lip(X, d). Taking trace of (4.1) gives

m∑
i=1

|∇ϕi|2 = 〈g, g〉 = n. (4.3)

Using the Bochner’s inequality (2.1), for any φ ∈ TestF+(X, d,Hn), we get

ˆ
X

|∇ϕ1|2 ∆φdHn ⩾ 2

ˆ
X

φ

(
(K − µ1) |∇ϕ1|2 +

1

n
µ2
1ϕ

2
1

)
dHn ⩾ −C

ˆ
X

φdHn,

(4.4)
where the last inequality comes from Proposition 2.10. Owing to (4.3) and (4.4),

ˆ
X

|∇ϕ1|2 ∆φdHn = −
m∑
j=2

ˆ
X

|∇ϕj|2 ∆φdHn ⩽ C

ˆ
X

φdHn. (4.5)

Since TestF+(X, d,Hn) is dense in H1,2
+ (X, d,Hn), and ϕ1 ∈ TestF (X, d,Hn)

with |∇ϕ1|2 ∈ H1,2(X, d,Hn), the combination of these facts with (4.4) and (4.5)
yields that for any φ ∈ H1,2

+ (X, d,Hn),∣∣∣∣ˆ
X

〈∇ |∇ϕ1|2 ,∇φ〉dHn

∣∣∣∣ = ∣∣∣∣ˆ
X

|∇ϕ1|2 ∆φdHn

∣∣∣∣ ⩽ C

ˆ
X

|φ|dHn ⩽ C ‖φ‖L2(Hn) .

(4.6)
Note that (4.6) also holds for any φ ∈ Lip(X, d) because φ + |φ|, |φ| − φ ∈

Lip(X, d). Since TestF (X, d,Hn) is dense in H1,2(X, d,Hn), we have∣∣∣∣ˆ
X

〈∇ |∇ϕ1|2 ,∇φ〉dHn

∣∣∣∣ ⩽ C ‖φ‖L2(Hn) , ∀φ ∈ H1,2(X, d,Hn).

Consequently, the linear functional

T : H1,2(X, d,Hn) −→ R

φ 7−→
ˆ
X

〈∇ |∇ϕ1|2 ,∇φ〉dHn

can be continuously extended to a bounded linear functional on L2(Hn). Applying
the Riesz representation theorem, there exists a unique h ∈ L2(Hn), such that

T (φ) = −
ˆ
X

φhdHn, ∀φ ∈ L2(Hn).
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Therefore |∇ϕ1|2 ∈ D(∆) with ‖∆|∇ϕ1|2‖L2(Hn) ⩽ C. Using (4.6) again, and
repeating the previous arguments, we have∣∣∣∣ˆ

X

∆ |∇ϕ1|2 φdHn

∣∣∣∣ ⩽ C

ˆ
X

|φ|dHn, ∀φ ∈ L1(Hn),

because TestF (X, d,Hn) is also dense in L1(Hn). Thus
∥∥∆ |∇ϕ1|2

∥∥
L∞(Hn)

⩽ C.

According to Theorem 3.6, ‖|∇|∇ϕ1|2|‖L∞(Hn) ⩽ C. For any other |∇ϕi|2, the
estimates of ‖∆|∇ϕi|2‖L∞(Hn) and ‖|∇|∇ϕi|2|‖L∞(Hn) can be obtained along the
same lines. Rewrite these estimates as

m∑
i=1

(∥∥∆|∇ϕi|2
∥∥
L∞(Hn)

+
∥∥∣∣∇|∇ϕi|2

∣∣∥∥
L∞(Hn)

)
⩽ C. (4.7)

Applying (2.16), (4.7) and Proposition 2.10, we have
ˆ
X

φ |Hessϕi|2HS dH
n ⩽ C

ˆ
X

φdHn, ∀φ ∈ TestF+(X, d,Hn), i = 1, . . . ,m,

which implies that
m∑
i=1

‖|Hessϕi|HS‖L∞(Hn) ⩽ C. (4.8)

For each 〈∇ϕi,∇ϕj〉 (i, j = 1, . . . ,m), from (2.17) we obtain that

|〈∇φ,∇〈∇ϕi,∇ϕj〉〉| = |Hessϕi(∇ϕj,∇φ) + Hessϕj(∇ϕi,∇φ)|
⩽
(
|Hessϕi|HS |∇ϕj|+ |Hessϕj|HS |∇ϕi|

)
|∇φ|

⩽ C|∇φ| Hn-a.e., ∀φ ∈ H1,2(X, d,Hn).

(4.9)

As a result, 〈∇ϕi,∇ϕj〉 ∈ H1,2(X, d,Hn). We complete the proof by letting
φ = 〈∇ϕi,∇ϕj〉 in (4.9), which shows that

‖∇〈∇ϕi,∇ϕj〉‖L∞(Hn) ⩽ C. (4.10)

Lemma 4.5. For any ϵ > 0, there exists 0 < δ ⩽ Ψ(ϵ|C), such that for any
0 < r < δ and any arbitrary but fixed x0 ∈ X, the following holds.

1. The map
x0 : Br(x0) −→ Rn

x 7−→ (u1(x), . . . , un(x))
(4.11)

is (1 + ϵ)-bi-Lipschitz from Br(x0) to x0(Br(x0)), where each ui is a linear
combination of ϕ1, . . . , ϕm with coefficients only dependent on x0.
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2. The matrix-valued function

U : Br(x0) −→ Mn×n(R)
x 7−→ (uij(x)) := (〈∇ui,∇uj〉(x)) ,

is Lipschitz continuous and satisfies (1 − ϵ)In ⩽ U ⩽ (1 + ϵ)In on Br(x0).
Moreover, there exists a matrix-valued Lipschitz function

B : Br(x0) −→ Mn×n(R)
x 7−→ (bij(x)) ,

such that
BUBT (x) = In, ∀x ∈ Br(x0).

Proof. Consider the matrix-valued function

E : X −→ Mm×m(R)
x 7−→ (〈∇ϕi,∇ϕj〉(x)) ,

which is Lipschitz continuous by Lemma 4.4. For any fixed x0 ∈ X, since E(x0) is
a symmetric matrix of trace n and satisfies E(x0)

2 = E(x0), there exists an m×m
orthogonal matrix A = (aij), such that

AE(x0)A
T =

(
In 0
0 0

)
.

Letting ui =
m∑
j=1

aijϕj, g then can be written as g =
m∑
i=1

dui ⊗ dui with

m∑
i,j=n+1

〈∇ui,∇uj〉2 (x0) = 0. (4.12)

In order to use Theorem 4.3, we need

m∑
i=1

∥∥|∇ui|2∥∥L∞(Hn)
+

m∑
i=1

‖∆ui‖L∞(Hn)+
m∑

i,j=1

‖|∇ 〈∇ui,∇uj〉 |‖L∞(Hn) ⩽ C, (4.13)

which follows directly from the Proposition 2.10 and Lemma 4.4. We claim that
for any ϵ ∈ (0, 1), there exists 0 < δ ⩽ Ψ(ϵ|C), such that x0 is a locally uniformly
ϵ-isometric immersion on Br(x0) for any 0 < r < δ.
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For any y0 ∈ Br(x0), 0 < s < r, we have

1

Hn (Bs(y0))

ˆ
Bϵ−1s(y0)

∣∣∣∣∣g −
n∑

i=1

dui ⊗ dui

∣∣∣∣∣
HS

dHn

⩽ Hn (Bϵ−1s(y0))

Hn (Bs(y0))

 
Bϵ−1s(y0)

∣∣∣∣∣g −
n∑

i=1

dui ⊗ dui

∣∣∣∣∣
2

HS

dHn

 1
2

=
Hn (Bϵ−1s(y0))

Hn (Bs(y0))

( 
Bϵ−1s(y0)

m∑
i,j=n+1

〈∇ui,∇uj〉2 dHn

) 1
2

⩽ Cϵ−1 exp(Cϵ−1)δ2,

(4.14)
where the last inequality comes from (2.2), (4.12) and (4.13).

Thus applying Theorem 4.3, there exists 0 < δ ⩽ Ψ(ϵ|C), such that for any
0 < r < δ, the function x0 defined in (4.11) is (1 + ϵ)-bi-Lipschitz from Br(x0) to
x0(Br(x0)). We may also require δ to satisfy condition 2, which is again due to
(4.13). Finally, the choice of the matrix B(x) follows from a standard congruent
transformation of U(x).

Lemma 4.6. X admits a C1,1 differentiable structure.

Proof. Since (X, d) is compact, by taking ϵ = 1
2
in Lemma 4.5, there exists a

finite index set Γ, such that the finite family of pairs {(Br(xγ),xγ)}γ∈Γ satisfies
the following properties.

1. It is a covering of X, i.e. X ⊂
⋃

γ∈ΓBr(xγ).

2. For every γ ∈ Γ, xγ is 3
2
-bi-Lipschitz from Br(xγ) to xγ(Br(xγ)) ⊂ Rn, and

each component of xγ is a linear combination of ϕ1, . . . , ϕm with coefficients
only dependent on xγ.

We only prove the C1,1 regularity of ϕ1, . . . , ϕm on (Br(x0),x0), since the C1,1

regularity of ϕ1, . . . , ϕm on any other (Br(xγ),xγ) can be proved in a same way.
For any y0 ∈ Br(x0), without loss of generality, assume that Bs(y0) ⊂ Br(x0)

for some s > 0 and x0(y0) = 0n ∈ Rn. Since x0 is a 3
2
-bi-Lipschitz map (thus also

a homeomorphism) from Br(x0) to x0(Br(x0)), for any sufficiently small t > 0,
there exists a unique yt ∈ Br(x0) such that x0(yt) = (t, 0, . . . , 0).

For i = 1, . . . , n, set

vi : Bs(y0) −→ R

x 7−→
n∑

j=1

bij(y0)uj(x),
(4.15)
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where B = (bij) is taken as in Lemma 4.5. It can be immediately checked that
〈∇vi,∇vj〉(y0) = δij (i, j = 1, . . . , n).

Notice that

 
Bτ (y0)

∣∣∣∣∣g −
n∑

i=1

dvi ⊗ dvi

∣∣∣∣∣
2

HS

dHn

=

 
Bτ (y0)

(
n+

n∑
i,j=1

〈∇vi,∇vj〉 − 2
n∑

i=1

|∇vi|2
)
dHn → 0 as τ → 0+.

(4.16)

Thus arguing as in the proof of Lemma 4.5 and applying Theorem 4.3 to
B2d(y0,yt)(y0) for any sufficiently small t > 0, we know

n∑
i=1

(
vi(yt)− vi(y0)

d(yt, y0)

)2

→ 1, as t→ 0+. (4.17)

Recall ui(yt) = ui(y0) = 0 (i = 2, . . . , n). This together with (4.17) shows

n∑
i=1

b2i1(y0) lim
t→0+

t2

d(yt, y0)2
= 1. (4.18)

Next is to calculate values of lim
t→0+

ui(yt)− ui(y0)

t
for i = n+ 1, . . . ,m.

For i = n+ 1, . . . ,m, set

fi : Bs(y0) −→ [0,∞)

x 7−→ ui(x)−
n∑

j=1

〈∇ui,∇vj〉(y0)vj(x).

Observe that

lim
x→y0

〈∇fi,∇vk〉(x) = 0, i = n+ 1, . . . ,m, k = 1, . . . , n. (4.19)

Thus (4.16) and (4.19) yield that |∇fi|(y0) = 0 (i = n + 1, . . . ,m). From the
definition of the local Lipschitz constant of a Lipschitz function, we get

1

d(yt, y0)

(
(ui(yt)− ui(y0))−

n∑
j=1

〈∇ui,∇vj〉(y0) (vj(yt)− vj(y0))

)
→ 0, as t→ 0+.
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Therefore

lim
t→0+

ui(yt)− ui(y0)

d(yt, y0)
=

n∑
j=1

〈∇ui,∇vj〉(y0) lim
t→0+

vj(yt)− vj(y0)

d(yt, y0)

=
n∑

j=1

bj1(y0)〈∇ui,∇vj〉(y0) lim
t→0+

u1(yt)− u1(y0)

d(yt, y0)

=
n∑

j,k=1

bj1(y0)bjk(y0)〈∇ui,∇uk〉(y0) lim
t→0+

t

d(yt, y0)
.

(4.20)

As a result of (4.18) and (4.20),

lim
t→0+

ui(yt)− ui(y0)

t
=

n∑
j,k=1

bj1(y0)bjk(y0)〈∇ui,∇uk〉(y0).

Analogously,

lim
t→0−

ui(yt)− ui(y0)

t
=

n∑
j,k=1

bj1(y0)bjk(y0)〈∇ui,∇uk〉(y0).

Hence for i = n+ 1, . . . ,m, k = 1, . . . , n, we get

∂ui
∂uk

(x) =
n∑

j,l=1

bjk(x)bjl(x)〈∇ui,∇ul〉(x), ∀x ∈ Br(x0). (4.21)

According to the fact that each ϕi is a linear combination of u1, . . . , um with

coefficients only dependent on x0, each
∂ϕi

∂uj
is Lipschitz continuous on Br(x0)

and is also Lipschitz continuous on x0(Br(x0)) (i = 1, . . . ,m, j = 1, . . . , n). If
Br(xγ′)∩Br(x0) 6= ∅ for some γ′ ∈ Γ\{0}, since each component of the coordinate
function xγ′ is a linear combination of ϕ1, . . . , ϕm, the transition function from
(Br(x0),x0) to (Br(xγ′),xγ′) is C1,1 on (Br(x0) ∩ Br(xγ′),x0).

Therefore, {(Br(xγ),xγ)}γ∈Γ gives a C1,1 differentiable structure of X.

Lemma 4.7. For the sake of brevity, we only state the following assertions for
(Br(x0),x0) by using the notation of Lemma 4.5.

1. For any f1, f2 ∈ C1(X), we have

〈∇f1,∇f2〉 =
n∑

j,k=1

ujk
∂f1
∂uj

∂f2
∂uk

on Br(x0). (4.22)
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2. (x0)♯ (Hn⌞Br(x0)) = (det(U))−
1
2 Ln⌞x0 (Br(x0)).

Proof. Statement 1 follows directly from the chain rule of ∇. As for statement
2, according to the bi-Lipschitz property of x0, there exists a Radon-Nikodym

derivative h of (x−1
0 )♯

(
det(U))−

1
2Ln⌞x0(Br(x0))

)
with respect to Hn⌞Br(x0).

Again for any B2s(y0) ⊂ Br(x0), we choose {vi}ni=1 as in (4.15) and set

y0 : Bs(y0) −→ Rn

x 7−→ (v1(x), . . . , vn(x)).

By Theorem 4.3,

lim
τ→0+

Ln (y0 (Bτ (y0)))

Hn(Bτ (y0))
= 1. (4.23)

Set B̃ = B(y0). Then it follows from the choice of the matrix B that

det(B̃)2det (U(y0)) = 1. (4.24)

Using the commutativity of the following diagram,

Bs(y0)
y0 //

x0 &&NN
NNN

NNN
NNN

y0(Bs(y0))

B̃−1

��
x0(Bs(y0))

for any 0 < τ ⩽ s, it holds that
ˆ
x0(Bτ (y0))

(det(U))−
1
2 dLn =

ˆ
y0(Bτ (y0))

(
det(U)

(
B̃−1(x)

))− 1
2
det(B̃)−1dLn(x).

(4.25)
Thus combining the continuity of det(U) with (4.23), (4.24) and (4.25) implies

lim
τ→0+

1

Hn(Bτ (y0))

ˆ
x0(Bτ (y0))

(det(U))−
1
2 dLn = 1.

Therefore, h = 1 Hn-a.e. on Br(x0), which suffices to conclude.

Proof of Theorem 1.16. We start by improving the regularity of each ϕi on each
coordinate chart (Br(xγ),xγ). It suffices to verify the case γ = 0.

We still use the notation in Lemma 4.5. For any fixed B2s(y0) ⊂ Br(x0),
without loss of generality, assume that x0(y0) = 0n and Bs(0n) ⊂ x0 (B2s(y0)).

We first claim that for j = 1, . . . , n,

n∑
k=1

∂

∂uk

(
ujkdet(U)−

1
2

)
= ∆ujdet(U)

1
2 Ln-a.e. in Bs(0n). (4.26)
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Notice that for any φ ∈ Cc (Bs(0n)) ∩ C1(X), in view of Lemma 4.7, we have

ˆ
Bs(0n)

φ∆ujdet(U)
− 1

2dLn =

ˆ
x−1
0 (Bs(0n))

φ∆ujdHn

= −
ˆ
x−1
0 (Bs(0n))

〈∇uj,∇φ〉dHn

= −
ˆ
Bs(0n)

n∑
k=1

ujk
∂φ

∂uk
det(U)−

1
2dLn,

which suffices to show (4.26) since each ujk is Lipschitz continuous on Bs(0n).
Similarly, for i = 1, . . . ,m and any φ ∈ Cc (Bs(0n)) ∩ C1(X), it holds that

ˆ
Bs(0n)

φµiϕidet(U)
− 1

2dLn =

ˆ
Bs(0n)

n∑
j,k=1

ujk
∂ϕi

∂uj

∂φ

∂uk
det(U)−

1
2dLn. (4.27)

Therefore the C1,1-regularity of ϕi as well as (4.26), (4.27) gives a PDE as
follows.

n∑
j,k=1

ujk
∂2ϕi

∂uj∂uk
+

n∑
j=1

∆uj
∂ϕi

∂uj
+ µiϕi = 0 Ln-a.e. in Bs(0n). (4.28)

Since each ∆uj is some linear combination of ϕ1, . . . , ϕm, it is also C1,1 with
respect to {(Br(xγ),xγ)}γ∈Γ. From the classical PDE theory (see for instance
[GT01, Theorem 6.13]), ϕi ∈ C2,α(Bs(0n)) for any α ∈ (0, 1). Hence, X admits a
C2,α differentiable structure {(Br(xγ),xγ)}γ∈Γ.

Let us use this differentiable structure to define the following (0, 2)-type sym-
metric tensor:

g̃ :=
m∑
i=1

d̃ϕi ⊗ d̃ϕi,

which is C1,α with respect to {(Br(xγ),xγ)}γ∈Γ. We claim that g̃ is a Riemannian
metric. Again it suffices to prove this statement on (Br(x0),x0).

Set
U : X −→ Mm×m(R)

x 7−→ (〈∇ui,∇uj〉) .

For any x ∈ X, rewrite U(x) as the following block matrix

U(x) :=
(
U(x) U1(x)
UT
1 (x) U2(x)

)
.
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The choice of {ui}mi=1 implies that g̃ has a local expression as

g̃ =
m∑
i=1

d̃ui ⊗ d̃ui =
n∑

i=1

d̃ui ⊗ d̃ui +
m∑

i=n+1

n∑
k,l=1

∂ui
∂uk

∂ui
∂ul

d̃uk ⊗ d̃ul.

By (4.21), for i = n+ 1, . . . ,m, l = 1, . . . , n and any x ∈ Br(x0), we have

∂ui
∂ul

(x) =
n∑

j,k=1

bjl(x)bjk(x)〈∇ui,∇uk〉(x) =
(
BTBU1(x)

)
li
=
(
U−1U1(x)

)
li
,

which implies that

g̃(x) =
n∑

i=1

d̃ui ⊗ d̃ui +
n∑

k,l=1

(
U−1U1U

T
1 U

−1(x)
)
kl
d̃uk ⊗ d̃ul, ∀x ∈ Br(x0). (4.29)

Since U2 − U ≡ 0 on Br(x0), U
2 + U1U

T
1 − U ≡ 0 on Br(x0). By (4.29),

g̃(x) =
n∑

j,k=1

(
U−1

)
jk
(x)d̃uj ⊗ d̃uk, on Br(x0), (4.30)

which is positive definie on Br(x0). Moreover, ujk ∈ C1,α (Br(x0)) (j, k = 1, . . . , n).
Applying the regularity theorem for second order elliptic PDE (for example [GT01,
Theorem 6.17]) to (4.28), we see that ϕi ∈ C3,α (Br(x0)) (i = 1, . . . ,m). Thus the
regularity of g̃ can be improved to C2,α. Then (4.30) shows that ujk ∈ C2,α (Br(x0))
(j, k = 1, . . . , n).

Applying a proof by induction, g̃ = g is actually a smooth Riemannian metric
with respect to the smooth differentiable structure {(Br(xγ),xγ)}γ∈Γ. This implies
that (X, d) is isometric to an n-dimensional smooth Riemannian manifold (Mn, g).
To see that (Mn, g) is a closed Riemannian manifold, it suffices to use Theorem
4.3 again to show that the tangent space at any point is not isometric to the upper
plane Rn

+.

Proof of Corollary 1.18. Without loss of generality, we may assume that m(X) =
1. Among lines in the proof, each limit process and each convergence of the series
is guaranteed by Proposition 2.10, which can be checked via similar estimates in
Lemma 3.10.

First calculate that

n = 〈g, g〉 = 〈c(t)gt, g〉 = c(t)
∞∑
i=1

e−2µit |∇ϕi|2 . (4.31)
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Integrating (4.31) on X, we have

n = c(t)
∞∑
i=1

e−2µitµi.

Let ϕ1, . . . , ϕm be an L2(m)-orthonormal basis of the eigenspace corresponding
to the first eigenvalue µ1. Then∣∣∣∣∣

m∑
i=1

dϕi ⊗ dϕi −
e2µ1t

c(t)
g

∣∣∣∣∣
HS

⩽
∞∑

i=m+1

e2µ1t−2µit |dϕi ⊗ dϕi|HS =
∞∑

i=m+1

e2µ1t−2µit |∇ϕi|2 .

(4.32)
Again the integration of (4.32) on X gives

ˆ
X

∣∣∣∣∣
m∑
i=1

dϕi ⊗ dϕi −
e2µ1t

c(t)
g

∣∣∣∣∣
HS

dm ⩽
∞∑

i=m+1

e2µ1t−2µitµi. (4.33)

Since

lim
t→∞

e2µ1t

c(t)
=
µ1

n
+ lim

t→∞

1

n

∞∑
i=2

e2µ1t−2µitµi =
µ1

n
,

(4.33) implies that

ˆ
X

∣∣∣∣∣
m∑
i=1

dϕi ⊗ dϕi −
µ1

n
g

∣∣∣∣∣
HS

dm = 0.

In other words,
m∑
i=1

dϕi ⊗ dϕi =
µ1

n
g.

For other eigenspaces, it suffices to use a proof by induction to conclude.

5 Harmonic RCD(K,N) spaces

This section is aimed at proving regularity results for strongly harmonic RCD(K,N)
spaces and radically symmetric RCD(K,N) spaces.

We first prove Theorem 1.22. We use the notation of (1.7). We let µi be the
corresponding eigenvalue of ϕi (i = 1, . . . ,m) and use C to denote a constant with

C = C
(
K,m, n, diam(X, d),Hn(X), µ1, . . . , µm, ‖ϕ1‖L2(Hn) , . . . , ‖ϕm‖L2(Hn)

)
,

which may vary from line to line.
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Proof of Theorem 1.22. Let us first show that∣∣∣∣F (0)− F (d(x, y))

d2(x, y)

∣∣∣∣ ⩽ C, ∀x, y ∈ X. (5.1)

Letting x = y in (1.7) we know

m∑
i=1

ϕ2
i (x) = F (0), ∀x ∈ X. (5.2)

Therefore it clearly follows from (1.7) and (5.2) that

m∑
i=1

(ϕi(x)− ϕi(y))
2 = 2

(
F (0)− F (d(x, y))

)
, ∀x, y ∈ X. (5.3)

As a result, we have

F (0)− F (d(x, y))

d2(x, y)
=

1

2

m∑
i=1

(
ϕi(x)− ϕi(y)

d(x, y)

)2

, ∀x, y ∈ X,

which together with the Lipschitz continuity (Proposition 2.10) of ϕi (i = 1, . . . ,m)
implies (5.1).

From now on let us take an arbitrary but fixed

x0 ∈ Rn(X) ∩
m⋂

i,j=1

Leb(〈∇ϕi,∇ϕj〉),

where Leb(〈∇ϕi,∇ϕj〉) is the Lebesgue point of the function 〈∇ϕi,∇ϕj〉.
We claim that

lim
r→0

F (0)− F (r)

r2
= 2c, (5.4)

for some constant c > 0.
For any {rl} ⊂ (0,∞) with rl → 0, after passing to a subsequence, consider

the following pmGH convergence

(Xl, dl,Hn, x0) :=

(
X,

1

rl
d,

1

rnl
Hn

d , x0

)
pmGH−−−→

(
Rn, dRn ,

1

ωn

Ln, 0n

)
.

For notation convenience, we denote by ∆l,∇l the gradient and the Laplacian on
(Xl, dl,Hn) respectively, and by Bl

r(x0) := BXl
r (x0).

For i = 1, · · · ,m and l ∈ N+, set

φi,l :=
ϕi − ϕi(x0)

rl
.
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Then we have

|∇lφi,l| = |∇ϕi|, ∆lφi,l = rl∆ϕi = −rlµiϕi.

In particular, we obtain the following estimates directly from Proposition 2.10:

‖|∇lφi,l|‖L∞(Hn) ⩽ C, (5.5)

‖∆lφi,l‖L∞(Hn) ⩽ Crl → 0 as l → ∞. (5.6)

According to the Arzela-Ascoli Theorem (Theorem 2.29), for every i = 1, . . . ,m,
{ϕi,l} uniformly converges to φi on any BR(0n) ⊂ Rn. Moreover, (5.5), (5.6),
Theorem 2.33 and Theorem 2.34 imply that each φi is a harmonic function with
|∇φi| ⩽ C, and thus a linear function on Rn.

Since x0 ∈ Rn(X) ∩
m⋂

i,j=1

Leb(〈∇ϕi,∇ϕj〉), we have

〈∇ϕi,∇ϕj〉(x0) = lim
r↓0

 
Br(x0)

〈∇ϕi,∇ϕj〉 dHn

=
1

ωn

lim
l→∞

ˆ
Bl

1(x0)

〈∇lφi,l,∇lφj,l〉 dHn = 〈∇φi,∇φj〉.

In particular, for any y ∈ Rn, by taking yl ∈ Xl such that yl → y, we see from
(5.3) and the fact dl(yl, x0) → dRn(y, 0n) that

lim
l→∞

F (0)− F (d(x0, yl))

d2(x0, yl)
= 2 lim

l→∞

(
rl

d(x0, yl)

)2 m∑
i=1

(
ϕi(x0)− ϕi(yl)

rl

)2

= 2 (dRn(0n, y))
−2

m∑
i=1

φ2
i (y).

(5.7)

From our construction it is clear that φi(0n) = 0 (i = 1, . . . ,m). Because each
φi is a linear function, we know

m∑
i=1

φ2
i (y) =

m∑
i=1

|∇φi|2d2Rn(0n, y) =
m∑
i=1

|∇ϕi|2(x0)d2Rn(0n, y).

This together with (5.7) implies that

lim
r↓0

F (0)− F (r)

r2
= 2

m∑
i=1

|∇ϕi|2(x0) := 2c > 0,

because the sequence {rl} is taken to be arbitrary and each ϕi is a non-constant
eigenfunction.
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Finally, we claim that∣∣∣∣∣
m∑
i=1

dϕi ⊗ dϕi − cg

∣∣∣∣∣
HS

= 0, m-a.e. (5.8)

for some constant c > 0, where g is the canonical Riemannian metric on (X, d,Hn).

Let x0 be an arbitrary but fixed point in Leb

(∣∣∣∣g − m∑
i=1

dϕi ⊗ dϕi

∣∣∣∣2
HS

)
∩ Rn.

Then for any y1, y2 ∈ Rn, combining (5.3) with (5.4) yields that

c d2Rn(y1, y2) =
m∑
i=1

(φi(y1)− φi(y2))
2 .

Therefore, c−1(φ1, . . . , φm) is a linear isometry from Rn to Rn, which shows
that

c gRn =
m∑
i=1

dφi ⊗ dφi.

For each i, the H1,2-strong convergence of {φi,l} on any BR(0n) ⊂ Rn as well
as (5.5) implies that

lim
r→0

 
Br(x0)

∣∣∣∣∣cg −
m∑
i=1

dϕi ⊗ dϕi

∣∣∣∣∣
2

HS

dHn =
1

ωn

lim
l→∞

ˆ
Bl

1(x0)

∣∣∣∣∣cgXl
−

m∑
i=1

dφi,l ⊗ dφi,l

∣∣∣∣∣
2

HS

dHn

=

 
B1(0n)

∣∣∣∣∣cgRn −
m∑
i=1

dφi ⊗ dφi

∣∣∣∣∣
2

HS

dLn = 0.

Hence (5.8) follows from the arbitrary of x0 ∈ Leb

(∣∣∣∣g − m∑
i=1

dϕi ⊗ dϕi

∣∣∣∣2
HS

)
∩ Rn.

Now it suffices to apply Theorem 1.16 to conclude.

Remark 5.1. Actually, the radically symmetric condition Theorem 1.22 can be
reduced to that there exists a real valued function F : [0,∞) × [0,∞) → R and
non-constant eigenfunctions {ϕi}mi=1 such that for any x ∈ X there exists ϵx > 0
such that

m∑
i=1

ϕi(x)ϕi(y) = F (d(x, y)), ∀y ∈ Bϵx(x).

Next let us deal with strong harmonic RCD(K,N) spaces. Let us fix a strong
harmonic RCD(K,N) space (X, d,m) with dimd,m(X) = n. Let us recall the
definition of strong harmonic RCD(K,N) space as follows: there exists a real
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valued function H : [0,∞) × [0,∞) → R such that the heat kernel ρ of (X, d,m)
satisfies

ρ(x, y, t) = H(d(x, y), t), ∀x, y ∈ X, ∀t > 0. (5.9)

We start with the proof of Theorem 1.20, which is similar to the proof of Theorem
1.13.

Proof of Theorem 1.20. Let n = dimd,m(X). We claim that

lim
t↓0

tnH(rt, t2) = c̃ (4π)−
n
2 exp

(
−r

2

4

)
, (5.10)

for some constant c̃ > 0.
Take an arbitrary but fixed x0 ∈ R∗

n(X). For any {ri} ⊂ R with ri → 0, we
consider the following pmGH convergence.

(Xi, di,mi, x0) :=

(
X,

1

ri
d,

m

m(Bri(x0))
, x0

)
pmGH−−−→

(
Rn, dRn ,

1

ωn

Ln, 0n

)
.

On each (Xi, di,mi), the heat kernel ρi satisfies that

ρi(xi, yi, 1) = m(Bri(x0))ρ(xi, yi, r
2
i ), ∀xi, yi ∈ Xi. (5.11)

For any s > 0, on each (Xi, di,mi) we can take xi, yi ∈ BXi
2s (x0) such that

di(xi, yi) = s. Then after passing to a subsequence, we may assume that xi → x ∈
Rn and yi → y ∈ Rn.

Due to Theorem 2.35, we have

lim
i→∞

ρi(xi, yi, 1) = ρRn(x, y, 1) = (4π)−
n
2 exp

(
−d2Rn(x, y)

4

)
. (5.12)

Combining (5.9) with (5.11) and (5.12) then gives

ϑn(X, d,m)(x0) lim
i→∞

rni H(ridRn(x, y), r2i )

= lim
i→∞

m(Bri(x0))H(ridRn(x, y), r2i ) = (4π)−
n
2 exp

(
−d2Rn(x, y)

4

)
.

(5.13)

Since the above equality does not depend on the choice of the sequence ri ↓ 0,
and the limit lim

t↓0
tnH(rt, t2) does not depend on the choice of x0 ∈ R∗

n(X), we

complete the proof of (5.10). Indeed, we have also proved that

ϑn(X, d,m)(x) = c̃−1, m-a.e. x ∈ R∗
n(X).
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Moreover, if we first take x, y ∈ Rn and then choose sequences {xi}, {yi} such
that Xi 3 xi → x ∈ Rn, Xi 3 yi → y ∈ Rn in the above argument, we may have
that

d(xi, yi)

ri
= di(xi, yi) = dRn(x, y) + o(1).

As a result, by calculating as (5.13), (5.10) can be improved to

lim
t↓0

tnH(rt+ o(t), t2) = c̃ (4π)−
n
2 exp

(
−r

2

4

)
(5.14)

If x0 does not satisfy ϑn(X, d,m)(x0) = c̃, then for any ri ↓ 0, after passing to
a subsequence, we consider the following pmGH convergence.

(Xi, di,mi, x0) :=

(
X,

1

ri
d,

m

m(Bri(x0))
, x0

)
pmGH−−−→ (X∞, d∞,m∞, x∞) .

Let ρ∞ be the heat kernel on (X∞, d∞,m∞). For any z∞, w∞ ∈ X∞, by
Gromov-Hausdorff approximation, we can take Xi 3 zi → z∞, Xi 3 wi → w∞
such that

di(zi, wi) → d∞(z∞, w∞).

Similarly we can show that the heat kernel satisfies that

ρ∞(z, w, 1) = lim
i→∞

ρi(zi, wi, 1)

= lim
i→∞

m(Bri(x0)) ρ(zi, wi, r
2
i )

= lim
i→∞

m(Bri(x0))H(ridi(zi, wi), r
2
i ).

(5.15)

Owing to (5.14) and Theorem 2.8, by letting z = x∞ and taking w∞ ∈
∂B1(x∞), we see from (5.15) that

c̃−1C−1 ⩽ lim
i→∞

m(Bri(x0))

rni
⩽ c̃−1

C,

for some C = C(K,N) (we may take ϵ = 1 in Theorem 2.8). As a result, we know

c̃−1C−1 ⩽ lim inf
r→0

m(Br(x0))

rn
⩽ lim sup

r→0

m(Br(x0))

rn
⩽ c̃−1

C .

Therefore, applying [AT04, Theorem 2.4.3] implies that m = cHn for some
c > 0. Finally, it follows from [BGHZ23, Theorem 1.5 and Theorem 2.22] that
(X, d,Hn) is a non-collapsed RCD(K,n) space.
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Proof of Corollary 1.23. According to Theorem 1.20, m = cHn for some c > 0,
and (X, d,Hn) is an RCD(K,n) space. Since the space can be rescaled, without
loss of generality we may assume that Hn(X) = 1.

We now claim that (X, d,Hn) is a radically symmetric RCD(K,n) space.
For any x, y ∈ X any t > 0, by our assumption we know

∞∑
i=0

e−µitϕi(x)ϕi(y) = ρ(x, y, t) = H(d(x, y), t).

Let ϕ1, . . . , ϕm be the L2-orthonormal basis of the eigenspace with correspond-
ing eigenvalue µ1. Given any two points x, y ∈ X, we set r0 = d(x, y). Then for
any t > 0 we calculate that

m∑
i=1

ϕi(x)ϕi(y) = eµ1t(H(r0, t)− 1)−
∞∑

i=m+1

e(µ1−µi)tϕi(x)ϕi(y). (5.16)

Let N0 be the integer such that

µi ⩾ 2C1(K,n)i
2
n ⩾ 2µ1, ∀i ⩾ N0.

Then the second term of the right hand side of (5.16) satisfies that∣∣∣∣∣
∞∑

i=m+1

e(µ1−µi)tϕi(x)ϕi(y)

∣∣∣∣∣ ⩽ C2(K,N)
∞∑

i=m+1

e(µ1−µi)ti
n
2

=

N0∑
i=m+1

e(µ1−µi)ti
n
2 +

∞∑
i=N0+1

e(µ1−µi)ti
n
2

⩽
N0∑

i=m+1

e(µ1−µi)ti
n
2 +

∞∑
i=N0+1

eC1(K,N)i−
2
n i

n
2 → 0 as t→ ∞.

(5.17)
As a result, (5.16) and (5.17) yield that

m∑
i=1

ϕi(x)ϕi(y) = lim
t→∞

eµ1t(H(r0, t)− 1) = lim
t→∞

eµ1t(H(d(x, y), t)− 1) := F (d(x, y)),

which shows that (X, d,Hn) is a radically symmetric RCD(K,n) space. This
completes the proof.
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Remark 5.2. Inductively, one can show that, given any non-zero eigenvalue µ of
−∆, any L2(Hn)-orthonormal basis {f1, . . . , fl} of the corresponding eigenspace
Eµ (l = dim(Eµ)) satisfies

l∑
i=1

fi(x)fi(y) = Hµ(d(x, y)), ∀x, y ∈ X,

for some real-valued function Hµ. Then from the proof of Theorem 1.22 we know
there exists a constant cµ such that

cµg =
l∑

i=1

dfi ⊗ dfi,

which means that (X, d,Hn) is an IHKI RCD(K,n) space.

To end this section we prove Theorem 1.24, the proof of which almost the same
as the proof of Theorem 1.13. We omit some details.

Proof of Theorem 1.24. According to Theorem 1.20, m = cHn for some c > 0 and
(X, d,Hn) is a non-collapsed RCD(0, n) space. Without loss of generality, we may
assume that m = Hn.

Fix a point x0 ∈ X. Now for any ri → ∞, by passing to a subsequence,
consider the following pmGH convergence:

(Xi, di,mi, x0) :=

(
X,

1

ri
d,

m

m(Bri(x0))
, x0

)
pmGH−−−→ (X∞, d∞,m∞, x0) ,

where (X∞, d∞,m∞, x0) is a pointed RCD(0, n) space.
Let ρi be the corresponding heat kernel of (Xi, di,mi) (i ∈ N∪ {∞}). Then by

(5.9) we know

ρi(xi, yi, t) = m(Bri(x0))H
(
d∞(xi, yi), r

2
i t
)
, ∀xi, yi ∈ Xi, ∀t > 0. (5.18)

For any x∞, y∞ ∈ X∞, by taking {xi} {yi} such that Xi 3 xi → x∞, Xi 3 yi →
y∞ and di(xi, yi) → d∞(x∞, y∞). Then it follows from Theorem 2.35 and (5.18)
that

ρ∞ (x∞, y∞, t) = lim
i→∞

m(Bri(x0))H
(
ri d∞(x∞, y∞), r2i t

)
:= H̃ (d∞(x∞, y∞), t) .

(5.19)

As a result of Theorem 1.20, m∞ = c̃Hn for some c̃ > 0. Now using [BGHZ23,
Theorem 1.6] implies that mi = c̃iHn for any sufficiently large i, where {c̃i} is a
sequence of positive constants such that limi→∞ c̃i = c̃.
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Hence we have

m(B2ri(x0))

m(Bri(x0))
= mi

(
BXi

2 (x0)
)
= c̃iHn

(
BXi

2 (x0)
)
= c̃i

1

rni
m(B2ri(x0)),

which shows that

lim
i→∞

m(Bri(x0))

rni
= c̃−1. (5.20)

Applying [DG16, Theorem 1.1] we know (X∞, d∞,Hn) is a metric cone with
x0 being its origin. Moreover, from (5.19) we see that (X∞, d∞,Hn) is a harmonic
RCD(0, n) space.

Arguing as in the proof of Theorem 1.20, and combining with [CT22, Theorem
1.1], any tangent cone at x0 must be isometric to (Rn, dRn , 0n). The metric cone
structure of (X∞, d∞,Hn), indicating that any tangent cone at x0 is isometric to
itself, tells us that (X∞, d∞) is isometric to (Rn, dRn). Finally, it suffices to use
[DG18, Theorem 1.6] to conclude.
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6 Diffeomorphic finiteness theorems

This section is dedicated to proving Theorem 1.27 and Theorem 1.29. To fix
the notation, for a Riemannian manifold (Mn, g), denote by volg its Riemannian
volume measure, by Kg its sectional curvature, by Ricg its Ricci curvature tensor,
by injg(p) the injectivity radius at p and by (∇g)k, ∆g the k-th covariant derivative
and the Laplacian with respect to g, by dg the metric induced by g.

We are now in the position to prove the following theorem.

Theorem 6.1. M(K,n,D, τ ) has only finitely many members up to diffeomor-
phism.

Proof. Assume the contrary, i.e. there exists a sequence of Riemannian manifolds
{(Mn

i , gi)} ⊂ M(K,n,D, τ ), which are pairwise non-diffeomorphic.
On each (Mn

i , gi), there exists mi ∈ N, such that

gi =

mi∑
j=1

dϕi,j ⊗ dϕi,j, (6.1)

where ϕi,j is a non-constant eigenfunction of −∆gi with the corresponding eigen-
value µi,j and satisfies that ‖ϕi,j‖L2(volgi )

⩾ τ > 0 (i ∈ N, j = 1, . . . ,mi). By taking

trace of (6.1) with respect to gi, we know

n =

mi∑
j=1

|∇giϕi,j|2 . (6.2)

Integration of (6.2) on (Mn
i , gi) shows that

nvolgi(M
n
i ) ⩾ τ 2

mi∑
j=1

µi,j.

The Bishop-Gromov volume comparison theorem and Li-Yau’s first eigenvalue
lower bound [LY80, Theorem 7] imply that

C1(K,n)D
n ⩾ nvolgi(M

n
i )⩾τ 2

mi∑
j=1

µi,j ⩾ C2(K,n,D)τ 2mi ⩾ C2(K,n,D)τ 2.

(6.3)
Moreover, for each ϕi,j,

‖ϕi,j‖2L2(volgi )
=µ−1

i,j

ˆ
Mn

i

|∇giϕi,j|2dvolgi ⩽ nµ−1
i,j volgi(M

n
i ) ⩽ C(K,n,D, τ ). (6.4)
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Since (6.3) implies that 1 ⩽ infimi ⩽ supimi ⩽ C(K,n,D, τ ), after passing to
a subsequence, we may take m ∈ N such that

gi =
m∑
j=1

dϕi,j ⊗ dϕi,j, ∀i ∈ N. (6.5)

Moreover, by (6.3), we may assume that

lim
i→∞

µi,j = µj ∈ [C2(K,n,D), τ−2C1(K,n)D
n], j = 1, . . . ,m. (6.6)

According to Theorem 2.23 and (6.3), {(Mn
i , gi)} can also be required to satisfy

(Mn
i , dgi , volgi)

mGH−−−→ (X, d,Hn)

for some non-collapsed RCD(K,n) space (X, d,Hn). In particular, combining
(6.3)-(6.6) with Theorems 2.33 and 2.34, we know that on (X, d,Hn),

g =
m∑
j=1

dϕj ⊗ dϕj,

where each ϕj is an eigenfunction of −∆ with the eigenvalue µj. Therefore, from
Theorem 1.16, we deduce that (X, d) is isometric to an n-dimensional smooth
closed Riemannian manifold (Mn, g). However, due to [ChCo1, Theorem A.1.12],
Mn

i is diffeomorphic to Mn for any sufficiently large i. A contradiction.

The proof of Theorem 1.27 mainly uses the estimates in Section 4 and a stronger
version of Gromov convergence theorem given by Hebey-Herzlish [HH97]. For
reader’s convenience, Hebey-Herzlish’s theorem is stated below.

Theorem 6.2. Let {(Mn
i , gi)} be a sequence of n-dimensional closed Riemannian

manifolds such that

sup
i

volgi(M
n
i ) <∞, inf

i
inf

p∈Mn
i

injgi(p) > 0,

and for all k ∈ N,
sup
i

sup
Mn

i

∣∣(∇gi)kRicgi
∣∣ <∞.

Then there exists a subsequence which is still denoted as {(Mn
i , gi)}, such that it

C∞-converges to a closed Riemannian manifold (Mn, g).

The following Cheeger-Gromov-Taylor’s estimate of the injectivity radius is
also necessary for the proof of Theorem 1.27.
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Theorem 6.3 ([CGT82, Theorem 4.7]). Let (Mn, g) be a complete n-dimensional
Riemannian manifold with |Kg| ⩽ κ < ∞. Then there exists a constant c0 =
c0(n) > 0, such that for any 0 < r ⩽ π

4
√
κ
,

injg(p) ⩾ c0r
vol(Br(p))´ r

0
V−(n−1)κ,ndt

, ∀p ∈Mn.

Proof of Theorem 1.27. By Theorem 6.1, without loss of generality, we may take
a sequence {(Mn, gi)} ⊂ M(K,n,D, τ ) such that {(Mn, gi)} mGH converges to
(Mn, g) and that (6.3)-(6.6) still hold. Denote by Bi

r(p) the r-radius ball (with
respect to dgi) centered at p ∈Mn for notation convenience.

Step 1 Uniform two-sided sectional curvature bound on (Mn, gi).
According to the estimates in Section 4, combining (6.3)-(6.6), we may choose a

uniform r > 0, such that for every arbitrary but fixed Bi
4096r(p) ⊂Mn, there exists

a coordinate function xi = (ui1, . . . , u
i
n) : B

i
4096r(p) → Rn satisfying the following

properties.

1. xi is
3

2
-bi-Lipschitz from Bi

4096r(p) to xi(Bi
4096r(p)) (by Lemma 4.5).

2. Set (gi)jk := gi

(
∂

∂uij
,
∂

∂uik

)
. Then it holds that

1

2
In ⩽ (gi)jk ⩽ 2In, on B

i
4096r(p) (by Lemma 4.5 and (4.30)). (6.7)

We first give a C2,α-estimate of gi on each (Mn, gi) for any α ∈ (0, 1). Applying
(4.13) and (6.7) implies that on Bi

4096r(p)

C ⩾
∣∣∇gi(gi)

jk
∣∣2 = n∑

β,γ=1

(gi)
βγ ∂

∂uiβ
(gi)

jk ∂

∂uiγ
(gi)

jk ⩾ 1

2

n∑
β=1

(
∂

∂uiβ
(gi)

jk

)2

, (6.8)

for some C = C(K,n,D, τ ) which may vary from line to line.
Then

∥∥(gi)jk∥∥Cα(Bi
4096r(p))

⩽ C follows from (6.8) and the local bi-Lipschitz

property of xi (j, k = 1, . . . , n).
For j = 1, . . . , n, |∇giϕi,j| ⩽ C yields that ‖ϕi,j‖Cα(Bi

4096r(p))
⩽ C. This implies

that ‖∆giui,j‖Cα(Bi
4096r(p))

⩽ C since each ui,j is the linear combination of ϕi,j

constructed as in Lemma 4.5. Then the the classical Schauder interior estimate
(see for example [GT01, Theorem 6.2]), together with the PDE (4.28) implies
that ‖ϕi,j‖C2,α(Bi

256r(p))
⩽ C since xi (B256r(p)) ⊂ B512r(x

i(p)) ⊂ xi (Bi
1024r(p)) ⊂
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B2048r(x
i(p)) ⊂ xi (Bi

4096r(p)). As a result, ‖∆giui,j‖C2,α(Bi
256r(p))

⩽ C. Moreover,

(6.5) shows that

‖(gi)jk‖C1,α(Bi
256r(p))

,
∥∥(gi)jk∥∥C1,α(Bi

256r(p))
⩽ C, j, k = 1, . . . , n.

Applying again the Schauder interior estimate to ϕi,j in the PDE (4.28), we
know ‖ϕi,j‖C3,α(Bi

16r(p))
⩽ C. Consequently,

‖(gi)jk‖C2,α(Bi
16r(p))

,
∥∥(gi)jk∥∥C2,α(Bi

16r(p))
⩽ C, j, k = 1, . . . , n.

Since the calculation of sectional curvature only involves the terms in form of

(gi)jk, (gi)
jk,

∂

∂uiβ
(gi)

jk,
∂

∂uiβ
(gi)jk,

∂2

∂uiβ∂u
i
γ

(gi)jk (j, k, β, γ = 1, . . . , n), |Kgi | has a

uniform upper bound C0 = C0(K,n,D, τ ).
Step 2 Uniform lower injectivity radius bound on (Mn, gi).
By Step 1, we may take r′ = min{r, C−1

0 }, which is still denoted as r. In
order to use Theorem 6.3, we need nothing but the lower bound of volgi(B

i
r(p)). It

suffices to apply (6.3) and Bishop-Gromov volume comparison theorem again to
show that

C̃(K,n,D, τ )rn ⩽ volgi(B
i
r(p)) ⩽ C(K,n)Dn, (6.9)

because (6.9), Theorem 6.3 as well as the two-sided sectional curvature bound
obtained in Step 1 then imply that inf

p∈Mn
injgi(p) ⩾ C̃(K,n,D, τ ).

Step 3 Improvement of the regularity.
In order to apply Theorem 6.2, it suffices to show that for any k ⩾ 0, there exists

Ck(K,n,D, τ ) such that |(∇gi)kRicgi |(p) ⩽ Ck(K,n,D, τ ) holds for any arbitrary
but fixed p ∈ Mn. Since the case k = 0 is already proved in Step 1, we prove the
case k = 1.

Using the Schauder interior estimate again and an argument similar to Step 1
gives the following C4,α-estimate of ϕi,j:

‖ϕi,j‖C4,α(Bi
r(p))

⩽ C1(K,n,D, τ ),

which implies that

‖(gi)jk‖C3,α(Bi
r(p))

,
∥∥(gi)jk∥∥C3,α(Bi

r(p))
⩽ C1(K,n,D, τ ), j, k = 1, . . . , n.

Therefore, we see

sup
Mn

|∇giRicgi | ⩽ C1(K,n,D, τ ).
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Now by using the proof by induction, for any k ⩾ 2, there exists Ck =
Ck(K,n,D, τ ) such that

sup
Mn

| (∇gi)k Ricgi | ⩽ Ck(K,n,D, τ ),

which suffices to conclude.

Proof of Theorem 1.29. The proof is almost the same as that of Theorem 6.1,
and we omit some details. Assume the contrary, i.e. there exists a sequence of
pairwise non-diffeomorphic Riemannian manifolds {(Mn

i , gi)} such that (Mn
i , gi) ∈

N (K,n,D, i−1, τ) for any i ∈ N. Then for each {(Mn
i , gi)}, the almost isometric

immersion condition ensures the existence of some mi ∈ N, such that

1

volgi(M
n
i )

ˆ
Mn

i

∣∣∣∣∣
mi∑
j=1

dϕi,j ⊗ dϕi,j − gi

∣∣∣∣∣ dvolgi ⩽ 1

i
. (6.10)

Thus

τ 2µi,j

volgi(M
n
i )

⩽ 1

volgi(M
n
i )

ˆ
Mn

i

|∇giϕi,j|2dvolgi

⩽ 1

volgi(M
n
i )

ˆ
Mn

i

(
mi∑

j,k=1

〈∇giϕi,j,∇giϕi,k〉2
) 1

2

dvolgi

⩽ 1

volgi(M
n
i )

ˆ
Mn

i

∣∣∣∣∣
mi∑
j=1

dϕi,j ⊗ dϕi,j − gi

∣∣∣∣∣ dvolgi + 1

volgi(M
n
i )

ˆ
Mn

i

|gi|dvolgi

⩽ 1

i
+
√
n.

(6.11)
Applying Li-Yau’s first eigenvalue lower bound [LY80, Theorem 7] and Bishop-

Gromov volume comparison theorem to (6.11) shows that

C1(K,n,D) ⩽ µi,j ⩽ C2(K,n,D, τ ). (6.12)

It then follows from (6.11) and (6.12) that

C3(K,n,D, τ ) ⩽ volgi(M
n
i ) ⩽ C4(K,n,D) and τ ⩽ ‖ϕi,j‖L2(volgi )

⩽ C5(K,n,D).
(6.13)
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To see {mi} has an upper bound, it suffices to notice that∣∣∣∣∣
mi∑
j=1

‖ϕi,j‖2L2(volgi )
µi,j − nvolgi(M

n
i )

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
Mn

i

〈
mi∑
j=1

dϕi,j ⊗ dϕi,j − gi, gi

〉
dvolgi

∣∣∣∣∣
⩽
√
n

ˆ
Mn

i

∣∣∣∣∣
mi∑
j=1

dϕi,j ⊗ dϕi,j − gi

∣∣∣∣∣ dvolgi ⩽ √
n C4(K,n,D)

1

i

As a result, mi ⩽ C6(K,n,D, τ ). Therefore there exists m ∈ N and a subse-
quence of {(Mn

i , gi)} which is still denoted as {(Mn
i , gi)}, such that each (Mn

i , gi)
admits an i−1-almost isometrically immersing eigenmap into Rm. In addition,
{(Mn

i , gi)} can also be required to satisfy

(Mn
i , dgi , volgi)

mGH−−−→ (X, d,Hn)

for some non-collapsed RCD(K,n) space (X, d,Hn). Again combining (6.10)-
(6.13) with Theorems 2.33 and 2.34, we see that on (X, d,Hn),

g =
m∑
j=1

dϕj ⊗ dϕj,

where each ϕj is an eigenfunction of −∆ with the eigenvalue µj := lim
i→∞

µi,j. Finally,

it suffices to apply Theorem 1.16 and [ChCo1, Theorem A.1.12] to deduce the
contradiction.
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7 Examples

In this section, some examples about the IHKI condition of Riemannian man-
ifolds are provided. Let us first emphasis that if (Mn, g) is an n-dimensional
compact IHKI Riemannian manifold, then it follows from Corollary 1.18 and Taka-
hashi theorem [Ta66, Theorem 3] that for any t > 0, ρM

n

t : (p 7→ ρM
n
(p, p, t)) is a

constant function. By Lemma 3.11, we see that

1. For any k, n ∈ N, Sn × · · · × Sn︸ ︷︷ ︸
2ktimes

is IHKI.

2. For any p, q ∈ N, the compact Lie group SO(2p + q)/SO(2p) × SO(q) with
a constant positive Ricci curvature is IHKI since it is homogeneous and
irreducible.

Example 7.3 gives the sharpness of Theorem 1.11. The construction of Example
7.3 needs the following two lemmas.

Lemma 7.1. Let (Mm, g), (Nn, h), (Mm × Nn, g̃) be m,n, (m + n)-dimensional
IHKI Riemannian manifolds respectively, where g̃ is the standard product Rieman-
nian metric. Then for any t > 0, it holds that (ρM

m

t )n = (ρN
n

t )m.

Proof. Owing to Lemmas 3.11 and 3.12, we have

cM
m×Nn

(t)gM
m×Nn

t (p, q) = cM
m×Nn

(t)ρM
m

2t gN
n

t (q) + cM
m×Nn

(t)ρN
n

2t g
Mm

t (p)

= ρM
m

2t

cM
m×Nn

(t)

cNn(t)
h(q) + ρN

n

2t

cM
m×Nn

(t)

cMm(t)
g(p)

= g̃(p, q).

(7.1)

Then from (7.1), ρN
n

2t c
Nn

(t) = ρM
m

2t cM
m
(t) for any t > 0. Moreover, for any

p ∈Mm, we calculate that

∂

∂t
ρM

m

2t (p) =
∂

∂t

ˆ
Mm

(
ρM

m

(p, p′, t)
)2

dvolg(p
′)

= 2

ˆ
Mm

∆Mm

p′ ρM
m

(p, p′, t)ρM
m

(p, p′, t)dvolg(p
′)

= − 2

ˆ
Mm

∣∣∇Mm

p′ ρM
m

(p, p′, t)
∣∣2 dvolg(p′) = −2

〈
gM

m

t , g
〉
(p) = − 2m

cMm(t)
.

Analogously
∂

∂t
ρN

n

2t = − 2n

cNn(t)
, and thus nρN

n

2t

∂

∂t
ρM

m

2t = mρM
m

2t

∂

∂t
ρN

n

2t . There-

fore there exists c̃ > 0, such that(
ρM

m

t

)n
= c̃

(
ρN

n

t

)m
, ∀t > 0.
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To see c̃ = 1, it suffices to use a blow up argument and Theorem 2.36 to show
that lim

t→0
t
m
2 ρM

m

t = (4π)−
m
2 and lim

t→0
t
n
2 ρN

n

t = (4π)−
n
2 .

Lemma 7.2. Let (Mn, g) be an n-dimensional closed IHKI Riemannian manifold.
Then it holds that

lim
t→∞

t

cMn(t)ρM
n

2t

= 0.

Proof. Set 0 = µ0 < µ1 ⩽ . . . → +∞ as the eigenvalues of −∆ counting with
multiplicities. Then it suffices to notice that

1

cMn(t)
=

1

nvolg(Mn)

∞∑
i=1

e−2µitµi, ρM
n

2t =
1

volg(Mn)

∞∑
i=0

e−2µit

and let t→ ∞.

Example 7.3. Set Sn(k) :=
{
(x1, . . . , xn+1) ∈ Rn+1 : x21 + · · ·+ x2n+1 = k2

}
. Ob-

serve that cS
n(k)(1) = kn+2cS

n
(k−2), ρ

Sn(k)
2 = k−nρS

n

2k−2 . By Lemma 7.2,

lim
k→0

cS
n(k)(1)ρ

Sn(k)
2 = ∞.

This implies that for any small r > 0, there exists s = s(r) such that

cS
1(r)(1)ρ

S1(r)
2 = cS

2(s)(1)ρ
S2(s)
2 .

Consider the product Riemannian manifold
(
S1(r)× S2(s), gS1(r)×S2(s)

)
. By

(7.1), there exists c(r) > 0, such that c(r)Φ
S1(r)×S2(s)
1 realizes an isometric im-

mersion into L2
(
volgS1(r)×S2(s)

)
.

If
(
S1(r)× S2(s), gS1(r)×S2(s)

)
is IHKI, then by Proposition 7.1, it holds that

ρ
S2(s)
t =

(
ρ
S1(r)
t

)2
= ρ

S1(r)×S1(r)
t , ∀t > 0. (7.2)

Therefore by taking integral of (7.2), we see that for any t > 0,

vol
(
S2(s)

) ∞∑
i=0

exp
(
−r−2µS1×S1

i t
)
= vol

(
S1(r)× S1(r)

) ∞∑
i=0

exp
(
−s−2µS2

i t
)
.

(7.3)
Then vol (S2(r2)) = vol (S1(r1)× S1(r1)) follows by letting t→ 0 in (7.3), which

implies that s(r) = r. (7.3) then becomes

∞∑
i=1

exp
(
−r−2µS1×S1

i t
)
=

∞∑
i=1

exp
(
−r−2µS2

i t
)
, ∀t > 0. (7.4)
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Since µS1×S1
1 = µS1×S1

4 = 2 < µS1×S1
5 and µS2

1 = µS2
3 = 2 < µS2

4 , multiplying
exp(2r−2t) to both sides of (7.4) and letting t → ∞, the right hand side of (7.4)
converges to 3, while the left hand side of (7.4) converges to 4. A contradiction.

There is also a simple example which does not satisfy the condition 2 in Corol-
lary 3.13.

Example 7.4. Consider the product manifold (S1 × R, gS1×R). It is obvious that

πgS
1×R

t =
1

(4πt)
1
2

∞∑
i=1

e−i2tgS1 +
cR1

t
3
2

∞∑
i=0

e−i2ti2gR

⩾ 1

(4πt)
1
2

gS1 +
cR1

t
3
2

gR,

As a result, gS
1×R

t ⩾ cR1
π
t−

3
2 gS1×R for any sufficiently large t > 0 but

lim
t→∞

t−2c(t) = lim
t→∞

t−2 π

cR1
t
3
2 = 0.
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[CN12] T. Colding, A. Naber: Sharp Hölder continuity of tangent cones for spaces
with a lower Ricci curvature bound and applications, Ann. of Math. (2)
176(2012), no. 2, 1173-1229.

72



[CT22] G. Carron, D. Tewodrose: A rigidity result for metric measure spaces with
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[S90] Z. Szabó: The Lichnerowicz conjecture on harmonic manifolds, J. Differen-
tial Geom. 31(1990), no. 1, 1 ‒ 28

75



[St95] K. Sturm: Analysis on local Dirichlet spaces. II. Upper Gaussian estimates
for the fundamental solutions of parabolic equations, Osaka J. Math. 32
(1995), no. 2, 275 ‒ 312.

[St96] ——: Analysis on local Dirichlet spaces. III. The parabolic Harnack in-
equality, J. Math. Pures Appl. (9) 75 (1996), no. 3, 273 ‒ 297.

[St06a] ——: On the geometry of metric measure spaces. I, Acta Math. 196
(2006), no. 1, 65 ‒ 131.

[St06b] ——: On the geometry of metric measure spaces. II, Acta Math. 196
(2006), no. 1, 133 ‒ 177.

[Ta66] T. Takahashi: Minimal immersions of Riemannian manifolds, J. Math. Soc.
Japan 18 (1966), 380 ‒ 385.

[Ta96] M. Taylor: Partial Differential Equations, Volume 1,2,3. Springer-Verlag.
New York, NY, 1996

[W50] T. Willmore: Mean value theorems in harmonic Riemannian spaces, J.
Lond. Math. Soc. 1(1950), no. 1, 54-57.

[ZZ19] H. Zhang, X. Zhu: Weyl’s law on RCD∗(K,N) metric measure spaces,
Comm. Anal. Geom. 27 (2019), no. 8, 1869 ‒ 1914.

76


