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An efficient method for the anisotropic
diffusion equation in magnetic fields.
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Abstract

We solve the anisotropic diffusion equation in 2D, where the domi-
nant direction of diffusion is defined by a vector field which does not
conform to a Cartesian grid. Our method uses operator splitting to
separate the diffusion perpendicular and parallel to the vector field.
The slow time scale diffusion (perpendicular to the vector field) is solved
using a provably stable finite difference formulation, and parallel diffu-
sion represented by an integral operator. Energy estimates are shown
for the continuous and semi-discrete cases. Numerical experiments are
performed showing convergence of the method, and examples are given
to demonstrate the capabilities of the method.
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1 Introduction

The anisotropic diffusion equation provides a simplified model for transport
phenomena in magnetic confinement fusion devices. To confine a super
heated plasma, these devices use extremely strong magnetic fields which are
a few million times stronger than that of the Earth. The strength of the
magnetic field results in diffusive processes being orders of magnitude faster
along magnetic field lines compared to across them. The ratio of diffusion
coefficients parallel and perpendicular to the field lines can exceed ~ 101 [4].
This disparity in diffusive scales results in numerical errors quickly polluting
the solution when the computational grid is not aligned with the magnetic
field lines [5].

Gilinter et al. [5] resolved this issue by introducing a method which depends
on tracing the magnetic field lines, resulting in a field aligned form of the
anisotropic diffusion equation that minimises the numerical pollution [5].
Hudson and Breslau |7] showed that isocontours of equilibrium solutions of
the field aligned equation closely resemble features of the underlying field.
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This suggests that solutions of the equation can provide a proxy for other
properties important for the confinement of particles |7, 6, 11]. However, an
equilibrium solver can be undesirable even when these steady state solutions
are sought since, as the perpendicular diffusion vanishes, the problem becomes
ill conditioned at best and ill-posed at worst. To resolve the issue with ill-
posedness, Chacon, del-Castillo-Negrete, and Hauck [1] introduced a time
dependent method using operator splitting and replaced the parallel diffusion
term with an integral operator formulated in earlier work by del-Castillo-
Negrete and Chacon [15].

In this article we introduce an approach to solving a field aligned form of
the anisotropic diffusion equation which is provably stable and efficient. We
demonstrate this on a simplified 2D version of the problem where we consider
one spatial dimension lying purely parallel to the magnetic field and the
other perpendicular to it. For simplicity, we replace the magnetic field with
functions for the parallel map. This simplification captures many of the
challenges associated with the full 3D problem and works when field line
tracing is used. We derive energy estimates of the solution of the underlying
initial boundary value problem (IBVP). In the perpendicular direction we
approximate the diffusion equation using summation-by-parts (SBP) finite
difference operators [10]. Boundary conditions and the parallel diffusion term
are implemented weakly using the simultaneous approximation term (SAT).
We prove numerical stability by deriving discrete energy estimates mimicking
the continuous energy estimates. The numerical method can be extended to
multiple dimensions and complex geometries.

This article is ordered as follows. Section 2 details the SBP formulation,
which is used to discretise perpendicular to the magnetic field. Section 3
formally introduces the field aligned anisotropic diffusion equation, details
the simplifications made to reduce it to one dimension by introducing an
integral operator for the parallel transport, and provides a proof of well-
posedness. Section 4 introduces the semi-discrete form of the anisotropic
diffusion equation using the SBP with simultaneous approximation terms
(SBP-SAT), and the discrete form of the parallel integral operator. We also
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prove stability for the semi-discrete problem. The numerical approach for the
discrete problem is outlined in Section 4.1. Numerical results are presented
in Section 5. This includes demonstrating convergence by the method of
manufactured solutions, followed by some examples which illustrate the effects
of the parallel map and the robustness of the method. We summarise the
article in Section 6.

2 Preliminaries

Here we introduce the SBP formulation, which we use to prove the stability
of our scheme. More elaborate discussions are provided elsewhere |9, 8, 3, 2,
14]. We consider the spatial interval x € [0, L] and discretise it into n grid
points with a uniform spatial step Ax > 0:

L
n—1"

Let u: R?> = R be a scalar function and w = [u;(t),uy(t), - - un(t)]T € R*
denote the semi-discrete scalar field on the grid, where u;(t) ~ u(xj,t). The

xj=(—1)Ax, Ax= j=1,2,...,n.

operators D,, DS;J € R™™ denote discrete approximations of the first and
second spatial derivatives on the grid, that is (Dsu); ~ 0u/0x|x=,; and

(D,((];)u)j ~ 0 (kdu/0x) /0x|x=; , where the superscript k > 0 is the diffusion
coefficient in the second derivative. Furthermore, let H be a matrix which
induces a norm, inner product and quadrature rule. The discrete operators
D, and DSQ) are called SBP operators if
D,=H"'Q, Q+Q'=B:=diag([-1,0,...,0,1]), (1)
H=H", uHu>0, VYueR", (2)
DY =H'(-M®™ 4+ BKD,), M® =MM)T u"MPu>o0, (3)

XX

where K = diag([k(x1),k(x2), - ,k(xq)]). The SBP operators D, and D
are called fully compatible if

M® =D (KH)D,+RM, RO =R uREuz0, (4
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where R,Ek) is often called the remainder operator [8]. We use fully compatible
and diagonal norm SBP operators with H = Ax diag([h;, hy, -+, h,]), where
h; > 0 are the weights of a composite quadrature rule. The SBP properties (1)-
(3) are useful in proving numerical stability.

Remark 1. We call the operators D, and DX diagonal norm SBP operators
since the matrix H which induces the norm is diagonal.

3 The anisotropic diffusion equation

The field aligned anisotropic diffusion equation [5, 7| is

%:V-(KLVLU,)—FV-(QVNL), (5)
where V| is the directional derivative along the magnetic field, V, =V -V,
and k; >0 and k| > 0 are the diffusion coefficients in the perpendicular and
parallel directions, respectively. Note that k;/k; > 1 and can exceed ~ 10'°
in many relevant applications. Equation (5) is fully 3D in space. To simplify
we follow previous works outlined in Section 1, and solve equation (5) on
a 2D plane in the perpendicular (e; and e;) direction, which reduces the
computational complexity significantly. The effect of the parallel diffusion is
then included through an integral operator . This gives

0
a—?:V-(KLVLu)JriPHu, (6)
where
V-(KHVH)NTH, (u,(ﬂ’u—i—?ﬁ)u) <0. (7)

Here ’Pﬁ is the adjoint operator of P and (-,-) denotes the standard L,
scalar product defined on the 2D plane. The operator P can be constructed
explicitly, for instance with a Green’s function [15, 16, 1|, however we use an
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interpolation approach [5, 7|. In particular, we suppose P oc P¢ + Py, , where
P¢ and Py, are operators which trace the solution u onto the ‘forward’ (positive
along magnetic field) and ‘backward’ (negative along magnetic field) planes
and also mimic the diffusive integral operators so that Pru = we, Pyu = wy
and || P¢|l, ||Pv|| < 1. The purely parallel solution is then an average of the
two projected values, so that wj = (w¢ +wy)/2.

We also make the further simplification that u is constant in e, to reduce the
number of dimensions to 2D, with solutions now in 1D. Thus (5) reduces to

au_6<au

E_& K&>+T”u, XE[O,L], K=k, >0, (8)

with smooth initial condition
u(x,0) = f(x). 9)
For simplicity we also only consider the case of Neumann boundary conditions

ou ou

Kaxzozg(t), KEX:LZQ(U' (10)

To simplify the analysis we assume no-flux boundary conditions, where
g(t) = 0. However, the analysis can be extended to non-homogeneous
boundary data, g(t) # 0. The numerical experiments in Section 5 verify that
the analysis is true for non-homogeneous data. The following theorem proves
the well-posedness of the simplified problem.

Theorem 2. Consider the anisotropic diffusion equation (8) subject to the
smooth initial condition (9) and Neumann boundary conditions (10). If

(u, (P + fpﬁ)u) <0, then

d 2
— <0.
Sl
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Proof: We use the energy method; that is, we multiply (8) with the solu-
tion u and integrate over the domain:

L L L
0 0 0
Jo ua—ltldx = L us (K—u> dx + L uPudx. (11)
Integration by parts gives

1 L Lou 9 )
—dJ uzdx:—J —uK—udX—F{uK—u

L L
za . +J' U,fPHLLdX. (12)

0 0

Enforcing the boundary conditions (10) eliminates the second term on the
right. Adding the conjugate transpose of (12) gives

d 2 Lou ou
St =2 &y
ai JO ox “ox X+L

L
u (T” + 'PD udx < 0. (13)

[ )
To ensure stability of the numerical method we seek to mimic the energy
estimate (13) at the discrete level.

4 Numerical approach

We follow the method of lines by discretising the spatial variable while leaving
the time variable continuous. We approximate the spatial derivative using
SBP operators [9], while the boundary conditions and the parallel operator
are implemented weakly using penalties. The semi-discrete approximation of
the anisotropic diffusion equation (8) using the SBP-SAT method is

du

Pl DMu+sat+Pju, u(0) =f, (14)
where DL is the SBP operator given in (3) and

Al
A\

1
P = %H*1 K| (I — 5P+ Pb]) , SAT=1oH 'B(KDu—g), (15)
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are weak numerical implementations of the parallel diffusion operator (7)
and the boundary conditions (10), and where T and Ty are penalty pa-
rameters to be determined for stability. Boundary data is given by g =
[g91(t),0,...,0,gn(t)]". The matrices Py and P, are projection operators.
Future work will provide more detail on the construction of these operators.
Before showing stability we first prove the following lemma regarding the
definiteness of the numerical parallel diffusion operator.

Lemma 3. Consider the numerical parallel diffusion operator
Py=3IH A, A =1-1(P+Py), (16)
with k| =0, T) = o/Ax and « < 0. If |Pe]| <1 and ||Py| < 1 then
u'(Aj+ADu >0, u'[(HP)+(HP)Ju<0, VueR".

Proof: The sum A+ Aﬁ is symmetric. Since ||P¢|| and [|Py]| < 1, it follows
that u’ (ZI -3 |:(Pf +Pl)+ (Py+ PE)D u=u'(A+ Aﬁ)u > 0 Therefore
choosing o < O gives U [(HP”) + (HPy) ] u= %uT(AH + AH) <0. &

We now prove the stability of the semi-discrete approximation (14).

Theorem 4. Consider the semi-discrete approximation (14) for homogeneous

boundary data g = 0 where the numerical parallel diffusion operator P
and the SAT are given by (15), with T = a/Ax < 0 and 1o = —1. Let
[ull2, = uTHu, if |Pe]| <1 and ||Py| < 1 then

d

aHu”zH <0, YueR",

Proof: Multiply (14) from the left by u'H to obtain

d
THd—ttl — —u"(M™ + BKD,)u + Tou'BKDu + u"HPju.  (17)
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Choosing 1y = —1 and adding the transpose of the products gives

d K
EHuHZH =—-2u"™™M™u+u' [(HP)) + (HP))"Ju <0. (18)

[ )

4.1 The fully-discrete approximation

We discretise the time variable t,; = t; + At with the time-step At > 0
where to =0 and 1 =0,1,2,.... The fully discrete solution at the time level
t, > 0 is denoted by u' with u® = f. Solving the fully discrete version of
the semi-discrete anisotropic diffusion equation (14) is performed by operator
splitting. This results in a two stage solution is

(I+ AtH "M 2 = ul 4+ AtF(ti), Flty,,) = ToH 'Bg(ti), (19)

1 1
wi T =Putr w2 =Putts (20)
Atk 1 1 1
ut = ultr 4 —2” IH- (um — E[W?LZ +WL+2]>. (21)

The first stage is the perpendicular solution using the backward Euler approx-
imation and involves solving an elliptic linear system which can be solved
efficiently by the conjugate gradient method. Stage two, which includes (20)
and (21), propagates the parallel diffusion and can be computed directly.

5 Numerical results

We first demonstrate the convergence of the SBP-SAT scheme (without a
parallel component) by the method of manufactured solutions |13, 12]. We
choose the manufactured solution, with exact solution

u(x,t) = cos(27tt) sin(177tx + 1) . (22)
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Figure 1: Convergence rates for second (blue) and fourth (red) order SBP
operators with first order time solver. Dashed lines are references lines and
have the expected slopes for associated convergence rates.

The convergence results are shown in Figure 1. We set a fixed time step of
At = Ax*/100. Comparison with the (dashed) reference lines shows both
slightly over-perform their expected convergence rate with ~ O(h??) for the
second order, and ~ O(h*?) for the fourth order.

5.1 Examples

We now present examples of the field aligned 1D anisotropic diffusion equation
which demonstrate the effect of the the parallel operator on the solution.
These are shown in Figures 2 and 3. In all cases the boundary conditions
are no flux, 0,uly—o = 0yuly—1 = 0, and the diffusion coefficients in the
perpendicular and parallel directions are k; = 1073 and Kp=1.
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Figure 2: Top left: Parallel mapping given by F; in equation (24). Bottom
left: Solution to (8) at various times with parallel map given by equation F,
in (24). Top right: point mapping as per F, in (24). Bottom right: Solution
to (8) at various times with parallel map given by equation F, in (24).

The initial condition for the example in Figure 2 is a Gaussian:

—(x—0.5)?
0.02 ) '

The parallel maps in the forward and backward directions are

Fi(x) =1 —exp(—x) and Fy(x) = %[tanh(zmc —m)+ 1], (24)

u(x,0) = exp ( (23)

respectively. The point mappings of F; and F, are visualised in the top row
of Figure 2.

Solutions in Figure 2 tend towards a uniform value, as expected with no-flux
boundaries. Given the point mapping by F;, we see the right hand side of
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Figure 3: Top: Distribution of points on forward and backward planes, showing
a slight bias towards the right side of the domain. Bottom left: Evolution
of solution with random point mapping and initial condition specified by F4
n (24). Bottom right: Same as right figure, but initial condition given by F,
n (24). The black line in the lower figures corresponds to the 1D solution
without parallel mapping.

the solution maps to the centre of the Gaussian profile, which explains the
larger u for larger x values seen in the lower left plot of Figure 2 . The point
mapping by F, diffuses into low u regions, quickly flattening out the solution.

The example in Figure 3 demonstrates both the robustness of the approach
and the effect of the operator on a standard 1D solution to the equation. Here
the forward and backward maps randomly map points in the domain. The
parallel maps F; and F; in (24) are now used as the initial conditions in the
left and right plots of Figure 3, respectively.
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Solutions are again uniform, as expected, and are compared to a solution with
no parallel mapping (black line). They deviate from the no parallel mapping
solution because the parallel map has a slight bias towards the right side of
the domain, as shown in the bar plots at the top of Figure 3. In the case of
the Gaussian on the left of Figure 3, this results in diffusion from the high u
into the low u region, reducing the final state of the solution. In the sigmoid
function, on the right of Figure 3, points are mapped into the high u region,
resulting in a slightly higher final solution than the no parallel mapping case.

6 Conclusions

We have derived a stable and efficient numerical operator splitting technique
to solve the anisotropic diffusion equation in a two dimensional geometry
not aligned with a regular mesh. We achieve this with the use of SBP with
SAT in the perpendicular solution and an integral operator for the parallel
solution. The time steps are evolved by using an implict Euler conjugate
gradient method.

Our method produces accurate results, verified by the method of manufactured
solutions. The results show the SBP-SAT method outperforms the expected
second and fourth order convergence rates. Examples show our method solving
the field aligned anisotropic diffusion equation with a variety of parallel maps.
Moreover, the random point mapping examples shows our approach is robust.

Future work will extend this method to two-dimensional planes in the per-
pendicular direction and use parallel maps given by systems of ordinary
differential equations. Specifically we will be interested in extending the
method to geometry provided by real magnetic fields.
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