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ABSTRACT

The purpose of this study was to design, teach, and evaluate an undergraduate

interdisciplinary mathematics course based on certain patterns, primarily the Fibonacci

sequence. Rationale for the course includes the benefits of connected learning and the

scarcity of liberal arts courses based on mathematics. The course is intended to emphasize

pattern exploration in mathematics as well as in other disciplines. It is hoped that students

in the course will find connections between mathematics and history, art, architecture,

music, literature, nature, and economics.

Course design includes a syllabus, student textbook, and sample lesson plans. The

student textbook explores mathematical connections with the Fibonacci sequence such as

the golden ratio, Pascal's triangle, Pythagorean triples, combinatorics, and fi-actal

geometry. Historical background of Leonardo Fibonacci's life and times in the High

Middle Ages is used to introduce the course. Applications of Fibonacci numbers in art,

architecture, music, literature, nature, and economics are discussed. Students are asked to

assess the meaning of these connections in light of their liberal arts experience.

Evaluation of the course, primarily qualitative in nature, gives evidence that the

pilot offering of the course enabled students to see relationships between various fields of

study in a new way.
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INTRODUCTION



PARTI

INTRODUCTION

The famous "Fibonacci sequence" is a source of great interest for mathematicians,

both because of its number theoretic properties and because of its connections with other

disciplines such as art and music. A look at its origin in Fibonacci's writing promotes

interest in the hist(My of the Middle Ages as well as the history of mathematics. For these

reasons, it seems that an interdisciplinary study for undergraduates in a liberal arts setting

could be built around this and other mathematical patterns.

Purpose

The purpose of this study is to design an interdisciplinary mathematics course

based on the Fibonacci sequence and to determine whether the course improves an

individual's ability to make connections between mathematics and other disciplines.

The original idea for such a course came as a result of 1996 revisions in the general

education curriculum at Maryville College, an undergraduate liberal arts institution

located in Maryville, Tennessee. The new curriculum provided for, among other

changes, a senior capstone course designed to integrate the various disciplines included in

a student's four-year experience. The author believed that mathematical patterns,

particularly those found in the Fibonacci sequence, would provide the basis for a useful

"Senior Seminar" offering. Guidelines for the senior seminar included the following

goals:



1. The creative and critical exercise of the scientific, artistic, and humanistic

modes of inquiry, and their integration.

2. Oral communication skills that enable effective comprehension, analysis,

and expression.

3. A sense of wonder, curiosity, and a willingness to explore.

4. Global perspective that draws on an understanding of Western and other

cultures, including cultures very different from one's own.

The course description and modes of delivery given are as follows; "This course should

provide the student with the skills and the opportunity to integrate across at least two

modes of inquiry. The course is interdisciplinary in nature. It should follow a thematic

approach that examines topics from across two divisions and includes global

perspectives. Assignments should include use of primary sources, such as texts, films,

and art works. Also, the course should provide the student with opportunities to refine

oral communication skills beyond classroom discussion. While some offerings could be

developed by teams, the expectation is that individual faculty will model the integration

of modes of inquiry." {Guidelines for Senior Seminar atMaryville College)

Because of the connections to art, music, literature, nature, and technology found

in the Fibonacci sequence, this number pattern seemed a natural basis for such a course.

Fibonacci himself is considered by many to be the greatest mathematician of the Middle

Ages, and his contributions to mathematics and culture of that time provide global

perspective for such a study. The course "Finding Fibonacci," described in Part n of this

study, was designed to be proposed as a Senior Seminar in the spring of2000.



The overall goal of this course is to improve an individual's ability to make

connections between mathematics and other disciplines. Four additional goals, related to

the Senior Seminar goals, are listed as follows:

(1) Willingness to explore mathematical patterns and to find them in the arts,

humanities, natural sciences, and social sciences.

(2) Oral communication skills that enable effective comprehension, analysis,

and expression.

(3) The integration of the scientific, artistic, and humanistic modes of inquiry.

(4) Increased interest and fluency in mathematics.

In addition to these stated goals, the author hoped the course would (1) encourage

skepticism as well as wonder in searching for patterns in nature and the arts; and (2)

alleviate mathematics anxiety if it existed.

Rationale

Historically, mathematics has been central to the liberal arts: the quadrivium

consisted of arithmetic, geometry, astronomy, and music. Together with the trivium

(logic, grammar, and rhetoric), these subjects made up the classical liberal arts

curriculum. Connections between mathematics and philosophy are well-known, and

mathematics obviously provides the basis for many scientific discoveries. Therefore it is

persuasive for an interdisciplinary mathematics course to have an important place in the

curriculum of a liberal arts college.

One goal of the liberal arts curriculum is connected learning. According to

Harlan Cleveland (quoted in Gaff^ 1991, p. 52), integration " 'is what is higher about
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higher education."' The National Council of Teachers of Mathematics, in its Curriculum

and Evaluation Standards for School Mathematics (1989), advocates . .a curriculum for

all that includes a broad range of content, a variety of contexts, and deliberate

connections" (p. 255).

Rmben Hersh (1990) recommends teaching mathematics using an "open,

humanistic approach—that concentrates on where mathematics comes from...." He

raises the question: "Is mathematics an arcane technical specialty, unrelated to histoiy,

philosophy, literature, or art? Is each mathematical subject a self-contained, static,

timeless structure, with no meaning or value outside itself?" The obvious answers to

these questions underscore the importance of a study relating mathematics to other areas

of life.

The importance of cotmections is described by Newman and Boles (1992): "In

this world of overspecialization, much of education deals with discrete bits of

information rather than large systems. People, therefore, are not trained to find

connections. Without coimections, value systems are difficult to develop. In the

evolution of civilization. Art and Mathematics are disciplines that have been seen as

polarities without connection. Yet, in fact, they are the left and right hand of cultural

advance: oneistherealmofmetaphor, the other, the realm of logic. Ourhumanness

depends upon a place for the fusion of fact and fancy, emotion and reason. Their union

allows the human spirit freedom." (p. xiv).



Methodology

Design of the course first involved writing a student textbook. This was primarily

historical research, collecting and integrating information about Fibonacci and his

sequence as it is found in various fields. In compiling the textbook, the author

assimilated information from the sources listed at the end of each section. Full references

for these sources are given at the end of the textbook. Lesson plans were created using

resources available to mathematics educators.

In order to evaluate the effectiveness of such a course, the author made

arrangements with her employer, Maryville College, to pilot it as an experiential offering

in the spring of 1999. Enrollees were informed that their responses to certain aspects of

the course would be used for evaluation of the course and that confidentiality would be

preserved. The textbook, lesson plans, and activities described in Part n of this study

were used.

At the end of the course, responses to course evaluation forms, pre- and post-

course questions, and other assigned writings were analyzed to determine to what extent

the course improved an individual's ability to make connections between mathematics

and other disciplines. In addition, the four course goals were assessed through student

responses. These results are summarized in Part m.

Certain mathematics problems arose for the author herself to investigate during

the course of the writing. This served as a model for the students who were expected to

discover and verify number patterns. These "Personal Case Studies" are included in

Appendix A. One of these arose from a conjecture by two students in the class.



The author consulted with Dr. Herta Freitag of Roanoke, Wginia, a long-time

member of the Fibonacci Association. Her mathematics career as well as her life stoiy

became an intriguing aspect of the study. A biographical sketch is therefore included in

Appendix C. As a result of this friendship, the author attended the 8^ International

Conference in Fibonacci Numbers and Their Applications in Rochester, New York, in

June 1998. She there became acquainted with several long-time members of the

Association such as Maijorie Bicknell-Johnson, Piero Filipponi, and Calvin Long.

Interest in the Association and its quarterly journal resulted in inclusion in this study of

Ms. Bicknell-Johnson's history of the Fibonacci Journal in Appendix B. Conference

attendance provided other enrichment for the study, including acquaintance and many

conversations with Ron Knott of the University of Surrey, author of a comprehensive

web page on Fibonacci numbers.

Appendix D lists qualitative data obtained from course evaluation forms and pre-

and post-course questions. Excerpts from these are included in Part m.
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SYLLABUS

Course: "Fun with Fibonacci" (3 hours experiential credit)

Instructor: Ms. Margie Ribble

Textbook: Finding Fibonacci, by M. Ribble ($15)

Description: Students will explore and connect simple mathematical patterns found in
the Fibonacci sequence, golden ratio, and Pascal triangle; will discover how
these patterns are found in other areas; and will investigate the historical
context of these mathematical discoveries. Patterns in art, architecture,
music, literature, nature, economics, and technology will be specifically
targeted. Students will be expected to prepare an oral presentation on a
related topic of interest.

Schedule: Tuesdays, 6-9 p.m., January 5-March 2; Saturday, February 27, 1999

Prerequisite: Statistics 120

Course goals:

(1) Willingness to explore mathematical patterns and to find them in the arts,
humanities, natural sciences, and social sciences.

(2) Oral communication skills that enable effective comprehension, analysis, and
expression.

(3) The integration of the scientific, artistic, and humanistic modes of inquiry.

(4) Increased interest and fluency in mathematics.

Grading: Each student will prepare a 15-20 minute oral and written presentation on a
topic of interest from the course (suggestions for topics will be given in
textbook).
Each student will keep a portfolio of assignments and writings.
Each student will be expected to attend class and participate in classroom
activities.

Grades will be based on: 40% presentation
40% portfolio
20% attendance and participation
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Introduction

This student guide provides readings, assignments, and project suggestions for the course
"Fun With Fibonacci." The Historical Background Unit places Fibonacci's work in the
context of his time. Students will read and discuss life in the Middle Ages and will
summarize mathematical discoveries prior to 1200 C.E. The Mathematics Unit presents
concepts in number theory and geometry related to the Fibonacci sequence and the
golden ratio. Succeeding units will demonstrate and encourage students to discover
mathematical patterns, primarily Fibonacci numbers and the golden ratio, in art,
architecture, music, nature, literature, and economics.

Sources given at the end of each section are those used by the author and may also be
used by students in further research for topic presentations. Complete references are
given in the "Sources" section at the end of the textbook, pages 1-S through 7-S.
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1-1

1.1 Life in the Middle Ages

Before we look at the contributions Fibonacci made to mathematics, we will examine his
life in the context of the times in which he lived. The period from 1050-1300 A.D. (now
C.E.—Common Era) in Europe is often called the Hi^ Nfiddle Ages. The time was
characterized by relative stability following the turmoil of the previous few centuiies. The
thirteenth century, in particular, was the most prosperous Europe had known since the fall
of the Roman Empire. New energy for discovery in political, economic, and scientific
areas was evident. Several factors contributed to the growth and cultural revival during
the Ifigh Middle Ages.

One of the most important developments was the growth of cities and towns. During the
previous few centuries, people had clustered around castles for protection from warring
Germanic tribes and from rival feudal monarchies. With the increased political stability of
the High Middle Ages, more people were able to live in towns and were not as
preoccupied with protection and safety. A new middle class of merchants and tradesmen
grew up. Cities around the Mediterranean were particularly prominent because of access
to shipping trade. Genoa, Pisa, Venice, Milan, and Florence, all in what is now Italy, were
independent republics. Paris became the largest city in Europe.

One contributing factor in the growth of these cities was increased trade and commerce
throughout Europe. What had been primarily a rural barter economy was becoming more
of an urban mercantile system. Italian merchant-bankers were active in trade with most of
Europe and north Africa. Spices from the Far East were the most desirable commodities;
these were used for seasoning, but were also important for medicines, cosmetics, and food
preservation. Such cargoes were transported by ship from the East to Syria or to the Red
Sea and then overland to Mediterranean ports where they could easily be taken by ship to
Pisa, Venice, and Genoa. This brought increased contact between Europeans and peoples
of Arab countries and created new interest in Arab culture and learning.

The Crusades, which took place during the High Middle Ages, also contributed to
renewed interest in travel to the Middle East. Idealistically conceived as "Holy Wars" to
free Jerusalem from the Muslim infidels, these pilgrimages nevertheless were fueled by
mixed motives, including materialistic ones. Ironically, Jerusalem was briefly taken in
1197 by Frederick 11, who had been excommunicated by Pope Gregory IX. In any case,
the Crusades helped to make Europeans aware of the advanced civilizations of the Arab
countries.

In addition to becoming important commercial centers, Italian cities were advanced in
cultural and educational areas. The first medical school was established in Salerno in

18
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In addition to becoming important conunercial centers, Italian cities were advanced in
cultural and educational areas. The first medical school was established in Salerno in
southern Italy. Early in the twelfth century the first univer»ty was founded in Bologna.
Cathedral schools became filled due to renewed interest in learning, and other universities
were soon established at Oxford, Padua, Naples, and Cambridge.

The power of European kings during this period depended largely on their individual
personalities. The Christian Church, headed by the Pope in Rome and a strong
hierarchical structure, was an important influence on people and governments.
Monasteries were cloistered centers of learning in which copying and studying Greek and
Roman manuscripts was a primary activity. However, during the 12*'' and 13"' centuries
monastic orders became more involved in the lives of the people. There was new interest
in human aspects of Christianity such as the Nativity and the Virgin Mary. Cathedrals and
monasteries were the most important institutions and structures in the towns and cities.

In southern Europe most cathedrals were Romanesque in style, reflecting both Roman and
Arab influences. Among characteristics of this style are round arches, massive
construction in masonry, and heavy moldings. The cathedral in Pisa, on whose grounds
the "Leaning Tower" was constructed, is a good example of Romanesque architecture.
However, the Ifigh hfiddle Ages is probably best known today for Gothic architecture
which began in France. This style emphasized light and color and was intended to carry
the eye upward toward heaven. Pointed arches and elaborate patterns of vaulting
characterized Gothic architecture. Stained glass and sculpture told Biblical stories. Many
of these buildings are still standing and still magnificent, such as the Cathedral of Notre
Dame in Paris. These two architectural styles, Romanesque and Gothic, influenced
painting and sculpture as well.

Music of the High Middle Ages that has been preserved was primarily church music,
because only clerics were musically literate. Most church music was monophonic or
"plainchant," that, is, sung in unison without accompaniment; however it could be varied
by being sung antiphonally. Some of the finest music was written by a woman, Hildegard
of Bingen (1098-1179), who was a religious visionary, poet, and musician. Without doubt
the secular life was enriched with mu»c as well—seasonal peasant celebrations, court
ceremonies, and daily rituals—although these songs were not written down.

In literature, Latin was still the predominant language, but the languages of the people
began to find their way into some writings. Love lyrics and courtly romance tales
promoted the idea of romantic love in such literature as well as in music and art of the
time. Marriage remained mostly an arranged institution, however, with husbands often
keeping mistresses. The most notable literary work was Dante's Divine Comedy, written
in the Florentine dialect. The beauty of Dante's verse eventually made this dialect the
Italian language.

19
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and re-stated. It was believed that administration of justice was the chief function of
government, and the Church, which supported justice as a virtue, upheld this belief. Juries
were called to make decisions, and evidence was examined in court.

By the fourteenth century, several disasters brought an end to this period of growth and
prosperity. The Black Death, an epidemic of bubonic and pneumonic plague, killed 25 to
45 percent of the population of Europe. The Great Schism of 1379 left Europe with rival
popes for many years. The Hundred Years War between France and England caused the
decline of France's prominence on the continent.

It is clear why the time in which Fibonacci lived is often called the "The Renaissance of the
Twelfth Century." Stability and relative prosperity brought increased interest in culture
and learning throughout Europe, but particularly in the cities of the Italian peninsula.

Sources:

Gies&Gies(1969).

Hollister(1972).

LaMonte (1949).

Lucie-Smith (1992).

Nftcrosoft Encarta Encyclopedia (1996).

Strayer (1955).

Van Doren (1991).
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1.2 Mathematics History up to the Middle Ages

Our look at the history of mathematics to 1200 vsdll focus on major advances and a few
outstanding individuals who made significant contributions to its development. There
are, of course, many other persons, known and unknown, to whom progress could be
attributed.

Earliest civilizations grew up along the major river valleys in Africa and Asia. The
Babylonians, Chinese, and Egyptians are examples of those civilizations which were
most advanced in mathematics as well as in other areas. These early peoples used
mathematics mostly for counting and measuring. However, evidence has been found as
early as 1600 B.C.E. of some quadratic and cubic equations as well as calculations of pi
and use of the 3-4-5 triangles to construct right angles.

Greek civilization, beginning in about 500 B.C.E., used Babylonian and Egyptian
discoveries in mathematics. One of the early outstanding mathematicians was
Pythagoras, bom about 572 B.C.E. Interestingly, he was a contemporary of Confucius,
Buddha, and Lao Tze. He settled in Crotona, in southern Italy, where he founded the
famous Pythagorean school. Concemed with the study of philosophy, mathematics, and
science, the school was somewhat of a secret society or brotherhood. The basic premise
of the school was that whole number is the basis of matter; "All is number" was their

motto. This led to what later became the quadrivium: arithmetic, geometry, music, and
astronomy, the fundamental liberal arts. The Pythagoreans are known for number theory
and numerology, and they also worked on the problem of irrational numbers. It is
unclear whether Pythagoras actually proved the theorem that bears his name, though
proofs dating back 1000 years before his time are known. In fact, there are probably 400
different proofs of the Pythagorean Theorem.

The city of Alexandria was founded in 332 B.C.E. by Alexander the Great, and it was a
significant cultural and educational center for the next 700 years. Located in northern
Egypt, it was part of Alexander's Macedonian Empire. Following Alexander's death, his
empire was divided and Ptolemy took over Egypt and established Alexandria as his
capital. He erected the famous University of Alexandria which opened in about 300
B.C.E. He recruited talented men from Athens to staff his university. The university
became such a center of mathematical study that almost every mathematician of note
during this period of history was associated with Alexandria.

Among Ptolemy's recruits from Athens was the mathematician Euclid. Though little is
known about his life, one of his writings, the Elements, has dominated the teaching of
geometry for more than 2000 years. No other work except the Bible has been more
widely studied. The Elements contains 13 books on the subjects of geometry, number
theory, and geometric algebra. More significant than the content is the logical order of
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his axioms, postulates, and propositions. It is truly a deductive system, showing that each
statement follows logically from a previous statement or from {M'eliminary definitions.

The greatest mathematician of antiquity, according to Eves, was Archimedes (287-212
B.C.E.). He w(»-lced on the problem of calculating pi, showed an early attempt at using
integral calculus, and developed geometry. Much of his writing dealt with physics as
well as mathematics, and he is known for the quote: "Give me a place to stand on and I
will move the earth." You will also remember the story of how he figured out, while
taking a bath, that the weight of the water displaced by a body is equal to the weight of
the body. He reportedly le^t from the bath and went running naked down the stre^
shouting "Eureka, Eureka!"

Diophantus of Alexandria, whose dates are not exact but probably lived about 250 C.E.,
is sometimes known as the "Father of Algebra." He used symbols to represent squares,
cubes, and unknown numbers. The following riddle is attributed to him:

God grmted him to be a boyfor the sixth part of his life, and adding a twelfth
part to this. He clothed his cheeks with down; He lit him the light ofwedlock after
a seventh part, andfive years after his marriage He granted him a son. Alas!
late-bom wretched child; cfter attaining the measure ofhalfhis father's life, chill
Fate took him. After consoling his grief by this science of numbersforfour years
he ended his life (Boyer, quoting Cohen and Drabkin, 1958). How old was he
when he died?

His major work, the Arithmetica, included an assortment of 189 jM'oblems and their
solutions. The name "Diophantine equations" was later given to a problem with several
unknown quantities for which one is interested in integer solutions.

These developments took place in the civilizations around the Mediterranean, from which
most of our Western thou^t can be traced. However, civilization in China flourished
even before Greek and Roman times. By 1400 B.C.E. the Chinese had a positional
number system with nine symbols. Fewer records of early Chinese mathematics exist
today than those of Egyptians and Babylonians, largely because of the difference in
climate which affected preservation of written records. Astronomy was of great interest
to the Chinese, and inspired much of their mathematical discovery. The oldest arithmetic
textbook in existence is the Nine Chapters on the Mathematical Art, dating from about
150 B.C.E. Chinese mathematics was more concerned with number and algebra than
with geometry, although the oldest known proof of the Pythagorean Theorem is found in
a Chinese work. Arithmetic Classic of the Gnomon and the Circular Paths of Heaven.
During the period known in Europe known as the Dark Ages, Chinese civilization and
mathematics flourished, but most of the mathematics was of a practical rather than
theoretical nature.
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Following the fall of the Greek and Roman Empires, mathematical study in Europe was
maintained chiefly in monasteries. Very little new mathematics was accomplish^ during
the next 500 years, with the possible exception of development of the Christian calendar.
However, Hindu and Arabian mathematics were thriving during this time, though
historical records of their development are scant. lEndu mathematics was undoubtedly
influenced by Greek, Babylonian, and Chinese mathematics. Astronomy was the
predominant theme; in fact, there was very little of a pure mathematical nature. There
was no algebraic symbolism, so problems and solutions were written out in flowery
language. Aryabhata and Brahmagupta, who lived during the fifth through seventh
centuries about 100 years apart, contributed greatly to the study of Diophantine
equations.

After Mcdiammed's flight in 622 the Moslem countries became a powerful world force.
During the ensuing centuries, many classical Greek works in mathematics and astronomy
were translated into Arabic and thus preserved. Among important Arab mathematicians
was Ai-Khowarizmi in the 9th century. It is his name that gave us the word "algorithm,"
and the word "algebra" came from his treatise Al-jabr wa 7 muqahcdah The number
system used in Hindu and Arab countries had obvious advantages over the European
Roman numerals.

By about the 10th century, Greek learning began to come into Europe through Christians
travelling to Moslem centers of learning. Trade with Arab countries helped with
transmission of learning, and important European trade centers of the time were Genoa,
Pisa, Venice, Milan, and Florence. The stage is set for the arrival of our hero, Leonardo
of Pisa, otherwise known as "Fibonacci."

Assignments:

1. Solve Diophantus'riddle.

2. Write a short (one page) summary of one of the following;

Hypatia
Euclid's Elements

^)ollonius of Perga
Aristarchus of Samos

Menelaus of Alexandria

Boethius

Chinese mathematics before 1200 A.D.

Brahmagupta
Omar Khayyam
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Sources:

Boyer(1991).

Burton (1991).

Eves (1964).

Hollister (1974).

Microsoft Encarta Encyclopedia (1996)

Van Doren (1991).
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1.3 Leonardo of Pisa

Leonardo of Pisa, also known as Fibonacci ("son of Bonaccio"), is considered the
greatest mathematician of the Middle Ages. He lived during the time construction began
on the &mous "Leaning Tower" of Pisa—approximately 1175-1250 A.D. During his
youth he traveled widely around the Mediterranean and was educated in North Africa by
Muslim teachers.

There were two classes of mathematicians in the later Middle Ages: those involved in
conunerce and those in the churches or universities. The mathematics required for trade
and commerce was of course more practical in nature, concerned with units of
measurement and monetary units. In the universities, mathematicians studied the
traditional "liberal arts," consisting of the Trivium (grammar, rhetoric, and dialectic) and
the Quadrivium (arithmetic, geometry, music, and astronomy). These had not changed
appreciably since the time of Plato and Euclid.

Through his studies and travels, Leonardo learned from the mathematics of the Arabs.
He saw that the Hindu-Arabic number system was much more efficient than the Roman
numerals used in Europe. This system, as it had evolved at that time, was a place value,
positional notation system consisting of ten symbols including a symbol for zero. The
value of, say a "7", depended on its "place" in the numeral: 73 means 7 tens and 3 ones,
whereas 37 means 3 tens and 7 ones. This seems perfectly logical to us now, but it was
new to Europe in the Middle Ages.

In 1202, Leonardo published his Liber Abaci, which literally means "A Book About the
Abacus" or "A Book About Counting." Unlike other mathematical treatises of the time,
it was more concerned with number than with geometry; however in the introduction to
the work, Leonardo maintained that arithmetic and geometry are connected and support
each other. One purpose of this writing was to show Europeans the advantages of the
Hindu-Arabic number system and how efficient it could be in solving number problems.
It is widely believed that the second edition of Liber Abaci, 1228, was influential in the
spread of this numeral system in Europe. The chief objection to the new system was non-
standard appearance of some of the digits, and the fact that it was easy to cheat by
making a 9 or a 6 look like a 0. Roman numerals were used until about 1550 in many
monasteries in Europe, but the invention of printing in the fifteenth century helped
standardize the digits and spread the use of Hindu-Arabic numerals.

Most of the problems set forth in Liber Abaci are boring word problems concerned with
number and money. We will try some of them in class. However, among these was the
following problem about breeding rabbits:
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Haw many pairs of rabbits will be produced in a year, beginning with a single
pair, if in every month each pair bears a new pair which becomes productive from
the second month on?

This is a fairly unrealistic problem in that you have to assume that none of the rabbits die
and that incest undoubtedly occurs. But as a mathematics jH-oblem it holds great int^est.
First let's clear up the breeding situation and say that at the end of the first mcmth there is
only one pair, the original pair, and at the end of the second month there is still only the
original pair. But at the beginning of the third month a pair of babies is bom. The
parents continue to have pairs of babies at the beginning of each month, and the new pair
of babies begins to have pairs of babies at the beginning of the fifth month. The table
below summarizes the number of pairs of rabbits at the end of each month:

Months Adult Pairs Young Fairs Totrd

1 1 0 1

2 1 0 1

3 1 1 2

4 1 2 3

5 2 3 5

6 3 5 8

7 5 8 13

8 8 13 21

9 13 21 34

10 21 34 55

11 34 55 89

12 55 89 144

This problem gave rise to the following sequence of numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,...

in which each element in the sequence is the sum of the previous two elements.
Although Leonardo probably had no idea of its importance, this sequence provides
fascination for mathematicians, artists, musicians, botanists, and others. The formula for
the wth Fibonacci number was fu^st written by Albert Girard in 1634 in his work
L 'Arithmetique de Simon Stevin de Bruges (Burton, p. 265):

F, =F^ =1, Pn=P.-^^Fn-2 forall/i>3.

This formula is therefore "recursive" in that each number can be obtained fi'om previous
numbers in the sequence after initial values are established; in fact, the Fibonacci
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A

numbers are the first known recursively defined sequence in mathematics. In the 19
century, Edouard Lucas, a number theorist, gave this sequence the name 'Tibonacci
sequence." Numbers in the sequence are called "Fibonacci numbers."

Leonardo's other significant writing. Liber Quadratorum (Book of Squares), investigated
diophantine equations of the second degree. One typical problem, which was presented
to him by Jdm of Palermo but which had earlier been investigated by Arab writers,
required that he find a number for which increasing or decreasing its square by 5 would
give a square as the result. No integer solutions can be found; however Leonardo found a
rational solution.

In assessing Leonardo's place in history, we read:

"Fibonacci's work indicates a combination of inventive genius and a profound
knowledge of earlier writers on mathematics" (Burton, p. 260).

^\Liber Quadratorum] marked him as the outstanding mathematician in this field
between Diophantus and Fermat. These works [Liber Abaci, Practica Geometriae, and
Liber Quadratorum] were beyond the abilities of most of the contemporary scholars"
(Eves, p. 212).

"Le(Miardo of Pisa was without doubt the most original and most ciqiable mathematician
of the medieval Christian world, but much of his work was too advanced to be
understood by his contemporaries. [In his writings] there are indeterminate problems
reminiscent of Diophantus and determinate problems reminiscent of Euclid, the Arabs,
and the Chinese" (Boyer, p. 256).

Exercises:

1. What is the 20^ Fibonacci number?

2. Write a computer program (or graphing calculator program) to generate the mh
Fibonacci number using the recursive formula above.

3. Create a number system using 5 symbols (make them up). Write the numbers 10,
12, 37, and 43 in your new system.

4. Formulate John of Palermo's problem (see above) as a pair of simultaneous
Diophantine equations and solve it, if possible.
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Project suggestions:

Commerce during the Middle Ages

Unit fractions; how fractions were written in 1200

Lucas sequence

Sources:

Boyer (1991).

Burton (1991).

Eves (1964).

Gies & Gies (1969).
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Problems from Liber Abaci:

1. A man entered an orchard through seven gates, and there took a certain number of
apples, When he left the orchard he gave the first guard half the apples that he had
and one q)ple more. To the second guard he gave half his remaining q)ples and
one nK>re. He did the same to each of the remaining five guards, and left the
orchard with one apple. How many apples did he gather in the ordiard? (Eves,
p. 231)

2. Two birds start flying fi-om the tops of two towers 50 feet apart; one tower is 30
feet high and the other 40 feet hi^. Starting at the same time and flying at the
same rate, the birds reach a fountain between the bases of the towers at the same
moment. How far is the fountain fi'om each tower? (Burton, p. 262)

3. A merchant doing business in Lucca doubled his money there and then spent 12
denarii 12denarii. On leaving, he went to Florence, where he also doubled his
money and spent 12 denarii. Returning home to Pisa, he there doubled his money
and again spent 12 denarii, nothing remaining. How much did he have in the
beginning? (Burton, p. 262; Gies, p. 101)

4. Three men, each having denarii, found a purse containing 23 denarii. The first man
said to the second, "If I take this purse, I will have twice as much as you." The
second said to the third, "If I take this purse, I will have three times as much as
you." The third man said to the first, "If I take this purse, I will have four times as
much as you." How many denarii did each man have? (Burton, p. 262) (In the
Gies ver^n, p. 103, the 23 is omitted fi'om the first sentence).

5. A certain lion could eat a sheep in 4 hours, and a leopard could eat one in 5 hours,
and a bear in 6 hours; how many hours would it take for them to devour a sheep if
it were thrown in anK>ng them? (Gies, p. 101)

6. There were two men, of whom the first had 3 small loaves of bread and the other
2; they walked to a spring, where they sat down and ate; and a soldier joined them
and shared their meal, each of the three men eating the same amount; and when all
the bread was eaten, the soldier departed, leaving S bezants to pay for his meal.
The first man accepted 3 of the bezants, since he had had 3 loaves; the other took
the remaining 2 bezants for his 2 loaves. Was the division fair? (Gies, p. 102)

7. A man whose end was ̂proaching summoned his sons and said: "Divide my
money as I shall prescribe." To his eldest son, he said, "You are to have 1 bezant
and a seventh of what is left." To his second son he said, "Take 2 bezants and a
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seventh of what remains." To the third son, "You are to take 3 bezants and a
seventh of what is left." Thus he gave each son 1 bezant more than the previous
son and a seventh of what remained, and to the last son all that was left. After
following their father's instructions with care, the sons found that they had shared
their inheritance equally. How many sons were there, and how large was the
estate? (Gies, p. 102)

8. A certain merchant sailed on a certain ship with 13 bales of wool of equal value, a
second with 17 bales of the same value. When they arrived in port, the captain
asked them for the charge they had agreed upon, but th^ did not have the ca^ to
pay it. The first merchant sai4 "Accept 1 of my bales for the price of carrying the
13 bales, and give me back the change." The captain accepted, returning 10 solidi
for the excess of the value of the bale over the charges for carrying 13 bales.
When he collected the &re of the second man, he took one bale fi'om him and
returned 3 solidi. How much were the bales worth, and what was the shipping
charge for each bale? (Gies, p. 102-103)

9. There are four men, of whom the first and the second and third together have 27
denarii-, the second and the third and the fourth together have 31; the third and the
fourth and the first have 34; and the fourth and the first and the second have 37.
How much does each have? (Gies, p. 103)

10. Two ants are 100 paces apart, crawling back and forth along the same path. The
first goes 1/3 pace forward a day and returns 1/4 pace, the other goes forward 1/5
pace and returns 1/6 pace. How many days before the first ant overtakes the
second? (Gies, p. 104)

11. A certain person bought sparrows 3 for a denarius and turtledoves 2 for a
denarius and pigecms for 2 denarii ̂ iece; and he bought 30 birds for 30 denarii.
How many birds of each kind did he buy? (Gies, p. 104)

12. If A gets fi-om B1 denarii, then i4's sum is fivefold 5's; if5 gets fi-om A 5 denarii,
then .&'s sum is sevenfold .^'s. How much has each? (Eves, p. 230)

13. A certain king sent 30 men into his orchard to plant trees. If they could set out
1000 trees in 9 days, in how many days would 36 men set out 4400 trees? (Eves,
p. 230)
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2.1 Preliminary Considerations

In this unit we will review the mathematical concepts required to study the Fibonacci
sequence. We will first review some basic notation.

The history of mathematics includes the development of mathematical symbols. We have
already menticmed the Ifindu-Arabic numerals and how they came to be used in the
Western world. Other symbols, such as x, c, e, tc, were devised beginning in
the 16th century. These symbols contribute to what we know as "symbolic alg^ra" and
simplify the work of mathematicians.

We will be dealing with two "families" of numbers in this course. The first is the natural
numbers, positive integers, or counting numbers. This set of numbers will be represented
by P = {1, 2, 3,... }. The series of dots, "ellipsis," means that the numbers go on in that
fashion forever.

The second set we will use is the non-negative integers or whole numbers. We will
represent them by N = {0, 1,2,... }. Obviously the only difference between these two
sets is the inclusion of zero in the set N.

As in algebra you usually used x ory to stand for an unknown number, in this course we
will use a lower-case n to represent a general number. This letter n is usually used when
one is talking about whole numbers.

You are no doubt familiar with the use of subscripts. A subscript is a number or letter-
used for identification. For example, Fs would represent the fifth Fibonacci number, and
Fn represents the /rth Fibonacci number. Subscripts are often called indices.

2.1.1 Summation Notation

An upper-case Greek letter sigma, Z, tells you to sum a group of numbers. In statistics we
use it in formulas such as that for the sample mean;

or

n  n

which means we sum (add up) all the x's (individual measurements) and divide the total by
the number of measurements.
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The summation symbol may be used as follows:

= 1 +2 + 3+4 + 5 = 15
<=i

In this case the symbol tells us to add all the positive integers be^nning with 1 and ending
with 5. Can you think of a general formula for the sum of the first n poative integers?

A teacher once asked his students in their first arithmetic class to add the positive integers
1 to 100, thinking it would keep them busy for awhile and help them practice their sums.
One of Ids young students was Karl Friedrich Gauss (1777-1855), who calculated the sum
instantly. Gauss, who was an amazing prodigy, later told (according to Burton, p. 491)
that he recognized the sum as pairs of sums equal to 101, such as 1+100, 2+99, etc. He
then only had to note that there are 50 such pairs, so that 1 + ... + 100 = (101)(50) =
5050.

The problem with this method of summing the first n positive integers is that, if you have
an odd number of integers, there is an integer left over in the middle. But here's a way
that works whether n is odd or even: Write the numbers twice, forwards and backwards,
one imdemeath the other, and thra sum the pairs:

1 2 3 4 5 6 7 8 9 10

10 9 8 7 6 5 4 3 2 1

You can see that there are 10 sums which each equal 11. But this list has each number
twice, so we would divide by 10 to get the total of the numbers fi"om 1 to 10. More
generally, we would find by this method that the sum of the first n positive integers is

^(^ + 1)

i=l 2

This formula can be verbalized in either of two ways: We can say that the sum of the first
n positive integers is either (1) the sum of the first plus the last (n + 1) times half the

number of terms or (2) the average of the first and the last times the

number of terms (n). As we will see in Section 2.2.1, these rules hold for summing the
terms in any "arithmetic progression."

Here's another example:
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n

2;(2/-l) = l-h3 + 5 + 7 + 9 + ll + 13 + 15-H7 + 19 + 21 = ?
i=l

Notice that the above sum is a "perfect square." What are the numbers that are summed
to get that perfect square? What would be the formula for the sum of the first n odd
positive integers?

2.1.2 Factorial Notation

If/I is an element of P, the symbol n!, read "n factorial" denotes the product of all positive
integers between 1 and n. For example, 71 = 7x6x5x4x3x2x1 = 5040. A quick
way to compute factorials is with the factorial key on your calculator. With graphing
calculators, it is generaUy in the "math" menu.

We have only defined n! for n e P, but it is possible to determine 0! as well. You can
determine its value on your calculator. We will look at why 0! = 1 in the section on
Binomial Coefficients.

2.1.3 Scientific Notation

Factorials can grow very large very fast. Try 14! in your calculator and you will see that
the calculator prints the number in scientific notation. This is a method of writing very
large or very small numbers which facilitates multiplying, dividing, and (XMnparing them.

Most calculators show 14! as 8.71782912E10. This means 8.71782912 x 10^° or
87,178,291,200. The calculator only has room in its display for 9 digits so it rounds off
slightly at the end.

Recalling various principles fi-om algebra such as the commutative property and properties
of exponents, we know that 2 x lO' times 3 x lO' = 2 x 3 x lO' x lO' = 6 x lO'^. That
seems to be easier and more accurate than writing out a whole string of zeros.

In scientific notation, there is only one digit to the left of the decimal point. The exponent
counts the number of places from where the decimal is placed to the end of the number.

Very small numbers, like .0000025 and .00347 can also be written in scientific notation.
2 5

Since .0000025 is the same as ^ , it can be written 2.5 x 10"®. As with very large
1000000
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numbers, there is only one digit to the left of the decimal point; then one counts the
number of places the decimal is moved to the right to find the negative exponent.

Exercises:

Write out these sums:

10

1-

6
• 2

2.
1=2

Find the value of each sum:

50

3- Z'

73

1=1

5. What is the sum of the first 1000 positive integers? the first 10,000?

6. Find 10!

7. What is 691? 701?

8. Change to scientific notation:

(a) 3,875,240

(b) 2,000

(c) 58,000,000,000
(d) .000347

(e) .00000005
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9. Write in "expanded form" (as a normal munber):

(a) 2.78423 E 7

(b) 5.004 X 10®

(c) 2.1x10-'

Sources:

Burton (1991).
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2.2 Sequences and Series

A sequence of numbers is an ordered list of numbers, which may be finite or infinite.
Some examples were seen on our "Search for a patton" woricsheet. An old-fashioned
term for sequence is progression. The indicated sum of terms in a sequence is called a
series.

The Fibonacci sequence is, of course, our primary example;

1, 1,2,3, 5, 8, 13,21, 34,...

As we have seen, each term after the first two "initial terms" is the sum of the previous
two terms; i.e., the sequence is defined recursively.

2.2.1 Arithmetic Sequences

A sequence in which there is a "conunon difference" between two consecutive terms is
known as an arithmetic sequence. Examples are:

1, 5, 9, 13, 17, 21,... (the common difference is 4)

7, 20, 33, 46, 59,... (the common difference is 13)

In arithmetic sequences, each term after the first is gotten by adding the common
difference, denoted by d, to the previous terms. So arithmetic sequences, like the
Fil>onacci sequence, can be recursively defined. But in the case of arithmetic sequences,
it is easy to find a formula for the wth term if we know the first term and the common
difference. In the first example above, the 6^ term, 21, results fi-om adding the conunon
difference to the first term 5 times. We can derive a formula for the nth term as follows:

where d is the common difference. In other words, we multiply the common difference
(d) by the number of times we add it to the first tmn (n - 1), and then add that product to
the first term.

We can sum the terms of an arithmetic sequence in a way similar to the way we sununed
the first n positive integers, which is of course an arithmetic sequence. To sum the first 6
terms of the example used above, we would write the terms, then write them backwards:
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1  5 9 13 17 21

21 17 13 9 5 1

Notice that each column adds to 22, which is the sum of the first and last terms. So we
have 6 sums, each of which is 22, which means we multiply 6 times 22, then take half of
that product (since we have added each number twice), and we have the sum of our six-
term sequence, 66. We can now write a formula for the sum of n terms of an arithmetic
sequence as follows:

1S„ = /i(a, + aJ or S„ =

where S„ is the sum of n terms, of which aj is the first and a„ is the /rth.

Without using the formula, find the sum of the first 10 odd positive integers; the sum of
the first 10 even positive integers, and the first 10 multiples of 3. Check your answers by
using the formula, first finding the 10^ term.

2.2.2 Geometric Sequences

A sequence such as the following:

2, 10, 50, 250, 1250,...

in which there is a common "multiplier" between consecutive terms is called a geometric
sequence. The common multiplier is generally called a "common ratio" and its symbol is
r. In a geometric sequence, each term after the first is gotten by multiplying the previous
term by r. So geometric sequences are also recursively defined. As in the case of
arithmetic sequences, we can find a formula for the nth tom of a geometric sequence.
Note that the geometric sequence above can be written

2, 2-5, 2•5^ 2•5^ 2-5\..

More genially, the nth term (go) of a geometric sequence with first term gi and common
ratio r, is given by the formula

gn=gir'"'

The indicated sum of a geometric sequence is called a geometric series. To find the sum
of n terms of a geometric sequence, you can use the following procedure:

38



2-8

(1) Write the series: 'S'„ =^i

(2) Multiply by r. rS„ = rg, + + r + • • + r"^,

Subtracting (2) from (1), we have

=g,+0 + 04-0 + -..-r"g, or

{\-r)S„=g,-r'g,

So now S. = ^ ̂  provided r ̂  1
(l-r)

The sums of the sequences in the examples used here get larger and larger when more
terms are added. It appears that the sum of an infinite number of terms is an infinitely
large number. However, let's look at a geometric sequence in which r is between 0 and 1
or between 0 and -1 (-1 < r < +1). For example, r = '/2, g, = 3. Here are the first five
terms of the sequence:

=3

g2 =
.  3
3

2

f'Y
''ii)

fO'
r

 =
2

.3 = 1
4

.3 = 1
8

It is clear that the terms get successively smaller and eventually get very close to zero
(e.g., the 10^ term would be .0029...). What would the 100*'' term be? Now if we're
adding terms, these would be negligible. Is it possible that the sum "approaches" some
number as rt gets very large, instead of continuing to increase?

Let's substitute our values for r and g\ in the formula for the sum of the sequence given
above, and suppose that /i is a very large number:
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ff Q-;.") ) 3(1-0)
=  f— = —- = 6 when /i is a very large number.

1-r j_j_ 1_
2  2

In calculus we would say that the sum of this sequence ̂ proaches 6 as its "limit" as n
approaches infinity.

2.2.3 Fibonacci, Lucas, and Tribonacci Sequences

As we have seen, the Fibonacci sequence results when the first two terms are defined,
and succeeding terms result from summing the previous two terms;

^2=1

The Lucas sequence, 1, 3,4, 7, 11, 18, 29,..., is similar to the Fibonacci sequence in
that each term after the initial terms is the sum of the previous two terms. However, the
initial terms are 1 and 3 in this case.

Another recursive sequence is called the Tribonacci sequence. The initial three terms
are 1, 1, and 2, and then each term is the sum of the previous three toms:

1, 1,2,4,7,13, 24,44,81...

2.2.4 Formula for the nth Fibonacci number

We have seen a number of examples of sequences which are recursively defined; i.e.,
arithmetic, geometric, Fibonacci, Lucas, and Tribonacci. In the case of arithmetic and
geometric sequences, we have found a formula for the /ith term (also called a "closed
form expression" for the /ith term). We now find a closed form expression for F„ using
the method of generating functions:

Let:

(1) F(x) = F, ■>rFjX + F^x^ + • • • + +F„^,x" +•••

Now multiply (1) by x:

(2) xFix) = F^x->rF^x^ +- -+F„_,x""' +"*

and multiply by x again:
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(3) x'F(x) = F,x' + FjX' +... + iVz**"' + Pn-X^" + Pn^"^' + *" '

Now, subtracting (2) and (3) from (1), we have

F(x)-xF{x)-x'F{x) = F, +[F, -FJx + LF,-F, -FJx^ +...+[F„ -F„_, +•

We knowthat Fj -F, =1-1 = 0, and, in general, F„ -F„_, -F„_2 = 0 because of our
recurrence relation. So,

(l-x-x^)F(x) = l,and F(x) =
1

1-x-x^ ■

Using some messy algebra (including partial fractions), it can be shown that

1  A . B u i+Vs ^ ^ i-Vs
- = + where a = and B =

1-x-x^ 1-QX \-fix 2 2

while i4 = -j= and B = —
Vs V5

For details of this method and derivation, see Wagner, pp. 4-5, 86.

The result is a "closed form expression" for the wth Fibonacci number;

(4) Pn-
1

1—»
+

n

1

V5I  2 J "V5[  2 J
This formula was derived by both Abraham DeMoivre (1667-1754) and Daniel Bernoulli
(1700-1782). It is clearly difficult to calculate by hand for even small values of«, but we
will store parts of it in our calculators to simplify the process as follows:

Store asZ. Then store and asB.
VS 2 2

(Be sure to put the numerators ofA and B in parentheses.)

Now we can find the value ofF„ as follows:

(5) F„=X*A''-X*B''
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Exercises:

1. Find the indicated term:

(a) 11, 27, 43, 59, 75 (fiftieth term)

(b) 3,21,147,1029, 7203 (ninth term)

2. Find the sum of the first n terms:

(a) 25,44,63,82, 101 (n= 14)

(b) 5, 10, 20, 40, 80 (« = 20)

3. One penny is put on the first square of a 64-square checkerboard, two pennies on
the second square, four pennies on the third square, and so on.

(a) How much money will be on the 64'*' square?

(b) How much money will be on the checkerboard?

4. A creature fi'om Mars lands on Earth. Itreproducesitselfby dividing into three
new creatures each day. How many creatures will populate Earth after 30 days if
there is one creature on the first day?

5. Using the formula given above (5), find the 10*** Fibonacci number; the 20*'';
the 40*''.

6. Find the sum of the infinite geometric sequence when ̂ , = 12 and r = .9.

Sources:

Conway & Guy (1996).

Sgroi & Sgroi (1993).

Wagner (1996).

Wise, Nation & Crampton (1990).
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2.3 Binomial Coefficients

Another symbol with which you are probably already familiar is the symbol for the
number of different ways you can choose k objects from a set of ti objects, without regard
to order, or in other words, the number of i^-element subsets of an n-element set. We will

call this "n choose A" and write it
n

Here is an example:

Suppose a set 5 consists of elements a, b, c, and d. We would write S={a,b,c,d\.

r4^
(1) The only subset of S with zero elements is the empty set (0), so = 1.

(2) The 1-element sets of are {1}, {2}, {3}, and {4}. So
1
= 4.

(3) The 2-element sets ofS are {1,2}, (1, 3}, {1,4}, {2, 3), {2,4}, and

{3, 4}. So
^4^

= 6.

'4^

.4,
= 1.

(4) The 3-element sets of 5 are {1,2, 3}, {1,2,4), {1, 3,4}, and {2, 3, 4}. So

= 4.

Iv

(5) And there is only one 4-element set of S, the set S itself. So

Tl'
The numerical value of "w choose K' is as follows:

k\(n-k)\
Your calculator can give you combinations and factorials very simply. Your instructor
will demonstrate how this can be done.

What is the logic behind this formula? If we were choosing a president, vice-president,
and secretary for a class of 30 people, there would be 30 possibilities for president, then
29 for vice-president (we've already named one as president), then 28 for secretary. For
each choice for president, there are 29 choices for vice-president, so clearly you would
multiply 30 times 29 to get the number of possible president/vice-president teams. This
is called the "multiplication rule." So there are (30X29X28) or 24,360 different slates of
officers (president, vice-president, and secretary) that are theoretically possible. This is

301 301
equal to — or . Now, if instead of 3 distinct officers we were to elect a
^  27! (30-3)1
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committee of 3 people from a class of 30, there would be fewer possibilities. There are
clearly 6 ways ̂  same group of 3 people could be officers as follows:

President Vice Pres. Secretarv

(1) Ann Ben Carl

(2) Ann Carl Ben

(3) Ben Carl Ann

(4) Ben Ann Carl

(5) Carl Ben Ann

(6) Carl Ann Ben

There are (from these 3 people) 3 possibilities for president, then 2 for vice-president,
then 1 for secretary—which (again using the multiplication rule) gives us 3! or 6. So we
would divide the number of slates by 3! to get the number of possible committees. Hence
the formula for the number of conunittees of 3 people from a class of 30 people:
^30") 30!

=  : = 4060, considerably less than the number of possibilities for slates of
UJ 3!(30-3)!
officers.

Another example to help clarify this concept is as follows: A pizza parlor offers 10
different toppings: pepperoni, sausage, ham, green olives, black olives, peppers,
mushrooms, onions, anchovies, and extra cheese. The order in which they are put on the
pizza is not important. How many different kinds of pizza are possible?

The answer can be calculated this way: there is one kind of pizza with no toppings, and
one kind with all ten toppings, and combinations of 2, 3,4, 5, 6, 7, 8, and 9 toppings.
The resulting total would look like:

0

f\0] ^10' lo' lo' '10' '10' '10' fio^ '10' f
+ + + + + + + + + +

y .U .2, .3, .4, .5, .6, IsJ .9, V.10;

or

10

t=0

10'
.  The Ath term in this sum tells the number of ways you can have a pizza

with exactly k ingredients. What is the total number of ways you could have a pizza
using some, all, or none of these 10 ingredients?

These expressions. , are also called "binomial coefficients." When you raise a

binomial (a + b) to a power, the coefficients of the various powers of a and b are of this
type. For example:
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(a + br =
.0)
a o +>•0

rA\ rA\

AJ

0|l4
a^b

Verify this by raising (a + b) to the fourth power!

Note: Why does 0! = 1? Lode at the question of how many ways can you choose no
things from a group of 10. Obviously ̂ ere is only one way to chose zero objects
(exactly one way to have a pizza with no toppings). By our definition, the answer is
^10^ IQI

or ^ . The only way that formula can equal 1 is for 0! to equal 1. So we
^Oj 01(10-0)1
say that 0! = 1 "by definition," because that's the only way the formula is consistent. It

f ̂may be helpful to remember that [^q = ̂
\nj

= 1

As we have seen, binomial coefficients count the number of ̂-element subsets chosen
from an n-element set. The term "set" implies that order doesn't matter; that is, the set
(1, 2, 3} is the same as {3, 1, 2}.

A classic counting problem is that of determining the number of "lattice paths" from
point A to point B on a grid. If one begins at point (0, 0) and moves either north or east
to another pdnt (2, 3), the possible paths can be seen as sequences of two steps to the
right (east) and three steps north. Possible paths (sequences) are as follows: {EENNN},
(ENENN), {ENNEN}, {ENNNE}, {NEENN}, {NENEN}, {NENNE}, {NNEEN},
{NNENE}, {NNNEE}. Here we have five "slots" from which we must dKX>se two for
the E's. The question becomes, how many ways can we choose two objects from five?
The problem could be, alternatively, to determine the number of ways to choose three N's
from five slots. Would that give you the same number? In other words, does

'5^ ^5^ (ri?  And in general, does
n

n-k,

Can you show that this is true?

So the "lattice path" problem becomes a counting problem using binomial coefficients.
The number of possible paths from (0, 0) to (r, s), travelling only north and east, is

rr + j
or

r + 5'

S  ;
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Now let's locdc at the pizza question again. Another way to determine the number of
possible pizzas with 10 ingredients is to line the ingredients up, take your crust down the
line, and say "yes" or "no" to each ingredient. This gives you two choices to each of 10

n

possibilities, or 2-2-2-2-2-2-2-2-2-2 = 2'°. Could this mean that
n

= 2"?
t=0

Exercises:

1. Show that coefficients in the expansion of (x + y)' are successive binomial
coefficients.

2. Calculate the following:

(a) 0
(b)

'80'

(0)
'35^

a2>

(d) ra
3. How many different jury panels (12 members each) could be chosen fi"om a pool

of 18 jurors?

4. How many different pizzas are possible using some, all, or none of 5 different
ingredients?

5. How many possible 5-card poker hands are possible from a deck of 52 cards?

6. How many lattice paths are there from

(a) (0,0) to (5, 8)

(b) (2, 3) to (9, 12)

Sources:

Wagner (1996).
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2.4 Patterns in Pascal's Triangle

Earlier we discussed "binomial coefficients." We will now see how these expressions are
related to Fibonacci numbers.

If binomial coefficients are arranged in rows, the result is known as "Pascal's triangle"
after the French mathematician Blaise Pascal (1623-1662). His original triangle, as
published in Traite du Triangle Arithmetique (1654), looked something like this:

Version *:

Z  1 1 2 3 4 5 6 7 8

1  1 1 1 1 1 1 1 1 1

2  1 1 2 3 4 5 6 7 8

3  1 1 3 6 10 15 21 28 36

4  1 1 4 10 20 35 56 84

5  1 1 5 15 35 70 126

6  1 1 6 21 56 126

7  1 1 7 28 84

8  1 1 S 36

9  1 1 9

10 1 1

9  10

1  1

9

In this form, the numbers on the upward-sloping diagonals give the successive
coefficients of the binomial expansion of {a + h)".

The triangle is sometimes written in one of the following forms:
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n

0

1 1  1

2 1  2 1

3 1  3 3 1

4 1  4 6 4 1

5 1  5 10 10 5

6 1  6 15 20 15

1

6

Version ***:

1

1 1

1 2 1

1 3 3 1

1

5

4

10

6

10

4

5

1

6 15 20 15 6

Notice that the last row in that example is
^6^ '6" '6" '6^ r

,  andL
.0/ lu .2.

9

.3.
9

.4.
9

.5.
9

\

Many patterns can be found in this triangle. For example, each entry in the triangle is
the sum of the two numbers directly above it. Express^ in terms of binomial
coefficients, this could be written;

(1)

If you add the entries on successive upward-sloping diagonals (use version you will
find Fibonacci numbers. This pattam could be written as follows:

(n\ (n-\^

^
II

1

+

(2)
.(n-k\

= F.
k=0
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A similar arrangement of binomial coefficients was known by the Chinese around 1000
C.E. The Persian mathematician Omar Khayyam who lived in the 11**" or 12'*' century
included such a triangle in his writings. So, sdthough Pascal gets the credit (his name is
attached to it!), the arrangement was known by earlier Eastern mathematicians.
However, Pascal was the first to make a systematic study of the patterns involved. He
listed 19 properties of binomial coefficients that he discovered from the triangle. Among
them, according to Burton (1991, p. 416), are:

(H)
M (n-W fn-l"

r-r

«-3

r-lj lr-1

7-r

J-h

In other words, each number in the triangle is the sum of numbers directly above
it (in the** version of the triangle). For example:

^6^ ^5^
+

^4^
+PV

'2"

.3. .2. A A
or 20 = 10 + 6 + 3 + 1

(V)
V.r

.k

1

1

This property shows the symmetry of the triangle, e.g.:
^6^ ^6^

.2. .4.

Pascal ̂ plied this triangle to the study of probability. He reportedly discovered it while
working on a problem presented to him by a gambler.

Exercises

1. Attached worksheets from Seymour, Visual patterns in Pascal's triangle.

2. Pick any number on Pascal's triangle (*** version). Draw a circle which includes
your number and the six numbers immediately surrounding it. Add the seven
numbers in your circle. Try this with several other numbers on the triangle.
Explain how the sums obtained by adding the seven numbers inside the circle are
related to one of the numbers outside the circle.

3. What pattern do you discover if you take the numbers in each row as digits of a
number (1, 11, 121, 1331, 14641, ...)?
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Enrichment exercise:

How many odd numbers are there on the nth row of the Pascal triangle?
Is there a patton to these numbers?

Project ideas:

Life of Blaise Pascal

Further patterns in Pascal's triangle

Sources:

Boyer (1991).

Burton (1991).

Musser& Burger (1994).

Seymour (1986).
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2.5 Mathematical Proof

Mathematicians are always trying to prove things. Andrew Wiles of Princeton University
spent seven years proving Format's Last Theorem, which his predecessors had spent
countless years attempting. This theorem says that there are no positive integer solutions
to the equation a" + = c" for values of n greater than 2. We will discuss this more in
Section 2.9.

A mathematician typically observes a pattern, forms a conjecture or guess ̂ xmt the
pattern, and then sets about proving his or her conjecture. You are no doubt familiar with
the "two-column proofs" you learned in high school geometry. These use logic to build a
step-by-step argument based on previous knowledge in order to arrive at a conclusion.

There are other methods of proof used in mathematics. We will look at four of them.

2.5.1 Proof by Contradiction

"Eliminate all other factors, and the one which remains must be the truth," said Sherlock
Holmes (Bittinger, 1982).

The sentence "Sue is taller than Jan and Sue is not taller than Jan" is always false, not
because of its content, but because of its form. In elementary logic we could say p is the
statement that "Sue is taller than Jan" and ~p ("not /?") is the statement "Sue is not taller
than Jan." No matter what the content of the two statements, we know they carmot both
be true, because one is the negation of the other. A proof by contradiction of a statement
is a proof that assumes ~p and then shows that this implies a statement of the type a

which means ""both q and not q are true" like "Sue is taller than Jan and Sue is not
taller than Jan."

Suppose we wish to prove that -v/2 is an irrational number. We start by assuming that it
is rational and then derive a contradiction from that assumption.

A little background: The "Fundamental Theorem of Arithmetic" states that every positive
integer has a unique prime factorization except for order. Remember that the prime
numbers are positive integers greater than 1 whose only positive divisors are the number
itself and 1. (So the number 1 is not a prime number). Another reminder; A rational
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number is a number that can be written as the quotient of two integers, a and b, where b ̂
0. Nund)ers that are not rational are termed "irrational."

So, if Vz is rational, it can be written as the quotient of two integers, a and b, where b ̂

0, or V2 = — . We can multiply both sides of that equation by b since b^O. Now we
b

have b-yjl = a. Squaring both ades, we see b^ - 2 = . Here is where the contradiction
comes in. Both sides of the equation must be equal, but they have a different number of
prime divisors so they cannot possibly be equal ̂ y that Fundamental Theorem). We
know that has an even number of factors because whether a has an odd number or an
even number of Suitors, when you square it you'U get an even number (odd plus odd is
even, and even plus even is even). And by the same reasoning b^ has an even number of
factors, so when the factor 2 is included, the left-hand side of the equation has an odd
number of factors. This therefore contradicts our assumption that 72 is rational. That
contradiction tells us that it must be irrational.

Proofs by contradiction are widely used in mathematics. In particular, we will see in
Section 2.5.3 that the method of proof by mathematical induction follows from the well-
ordering principle u^g a proof by contradiction.

2.5.2 Geometric Proofs

You remember from high school geometry doing "two-column" deductive proofs. In this
process, you typically start with a statement that is "given" and proceed step-by-step to
show that armther statement follows. An example of this is showing that two triangles are
congruent (have the same shape and size). The three ways to prove triangle congruence
are as follows:

(1) show that all three sides are congruent;
(2) show that two sides and the included angle are congruent;
(3) ^w that two angles and the included side are congruent.

These ways of diowing congruence, along with other geometric principles, will be used in
proving the Pythagorean Theorem. This well-known theorem states that in a right triangle
(one with a 90° angle), the sum of the squares of the two legs (short sides) is equal to the
square of the hypotenuse (long side). The theorem was not original with Pythagoras, nor
is it clear that he ever proved it, but his name is attached to it because of the Pythagorean
school whidi promoted many mathematical discoveries.
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It is known that early Egyptian cuttures about 3000 B.C.E. used 3,4, S triangles to
construct right angles. A very early (approximately 600 B.C.E.) Chinese proof exists
which proves the theorem in a geometric way, using the following diagram, in which a
square with sides c is placed inside a larger square with sides a + b:

We know that the sum of the areas of the small square and the four triangles equals the
area of the large square. It follows from this that +b^ = , where a and b are the legs
of the triangles and c is the hypotenuse. How do you know that the four triangles do
indeed have the same area?

A more recent, but similar, proof was published by James A. Garfield in 1876. Garfield
was elected President of the United States in 1880, but was shot shortly after his
inauguration and held o£Bce for only a few weeks. His proo^ published in the New
England Joumcd of Education, is similar to the early Chinese proof. In the diagram
below, we know that the sum of the areas of the three triangles is the same as the area of
the tr^)ezoid. From this it can be seen that a^ +b^ -c^. (Again, how do we know that
the two a's are equal and the two are equal? We constructed the trapezoid so that it
would contain two congruent triangles. This enables us to determine the angle between
the c sides is a right angle.)
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2.5.3 Mathematical Induction

According to Burton (1991, p. 416), the principle of mathematical induction is "perhaps
the single most useful tool in the mathematician's kit." This method of proof is used
extensively in number theory, the branch of mathematics dealing with positive integers.
The word "induction" is a bit misleading—^proof by induction should not be confused with
inductive reasoning, in which a general principle is formed from study of individual cases.
Mathematical induction is actually a specific kind of deductive proof. Blaise Pascal was
the first to recognize the value of tins method and to use it extensively.

The basic process is as follows, where n and k are members ofP (positive integers):

(1) Show that the conjecture (or formula) is true for « = 1.

(2) Show, for each k>\, that if it is true for n = k, then it is true for « = A: + 1.

The principle of mathematical induction then guarantees that the (xmjecture or formula is
true for all positive integers n.

Here is an example:

We observed a pattern when adding 10 consecutive integers beginning with 1: 1 + 2 + 3 +
4 + 5 +6 + 7 + 8 + 9+10 = 55. We showed that we could pair numbers in that sequence
that added up to 11 (« + 1): 1 + 10, 2 + 9, and noting that we had 5 (10-5-2) such pairs.
This is iq}parently how Gauss calculated such sums so quickly. Our conjecture for a
formula is thus

A. n(/i + l)

?—i-
where n is the number of integers in our sequence. We know that this is true for several
values, but as mathematicians we must prove it. The proof involves a little algebra, a little
arithmetic, and a little clear exposition (clearly stating what we're trying to prove and how
we go about proving it):

We wish to show that *
1  2

(1) We will show that * is true for « = 1:

1  2
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(2) Let k^\ and suppose that * is true for n = k, i.e., suppose that
*  k(k +1)^/ = 1 + 2 +... + it = —^ . Let us then show that "■ is true iorn = k+ \, i.e..
i=l

*+I

1=1 ^

2/• = 1 + 2 +... + A: + (it +1) = f2'1 + (^ +1) = +1) =
<=i Vi=i y 2
it(it + l) + 2(it-H) _ (it + lXit + 2)

2  2

"  +1")
We have thus shown by mathematical induction that =--^^ for all w ^ 1.

j=i 2

How is proof by mathematical induction justified? A basic property of the positive
integers is the Well-Ordering Principle. This states that any nonempty set of positive
integers contains a least integer, with the least integer in the set of all positive integers
being 1.

The principle of mathematical induction can now be justified as follows;

Let A be a subset of the positive integers which

(1) contains 1, and

(2) whenever it contains k, it contains k+1.

We wish to show that A = P (the set of all positive integers).

Now let B be all the rest of the positive integers that are not in set A: B = P - A If B is
the empty set, then P = A and the proof is complete. If B is non-empty, it contains (by the
well-ordering principle) a least element which we'll call m. We know that m>\ because
lisinA So»»-l>0 (which says that /» - 1 is a positive integer). But m- \ can't be
in B since m is the least integer in B, so it must be in A. But then, by (2), we must have m
in A, which contradicts the fact that /» e B.

Here's an example to illustrate this proof. Suppose A = {1, 2, 3}. Then B = {4, 5, ...}
Obviously A contains 1, meeting our first criterion above, but if ̂  = 3, A does not contain

+ 1. The only way these two criteria can be met is if A is the set of all positive integers.
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A variation on this method of proof by mathematical induction is called Course of Values
induction. In this method,

(1) We show that our conjecture is true for n = 1;

(2) Show that, for each it ̂  1, if the conjecture is true for w = 1,..., then it is true
forw = it+ 1.

This variaticm can also be proved using the well-ordering principle as follows:
Let A be a subset of P such that

(1) A contains 1;

(2) For every it > 1, whenever A contains 1, 2, 3, it also contains k+1.

We wi^ to show that A must be the set of all positive integers. P.. Again let B = P - A If
B is empty, then A = P and the proof is complete. If B is non-empty, its least element (by
the well-ordering principle, there is one!) we'll call m. So the integers 1, 2, 3, ... m-\ are
in A. So by (2), we must have m & A, which contradicts the fact that m e B.

2.5.3 Combinatorial Proof

A method of proof often used in combinatorics is illustrated in Section 2.10. A
combinatorial argument shows that two expressions are equal by showing that they count
the same thing.

Exercises:

1. Make a conjecture (guess) about a formula for the sum of the first rt Fibonacci
numbers. (Generate some values of the sum for w = 1, 2, 3,4, 5, 6 ..., and then
look for a pattern.)

2. Prove your conjecture by mathematical induction. Remember that the defimtion of
Fibonacci numters says that ~ ̂n-\ ^n-1 (or, equivalently.
Assume that F^=Fj=\.

3. What is the sum of the first n Fibonacci numbers with odd indices? Generate some
values, make a conjecture, then prove your conjecture by mathematical induction.

56



2-26

Prove by mathematical induction;

A 2 w(yi + lX2yn-l)

6

5, + =

i=l 3

6. 2 + 4 + 6 ...+2« = w(w+1)

7. For each positive integer n:

1 1 1 I n
■+ + + ••• + •

1-2 2-3 3-4 n(n + l) n + 1

Sources:

Bittinger (1982).

Burton (1980).

Burton (1991).

Gardner (1979).

Paley & Weichsel (1966).

Sgroi & Sgroi (1993).

Sominskii (1963).
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2.6 Patterns in the Fibonacci Sequence

Mathematicians have discovered many intriguing patterns in the Fibonacci sequence.
Some examples were seen in the previous exercises. Here are some others;

Every positive integer can be represented as a sum of distinct Fibonacci numbers.

The greatest common divisor of two Fibonacci numbers is also a Fibonacci number.

The difference of the squares ofalternate Fibonacci numbers is alwc^s a Fibonacci
number.

Fibonacci number trick: If 10 consecutive Fibonacci numbers are added together, the
sum is always II times the 7th number in the list.

Every third Fibonacci number is an even number.

Exercises:

1. Guess a formula for the sum of the squares of the first n Fibonacci numbers.

2. It has been stated that every Fibonacci number with a prime index is a prime
number. Can you find a counter-example to disprove this statement? (Remember
that a prime number is one that is divisible only by itself and 1.)

3. Explain why the "Fibonacci number trick" works.

4. Find a formula for the sum of the sum of the first n Fibonacci numbers with even
n

indices: ~
»=i

5. Show that (-1)-'

6. Represent 50, 75,100,125 as sums of distinct Fibonacci numbers.

7. Which Fibonacci numbers are multiples of 3? Multiples of 4? Multiples of 5?
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8. Find the sum of the squares of adjacent Fibonacci numbers, that is,
F,'+F,\ F,'+F;,

Extend this sequence to see if there is a pattern.

Sources:

Burton (1980).

Gardner (1979).

Garland (1987).

Knott [on-line].

Vorob'ev (1961).
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2.7 Geometric Constructions

In order to construct line segments whose lengths are related by the "golden ratio," a
relationship closely associated with the Fibonacci sequence, we will review some basic
geometric constructions that you probably learned in high school. As &r back as the fifth
century mathematicians were concerned with constructing certain geometric
figures by means of a compass and straight edge. We will review these constructions:
copying a line segment, copying an angle, bisecting a line segment (finding its mid
point), bisecting an angle, and constructing a perpendicular to a line. These will be
demonstrated in class, but here are instructions:

Copying a line segment

Construct a line segment by cormecting two points with the straight edge. Then draw
another line segment, determining its length by placing the compass on the ends of the
first line segment and marking the ends of your new segment.

\

7

Copying an angle

Construct an angle with a straight edge, label it ABC (with B as the vertex). With the
point of your compass at B, draw two arcs on the sides of the angle, label the points of
intersection with the sides D and E. Draw a new line FG, and draw a large arc (with the
same radius you used in the original angle) with the point of your compass at F. Label
the point of intersection H. Using your compass to measure, find the distance from D to
E on your first angle, and transfer it to the second angle by drawing an arc with the point
of your compass at R Where this arc intersects the previous arc, at L draw a line with
your straight edge to F.
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How do you know these angles are equal? Are th^ corresponding parts of congruent
triangles? Show the congruence.

Constructing a perpendicular bisector of a line

Draw a line, label it AB. Use any radius r that is more than half the length of AB to
construct a large arc (both above and below the line) with the point of your compass at A.
Keeping the radius the same, construct a large arc with the point of your compass at B.
Draw a line with your straight edge connect the two points of intersection of the arcs.
This is the perpendicular bisector of AB. How do you know?

/V 6

Constructing a perpendicular to a line from a point outside the line

Construct a line AB and a point P outside AB. Draw a large arc that will intersect AB in
two places, call them CD. With the point of your compass at C, draw an arc below AB,
and draw one the same radius from point D. These arcs will intersect at point Q.
Connect the points P and Q with your straight edge. The line PQ is the perpendicular
bisector of the line AB. How do you know it is perpendicular? How do you know it
bisects AB? ^

\

P

/

6

Bisecting an angle

Construct an angle ABC. Use any radius with your compass to construct an arc that will
intersect AB and BC at the points D and E. Use your compass (not necessarily the same
radius) to construct arcs from D and E that will intersect at point P. Connect the points P
and B, which will be the bisector of angle ABC.
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In the next section we will see how these constructions will help us construct the "golden
ratio."

In addition to these and other basic constructions, the Greeks were concerned with what
came to be known as the "Three Construction Problems of Antiquity." Using only a
straight edge and compass, is it possible, they asked, to:

1. square a circle; that is, construct a square with exactly the same area as a given
circle?

2. duplicate the cube? (find the edge of a cube having a volume twice that of a
given cube)

3. trisect an angle? (divide a given angle into three equal angles)

Throughout history these have challenged mathematicians and students alike. In the 19
century it was proved that each of these is impossible. The French mathematician Pierre
Wantzel (1814-1848) gave rigorous proofs of the impossibility of duplicating a cube and
trisecting an angle.

Those problems will not be assigned for homework.

Practice exercises:

Using only compass and straight edge (ruler):

1. Construct an angle by drawing two intersecting straight lines; copy the angle.

2. Bisect the angle you copied in #1.

3. Draw a line segment; copy it.

4. Draw a line perpendicular to another line.

5. Draw a line segment, then find its midpoint.

6. Construct a square.
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Sources:

Burton (1991).

Rhoad, Milauskas, & Whipple (1991).
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2.8 The Golden Ratio

According to the famous astronomer Johannes Kepler (1571-1630), the two jewels of
geometry are the Pythagorean theorem and the golden section. The golden section, also
called the golden ratio, the golden mean, the divine ratio, etc., is known as the most
pleasing ratio of dimensions of a rectangle or oval. It combines a certain mathematical
perfection with widespread aesthetic applications.

A search for perfection in all of life appears to have motivated the ancient Greeks.
Among the figures that intrigued them was the "golden" rectangle, one in which a square
cut fi'om the rectangle produced a smaller rectangle whose sides were in the same ratio as
the original rectangle.

b

In such a figure, if a is the length of the side of the square, and b is the length of the long
side of the large rectangle, then these ratios are equal:

b _ a
a  b-a

This ratio can be calculated multiplying both sides by a(b - a) and using the quadratic
formula:

b(p -a) = a^

b^ -ab-a^ = 0

Solving for b we find:

b = a . Taking the positive root, we see that the ratio of 6 to a is 1^12^
1.618..., or the "golden ratio.'
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The symbol most commonly used for the golden ratio is "phi" or O, fix>m the Greek
sculptor Phideas. This r^o was believed by the Greeks to be of great aesthetic value,
and much of Greek art and architecture displays golden dimensions. Although irrational
numbers were not recognized by the Greeks, they considered numbers such as <1> and
(the measure of a diagonal of a square with sides =1) "incommensurable" and even
possessing cotain mystical properties. We will see the ubiquity of these
inconunensurable numbers in our study of Greek architecture.

Gustav Theodor Fechner (1801-1887) was a noted psychologist and physicist who
worked with experimental aesthetics. He collected data from hundr^ of people to test
their preferences for the golden n^o over other dimensions using rectangles, crosses,
lines divided, rectangles within rectangles, ellipses, and figmes like a dotted i. He found
the average choice generally to be close to the golden ratio.

Fechner's experiments, made in 1876, were rather crude. They were repeated by Witmar
in 1894, Lalo in 1908, and Thomdike in 1917, with similar re^ts. Results of Fechner's
and Lalo's experiments are shown in the table below, along with Fechner's gr^h. These
results show a popular preference for the golden rectangle, or to a shape close to that.

-  ratio:

width/length
REST RECTANGLE

Fedmer, % Laio, %
WORST RECTANGLE

Fedmer, % Lalo, %

1.00 3.0 11.7 27.8 22.5

0.83 OJJ 1.0 19.7 16.6

0.80 ZO 1.3 9.4 9.1

0.75 2.5 9.5 23 9.1

0.69 7.7 5.6 13 2.5

0.67 20.6 11.0 0.4 0.6

0.62 35.0 30.3 04) 0.0

0.57 20.0 63 0.8 0.6

0.50 1.5 8.0 23 123

0.40 IJ 153 35.7 26.6

100.0 100.0 100.0 100.1

from HimUey, R (1970), The divine proportion. New Yoik, Dover PuUications, p. 64

A young student at (jatlinburg's Pi Beta Phi School conducted a more recoit exa'cise to
test people's perceptions of what is aesthetically pleasing. In 1998, as part of a Science
Fair project, (Courtney Lix created a survey of thirty pairs of computer images, one based
on phi and the other not. She gave the survey to 52 people in her school. Her results
showed an 81.1% prefo'ence for phi. She extended the study to show how road signs and
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business signs in the Gatlinburg area could be aesthetically improved by having "golden"
dimensions.

How does this relate to Fibonacci numbers? Make a chart giving the ratios of adjacent
Fibonacci numbers, and you will see the relationship. The ratio gets closer and closer to
the exact value of the golden ratio. In calculus, which is the study of rates of change and
limits, we would say that:

»+l s^proaches C> as ti approaches infinity (gets larger and larger). The reciprocal of

that ratio ̂ proaches the value of d> - 1 or 0.618....

If we refer to our closed form ex^n-ession for the wth Fibonacci number (Section 2.2.4,
(S)), we can find the limit of that ratio as n gets larger and larger. The second term in the

i-Vsformula gets closer and closer to zero for large values of n, since —^— is between 0
and -1, and raising it to a power makes it even closer to zero. Therefore:

Vs
f i+Vs

and
i+Vs"

n-\

for large values of/?. So, as /?

^proaches infinity (gets larger and larger),

^1 + V5^"

Fn.^

_l_

>/5 i+Vs

1
r

V5

l + yfS
\ji-i

The human body contains many golden proportions. Measure yourself from the top of
your head to your navel, and then from your navel to the floor. What is the ratio of those
two measurements? Now measure from the top of your head to your neck, and from
your neck to your navel. How does that ratio compare? We will look at many other
occurrences of the golden ratio in nature, art, and music in subsequent units.

With our newly refreshed skills in geometric construction, we are now ready to construct
a golden rectangle:
(1) Construct a square ABCD. Find the midpoint of AB, label it E.

(2) Using your compass, measure the length from E to C, draw an arc that length as
indicated to a point on the extension of AB, label it F.
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(3) Draw a perpendicular from F to the extension of DC, label the point of
intersection G.

The result is a golden rectangle. Prove that AF/FG = ̂>. (Efint: Let AB = 2 units of
length...) Clearly the smaller rectangle BFGC is similar to rectangle AFGD. The &ct
that a certain rectangle added to a square formed another rectangle of the same sluq}e was
one aspect of the golden ratio that intrigued the Greeks.

Exercises:

F  F
1. Make a chart giving ratios of adjacent Fibonacci numbers from — to —^.

Fx F,

2. Calculate the ratio of successive terms in an arithmetic sequence. Does the ratio
seem to converge to some number?

3. Calculate the ratio of successive terms in a geometric sequence. What is the
result?

4. Calculate the ratio of successive terms in the Lucas sequence. What is the result?

5. Calculate the ratio of successive terms in the Tribonacci sequence? Result?

6. Construct a golden rectangle.
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Project ideas:

Pythagoreans

Fechner's experiments (and those of other psychologists) on preference for phi

Sources:

Boyer(1991)

Burton (1991)

Garland (1987)

Herz-Fischler (1998)

Huntley (1970)
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2.9 Pythagorean Triples

Recall, again, from your high school geometry the well-known '^Pythagorean Theorem."
This theorem states that in a right triangle, the sum of the squares of the two legs (short
sides) is equal to the square of the hypotenuse (long side).

This important geometry theorem led to a problem in arithmetic: For what integer values
of a, b, and c does this relationship, +b^ = , hold true? Resulting sets of integers
are called Pythagorean triples; for example, 3,4, and 5 are Pythagorean triples.

Several formulas have been derived by mathematicians to generate Pythagorean triples.
Among mathematicians who worked on this problem were Pythagoras himself, Plato,
Euclid, and Diophantus. The most general formula is as follows: If m and n are integers,
with m>n, and we set a = 2mn, b =m^- ri^, and c = then

a'+i' =c'

Fibonacci himself proved (in his treatise Liber Quadratorum, 1225) the converse of this:
namely that any Pythagorean triple is of this form.

We will now look at a way of generating Pythagorean triples which arises from Fibonacci
numbers.

List four consecutive Fibonacci numbers, such as 3, 5, 8, and 13. The first times the
fourth will give us a, and twice the product of the middle two will give us b. It only
remains to show that the sum of the squares of these numbers is itself a perfect square.

Here's an interesting historical sidelight to idea of Pythagorean triples:

Since there are so many integer solutions to +b^ = c^, early mathematicians began
looking for solutions to +b^ =c^, and, generally for a" + A" = c" where «is a
positive integer greater than 2. None were found, and for centuries people attempted to
prove that there were none. Finally, in 1637, Pierre de Fermat wrote a note in the margin
of one of his writings that he had a "truly wonderful proof that there were no integer
solutions where n>2, but he said that the margin was too small to contain his proof.
This became known as "Format's Last Theorem." His marginal note intrigued later
mathematicians to try to duplicate his proof. It was not until the 1990's that Andrew
Wiles, a mathematician from Princeton, published a proof of this theorem. Because of
the sophisticated methods he used, it would not have been possible for Fermat (if he
really had a proof, which is doubtful) to have proved it in the same way.
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The importance of Fermat's Last Theorem lies not in its usefulness, but in the
mathematical tools that were developed over the years in trying to prove it. These tods
have been widely used in number th^iy and algebra, and the proof has generated great
interest for over 300 years.

Exercises:

1. Write out a proof of the Pythagorean Theorem. Make sure each stq> is clearly
stated in words.

2. Verify the m, n formulas above by generating several sets of Pythagorean triples
from them.

3. Generate Pythagorean triples from the first four Fibonacci numbers.

4. Generate Pythagorean triples from the 6th, 7th, 8th, and 9th Fibonacci numbers.

5. Can you find a general formula for c when the Fibonacci method is used? (Is it a
Fibonacci number? If so, which one?)

Sources:

Boulg^ (1989).

Burton (1991).
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2.10 Combinatorial Observations

An interesting problem in combinatorics ("counting") is as follows;

How many "words" of length n (W«) can be formed from the alphabet {1, 2} in
which no two I's are adjacent?

We'll generate some words by brute force as follows:

n  words number

1  1,2 2
2  21,22, 12 3
3  221,222,212, 121, 122 5
4  2221, 2222, 2212, 2121, 2122, 1221, 1222,1212 8

One way to generate these words systematically is to add "2" to the front of each word in
the previous row, and add "12" to each word in the row before that.

5  22221, 22222, 22212,22121, 22122, 21221, 21222,
21212, 12221, 12222, 12212, 12121, 12122 13

Do you see a pattern? Can you give a recursive formula for Wti? Remember that you
have to define initial values, and then show how other values are calculated from previous
values.

Once a conjecture has been made, we must prove it by a combinatorial argument. This is
another method of proof in mathematics. In a combinatorial proof we must show that
both sides of our equation count the same thing; the left-hand side counts the number of
words by definition; and the right-hand side counts the number of words in exhaustive,
disjoint categories. In our case, those categories are (1) those words beginning with 1
(there are W/i-2 of them, formed by adding "12" to the front of each word in the W«-2
row), and (2) those words beginning with 2 (there are Wn-1 of them, formed by adding
"2" to the front of each word in the previous row).

A "composition" is defined as an ordered sum. Another combinatorics problem asks the
question:

How many compositions of length n are made up of members of the set {1, 2}?
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We can generate compositions, f(«), for « = 1,2,3, and 4 by brute force:

^l)=l

f(2) = 2 (1+1,2)

f(3) = 3 (1+1+1,1+2,2+1)

f(4) = 5 (1+1+1+1, 1+1+2, 1+2+1, 2+1+1, 2+2)

Again, we are generating the compositions by adding 1 to the front of the compositions
from the previous row, and 2 to the front of the compositions on the row before that. We
can therefore form a conjecture that, for n>2,

(1) f(/i)=f(«.i)+fl:«-2)

The proof of this is again a combinatorial argument; namely, that both sides of (1) count
the same thing. The left-hand side counts the number of compositions by definition, and
the right-hand ide counts the compositions in two exhaustive, disjoint categories: those
that begin with 1, and those that begin with 2.

Both of these examples result in Fibonacci-like recursive sequences. Initial values are
established by brute force, and subsequent values are generated by a recursive formula.

Here's another conjecture:

A(2n)= where {flln)) = {1, 2. 3, 5, 8,13....)

Where A(2n) is the number of compositions of the positive even integer 2n made up of
I's, 3's, and4's.

For example, when n = 1, A(2) = 1 (1+1);
When n = 2, A(4) = 4 (1+1+1+1, 1+3, 3+1, 4)
When n = 3, A(6) = 9 (1+1+1+1+1+1, 1+3+1+1, 3+1+1+1, 1+1+3+1, 1+1+1+3, 3+3,

4+1+1, 1+4+1, 1+1+4)

Using brute force, find A(8). Is this in keeping with our conjecture? How would you go
about proving this conjecture?
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Exercises:

1. List the "words" in W6 above.

(a) How many are there?

(b) How many have all 2's?

(c) How many have one 1 and five 2's?

(d) How many have two I's and four 2's?

(e) How many have three I's and three 2's?

(Q Do any have four 1 's and two 2's? If not, why not?

2. Find a recursive formula for the number of words of length /i in the alphabet
{1,2,..., r} wth no two I's adjacent. Can you prove it with a combinatorial
argument?

3. List the compositions of {1, 2} for w = 5, 6, 7, and 8. Does this bear out our
conjecture?

Enrichment exercise:

Prove the conjecture that A(2n) = [fi[n)]^ where {f(n)} = { 1, 2, 3, 5, 8, 13,...}

Sources:

Meyer (1998).

Wagner (n.d.).
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2.11 A Fibonacci Mystery

Lewis Carroll (1832-1898), author oiAlice in Wonderland and Throu^ the LooMng
Glass, was in real life the Oxford mathematics lecturer Charles L. Dodgson. In addition
to his popular children's books, he published several mathematical treatises. The best-
known of them was Euclid and His Modem Rivals (1879).

Carroll reportedly liked to puzzle his fiiends with the following mystery:

Take a square 8 units on a side. Cut it into a 3 x 8 rectangle and a 5 x 8 rectangle, then
cut each of those rectangles along the diagonal. Fit the pieces together to form a 5 x 13
rectangle. The area of your original square is 64, but the area of the 5 x 13 rectangle is
65. What h^pened to that other square inch?

Try the same e^qjeriment with a square 13 units on a side. Cut into rectangles 5 x 13 and
8 X 13, then cut each rectangle along its diagonal. Fit the pieces together to form a 21 x 8
rectangle. The area of the original square is 169, but the area of the new rectangle is 168.

The same thing will h^pen with any Fibonacci square. How can this be? (See next page
for solution).

A

I

3

13
5 3 d

n1 n
n n sn
Zj 2"1

1
j

1 [-1
n

n

_j 1 N

5

Sources:

Garland (1987).

Lewis Carroll, (http://www.heureka.clara.net/art/carroll.htm)
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Solution:

The pieces don't quite fit together along the diagonal—^the missing area is exactly to one
square unit. You will find that the square of a Fibonacci number always differs fi"om the
product of the Fibonacci numbers on either side of it by 1, or:

We showed this to be true in Exercise #5, Section 2.6.
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2.12 Fractal Geometry

One of the new frontiers in mathematics is the study of fractals. Fractals are shapes that
occur in nature and exhibit self-similarity, such as snowfiakes, leaves, and coastlines, but
they may also be generated by mathematical processes. This new branch of mathematics
is the study of non-linear dynamic systems or "the mathematics of chaos."

Benoit Mandelbrot (1924- ) investigated a problem posed by Henri Poincare (1854-1912)
as follows: Describe the set of points in the plane which is invariant under inversions
(reflections) in a given set of circles. Mandelbrot reflected a point in several circles and
iterated (repeated) this process a large number of times. He called the resulting sets
fractcds. Obviously, high-speed computers have frcilitated the iteration process. The
Mandelbrot set, discovered in 1980, is the set of all points, c, in the complex plane such
that U-l < 2 for all w, where is the nth iterate of 0 under z^, = z„ + c.

The Mandelbrot set

Fibonacci numbers, as we will see, are found in the Mandelbrot set. Before looking at
this fractal let's examine a simpler example, the Sierpinski triangle.

To construct a Sierpinski triangle, the midpoints of the three sides of any triangle are
connected, forming four triangles the same shape as the original. The center triangle is
then removed, and each of the remaining triangles is divided in the same way with the
center triangle removed. This process is repeated infinitely as shown in the illustration
below.

A A
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A graphing calculator may be useful in generating fractals, though of course not as
quickly as a conq)uter. For example, here is a simple program for the 11-81 calculatcx* to
generate a Sierpinski triangle (taken from a handout from NSF College Mathematics
Faculty Seminar, Knoxville, IN, May 17-22, 1992):

Prgml: TRIANGLE
All-OfF

ClrDraw

0->Xscl

O^Yscl

1->J

LblO

Rand->{x}(J)
Rand->{y}(J)
IS>(J, 3)
Goto 0

xSort

{x}(l) ̂ Xmin
{x}(3) -^Xmax
ySort
{y}(l) ->Ymin
{y}(3) ->Ymax
Scatter

Rand-»A

Rand-^B

Lbl 1

3Rand->N

l^K

Lbl 2

IfN<K

Goto 3

IS>(K,2)
Goto 2

Lbl 3

(A+{x}(K))/2->A
(B+{y}(K))/2-^B
PT-On(A,B)
Goto 1

(Y-vars)
(Draw)
(-^ = STO, Xscl in VARS, Rng)

(PRGM)
(MATH,PRB)

(PRGM)
(PRGM)
(STAT, DATA)
(VARS, RNG)

(STAT, DRAW)

(PRGM)

(PRGM)

(DRAW)

If you wish to construct this graphic one step at a time, you may insert a "Pause"
command after "Scatter". Then you must hit the "Entei^' button continuously when
executing the program. Since this program is an infinite loop, you must stop it by hitting
"ON" and then 2 for "Quit".
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An interesting connection with the Pascal triangle is shown below. If you locate all the
even numbers on the triangle and remove them, you would be leit with a Sierpinski
triangle.
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The Mandelbrot set is a more complex fractal with intricate pattems resulting from
iterations of a simple quadratic function. The function, + c, is evaluated where Xo is
zero and c is any complex number (real or imaginary). It is then "iterated" many times,
and the "orbits" of the function are graphed on the complex plane. The Mandelbrot set
consists of those orbits which are not infinite or which don't "march off to infinity."
Let's look at what this means. f(x) is a function of x. f(f(x)) is called an "iteration" of
the function. In other words, when some value of x is substituted in the original function,
the resulting value of the function is then substituted in the original function. Suppose for
example that f(x) = 3x. Then f(2) = 3(2) = 6; ^f(2)) = f(6) = 3(6) = 18; fl[fl[f(2))) = fl[f(6)
= f(18) = 3(18) = 54. These values, 6, 18, and 54, are successive iterations of the
function.

Complex numbers consist of both real and imaginary numbers which may be written in
the form a + hi where a and b are real numbers and / is the imaginary unit, • We
can graph complex numbers on what is called the "complex plane," where the vertical
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axis represents the imaginary part and the horizontal axis represents the real part. For
example, the numbers 3, 5+2i, and -4i are graphed on the following set of axes:

/K

Teal siilS\  I » J I

h/

Now let's try some iterations of our Mandelbrot function, + c.

Suppose Xp = 0 (we call that the seed value) and c = -1. We will call x^ the first iteration,
etc. Here are the first four iterations of the function:

X, =0^+(-l) = -l

^2=(-l)'+(-l) = 0
X3 =0'+(-l) = -l

X4=(-l)'+(-l) = 0

If we continued this process indefinitely, we can see that the values of x are always 0 and
-1. We say that this is the "orbit" of the function, which is the list of numbers in the
iteration process. This is known as a 2-cycle orbit.

Let x„ = 0 and c = 0. Then

Xj =0^+0 = 0

Xj =0^+0 = 0

and so on. We say that the orbit of this function is a "fixed point'

Now let's let Xq = 0 and c = +1. Follow the process again:
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X, =0^+1 = 1

Xj =1^+1 = 2

Xj =2'+l = 5

=5'+1 = 25

Obviously this orbit does not cycle but "marches off to infinity" with successive
iterations.

What hr^pens if x^ = 0 and c = -1.3?

X, =0^+(-1.3) = -1.3

Xj =(-1.3)'+(-1.3) = .39

X3 =(.39)'+(-1.3) = -1.1479

x,3 =-1.2996...

x,4 = .389...

X,5 =-1.148...

x,,=.0194...

Eventually we can see this function as a period 4 cycle. So this has an orbit of 4.

Calculating these cycles by hand can be tedious, especially when it requires a number of
iterations to see what the period is. But a simple computer program can perform
successive iterations very quickly. In fact, a graphing calculator can be programmed to
generate a large number of iterations of the function when c is a real number. The
program below is for the TI-82; commands are similar on other calculators;

PROGRAMiITERATE

O^X (stores 0 for X (xo = 0, the seed value))
Disp "C=" (displays "C=")
Input C (user enters a value for C)
Lbl 1 (the "goto" statement returns here)
Disp X^+C (displays function value)
Pause (when running the program, you must "enter" to get past this point)
x'+c ->x (stores new value to iterate the function)
GrOtO 1 (loop)
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Since this program is an "infinite loop" you must press the ON button, then 2 (quit) to
stop running the program.

Let's try the following c values in the program; .3, .2, -1.3,. 11, -1.7. If we were to
choose c = -1.99, we would see (using our program or a computer) that successive
it^tkms result in chaotic behavior, but the values of the function are always between -2
and +2.

So far c has always been a real number. Let's try c = /.

X, =0^+/ = /■
X2 =/^ -i-/ = -l + ;
X3 =(-l + /y +/ = l-2/ + ;^ +/ = -/
X4 =(-iy +i = -l + i
Xj =(-l + /y +i = -i
and so on.

This is another example of a period 2 cycle.

It is clear that, for any complex value of c, orbits either go to infinity or do not. The ones
that do not go to infinity are either fixed points or cycle in some way. The Mandelbrot set
is defined as the graph of all c values on the complex plane for which the orbit of zero
(seed value) does tK)t go to infinity.

It turns out that each "bulb" in the graphed Mandelbrot set represents a different size
orbit. The main bulb ccmsists of all values of c whose orbits are fixed points. The largest
bulb west of the main bulb represents 2-cycle orbits, and the north and south bulbs
represent 3-cycle orbits. The fdlowing diagram shows the orbit size for several of the
larger bulbs.
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From web site: httD://math.bu.edu/DYSYS/FRACGEQM2/node3 .html

There are many intriguing numerical patterns in the Mandelbrot set. Our main interest, of
course, is in Fibonacci numbers, which may be seen as follows: The largest bulb
between bulbs 1 and 2 is 3; between 2 and 3 is 5; between 3 and 5 is 8; between 5 and 8
is 13; and on and on.

From wd) site: httD://matLbu.edu/DYSYS/FllACGEOM2/node7.html

It is possible to generate a rough Mandelbrot set with a graphing calculator or a
computer. Here is a generic program that can be ad^ted for computer or graphing
calculator (from Devaney (1990), p. 117). The process of rtxnning this program takes a
long time (remember we are iterating many random numbers) and requires lots of
memory.
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REM program MANDELBROT 1
CLS

FORI=1T0 300

FORJ=lTO150

C1 =-2 + 4*1/300

C2 = 2-4*1/300

X = C1

Y = C2

FORN= 1 TO 30

X1=X*X-Y*Y + C1

Y1=2*X*Y + C2

R = X1*X1 + Y1+Y1

IF R>4 THEN GOTO 1000

X = X1

Y = Y1

NEXTN

PSET (I, J)
PSET (I, 300-J)

1000 NEXT J

NEXTI

END

How are these fractals useful in real life? Since the mathematics is so new, practical
applicatitms are unclear. But connections between chaos and pattern (order) promise new
frontiers in mathematical discovery.

Project Ideas:

Life and work of Benoit Mandelbrot

Julia sets

Sources:

Devaney [On-line].

Devaney (1990).

Devaney (1996)

Musser & Burger (1994).
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3.1 The Pyramids of Egypt

The primary occurrence of Fibonacci numbers in art and architecture is of course in the
golden ratio, which we know is the ratio of two consecutive Fibonacci numbers as the
numbers get large. We have noted experiments by Fechner and others who showed that
most people find rectangle or oval with "golden" dimensions more aesthetically pleasing
than any other.

The pyramids of Egypt are considered to be among the most impressive structures in the
worid. Constructed more than four thousand years ago, they are listed among the seven
wonders of the ancient world. Their size alone is awe-inspiring, given the problems of
such massive construction in the ancient world. Mathematicians have analyzed their
dimensions and found Phi (the golden ratio). Pi (ratio of circumference to diameter of a
circle), the Pythagorean Theorem, and principles of ornament and design.

The largest is found west of Cairo on a plateau known as Giza (there are several alternate
spellings such as Gizeh, Djseh, and Jeeseh). Known as the Great Pyramid of Cheops, its
base covers 13 acres. This structure, built of more than two million blocks of limestone
and granite, contains "more stone than all the cathedrals, churches and chapels built in
England since the time of Christ" (Tompkins, p. 1). It is often called the Great Pyramid.
Two smaller pyramids on the same plateau are attributed to Cheops' successors, Kephren
and Mykerinos.

Huntley provides us with a table of dimensions of several pyramids.

Place Base Height Angle

Medum 5,682 3,619 51° 52'

Gizeh (Khufu or Cheops) 9,068 5,776 51° 52'

Gizeh (Khafi-a or Kephren) 8,475 5,664

o

0

Gizeh (Menkaura or Mykerinos) 4,154 2,581 51° 10'

Dahshur (South) 7,459 4,134

nI
0

55° 1'

Dahshur (small) 2,064 2,034 44° 34'

We can observe that the ratio of height to base lengths is about the same, very close to
1.6. Which one is closest to the golden ratio? There is additional evidence that the
pyramid builders not only knew about the golden ratio but believed it had special
significance. Tompkins says, "The pharaonic Egyptians, says Schwaller de Lubicz,
considered <I) [Phi] not as a number, but as a symbol of the creative function, or of
reproduction in an endless series." (p. 191)
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Numerous theories have been advanced about mathematical implications of the
measurements of the Great Pyramid. These hypotheses have developed in the last few
himdred years due to new archaeological research. Among the first to explore the
pyramids was the Arab astronomer A1 Mamun in 820 C.£. During the Middle Ages a
myths and superstitions developed about the pyramids—ghosts and witches were said to
inhabit them. This hindered serious scientific exploration until the beginnings of the
Renaissance.

One of the more interesting stories is that of John Taylor, a nineteenth century London
newspj^er editor and mathematician, who never saw the Great Pyramid but used the
measurements and calculations of others to formulate his theories. He discovered that if

he divided the perimeter of the Pyramid by twice its height, it gave him a value
amazingly close to the value of pi (x). In other words, the height is equal to the radius of
a circle whose circumference is the perimeter of the pyramid. Taylor concluded that the
Pyramid builders intended to incorporate this irrational number into their building. He
then theorized that the perimeter might have represented the circumference of the earth at
the equator while the height represented the distance fi-om the earth's center to the pole.
He underlined his belief: " 'It was to make a record of the measure of the Earth that it

was built... .They knew the Earth was a sphere; and by observing the motion of the
heavenly bodies over the earth's surface, had ascertained its circumference, and were
desirous of leaving behind them a record of the circumference as correct and
imperishable as it was possible for them to construct.'" (quoted by Tompkins, p. 72) Is it
possible that these ancient Egyptians had such insight? There is evidence in the Rhind
Papyrus, dated 1700 B.C.E. and discovered in 18SS C.E., that Egyptians had knowledge
of the value of pi (roughly 3.16); but the pyramids were built much earlier.

^orthPo/e North Pole

Quadrant

Pyramid

EqoaW Equator

From Tompkins, P. (1971). Secrets of the Great Pyramid. NewYoik: Harper Colophcm Books, p. 189.

Taylor concluded that the proportions of the Pyramid were intended to use geometric and
astronomical laws and pass on this knowledge to future generations.
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Linn maintains that the Egyptian pyramid builders did not use mathematical principles in
their construction, but were more concerned with considerations related to their Sun-god.
But it is interesting that the proporticms, especially that of the Great Pyrmnid of Gizeh,
are so close to the golden section.

Project suggestions:

Early exploration of the pyramids

Tomb of Rameses DC

Tomb of Rameses IV

Sources:

Burton (1991).

Garland (1987).

(jhyka (1977).

Huntley (1970)

Linn (1974).

Tompkins (1971).

87



3.2 The Parthenon

The Parthenon, one of the most famous pieces of architecture in the world, stands on the
highest part of the acropolis in Athens, Greece. Built during the "Golden Age of Greece"
around the fiith century B.C.E., it was intended to serve both as a treasury and as a home
for the goddess Athena. The architects Ictinus and Callicrates and the sculptor Phideas
are credited with the design.

This temple, built between the years 447 and 432 B.C.E., replaced an earlier one which
was destroyed by the Persians in 480 B.C.E. The Parthenon was probably damaged by
fire sometime between 150 B.C.E. and 267 CJE. but was repaired and restored. In 600
C.E. it became a Christian church, and in 1687 a small mosque was built in the interior.

The Parthenon is a Doric temple with a rectangular floor plan, low steps on every side,
and a colonnade of Doric columns around the entire structure. There were two interior

rooms, the larger of which contained the statue of Athena.

pediment

architrave

I
From Newman, R. & Boles, M. (1992). Universal patterns. Bradford, MA: Pythagorean Press, p. 69
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Clearly the ndo of the greatest height to the greatest width is the golden ratio, making
ABCD in the diagram above a golden rectangle, as is AGRE. How many other golden
rectangles can you find fi'om the diagram? Squares?

Other ratios fi-equently seen in the dimensions of the temple, according to Hambridge, are
(1) the "root-five" rectangle (ratio: Vs to 1 or 2.236 to 1), (2) a combination of a .618
rectangle with half of a 1.618 rectangle (ratio 1.427), (3) a rectangle composed of a
square and a root-five rectangle (ratio 1.4472). Examples of each of these are shown
below:

2.236
.618 —.809" LOOO 4472

(1) (2) (3)

Nineteenth century architects and archeologists analyzed the design of Greek monuments
to determine whefiier they were mathematically based or a result of luck and good taste.
Zeysing, in about 1850, discussed the presence of the golden ratio in the fi'ontal
dimensions of the Parthenon. Other more recent researchers who discuss theories of
design are Hambridge, Lund, and Moessel. They are in agreement that Greek symmetry
and proportion are based primarily on the golden section.

How did the Greeks know about irrational numbers such as the golden section and "root-
five"? Remember that the Golden Age of Greece was an important period in the
development of geometry. Irrational lengths can easily be constructed as diagonals of
squares or rectangles. For example, the diagonal of a square with sides of length one has
a length of root-two. A root-five length is easily constructed as the diagonal of two
squares whose sides have length one. The Greeks called these irrational numbers
"incommensurable" and believed them to have special "dynamic" meaning compared
with integer ratios such as 3:2 which they called "static." Qiyka quotes Plato in his
Theaetetus as calling such irrational numbers "'commensurable in the square.'"

There is therefore evidence that the use of the golden section was purposefiil in the
design of the Parthenon. It is likely that the combination of its ma^ematical and
aesthetic aspects made it especially appealing to the Greeks.
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Project ideas:

Euclid's geometry

The Parthenon in Nashville, Tennessee

Athena and other prominent Greek gods and goddesses

Sources:

Newman & Boles (1992).

Huntley (1970).

Ghyka (1977).

Hambridge (1924).

Linn (1974).

Parthenon, The [On-line]
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3.3 Leonardo da Vinci

Many great painters have used the golden ratio in their works. One of the niost notable of
these is named Leonardo and h^pens to (xxne from the town of Vinci, very near Pisa
where our mathematician Leonardo came from. The second Leonardo lived in the period
of history now known as the Renaissance nearly 300 years after Leonardo of Pisa. He
was an exceptionally gifted man in several areas, including mathematics, engineering,
music, geology, biology, anatomy, philosophy, architecture, and painting. It is said that
his greatest feat was in the diversity of his interests and achievements. Yet the total
number of his completed paintings is relatively small, and none of his sculptures was
finished. Lucie-Smith claims this is due to "his own reckless impatience, his
perfectionism, and also his tendency to abandon painting altogether for long periods, in
favor of projects which had little direct coimection with art, though Leonardo's thoughts
about them were nevertheless recorded in magnificent drawings." (p. 192)

An early biographer, Giorgio Vasari, observes that "'in learning and the study of letta"s
he would have gone far if he had not been so variable and unstable, for he set himself to
learn many things and, having once begun them, abandoned them. Thus, he studied
arithmetic for a few nmnths and made such progress that he often confounded the master
who was teaching him by raising problems and difficulties. He also spent some time on
music and quickly resolved to learn to play the lyre. By nature a lofty and refined spirit,
he sang divinely while improvising. Despite such a variety of pursuits, he never ceased
to draw and work in relief, for these appealed to his fancy more than anything else.'"
(quoted in Chastel, p. 7) Today we might identify him as a gifted student with attention
deficit disorder!

Leonardo da Vinci, the illegitimate son of a wealthy man and a peasant woman, was bom
in in 1452 in Vinci in the Tuscany region of the Italian peninsula. He was sent to
Florence as a young man to ̂ prentice with a painter Andrea del Verrocchio. He had
extraordinary drawing and painting abilities, and he was also interested in architectural
plans and elevations. While still a young man, he was the first to suggest that the waters
of the Amo River be used for a canal from Pisa to Florence. He designed bridges,
aqueducts, cannons, armored vehicles, and even a flying machine (which did not fly but
which reflected solid principles of aerodynamics). Most of his scientific writings were
not published until after his death.

As a tme Renaissance man, Leonardo exemplified the rebirth of interest in science which
took place during that period. More than any of his contemporaries, he understood the
importance of precise scientific observation. He studied anatomy in order to paint and
sculpt the human body more realistically. He dissected bodies of criminals to discover
the wcM'kings of bones, muscles, and the circulatory system. There are many anatomical
drawings showing such detail (see pp. 15,44,45, 55, 134, 135 of Chastel).
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Leonardo's most famous work is the Mona Lisa, which is a painting of a woman named
Lisa del Giaconda. Displayed in the Louvre in Paris, the original painting is surprisingly
small—76.8 by 53 cm. The greatness of this painting lies not only in the painter's
technique, but in the transience that is conveyed. Lucie-Smith says that "he seems to
want to convey the fact that human personality is fluid rather than fixed" (p. 192).
Possibly his greatest work was a mural of the Last Supper painted on the wall of a
monasteiy in Milan. Unfortunately it began deteriorating as early as 1500. Numerous
restorations have been attempted; the most recent one was completed in the spring of
1999. A reproduction of the Last Supper is in the Louvre in Paris, and a nmsaic copy is
in the Church of the Minor Brethren in Vienna.

In 1509 a treatise by Luca Pacioli was published, De Divina Proportione, illustrated by
da Vinci. Martin Gardner called it a "'fascinating compendium of PhVs iq)pearance in
various plane and solid figures.'" (quoted in Huntley, p. 25). The golden ratio, or "divine
prop(Mtion" as Leonardo called it, can be found in much of his art. Interestingly, Pacioli
is known as the author of the first printed book on commercial bookkeeping.

Leonardo died in 1519 in France, "'in the arms of the king'" according to Vasari
(Chastel, p. 25). Ifistorians give him credit, not only for his contributions to art and
science, but also for initiating the "cult of genius" which made it possible for
Michelangelo, Raphael, and others to have a say in the subject and design of their works;
that is, to become artists rather than artisans.

Many other painters, sculptors, and architects made use of the golden section in their
works. A few are listed below as project suggestions.

Project ideas:

Seurat

Durer

Mondrian

Bellows

Le Coibusier

Pacioli
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Sources:

Bergamini (1963).

Chastel (1961).

Garland (1987).

Huntley (1970).

Leonardo da Vinci [On-line].

Lucie-Smith (1992).

Microsoft Encarta Encyclopedia (1996).
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4.1 Applications of Fibonacci Numbers in Music

" 'The music of nature and the music of man belong to two distinct categories. The
transition from the former to the latter passes through the science of mathematics. This
quote by Eduard Hanslick (1854, quoted by Putz, 1995) reflects the mysterious but
widely recognized relationship between music and mathematics.

Fibonacci numbers and the golden section occur frequently in music. For example, in
Western music, the most pleasing harmonies are major and minor sixths. A major sixth
could consist of C (264 vibrations per second) and A (440 vibrations per second). This
ratio reduces to 3/5, a Fibonacci ratio. A minor sixth could consist of E (330) and C
(528), which reduces to 5/8, another Fibonacci ratio. One often reads that the pentatonic
scale (black keys on the piano) consists of 5 notes, the diatonic scale consists of 8 notes,
and the chromatic scale consists of 13 notes; all of those numbers are of course Fibonacci
numbers. However, the diatonic scale actually has only 7 different pitches (first and last
are the same pitch, differing only by an octave), and likewise the chromatic scale has
only 12 different pitches.

The mathematician and musician Joseph Schillinger originated a system of musical
composition in which successive notes in a melody are successive Fibonacci units (such
as 1, 2,3, 5, 8, and 13) above or below each other. However, when larger numbers are
used in this way the result becomes too extreme and is not as pleasing to hear.

The major connection between Fibonacci numbers and music is in the golden ratio in
numbers of measures. This ratio seems to result in an aesthetic sense of balance and

perfection of which composers probably were not conscious. Rogers says that the basis
of most first movements in sonata form of Mozart and Beethoven piano sonatas and
string quartets and of Beethoven and Brahms symphonies is a golden section. He
discovered too that compositions by Schubert, Mendelssohn, Chopin, Schumatm,
Tchaikovsky, Dvorak, Delius, Scriabin, Debussy and Schoenberg show some features of
the golden section. These composers likely made use of the balance of the golden section
intuitively, though no one knows for sure. The Hungarian composer Bela Bartok used
both Fibonacci numb^s and the golden section, as we will see in more detail in 4.3.
Recent research in musicology indicates that his use of these elements was purposeful
rather than intuitive.

In the video we will see of Rostropovich playing and talking about Bach's music, the
golden section in phrasing will be evident. He discusses the "intake of breath" as the rise
of the phrase, and the exhaling as the relaxing of the phrase, and shows how the lengths
of these are in approximately the golden ratio.

95



4-2

Project ideas:

The Schillinger system of musical composition

Sources:

BreaJrfast with the Arts video
Garland (1987).
Putz (1995).
Rogers (1977).
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4.2 Music of Mozart

Wolfgang Amadeus Mozart is considered to be one of the greatest and most prolific
composers who ever lived. He was clearly a child prodigy, playing the piano at age
three, performing in public and composing at five, and performing all over Europe with
his family at seven. In his short 35-year life span, he wrote over 600 compositions. He
seemed to write music effortlessly, and he displayed an unusual aural sensibility.
According to Elias (p. 60), "Musical inventions flowed fi'om him as dreams emanate
fi'om a sleeping p^son." He adds, "What we feel to be the perfection of many of his
works is due equally to his rich imagination, his comprehensive knowledge of the
musical material, and the spontaneity of his musical conscience" (pp. 60-61).

The extraordinary balance and perfection of Mozart's music has led to theories about its
effects on intelligence and creativity. Don Campbell, author of The Mozart effect, claims
that exposure to sound, music, and other forms of vibration, beginning before birth, can
have lifelong effects on health, learning, and behavior. Advocates of this theory claim
that certain sounds promote neural activity in the brain creating dendrites which help us
think.

Rausch^, Shaw, and Ky researched the effects of listening to music on "higher brain
functions." In their experiment, three groups of college students were given an I.Q. test.
Before the test, (me group listened to 10 minutes of Mozart (Sonata for Two Pianos in D
major, K488), a second group listened to 10 minutes of a relaxation tape, and the third
group sat in silence for 10 minutes. The Mozart group scored significantly higher than
either of the other groups (p = .002 and p = .0008). These researchers were careful to
state that no causal relationship had been determined and that their project was limited to
one composer. They theorized that "music lacking complexity or which is repetitive may
interfere with, rather than enhance, abstract reasoning."

What could it be about Mozart's music that it might enhance reasoning or creativity?
Pam Gildrie, a music teacher in Maryville, TN, says," 'The music of the classical period,
Mozart in particular, seems to have the most rewarding effect [on learning]. The music
of this period is highly organized, rhythmically interesting without being distracting and
has a fine balance of melody, harmony and texture'" {McCarter-Hall, p. 12A).

Is the balance found in such music mathematical? John Putz of Michigan's Alma
College examined movements of all Mozart piano sonatas that were in the sonata-allegro
form. Such movements have two distinct parts; (A) exposition, in which the musical
theme is introduced, and (B) development/recapitulation, in which the theme is
developed and revisited. He counted the measures in each part for each movement, and
the results are summarized below:

97



Kochel A B A+B
279,1 38 62 100
279, n 28 46 74
279, m 56 102 158
280,1 56 88 144
280, n 24 36 60
280, m 77 113 190
281,1 40 69 109
281, n 46 60 106
282,1 15 18 33
282, m 39 63 102
283,1 53 67 120
283, n 14 23 37
283, m 102 171 273
284,1 51 76 127
309,1 58 97 155
311,1 39 73 112
310,1 49 84 133
330,1 58 92 150
330, in 68 103 171
332,1 93 136 229
332, m 90 155 245
333,1 63 102 165
333, n 31 50 81
457,1 74 93 167
533,1 102 137 239
533, n 46 76 122
545,1 28 45 73
547A,I 78 118 196
570,1 |_79 1j30 1_209

Let's lo<^ at the ratio of A to B and then the ratio of B to A+B. One way to do this
would be to construct a scatter plot of B against A + B to see the correlation. Another
way is to calculate the ratio in each movement and find the average. We will do these as
a class activity. It becomes clear that this ratio is very close to the golden ratio, though
there is some variation.

Did Mozart consciously use mathematics in his music? It is known that he was
enthusiastic about aritlmetic. Alfred Einstein, one of Mozart's biographers, stated: "The
pleasure of playing with figures remained with Mozart all his life long. Thus he once
took up the problem, very popular at the time, of composing minuets 'mechanically,' by
putting two-measure melodic fi-agments together in any order. And we possess a page of
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musical sketches on which he had begun to figure out the sum which the chess player
would have received from the King in the famous Oriental story" (p. 25).

But was his use of the golden section deliberate or instinctive? We will never know, of
course. Putz says, "Perhaps the golden section does, indeed, represent the most pleasing
propmtion, and perh^s Mozart, through his consummate sense of form, gravitated to it
as the perfect balance between extremes. It is a romantic thought" (p. 281).

Sources:

Einstein (1945).

Elias (1993).

McCarter-Hall (1998, October 29).

Putz (1995)

Rauscher, Shaw, & Ky (1993, October 14).

Rogers (1977).
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4.3 Music of Bartok

Bela Bartok (1881-1945) was one of the most outstanding composers of the 20"' century.
His music combined the best of Ikmgarian folk music and Western classical music.
According to Lendvai (p. 97), "Bartok achieved something that no one had before his
time, the symbolic handshake between East and West: a synthesis of the music of Orient
and Occident."

Bartok was bom in the Hungarian district of Torontal. His parents were both
schoolteachers, but his &ther died when Bela was eight years old. A child prodigy, he
performed in public at age 10. He studied piano and composition at the Bud^st
Consovatory where he was steeped in the German influence which predmninates
Westem classical music. He began studying Hungarian folk tunes, but along with
Kodaly, rd)elled against the conventional view of such music. After the First World
War, his fame as a composer and pianist spread throughout Europe and America. In
1940 he went to America to perform piano recitals with his wife, Ditta Pasztory Bartok.
He received an honorary Doctor of Music from Columbia University. His well-known
Concerto for Orchestra was composed while he was in the U.S., though his health was
failing and he was in financial difficulties. He died at the age of 64 in New York.

According to Evans, the "chief characteristic of Bartok's music throughout his career has
been its intense dynamism and rhythmic strength. As expressed in his music, his is no
gentle spirit."

Bartok frequently incorporated Fibonacci numbers in his compositions. For example, the
first movement of his A/uszc for Strings, Percussion, and Celeste consists of 89 measures.
The point at which the piece gets loud is just after 55 measures, with 34 measures
remaining. Other divisions suggest sections of 34, 21, 13, and 21 measures, as seen in
the diagram below:

Measures ToHd

5S"ii**iwu'<n*ies Mmrt iies

Maaauraa SJMOauns

A.

y'
ISMamua / 2/Meewfes
A_

2i M
CThumuJ

13 J" t

lisftunOtatiqc.

From fjgrianH, T. (1987). Fascinating Fibonacci: Mystery and magic in numbers
Palo Alto, CA: Dale S^mour Publications, p. 37.
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Movement m of this piece also reflects these numbers, with the first theme making i^) 21
measures, the secmid theme 13 measures, the "roaring of the wind" section comprising
34 measures, and recq)itulation of the two themes, 13 and 8 measures re^>ectively.

Bartok's use of chords and intervals also reflects Fibonacci numbers. He fi'equently uses
major seconds, minor thirds, perfect fourths, minor sixths, and augmented octaves. These
intervals consist of the following numbers of half-tones: 2, 3, 5, 8, and 13. Lendvai's
analysis discusses this in much more detail, the understanding of which requires fairly
extensive knowledge of music theory.

The gdden sectimi is seen fi'equently in Bartok's compositions. In the first movement of
his Sonata for Two Pianos and Percussion, there are 443 measures, with the
recapitulation beginning at bar 274. (Calculate the ratio!) The first movement of
Contrasts has 93 measures, with the recapitulation beginning in the middle of bar 57.
Other examples of the golden section in his compositions are in Divertimento (first
movement). Free Variations, Broken Chords, and From the Diary of a Fly. Lendvai
states, "It can be observed that GS [golden section] always coincides with the most
significant turning point of the form" (p. 20).

It is unclear whether Bartok purposely made use of Fibonacci numbers and the golden
section in his music. However, because of his interest in plant growth and because of his
fi-equent use of these numerical patterns, one could hypothesize that it was purposeful.
He once wrote, "We follow nature in composition," (Lendvai, p. 29) and his favorite
plant was the sunflower. Lendvai says that he was extremely happy whenever he found
pine cones on his de^. He said "folk music is a phenomenon of nature. Its formations
developed as ̂ ntaneously as other living natural organisms; the flowo's, animals, etc."
(quoted in Lemivai, p. 29).

Bush, in his introduction to Lendvai's analysis of Bartok's music, says that Bartok
"evolved for himself a method of integrating all the elements of music; the scales, the
chordal structures with the melodic motifs appropriate to them, together with the
proportions of length as between movements in a whole work.. .according to one single
basic principle, that of the Golden Section." (p. vii). He maintains that Bartok refi'ained
"as far as is known, fi'om expounding to anyone during his lifetime, either in writing or
by word of mouth," (p. vii) the theoretical principles which he worked out. Recent
musicology scholarship, however, reveals more convincing evidence that Bartok's use of
Fibonacci and phi were purposeful.

Sources:

Evans (1975).

Lendvai (1971).
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5.1 Poetry

Po^ry and music have much in common, including beauty that seems to defy definition.
However, since early times people have attempted to measure and define beauty in music
and poetry. Pythagoras, who lived in the 6^ century B.C.E., related everything to
mathematics, including music and poetry. His quote "The beauti&l in souikI must
depend up<m a succession of notes related to each other and a prime by the simplest
possible ratios" exemplifies this principle. Early poetry was read aloud because only the
elite could read; therefore it could be considered a type of music. A Princeton scholar. Dr.
George Duckworth, analyzed WergiV sAeneid and reportedly discovered use of the
Fibonacci sequence to create golden proportions.

Throughout the ages, mathematicians and poets have attempted to analyze poetry in a
mathematical way. Edgar Allan Poe in his essays "The Rationale of Verse" and "The
Philosophy of Composition" discusses his method of analysis. He points out the
importance of both harmony and melody in poetry (Poe, p. 50).

In a broader way, philosophers, mathematicians, and others have attempted to quantify
the measurement of beauty. Descartes, Euler, and Sylvester were three mathematicians
who expressed views on this subject. Philosophers such as Burke, Kant, and Spencer
discussed the problem, and Frans Hemsterhuis said "The beautiful is that which gives the
greatest number of ideas in the shortest space of time." (Liiui, p. 66).

George David BkkhofF, an American mathematician, (1884-1944), devised a system for
measuring beauty in his hooV. Aesthetic Measure, but was careful to point out the dangers
of such a system. He analyzed music, art, and poetry with his numerical system. His
criteria for poetry included the following;

riiyme;
repetition of vowel sounds
alliteration (words with the same beginning letter);
musical vowel sounds ("a" as in art; "u" as in tuneful, "o" as in ode);
ease of speaking

He created a mathematical formula for M, musical quality in poetry, as follows:

, . O aa + 2r-\-2m-2ae-2ce
M = —=

c  c

where O is harmony, symmetry and order: made up of oa—alliteration and assonance, r—
the element of rhyme, /»—the number of musical vowels (as he defines them), ae—
alliterative and assonantal excess, ce—the element of consonantal excess; and C is the
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complexity of any part of a poem (".. .the total number of elementary sounds therein,
increased by the word-junctures involving two adjacent consonantal sounds of the same
line, which do not admit of liaison.") (p. 177).

Examples of his analysis follow:

In Xanadu, did Kubla Khan
A stately pleasure-dome decree:
Where Alf, the sacred river, ran

Through caverns measureless to man
Down to a sunless sea.

From Coleridge's XuA/a (M= .83)

Tell me not, in mournful numbers.
Life is but an empty dream!—

For the soul is dead that slumbers,
And things are not what they seem.

From Longfellow's .<4 (M= .73)

Come into the garden, Maud,
For the black bat. Night, has flown.

Come into the garden, Maud,
I am here by the gate alone;

And the woodbine spices are wafted abroad.
And the musk of the roses blown.

From Tennyson's A/oi/iZ (M = .77)

In discussing measurement of aesthetic value, Birkhoff maintains that "...it is the
fundamental problem of aesthetics to determine, within each class of aesthetic objects,
those ̂ )eciflc attributes upon which the aesthetic value depends." (p. 3). He proposes
similar systems for the measurement of beauty in art and music.

Assignment:

Write a one-page essay on the following questions:

Do you believe there is an objective way to measure beauty? Does a mathematical
formula for aesthetic value take away some of the mystique of poetry, music, or art for
you? How do you explain the nearly universal appeal of some works of art?
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Project ideas:

Foe's method of analysis of poetry

Duckworth's analysis ofWtv^xVsAeneid

George David Birkhoff

Sources:

Birkhoff(1933).

Garland (1987).

Linn (1974).

Foe (1968).
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5.2 Limericks

A limerick is a short humorous verse made up of 5 lines and a total of 13 beats grouped
in 3's and 2's. Do those numbers sound familiar? Many limericks also have 8 syllables
in the first aiul second lines, 5 in the third and fourth lines, and 8 in the last line, resulting
in a total of 34 syllables.

Limericks are often described as "indecorous." We will limit our examples to those
which are humorous but only mildly indecorous at worst. However, the academic
community seems to have decided, according to Baring-Gould, that"... smutty stories
and ribald verse are socially significant" (p. 12), and of course limericks are our major
literary coimection with Fibonacci numbers.

Clifton Fadiman, in an essay in Ar^ Number Can Play, wrote of the limerick's perfection:
" 'It has progression, development, variety, speed, climax, and high mnemonic value.'"
(quoted by Baring-Gould, p. 16).

Here are some examples that relate to topics in our study.

The thoughts of the rabbit on sex
Are seldom, if ever, complex;

For a rabbit in ne^
Is a ri^bit indeed.

And does just as a person expects. (Baring-Gould, p. 71)

The golden ratio symbol, phi, you'll recall, came from the Greek sculptor Phideas. He is
remembered in the following:

There once was a sculptor named Phidias
Whose manners in art were invidious:

He carved .^hrodite
Without any nightie.

Which startled the ultrafastidious. (Baring-Gould, p. 12)

'Tis a favorite project of mine
A new value of pi to assign,

I would fix it at 3

For its simpler, you see.
Than 3 point 14 15 9.

(Harvey Carter, Historian, from Baring-Gould, p. 13)
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There was a young lady named Bright
Whose q)eed was far faster than light;

She went out one day,
In a relative way,

And returned the previous night.
(A. H. Reginald Duller, Botanist, from Baring-Gould, p. 13)

Many limericks have inspired sequels. One of the best-known limerick sequences is the
following;

There was an old man of Nantucket

Who kept all his cash in a bucket;
But his daughter, named Nan,
Ran away with a man.

And as for the bucket, Nantucket.

Pa followed the pair to Pawtucket
(The man and the girl with the bucket)

And he said to the man,
"You're welcome to Nan,"

But as for the bucket, Pawtucket.

Then the pair followed Pa to Manhasset,
Where he still held the cash as an asset;

And Nan and the man

Stole the money and ran.
And as for the bucket, Manhasset.

Two well-known masters of the limerick were Edward Lear (1812-1888) and Ogden
Nash (1902-1971). But statesmen, scientists, mathematicians, and others from all walks
of life have contributed to the limerick literature. Numerous web sites invite
contributions from amateur versifiers.

Assignment:

Write two limericks related to this course or to mathematics.

Project suggestions:

Edward Lear
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Sources:

Asimov, I. (1992).

Baring-Gould, W. (1968).
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6.1 Plant Growth

The term phyllotaxis (or phyllotaxy) refers to the patterns in which leaves grow from a
stem. Fitonacci numbers have b^n found in these patterns. According to Bell, "The
study of phyllotaxis has led to an ectensive terminology and also to a preoccupation with
the Fibonacci series." (p. 218)

The phyllotaxis of plants is often described in terms of fractions or ratios: 14,1/3, 2/5,
etc. In 14 phyllotaxis, there are two leaves per node, opposite each other, with 180°
between them; 2/5 means there is an angle of 144° between the leaves ̂ lich ̂iral
around the stem (2/5 of360° is 144°). These fractions found in plant growth are almost
always 14, 1/3, 2/5, 3/8, 5/13, 8/21,... We can see these as Fibonacci ratios where the
numerators and denominators are successive Fibonacci numbers. The angles between the
leaves in each of these fractions are 180°, 120°, 144°, 135°, 138.46°, 137.14°,... The
ratio seems to ̂ proach the value 137.52...° which divides the area of a circle into the
golden section:

137*NOTTS'

K

From Bell, A. (1991). Plantform: An illustrated guide toflowering plant morphology.
Oxford: Oxford University Press, p. 221

It seems that these growth patterns enable the maximum amount of sunlight to reach each
leaf. If the leaves (and branches) were spaced up the stem at intervals of exactly 137° 30'
28", then no leaf or branch would be directly above another and therefore not shaded by
another.

Similar patterns can be found in fruits of many plants. Pine cones, for example, exhibit a
spiral growth pattern. According to Garland 9), Brousseau shows that there is a 99
percent likelihood that the numbers of spirals on any pine cone will be Fibonacci
numbers. Pineq)ples, artichokes, cauliflower, and sunflower heads are other plants
exemplifying such patterns in their spirals.
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The numbers of petals on most flowers are Fibonacci numbers. Lilies and irises have
three petals; buttercups and larkspurs, five; cosmos and delphiniums, eight; field daisies,
34, and so on. It is rare to discover a flower with four or six petals; Conway and Guy (p.
123) state that those flowers with six petals are often organiz^ as two generations of
three petals each. We have seen earlier that pentagons and pentagrams exhibit both
Fibonacci numbers and the golden ratio. Garland says that more flowers bloom in
pentagons than any other ̂ pe.

We must remember, however, that not all plants exhibit Fibonacci numbers. Knott (p. 14
of his web page link, "Fibonacci numbers and nature,") quotes H. S. M. Coxeter: " Tt
should be frankly admitted that in some plants the numbers do not belong to the sequence
of f sIFibonacci numbers] but to the sequence of g's[Lucas numbers] or ev^ to the still
more anomalous sequences

3, 1,4,5, 9, ...or 5, 2, 7, 9, 16,...

Thus we must face the fact that phyllotaxis is really not a universal law but only a
fascinatingly prevalent tendency.'"

Sources:

Bell (1991).

Conway & Guy (1996).

Garland (1987)

Knott [mi-line]
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6.2 Logarithmic Spirals

One of the most beautiful of all nature's creations is the chambered nautilus. A cross-
section of this shell is shown below.

This is approximkely what mathematicians call a logari^ic or an equiangular spiral.
We can construct such a spiral, which exhibits Fibonacci numbers, as follows:

Begin with a 1-unit square. Add another 1-unit square to it. Using the long side of the
resulting rectangle, construct a 2-unit square attached to your two 1-unit squares. Using
the 3-unit side of the resulting rectangle, construct a 3-unit square. Continue this process
until you run out of paper! Now draw connecting arcs, using the comer of the square as
the center of a circle a^ the side of the square as the radius, in each square beginning in
the original square as follows:

51
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You will see that the sides of the squares are consecutive Fibonacci numbo's. Golden
rectangles abound in the finished construction. The continuous arc you have drawn is an
{q)proximation of a logarithmic or equiangular spiral. Huntley derives the polar equation
for this curve (for details, see Huntley, pp. 172-173):

r — ae

In addition to the chambered nautilus shell, examples of this spiral in nature are thought
to be horns of antelopes, wild goats and sheep, elephant tusks, and spider webs—but of
course these are more difficult to measure. Ghyka also lists Haliotis Spkndens or
Abalone Shell of California as an example similar to the chambered nautilus.

Many seashells grow in a spiral sh^ as the animal living in the "house" grows and adds
rooms to her house. Each new room becomes progressively larger, as the outer sur£u:e
grows more than the inner surface. According to Stevens (j). 89), "forms curl so that the
faster growing or longer surface lies outside and the slower growing or shorter surface
lies inside, there being more room outside than inside." He maintains that if the rates of
growth of two surfaces are unequal, the material curls so that the slower growing surface
is inside the faster growing surface. This produces a spiral shape, which Stevens
considers (me of the basic patterns of nature.

T. A Cook further maintains that the spiral is fundamental to the structure of plants,
shells, and the human body, and a key to understanding organic nature. He says that the
spiral or helix may lie at the ccx'e of life's first principle—^that of growth. However, he
points out subtle differences between nature and mathematical perfection: "... nothing
which is alive is ever simply mathematical.... The nautilus is alive and, therefore, it
cannot be exactly expressed by any simple mathematical conception." (p. ix)

Sources:

Cook (1979).

Garland (1987).

Ghyka (1977).

Hoffer (1975, October).

Huntley (1970).

Stevens (1974).
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6.3 The Human Body

Some believe that the Egyptian and Greek ideal of the golden proportion was based on
propcMtions of the human body. It is easy to find these proportions in Greek classical
sculpture. Although proportions of an individual person may vary somewhat from the
"golden" ideal, here are some examples to calculate:

(1) Measure your height, compare it with the distance from your waist to the floor.

(2) Now compare the distance from your waist to the floor with the distance from the
top of your head to your waist.

(3) Measure your head from its top to your chin, compare it with the width of your
face.

(4) Measure from your waist to your knee, compare it to the distance from your knee
to the floor.

(5) Measure from your neck to your waist, compare it to the distance from your neck
to the top of your head.

(6) Bend your index finger (pointing finger) as far as you can, and observe your own
golden rectangle! Measure to see how close it comes.

The occurrence of spiral-like formations in the human body is noted in detail by Cook.
He points out fingerprints, umbilical cord, muscular fibers of the heart, the cochlea, and
others as examples of types of spirals. He also discusses right- and left-handedness as
possible results of reversing of certain spirals. Was Leonardo da Vinci left-handed?
Cook believes so, based on evidence that he often reversed letto's and wrote from right to
left. We know that many identical twins have reverse-handedness.

Sources:

Cook (1979).

Garland (1987).

Newman & Boles (1992).
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6.4 Reproduction of Rabbits and Bees

Recall that Fibonacci's original problem was about rabbit reproduction. We observed
that rabbits really do not reproduce exactly that way. However, there is an example in
nature of exactly that pattern of reproduction—the male bee.

Bees reproduce in this way: the female has both a mother and a father (comes from a
fertilizod egg), but the male, called a "drone," has only a mother since he comes from an
unfertilized egg. Ron Knott (p. 4 of "Fibonacci numbers and nature", a link on his web
page) [Movides us with an explanation of the drone bee's family tree:

1. He has 1 parent, a female.
2. He has 2 grandparents, since his mother had two parents, a male and a female.
3. He has 3 great-grandparents: his grandmother had two parents but his grandfather

had only one.
4. How many great-great-grandparents did he have?
5. How many great-great-great grandparents did he have?

Now calculate these numbers for a female bee. Fill in the chart below.

Male bee Female bee

Parents

Grandparents
Great-grandparents
Great-great-grandparents
Great-great-great-grandparents

What about the family tree of humans? What sort of sequence results when you trace
your frmily back five or six generations?

Knott also mentions a variation on Fibonacci's problem written by the English puzzlist,
Henry E. Dudeney (1857-1930) as follows:

caw produces its first she-calf at age two years and after that produces
another single she-calf every year, how many she-calves are there after 12 years,
assuming none die?

Does this puzzle result in a Fibonacci sequence? Do you think it is more realistic than
the rabbit problem?
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Assignment:

Trace your fiunily tree back to your great-great-great grandparents. Draw a family tree
with names if possible. How many parents, grandparents, great-grandparents, etc., would
you have if they were all alive?

Sources:

Garland (1987).

Knott [on-line]
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6.5 Astronomy

The Swedish astronomer Carl-Gustav Danver discovered logarithmic spirals in the
outward twirling of galaxies in space. Cook's work contains a photogri^h of spiral
nebula on page 2.

Fibonacci numbers have been found in a formula used to predict the distances of the
moons of Jupiter, Saturn, and Uranus from their respective planets. B. A Read used
statistics to infer patterns on these distances. He concluded that (p. 428) "The Fibonacci
Series is shown to predict the distances of the moons of Jupiter, Saturn and Uranus from
their re^>ective primary. The planets are shown to have a trend which follows the
Fibonacci Series with individual offsets attributed to planetary densities." He further
hypothesized that (p. 437) "a particular moon's position is dependent upon the positions
of the previous two moons closer to the primary." As we know, each Fibonacci number
is dependent upon the previous two numbers.

Sources:

Cook (1979).

Garland (1987).

Hoffer(1975).

Read (1970).
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7.1 Patterns in the Stock Market and Commodities Trading

The stock market is often a reflection of a country's economic growth. Many factors are
thought to influence its ups and downs, such as employment, interest rates, world evei^,
and general pro^rity. Naturally, investors would like to understand patterns of these
ups and downs, and various theories have been promoted. One interesting example is
known as the Super Bowl Indicator; stocks do poorly in any year that an original
member of the AFL wins the Super Bowl, aiul do well after a victory by any other NFL
team. This theory did not hold up in 1998, when the Denver Broncos (original AFL
member) wcm the game. Another theory is called the January effect, which maintains
that stocks do well in any year in which they do well in January.

Ralph Nelson Elliott (1871-1948) was an accountant and business consultant who, in the
1930's, analyzed stock prices and formulated a theory about fluctuations in the stock
market. His theory relates these fluctuations to Fibonacci numbers. His book. The Wave
Principle, was published in 1938. In it he writes:

"'No truth meets more general acceptance than that the universe is ruled by law.
Without law, it is self-evident there would be chaos, and where chaos is, nothing
is.... Very extensive research in cormection with... human activities indicates that
practically all developments which result from our social-economic processes
follow a law that causes them to repeat themselves in similar and constantly
recurring serials of waves or impulses of definite number and pattern.... The
stock market illustrates the wave impulse conunon to social-economic activity....
It has its law, just as is true of other things throughout the universe.'" (quoted in
Prechter, The R. N Elliott Story, p. 7).

In 1939 Elliott first published his contention that the Dow Jones Index moves in rhythms.
He compared such ihythms to the tides—low tide follows high tide, reaction follows
action. According to Fischer, Elliott maintained that" 'All human activities have three
distinctive features, pt^em, time and ratio, all of which observe the Fibonacci summation
series'" (p. 12).

The "Elliott Wave Principle," as his theory is called, says in general that mankind's
progress (including the stock market) does not occur in a straight line, does not occur
randomly, and does not occur cyclically. The pattern of progress is more a "three steps
forward, two steps backward" one, a form that he thought nature prefers. The pattern
Elliot describes for the stock market consists of impulse waves and corrective waves. An
impulse wave is composed of five subwaves and moves in the same direction as the trend
of the next larger size. A corrective wave is composed of three subwaves and moves
against the troid of the next larger size. This is illustrated below:
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(5)

(b)

(3)

(o)

(11
(4)

(2)

(T)one/(5)= 2 Woves
(n(21l(3U4l(5Ka).(faUc)= 8 Wfaves
l,2,3,'^5,<ifakc,efc=34 lAitives

from Frost & Prechter (1984). Elliott Wave Principle. Gainesville, GA: New Classics Libraiy 21)

The theory gets much more complicated, of course. But many feel that it can be used to
predict lows and highs of the stock market; that it does not provide certainty about future
trends, but provides "ui objective means of assessing the relative probabilities of possible
future paths for the market." (C^sule summary..., p. 3)

Fischer believes that the Fibonacci ratio is one of the most important mathematical
presentations of natural phenomena ever discovered. He applies this ratio to equity and
conunodity price swings as well as to the stock market. An example of his
recommendations, if one follows the Elliott principles, is that one ̂ ould not invest in an
uptroKl at the end of wave 3 (p. 19). He reasons that this theory cannot resolve the
dilemma of whether (1) a correction is part of a long-term trend, or (2) a correction is the
beginning of a new trend in the opposite direction. The following chart shows areas of
uncertainty out of the Elliott concept:
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X3

55

X2

X5 5

XI

from Rscher, R (1993). Fibonacci applications and strategies for traders.
New York; John Wiley & Sons, Inc.

The Cj^sule summary web site generalizes Elliott's theories as follows;

"On a philosoi^cal level, the Wave Principle suggests that the nature of mankind has
within it the s^s of social change. As an example simply stated, prosperity ultimately
breeds reactionism, while adversity eventually breeds a desire to achieve and succeed.
The social mood is always in flux at all degrees of trend, moving toward one of two polar
opposites in every conceivable area, from a preference for heroic symbols to a preference
for anti-heroes, from joy and love of life to cynicism, from a desire to build and produce
to a desire to destroy. Most important to individuals, portfolio managers and investment
corporations is that the Wave Principle indicates in advance the relative magnitude of the
next period of social progress or regress." (p. 4)

Sources:

Capsule summary of the Wave Principle

Currier (1999, January 25).

Fischer (1993).

Frost & Prechter (1984).

Prechter (1994).
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7.2 Univariate Optimization - Fibonacci Search

In the field of management science, there are several mathematical methods of finding
the ma3dmutn or minimum value of a function over a closed bounded interval. Four of
these are given below;

(1) Uniform search method
b, -a,

n>-^ -
HI

(2) Dichotomous search method (1/2)"'' ̂  ^
b,-a.

(3) Golden section method: (0.618)"-' >
A,-a,

(4) Fibonacci search method:
b^-a.

Fn
I

In each case, the interval in which one is interested is [at. A;], the length of the final
interval of uncertainty is /, and the number of iterations required is n. The most efficient
of these algorithms is the Fibonacci search method. Though calculus is often used to find
maxima and minima, it can only be used for continuous functions. Examples of functions
which are unimodal (exactly one local minimum or maximum), but whose minima cannot
be found using calculus, are given below.

(a) (b) (cl

from Berman, G. & Fiyer, K (1972). Introduction to combinatorics. New York: Academic Press, p. 251.
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Here is an example of how the Fibomcci algorithmfor the minimum works;

Suppose we want to find the minimum value of the function >^ = [*+31 in the interval
(-4, 1). The width of the interval is 5, so let's take n = 10 so that = 55. We divide the
interval into 55 sections, each of which had width 1/11, and label the points of division 0,
1,2, ... 54, 55 as shown below:

4  -3^ ... 0 ^ \
-t-

0  t 2 ... . 54 55

Now let's mark o£r21 units and 34 units of 1/11 to the right of-4 so that

X, =-4 + F,(l/ll) =-4 + 21(1/11) = -23/11

Xj =-4 + Fg(l/ll) = -4 + 34(l/ll) = -10/ll

/(x,) = |-23/ll+3| = 10/11

/(x2) = |-10/11 + 3| = 23/11

and obviously f (Xj). This means the minimum is in the interval (-4, X2) and we
can forget (X2,1).

Now we let X3 =-4 + F7(l/ll) = -4 + 13/ll=-31/ll

and we see that f(xf)<f{x^) so we can discard the interval (x,, Xj).

Continuing this process with F^,F^, etc., we find smaller and smaller intervals that
contain the minimum. Ultimately, we find that the minimum is located approximately at
X = Xg = -3 with a possible margin of error of 1/11, and the minimum value of the
function is approximately 0.

We happen to know, of course, that the minimum value of this function is exactly zero,
so the method works.
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Sources:

Bazaraa, M., Sherall, H., & Shetty, C. (1993).

Barman, G. & Fryer, K. (1972).
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8.1 Why Is the Golden Ratio Appealing?

We have observed many examples of the almost universal aesthetic appeal of the golden
ratio—from road signs to ancient architecture to measures of music. Is this purely
cultural? Perhaps it comes from ancient Greek ideals—afrer all, much of Western
civilization can be traced to the Greeks. Or maybe it is an innate, inborn human
preference. A number of theories have been advanced to explain the appeal. Rogers
(1977) outlines some of them.

(1) The principle of''dynamic symmetry" as discussed by Zeising, Church, Coleman,
and Hambidge. Hambidge compares dynamic symmetry, that is, the golden section
as used by the Greeks, and static symmetry, the square as used by Romans. The
idea is that the golden section is the only ratio that is enable of reproducing the
same proportion in two different ways from only two different lengths. This
theory maintains that "incommensurable" or irrational dimensions are more
naturally appealing than conunensurable or integral dimensions.

(2) The Gestalt principle of closure, or resolution of tension. This theory says that the
work of the brain is dependent on patterns that strive for balance. New brain
research may shed light on this theory.

(3) Perimetric hypothesis. The perimeter of our field of vision, according to
ophthalmologists, is approximately a golden rectangle. Does this mean that the
most beautiiiil rectangle for a one-eyed person would be a square?

(4) Learned factor of social setting. Although the golden section was the "conunon
aesthetic ground for the largest number of people" (Rogers, p. 113), in some
experiments Japanese people preferred squares.

(5) Geometric analogies of the three basic civilizations. This theory states that the
linear model was preferred by Chinese civilizations, the circular modd in India, and
the logarithmic model in Western Europe.

(6) Environmental influences. Western artists have been more attracted to
mathematical models than Oriental artists. This probably derives frmn clasacal
models of ancient Greece.

(7) Archetype theory. Our brains have "well-worn memory grooves" or genetically
inherited schema.
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(8) Avmdance of extremes. The m^or portion ̂ uld dominate the minor but not too
strongly. The best ratio is somewhere between equality and doubling.

(9) Maternal heartbeat. The average ratio of long to short beats of the human heart
has been found to be .62. Infants are influenced by this before and after birth and
find it comforting and appealing.

(10) Bird song. Golden proportions have been found in the mu»c of birds, whidi
humans have always heard.

(11) The "golden section hypothesis" as outlined by Benjafield and Adams-Wd>ber.
This theory states that positive and negative aspects of life (sometimes known as
Yaig and Yin) usually fall into golden proportions, with the positive (Yang)
occupying .62 of the whole and the negative (Yin) occupying .38. This theory was
tested by several experiments; for example, by having subjects choose positive and
negative adjectives fi"om pairs of words. This may occur because the smaller
proportion will stand out more—^when subjects are asked to arrange colors to
make one stand out against the others, that color is used about 38% of the time.
Benjafield and Adams-Webber conclude (p. 14) that "The golden section
hypothesis suggests that, while we construe most events positively, we attempt to
create a harmony between positive and negative events such that the latter make a
maximal contribution to the whole."

Which of these theories do you think are most valid? Why do you think the golden
section is appealing in art and music?

Project ideas:

The Benjafield-Adams-Webber study

Dynamic symmetry

Sources:

Benjafidd & Adams-W^ber (1976).

Hambidge (1923).

Rogers (1977).
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8.2 What Factors Contribute to the Making of a Genius?

In the course of our investigation of Fibonacci numbers and the golden section, we have
looked at a few individuals who were unquestionably considered geniuses: Mozart,
Bartok, Leonardo da Vinci, and, of course, Fibonacci himself. Many other names will
spring to mind in the fields of mathematics, the arts, sciences, and humanities. Does
"genius" residt fi'om inborn intellectual talents, or does the environment i^ay a part?
Although this topic does not directly relate to our topic, it is an interesting question to
contemplate.

The question of genius has intrigued people for centuries. Defining the t^m is difiScult,
and establishing criteria for a given definition is tricky at best. We will use the following
definition: A genius is an eminently gifted person who creates and contributes something
new and useful in the arts, sciences, or humanities and is widely recognized for this
contribution.

Several studies have been publidied on this topic, and each used different criteria for
identifying the people they considered geniuses. Goertzel and Goertzel chose their
subjects based on people who lived into the 20th century and who had at least two books
about them in the biogr^hy secti(Hi of the Montclair, New Jersey, public library. Berry
(Radford, 1990) studied Novel prize winners. Eisenstadt chose individuals whose entries
in the Encyclopedia Britcamica or the Encyclopedia Americana occupied at least one-half
page.

Although selection criteria vary widely, factors that contribute to the phenomenon of
genius emerge fi'om such case studies. Researchers today generally support the
importance of inborn talent and genetic influences, particularly in the arts, though few
would believe these are the only pathways to genius. Social and cultural factors play a
part, as do religious/ethnic background, gender, and birth order. Childhood experiences
and other environrrrental influences are also believed to be major contributors.

For centuries it was believed that genius was due to divine inspiration. Ideas were
breathed iiUo people by divine force or supernatural powers. This provided a way of
explaining unusual gifts, and as well it helped explain the cormection between genius and
madness. Frances Grdton, 1822-1911, was the first major researcher to study genius; he
concluded that genetics played the most important part. Galton was primarily an
anthropologist who came fi'om an intellectual, inbred family that included Charles Darwin.
He showed that eminent people have many eminent relatives, thereby supporting his view
that intellectual activity depends on biological processes or inborn gifts. He maintained
that even the capacity to work hard was an inherited trait. Although genetics is not now
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conadered to be the whole story, his research influenced later scholars to consider the
effects of early experiences and personality characteristics.

The Temuui studies in the early 20th century were an important step in the study of ̂ ed
individuals. In one study, 1300 gifted children were tracked for 60 years. It was found
that IQ does not necessarily predict transcendent achievement (Ochse). The second
Terman study analyzed 300 famous historical figures, concluding that their success was
largely due to perseverance.

Freud was influential in the development of explanations of genius, though, like many of
his views, his explanation is not considered to tell the whole story. He believed that the
sublimaticm of sexual and aggres«ve energy into creative work resulted in artistic works.
He admitted, however, that "psychoanalysis 'can do nothing toward elucidating the nature
of the artistic gift, nor can it explain the means by which the artist works'" (quoted by
Ochse, p. IS). Later a more humanistic view of creativity was espoused by such people as
Adler, Rank, and Maslow. They believed, generally, that self-actualization was the motive
for creativity, and that people have a positive drive to improve the self. These
explanations largely ignored the intellectual aspects involved in creative thinking.

Inborn or inherited talent is surely a prerequisite for genius. This may be particularly true
in the visual arts and music. Winner (p. 273) maintains that "drawing precocity has an
innate, biological component" and that no amount of practice will produce a visual artist
without such talent. The same is surely true of musical talent. Some researchers claim,
according to Andrew Solomon in his study of the pianist and composer Evgeny Kissin,
that musical predisposition occurs in children who are hypersensitive to sound, who are
"driven to order the noise around them, so that it becomes less disturbing" (p. 119). Many
such gifted children use music as a way to communicate, and they become more proficient
with that form of communication than with language. Solomon recounts that Kissin could
sing a Bach fugue his sister was practicing at 11 months, and he began improvising and
composing original muac at age three. It is well known that some people are bom with
perfect pitch and therefore able to ̂ g a certain pitch on command or to tell readily when
an instmment or an orchestra is out of tune. This clearly is an inborn talent, though of
course without musical training one would not be aware of this gift.

Ochse recounts that clusters of geniuses have appeared throughout history during "goldra
ages." American anthropr^ogist Alfi'ed Kroeber researched fluctuations in creativity and
concluded that these clusters do not occur strictly by chance. It appears fi'om his study
that "creativity in a society waxes and wanes as a cultural pattern... becomes saturated
and its posabilities become exhausted" (Ochse, p. SO). Perhaps scientific contributions are
more dependent on cultural and environmental influences than artistic contributions.
Scientific discovery often depends on previous developments, which helps explain why
such advances as the invention of the calculus was made by two individuals working
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indep^ently, Newton and Leibnitz, at about the same time. Scientists stand on the
shoulders of thdr predecessors in a unique way.

Though it is generally acknowledged that musical talent is largely innate, there is some
disagreement. DeNora and Mehan argue that Beethoven's success as a composer, for
example, depended on an "organization predisposition for musical celebrities" (p. 166) in
Vienna during the 1790's. They point out that recognized geniuses have been
predominantly male and musical geniuses predominantly Germanic, which reinforces the
strength of cultural influences.

Creative writers acknowledge the contributions of others to their work. Ochse quotes
Goethe as saying," "The greatest genius will never amount to anything if he wants to limit
himself to his own resources.... It's simply unconscious conceit not to admit frankly that
one is a plagiarist'" (pp. 53-54). Obviously cultural influences have a bearing on the
development of talent in any field.

Montuori and Purser argue against the isolationist or "lone genius" myth, maintaining that
a more contextual view of creativity is needed. Collaboration and independence seem to
them to be necessary in an ecological view of genius. They quote Rogers who defined the
creative process as: " 'the emergence in action of a novel relational product, growing out
of the uniqueness of the individual on the one hand, and the materials, ev^ts, people, or
circumstances of his life on the other'" (p. 82). This view clearly points out the
importance of cultural factors.

According to Ochse, there has been a disproportionate number of high achievers among
Jews, and Catholics have been under-represented in recognized highly creative people.
Statistics help illustrate this: eighty percent of American Jews go to college, compared to
forty percent of gentiles; twenty-seven percent of American Nobel prize wiimers have
been Jews, but only three percent of the population is Jewish. It is difiBcult to explain this
phenomenon. Heredity is obviously a factor, and it is believed that culture plays a more
significant role than religion.

One important "genius cluster" in history was the mathematical center at Gottingen in
Germany during the early 20"' century. Tragically, in the spring of 1933 the Nazi regime
dismissed sdl "racially undesirable" professors (Jews), and many of them, including Albert
Einstein, Emmy Noether, Hermaim Weyl, and Paul Bemays, emigrated to the United
States. When David Hilbert, who had remained at Gottingen, was asked by a Nazi official
how mathematics was progresang now that the univer»ty was freed of Jewish influence,
he was reported to have replied," 'Mathematics at Gottingen? There is really none any
more'" (Burton, 1991, p. 632). These events helped shape the Institute for Advanced
Study at Princeton, largely due to the presence of Einstein, Weyl, and Kurt Goedel.
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Gender issues in occurrence of genius are difScult to analyze because of the male-
dominated culture up to the latter part of the 20"' century. Any listing of eminent creative
people up to the present time will contain more males than females. However, the
percentage of females attaining literary eminence is higher than in other fields. One
gender-related issue mentioned in the literature concerns parents of eminent persons: the
Goertzel study found many dominating mothers, but few dominating Others (often even
failure-prone fathers), among their sample.

Creative individuals tend to be first-bom or only children, according to studies reported by
Ochse. This was home out in general in the Goertzel study; however in their samjrie,
politicians seemed more likely to be middle children. Schachter (reported by Ochse) found
that there was a "marked over-representation of first-boms in college and graduate
students in families of all sizes." Other studies support the conclusion that first-bom
children are more likely to be more intelligent than others, possibly due to a higher level of
achievement motivation.

One of the most intriguing factors in the making of genius is the effect of childhood
experiences. A common thread in the study of eminent individuals is the occurrence of
misfortunes of childhood, such as a broken home, illness, physical handle^, rejecting or
dominating parents, or bereav^ent. The Goertzel study reported that three-fourths of
their sample endured such troubled youths. Interestingly, another common thread is the
drive for achievement by one or both parents and the value placed on education. They
report that in almost all of the homes in their study "there is a love for learning in one or
both parents, often accompanied by a physical exuberance and a persistent drive toward
goals" (p. 272). Similarly, Ochse reports that studies of early life-experiences of eminent
people include a disproportionate number of those who were orphaned, experienced
isolation and loneliness, were treated cmelly, or suffered ugliness, deformity, or disease.
However, there was con«derable intellectual stimulation in the homes of such children,
and they leamed to value achievement.

Therivel maintains that the "challenged personality" is a pre-condition for sustained
creativity. He defines "challenged" as including both the presence of misfortunes such as
those listed above and the supports offered by fiiendly help from parents or mentors,
medical care, cultural advantages, education, and free time to pursue interests. He tlms
distinguishes "challenged" from "crushed" and "pathological" persons due to the presence
of such supports. One possible explanation for the occurrence of giftedness in so many
persons with fairly miserable childhoods is the effect of periods of solitude in which such
children may dream, think, write, and perhaps escape reality through reading, music, or
art. Wnston Churchill's biographer William Manchester stated that great men are
frequently products of boyhood loneliness. Although this is often a result of
circumstances in his or her life, it can be due partially to the child's own inclinations and
nature. Einstein, for example, said, " T ... have never belonged to my country, my
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fiiends, or even my immediate family with my whole heart; in the face of all these ties, I
have never lost a sense of distance suid a need for solitude—^feelings which increase with
the years.'" (quoted in Ochse, pp. 78-79).

Marvin Eisenstadt (1989) further believes that the specific misfortune he calls orphanhood
(loss of one or both parents) often motivates a child to excel. He studied 573 subjects
whose articles were given a half page or more in the 1963 Ejicyclopedia BriUmnica or the
1964 Encyclopedia Americana and found the incidence of parental loss in this sample
much greater than in the general population. In a psychoanalytic ̂ proach to this
phenomenon, he believes that the trauma of such loss may impose pressure on the psyche
which leads to the creativity necessary to resolve issues of fiustration, identity, and
feelings of emptiness. He also points out that the loss of a parent often significantly
changes the make-up and circumstances of the family.

We have seen that a true genius emerges when a number of factors combine to produce a
truly creative person who contributes something of value to the culture. Although this
may be a rare occurrence, the appreciation and understanding of that product may be
nearly universal. There has been only one Mozart, but millions of people's lives are
enriched by what he created. Fibonacci numbers and/or golden proportions may be
employed consciously or imconsciously by the creator, but the masses of people who
listen to or view the results do not need to be aware of the reasons for the exceptional
balance and beauty to ̂ preciate the result.

Sources:

Burton (1991).

Eisenstadt (1989).

Goertzel & Goertzel (1962).

Howe (1996)

Montuori & Purser (1995).

Ochse (1990).

Radford (1990).

Sloboda (1996).
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Solomon (1996).

Therivel (1993).

Winner (1996).
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8.3 What Does All This Mean?

The reader (student) is to write this section. The ubiquity of Fibonacci numbers and the
golden ratio in the arts, sciences, and humanities is only one example of the connections
between mathematics and other fields. Write a page or two on your conclusions fi'om this
study of such connections.
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Course Goals

The primary goal of the course is to enable students to find connections between
mathematics and other disciplines.

Other goals, referred to in the sample lesson plans, are:

(1) Willingness to explore mathematical patterns and to find them in the arts,
humanities, natural sciences, and social sciences.

(2) Oral communication skills that enable effective comprehension, analysis, and
expression.

(3) The integration of the scientific, artistic, and humanistic modes of inquiry.

(4) Increased interest and fluency in mathematics.
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Lesson Plan #1

Unit 1 - Historical Background

Lesson - Introduction to the course

Goal(s) Addressed: #1

Objective of Lesson: The student will observe and extend numerical patterns and other
patterns by completing work^eets. They will discuss how
patterns can be used to predict.

Prerequisite Topics: None

Previous Assignment: None

Outline of Lesson:

(1) Instructor will introduce the course and discuss expectations listed in
syllabus.

(2) Students will complete attached worksheets, working in pairs.

(3) Instructor will lead discussion based on responses to sequences. Stud^ts
will observe that some of the worksheet examples could have more than
(me patton. The usefulness of patterns in predicting behavior will be
discussed.

Assignment: Read and be prepared to discuss "Life in the Middle Ages" in the
textbook.

Materials: Copies of worksheets:
(1) Pattern activity from Games, April 1999
(2) "Search for a pattern..."

Assessment: Informal: Teacher observation of participation in discussion and activities
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Search for a pattern ...

For each of the following sequences, give the next element. State in your own words
what you think the patterning rule is.

1. 80,40,20,10,

2. James, Till, Joan, John,

3. 1, 8,27,64,125,

4. Styx, Beatles, Who, Kansas,

5. Alvin, Barbara, Carla, Dennis,

6. 6,30,150,750,

7. 0, 2, 24, 252,

8. 1, 1, 2, 4, 7, 13, 24,

9. 1/2, 2/3, 3/4, 4/5,,

10. 0, T, T, F, F, S, S,
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Identify and draw the indicated term;

11. thirteenth:
< > O DQ OD aXD o o oo

12. tenth:

13. fifteenth:

□□□□□□

14. sixth: A A A A

15. twentieth: F^"nrrjt. Li. jJF
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Lesson Plan #2

Unit 1 - Ifistorical Background

Lesson - Life in the Middle Ages

Goal(s) Addressed: #3

Objective of Lesson: The student will explore the culture of the Middle Ages

Prerequisite Topics: None

Previous Assignment: Read and be prepared to discuss "Life in the Middle Ages"
in the textbook.

Outline of Lesson:

Guest lecturer or

Discussion of and IB*** centuries in Western Europe with: slides of
monasteries, Gothic cathedrals, Pisa's Leaning Tower; tapes of music from
period.

Materials: Slides, projector, tapes, tape player

Assessment: Informal, based on class discussion
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Lesson Plan #3

Unit 1 - Hstorical Background

Lesson - Mathematics History up to the Middle Ages

Goal(s) Addressed: #2, #3, #4

Objective of Lesson: The student will see contributions of individuals and cultures to the
development of mathematics before 1200 C.E.

Prerequisite Topics: Life in the Middle Ages

Previous Assignment: Read "Mathematics History up to the Middle Ages" in text;
Exercises 1 and 2 (prepare or^ report for #2)

Outline of Lesson: (1) Class discussion of reading

(2) Oral reports from Exercise #2

(3) Solve Diophantus' Riddle, discuss approaches to problem

Assignment: Read "Leonardo of Pisa" in text.

Materials: None

AssessnMut: Formal: Evaluation of oral report using rubric
Informal: Teacher observation of participation in discussion and problem
solving exercise
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Lesson Plan #4

Unit 1 - Historical Background

Lesson - Leonardo of Pisa

Goal(s) Addressed: #1, #3, #4

Objective of Lesson: The student will recognize Leonardo's contributions to the
mathematics of the Middle Ages.

Prerequisite Topics: Life in the Middle Ages, Mathematics History Up to the Nfiddle
Ages

Previous Assignment: Read "Leonardo of Pisa" in text

Outline of Lesson: (1) Class discussion of Leonardo

(2) Lecture on characteristics of various number systems

Assignment: Exercises 1, 2 or 3, and 4 from "Leonardo of Pisa" in text

Materials: Transparencies of number systems, slide or photogr^h of statue of
Leonardo.

Assessment: Informal: Teacher observation of participation in discussion.
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Lesson Plan #5

Unit 1 - Historical Background

Lesson - Liber Abaci

Goal(s) Addressed: #1, #2, #4

Objective of Lesson: The student will solve number problems from Liber Abaci and
recognize the significance of these problems.

Prerequisite Topics: Life in the Middle Ages, Mathematics History Up to the Middle
Ages, Leonardo of Pisa

Previous Assignment: Exercises 1, 2 or 3, and 4 from "Leonardo of Pisa" (1.3) in
text

Outline of Lesson: (1) Teacher introduction of problems and their significance;
number rather than geometry; demonstrating efficiency of
Hindu-Arabic number system; practical problems.

(2) Students will work in groups or pairs to solve certain
problems from Liber Abaci, will share their solutions and
methods with class.

Assignment: Finish assigned problems from Liber Abaci.

Materials: Lists of Liber Abaci problems from text

Assessment: Formal: Evaluation of exercises 1, 2 or 3, and 4, Section 1.3
Informal: Teacher observation of problem-solving exercise.
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Lesson Plan #6

Unit 2 - Mathematics

Lesson - Preliminary Considerations

Goal(s) Addressed: #1, #4

Objective of Lesson: The student will review (or learn) summation, factorial, and
scientific notation.

Prerequisite Topics: None

Previous Assignment: None

Outline of Lesson:

(1) Instructor will demonstrate notation used for summation, &ctorial, and
scientific notation.

(2) Students will practice using notation by working some exercises in section
2.1.

Assignment: Exercises in 2.1

Materials: None

Assessment: Informal; Teacher observation of student practice
Formal: Grading of assigned exercises in 2.1
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Lesson Plan #7

Unit 2 - Mathematics

Lesson - Sequences and Series

Goal(s) Addressed: #1, #4

Objective of Lesson: The student will explore arithmetic, geometric, Fibonacci, Lucas,
and Tribonacci sequences. They will learn to store the formula for
the /ith Fibonacci number in a graphing calculator.

Prerequisite Topics: Preliminary Considerations (Section 2.1), Leonardo of Pisa
(Section 1.3)

Previous Assignment: Exercises in 2.1

Outline of Lesson:

(1) Instructor will review sequences from 2.1, will discuss the concept of
recursive sequences, will demonstrate Fibonacci, Lucas, and Trilx>nacci
sequences. The formula for the nth Fibonacci will be explained.

(2) Students will, under direction of instructor, store parts of the formula for
the nth Fibonacci number in their graphing calculators. They will then
find the lO**" and 20*** Fibonacci number in two ways (recursively, and by
the formula).

Assignment: Exercises in 2.2

Materials: Graphing calculators

Assessment: Formal: Grading exercises in 2.2
Infomuil: Teacher observation of student activities
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Lesson Plan #8

Unit 2 - Mathematics

Lesson - Binomial Coefificients

Goal(s) Addressed: #1, #4

Objective of Lesson: The student will leam the meaning of and how to calculate
binomial coefficients.

Prerequisite Topics: None

Previous Assignment: Exercises in 2.2

Outline of Lesson:

(1) Students will, by brute force, calculate how many 0-, 1-, 2-, and 3-element
sets are possible from a 3-element set.

(2) Instructor will demonstrate how these numbers are the coefficients when
(a + b) is raised to the 3"* power. Notation will be explained.

(3) Students will practice calculating binomial coefficients.

Assignment: Exercises in 2.3

Materials: Graphing calculators

Assessment: Formal: Grading exercises in 2.3
Informal: Teacher observation of student practice
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Lesson Plan #9

Unit 2 - Mathematics

Lesson - Pascal's Triangle

Goal(s) Addressed: #1, #2, #4

Objective of Lesson: The student will learn the history of Pascal's triangle and what it
represents. Patterns in Pascal's triangle will be explored.

Prerequisite Topics: 2.3

Previous Assignment: Exercises in 2.3

Outline of Lesson:

(1) History of Pascal's triangle will be explored, including earlier versions.
Instructor will demonstrate that entries on the triangle are binomial
coefficients, and will lead class to discover that the sum of elements on the
wth row is 2°, that each element is the sum of two in the previous row, and
that the sum of numbers along diagonals are Fibonacci numbers.

(2) Students will work in groups to explore patterns in the triangle using
work^ieets from Seymour.

Assignment: Exercises in 2.4

Materials: Worksheets from Dale Seymour, Visual Patterns in Pascal's Triangle.

Assessment: Fonnal: Grading exercises in 2.4
Informal; Teacher observation of students in group assignment
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Lesson Plan #10

Unit 2 - Mathematics

Lesson - Mathematical Proof

Goal(s) Addressed: #1, #2, #4

Objective of Lesson: The student will observe methods of mathematical proof and will
learn to do simple proofs by mathematical induction.

Prerequisite Topics:

Previous Assignment: Exercises in 2.4

Outline of Lesson:

(1) Instructor will demonstrate geometric proofs of the Pythagorean Theorem,
discuss their history.

(2) Instructor will demonstrate proofs by mathematical induction. Students
will practice simple such proofs such as the sum of the first n positive
integers.

Assignment: Exercises in 2.S

Materials:

Assessment: Formal; Grading exercises in 2.5
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Lesson Plan #11

Unit 2 - Mathematics

Lesson - Patterns in the Fibonacci Sequence

Goal(s) Addressed: #1, #4

Objective of Lesson: The student will observe patterns in the Fibonacci sequence, using
brute force and "looking for a pattern" to form a conjecture and, in
some cases, mathematical induction to prove a conjecture.

Prerequisite Topics: Leonardo of Pisa (1.3) aiul Mathematical Proof (2.5)

Previous Assignment: Exercises in 2.5

Outline of Lesson:

(1) Instructor will demonstrate the brute force method to be used in forming
conjectures. Students will practice using examples in the text.

Assignment: Exercises in 2.6

Materials:

Assessment: Formal: Grading exercises in 2.6
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Lesson Plan #12

Unit 2 - Mathematics

Lessen - Geometric Constructions

Goal(s) Addressed: #1, #4

Objective of Lesson: The student will review simple mathematical constructions using
compass and straight edge in preparation for constructing a golden
rectangle.

Prerequisite Topics:

Previous Assignment: Exercises in 2.6

Outline of Lesson:

(1) Instructor will demonstrate, and students will practice, copying a
line segment, copying an angle, constructing a perpendicular
bisector, and bisecting an angle.

Assignment: Exercises in 2.7

Materials: Compasses and rulers for each student

Assessment: Formal: Grading exercises in 2.7
Informal: Teacher observation of student practice
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Lesson Plan #13

Unit 2 - Mathematics

Lesson - Golden Ratio

Goal(s) Addressed: #1, #2, #4

Objective of Lesson: The student will discover the relationship between Fibonacci
numbers and the golden ratio; will calculate the gdden ratio; and
will construct a golden rectanble.

Prerequisite Topics: Leonardo of Pisa (1.3), Geometric Constructions (2.7)

Previous Assignment: Exercises in 2.7

Outline of Lesson:

(1) Using worksheets, students will calculate the ratio of adjacent
Fibonacci numbers up to the lO"*.

(2) Using the ratio a^ = b/(a+b), students will calculate the golden
ratio numerically for certain values of a.

(3) Experiments by psychologists (Fechner, etc.) will be discussed to
determine if preference for the golden ratio is intuitive.

Assignment: Exercises in 2.8, survey 10 people to determine their favorite rectangle

Materials: Worksheet to calculate ratios. Sheet of rectangles of various shapes

Assessment: Formal: Grading exercises in 2.8
Informal: Teacher observation of student completion of worksheets and
discussion
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Calculate the ratios of successive Fibonacci numbers. Remember that Fi = Fj = 1, each
succeeding F is the sum of the previous two.

=1/1 = .

F,IF,=2n = ,

FslF,=.

FelFs =

F,/F,=

FJF,=,

FJF,,=,

F,o/F,=
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Lesson Plan #14

Unit 2 - Mathematics

Lesson - Pythagorean Triples

Goal(s) Addressed: #1, #4

Objective of Lesson: The student will discover a method of generating Pythagorean
triples from four consecutive Fibonacci numbers.

Prerequisite Topics: Leonardo of Pisa (1.3)

Previous Assignment: Exercises in 2.8

Outline of Lesson:

(1) Instructor will explain the term "Pythagorean Triples" and
demonstrate methods of generating them.

(2) A sequence of four consecutive Fibonacci numbers will be used to
generate Pythagorean triples.

(3) Students Avill practice using these methods.

Assignment: Exercises in 2.9

Materials:

Assessment: Formal; Grading exercises in 2.9
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Lesson Plan #15

Unk 3 - Alt and Architecture

Lesson - The Parthenon

Goal(s) Addressed: #1, #2, #3

Objective of Lesson: The student will discover the golden ratio and other
"incommensurable" measurements in the dimensions of the Greek
Parthenon.

Prerequisite Topics: The Golden Ratio (2.8)

Previous Assignment: Read "The Parthenon" (3.2)

Outline of Lesson:

(1) A visiting lecturer from the art department will discuss historical
background of the Parthenon and will point out various dimensions
and pattoms in the structure.

(2) Students will discuss the use of "incommensurable" or irrational
numbers in the Golden Age of Greece.

Assignment: Find a source (book, journal, or web site) on the Parthenon and summarize
it.

Materials: Slides, video, or photographs of the Parthenon.

Assessment: Formal: Evaluation of summary of Parthenon source
Informal: Teacher observation of discussion
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Lesson Plan #16

Unit 4 - Music

Lesson - Music of Mozart

Goal(s) Addressed: #1, #3

Objective of Lesson: The student will discover the golden ratio in the mu»c of
Wolfgang Amadeus Mozart.

Prerequisite Topics: The Golden Ratio (2.8)

Previous Assignment: Read "Music of Mozart" (4.2)

Outline of Lesson:

(1) Students will use the data provided to see, in Mozart's piano
sonatas, how close the ratio of "exposition" to "development and
recapitulation" sections comes to the golden ratio.

(2) Students will discuss research on whether listening to Mozart's
music enhances reasoning and creativity, and whether there is a
connection between that and the prevalence of the golden ratio.

(3) Students will listen to another Mozart composition, with orchestral
parts {M'ovided, to determine whether the golden ratio is present.

Assignment: Find experimental research on "The Mozart Effect" and be prepared to
rep<Mt to class.

Materials: Recording and orchestral parts of a Mozart composition (movement in
sonata/allegro form).

Assessment: Formal; Evaluation of report on research.
Infcnmal: Teacher observaticm of discussion.
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Lesson Plan #17

Unit 5 - Literature

Lesson - Limericks

Goal(s) Addressed: #1, #2, #3

Objective of Lesson: The student will find Fibonacci numbers in the syllables and beats
in a limerick and will compose two limericks related to subject
matter in the course.

Prerequisite Topics:

Previous Assignment: Read "Limericks" (5.2)

Outline of Lesson:

(1) The instructor will demonstrate how to count syllables and beats in
each line of selected limericks and will briefly discuss the history
of the limerick.

(2) Students will compose two limericks each related to the subject
matter of this course and will read them aloud to the class.

Assignment: Find and report on a web site related to limericks.

Materials:

Assessment: Ftmnal; Students and instructor will evaluate limericks written by
students; Instructor will evaluate web site results.
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Lesson Plan #18

Unit 6 - Nature

Lesson - Logarithmic Spirals

Goal(s) Addressed: #1, #3

Objective of Lesson: The student will become aware of spirals in nature and will
construct a logarithmic spiral using gr^h paper and squares with
Fibonacci dimensions.

Prerequisite Topics: "The Golden Ratio" (2.8)

Previous Assignment: Read "Logarithmic Spirals" (6.2)

Outline of Lesson:

(1) Instructor will show examples of spirals in nature, such as the
chambered nautilus shell, antelope horns, spider webs, and elephant
tusks.

(2) The class will discuss why Stevens considers the spiral "one of the
basic patterns of nature."

(3) Students will construct a logarithmic spiral as indicated in the textbook
directions.

Assignment:

Materials: Chambered nautilus shell, pictures of other spirals in nature, graph p2q)er

Assessment: Informal: Teacher observation of participation in discussion.
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RESULTS
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PART III

RESULTS

The course "Fun with Fibonacci" was ofTered to Maryville College students as an

experiential elective course in the spring of 1999. The purpose was to determine whether

the course that is described in this study accomplishes its goals. Fifteen students, whose

majors included biology, chemistry, mathematics, English, history, business

management, psychology, and computer science, were enrolled in the course. One

student, an English major, dropped before mid-term due to other demands on his time;

one additional student, an art major, audited. The format was a 10-week evening

schedule with classes held Tuesdays fi'om 6 to 9 p.m. and one Saturday class from 9 a.m.

to 1 p.m., January 6 through March 6. As an experiential course, grades given were

Satisfactory and Unsatisfactcxy rather than letter grades. Three hours credit were

awarded to students who passed the course, which could be counted toward their

experiential education requirement.

The overall goal of the course was to improve an individual's ability to make

connections between mathematics and other disciplines. Other goals, as outlined in the

syllabus, were:

(1) Willingness to explore mathematical patterns and to find them in the arts,

humanities, natural sciences, and social sciences;

(2) Oral communication skills that enable effective comprehension, analysis,

and expression;
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(3) The iittegration of the scientific, artistic, and humanistic modes of inquiry;

(4) Increased interest and fluency in mathematics.

In additicm to these formal goals, the instructor hoped that students would be

curious, even skeptical, about course material. She further hoped that students who were

uneasy or anxious about learning mathematics would develop confidence in that area.

Teaching the Class

Because of the three-hour format of the class, I chose not to teach the

mathematics topics consecutively, but to combine one or one-and-one-half hours of

mathematics with other topics related to the Fibonacci sequence each evening. Guest

speakers provided interest and depth in various areas. Courtney Lix, a high school

student from Gatlinburg, brought her winning science fair project on the golden ratio in

art and nature. She was able to demonstrate how signs and billboards in Gatlinburg, a

gateway city to a scenic area, could be made more aesthetically ̂ pealing merely by

making their sh^s golden rectangles or ovals. Carl Gombert of the Maryville College

art department presented a program on the Parthenon and Leonardo da Vinci. Amy

Livingstone, a medieval historian, discussed the 11*** and 12^ centuries in Europe, the

time when Fibonacci lived. She showed slides of medieval sites such as Gothic and

Romanesque cathedrals. Mary Kay Sullivan of the MC management department talked

to the class about the stock market and possible patterns in its fluctuations.

In addition to hearing and interacting with these guest speakers, the class viewed

three videotapes that enriched certain subject areas; "Donald Duck in Mathmagicland"

discusses the golden ratio; a "Breakfast with the Arts" segment shows Mstislav
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Rostropovich pointing out the golden section in the phrasing of Bach's music; and an

A&E video on the Pyramids of Egypt explores these phenomenal structures. Actual

lecture time was kept to a minimum; these and other student activities helped break up

the three-hour block of time.

Although the course was pass/&il, certain requirements had to be met to pass the

course. Homework assignments (mostly mathematics exercises in the textbook) were

graded and totaled 150 possible points. Worksheets, essays, limericks, and other

assignments, in addition to homework, made up a student's portfolio which comprised

40% of his/her grade. Attendance and participation made up 20% of a student's grade,

and 40% of the grade resulted from a major oral presentation on the last day of class.

Topics chosen for these are listed in Appendix D.

Quantitative Results

The only quantitative data collected were the results of a Likert scale included as

part of Maryville College's course evaluation form. The form, administered near the end

of the course, asked students to respond to the following ten statements. Responses

ranged from 5 (strongly agree) to 1 (strongly disagree).

1. The basic objectives and purposes of the course were stated clearly.

2. Actual course content was consistent with the syllabus and stated

objectives of the course.

3. The prerequisites, if any, provided adequate background for the course.

(Note: The only prerequisite for the course was Introductory Statistics.
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The purpose of that was to ensure that students had adequate algebra

background and could interpret basic statistics.)

4. Organization of course content contributed to my ability to learn.

5. The textbook(s) (or other required readings and materials) contributed to

my learning.

6. Assignments contributed to my understanding of the course content.

7. The course challenged me to think seriously about and become involved

with this subject.

8. My responsibilities were clearly defined.

9. The methods of evaluation were clearly stated.

10. The methods of evaluation measured my performance accurately.

Results for this course, as well as average results for ail Maryville College courses for the

school year 1998-99, are given in the following table;

"Fun with Fibonacci" Average Average of all MC courses

#1 4.833 4.4

#2 4.750 4.4

#3 4.400 4.0

#4 4.583 4.1

#5 4.750 4.0

#6 4.833 4.1

#7 4.583 4.1

#8 4.9167 4.3
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#9 4.9167 4.3

#10 4.833 4.1

Average 4.74 4.2

There was a significant difference between the Fibonacci course and the average for all

Maryville Courses (p < .05) in every category except #3, "The prerequisites, if any,

provided adequate background for the course." The only prerequisite was Introductory

Statistics to ensure adequate algebra background; however statistics were directly used in

only one lesson. Two students answered "3 - Neutral" for this item, and one left it blank.

Items #6 "Assignments contributed to my understanding of the course content," #8 "My

responsibilities were clearly defined," #9 "The methods of evaluation were clearly

stated," and #10 "The methods of evaluation measured my performance accurately,"

resulted \np ».0000. Quantitative results thus show that the course was received

positively. It should be pointed out, however, that this course was elective and

experiential, so that more positive results would be expected than for required courses.

Qualitative Results

Student comments, both on the evaluation form and on other writing assignments,

give a more complete picture of the effectiveness of the course in connecting

mathematics with other areas of the curriculum. On the standard evaluation form,

students were asked to comment on strengths of the course and to make suggestions for

improvement. These responses are listed in full in Appendix D.

Other qualitative data was gained from the pre- and post-course questions:
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(1) What is mathematics?

(2) How does mathematics connect with the world at large?

These responses are also listed in full in Appendix D.

The most useful data came from an assignment at the end of the course in section

8.3: ''The reader (student) is to write this section. The ubiquity of Fibonacci numb«^

and the gdden ratio in the arts, sciences, and humanities is only one example of the

connections between mathematics and other fields. Write a page or two on your

conclusions from this study of such connections."

Other data came from teacher notes following each class session and from

homewoiic assignments and clasa'oom activities throughout the course.

Discussion

Evidence that the overall goal of the course was achieved came from several

sources. Students veibalized their increased ability to make connections between

mathematics and other disciplines in the final course essays excerpted below:

"It has often been thought that the world is full of intricate connections, but their

complexity may leave them unnoticed. It was fun to actually discover some of the links

between the uts, humanities, and natural sciences, and find their connections to

mathematics...."

"Many of the disciplines offered at Maryville College seem distinct in themselves,

but this course has created a link between many of them."
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"Although in some cases we may be stretching it, it does look like the Fibonacci

sequence and the golden ratio have much to do with everything.... It is certain that this is

one of the reasons why mathematics is easily related from one subject to the next."

"Like the circle, this patton [the Fibonacci sequence] is prolific across all cultural

and subject boundaries."

Results from the pre- and post-course questions, "What is mathematics?" and

"How does mathematics connect with the world at large?" were somewhat disappointing.

I felt that students were trying to give a profound answer to these rather deep questions

both at the beginning and at the end of the course. They had a limited time to answer

them during class, so less thought and reflection are seen in their responses than in the

final essays. However, there were some examples of increased awareness of connections

due to the course in responses to the question "How does mathematics cormect with the

world at large?"

Student #14, initial response: "It [mathematics] is directly linked with global

economy, government, trade (import/export), etc. Everything." This appeared to reflect

her Business and Organizational Management background. However, her final response

was as follows: "Mathematics provides balance and harmony. It helps us have greater

understanding of nature, architecture, music, art, and practically everything around us."

Clearly the course had an effect on her belief about how mathematics connects with the

world at large.

Student #10, a mathematics major, wrote initially: "Mathematics is in everything!

It is the universal language. In any task, subject, or thought mathematics may be
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involved in a very large to a very small way! (But it IS involved.)" Final re^nse: "It is

in art, music, science, etc. It is everywhere. It is everything."

Student #8, a biology major, wrote: "Mathematics is used by everyone every day

be it simply making change while shopping or as complex as using a computer

simulation." At the end of the course he re^nded: "Through searching for patterns in

occurrences both in natural sciences and art, one can connect mathematics with just about

anything."

Student #6, another Business and Organizational Management major, answered

the miginal question: "Completely." Final response: "Mathematics is the connector for

the woiid at large, for it is also the language of art, music, and other creative endeavors.

It orders nature, organizes the universe. It is beautiful."

On the Maryville College course evaluation form, one student commented: "This

is a great course. It's really useful to learn how math connects to the world around us."

Another wrote: "It was an interesting course that tied together a lot of different fields of

study." A third student said: "It is a good course in that it brings all aspects of the wm-ld

into one field."

Course goals were achieved as follows:

Goal 1. Willingness to explore mathematical patterns and find them in the arts,

humanities, natural sciences, and social sciences.

Students explored patterns in Lesson 1, discovered patterns in the Fibonacci

sequence in Section 2.6 and in Pascal's triangle in Section 2.4 They found the Fibonacci

numbers and the golden ratio in music, art, architecture, poetiy, botany, astronomy, and

economics. Classroom activities and assignments indicate this goal was achieved.
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One of the more rewarding events of the course was when two students derived a

new (to me) formula for the sum of the squares of the first n Fibonacci numbers. This

conjecture resulted from observing patterns in this sum for various values of n. I proved

that their conjecture is equivalent to the usual formula for this sum in Appendix A, Case

Study 2.

On the Maryville College course evaluation form one student commented; "This

is a very interesting course. I knew nothing about patterns before."

Goal 2. Oral communication skills that enable effective comprehension, analvsis.

and expression.

Each class session included some group discussion and/or activities. Cooperative

learning took place in finding patterns in the Games magazine activity and in the Pascal

triangle. In addition, students made two individual oral presentations. The first was a

brief report to the class on a mathematician who lived before the time of Fibonacci; the

second was a more extensive presentation on a topic of their choice, with suggestions in

the textbook. Topics and descriptions of these are listed in ̂ pendix D. For the most

part these presentations were interesting and informative. Students were encouraged to

choose a topic unrelated to their major field, and most did. They were required to include

audio-visual aids or audience participation. All demonstrated effective comprehension,

analysis, and expression.

Examples of those which used various modes of expression were: a discussion of

fractal geometry and the Mandelbrot set by a senior chemistry major, including

illustrations and excerpts from the Devaney video; and a performance and discussion of

the nmsic of Mozart by a senior mathematics major.
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Goal 3. The integration of the scientific, artistic, and humanistic modes of

inquiry.

The course included mathematical problem solving, observation of nature (pine

cones, pineapples, etc.), listening to music while following a score, writing verse, and

reading history. Clearly a variety of modes of inquiry was integrated into the course.

Goal 4. Increased interest and fluency in mathematics.

As evidence by written assignments, students were able to extend and interpret

patterns, prove simple conjectures using mathematical induction, calculate binomial

coefficients, generate Pythagorean triples, and perform geometric constructions. Those

with limited mathematical background found these activities non-threatening and

leamable. Further evidence that this goal was achieved was given by these comments on

the course evaluation form: "Lessening fear of math for those who detest the subject**

and "I knew nothing about pattoms before.'*

Comments in the instructor's notes showed that one particular student blossomed

in the area of mathematical interest and confidence:

l-S-99 #6 seemed subdued. She's a non-traditional student.

1-26-99 #6 and #4 want help with the math problems. Made appointments

with both of them.

1-29-99 #6 came by for help with math problems, calculator, etc. Catches

on &st! She said she never thought about these patterns before....

She was thrilled with first homework grade (20/20) - surprised.
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Other goals.

As discussed in the Rationale in Part I, I believe in the ubiquity of the Fibonacci

sequence and the golden ratio, but maintain a healthy skepticism about some aspects of

the topic. I hoped to communicate this belief card skepticism to students. Such

skepticism resulted from several explorations of patterns in nature. For example, as a

group we had difficulty counting rows on pine cones and were not able to draw

conclusions about the presence of the Fibonacci sequence there. We had better luck with

pine^ples; one student determined that the artichoke had layers of eight leaves. We did

find the golden r^io in measurements of the human body by averaging the heights and

navel-to-floor distances of each person, but were not as successful in measuring faces.

Because I had always heard that the first movement Mozart's Symphony #40 was "the

most perfect movement in music," and because it is in sonata-allegro form as are most

movements of the piano sonatas, I borrowed orchestral parts and obtained a recording so

that we could try to find the golden ratio between the two sections, exposition and

development/ recapitulation. We did not find the golden ratio—^were not even close—but

the experience of listening to the music and following a score was new to many of the

students and was a valuable exercise in itself. We concluded that Mozart's intuition was

not always "golden."

When Carl Gcnnbert spoke on the golden ratio in art and architecture, one student

asked if he used this ratio in his art. He replied that he purposely tries not to, just because

it is so prevalent, but that it does occur since he paints human faces. Mary Kay Sullivan

reviewed the theories of Fibonacci numbers in fluctuations of the stock market, but stated

that she believed these were not very useful in predicting market activity.

177



Evidence of such healthy skepticism showed up on one student's final paper:

"Although in some cases we may he stretching it, it does look like the Fibonacci sequence

and the golden ratio have much to do with everything."

A second hope of the instructor was that any students who were uneasy or anxious

about mathematics would gain confidence in that area. Clearly Student #6 demonstrated

success in this area. One student's course evaluation form comment confirms that, for

that person at least, "Lessening fear of math for those who detest the subject" took place

as a result of the course.

Conclusions

It appears from the previous discussion that both the overall purpose of the course

and the individual course goals were achieved. As stated in the rationale for the course in

Part I, one of the goals of the liberal arts curriculum is connected learning. This course,

therefore, could be a useful offering in any undergraduate liberal arts setting.

The Academic Life Council of Maryville College gave its approval for this course

to be offered as a Senior Seminar in the spring of2000.

One student's final essay exemplifies the success of the course:

Our study of the Fibonacci sequence and the golden ratio has certainly
been intriguing. It has often been thought that the world is full of intricate
ccmnections, but their complexity may leave them uimoticed. It was fun to
actually discover some of the links between the arts, humanities, and natural
sciences, and find their connections to mathematics (namely the Fibonacci
numbers and the golden ratio). Finding Fibonacci has demonstrated the presence
of not only the Fibonacci numbers, but the Fibonacci sequence as well, in nature,
music, literature, art, and architecture, as well as many divisions of math. In
addition, while examining these connections, we often found evidences of the
golden ratio.
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I was amazed to see how the Fibonacci sequence and the golden ratio
showed up time and again in fields other than mathematics. I think that the guest
speakers really helped to emphasize the importance of the sequence in their
respective topics. Many of tiie disciplines offered at Maryville College seem
distinct in themselves, but this course has created a link between many of them.
The result is the realization that possibly everything has some special bond, and
the knowledge that is available is endless.

I think that this was a wonderful and challenging study. I was encouraged
to take a closer look into many of the subjects that I have studied for my major.
For many people, math can be confusing or unrealistic, so I was excited to see
that the m^ behind the Fibonacci sequence was very applied in this course, and
the students that did not have strong math backgrounds were able to visualize and
understand the ̂ plications.
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Case Study #1

In 2.10 of the student textbook, combinatorial proof is introduced and a counting problem
is investigated. Two similar counting problems follow:

Let g(n) denote the number of compositions of the positive integer n with all parts in the
set {1,2}, and with no I's adjacent, and let h(n) denote the number of such compositions
with no 2's adjacent. Find recursive formulae for g and/i. What would finding closed
form expressions forg(w) and h(n) involve?

We can generate initial values ofg(/i) by brute force as follows:

g(n) compositions

g(l) = 1 (1)
g(2) = 1 (2)
g(3) = 2 (1+2,2+1)

For all n> 3:

*  g(n)=g(n-2)+g(n-3)

Each side of # counts the same thing: the left-hand side counts the compositions by
definition; the right-hand side counts the compositions in two exhaustive, disjoint
subclasses: (a) the compositions with first part equal to 2, and (b) the compositions with
first part equal to 1.

We know that (a) contains n-2 compositions because they begin with 2 and have a sum
equal to n. Similarly, (b) contains n-3 compositions because they must begin with 1+2
in order to avoid adjacent I's and they must have a sum equal to n.

Generating initial values of h(n) by brute force, we find:

h(n1 compositions

h(l)=l (1)
h(2) = 2 (1+1, 2)
h(3) = 3 (1+2, 2+1,1+1+1)

For all n> 3:

h(n) = h(n-l) + h(n-3)
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Each side of ** counts the same thing. The left-hand side counts the compositions by
definition; the right-hand side counts the compositions in two exhaustive, disjoint
subclasses, i.e., (c) the compositions with first part equal to 1, and (d) the compositions
with first part equal to 2.

We know that (c) contains n -1 compositions because they begin with 1 and have a sum
equal to n. Similarly, (d) contains ra - 3 compositions because they must begin with 2+1
in order to avoid adjacent 2's and they must have a sum equal to n.

Finding closed-form expressions for g(/i) and Hp) would involve the method of
characteristic polynomials. Using the recursive formula for g(7i) and letting n = 3, we
find

g(3) = g(l) + g(0),sog(0)=l

g(n) - g(n - 2) - g(n - 3) = 0

The characteristic polynomial, p(x), is

p{x) = x^ -x-\

By the method of graphing to find approximate solutions, this polynomial has two
imaginary solutions and one real solution approximately equal to 1.3.

Similarly, the characteristic polynomial for h(n\ which we'll call ̂ (x) is given by

q{x) = x^-x^-\

which has two imaginary solutions and one real solution approximately equal to 1.45.
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Case Study #2

During the class investigation of patterns in the Fibonacci sequence (2.6), two students
(#5 and #15) came up with this result when assigned to find a formula for the sum of the
squares of the first n Fibonacci numbers;

n

.2 ^ 2 ^2

Z/, -(-1)"
1=1

The usual result given for this sum is:

Z/,'=/.■/«
1=1

I will show, by mathematical induction, that the two results are equal.

Proof:

I wish to ^ow that

/^i'-/.'-(-ir=/,-/,.i

This conjecture is true for w = 1:

If the conjecture is true for n = it, I will show that it is true for w = ^ + 1.

/fc+i' - - (-1)* = /t • (assumed to be true)

Substituting: by the recursive nature of Fibonacci numbers, we have

~ fk+lfk^X ~ fk+\

Adding to both sides, we have:
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'k+\

Substituting again for (as above):

VJ -</.« -(-1)* =/w/-

2/lr+l ~/*+2 "'■2/t+2/t+l ~/t+l ~(~1) — fk^lfk

fk*\ ~fk+2 ~(~0 -~fk+2fk*\

Multiplying both sides by (-1) we have the desired result:

t+i

fkJ-fk."-i-^r-fk.2f.k+\

We have thus shown by mathematical induction that the sum of the squares of the first n
Fibonacci numbers can be given by the students' formula:

i=l
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Case Study #3

An investigation of Pythagorean triples is suggested in 2.9 of the student textbook. In
William Boulger's article, "Pythagoras Meets Fibonacci" QAathematics Teacher, ̂ ril,
1989), a connection between Fibonacci numbers and Pythagorean triples is demonstrated.
If any four consecutive Fibonacci numbers are taken, the product of the first and fourth
give side A of a right triangle; twice the product of the second and third gives side B of a
right triangle; and the sum of these squared gives the square of the hypotenuse of such a
triangle, such hypotenuse also being a Fibonacci number. In other words:

iFn +(2/v,

Proof:

Let the /rth Fibonacci number be a, and the (n+7)th be b. Then a sequence of four
Fibonacci numbers, beginning with the /ith, would be:

a

b

a+b

a+2b

Following the patton above to form the first two terms of the Pythagorean Theorem,

[a{a + 2i)f + [2(iXa + b)^ =
{cF +2a6)^ +(2a6 + 2A^)^ =a* + + Zab^ +Ab* =
a* +Aa^b-^%a^b^ +%ab^ = {cF +2ab + 2b^y

This can now be written which is the square of the sum of the squares of
the two middle numbers in the original sequence and is equal to the left side of *. If we
substitute this for the left side of* and remove the squares on both sides, our conjecture
becomes:

F ̂  +F ̂  =F^h+2 •'2»+3*

A well-known result (see note below for proof) is F^^„ = F^_^F„ +F„F„^^

If we let m = w + 3, then
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Using our recursive properties of Fibonacci numbers, this can be written;

^n*2^^n*2 ~ ^iH-2 )-^iM-l ~ ̂h+2 ~ ̂m-2^m-l ^it+X ^n+2^iH-l

~ ̂H¥2

Note:

To prove that +F^iVn > we will use course-of-values induction as follows:

This conjecture is true for n = 1 and n-2:

F^x = F^_,F, +F„F, = F^, +F„ (F, = F3 = 1, F, = F,_, +F,_, V Ar > 2)

Fm-,2 =-^^.-1^2 +^«^3 +2F„ =(F„_, +F„) + F„ =F„^, +F^

If this conjecture is tnie forn = k and « = ̂ + 1, then we will show that it is true for
n = k+2.

Assume F^, =F^,F, +F„F,^, and =F„_,F,^, +F„F,^:,

Now F.^^^2 =F^, +F,F,^, +F„.,F,^, +F„F,^2

~ F„-l (Fjc + -^i+l ) + -^m (^t+I ■'^t+2 ) ~ •'^m-l (.Fk+2 ) ("'^+3 )

Thus our conjecture is true for all values of /i € N by the principle of mathematical
induction.
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Case Study M

The method of generating functions to determine a closed-form expression for the nth
Fibonacci number is discussed in 2.2.4 of the student textbook. The project here is to
find the ordinary generating function for the Fibonacci numbers with negative index:

where Fo=F, =1 and F, =F^, V/ieZ
11=1

Generating a few values ofF„:

n  ̂ -5 -4 -3 -2 -1 0 1 2 3 4

F„ 5 -3 2 -1 1 0 1 1 2 3 5

Let F(x) be the ordinary generating function for the Fibonacci numbers with negative
index.

F(x) = x-F_, +x^ •F_2 +x^ F.j h-x"* •F_4 +x' F., +...

Multiplying both sides by x and then by x^, we have:

xF(x)= x^ •F_^ +x^ 'F_2 +x^ F.j +x' 'F_^ +...

x^F(x)= x^-F +x* •F_2+x^'F_j+...

Combining these three equations by adding the first two and subtracting the third, we
have:

F(x) + xF(x) - x'F(x) = [F_, ]x + [F.^ + F_, ]x' + [F.j + F.^ - F_, ]x' +

[F., +F_3 -F.^y ...+[F_„ +F_, -F_2]x- +...

= (0)x + (l + 0)x' +(-l + l-0)x^ +(2-l-l)x'' +...

Clearly the coefficients of each term after the first two will be zero because

Fn +^-+1 -Fn.2 = 0 • Therefore:
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F(x) + jcF(jc)-jc'F(x) = x'

(l + x-x')F(*) = x' and F(x) = —
1 + x-x

This expression thus represents the ordinary generating function for the Fibonacci
numbers with negative index.
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Case Study #5

Patterns in Pascal's triangle are discussed in 2.4 of the student textbook. It is observed
that the sums of entries on consecutive diagonals of the triangle are consecutive
Fibonacci numbers. Here is a proof of that conjecture; in other words, for all n e JV,

^n-k\
= FV, the wth Fibonacci number.

n '

k=0

*  neN, ̂
t=o

= F.

Proof: We'll use the following variation on ordinary induction:
We'll show * is true for w = 0 and n=l. Then we'll show that if * is true for « - 1

and n (for all« > 1), it is true for « + 1.

(1) We'll show that * is true for w = 0:
^0
= 1 = F„

(2) And show that * is true for « = 1:
^0^

+

.1>
= 1 + 0 = 1 = F,

(3) We'll assume that * is true for w = 2, 3,... w -1, n, and then show that * is true
for/i+ 1:

(a) w-1: rr* \ = F.

(b) /i:
k=0 V ^ /

= F.

Now we'll add those two together, term by term. The right-hand side will sum to the
n + 1 Fibonacci number by definition. We'll show that the left-hand side sums
to the following:

kk=0
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(a)
^/i-r

+
'n-f

+
'n-lT

+ ...+
' 1 ^

+
^ 0 ̂

. 0 > .  1 > . 2 , .»-2> ,/i-l.

(b)
W fw-A 'n-f f/i-3^ ^  1 ^ ^0^
+ + + + ...+ +

.oj I  1 J . 2 , I 3 ,

Adding together and grouping, we have:

^/i-r ^«-r 'n-2' 'n-t 'n-f 'n-3^ ^ 0 ̂ ^0^
+ + + + + + + ...+ +

.oj . 0 > .  1 > .  1 > . 2 , . 2 , < 3 ,

By Theorem 3.4 (Wagner, p. 21), we know that
V 'w-T
= +

V k  1

Therefore we can simplify our left-hand sum as follows:

r„\ n ^/i-r

2 ,

(n-t
+ ...+

\^j

Since
V fn + l^

= 1, and
^ 0 ̂

= = 0

.o> I 0 J ji + l
= 0 for n > 1, this expression is the same as

fn + 1

[ 0 )
rri\

Kh

(n-\

2 )

^n-2^

V 3 ,
+ ...+

n, w + L
= Z

n + l-it

t=ov

We have thus proved by complete induction that ̂
"(n-k^

k=o\ k J
= F..
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THE FIBONACCI ASSOCIATION
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A Short History of the Fibonacci Quarterly

By Marjorie Bicknell-Johnson
Published in The Fibonacci Quarterly, February 1987

Used with permission

This volume marks the 25*** year of publication of The Fibonacci Quarterly,

prompting memories ofjust how it all started. As a long-time observer and participant, I

was a^ed to write a ̂ ort histmy of the early organization.

In the beginning, the Fibonacci Association grew out of the bond of friendship

formed by those sharing an interest in the Fibonacci numbers. Professor Vemer E.

Hoggatt, Jr., San Jose State College, had become interested in the Fibonacci sequence in

the late 19S0s. Vem's colleague Dmitri Thoro introduced him to Brother Alfred

Brousseau, St. Maiy's College, in the early 1960s. Vem and Brother Alfred began a long

friendship and met frequently to discuss Fibonacci numbers and often sang songs,

accompanied by Brother Alfred's accordion. (I recall a ballad written by Brother Alfred,

"Do What Comes Fibematurally!", to the tune of "The Blue-Tail Fly.")

As time went on, their intense interest in the Fibonacci sequence began to take a

more organized direction. Brother Alfred, for example, compiled a bibliography of more

than 700 Fibonacci references, ranging from recreational to serious research, to

disseminate to interested initiates. Both took any and every opportunity to lecture on the

sequence, so much so that Vem soon became fondly known as "Professor Fibonacci."

By December of 1962, the group also included Professor Paul Byrd, I. Dale

Ruggles, Stanley L. Basin, and Terrance A. Brennan. It was this group of men who
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founded the Fibonacci Association to provide an opportunity for those who shared an

interest in the Fibonacci numbers to exchange ideas.

So much interest in the Fibonacci numbers was apparent to the "founding fathm"

that they decided to publish The Fibonacci Quarterly, de^ite limited support and all the

other problems that beset a new venture. Vem and Brother Alfred wanted a journal to

provide rapid dissemination of the ever expanding research on the Fibonacci numbers and

to invite teachers and students to share their enthusiasm for mathematics.

With a very small amount of money from subscriptions and donations, and a large

amount of volunteer labor from students, friends, and family, the first issue of The

Fibonacci Quarterly was published in February 1963, with Editor Vemer E. Hoggatt, Jr.,

and Managing Editor Brother U. Alfred.

Due to shoestring economics, the first issue was typed by Brother Alfred; after

that, several professional technical typists came and went. Keeping a good typist almost

caused Vem to have a nervous breakdown, imtil he met someone who needed him to

complete a golf foursome and discovered a technical typist in the course of getting

acquainted!

The first printer was a photocopy shop with a small press, but this proved

inadequate and costly. Then Brother Alfred approached William Descalso, who had done

printing for St. Mary's College since 1948, to take on the printing of the Quarterly.

Descalso had a large web press which could print 16 pages at one time. (This explains

why we had 80, 96, or 112 pages, but never 89.) These signatures and the cover were

put into a folding machine, and the journal was assembled, stapled, and trimmed in one

operation. Mr. Descalso took special interest in the Quarterly for many years, and 1
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suspect that he helped us to continue by making personal sacrifices. Also, he used to

deliver the Quarterly to Brother Alfi'ed for mailing, then bring the reprints to Vem's

home in a big truck for staling and mailing.

At first, subscriptions came in slowly (59 on January 31, 1963), but with some

advertising and favorable notices in various magazines, especially Scientific American

(June 1963, p. 152), the tempo increased. As a result, by September 1963 there were 659

subscribers, and 915 subscribers by the end of the first year of publication. From this

point on, it was a matter of maintaining this momentum. While researching this article, I

found a handwritten page entitled "back-sliders" among Vem's notes; he had personally

called every person who failed to renew his or her subscription for the second year!

The Fibonacci Quarterly slowly began to draw attention. While at the first

meeting in December 1962, Professor Paul Byrd had wondered how we would obtain

enough material for such a specialized journal. Ironically, the problem, over the years,

turned out to be a superabundance of material. Vem answered all of the many inquiries

addressed to the Quarterly personally, in longhand. Brother Alfred wrote and published

the booklet, Fibonacci Discovery, as an aid to beginners and as another source of income

for the Association. Many articles were written especially to interest beginners in the

study of Fibonacci numbers. (Subsequently, these early articles were collected together

and published as A Primer for the Fibonacci Numbers.) The Fibonacci Quarterly was

mentioned in Martin Gardner's colunrn in Scientific American in March 1969, and

Brother Alfred and Vem were interviewed in an article in Time, April 4, 1969, pages 48

and 50. Vem was asked to write a series of articles far Math Log, published by Mu

Alpha Theta, and his book, Fibonacci and Lucas Numbers, was published by Houghton
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Mifflin in 1969. (I know that he had to write two complete drafts of this book because I

typed both versions!) With a little &me, Vem was given a small grant by San Jose State

College, and a semester-long sabbatical leave.

In those early days, the Editor carried everyone's address, telephone number, and

research paper in his head. Although carrying a full teaching load, Vem still answered all

correspondence personally, often writing more than SO letters a week. He carried on such

a prolific correspondence on Fibonacci matters that he frequently slept for only four

hours a night. While I lived only across town, I would receive two or three letters each

week because Vem wanted to put his thoughts on paper. Then he would call me for

feedback, often before I had received the letters! Vem put his family to work staling

reprints and mailing them to the authors, and gave his graduate students proofreading,

typing, and other tasks. I once spent many hours proofreading the first 571 Fibonacci

numbers {Fin has 119 digits) in an attempt to make the project perfect; however, the

printer's helper dropped the tray of lead characters, transposing 50 digits of F521 and F522!

Nevertheless, that article, which appeared in the October 1962 issue of Recreational

Mathematics Magazine, was a good source of publicity for the soon-to-appear F/ionflcc/

Quarterly. I also remember that he had such a concem for stmggling foreign authors that

he asked me to do a bit of ghost-writing because he didn't have the heart to reject their

p^ers.

As Managing Editor, Brother Alfred kept track of all subscription and book orders

and the mailing list. He mailed everything from St. Mary's College and soon had an

entire basement devoted to storing Fibonacci magazines and books. When the fifty

pound boxes of magazines arrived from the printer, he had to carry them to the basement
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and then haul them back upstairs to mail them. Because of the large volume of

manuscripts, whenever the Association could raise extra money, they published an extra

issue, so there were five or six issues a year at times after 1966. Storage space kept

filling up; when the back issues and books were transferred to Santa Clara University in

1975, there were 257 boxes. (A Fermat number!)

Brother Alfi'ed wrote a number of elementary articles to interest and stimulate

beginners, teachers, and students, and compiled several books of tables which are still

available fi'om the Fibonacci Association. He could generate new pages for the books at

such a prodigious rate that 1 found it difficult to keep up with the proofreading. He gave

lectures at nearly every meeting of mathematics teachers in California for years. And, of

course, all of this was in addition to his teaching load.

Brother Alfred seemed always to have a new Fibonacci-related problem or a new

approach to present. He was interested in phyllotaxis and collected more than 6000

pinecones, including cones from the twenty native pine trees of California, because the

Fibonacci sequence occurred in the spirals of the cones. Vem once sent him a "Lucas"

sunflower that exhibited Lucas numbers instead of the expected Fibonacci sequence;

Vem had grown the sunflower himself especially to count its spirals.

In January 1968, the Board of the Fibonacci Association was formed to set policy

and to provide continuity for The Fibonacci Association and its publications. The

members of the original Board of the Fibonacci Association were: Brother Alfred

Brousseau, Yemer E. Hoggatt, Jr., G. L. Alexanderson, George Ledin, I. Dale Ruggles,

and myself. For many years, a research conference was held annually, and a special
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conference for high school teachers and their students was held at the University of San

Francisco for five consecutive years.

Brother Alfred continued as Managing Editor for 13 years, until his retirement in

1975, and Vem Hoggatt served as Editor for 18 years, until his death on August 11,1980.

It is hard to imagine The Fibonacci Quarterly having been published for so long if it had

not been for the propitious meeting and enduring friendship of two such talented men and

their interest in an obscure mathematical sequence, 1, 1, 2, 3, 5, 8, ... .

The 1987 volume marks the twenty-fifth year of publication of The Fibonacci

Quarterly, which has evolved into a research journal with international subscribers.

(There are over 200 foreign subscribers, mostly from West Germany, Canada, Japan,

Australia, The United Kingdom, Greece, and Italy, but representing 36 other countries as

well.)

Long live Fibonacci!
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Conferences of the Fibonacci Association

A week-long conference is held by the Fibonacci Association every two years.

These alternate between U.S. and European sites. The conferences to date were held as

follows:

First August 1984 University of Patras, Greece

Second August 1986 San Jose State University, CA

Third July 1988 Pisa, Italy

Fourth July 1990 Wake Forest University, NC

Fifth July 1992 St. Andrews, Scotland

Sixth July 1994 Washington State University, WA

Seventh July 1996 Technische Universitat, Graz, Austria

Eighth June 1998 Rochester Institute of Technology, NY

Four persons have attended all eight conferences. They are Herta T. Freitag,

Roanoke, VA; A. F. Horadam, Armidale, Australia; A. G. Shannon, Sydney, Australia;

and Lawrence Somer, Washington, D.C. More than 50 people have attended each

conference. The ninth is planned for Luxembourg in the year 2000.
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APPENDIX C

HERTA TAUSSIG FREITAG
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Herta Taussig Freitag

The November 1996 issue of The Fibonacci Quarterly was dedicated to Herta

Taussig Freitag. The dedication page reads as follows:

This issue of The Fibonacci Quarterly is dedicated to Herta Taussig
Freitag as she enters her 89"* year, in recognition of ho* years of outstanding
service and achievement in the mathematics community through occellence in
teaching, problem solving, lecturing, and research.

During Dr. Freitag's years at Hollins College, she earned many honors,
among them the prestigious Algernon Sidney Sullivan Award. She was the first
faculty memb^ to receive the Hdlins Medal, and the first recipient of the Virginia
College Mathematics Teacher of the Year Award. She was the first woman to
become President of the Virginia, Maryland, and District of Columbia Section of
the Mathematical Association of America, alter having served as \^ce-President
and Secretary.

Although she officially retired in 1971, Dr. Freitag continues her
professional activities—research, publishing, and lecturing—^throughout the region
and abroad. Of her many accomplishments, she is perhaps most proud of her
perfect attendance at the seven International Conferences of the Fibonacci
Association. Herta has presented at least one paper at each conference and
considers participants as not merely mathematical colleagues, but \drtual family
members. The problem section is the first page Herta turns to in The Fibonacci
Quarterly, and here is a stoiy she often tells: When two non-mathematicians meet
on the street and one says, "I've got problems," the other answers, "I'm so sorry
for you." When two mathematicians meet and one says, "I've got problems," the
other says, "Oh, goody!"

We would like to take the opportunity here to thank Herta in this small
way for her innumerable contributions to the mathematics community.

Herta Taussig was bom in Vienna in December 1908, eleven months after her

brother Walter. She tells that her mother's physician advised her to have an abortion since

the two children would be less than a year apart; her mother happily refused. She finished

high school in Vienna in 1927. When she later applied for admission to Columbia

University's graduate program, they equated her high school diploma with two years of

college in America. She studied two languages, one for eight years and another for six,
209



mathematics through calculus, physics, chemistry, biology, psychology, philosophy and

lo^c, history and geography, and art r^preciation.

At the University of Vienna, which was founded in the 12'*' century, Herta found

that students had complete freedom. There was no required class attendance and no

student advisors. Comprehensive examinations were given for graduation—eight hours

on two successive days. Herta reports that there was 'terrific anti-semitism" among

students and professors, and that cheating was rampant on the comprehensive exams. The

feeling seemed to be that cheating was not wrong unless you were caught. Herta received

her degree in 1934, the first in her entering group to finish.

In 1938 the Nazis took over Austria, an event for which Herta has vivid memories.

She recalls her father standing motionless on the day of the take-over, and saying in a

toneless voice as she arrived home, "Have you not yeard? Ktler has overrun Austria—

there is no Austria any more!" Since her father was a newspaper editor and one of her

great-grandparents was not "pure Arian," the family feared for their safety and began to

try to leave the country. According to American immigration laws, a person entering the

U.S. was required to have an American citizen as guarantor and a document from this

person stating that the emigre would not be a financial burden. The Taussigs were unable

to make such arrangements; meanwhile the Nazis took over their apartment in Vietma.

England had a shortage of domestic workers at the time, and wished to help

people in Nazi countries. Even though Herta had her first graduate degree, she applied

and was hired to be a housemaid in England. Her hope was that she would later be able to

bring her parents to England. It was on her 30^ birthday that she started this job, working
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12 to 14 hours a day (with a half day off each week) and bearing the brunt of terrific class

distinction. She had studied Engli^ in school, but was rusty alter 12 years and was

unable to exchange ideas, feelings, and thoughts with anyone. Over time, however, she

became acquainted with others in the community who were obviously impressed with her

intelligence and abilities, and she was soon invited to become a governess to an 8-year-old

boy. Her employers (two spinsters) were furious and called her ungrateful, so she waited

a year before taking the position. In the meantime her parents had arrived in England and

were living in the same village. She eventually was asked to teach at a London school

which had been evacuated to the country due to the German bombing of London. Sadly,

her father died while they were in England, but had lived long enough to know the war

was coming to an end.

Finally, in 1944, visas were obtained and Herta and her mother were able to sail to

the United States on a freighter. They were reunited Avith her brother in New York. She

recalls the naturalization ceremony in 1949 and the words of Judge Crane who ofBciated;

"Don't forget the ideals you brought with you from the old country. Remember your

thoughts, your values, your aspirations. These are some of the things that make our

country great. At the same time I ask you to look around you from day to day to observe

and understand our ideals and ways and, as we fervently hope, eventually to get to love

us." Herta remembers, "When we walked out there, each of us pressing those citizenship

papers to our breasts, there were tears on all eyes. And those tears tell the story better

than words can ever tell it..., the story of what it feels like, finally to be able to say: 'I am

an American.'" More detail about Herta's long journey to America can be found in One-
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Way Ticket: The True Story ofHerta Taussig Freitag by Mary Ann JohnscHi, available

from the HoUins Collie Bookstore.

Herta's first job in America (1944-48) was teaching at Greer School, a private

school in New York state, whose students were mostly poor children from broken homes.

She nwt her husband, Arthur H. Freitag, at Greer (they were married in 1950). Though

the school no longer exists, reunions of students and teachers are still held. She finished

her master's degree in 1948 and started right away on the Ph.D. at Columbia, completing

it in 1953.

Herta began teaching at Rollins College, Roanoke, Virginia, in 1948. She reports

that it was a one-woman department at the time, so she was the head "and the foot." Her

husband taught high school mathematics in Roanoke. While looking for visiting lecturers,

she found the name of Dr. Lida Barrett in the AMS directory and invited her to speak to

the Rollins students. Dr. Barrett was on the faculty of the University of Tennessee at the

time, and her husband was chair of the mathematics department. She and Herta became

fiiends and she invited Herta to teach at U-T during a sabbatical semester in the mid-60's.

Herta retired from Rollins in 1971. A widow since 1980, she makes her home at

Friendship Manor retirement village in Roanoke. Until recent health problems prevented

it, she illustrated the Friendship Manor newsletter and swam daily, in addition to

maintaining her interest in number theory and the Fibonacci Association. In 1997 she

received the Humanitarian Award from the National Conference of Christians and Jews.

The nomination for this award reads, in part, "As a refugee from the Nazi persecution of

the Jews in Austria, Herta has an understanding of the horrors of prejudice. Rather than
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let such injustice end)itter her, she has devoted her life to demonstrating that there is a

better way to live. What would have been a life-shattering experience for many set her on

a course of personal and professional achievement directed toward helping everyone,

regardless of race, sex, color, ethnic background, religious persuasion or social class reach

their maximum potential. And she does it in such a way as to make one feel that she is

traveling with you, rather than leading the way."

Incidentally Herta's brother Walter, at the time of this writing, is still active as an

associate conductor at the Metropolitan Opera in New York. An aunt, Tina Blau (1845-

1916) was a noted Austrian painter whose works can be seen at the Osterr. Galerie,

Vienna.

My life has been greatly enriched by the friendship of Herta Freitag. 1 visited with

her three times in Roanoke, as well as at the Fibonacci conference in Rochester, and we

maintained a lively correspondence until a few months ago. Joyce McCroskey and 1

attended a talk she gave entitled "One-Way Ticket," an account of her journey from

Austria to America, to the students at City School in Roanoke. She was most interested

in my dissertation project and provided resources and encouragement.
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Responses to:
**Based on the statements above, please comment on strengths of this course.**

(Maryville College standard course evaluation form)

"Keep the text—^it was invaluable to learning process, interesting and relevant. The
course is challenging and varied."

"The course was very interesting. The information was something 1 would have never
known if I had not taken the course."

"I liked how we broke up the 3-hour class."

"It was an interesting course that tied together a lot of different fields of study."

"Lessening fear of math for those who detest the subject."

"This is a very interesting course. I knew nothing about patterns before."

"This was a great class. I would recommend it to everyone. It is not your typical math
class."

"Great class. Maybe it's the best class I've taken. It's definitely top 3."

"It is a good course in that it brings all aspects of the world into one field. It is applied
mathematics which is a wonderful field and should be offered as a major."

"One of the major strengths of the class is how the topic itself and the assignments
provoked thou^t and learning. The text was well laid out and went well with class
discussion. Special speakers were fantastic!"

"This is a great course. It's really useful to learn how math connects to the world around
us."

Responses to:
**Based on the statements above, please provide suggestions for improvement**

(Maryville College standard course evaluation form)

"None."

"I cannot think of any improvements."

"The only thing I would improve on is a better numbering system for the book."

"Nope."
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"Go more indepth with specific examples of Fibonacci in music, art, etc."

"The course would be more enjoyable if it were not a 3-hour class."

"Somehow renumber the chq>ter pages—it's kind of confiising. Maybe just keep the
chapter number off of the hewing and number consecutively. I think the class would be
better as a J-term. A week is so long in between classes."

"More class time to learn more about the subject."

Responses to pre- and post-course question:
**What is mathematics?**

Student Pre-Test Post Test

#1

(Business/Computer
Science major)

The study of M.!

#2

(Mathematics)
A means of using numbers
to expldn (or understand)
life in its purest form,
whether simple or complex.

#3

(Mathematics)
M. is a method of

describing phenomena in
the world around us. The

description can be
universally understood
through numbers and
graphs, etc. It is also a
collection of systems such
as the real # system,
Euclidean geometry, etc.,
built on axioms.

A universal way of
describing natural
phenomena with numbers
and variables.

#4

(English)
I think of M. as the

composition of numbers,
how they relate to each
other, and overall how they
relate to the world around

us.

M. is something we &ce
everyday in every aspect of
life. From adding numbers
to looking at signs and
measurements.

#5

(Management)
The key More than a study of

numbers, it includes how
numbers relate to each

other; it is numerical
patterns; the language of
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science and technology.

#6

(Management)
#7

(Biology)
M. is a system by which
one can attempt to explain
or predict the outcome of
realistic or theoretical

phenomena. It is a pure
science in that it is often the

foundation on which other

sciences are derived.

M. is a totally objective
science which seeks to

describe the workings of
nature in terms of numbers

and equations.

#8

(English)
The use of numbers

representing quantities
(size, age, mass, value, etc.)
of things in order to better
understand those things and
their qualities.

#9

(Undeclared)
The study of numbers and
the sequence of numbers.
Also, the study of words to
demonstrate just like
numbers. How numbers

can be complex or simple to
make something even more
complex or more simple.

M. is the study of numbers,
how numbers are used,
words, and how they
connect with numbers. M.

can be used in many ways.

#10

(Mathematics)
Study of modeling the
world! All mathematics has

an application whether
known or unknown. There

is no such thing as new
mathematics, there is only
math that has not been

discovered. At this point if
all of mathematics were the

Atlantic Ocean, all that we
know is what we can see

while standing on the
shoreline at Myrtle Beach,
but it is still all out there we

just have to build a boat to
get to it!

M. is eveiything. It is
everywhere. And it has
application to everything.
M. is cool!

#11

(Psychology)
A representation of value,
dimension, and change.

A way to abstract and
organize the world—reality

#12

(History)
M. is the process of adding,
subtracting, multiplying, or

M. is the study of numbers
and how they apply to us in
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dividing numbers to solve
problems that need to be
solved that way.

the world.

#13

(Chemistry)
M. is the study of numbers
and patterns and their
relationship with and to real
woiid samples and
problems.

M. is a system of numbers
and systems that can be
used to describe the world

around us. It is also known

as the "universal language."

#14

(Management)
M. to me is in every aspect
of life. In sdiool too many
times children really dread
the thoughts of
mathematically applications
because of the way it is
sometimes presented. I
always cringe at the
thoughts of math because I
feel it is one of my weaker
points.

M. is a system of formulas
and pattoms that are
connected to everything
around us. It is a system
consisting of numeric
algorithms.

#15

(Mathematics)
M. is the basic fundamental

science including algebra,
calculus, physics,
sequences, linear algebra,
analysis, statistics, etc. M.
is also the application of
these ideas to solving
problems and understanding
diverse patterns of our
society.

The study of numbers and
patterns. It seems to be the
priiKiple [sic] science of all
the sciences because it is

used in every science and in
business, and the liberal
arts.

Responses to pre- and post-course question:
'^How does mathematics connect with the world at large?**

Student Pre- Post-

#1

(Computer
Science/Business)

It is the "universal

language." Everything in
the world is related to math
in some way!

#2

(Mathematics)
M. is everywhere! It acts as
a basis to the world. It

would take pages to give a
complete answer to this
question.

#3 —aids scientists to —universal communication
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(Mathematics) understand physical
occurrences (Ex. statistical
analysis)
-develops people's
thinking and problem-
solving skills
-method of communication

between cultures of like or

differing languages

—modeling real-life
occurrence in order to make

predications and
explanations

#4

(English)
M. has a great impact on the
world. Without this system
the world would not and

could not advance. In many
ways mathematics is our
legs. It keeps us standing
and stable.

It's everywhere you look.

#5

(Management)
#6

(Management)
Completely M. is the connector for the

world at large, for it is also
the language of art, music,
and other creative

endeavors. It orders nature,
organizes the universe. It is
beautiful.

#7

(English)
Too many ways to list.
From the growth rate of
trees in relation to species,
water amount, and sunlight
anK>unt to the fluctuations

of economies

#8

(Biology)
M. is used by everyone
everyday be it simply
making change while
shopping or as complex as
using a computer
simulation.

Through searching for
patterns in occurrences both
in natural sciences and art,
one can connect

mathematics with just about
anything.

#9

(Undeclared)
Everything in today's world
has to do with numbers.

For example, money is
dealing with numbers and
all over the world there is

some form of money. The
world has a time scale

which deals with numbers.

Almost all things in the
world at large deal with
numbers. Our money
system, our weighing
system, and many other
things in the world. It
probably safe to assume
mathematics is everywhere
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So, the most ample things
that we take for granted
have to do with numbers.

Numbo's are everywhere
whether or not we choose to

see them or acknowledge
them is our own fault.

we look.

#10

(Mathematics)
Mathematics is in

everything! It is the
universal language. In any
task, subject, or thought
mathematics may be
involved in a very large to a
very small way! (But it IS
involved)

It is in art, music, science,
etc. It is everywhere. It is
everything.

#11

(Psychology)
Conflict abatement~"The

numbers will/will not

support a belief."

Mathematics allow humans

to explain the world without
the supernatural. Reality
becomes science rather than

thought.

#12

(History)
M. is seen in many things in
the world. We are always
around it.

It is everywhere.

#13

(Chemistry)
M. helps describe different
world phenomena
numerically. It is a tool to
help unlock "secrets" of life
and the workings of the
physical universe.

Mathematics describes

phenomena in the world
using equations and
numbers. Certain patterns
can be discovered and

described with these

numbers.

#14

(Management)
It is directly linked with
global economy,
government, trade
(import/export), etc.
Everything.

M. provides balance and
harmony. It helps us have
greater understanding of
nature, architecture, music,
art, and practically
everything around us.

#15

(Mathematics)
Mathematical symbols can
be understood the world

around. Math seems to be a

global language to helping
humans solve and

understand their problems
and questions. It seems to
me that nearly everything
has a trace back to M.

It helps to explain the laws
that govern our world (i.e.
gravity, electricity, rates of
change, etc.). It is a
universal language that
brings together people and
ideas from all around the

globe.
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Topics of Student Presentations

Student #1 Computer program to generate Fibonacci numbers and to calculate and
graph ratios of successive Fibonacci numbers

Student #2 Survey and demonstration of web sites showing applications of Fibonacci
numbers

Student #3 Music of Mozart, including performance of horn concerto

Student #4 (dropped the course)

Student #5 Board game using Fibonacci trivia learned during course (with #15)

Student #6 Hildegarde of Bingen's life and music

Student #7 Fictitious drugs

Student #8 Edward Lear's life and limericks

Student #9 The goddess Athena and statue by Phideas

Student #10 College basketball players

Student #11 Golden section in Maryville College's Anderson Hall

Student #12 Golden ratio in sports fields

Student #13 Fractals and the Mandelbrot set

Student #14 Luca Paciola

Student #15 Board game (with #5)

221



VITA

Margaret Stevenson Ribble was bom in Ithaca, New York on January 28, 1940. She

graduated from Twinsburg (Ohio) High School in 1957 and Maryville (Tennessee)

College in 1961. She received secondary education endorsement in mathematics through

Maryville College in 1986, and the Master of Mathematics degree from The University of

Tennessee in 1991. In the spring of 1996 she began work on the doctorate in education

(Ed.D.), specializing in mathematics education, at The University of Tennessee and

received this degree in December 1999.

Since 1989 she has been mathematics instructor at Maryville College.
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