
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-1999

Theoretical and algorithmic approaches to field-programmable Theoretical and algorithmic approaches to field-programmable

gate array partitioning gate array partitioning

Barbara Catherine Plaut

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Plaut, Barbara Catherine, "Theoretical and algorithmic approaches to field-programmable gate array
partitioning. " PhD diss., University of Tennessee, 1999.
https://trace.tennessee.edu/utk_graddiss/8900

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8900&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Barbara Catherine Plaut entitled "Theoretical

and algorithmic approaches to field-programmable gate array partitioning." I have examined the

final electronic copy of this dissertation for form and content and recommend that it be

accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a

major in Computer Science.

Michael A. Langston, Major Professor

We have read this dissertation and recommend its acceptance:

Donald Bouldin, Michael Berry

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Barbara C. Plaut entitled "Theo-
retical and Algorithmic Approaches to Field-Programmable Gate Array Partitioning."
I have examined the final copy of this dissertation for form and content and recom-
mend that it be accepted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy, with a major in Computer Science.

We have read this dissertation
and recommend its acceptance:

Ilda c£.t----
' Michael. A. Langston, Major Professor

Accepted for the Council:

Associate Vice Chancellor and
Dean of the Graduate School

Theoretical and Algorithmic

Approaches to

Field-Programmable Gate Array

Partitioning

A Dissertation
Presented for the

Doctor of Philosophy Degree
The University of Tennessee, Knoxville

Barbara C. Plaut
December 1999

Acknowledgements
First and foremost, I thank my advisor, Prof. Michael Langston. I thank him for

his guidance and unwavering support, and for the many, many things I have learned

under his advisorship.

I am grateful to the Navy for the Augmentation A ward for Science and Engineering

Technology (AASERT), and to Prof. Langston for awarding me the privilege of being

its recipient.

I thank Profs. Berry, Bouldin and Raghavan for serving on my graduate commit-

tee, and their efforts in that regard.

I thank all the faculty and staff in the Computer Science Department who have

helped me in so many ways.

I thank my family members who have cheered my accomplishments and buoyed

me up during the low times.

Last. but not least, I thank my mentor, best friend and husband, Conrad, for

having so much faith in me.

11

Abstract
Many practical problems dealing with the design of Very Large Scale Integrated

(VLSI) circuits can be modeled as graphs in which vertices represent components

of the circuit and edges represent a relationship between these components. When

expressed as graphs, these problems can then often be solved using graph theoretic

methods. Unfortunately, many such problems are NP-complete, hence no practical

exact solutions are known to exist.

In this dissertation, we study NP-complete problems taken from the realm of

partitioning for Field-Programmable Gate Arrays (FPGAs). We adopt a two-pronged

approach of theory and practice, developing practical heuristics driven by theoretical

study.

The theoretical approach is motivated by well-quasi-order (WQO) theory, which

can be used to show, among other things, that when some hard problems have fixed

parameters, polynomial-time solutions exist. This is of significance in the area of

FPGA partitioning, in which practical problems are often characterized by fixed-

parameter instances. WQO techniques are not generally practical, however, and we

develop new methods to solve several important problems in VLSI that are not even

amenable to WQO techniques.

Vie begin with a representative partitioning problem, Min Degree Graph Partition

(MDGP), the fixed-parameter version of which is closed under the immersion order.

\Ve show that the obstruction set (set of immersion minimal elements) for this problem

is computable; we prove both upper and lower bounds on the obstruction set size;
and we completely characterize all fixed-parameter MDGP simple tree obstructions.

\iVQO theory tells us only that fixed-parameter MDGP is solvable in (high-degree)

polynomial time. We attack the problem using what we refer to as kd-candidate

subsets, culminating in linear-time decision and search algorithms. The kd-candidate

subset method also paves the way for an efficient heuristic for the FPGA Minimization

problem.

lll

We then broaden our scope to incorporate delay minimization into FPGA parti-

tioning. We develop, analyze and test a novel method called critical path compression,

inspired in part by compiler optimization techniques.

We then look at a variety of generalizations of MDGP. Some of these problems

are not immersion closed; others are not even defined in a way that WQO theory

applies. However, almost all of them are efficiently solvable via the kd-candidate

subset approach.

Interspersed in these results are many refinements of what is known about the

complexity of these problems. We also discuss a few other solution strategies, and

present many open problems.

lV

Contents

1 Introduction and Background

1.1 Definitions and Mathematical Preliminaries

1.2 Hardware Technology

2 A Fundamental Partitioning Problem

2.1 Problem Definition and Prior Results

2.2 New Results

2.2.1 Algorithmic Tools .

2.2.2 Self-reduction ...

2.2.3 More on Decision and Search

2.2.4 Obstruction Sets

2.2.5 Tractability on Restricted Classes of Graphs

1

3

8

11

11

15

15

21

24

25

35

3 Extending the Fundamental Problem: FPGA Minimization 37
3.1 Problem Definition and Prior Results 37

3.2 New Results 38
3.2.1 Refining the Tractability of FPGA Minimization . 39

3.2.2 MDGP(k,d,p) Results 43

3.2.3 p-way MDGP(k,d): A Practical Heuristic . 47

4 Extending the Fundamental Problem: Delay Minimization 58

4.1 Problem Definition . 58

V

4.2 A Practical Heuristic

4.2.1 Circuit Characteristics

4.2.2 Prior Work

4.2.3 A New Approach - The "Two-Step" Method

4.2.4 An Iterative Improvement Algorithm for Improving Delay in a

Partitioned Circuit

5 Variations of the Fundamental Problem

5.1 Hypergraphs

5.2 Partitioning for Heterogeneous Systems .

5.3 Labelled Graphs

,5.4 Balanced Partitioning .

6 Future Directions and Conclusion

6.1 Theoretical Directions

6.2

6.3

6.1.1 Closure-Preserving Operators

6.1.2 Other Circuit Partitioning Problems

6.1.3 Faster Immersion Testing

6.1.4 Other Issues .

Practical Directions .

Conclusion .

Bibliography

Vita

VI

62

62

64

66

68

103

103

107

113

114

118

118

118

129

133

133

134

135

136

142

List of Figures

1.1 A graph and its tree-decomposition of width two .

1.2 C4 ~i K1 + 2K2

1.3 The FPGA

2.1 A partitioning problem

2.2 A star graph with six rays

2.3 An instance of MDGP(3,2) .

2.4 Cl= Au I, C2 =Bu I

2.5 Some MDGP(k,d) obstructions

2.6 A kdq-tree (k = 8, d = 2, q = 2)

2. 7 kdq-trees . . .

2.8 A general tree obstruction to MDGP(k,d)

2.9 Some nonisomorphic rooted trees ..

:3.1 A disconnected instance of FPGA Minimization

3.2 A tree instance of FPGA Minimization

3.3 Partitioning a tree instance of FPGA Minimization

3.4 Some 8-regular, 8-edge-connected 9-components

3.5 An example circuit

3.6 Partitioning a hypergraph and a simple graph

:3.7 An instance of FPGA Minimization .

3.8 Data structure for FPGA Minimization .

Vll

6

7

9

12

15

17

18

27

29

29

33

34

40

41

42

45

49

50

52

54

4.1 An example circuit

4.2 A Delay Minimization example

4.3 A connection graph

4.4 Two-function CLBs

4.5 A connection graph for two-function CLBs

4.6 A cyclic connection graph

4. 7 A connection graph with edge delays

4.8 A DAG with edge delays ..

4.9 Compressing a critical path

4.10 An extended target sequence .

4.11 A critical path

4.12 Elimination I example: part 1

4.13 Elimination I example: part 2

4.14 Elimination I example: part 3

5.1 A "yes" instance of Hypergraph MDGP(k,d)
.5.2 MDGP(2J: L2) -/= MDGP(k,d) ...

5.3 A "yes" instance of MDGP(2,1; 1,2) .

5.4 Instances of p-way MDGP(k,d) and MDGP(k,d,0)

5.5 Partitioning the graphs of Figures 5.4(a)

6.1 Graphs G1 and H1

6.2 Graphs G2 and H2

6.3 Graphs G3 and H3

6.4 Graphs G4 and H4

6.5 Some obstructions to MDC(4)

Vlll

63

65

69

70

70

71

71

74

80

81

83

83

84

105

108

109

116

117

122

124

126

127

132

List of Tables

1.1 Summary of main results

3.1 Complexity of MDGP and FPGA Minimization

3.2 Partitioning results

4.1 Possible mappings for circuit 3.5 .

4.2 Effect of Elimination I

4.3 Effect of Substitution I

4.4 Circuit statistics

4.5 Hill-climbing experiment: percentage improvement.

4.6 Hill-climbing experiment: final delay

4.7 Hill-climbing experiment: CPU time

4.8 Topology comparison: percentage improvement

4.9 Topology comparison: final delay ..

4.10 Strategy comparison: percentage improvement

4.11 Strategy comparison: final delay .

4.12 Strategy comparison: CPU time .

4.13 Breadth-first search (BFS) vs. topological sort (TS): CPU time

6.1 Summary of closure-preserving operators

IX

4

43

57

63

85

88

93

94

95

96

97

98

99

100

101

102

130

Chapter 1

Introduction and Background

The technology of VLSI circuit design has progressed rapidly in recent years. The
process of transforming an abstract circuit design into a physical entity has become
increasingly complex. In order to handle this complexity, the process is broken down

into a series of tasks, each of which can be handled relatively independently. Some

of these tasks are behavior modelling, functional and logic minimization, logic fitting
and simulation, partitioning, placement, routing and fabrication ([SY]). In this work,
we focus on the partitioning stage.

Another consideration in circuit design is that of the physical layout style, some
of which are full-custom, gate-array, standard-cell, macro-cell, programmable logic
array (PLA) and field-programmable gate attay (FPGA) ([SY]). Our interest is in

partitioning for FPGA layouts.

This particular aspect of partitioning is itself a broad problem, with numerous spe-
cific formulations. many of which have been extensively studied ([AK]). These prob-
lems, when translated into graphical terms, are usually NP-complete, and ultimately
tackled by approximation and heuristic algorithms. However, theoretical results of
Robertson and Seymour ([RSI], [RS2], [RS3], [RS4]) can often be used to show that in

many cases fixed-parameter versions of the problem are in fact solvable in polynomial

time. This is of significance when dealing with FPGA partitioning problems, which

1

are inherently confined to instances with bounded parameters. Unfortunately. even

theoretically efficient algorithms are often not practical. Nevertheless, the theoretical

study often paves the way to new and better heuristics.

In this chapter, we give an introduction to the topic, some definitions and back-

ground information.

In the second chapter, a representative and fundamental partitioning problem is

defined and studied from a theoretical perspective. The fixed-parameter versions of
this problem are relevant to FPGA partitioning. They are known to be solvable in

(high-degree) polynomial time, because of their closure under the immersion order. In
this work, we show that the obstruction sets for these graph families are computable
by demonstrating upper bounds on the obstruction set sizes. We also determine lower
bounds, and completely characterize the simple tree obstructions. We then show that

both the search and decision versions of the problem are solvable in linear time. While
this problem does not capture all of the issues important in FPGA partitioning, it
serves as a useful starting point for further study.

The fundamental problem is extended to consider FPGA Minimization in the
third chapter. Here we strive to partition a circuit into as few chips as possible, in
order to minimize cost. and to enable realization of a circuit on a specific system.
We delve deeper into the complexity of the problem, and derive a practical heuristic

driven by theoretical results.

In the fourth chapter, the fundamental problem is extended in yet another direc-
tion. The circuit system is considered in its dynamic state, with electrical current
flowing through it. We seek to minimize the maximum time for a signal to flow from
any input to any output. Here we must broaden our graphical representation of the
circuit from undirected to directed graphs, and the theoretical picture changes signif-

icantly. In this chapter. we develop and study a new method for minimizing delay in

a partitioned circuit.

The fifth chapter deals with many variations of the fundamental partitioning prob-

2

lem. Although many of these problems are no longer amenable to WQO techniques,

we find that most of them can still be solved efficiently using the techniques of the

second chapter. We conclude with some ideas for future study, from both a theoretical

and a practical standpoint.

Table 1.1 summarizes the main theoretical and practical results of this work.

1.1 Definitions and Mathematical Preliminaries

For our purposes, an undirected graph G = (Va, Ea) consists of finite sets of vertices

Va and undirected edges Ea. Multiple copies of edges are allowed, but self-loops are
ignored, because they have no consequence in any of the algorithms that we develop.

A directed graph G = (Va, Ea) is defined similarly, except each edge pair has an
ordering.

The simplified notation G (V, E) is used when G is the only graph under
consideration.

If v is a vertex in G. the degree of v (denoted 5a(v)) is the number of edges in G

that are incident on v. When there is no ambiguity about the graph, we simply use
i5 (v) to denote the degree of v. The notation is extended to denote the degree of a
set of vertices as follows: for S' \/;:;, c5a(S) is the number of edges in G that have
exactly one endpoint in S.

Two vertices u, v E V are adjacent or neighbors if uv E E. N(u) = { v : uv E E}
denote the set of immediate neighbors of u. Note that 5(u) > IN(u) I if multiple copies
of an edge adjacent to u exist.

The notation I<n is used to signify a graph containing n vertices, in which every
pair of vertices is connected by a single edge.

A subgraph of G induced by some V' Va consists of vertex set V' and edge set

{uvjuv E Ea,u E V',v EV'}.

3

Table 1.1: Summary of main results

MDGP: in P when restricted to simple trees;
Fixed-parameter MDGP: solvable in linear time,

obstruction set computable,
upper and lower bounds on obstruction set size,

complete characterization of simple tree obstructions
FPGA Minimization: NP-complete for many classes of graphs,

development of theoretically-based heuristic;
Fixed-parameter FPGA Minimization: exponential obstruction set size

Delay Minimization: NP-complete for many classes of graphs,
development of critical path compression heuristic;
Fixed-k, d Delay Minimization: NP-complete
Fixed-parameter Hypergraph MDGP: in P

Heterogeneous MDGP: in P when restricted to simple trees;
Fixed-parameter Heterogeneous MDGP: decision and search solvable in linear time;

obstruction set computable
Balanced MDGP(k,d,0): NP-complete
MDC(d): exponential obstruction set size

Sixteen WQO closure-preserving operators: whether closed or not

4

If, for every two vertices x, y E Va, there exists a series of edges from x to y, we

say that G is connected. Each maximally connected subgraph of a graph is referred

to as a component. Two vertices u, v E V are n-edge-connected if a minimum of n

edges must be deleted to disconnect G in such a way that u and v lie in different

components.

An n-path is a connected, acyclic graph containing n > l vertices, each vertex of
which has either 1 or 2 neighbors.

The following two definitions are from [H]. A shortest u - v path is called a

geodesic. The diameter of a connected graph is the length of any longest geodesic.

A tree is a connected, acyclic graph. A simple tree is a tree in which there is at

most one copy of each edge. A forest (simple forest) is a graph whose components
are all trees (simple trees).

Two graphs H and G are said to be isomorphic if there is a bijection f : VH -+ Va
such that uv E EH{=:> f(u)f(v) E Ea.

A tree-decomposition of G = (V, E) is a pair (T = CV-r, Er),!) where T is a tree

and f is a function mapping Vr into a set of subgraphs of G, with f satisfying the
following properties:

1. UtEVrf (t) = G: and

2. for s, t E Vr, if u is on the path from s tot in T then f(s) n f(t) f(u).

The width of a tree-decomposition (T, !) is maxtEVrlf(t)I -1. The treewidth of G
is the minimum treewidth of all tree-decompositions of G. Figure 1.1 shows a graph
and a corresponding tree-decomposition of width two.

It is evident that every tree has treewidth 1. Therefore, the family of all trees is of
bounded treewidth. As an example of a family of graphs with unbounded treewidth,
consider the family of all w x w grids, for all w, each of which has treewidth w ([RSl]).

Given graphs H and G, we say that H '.Si G, meaning His contained in G under
the irnmersion order, if and only if a graph isomorphic to H can be obtained from

5

Figure 1.1: A graph and its tree-decomposition of width two

G by a series of the following two operations: taking a subgraph, or lifting a pair of
adjacent edges. A pair of adjacent edges uv, vw, with u =/= v =/= w is lifted by removing
uv and vw and adding uw. Figure 1.2 illustrates that C4 is immersed in K 1 + 2K 2

([Lall).

The immersion order can also be viewed in terms of edge-disjoint paths: H is
immersed in G if and only if there exists an injection from Vi-1 to Ve for which the
images of adjacent elements of l'H are connected in G by edge-disjoint paths.

A family F of graphs is said to be immersion closed if GE F, H ::;i G-+ H E F.
The obstruction set for a family F of graphs is the set of graphs in the complement of
F that are minimal in the immersion ordering. Therefore, if F is immersion closed,
it has the following characterization: G is in F if and only if there is no H in the

obstruction set for F such that H ::;i G.

This tells us that there exists a membership algorithm for any immersion-closed

family F: simply test for the presence of any immersed obstruction. This will succeed
if the obstruction set is finite, which, as we shall soon see, is always the case.

6

A quasi-order is a reflexive, transitive relation. A quasi-ordered set (X, ~) is well-

quasi-ordered if (1) any subset of X has finitely many minimal elements and (2) X

contains no infinite descending chain x1 2 x 2 2 x 3 2 ... of distinct elements.

Theorem 1.1 ([RS2}) Graphs are well-quasi-ordered under immersion.

Theorem 1.1 tells us that, given an immersion-closed family of graphs F, a mem-

bership algorithm always exists. The following theorem gives us even more: that a

polynomial-time algorithm always exists.

Theorem 1.2 ([FL4}) For every fixed graph H, the problem that takes as input a

graph G and determines whether H ~i G is solvable in time O(nh+3), where h is the

order of the largest graph in the obstruction set for F.

Theorems 1.1 and 1.2 together are powerful tools with wide applicability. See

[FLl] and [FL2] for many examples. In this work, we focus on problems from the

realm of FPGA partitioning, many of which are closed under the immersion order.

Other WQOs are known; one of the most useful in terms of VLSI applications is
the minor order, under which a graph His less than or equal to a graph G (H ~m G)

if and only if a graph isomorphic to H can be obtained from G by a series of these

two operations: subgraph and edge contraction.

As in the case of the immersion order, there exists a polynomial-time decision

algorithm for any minor-closed family of graphs ([RS4]). However, in the case of the

minor order, the running time of the algorithms is much faster. Letting n denote the

number of vertices in G, the time to recognize G is O(n 3) ([RS3]).

Under either the immersion or the minor order, if a family of graphs has treewidth

bounded by some constant h, then a linear-time recognition algorithm exists. Given h,

and a graph G, it is possible in linear time either to determine whether the treewidth

of G exceeds h (in which case G is a ''no" instance), or to find a tree-decomposition

of G with treewidth at most h ([Bod]). Given such a tree-decomposition, testing for

obstruction containment can be done in linear time ([RS3]).

The results just mentioned are nonconstructive. They can be used to show the

existence of polynomial-time decision algorithms. They do not address the issue of ac-

tual algorithm construction, which depends upon specific knowledge of an obstruction

set. They do not give us any information on how to find the obstruction set. They

do not give us any information on how to solve the search version of the problem; i.e.

how to construct positive evidence of a "yes" instance.

While these remarkable theoretical findings give us exciting new tools to cope

with previously elusive problems, they also introduce a host of issues that must be

resolved for any practical application. Of primary importance are the issues of non-

constructivity and high polynomial degree in the case of the immersion order.

1.2 Hardware Technology

The technology of very-large-scale integrated (VLSI) circuit design continues to

progress rapidly. A relatively recent addition to the component library is the

field-programmable gate array (FPGA), a collection of functional blocks with pro-

grammable connections ([OD]). Figure 1.3 gives a simplified picture of a conceptual

FPGA.

The specific function of each block and the connections between blocks are dy-

namically programmable. This feature enhances affordability and flexibility, and has

8

Interconnection Resources
Logic Block

Eis Eis Eis
~I Eis Eis Eis Eis
j Eis Eis Eis Eis

Eis Eis Eis Eis

--1/0Cell

Figure 1.3: The FPGA

significant advantages for the development of prototype systems. A given circuit is

implemented by partitioning its logic into blocks and connecting the blocks as re-

quired. Since circuits are frequently too large to fit on a single chip, they must be

partitioned over several FPGAs.

FPGA chips come in a variety of sizes and styles ([X]). Typically, the functional

blocks on a chip consist of an array of identical Configurable Logic Blocks (CLBs).

Each CLB is a look-up table with a number of inputs (usually two to five), and one

or two outputs.

As mentioned earlier, there are many steps involved in taking a circuit from design

to physical reality. One of these steps, which can take place either before or after

partitioning, is that of technology mapping. Technology mapping refers to the process

of transforming a large circuit at the gate level into a system of smaller units that can

be realized as a set of communicating CLBs. Although technology mapping can be

performed either before or after partitioning, most developers agree that it is more

efficient to perform technology mapping first, and then do partitioning on a circuit

system of CLBs. The subject of technology mapping will be discussed in more detail

9

in section 3.2.3.

The usual sequence of events, then, is to perform technology mapping first, and

then partitioning. The system of CLBs sent to the partitioner can be modelled

by a graph, in which a node represents a CLB, and edges represent the connections.

Physical connections between CLBs are usually established during a later phase of the

design implementation, and are programmable in either direction, so the partitioner

may work with an undirected graphical representation of the CLB system. The I/O

cells around the periphery of the chip are also programmable in either direction.

In building systems with multiple FPGAs, fabrication technology imposes severe

restrictions: limits on pin counts (I/O cells) affect inter-chip connectivity; limits on

chip area and density bound FPGA sizes. These physical dimensions give rise to

many difficult combinatorial problems, one of which we explore in great detail in the

next chapter.

10

Chapter 2

A Fundamental Partitioning

Problem

We begin with a very fundamental problem. Although it is actually the simplest of

all that we will consider in this work, we find that it is indeed very difficult, and of

considerable independent interest.

2.1 Problem Definition and Prior Results

A circuit design is usually conceived at a high level, and expressed independently of

the hardware in which it will eventually be implemented. Circuit partitioning is the

process of dividing a circuit into smaller parts, so that it can be realized by hardware

devices. Partitioning a design-level circuit in such a way that it satisfies the physical

constraints of a hardware system is a complex problem that has been the subject of

extensive study. See [Ahl [BKK]. [CLCDL], [HK] and [WK] for many examples. In

this work. we focus specifically on hardware systems consisting of FPGAs. Within this

context, an important question is that of whether a given circuit can be partitioned

to fit onto a set of FPGAs such that the size and pin count constraints of each are

met. We call this the Min Degree Graph Partition problem (MDGP) ([Lall).

11

Instance: a graph G = (V, E), and two integers k and d.

Question: Is there is a partition of V into disjoint sets Vi, . .. , i,~ such that

Vi: /¼/ :S k, and such that if Ei is the set of edges with exactly one endpoint in Vi,
max1im/Ei/ :s; d?

Figure 2.1 shows a "yes" instance of MDGP(k=2,d=2) that has only one satisfying

partition: V1 = {a,b}, Vi= {c,d}.

Within this formulation, the parameter k represents the size (in CLBs) of an

individual type of FPGA chip, and the parameter d represents the pin-count of a chip.

Given a graphical representation of a circuit, with each node representing a CLB and

each edge representing a connection between two CLBs, MDGP asks whether the
circuit can be realized on a set of FPGAs of a given type .

Note the similarity between this problem and the Graph Partitioning problem of
[GJ]. In the latter problem, the goal is to minimize the sum of all edges that have

their endpoints in different subsets, and there is no explicit constraint on the number

of edges that may emanate from an individual subset. Therefore, Graph Partitioning

does not model the situation in which there is a degree constraint on each subset.
There are some important issues in circuit design, such as cost and performance,

that are not addressed by this fundamental problem. Nevertheless, MDGP provides
a useful starting point for the study of FPGA partitioning from a theoretical perspec-
tive. Much of the knowledge gleaned from this basic problem is of benefit in solving
broader problems, some of which we will examine more closely in later sections.

a b

C d

Figure 2.1: A partitioning problem

12

The MDGP problem is very difficult without parameter bounds, via a reduction

from Multiway Cut:

Theorem 2.1 ({Go}) Min Degree Graph Partition is NP-complete.

Fortunately, however, the aforementioned fabrication limits can be used to advan-

tage. As long as k and d are bounded, the family of "yes" instances is closed in the

immersion order, which leads to the following result.

Theorem 2.2 ([Lal,LP}) For any fixed k and d, MDGP can be decided in polynomial

time.

Since the parameters k and d represent actual physical constraints, when partition-

ing for FPGAs we may assume that these parameters are bounded by the technology

at hand. Fixed-parameter MDGP is, therefore, a relevant problem from the perspec-

tive of circuit partitioning. To distinguish fixed-parameter MDGP from generalized

MDGP, we shall use MDGP(k,d) to denote the former.

In section 1.1 we saw that, for any family of graphs closed under the immersion

order and of bounded treewidth, a linear-time recognition algorithm exists. Unfortu-

nately. the family of '·yes'' instances of MDGP(k,d) is not of bounded treewidth. To

see this. consider MDGP(l,4). Even this simple family of graphs contains thew x w

grid for any w, a graph with treewidth w.

Prior to this time. little more was known about the complexity of MDGP(k,d), and

no efficient algorithms, or even brute force algorithms, were known to exist. Not much

more could be said other than that MDGP(k,d) was nonconstructively decidable in

polynomial time. Whether it was solvable in low-order polynomial time was an open

question. as recently as 1995 ([LP]). Many issues remained, including the following:

• WQO-based solutions are inherently nonconstructive. They depend on the ex-

istence of finite obstruction sets and, in general, we do not know what these

obstruction sets are. or how to find them.

13

• Although the algorithms are polynomially bounded, the degree of the polyno-

mial is high: 0(nh+3), where h is the order of the largest obstruction. This

polynomial presents yet another dimension of nonconstructivity: since we do

not know the obstruction set, or even the order of the largest obstruction. we do

not know the exact degree of the polynomial. Sometimes efficient algorithms can

be devised to test for specific obstructions, but this is a difficult task (BGLR).

• Obstruction sets are very difficult to identify. In some cases, obstruction set

isolation has been performed exhaustively as part of a major research effort

([KiL]). Other researchers have developed machinery to generate minor-minimal

''no" instances of some graph families of bounded treewidth ([CD]). However,

in general, there exists no easy, widely-applicable method of finding obstruction

sets.

• WQO-based solutions are decision algorithms: they simply tell us whether or

not a given graph is a member of a particular graph family. They do not address

the corresponding search problem by constructing evidence. In most practical

problems, knowing that a graph is a "yes" instance is not enough. In the case of

graph partitioning, for example. a solution in the form of a satisfying partition

is essential.

• WQO-based solutions apply only to ordinary graphs. Practical problems, espe-

cially those that model VLSI problems, are often represented more accurately

by hypergraphs. Although WQOs are known to exist on hypergraphs ([GGL],
[Se]), these orders have not yet been shown to be of practical importance for

these types of problems.

In subsequent sections. we will address each of these issues.

14

2.2 New Results

We know by Theorem 2.2 that MDGP(k,d) is solvable in polynomial time. In this

section, we present some tools that will ultimately be used to show that MDGP(k,d)

is actually solvable in linear time. These tools will also assist in formulating self-

reduction strategies, finding MDGP(k,d) obstruction sets, and understanding the

complexity of MDGP when it can be assumed that the instance graph has a pre-

defined structure.

2.2.1 Algorithmic Tools

We now present some definitions, observations and lemmas that will be of general

use throughout most of this work. (Recall that we refer to fixed-parameter MDGP

as MDGP(k,d).)

Observation 2.1 A star graph (see Figure 2.2) with k + d rays is an obstruction

to MDGP(k,d); therefore. no obstruction to MDGP(k,d) contains a vertex with more

than k + d neighbors.

Similarly, no "yes" instance of MDGP(k,d) contains a vertex with more than d+ k

neighbors: hence the ''yes" family has bounded degree.

Figure 2.2: A star graph with six rays

15

Definition 2.1 Let Np(v) denote { v} U { w : :3 a path from v to w of length :::; p}.

Definition 2.2 A connected subset of a graph G is a subset S Va such that the

subgraph of G induced by S is connected.

Lemma 2.1 G is a ''yes'' instance of MDGP(k, d) iff there exists a solution in which

every subset is connected; thus, in this solution, every vertex v is partitioned only with

other vertices in N1,-d v).

Proof If there exists such a solution for G, then G is a "yes" instance.

For the converse, assume that G is a "yes" instance, and that we have a satisfying

partitioning. Consider any subset S such that the subgraph G' of G induced by S is
not connected. We can then separate S into distinct connected subsets, one for each
connected component of G'. Each of these is of size less than k. Additionally, each
is of degree no more than d, because there exist no edges between the new subsets.
Because every subset is now connected and of size no more thank, each vertex v E 5
is partitioned only with other vertices in Nk-I (v). D

Definition 2.3 Given k and d, let cP denote the value 1 + I:f=1 (k + d)(k + d - I l- 1 .

Lemma 2.2 !JG is an obstruction to MDGP(k,d). then Vv EV, Vp > 0, INp(v)I:::; cp.

Proof By Observation 2.L u has at most k + d immediate neighbors, so Ji\\(v)I ::::;
1 + (k + cl). Each neighbor at distance q > 0 from v has at most k + d - I neighbors
not contained in Nq_i(v), so INp(v)I::::; 1 + I:f=1(k + d)(k + d - l)i-I. D

It is useful to observe that, when k + d > 2, Cp = 1 + (k + d) x (k:~-d~~-i.

Definition 2.4 A ''kd-satisfying subset'' is a subset of size no more thank and degree

no more than d.

Definition 2.5 A "kd-candidate subset'' is a connected kd-satisfying subset. Given

k. d and a verte:r v. let C',. denote the set of all kd-candidate subsets containing v.

16

We note that, because a kd-candidate subset is connected and of size no more than
k, its diameter is bounded by k - l. Furthermore, for every v in some kd-candidate

subset C, every other vertex in C is in Nk-d v).

For example, consider the graph G in Figure 2.3 as an instance of MDGP(3.2).

Then Nk-i(a) = N2(a) = {a,b,c,d}, and C0 = {{a,c},{a,b,c}}.

Lemma 2.3 Given kd-satisfying subsets Cl and C2, either Cl - C2 or C2 - Cl is
a kd-satisfying subset. 1

Proof Since neither Cl - C2 nor C2 - Cl can have size exceeding k, we need only

consider their respective degrees.

If Cl n C2 = 0. then we are done. Otherwise, let I= Cl n C2, A= Cl - C2, B =
C2 - Cl, D = V - Cl - C2 (see figure 2.4).

Denote by NAB the number of edges having an endpoint in A and an endpoint

in B. NAn,NAr,NBn,NBr and NDI have analogous meanings. The degree of Cl is

N4D +NAB+ Nnr + NBr, and the degree of C2 is NAB+ NBD+ NAI + Nnr-

Figure 2.3: An instance of MDGP(3,2)

1 Independently proved in (CLCDL].

17

Figure 2.4: Cl = Au/, C2 = Bu I

By the definitions above, we have

and

Summing yields

so

Thus either

or

N.4B +NB[+ NBD d.

The former bounds the degree of Cl - C2, the latter the degree of C2 - Cl. D

18

Lemma 2.4 Given kd-satisfying subsets Ci, C2, ... , Gp, a disjoint set of kd-satisfying

subsets Di, D2, ... , Dq exists such that Ci U C2 U ... U Cp = Di U D2 U ... U Dq. 2

Proof The proof is by induction on p. For the basis case, p = l, the set of sub-
sets is already disjoint and satisfying. As inductive hypothesis, assume that, given

Ci, C2, ... , Cp, p :::-: Lan appropriate set of subsets Di U D 2 U ... U Dq. q :::-: 1, exists.
Given Cp+i, we construct a set of kd-satisfying subsets Di U D 2 U ... U Dq, such that

Di UD2 u ... UDq' = C'i UC2 u ... UCp+i• Initially Di UD2 u ... UDq, = Di UD2 u ... UDq,
so Di U D 2 U ... U Dq, = Ci U C2 U ... U Gp, and the Di's are disjoint and satisfying. Let

T = Cp+i• For each Di, 1 ::; i ::; q', we do the following. If Din T = 0, do nothing.
Otherwise, DinT =I-/- 0, with InDj = 0, 'v 1::; j::; q',j -1-i. By Lemma2.3, either
Di - T or T - Di is satisfying. If the former, we change Di to Di - T; if the latter,
we change T to T - Di. At the end of consideration of each Di, if Tis nonempty, q'

is incremented by one, and Dq' is set to T. Finally, any empty Di may be removed,
and q' decremented accordingly. D

The proof of Lemma 2.4 suggests a subset disjointing algorithm. Such an algo-

rithm is used by [CLCDL] in an FPGA partitioning heuristic. The heuristic first
forms subsets to satisfy constraints, and then makes the subsets disjoint in a later
step. Our work proceeds further, however, as we shall now describe.

The algorithm suggested by the proof of Lemma 2.4 is of quadratic-time com-
plexity. It can, however, be implemented to run in time linear with respect to IVI,
assuming we are given one kd-candidate (rather than mere kd-satisfying) subset for
each v E G. In the proof described above, Tis compared against each Di. If we begin
with kd-candidate subsets, however, there is only a constant number of Di's with
which any T can have a nonempty intersection. Each of T, Di is initially formed from
a kd-candidate subset, and never made larger. If there exist u E T, v E Di such that

u 1 N2*(k-i)(v), the intersection of T, Di must be empty, by the following reasoning.
Suppose otherwise: :lx E T n Di. Because x E T and u E T, it must be the case that

2 Independently claimed in [CLCDL].

19

the distance from u to x is at most k - l. Because x E D; and v E Di, it must be

the case that the distance from x to v is also at most k - I. Therefore, the distance

from u to vis at most 2 * (k - 1), which contradicts u 1 N2•(k-I)(v).

Therefore, each subset can be indexed by the vertex for which it serves as a kd-

candidate subset, and no checking need be done of subsets indexed by vertices '·too

far apart." Specifically, the subset disjointing algorithm proceeds as follows. We are

given a set of p = /V/ kd-candidate subsets, one for each v E V. As the algorithm

progresses, and subsets are modified, they may lose their connectivity. They. will,

however, always be kd-satisfying. Furthermore, because vertices are never added to

subsets, it will always be the case that for any subset C, u E C, v E C --+ u E Nk-I (v).

We will denote the subset indexed by vertex v as Sv.

Step l: For each vertex v, compute {x/x E N2.(k-i)(v)}.

Step 2: This step consists of an outer loop, which executes for each vertex Vi, 2 ::;

i::; /V/. For each Vi, an inner loop executes for each {vi/vi E N 2•(k-i)(vi), and j < i}.
The inner loop is as follows:

if Sv, n Sv1 # 0
then

if (' (' '-'v, - '-'v 1

then
is of degree no more than d

Sv, = Sv, - Sv1

else

Step 1 executes in linear time. as does the outer loop of Step 2. The running time

of the inner loop of Step 2 is bounded by a constant. Therefore. the complexity of

the entire subset disjointing algorithm is linear.

This algorithm is of linear time complexity, does not possess large constants of

proportionality, and runs quickly in our experimentation. It does, however, require

the availability of /VI kd-candidate subsets, the computation of which is much more

costly, as we shall see in Section 2.2.3.

20

The proposition that follows is an important tool in our subsequent work, and

finds many applications within, including the following:

• finding linear-time decision and search algorithms for MDGP(k,d), as well as a

host of related problems

• showing that the obstruction set for MDGP(k,d) is computable

• characterizing the simple tree obstructions to MDGP(k.d)

• proving complexity results for MDGP and other problems

Additionally, it has also been used in ([Go]) in which it was dubbed the Locality

Condition, a term that we will retain here.

Proposition 2.1 The Locality Condition: G is a ''yes" instance of MDGP(k,d)

iff 't/v E V, Cv =/= 0.

Proof Suppose 't/v E V, Cv -=f. 0. Then, by Lemma 2.4, a satisfying partition can
be found, ensuring that G is a "yes" instance. For the converse, suppose G is a

"yes'' instance. Then. by Lemma 2.1 and by the definition of kd-candidate subset,

't/v E V, Cv -=f. 0. D

2.2.2 Self-reduction

It is sometimes possible to solve a search problem by reducing it to a related decision
problem. For example, one might seek to find a satisfying subset assignment for Min
Degree Graph Partition with the aid of a routine that merely tells whether such an
assignment exists.

This approach to algorithm design is called self-reducibility, and has been for-
mulated in many ways in the literature. In its most limited form, an assortment

of restrictions is placed on the decision algorithm, its input and the lexicographic

21

position of the output produced (see, for example, [Sc]). In more general forms, in-

put/output limitations are eliminated and decision algorithms quite distant from the

original problem are permitted (see, for example, [FL3]). Additional variations exist,

some even incorporating randomness or parallelism (see, for example, [FF), [KUW]).

It is not difficult to see that, for any fixed k and d, MDGP is self-reducible in

polynomial time. That is, one can construct a satisfying subset assignment, if any

exist, with at most a polynomial number of calls to a decision algorithm, known from

the last section also to run in polynomial time. It can in fact be self-reduced with

only a linear number of calls.

Theorem 2.3 The search version of MDGP(k,d) can be solved in O(np(n)) time,

where p(n) denotes the time required to solve the decision version of the problem.

Proof First, use the decision algorithm to ensure that the graph is a "yes" instance.

If the graph is a "yes" instance, we know, by Lemma 2.1 that there exists a solution

in which every subset is connected. We now describe an algorithm that constructs

such a solution. The algorithm does this by modifying the input graph G. As subsets

are constructed, if a vertex v is assigned to a nonempty subset S, this assignment is

forced by the placement of at least d + l copies of an edge between v and some vertex

w E S'. At the end of the algorithm, the subsets in the modified graph are identified

as follows. Vertices u and v are in the same subset S iff there exists a path from u to

r such that there are at least d + l copies of each edge in the path.

In what follows. we will refer to a vertex assigned to a subset as a committed

vertex. Those not yet assigned to a subset are uncommitted. Initially, no vertices are

committed. An outer loop executes at most once for each vertex.

An arbitrary uncommitted vertex v is selected for this inner loop, and v is now

committed to a new subset S. Vv'e next show how, in an inner loop, Sis constructed

in O(p(n)) time.

Every time the inner loop begins, the current version of the graph is known to

be a --yes" instance. By Lemma 2.1, we know, therefore, that there exists a solution

22

7

in which every subset is connected (as the algorithm progresses, it zeroes in on one

of perhaps many potential initial solutions). The number of uncommitted immediate

neighbors of vis bounded by a constant; these vertices form a "neighbor pool." At all

times, the neighbor pool consists of all uncommitted immediate neighbors to vertices

in S. Initially all vertices in the neighbor pool are unmarked. A vertex in the neighbor

pool will be marked if it can be determined that its addition to S produces a graph

that is a "no" instance.

If at any time in the inner loop there are no unmarked vertices in the neighbor

pool, then there is no way to expand S while maintaining its connectivity. In that

case, by Lemma 2.1, and the fact that the modified graph remains a "yes" instance,

it must be that S is a kd-candidate subset, and we exit the inner loop.

We select any unmarked vertex w from the neighbor pool, and any vertex y E S'

for which an edge wy exists. We augment the graph with d additional copies of

wy. If the augmented graph is a "no" instance, the added edges are taken back out.

Additionally, vertex w is marked, because its commitment to S produces a graph

that is a "no" instance. If the augmented graph is still a "yes" instance, then the

extra edges are retained. Additionally, w is now committed to S. All uncommitted

neighbors of w are added to the neighbor pool. If the size of S is now k, then S

cannot be expanded; thus the graph is a "yes'' instance, and we discard the neighbor

pool and exit the inner loop. If there are no unmarked vertices in the neighbor pool,

then S cannot be made larger while preserving connectivity; thus the graph is still a

"yes" instance, and we discard the neighbor pool and exit the inner loop. If neither

of these conditions occurs, then the inner loop is not exited, and a new unmarked w

is selected.

The neighbor pool is always of size bounded by a constant. This is because the

number of neighbors of every vertex is bounded, and no more thank vertices are ever

in S'. The process continues until a subset size of k is reached, or until no neighbor in

the neighbor pool can be pulled into the subset. One of the inner loop terminating

23

conditions occurs in O(p(n)) time. D

2.2.3 More on Decision and Search

Theorem 2.4 The decision version of MDGP(k,d) can be solved in linear time.

Proof In linear time, any graph containing a vertex with at least k + d neighbors

can be eliminated as a ''no'' instance. Otherwise, INk-i(v)I, Vv EV is bounded by a

constant; ICvl for each vis of constant size; the set of all kd-candidate subsets can be

computed in linear time: and by the Locality Condition, a solution exists iff each set

is nonempty. D

Theorems 2.3 and 2.4 yield a quadratic time search algorithm for MDGP(k,d).

However, we can do even better than that.

Theorem 2.5 The search version of MDGP(k,d) can be solved in linear time.

Proof If a solution is known to exist. one can be constructed as follows. Find an

arbitrary kd-candidate subset for each vertex. This can be done in linear time, since

the complete set of kd-candidate subsets for each vertex can be computed in constant

time. Eliminate overlapping as described in the proof of Lemma 2.4. As per the

discussion following that proof, this can be done in linear time. D

It must be pointed out that. although solving MDGP(k,d) is asymptotically ef-

ficient, in practice this is not really the case. This is due to the large constants of

proportionality introduced by our methods. The search algorithm for MDGP(k,d)

consists of two parts: 1) finding kd-candidate subsets for each vertex, and 2) elimi-

nating overlapping. The second part is quite efficient, as discussed following the proof

of Lemma 2.4. This is not the case, however, for the first part.

Finding a kd-candidate subset containing some vertex v can be done by examining

every possible combination of at most k-1 vertices from Nk_i(v). Since INk-i(v)I
Ck-1 - 1 c1c_1 , the constant of proportionality for this method is bounded by I::7::-J (

24

2k 2k
> I:7::-J () > () > (2k;~{ 2)k. It may not be necessary to consider all of

i k - I
these combinations, since a kd-candidate subset must be connected. However, the

multiplicative constant Ck-I introduced by the size of Nk-I (v) remains, and this is

exponential in k.

Although the constants of proportionality of these methods are large and pro-

hibitive, they pale in comparison to those introduced by WQO methods. WQO

constants arise from testing for minor containment, which consists of "towers of 2's"

functions. See [FLl], [BL], and [RSl] for more on this subject.

2.2.4 Obstruction Sets

If the obstruction set for an immersion-closed family of graphs is known, then a

constructive decision algorithm automatically exists. Unfortunately, there exist very

few examples of immersion- or minor-closed families of graphs for which complete

obstruction sets have been isolated. As an example of the difficulty of identifying

complete obstruction sets, the reader is referred to [KiL], the major result of which

is the identification of the complete 110-element obstruction set for a single instance

of a minor-closed family of graphs.

In this section, we show that, given any fixed k and d, the obstruction set for

MDGP(k,d) is computable. This enables the generation, in principle, of the obstruc-

tion set for any fixed-parameter instance of MDGP. Such a task is formidable in its

magnitude, however, as we shall see later.

Observation 2.2 An obstruction to MDGP(k,d) contains at most d + l copies of

any edge

Lemma 2.5 An obstruction to Iv!DGP(k,d) contains at most ck vertices.

Proof Suppose G is an obstruction to MDGP(k,d), with IVI > Ck. Because G is a

"no" instance, by the Locality Condition there exists some v such that Cv = 0. By

25

Lemma 2.2 there exists some w E V such that w ¢:. Nk(v). Consider G' = G - { w}.
Because every element in Cv must be drawn from Nk_i(v), Cv for G' is also empty.

Thus. by the Locality Condition, G' is a "no" instance, so G was not minimal. D

Theorem 2.6 The obstruction set to MDGP(k,d) is computable.

Proof By Lemma 2.5 there is a bound on the number of vertices in an obstruction,

and by Observation 2.2 the number of copies of any edge in an obstruction is bounded.

The obstruction set can be computed by generating and checking the finite number

of graphs that satisfy these bounds. D

Although this is a finite number, it is very large. The upper bound on the number

of vertices is ck, with at most ck
2
~ck edges, each of multiplicity up to d + l. As a

rough upper bound on the number, we consider the number of labelled simple (p, q)
p

graphs (graphs with p vertices and q edges). This number is given by ((2 l) ([HP]).
q

A better, but still inexact. bound would be 9p, the number of unlabelled graphs of p

vertices, although even this would not take into account edge multiplicity.

Counting unlabelled graphs is difficult (see [HP] for a thorough discussion of this

topic). The precise answer for gP is known, but cannot be stated simply. An approx-
(p)

2
imate answer of gp ~ -2 -,- is also known ([Wi]). This number is greater than 2P for p.

p 2:: 10, which can be seen as follows.
I P l 2

Vv'e note that -2 -
2
- = 2(r 2-Pi = ((v2)P-i)P > ((v2)P-i)P. This last quantity is larger p! p! p! p

than 2P when (\/'2)P-l > 2p. which is always the case when p 2:: 10.

Figure 2.5 shows some sample MDGP(k,d) obstructions for small values of k and

d (note that MDGP(k,d) obstructions must be connected). From these examples,

several structural observations are evident. For example, Ck+l is an obstruction for

MDGP(k,1); a graph with one vertex v of degreed+ l and no other vertices except

for v·s immediate neighbors is an obstruction for MDGP(l,d) (which, in the case of

simple graphs. is a star graph).

26

d_ 1 2 3 kl

1
0 A\ ¢

/\. r r T

L. A\ ©~(/Sf
2 7

!I Ah s---- XA~
4 ©~*

3 b <1> p (r * v ffi rm •

Figure 2.5: Some MDGP(k,d) obstructions

27

We next show that there is an exponential lower bound on the size of this ob-

struction set. We do this by completely characterizing the simple tree obstructions

to MDGP(k,d), and then showing an exponential lower bound on trees satisfying this

configuration. Thus, all trees defined and discussed in the remainder of this section

are simple.

We define a kdq-tree Tkdq, for 1 :S q '.S k as follows:

l. Tkdq contains a vertex c with IN(c)I = 6(c) = d + q.

2. Some set of q neighbors of c form the roots of subtrees. These subtrees are of

sizes s 1, s2, ... , sq, where s1 + s2 + ... +Sq = k.

3. Each of the remaining d neighbors of c forms the root of a subtree of size

max(si), 1 :Si :Sq.

Figure 2.6 shows a sample kdq-tree for k = 8, d = 2, q = 2. Figure 2.7 shows all

of the kdq-trees for k and d ranging from 1 - 3.

For any tree T and vertices u, vl:luv E Er, we will denote by Tuv the connected

subtree of T - uv with root v. Any such connected subtree, relative to some vertex

u, will be referred to as a subtree of u.

Lemma 2.6 Any kdq-tree Tkdq is a ''no" instance to MDGP(k,d).

Proof Assume some Tkdq is a ''yes'' instance. Consider any subset S containing c in a

satisfying partition of Tkdq· For each subtree Tcy of c, one of the following must hold:

l. y i S. The degree of S is at least one for each such y.

2. y E S, but Tcy not entirely included in S. The degree of S is at least one for

each such y.

3. y E S', and Tcy entirely included in S'.

28

Figure 2.6: A kdq-tree (k = 8, d = 2, q = 2)

k
d 1 2 3 -I

1 A /I\

2 II\ .A. rh 7{ rm ! I

•

(0 7{ffi +!; X !mr ffl1ffp. • •
3 •• • •• • •• A \

14',

:t\ ;A:\ .<k'A [(b.r{b.J(m . + . .). . . : . • • • •

Figure 2.7: kdq-trees

29

Since the size of S is bounded by k, and by the definition of Tkdq, there can be at

most q - l y's of the third type. The total number of y's is d + q, therefore there are

at least d + l y's of the first and second types, each contributing at least one to 6(S).
This contradicts the assumption that Tkdq was properly partitioned. D

Lemma 2.7 Any kdq-tree Tkdq is a minimal "no" instance to MDGP(k,d).

Proof To show that Tkdq is minimal, we must consider the graph obtained by any
immersion operation, and show that some partition P exists. An immersion operation

can be one of 1) edge removal; 2) vertex removal; or 3) lifting a pair of adjacent edges.

Before considering each of these operations in turn, we examine four scenarios:

Scenario 1: Suppose the degree of e is reduced by one of these operations: 1)
removal of an edge ex or 2) removal of a vertex x adjacent to e. In either of these

cases, at least one edge ex is removed. By the definition of kdq-tree, there exist q - l

subtrees of e, not including Tex, of total size no more than k - l. A subset S of size
no more than k can be formed consisting of these q - l subtrees along with e. The
degree of e was reduced to at most d + q- l by the immersion operation, and at least

q- l subtrees of e have been included in S, which is therefore of degree no more than
d. What remains of Tx can be partitioned into a subset by itself, as can the other

subtrees of c. Each of these subsets is of size no more than k, and degree 1 or 0.
Scenario 2: Suppose two edges uc and cw, both incident on e, are lifted. By the

definition of kdq-tree. there exist q - 1 subtrees of c, not including Tcu, of total size
no more than /,; - 1. A subset S of size no more than k can be formed by taking the
union of c with these q - l subtrees. The degree of c was reduced to at most d + q - 2

by the immersion operation. and at least q - l subtrees of c have been included in S,
which is therefore of degree no more than d. All other subtrees of e can be partitioned

by themselves into subsets of degree 1.

Scenario 3: Suppose some immersion operation does not reduce the degree of e,
but disconnects the graph. There would then exist some set of at least q subtrees of e

30

of size no more thank - l, along with some disconnected component. The q subtrees

could be partitioned along with c into a subset of degreed and size no more than k.

The remaining subtrees of c could be partitioned into subsets of size no more than

k and degree 1. The disconnected component could be partitioned by itself into a

subset of size no more than k and degree 0.

Scenario 4: Suppose some immersion operation does not reduce the degree of c or

disconnect the graph, but results in reduction in the size of some subtree of c. This

situation is the same as Scenario 2, except that there is no disconnected component.

D

We now examine each of the three immersion operations in turn.

1. Edge removal. If an edge adjacent to c is removed, Scenario 1 results. Otherwise,

Scenario 3 results.

2. Vertex removal. If the vertex removed is c, each subtree of c fits into a subset

of size no more thank and degree 0. If the vertex removed is one adjacent to c,

we have Scenario 1. If the vertex is of degree 1, we have Scenario 4. Otherwise,

we have Scenario 3.

3. Lifting a pair of adjacent edges. If both of the lifted edges were incident on c,

we have Scenario 2. Otherwise, the result is Scenario 3.

Lemma 2.8 For any tree T, and any v E Vr with o(v) > d, any kd-candidate subset

C including v includes at least J(v) - d entire subtrees of v. Additionally, if any set

of at least 6(v) - d entire subtrees of v is of total size at most k - 1, these subtrees,

along with v. form a hf-candidate subset.

Proof Suppose C is a kd-candidate subset for v, but includes fewer than o(v)-d

entire subtrees of v. Then C excludes part of more than o(v) - (o(v) - d) = d

subtrees of v, each of which contributes at least 1 to the degree of C, and thus C is

not a kd-candidate subset including v, a contradiction.

31

For the second statement of the lemma, we need only determine the degree of

the subset, because its size is at most k, and it is connected. The degree of the

subset is exactly 1 for every excluded subtree of v, and this number is no more than

8(v) - (8(v) - d) = d. Therefore, the subset is of degree no more than d, and satisfies

the definition of kd-candidate subset including v.

We observe that Lemma 2.8 also holds for forests.

Lemma 2.9 Any tree obstruction to MDGP(k,d) is a kdq-tree.

Proof Suppose we have a tree obstruction T. Because T is a "no" instance, by the

Locality Condition there exists some vertex v E V(T) that has no kd-candidate subset.

Because v has no kd-candidate subset, 6'(v) > d, and because T is an obstruction, by

Observation 2.1 o(v) :S d + k. For 1 :S q = o(v) - d '.S k, we have:

1. T contains a vertex c = v with IN(c)I = 8(c) = d + q.

Suppose that, associated with this vertex c, there exists a set of q subtrees of c

containing a total of fewer than k vertices. Then, by Lemma 2.8, c would have a

kd-candidate subset. Therefore, every such set of q subtrees of c contains at least k

vertices.

To see than no such set contains more than k vertices, note that removal of any

vertex of degree 1 from any subtree of c would still yield a set of q subtrees of c

containing at least k vertices, and by Lemma 2.8, c would still have no kd-candidate

subset. Thus such a T would not be minimal.

We conclude that:

2. Some set of q neighbors of c form the roots of subtrees. These subtrees are of

sizes s1, s2, ... , sq, where s1 + s2 + ... +sq= k.

Now, consider the remaining d neighbors of c, and the subtrees of which they are

roots. By reasoning analogous to that above, we note the following: if one of these

subtrees is of size less than max(s;), 1 :S i :S q, then c has a kd-candidate subset; if

one of these subtrees is of size greater than max(si), 1 :S i :S q, then Tis not minimal.

Thus it must be the case that:

32

3. Each of the remaining d neighbors of c forms the root of a subtree of size

max(si), 1 ::; i::; q.

Therefore, by 1, 2, and 3, T satisfies the definition of kdq-tree.

Theorem 2. 7 A tree is an obstruction to MDGP(k,d) iff it is a kdq-tree.

Proof Follows from Lemmas 2. 7 and 2.9.

We now address the issue of a lower bound on the size of the MDGP(k.d) obstruc-

tion set.

Theorem 2.8 Wnen k > d + 4, the size of the obstruction set of MDGP(k,d) is at
least max{2d+l, 2k- 3 }.

Proof Consider any tree consisting of a root vertex with d + 2 children: one degree-1

vertex, and d + l roots of arbitrary Tk-l trees (trees containing k - l vertices). (See

Figure 2.8.) Any such tree is a kdq-tree; specifically it is a kd2-tree. By Theorem 2. 7,

such a tree is an obstruction to MDGP(k,d).

C'\ 0 V···V
2 d+J

Figure 2.8: A general tree obstruction to MDGP(k,d)

33

We begin by examining the number of nonisomorphic rooted trees containing p

vertices. (The topic of exactly counting rooted trees is thoroughly discussed in [HP]:

here we seek only to show an exponential lower bound.) We show by construction

that the number of nonisomorphic rooted trees with p vertices (p 2) is at least 2P-2 .

For p = 2, we observe that there exists only one rooted tree containing 2 vertices. For

p > 2, we construct 2 trees with p vertices for each nonisomorphic rooted tree Tp-I

containing p-1 vertices. One of these trees consists of a new root vertex with the root

of Tp-I as its single child. The other tree is identical to Tp-I, except for the addition

of a new vertex of degree 1 incident on the root. Figure 2.9 shows the nonisomorphic

rooted trees containing 2 - 5 vertices constructed by this method. The roots are

double-circled in the figure. Arrows indicate the most recently added vertices.

No two of these newly constructed trees are isomorphic. If they were, their roots

would have to be of the same degree, hence they were constructed from nonisomorphic

subtrees. Removing the most recently added vertex would yield isomorphic subtrees.

r
4 !\0--t

0

-@ 4 r-I

f l~
6

ll} r~r~
6

Figure 2.9: Some nonisomorphic rooted trees

34

We observe that, in any graph matching the configuration of Figure 2.8, there is

only one vertex that can be designated as c. Any other vertex that has one subtree

of size 1 must have at least one other subtree of size exceeding k.

The general obstruction shown in Figure 2.8 contains rooted subtrees with k - 1

vertices each; hence even if all of these subtrees had the same configuration. the

number of such obstructions is at least 2k- 3 .

Additionally, this general obstruction contains d + 1 of these rooted subtrees.

Even if no repetition were allowed in the configuration of these subtrees, the number

of obstructions matching this configuration would still be bounded below by (2
•-

3
)

d+ I

> (2kd-:;d)d+l > 2d+l when 2k- 3 > 3d + 2. This is always the case when k > d + 4. D

It should be mentioned that the lower bound on MDGP(k,d) obstruction set

size established here is quite loose. In addition to the omissions mentioned in the

proof above, no attempt has been made to count kdq-trees in the case of q =f. 2.

Furthermore, the MDGP(k,d) obstruction set includes many graphs that are not

trees. Even without considering all of these possibilities, however, the MDPG(k,d)

obstruction set is seen to be exponential in both k and d.

2.2.5 Tractability on Restricted Classes of Graphs

Thus far, we have considered the fundamental problem from a very general perspec-

tive. In reality, the graphs that serve as input to real instances of FPGA partitioning

might not be so generalized. Circuits may, in fact, have a certain measure of under-

lying structure. Many circuit graphs are of treewidth at most two, a class of graphs

known as series-parallel. In some situations it may even be possible to assume that

the input graph is a tree or a forest, or even a simple tree or simple forest. Although

the tractability of MDGP on most of these graph families is still an open question,

we can show that MDGP, restricted to simple trees (and hence, forests) is efficiently

solvable.

Theorem 2.9 MDGP. restricted to simple trees, is decidable in O(n 2 log n) time.

35

Proof Given a simple tree T, first check whether any vertex has degree d + k or more.

If so, T is a "no" instance, because it contains an obstruction (the star graph with

d+k vertices).

Otherwise, for each v E T, do the following. If the degree of v is no more than d,

then { v} is a kd-candidate subset for v. If the degree of vis more than d, we perform

the following steps:

1. Compute the size of each subtree of v. This takes 0(n) time.

2. Sort the sizes of the subtrees of v. This takes 0(n log n) time.

3. Check the total size t of the smallest b'(v) - d subtrees of v. This takes 0(n)

time.

4. If t is less than k, then v along with the set of smallest b'(v) - d subtrees of v

form a kd-candidate subset, by Lemma 2.8. Otherwise, by Lemma 2.8, v has

no kd-candidate subset.

By the Locality Condition, if any vertex has no kd-candidate subset, then T is a

"no" instance, otherwise it is a "yes" instance.

The outer loop executes at most once for every vertex, and the inner loop is in

0(n log n). Therefore. the complexity of this procedure is 0(n 2 log n).

Because each simple tree can be handled independently, Theorem 2.9 generalizes

to simple forests.

We conclude this section by noting that the algorithm outlined in the proof of

Theorem 2.9 is not designed for efficiency; our primary purpose here is to establish

that the problem is in P. We conjecture that, by careful use of tree traversals and

data structures, the complexity may be 0(n log n) or even better.

36

Chapter 3

Extending the Fundamental

Problem: FPGA Minimization

The fundamental problem has given us a basis for theoretical study of FPGA parti-

tioning. In this chapter, we proceed further to incorporate one of the primary issues

in VLSI design, that of cost minimization.

3.1 Problem Definition and Prior Results

Although some results have been obtained for MDGP and MDGP(k,d), the problem

as stated is not entirely representative of the issues inherent in FPGA partitioning.

MDGP is useful as a starting point, however, and can be generalized in ways that

address other issues.

A primary consideration in FPGA partitioning is cost. While we have shown

algorithms that can decide whether an input graph is a ''yes" instance of MDGP(k,d),

and while we can even find a feasible partition in linear time, thus far we have ignored

the question of minimizing the number of subsets in a partition. Since the number

of subsets in a partition represents the number of FPGAs used in the realization of a

circuit (hence the cost). it is important that this issue be considered.

37

It is easy to modify the definition of the problem to accommodate this additional

constraint, in a problem that we call FPGA Minimization:

Instance: a graph G = (V, E), and three integers k, d and p.

Question: Is there is a partition of V into disjoint sets Vi, . .. , Vm such that

m p, Vi: l¼I k, and such that if Ei is the set of edges with exactly one endpoint

in ½, max1im/Ei/ d?

FPGA Minimization is NP-complete, since it contains MDGP as a special case

in which p = IV/.
However, once again the physical limitations inherent in partitioning for FPGAs

allow us to assume constant bounds on some of the parameters. Since the size and

pincounts of the devices are constrained by the technology, we consider the variant of

FPGA Minimization in which these two parameters are fixed. In this situation, which

is more representative of the real problem of partitioning a circuit over the minimum

number of FPGAs, we wish to minimize p, the number of subsets in a partition. We

will refer to the decision version of this problem asp-way MDGP(k,d). Unfortunately,

even this restricted version is very difficult.

Theorem 3.1 (/Go}) p-way fl1DGP(k,d) is NP-complete.

3.2 New Results

In this section. we present a theoretical study of FPGA Minimization and p-way

MDGP(k.d). We will also look at the version of the problem in which all three

parameters are fixed, which will be denoted by MDGP(k,d,p). We find that many of

the results for MDGP(k,d) apply in this setting as well, although FPGA Minimization

and its variants provide some curiosities of their own. Additionally, we learn that

FPGA Minimization remains N'P-complete even on very restricted graph families.

Since p-way MDGP(k.d) is of potential relevance in real circuit partitioning, in

38

this section we also turn our attention to the task of developing a practical algorithm

to solve this problem. Because it is NP-complete, we know there exist no efficient

exact algorithms (unless P = NP). For this reason, most researchers depend upon

heuristics to provide quick and workable solutions. We will present a new approach

that is motivated by the theoretical study of MDGP(k,d).

3.2.1 Refining the Tractability of FPGA Minimization

We begin with a further exploration into the tractability of FPGA Minimization.

Specifically, we look at what happens when the input instance graph must conform

to a certain structure. We find that even with severe restrictions, including some for

which it is known that MDGP is in P, FPGA Minimization remains NP-complete.

By Theorem 2.9, we know that MDGP, when restricted to simple forests, is in

P. We also know that connectivity is not an issue for MDGP (each connected sub-

graph can be solved independently). In the case of FPGA Minimization, the problem

remains NP-complete for disconnected graphs, even for forests in which each com-

ponent is a simple chain. This can be shown via an easy reduction from Partition

[GJ]:

Instance: a finite set A and a "size" s(ai) E z+ for each ai E A, 1 :S i :S IAI.
Question: Is there a subset A' .4 such that

L s(ai) = L s(ai)?
a;EA' aiEA-A'

Given an arbitrary instance P of Partition, we construct in polynomial time an

instance of FPGA Minimization. consisting of a graph G and integers k, d and p. G

is composed of a disconnected collection of IAI simple chains, each corresponding to
~IAI s(a) some ai E A, 1 :S i :S IAI and containing s(ai) nodes. We set k = l Lo-~ ' J, d = 0,

and p = 2.

39

If Pis a "yes" instance of Partition, then G may be partitioned into 2 subsets, each

of degree O and size k. The first subset contains the chains corresponding to the a;'s

E A; the other contains the chains corresponding to the a/s E A'. Conversely, suppose

G is a "yes" instance of FPGA Minimization for these values of k, d and p. Then,

because d = 0, each chain corresponding to some ai is completely contained in one

subset. There are 2 subsets, each of size k. Therefore one subset contains the chains

representing the ai 's E A in some solution to P; the other subset contains the chains

representing the a/s E A'. Figure 3.1 illustrates the FPGA Minimization instance

produced from an instance of Partition in which !Al = 7, and s(ai) = 8, s(a 2) =
7,s(a 3) = 5,s(a 4) = 3,s(as) = 3,s(a6) = 2,s(a1) = 2, with a satisfying partitioning

indicated in dotted lines.

The complexity of FPGA Minimization restricted to simple trees is still an open

question, but we have the following result for FPGA Minimization on trees.

Theorem 3.2 FPGA Minimization, restricted to trees, is NP-complete.

Proof Given an instance P of Partition, we construct a tree instance of FPGA

Minimization as follows. G consists of !Al nonsimple chains, C1 , C2, ... , CiAI, with Ci

containing s(ai) nodes and every edge having multiplicity IAI + l.

;°\ /\ //\0 1 1 \\ J \\
J

. ·a· -----············

\ \ I\ I\

Figure 3.1: A disconnected instance of FPGA Minimization

40

Additionally, G contains a root vertex v connected by one edge to each Ci, and
LIAI

also connected by one edge to l'-k s(a,) J - 1 other vertices, v1, v2, . .. , v :"'IAI , a
L ~. (il J-1

'l;"""'IAI
Finally, k = l L,.,,-k s(ai) J, d = IAI, and p = 3. Figure 3.2 illustrates the tree FPGA

Minimization instance produced from a Partition instance in which IAI = 4, and

s(a 1) = 4.s(a 2) = 3,s(a 3) = 2,s(a 4) = 1.

If P is a ''yes" instance of Partition, then G may be partitioned as follows. One

subset, of degree IAI = d, contains v and v1, v2, ... , v :"'IAI , a , and is of size
Lb-'•-~ (,J J-1

'\'IAI
l L..,j-k s(a,) J = k. There are 2 other subsets, one containing all the chains correspond-

ing to the Si's in A, the other containing all the chains corresponding to the Si's in
'\'IAI

A'. Each is of size l L,,,,-k s(a,) J = k, and of degree no more than JAi = d.

Figure 3.3 shows the partitioning of the tree instance of Figure 3.2. Each subset

is outlined in dotted lines.

Figure 3.2: A tree instance of FPGA Minimization

41

,
' ' '

' ' ' ' '

, ,
' '

-----------,

.:• - -------- -------

' '

' '

.... _____ _

Figure 3.3: Partitioning a tree instance of FPGA Minimization

Conversely, suppose G is a "yes" instance of FPGA Minimization. We observe
,:---IAI

that the subset S containing v must also contain l L,..,i-b s(a;) J - 1 subtrees rooted by

v:s neighbors, otherwise the degree of S would exceed IAI = d. All of these subtrees
,:---IAI

must be of size 1, otherwise the size of S would exceed k = l L...,=h s(a;) J. Therefore,

S contains v and v1, v2 , v LIAI ·) . Each chain representing some ai must be s(a l ,- I J -1
completely contained in one subset, and there can be no more than 2 other subsets,

. LIAI s(a,) each of size l ,-h J = k; therefore each of these subsets represents either A. or A'

in a solution to P.

This result generalizes to show that, for non-simple graphs, FPGA Minimization

is .1/'P-complete for many classes of graphs, including series-parallel graphs, and all

graphs of bounded treewidth.

Table 3.1 summarizes, for comparison, the complexity results for MDGP and

FPGA Minimization.

42

Table 3.1: Complexity of MDGP and FPGA Minimization

Graph Class MDGP I FPGA Minimization I
General Graphs NP-complete NP-complete

Simple trees in P unknown

Trees unknown NP-complete

Simple forests in P NP-complete

Forests unknown NP-complete

Simple Series-Parallel Graphs unknown unknown

Series-Parallel Graphs unknown NP-complete

Simple Graphs of Bounded TW unknown unknown

Graphs of Bounded TW unknown NP-complete

3.2.2 MDGP(k,d,p) Results

In this subsection, we present some findings pertinent to MDGP(k,d,p), the version

of FPGA Minimization in which all three parameters are fixed. MDGP(k,d,p) is
somewhat of a curiosity. When all three parameters are fixed, we find that WQO

theory applies (the '·yes" family is closed under immersion). At the same time, how-

ever, fixing all three parameters trivializes the problem from a complexity perspective.
Any graph with more than k x p vertices is a "no" instance, thus the problem can

(in principle) be solved in constant time by table lookup.

In practice, however, the time required to construct such a table is prohibitive;
MDGP(k.d,p) cannot be practically solved in this manner. It may still be beneficial to
examine this problem from a WQO-theoretic point of view, in hopes of finding a fast

obstruction-based heuristic. For example, in [GLR], it was shown that an obstruction-

based heuristic for Layout Optimization (a problem closed under the minor order) was
extremely effective, if not exact. This heuristic was based upon the observation that

the vast majority of ''no" instances contained one of a very small set of obstructions,

43

all of which had fast containment tests.

Self-reduction

At this time it is unknown whether there exists a fast obstruction-based heuristic for

MDGP(k,d,p). If an efficient decision heuristic were found, however, it could be used

together with a fast self-reduction algorithm. We now show that such a self-reduction

exists. It assumes G = (\·. E) is a "yes" instance (this can be checked with the

decision algorithm) and then constructs a solution as outlined subsequently.

A set of p (or fewer) "core" vertices (representatives of distinct subsets) is identified

as the algorithm progresses (initially this set is empty). Each vertex v is tested to

see if its commitment to the same subset as some core vertex c still results in a "yes"

instance (the commitment is done by adding d + 1 edges between v and c). If the

resulting graph is still a "yes" instance, the added edges are retained, forcing those

vertices to occupy the same subset during the remainder of the algorithm. If the

resulting graph is a ''no'' instance for every candidate c, then v is a new core vertex,

and will never be assigned the same subset as any other core vertex. Since the graph

was a "yes" initially, at most p vertices will be designated as core vertices. Each vertex

is tested with at most p other vertices. Since p and d are constants, the algorithm

runs in linear time.

Obstruction Sets

A decision algorithm based on table lookup for this problem is certainly infeasible,

because of the large number of '·yes" instances. One might entertain the concept of

an obstruction-based approach instead, if one could be devised that used only a small

subset of obstructions in an efficient manner. Although we have no positive results

in this direction, we present here some findings on the size of the MDGP(k,d,p)

obstruction set. At this time. these results are of no known practical value, and are

included solely as a combinatorial exercise of unknown potential for future use.

44

Lemma 3.1 Any graph consisting of p (d + l)-regular (d + l)-edge-connected (k- l)-

components, along with a 2-vertex component connected by d + l edges, is an obstruc-

tion to MDGP(k,d,p).

Proof Let G be any such graph. We first show that G is a "no" instance to

MDGP(k,d,p). (See Figure 3.4 for sample (d + 1)-regular (d + 1)-edge-connected

(k-1)-components fork = 10, d = 7.) Each (k-1)-component must be self-contained

in a subset, because of its (d + l)-edge-connectivity. The 2-vertex component can-

not be separated into two subsets, since the vertices are connected by d + l edges.

Additionally, the 2-vertex component does not fit into any subset containing a (k-1)-

component. Therefore, a satisfying partitioning of G requires p + l subsets.

Next we show that G is minimal. Removing any vertex from the 2-vertex compo-

nent allows the remaining vertex to fit into a subset with any (k - l)-component.

Figure 3.4: Some 8-regular, 8-edge-connected 9-components

45

Removing any vertex from a (k - 1)-component allows the remainder of that compo-

nent to fit into a subset with the 2-vertex component. Removing an edge from the

2-vertex component allows its two vertices to fit into subsets with any two (k - 1)-

components. Any other immersion operation causes some vertex v from a (k - l)-

component to have its degree reduced to no more than d. A satisfying partitioning

can then be done by placing v into a subset with some other (k - 1)-component, and

placing the 2-vertex component with the remainder of v's component. D

Lemma 3.2 The number of (d + l)-regular (d + l)-edge-connected (k - l)-graphs is

proportional to kd.

Proof We consider here the case where dis odd (asimilar construction applies when d

is even). A (k-1)-cycle, in which each edge appears d!I times satisfies the definition

of (d + l)-regularity and (d + l)-edge-connectivity. Consider any u, v, w, x in this

graph, such that u =/= v =/= w =/= x, and /uvl = /vwl = /wxl = diI. The graph
obtained by removing one copy of uv and one copy of wx, and adding uw and vx is

still (d + l)-regular and (d + l)-edge-connected. This can be repeated ½ * (df - 1)

times to produce ½ * (d!l - 1) nonisomorphic (d + l)-regular (d + l)-edge-connected

(k - l)-graphs. D

Theorem 3.3 The size of the set of immersion-minimal elements of fixed-parameter

MDGP{k,d,p) is at least exponential in p.

Proof By Lemma :3.2, we know that there are O(kd) (d + 1)-regular (d + 1)-edge-
connected (k - 1)-components. By Lemma 3.1, any graph consisting of p such com-

ponents (along with the 2-component) is an obstruction to MDGP(k,d,p), and there

are at least 0(P +P kd) = 0((PP;:;)') such graphs. When kd > 2p (a likely situation in
FPGA partitioning) (p+kd)! > kdP > 2P. , p!kd! pP

There are some cases when the MDGP(k.d) obstruction set is completely con-
tained in the MDGP(k,d,p) set. In the most general setting, then. the obstruction

46

set for MDGP(k,d,p) is larger than that for MDGP(k,d). It can contain the entire

MDGP(k,d) obstruction set, along with exponentially (in p) many more obstructions.

3.2.3 p-way MDGP(k,d): A Practical Heuristic

As observed earlier, p-way MDGP(k,d) is of practical significance, in that it describes

the problem of partitioning a logic circuit to fit onto a minimum number of FPGAs.

The decision version of the problem is NP-complete, so no practical exact algorithms

are known. It is, however, a well-studied problem, and many efficient heuristics have

been proposed for it. This will be discussed in more detail later on.

In this section, we explore some of the issues involved, including some of the

difficulties of applying theory to practice in this setting. We then present a new

heuristic for FPGA Minimization that employs some of the traditional approaches,

but is also driven in part by theoretical results.

Circuit Characteristics

vVe begin with an overview of the process of converting a logic design into a format

suitable for partitioning.

A combinational logic circuit may be represented as a directed acyclic graph

(DAG), in which nodes represent I/O and boolean functions. At this level of repre-

sentation, the functions consist of primitive gates. Directed edges represent the flow

of output from one node to input of another.

As mentioned in Section 1.2, the FPGA contains a set of CLBs, each of which is

a look-up table. A look-up table is a programmable logic block with x inputs and y

outputs. It is capable of simultaneously implementing any set of y functions over x or

fewer inputs. Typically, the number of inputs is approximately four, and the number

of outputs two, but this varies somewhat for different FPGA types ([X]).

An important step in the process of converting a circuit from a design consisting

47

of gates to an implementation with CLEs is that of technology mapping. This is the

process of splitting the design into communicating components, each of which can be

realized with a single CLE. Technology mapping is itself a complex process, and a

topic of independent interest ([MR]).

Partitioning the circuit over a set of FPGAs can be performed either before or after

technology mapping, and there are pros and cons to both choices. Partitioning before

technology mapping allows the partitioner more latitude, in that technology mapping

forces an early commitment of gates to the same CLE. On the other hand, technology

mapping greatly reduces the complexity of the circuit. An FPGA typically has 20-30

times more gates than CLEs ([X]). Thus the partitioning instance is simpler at the

CLB level than the gate level. Experiments were performed in [We] to compare the

two approaches, and the results of these experiments indicate that it is preferable to

perform technology mapping first.

In what follows, therefore, we assume that the logic circuit has already been tech-

nology mapped. Our instance then consists of a set of CLBs with interconnections.

In addition, there are inputs to the system called primary inputs (Pis) and outputs

called primary outputs (POs). The graphical instance remains directed and acyclic

after technology mapping. Vertices representing Pis have no incoming edges, and

vertices representing POs have no outgoing edges. The precise function performed by

each CLB is of no consequence to the partitioner.

Figure 3.5 illustrates a simplified example, consisting of three CLBs, each with

two inputs and one output. There are two Pis and one PO.

A net in a circuit is a set of pins (I/O's of the chip or of the CLBs) connected

by the same wire. A netlist is a list of nets. In the circuit of Figure 3.5 the netlist

consists of five nets: { P fl . .4}. { P 12. A, C}, {A, B, C}, {B, POl }, and {B, C}. Two

of these nets ({ .4, B, C} and { B. C}) are internal, in that they are not connected to

any PI or PO. Nets that are connected to I/0 are said to be external.

When partitioning a circuit over FPGAs, if two (or more) CLBs connected by an

48

CLBA CLBB

8
8

CLBC

Figure 3.5: An example circuit

internal net are placed onto different FPGAs, each of the FPGAs containing one of

these CLBs will require one I/O pin to accommodate that net. In graphical terms,

such a net contributes 1 to the degree of each subset. Any external net will require

one I/O pin on an FPGA if any CLB in that net is contained on the FPGA, even if

all CLBs involved in the net are partitioned onto the same FPGA.

At this point, we become aware of some discrepancies between our theoretical

model and applications. There are three primary issues:

1. Our model consists of an undirected graph, while circuits have direction (from

Pls to POs). For the purposes of FPGA partitioning, it turns out that this is not

a problem. because the FPGA is programmable. I/O pins may be programmed

in either direction. Thus, we may safely ignore direction in our theoretical

model for partitioning.

2. In our graphical representation of a circuit, each node represents a CLB. and
edges represent connections between CLBs. However, from the above discus-

sion, it is clear that edges between CLBs and Pis/POs play an important part

in the partitioning process. For example, if the circuit in Figure 3.5 were parti-

tioned to fit onto a single FPGA, the subset representing that FPGA would still

need to have a degree of 3, representing the nets required for the Pis and PO.

Fortunately. for theoretical purposes we can also accommodate this shortcoming

49

with graph gadgets. Every PI and PO can be represented as a (d + 1)-edge-

connected k-component, and the parameter p in FPGA Minimization can be

incremented by the number of Pis and POs.

3. The third issue is not so easily dismissed. When converting a circuit into its

graphical counterpart. we note that many of its nets require hyperedges: edges

with more than two endpoints. We could change a hypergraph into an ordinary

graph by converting each hyperedge into a clique: a set of vertices all of which

are connected to each other. This "fix" would preserve connectivity information.

However, Figure 3.6 illustrates what happens when a hyperedge consisting of

vertices { a, b, c} is converted to a clique. In the example, nodes a and b have

been partitioned into one subset and node c into another. In the hypergraph

representation, each subset has a degree of 1; in the simple graph representation,

each subset has a degree of 2. Such a "fix" can never cause a partitioner to find

a partitioning for a ''no" instance, however, it could fail to find a partitioning for

a "yes" instance. Converting a hypergraph to a simple graph, for the purposes

of partitioning, is a well-known issue, and it has been speculated in [Le] that this

cannot be done in a way to preserve complete correspondence. The heuristic

that we will present handles hypergraphs. In later sections, we find ways to

deal with hypergraphs from a theoretical point of view .

• r------; p

\
C C

Figure 3.6: Partitioning a hypergraph and a simple graph

50

Prior Work

Circuit partitioning is a widely studied problem. It has been formulated in many
ways, and many different types of heuristics exist. See [AK] for a quite comprehen-

sive survey. Partitioning specifically for FPGAs has also been well researched. See

[CLCDL], [HK], [KBK] and [WK] for several examples.

These heuristics vary greatly, but they sometimes contain some common elements.

There may be a clustering phase, in which CLBs are committed to sharing FPGAs

early in the partitioning process. This is often done in a greedy fashion. There is
often an element of randomization, perhaps in the choice of initial CLBs for clustering.
Randomization allows the potential for different partitioning runs to produce different

results; usually the partitioner is run many times and a best solution chosen. Another

element that is almost always present is some kind of iterative improvement phase,

usually based on swapping the placement of individual nodes in order to improve the
quality of an existing partition. See [KL] and [FM] for a thorough discussion of these

techniques.

A New Approach

The heuristic we present here has many of the same characteristics as other known
heuristics. It differs in that it was initially motivated by the theoretical study of

MDGP and FPGA Minimization, and is driven by some of those ideas.

I\fany heuristics rely very heavily upon the iterative improvement phase; indeed
some heuristics even begin with an arbitrary partitioning and depend solely upon
iterative improvement. This appears to work reasonably well when the objective
function is to minimize the number of connections between subsets, without regard

for minimizing the number of subsets. Because we seek to minimize the number of
subsets, this strategy alone is not of much use, because it does not incorporate any
wav to eliminate subsets.

51

In our heuristic, we attempt to concentrate more on the early clustering phase,

and less on later improvement. We build our subsets one at a time, with a strong

focus on the efficient packing of each subset. After each new subset has been created,

an iterative improvement pass is made over that subset and all other existing subsets.

This iterative improvement phase attempts to swap CLBs from subset to subset in

such a way to improve their packing, in order to make room for more CLBs in each

subset. This will be described in more detail later.

By the lemmas and theorems presented in Chapter 2, we know that we can (in

principle) efficiently find a solution to MDGP(k,d). This can be done by exploiting the

Locality Condition: if a solution exists, we can find it by confining our search for kd-

candidate subsets to a bounded-size neighborhood for each vertex. No vertex v need

ever share a subset with another vertex not in Nk-I (v). This property no longer holds

generally for FPGA Minimization. Indeed, Figure 3.7 shows a graph that can only

be partitioned properly by violating this "near neighborhood" property, assuming

k = 2, d = 2, and p = 2.

Nevertheless, it still seems reasonable to begin with clusters from a bounded-size

neighborhood. Even though graphs can be contrived to thwart almost any heuristic

approach (see [Go] for a discussion of this topic), our experiments (results to fol-

low) indicate good results from confining the search for cluster expansion to near

neighborhoods of the initially chosen vertex.

o---o<C3>0---o

Figure :3.'i: An instance of FPGA Minimization

52

Although many partitioning algorithms are not designed for hypergraphs, for pur-

poses of FPGA partitioning we must cope with graphs containing hyperedges. The

primary data structures for the program are the CLB lists and the netlists, both of

which are maintained as linked lists of pointers crossreferencing each other. For the

circuit illustrated in Figure 3.5, the CLB list and netlist data structures are as in

Figure 3.8.

The general strategy we present here for FPGA Minimization is quite simple. The

main partitioning algorithm, FPGA_Min is as follows:

Algorithm FPGA_Min

num_subsets +- 0
do

num_subsets +- num_subsets + 1
randomly select a seed CLB for the new subset
expand_subset
if num_subsets > 1

improve_partition
until all CLBs assigned

The only routines that need further explanation are expand_subset and zm-

provcpartition.

In procedure expand_subset, the current subset is expanded from some randomly

chosen initial CLB v. The expansion is done by selecting the best candidate CLB

from N,.,_i(v). The best CLB is the one which, when added to the current subset,

yields the highest value. Value is calculated using the following formula:

subseLsi;;;e .
value= b d + (subseLszze * SIZE_BONUS) su set_ egree

53

' '

CLB LIST: NET LIST:

II Name:C;J l)N,vnhcrofCLBs: I:

CLB list: H ______ :
Numherof nc ·: Net tyre: External :

Netlisr

l)Name:CLBB

...1..

2) Numhcr of CLBs: 2

Net type: External
-----------·

CLB list: B--B-i-·---------:

L..:::=== 3) Numhcrof CLBs: 3 '
Net type: lntcrn\11----------------+-;

CLB list: ~:::::(;-

4) Numhcr nfCLBs: 2

Net type: Internal

CLB list: B-Bi _______

1

5) Numhcrof CLBs: I

Net type: External

CLBlist: q---------·-·:

' '
'-' - - --- --- ---------------- ----- -- _______________________________________ :: ... J~--· ----

---:------------
-- ••••••• - ••••••• ••••••••••••••••••• ••••••• •••L •••••••••••••••

' '
'---'

Figure 3.8: Data structure for FPGA Minimization

54

This formula reflects the fact that, given two subsets of the same size, we favor the

one with the smaller degree, and given two subsets of the same degree, we favor the

one with the larger size. Additionally, in the case of more than one subset of identical

subseLsize:subseLdegree ratio, the larger subset receives a higher value, via a posi-

tive value for SIZE_BONUS. In experimental runs, a value of 0.01 for SIZE_BONUS

produced the best results, so this value was used throughout. Ties were broken arbi-

trarily. The process continues until no candidate CLB can be added without violating

size or pincount constraints.

The value formula given here is defined for an individual subset. It is used to

guide the addition of new CLBs to an existing subset. The idea is somewhat similar

to the ratio cut of [WC], a more sophisticated concept used as a metric of overall

partition quality. The ratio cut between each two subsets is the number of edges

between those two subsets divided by the product of the two subset sizes.

The improve_partition procedure is a simplified iterative improvement algorithm,

inspired by the method of [KL]. It iterates through pairs of CLBs that have already

been mapped to subsets. If swapping CLB x from subset X with CLB y from subset

Y produces an improvement in the sum of the values of the two subsets, without

violating constraints, the swap is performed. At the end of each improve_partition

execution, a check is made to see if any subset has been modified in such a way to

admit additional CLBs to be added and, if so, the CLBs are added. If any more CLBs

are added, improve_partition executes again.

The outer loop executes at most once per CLB. The expand_subset routine 1s

confined to Nk-d v) for seed CLB v. so its complexity is constant.

The improve_partition routine is the most time-consuming step. It executes at

most once per CLB pair, and then repeats if at least one new CLB can be added to

any subset. (Repetition until no better solution is found is a characteristic of most

iterative improvement procedures.) Therefore, improve_partition is of cubic complex-

ity, and the complexity of the overall algorithm is O(n 4). The algorithm performed

55

sufficiently well for our purposes. For this reason, and because this heuristic is not of

significant independent interest, no attempt was made to improve this efficiency.

Many attempts were made to extend this basic approach. For example, the im-

prove_partition procedure was modified to move one, two, or three CLBs in a single

"swap." However, none of these attempts significantly improved the performance of

the algorithm, and all increased its running time.

It is of note that the iterative improvement phase of this algorithm differs from

that of traditional [KL] and [FM] type algorithms. Usually these strategies allovv

hill-climbing out of local minima as follows. At the beginning of each pass, every

node is unlocked. As the pass proceeds, the algorithm iteratively selects, swaps and

locks the module pair with the highest gain. Thus, in each iterative improvement

pass, every module moves exactly once. If, at the end of the pass, any intermediate

solution is an improvement over the solution at the beginning of the pass, the better

solution is kept and the process repeats. During the iterative improvement phase

of our algorithm, however, a swap is done only on pairs that allow immediate gain.

This simplifies the iterative improvement phase, at the expense of eliminating the

possibility of movement out of local minima. However, our experimental results have

demonstrated that the technique is effective in this case, in terms of both solution

quality and runtime, probably because the initial clustering itself is quite good.

Experimental Results

In spite of its simplicity, the heuristic we have discussed here for FPGA Minimization

produces results that compare favorably with other known methods. For comparison

purposes, tests were run over the standard partitioning benchmarks [Be], and results

compared to those found by [CLCDL], [HK] and [KBK]. In each case, the circuits

were technology mapped to an FPGA with a capacity of 64 CLBs and 58 I/Os.

56

The comparisons are tabularized in Table 3.2, in which the total number of FPGAs

calculated for each circuit is given. For all but circuit c3540, we ran each test ten

times, and selected the best partitioning result. Circuit c3540 was easy to partition

into seven subsets, but we were only able to find a partitioning into six subsets on

two of perhaps a thousand runs. It is difficult to compare runtimes, since these are

unreported in most cases [CLCDL, HK, KBK]. However, our runtimes are very close

to those that have been reported, but are not an improvement.

It should be noted that, although our simple heuristic produces results that com-

pare favorably with other known heuristics, it does not outperform them, either in

partition quality or runtime. In fact, two of the benchmark tests (c3540, c6288) can-

not possibly be partitioned onto fewer FPGAs of capacity 64 CLBs. Therefore, no

partitioner will ever demonstrate improvement in solution quality for these circuits

in this configuration. An effort is presently underway to develop new benchmarks,

that better represent current circuits [Al]. The heuristic we present here differs from

many others in that it was motivated by the theoretical study of MDGP, but it may

not necessarily represent advancement in circuit partitioning methods. One of its

main purposes in this work is to serve as the first step in a two-step method for delay

minimization, a topic we discuss subsequently.

Table 3.2: Partitioning results

circuit (CLBs, IOBs. nets) CLCDL HK KBK ours

c:3540 (37:3. 72. 569) 6 6 .., 6 I

c5315 (535. :301. 936) 12 12 11 11

c7552 (611. 31:3, 10.57) 11 11 11 11

c6288 (833, 64. 1472) 14 14 14 14

57

Chapter 4

Extending the Fundamental

Problem: Delay Minimization

Although FPGA Minimization is a significant problem in the FPGA arena, there are

other issues in addition to minimizing the number of chips utilized. One important

concern is minimization of delay through the system.

4.1 Problem Definition

Recall that for the FPGA Minimization problem, the objective is to realize the system

on as few chips as possible while satisfying constraints, in order to minimize cost. A

Configurable Computing Machine (CCM) system is often composed of a fixed set of

FPGAs, and may also incorporate memory, a CPU, and other components ([VM]).

Since such a system has a predefined number of FPGAs already available, the ''cost"

of an implementation is the same regardless of the number of chips actually utilized.

Within a static system of FPGAs, an important issue in a partitioning solution

is the delay through the system. In this section, we turn our attention to this new

problem variation, which we call Delay Minimization.

Before presenting the formal definition of the problem, we introduce some new

58

concepts.

A topology graph Ta is an undirected, simple graph that describes the connectivity

of the FPGAs in a specific CCM system. The nodes of Ta are in one-to-one corre-

spondence with the FPGAs in the system. For every pair of FPGAs that are directly

connected in the CCM, there exists an edge between the nodes of Ta representing

these FPGAs. There are no other edges.

A circuit instance contains primary inputs (Pis), primary outputs (POs) and

CLBs. (Recall that Pis are the external inputs to the circuit, and POs are the

external outputs.) Paths in a combinatorial circuit are acyclic, and flow from Pis to

POs. Each such path begins with a PI, proceeds through a series of CLBs and ends

with a PO. Each step in the path (from PI to CLB, from CLB to CLB, from CLB

to PO) incurs a delay. The precise value of the delay depends upon the particular

underlying hardware, although we may make some assumptions.

In the case of a step from CLB to CLB, the delay depends upon the partitioning

and the topology. During partitioning, "virtual" CLBs of a circuit instance are as-

signed to "physical" CLBs of FPGAs. Each FPGA is represented by one node of the

topology graph Ta. The delay incurred by a step from CLB A to CLB B depends

upon where these two CLBs are located relative to each other after partitioning. Com-

munication between two CLBs residing on the same FPGA chip will be less costly

than that between two CLBs residing on different chips. Furthermore, communication

between two CLBs residing on different chips will be less costly if those two chips are

directly connected. V·le will use the terms delta_local, delta_neighbor, and delta_global

to describe these three different delay values.

If CLBs A and B both lie on the same FPGA chip, the cost of a step from A to

B is delta_local. If these CLBs are on different FPGAs, but the FPGAs are directly

connected (as indicated by Ta), the cost of the step is delta_neighbor. The final

possibility is that the CLBs are on different, unconnected FPGAs, in which case the

cost of the delay is delta_global.

59

The actual values of these delays may vary from system to system. We can reason-

ably assume, however, that delta_neighbor is approximately ten times delta_local, and

that delta_global is at least 50 percent greater than delta_neighbor. For our purposes,

we will assume values of delta_local = 3, delta_neighbor = 30 and delta_global = 50

[Bou]. We may also assume that the delay from a PI to a CLB, or from a CLB to a

PO, is delta_local [Bou].

The critical path is the longest (in terms of delay) path from any PI to any PO, in

the partitioned circuit. Given a partitioning P of some circuit instance represented

by a DAGG, relative to some topology graph Tc, denote by cp(P) the delay of the

critical path of P. In G, any node with no incoming edges is a PI, and any node with

no outgoing edges is a PO.

Vie now define Delay Minimization as follows.

Instance: a directed acyclic graph G, a simple, undirected graph Tc, and three

integers k, d and t.

Question: Is there is a partition P of Ve into disjoint sets ½, ... , Vm such that

1. m !Vrcl,

2. "i/i : I½ j k.

:3. if Ei is the set of edges with exactly one endpoint in½, max 1::;i::;mlEil d, and

4.cp(P)::;t?

The complexity of Delay Minimization follows in a straightforward manner from

that of FPGA Minimization.

Theorem 4.1 Delay l\iinimi:::ation is JVP-complete.

Proof An instance of FPGA Minimization could be solved by Delay Minimization as

follows.

60

The FPGA Minimization instance consists of a graph G, and three integers k, d,

and p. We form an instance of Delay Minimization consisting of G', Tc, k', d' and t.
To form G', we begin with G and then direct the edges as follows. For each edge

uv E G', if we have already constructed in G' a directed path from u to v, then direct

uv from u to v. If not, then direct uv from v to u. This can be done in polynomial

time, and introduces no cycles in G'. Since G' is a DAG, it contains at least one

source (PI) and one sink (PO).

Ta consists of a graph containing p isolated vertices. The longest possible delay

through G' is delta_local (delay from some source node representing a PI to the first

node representing a CLB in the critical path) +(IVc,I- 3)x delta_global + delta_local

(delay from the last node representing a CLB in the critical path to some sink node

representing a PO). Therefore, we set t = delta_local +(I Va, I - 3) x delta_global +
delta_local + 1. Finally, k' = k and d' = d.

The critical path of G' cannot exceed t in any partitioning satisfying the other

constraints. Therefore, G, k, d,p is a "yes" instance of FPGA Minimization if and

only if G', T G, k, d, t is a "yes" instance of Delay Minimization. D

Analogously, it can be seen that Fixed-k, d Delay Minimization is NP-complete,

and that Delay Minimization, like FPGA Minimization, remains NP-complete on

many classes of graphs.

We conclude this subsection by addressing a discrepancy between our theoretical

model and the circuit it represents. Earlier we discussed ways to accommodate, in

our graphical model, Pls and POs for MDGP and the FPGA Minimization. Recall

that these problems were stated in terms of undirected graphs. In the case of Delay
Minimization, some vertices already represent Pls and POs. However, these nodes

do not represent CLBs, and hence must not be partitioned into the same subsets as

nodes representing CLBs.

The model can accommodate this requirement. To describe more accurately a real

circuit instance, the graph representing the circuit could be augmented with chains

61

containing k - 1 nodes, one chain for every PI and PO node. Each edge in each chain

is of multiplicity d + 1, and a chain is connected to every PI and PO node, by an

edge of multiplicity d + 1. For Pis, all of these edges are directed toward the PI. For

POs, all of these edges are directed away from the PO. Finally, the topology graph Tc
is augmented with isolated vertices, one for each PI and PO. These "gadgets'' force

each PI and PO to lie in a unique subset. Critical path computation can be modified

to accommodate these changes, which are described for theoretical purposes only.

4.2 A Practical Heuristic

Delay Minimization differs from the other problems we have considered so far, m

that it is defined over directed graphs. The WQO theory that we have discussed

earlier in this work no longer applies. Notions of closure under immersion order

and obstruction sets are undefined with regard to this problem. For this reason,

and because Delay Minimization is NP-complete, we focus our efforts in this section

toward the development of a new heuristic.

As was the case for FPGA Minimization, the heuristic we present here works on

hypergraphs, since real circuit instances contain nets with more than two endpoints.

Many of the example circuits that follow contain such nets.

4.2.1 Circuit Characteristics

Consider again the circuit depicted in Figure 3.5, and reproduced here in Figure 4.1

for clarity.

This circuit has five paths. Suppose this circuit is to be implemented on a system

with a 11·3 topology (three completely-connected FPGAs). Recall that we assume de-

lay penalties of 3 nanoseconds for delta_local and 30 nanoseconds for delta_neighbor.

Some possible mappings and resulting delays are presented in Table 4.1. (The nota-

tion A: 1 denotes that CLB A is mapped to FPGA 1.)

62

I

I
e-Ji.._=_CL-BA-~~-i -CL-BB _ __,/

~,..
8--'------1- CLBC -

Figure 4.1: An example circuit

Table 4.1: Possible mappings for circuit 3.5

II A:l B:2 C:31 A:l B:l C:2 j A:l B:2 C:l I A:l B:l C:l I
36 9 36 9

66 66 39 12

PI2 B POI ;36 g 36 g

66 66 39 12

PI2 C B POI 36 36 36 9

System Delay 66 66 39 12

63

In this particular example, it is always better to use fewer FPGAs, but this is not

necessarily true, as we now demonstrate.

Assuming k = 9, d = 4, Figure 4.2(a) illustrates a circuit whose delay is shorter on

three chips than two. With these parameters, there is only one way to partition this

circuit onto two chips. This two-chip partitioning is shown (in dotted lines) in Fig-

ure 4.2(b). Because every chip crossing has delay either delta_neighbor or delta_global,

the path of longest delay is that which goes through the double-circled node and

makes two chip crossings. Figure 4.2(c) shows a partitioning of this circuit onto three

chips, in which no path makes more than one chip crossing.

4.2.2 Prior Work

Performance-driven partitioning is a relatively new research area, but it is already a

topic of strong interest. See [KS], [NS], [RW], [ST], [TSO] and [We] for a sampling of

various approaches to the problem. The problem formulations and objective functions

often differ significantly from researcher to researcher, as do the solution approaches.

Sometimes device constraints are considered; sometimes not. Sometimes replication is

utilized: sometimes not. Sometimes the focus is on clustering for delay minimization.

Sometimes partitioning is done before technology mapping, although this tends to be

the exception. Because the ways of defining the problem are so various, it is difficult

to compare directly the merits of one method to another.

Comparing results is further complicated by the fact that, although partitioning

benchmarks exist, there are no standard timing constraints for these benchmarks.

Therefore, the objective timing function is defined in various ways, which depend

heavily upon other problem parameters specific to a particular technique.

64

~--
0

1/
~---~ I PO

(a)

.. •···-··························•···········

~·- ••............... --·

(b)

(c)

Figure 4.2: A Delay Minimization example

65

In this work, we focus on the development of an iterative improvement delay

optimization strategy that works in conjunction with an independent partitioning

step. For this reason, we refer to our approach as the two-step method [La2]. The

first step is partitioning, and the second step consists of assigning the partitioned

subsets to physical FPGAs and performing iterative timing improvement.

4.2.3 A New Approach - The "Two-Step" Method

As mentioned in the previous section, many timing heuristics operate by incorporat-

ing delay considerations into a partitioning heuristic. Such approaches have merit;

however, our two-step method is different in that it performs timing optimization as

an independent step after partitioning.

There are several advantages to this approach:

1. Since the system has already been partitioned, the complexity of the timing

step is reduced.

2. If a good partitioning of a system is already known, this can be used as a starting

point for timing optimization.

:3. Our post-partitioning timing heuristic can be viewed as an independent

iterative-improvement step which could be applied as a post-processing step

after any other timing heuristic.

The first step of the two-step method, that of partitioning, can be performed

by the partitioner of choice. For our tests, we used our own partitioner, but any

partitioner may be used.

The second step consists of two parts. In the first part, "virtual" FPGAs (the

subsets of the partitioning) are assigned to physical FPGAs. The second part consists

of an iterative improvement algorithm to improve the delay through the system, by

moving CLBs of the circuit graph from one subset (hence FPGA) to another. When

66

a virtual FPGA is assigned to a physical one, virtual CLBs (the CLBs of the circuit

graph) are also assigned to physical CLBs. In the discussion that follows, the term

CLB is used to refer either to a virtual or a physical CLB when the context makes

the meaning clear.

In the first part of the second step of the two-step method, virtual subsets of

the partitioned circuit are assigned to physical FPGAs, represented by the topology

graph. Initially, this was done in a greedy fashion, as follows. Each virtual subset is

assigned to the available FPGA which results in the fewest number of nets requiring

global communication. This approach seemed to have little effect on the critical path,

however, at the expense of some computation time.

An experiment was done using one circuit and a partitioning of that circuit into

five subsets. Every possible way of mapping those five subsets onto adjacent FPGAs in

a linear array topology was examined. For each of these mappings, we compared the

initial delay with the final delay after performing the delay optimization heuristic.

There seemed to be no discernible pattern at all. Those mappings with the best

final delay were not associated with those having the best initial delay. For each of

these mappings. we also counted the number of nets containing at least two CLBs

mapped to non-adjacent FPGAs. The number of such nets varied very little from

mapping to mapping, ranging from a low of 630 to a high of 650. Again, there was

no correspondence with final outcome.

Based on the above experiment, the decision was made to perform the virtual-

to-physical FPGA mapping arbitrarily, with one exception. Whenever possible, con-

nected physical FPGAs are utilized, in order to eliminate artificial "improvement"

induced by an obviously inefficient initial placement. For example, if only 4 non-

adjacent FPGAs in a 16-FPGA system are utilized, a large improvement would be

seen by simply re-assigning the subsets to adjacent chips. We avoid this "artificial"

improvement by initially choosing, as much as possible, FPGAs that can directly

communicate.

67

The focus of the discussion for the remainder of this chapter is on the second part

of the second step of the two-step method: the iterative improvement algorithm.

4.2.4 An Iterative Improvement Algorithm for Improving

Delay in a Partitioned Circuit

The second step of the two-step method begins with a technology-mapped circuit, and

a partitioning of that circuit, as input. The technology-mapped circuit is represented

by the netlist file produced by the technology mapping software found in [Be], used

without modification. The partitioning is represented by a file that enumerates the

subsets of the partitioning, and the specific CLBs contained in each subset.

The topology of the FPGA system is also part of the program input, and includes

the number of FPGAs available, and their connectivity. This information dictates

the delay values (delta_local, delta_neighbor or delta_globa0.

The Connection Graph

A directed acyclic graph (DAG) called a connection graph ([WKMKY]) is constructed

from the technology-mapped circuit. If each CLB computes one function, the con-

nection graph is formed as follows. A node is created for each PI and each PO, and

a node is created for each CLB. If a PI is connected to a CLB, a corresponding di-

rected edge is placed into the connection graph. Similarly, directed edges are added

to represent connections from CLBs to POs, and from the output of one CLB to the

input of another.

The connection graph corresponding to the circuit of Figure 4.1 is shown in Fig-

ure 4.3.

Many FPGAs contain CLBs that can implement two functions ([X]). In this case,

the connection graph must contain a node for each CLB function. We illustrate this

situation.

68

Figure 4.3: A connection graph

Figure 4.4 shows a technology-mapped circuit containing two CLBs, and Fig-

ure 4.5 shows the corresponding connection graph. Figure 4.6 illustrates the situation

if such CLBs are not separated into two nodes. The resulting graph is no longer a

DAG. Additionally, information is lost, for example the fact that PII serves as input

to CLB A functionl but not to CLB A function2. In this situation, it is not possible

to determine the critical path.

After the mapping from virtual to physical FPGAs has been performed, the edges

of the connection graph are weighted with delays corresponding to communication

costs. Edges to POs or from Pls are given a delay of delta_local. Each edge delay,

then, is either delta_local, delta_neighbor, or delta_global.

For example, suppose the circuit of Figure 4.4 were implemented on a system

of two connected FPGAs. Furthermore, assume delta_local = 3 nanoseconds and

delta_neighbor = 30 nanoseconds. If CLB A were mapped to FPGAl, and CLB B to

FPGA2, the edge delays on the connection graph would be as depicted in Figure 4.7.

Finding the Critical Path

From the connection graph with edge delays, we compute the maximum delay through

the system. Since we wish to find the longest (in terms of delay) path from any input

to any output, we augment the connection graph with two special nodes Vs and Vt,

69

8 ,-
l 8

8
,-

ra

I ,..= l::d I ~1 r ,-lllnL-1Jnn I IUrK..1inn I ,- - -i
;=~ t-lunc.1111n 2 '- Junction 2

8

8
CLBA CLBB p

,_ 8
8

Figure 4.4: Two-function CLBs

--8

Figure 4.5: A connection graph for two-function CLBs

70

------0

Figure 4.6: A cyclic connection graph

I _n
----0

Figure 4.7: A connection graph with edge delays

71

The node Vs is of in-degree O and is connected by a directed out-edge of delay 0

to every PI node. The node Vt is of out-degree 0, and every PO node has a directed

out-edge of delay O to Vt. Now, to find the delay through the system, we simply

compute the longest (in terms of delay) path from Vs to Vt in the directed, acyclic

connection graph.

The Longest Path problem is known to be NP-complete for general graphs, but

in 'P for DAGs [GJ]. In [WKMKY], the longest weighted path from Vs to Vt in the

connection graph is computed with a breadth-first search. Such an approach suffices

for DAGs, and was initially utilized in our heuristic. However, breadth-first search

does not necessarily observe topological sort 1 order, which can cause nodes to be

processed multiple times.

Consider the DAG of Figure 4.8, in which each edge is of delay 1. When processing

Vs, suppose node x (longest path delay from Vs of 1) is pushed onto the stack first,

followed by node y (longest path delay from vs of 1).

Because y is at the top of the stack, it is processed next, and node z is assigned

a current longest path delay of 2. When x is removed from the stack, its neighbor

y has its longest path delay increased to 2, so must be pushed onto the stack again.

Similarly, when processing y, the longest path delay of z increases again.

Figure 4.8: A DAG with edge delays

1 A topological sort of the nodes of a DAG is the operation of arranging the nodes in order in such

a way that if there exists an edge (i, j), then i precedes j in the list. [BB]

72

An efficient alternative exists that does not use a stack, and guarantees that each

edge will be processed exactly once. First, the nodes of the DAG are sorted into

topological order. (This can be done in O(n) time using a depth-first search [BB],

and only needs to be done once.) The longest path to each node is initialized to 0.

Then, for each node u (proceeding in topological order), the longest path to each

neighbor v of u is updated if the longest path to u plus the delay of edge uv exceeds

the current longest path to v. When processing each u, it is evident that the current

longest path to u is at its maximum, since all vertices with edges to u have already

been processed.

Critical path is re-computed extremely often in our heuristic. By using the more

efficient topological sort technique rather than breadth-first search to compute critical

path, we were able to greatly improve the efficiency of our heuristic. Experimental

results pertaining to this will be presented in Section 4.2.4.

Iterative Improvement Overview

Iterative improvement strategies for partitioning usually operate by swapping pairs

of modules (i.e., CLBs). or moving a single module from subset to subset. Such

approaches were attempted for delay optimization in this research, and poor results

were achieved.

The difficulty with these approaches is that simple pairwise swaps, or single mod-

ule movement. seldom produce improvement in the delay of the critical path. There-

fore. we have developed an iterative improvement scheme that we call critical path

compression. Critical path compression works by reassigning groups of CLBs, specif-

ically chosen for potential delay improvement, from one FPGA to another. This

scheme proceeds as follows.

At any given moment, there exists a critical path in the connection graph (ties

may be broken arbitrarily). We will refer to this specific path as IT. If the number of

73

chip crossings in II can be reduced, by reassigning CLBs from II to different FPGAs,

the result will be a decrease in the delay of II. It could be the case that the reduced-

delay II is still the critical path. However, it also may be the case that some different

path, II', is now the critical path. In fact, it may be the case that the delay of II' is

bigger than the original delay of II.

Figure 4.9 shows an example in which compressing II produces a new. worse

critical path. In (a), module a is in one FPGA, modules b, c, e and fare in a second

FPGA, and module dis in a third FPGA. If all FPGAs are connected, delta_/ocal = 3

and delta_neighbor = 30, the critical path is PI a b c d PO and is of

delay 69. Moving module b from the second FPGA to the first, and moving module

c from the second FPGA to the third, reduces the delay of path b c

d PO to 42, but produces a new critical path, PI e b c f PO of

delay 96.

\
\

a

,, -----

b>------c

------- ---

\

' I

I ,

\
\
\ ,

I

,
I ' \

\
\

' I

~-'----)

\
\

\
I

I

Figure 4.9: Compressing a critical path

74

(a)

(b)

It is infeasible, of course, to try all possible ways of re-assigning the CLBs from II

to FPGAs. Therefore, we have devised specific patterns in the critical path for which

to search. Specifically, we look for patterns in the FPGAs to which consecutive CLBs

in the critical path are assigned.

For example, in the example of Figure 4.9, we saw the following pattern in the

critical path. A CLB (a) was assigned to some FPGA x, some set S of CLBs following

a (band c) were assigned to some FPGA y =/ x, and the CLB following S (d) was

assigned to some FPGA z =/ y. In any such pattern, the number of chip crossings

is reduced if some initial segment of S is reassigned to FPGA x, and the rest of S
assigned to FPGA z.

There are five distinct types of patterns for which we search. We refer to these

five strategies as critical path compression techniques. They are called 1) Elimination

I, 2) Elimination II, 3) Substitution I, 4) Substitution II, and 5) Resequencing. Each

of these critical path compression techniques will be described later.

Each of these five techniques can be activated or de-activated. This enabled us

to test each for effectiveness individually, and in combination with others. The user

then has the flexibility of choosing which of the techniques to utilize, and may choose

to deactivate those that have a higher running time and/or smaller potential for gain.

More will be said about this in the section describing experimental results.

The iterative improvement algorithm operates by examining II, and sequentially

attempts each of the activated critical path compression techniques. With each tech-

nique, II is examined for the existence of some specific pattern of assignments of CLBs

to FPGAs. For each occurrence of this pattern, the following is done.

The CLBs are reassigned to FPGAs, in the manner dictated by the critical path

compression technique in effect at the moment. This reassignment requires that edge

delays in the connection graph be modified to reflect the new placement of the CLBs.

Then II is recomputed, and its delay recorded. Finally, the changes are undone, and

the next occurrence of the pattern is processed.

75

It is possible that no matching patterns are found, in which case the iterative

improvement algorithm terminates.

It is also possible that matching patterns are found, but for each attempt, either

constraints are violated, or the new critical path is of delay no better than that of

the original. In this situation, a local minimum has been reached, and the algo-

rithm terminates. (The topic of escaping local minima will be discussed in the next

subsection.)

The final possibility is that at least one of the reassignments produced a critical

path of delay shorter than the original. In that case, this reassignment is applied

again and maintained. The new critical path is again designated as II (this path may

or may not be the same as the original II), and the iterative improvement algorithm

repeats.

Because the algorithm only repeats if the delay of the critical path is reduced, the

algorithm eventually terminates.

Because each critical path compression technique is independently coded, and so

can be run independently, new critical path compression strategies can easily be in-

corporated into the existing code. The overall idea is somewhat similar to that of

peephole optimization, a technique for optimization of compiler output. In this strat-

egy, a "peephole'' is passed along the code stream, and the code within the peephole is

examined for the existence of certain patterns. If the pattern is found, an appropriate

substitution is attempted, and retained if it can be successfully implemented.

Strategies for Escaping Local Minima

A standard consideration in iterative improvement algorithms is escaping local min-

ima. If the algorithm only implements changes that result in improvement, it can

never effect a potentially greater improvement that requires an "uphill move:" going

through an intermediate, worse solution.

76

Many traditional swapping algorithms (e.g. [FM, KL]) enable uphill moves in

the following way. A module is "locked" after it has been moved from one subset to

another. At the beginning of each "run," all modules are unlocked. Until all modules

are locked, all pairs of unlocked modules are examined, and the pair with the greatest

gain is selected, swapped and locked. Note that this gain may indeed be negative

in terms of overall solution, effecting an uphill move. After all modules are locked,

the best intermediate solution is chosen. If this solution is better than what existed

at the beginning of the run, it is kept and another run is performed. Note that this

strategy requires that all modules be moved in each pass.

Our critical path compression techniques move sets of modules, not always pairs.

Additionally, they work by examining the critical path only, and any module move-

ment may result in the formation of a completely different critical path, with different

candidate CLBs. If each module were locked after being moved, any group of mod-

ules containing a locked module could not be considered for movement. For this

reason, the locking mechanism does not provide enough flexibility for our purposes.

Therefore, to enable uphill moves. we employ the following strategy.

A user-defined value, look_ahead, is obtained. This value must be an integer at

least 1, and is typically a small value. (The effects of various precise values will be

examined in Section 4.2.4.)

The following is then done, for each activated critical path compression technique.

A counter is initialized to look_ahead. The smallest critical path seen is recorded. This

is initialized to the value of the current critical path, and updated any time a smaller

critical path is found. Recall that for each critical path compression technique, some

specific pattern of assignments of CLBs to FPGAs is sought. This pattern may occur

many times in II, and, depending upon the technique at hand, may involve several

different ways of reassigning CLBs to FPGAs. Each possibility is attempted, and

the one which produces the largest decrease in critical path is noted. (Note that this

decrease may in fact be negative. if the reassignment increases the delay of the critical

,.,..,
I I

path.) If the counter is 1, processing terminates for this critical path technique, and

the configuration that produced the best critical path is applied and maintained. Oth-

erwise, the counter is decremented, and the set of module movements that produces

the largest decrease in critical path is implemented, even if the result is an increase

in the critical path delay. The current critical path compression technique is applied

again. In this way, it is sometimes possible to find a better overall solution, that

could not have been found without going through the intermediate, worse solution.

It is noteworthy that. without locking modules, it is possible for a looping situation

to develop. However, if this does happen, it will terminate when the number of

iterations is done. Experimental results with differing values of look_ahead will be

presented later.

Critical Path Compression Techniques

We now describe the five different strategies for critical path compression: the process

of compressing the delay of the critical path, II, through a partitioned circuit.

The algorithm considers only the sequence of CLBs in II. This path is searched

for every occurrence of a particular pattern of assigned FPGAs in consecutive CLBs.

The precise definition of the pattern depends upon which of the five strategies is

under consideration. In this subsection, we establish a common framework for all of

these strategies.

Each strategy considers only the current critical path, II. In each strategy, II is

searched for some segment of consecutive CLBs matching some pattern of assignment

to FPGA.s. Returning again to the example of Figure 4.9, we saw the following pattern

in the critical path. A single C LB (a) was assigned to some FP GA x; some set S

of n CLBs (in this case n = 2) following a (band c) were assigned to some FPGA

y -/= x; and the single CLB following S (d) was assigned to some FPGA z -/= y. In

this setting, then, the pattern sought is a set of n consecutive CLBs assigned to the

78

same FPGA, such that the CLBs immediately preceding and immediately following

the set are assigned to different FPGAs. The set of n consecutive CLBs is referred to

as the "target sequence" because these are the CLBs that we will attempt to reassign

to different FPGAs. In this particular example, we require the target sequence to

consist of consecutive CLBs assigned to the same FPGA, but this will vary from

strategy to strategy. In each of the strategies, the target sequence is also defined in

terms of the CLBs immediately preceding and immediately following. We will refer

to the "extended target sequence" as the target sequence, along with the single CLB

immediately preceding the target sequence, and the single CLB immediately following

the target sequence.

Definition 4.1 Denote by t 1 , t 2 , ... , tn the set of n CLEs of a target sequence. De-

note by x the CLE immediately preceding a target sequence. Denote by y the CLE

immediately following a target sequence.

We note that either of x, y may be a "dummy CLB" if the target sequence is at

the beginning or the end of II.

A representative snapshot of an extended target sequence is illustrated in Fig-

ure 4.10.

Definition 4.2 Given CLE c, denote by f(c) the index of the FPGA to which c is

currently assigned. If CLE c is a ''dummy CLE," then f(c) = 0.

Definition 4.3 Given FPGA indices i 2:: 0 and j 2:: 0, denote by d(i,j) the com-
munication delay between the FPGAs with these indices. If either i = 0 or j = 0,
d(i,j)=0.

vVe note that Vi,j cl(i,j) E {0, delta_local, delta_neighbor, delta_globa[}.

79

-0--0---------
Figure 4.10: An extended target sequence

Elimination I

The first critical path compression strategy we describe is called Elimination I. We
define its extended target sequence as follows.

Definition 4.4 An Elimination I extended target sequence is one such that:

• f(ti) = f(ti)'t/i E [1, n],

• J(x) =f J(ti),

• J(y) =J J(ti) and

• either J(x) =JO or J(y) =f 0.

For example, suppose that II, in its entirety, consists of six CLBs, assigned to

FPGAs 1. 2, and 3, as shown in Figure 4.11.

There first two extended target sequences are:

1. xis the "dummy CLB," f(x) = 0, n = 1, t 1 = CLB 1, f(t 1) = 2, y = CLB 2,

f(y) = 3.

2. x = CLB 1, f(x) = 2, n = 2, t1 = CLB 2, t2 = CLB 3, f(t1) = 3, y = CLB 4,
f(y) = l.

We can now define Elimination I:

80

Figure 4.11: A critical path

Definition 4.5 Elimination I is the assignment, for some p + q = n, of the first p

CLBs of an Elimination I target sequence to the FPGA indexed by f(x), and the last

q CLBs of the sequence to the FPGA indexed by f(y), if appropriate FPGAs exist,

and changes can be made without violating size or pincount constraints.

Appropriate FPGAs do not exist if, for example, x is the ''dummy CLB" and

p > 0. We reiterate that it is possible for one, but only one, of x, y to be the "dummy

CLB."

Prior to Elimination I, the n+2 CLBs in the extended target sequence are assigned

to the following FPGAs, in the following order:

1: f(x), 2: f(ti), ... , (n + 1): f(ti), (n + 2): f(y).

The delay of this sequence is •

d(J(x), J(ti)) + ((n - l) x deltaJocal) + d(f (t1), f(y)).

After Elimination I, the sequence of assigned FPGAs becomes:

81

1: J(x),2: f(x), ... ,(p+ l): f(x),(p+2): f(y), ... ,(p+q+2): f(y).

The delay of this sequence is

(p x delta_local) +d(f(x), f(y)) + (q x delta_local) = (n x deltaJocal) +d(f(x), f(y)).

We may then compute the change in delay of critical path II (de) as follows:

de= d(f(x),f(y)) + deltaJocal- d(f(x),f(t1))-d(f(ti),f(y))

Figures 4.12, 4.13, and 4.14 illustrate the effects of Elimination I in a specific

example. Assume k = 2 and d = 5. Assume also that there is direct communication

between FPGAs 1 and 2, and between FPGAs 2 and 3, but that FPGAs 1 and 3

must communication by means of a global bus.

In Figure 4.12, II = PI A C D POI, and is of delay 86. The first

extended target sequence for Elimination I consists of a dummy x, t 1 = A, y = C.

Moving CLB A into FPGA f (y) = 3 is not possible, because this would violate k.

The next extended target sequence is x = A. t 1 = C, y = D. Again, it is not

possible to move CLB C from FPGA 3 into FPGA /(x) = 2 because of constraint

violation. It is, however, possible to move CLB C into FPGA f(y) = l, as shown

in Figure 4.13. The delay of the original II is reduced to 39. The current II is now

PI A B E P02, and is of delay 66.

Elimination I is attempted again on the new II. The first extended target sequence
consists of a dummy x, t1 = .4, y = B. CLB A can be moved into FPGA f(y) = 3,

as shown in Figure 4.14. The delay of TI is now 39, which cannot be improved.

82

'._ FPGA2

FPGAI
FPGAJ ___ _ .. _____ ...

POI

Figure 4.12: Elimination I example: part 1

\ FPGAI

Figure 4.13: Elimination I example: part 2

83

' ' ' ' ' '
\ FPGAI

' ' ' ' : '
' ' ' '

------...

FPGA2 FPGA3 ,

Figure 4.14: Elimination I example: part 3

' ' ' ' '

Can Elimination I increase the delay in II? If this is the case, then we have

d(f(x),f(y)) + delta_local > d(f(x),f(ti)) + d(f(ti),f(y))

Table 4.2 illustrates the possibilities. In the table (and others that follow) d1
indicates delta_local, dn indicates delta_neighbor, and d9 indicates delta_global. The

only situation in which the delay of II increases is when d(f (x), f(y)) = delta_global,
d(f(x),f(ti)) = delta_neighbor, d(.f(ti),f(y)) = delta_neighbor, and delta_global 2'.
(2x delta_neighbor) - delta_local. Using our assumed values of 50 for delta_global, 30
for delta_neighbor, and 3 for delta_local, Elimination I always results in a decrease in

the delay of II.

Recall that it is possible that a reduction in the delay of II results in the production
of a new critical path of even larger delay. Such a move would actually be implemented

only if uphill moves have been activated. This applies to all of the critical path

compression strategies.

84

Table 4.2: Effect of Elimination I

d(f(x),f(y)) d(f (x), f(ti)) d(f(ti),f(y)) Path delay effect
0 0 dn decrease
0 0 dg decrease
0 dn 0 decrease
0 dg 0 decrease
d1 dn dn decrease
d1 dg dn decrease
d1 dn dg decrease
d, dg dg decrease
dg dn dn decrease if d9 < (2 x dn) - d1
dg dg dn decrease
dg dn dg decrease
dg dg dg decrease
dn dn dn decrease
dn dg dn decrease
d,,, d,,, dg decrease
dn dg dg decrease

Elimination II

Elimination II is very similar to Elimination I. The only difference is in the definition

of the target sequence, which now requires the existence of at least two CLBs assigned

to different FPGAs.

Definition 4.6 An Elimination II extended target sequence is one such that:

• :li E [L n] lf(ti) =/= f(ti),

• f(x)=/=f(ti) .

• f(y)=/=f(ti),

• f(y) =I= f(t;),

• Vj E [Ln].f(tj) E {.f(ti),.f(t;)}, and

85

• either f(x) =IO or f(y) =I 0.

Referring again to Figure 4.11, the two extended target sequences are:

l. x is the "dummy CLB," f(x) = 0, n = 3, ti = CLB 1, f2 = CLB 2. t3 = CLB

3, i = 2, f(ti) = 2, f(ti) = 3. y = CLB 4, f(y) = l.

2. x = CLB 1, f (x) = 2, n = 3, t 1 = CLB 2, t2 = CLB 3, t3 = CLB 4, i = 4,

f(ti) = 3, f(ti) = 1, y = CLB 5, f(y) = 3.

We define Elimination II:

Definition 4. 7 Elimination II is the assignment, for some p + q = n, of the first p

CLBs of an Elimination II target sequence to the FPGA indexed by f(x), and the last

q CLBs of the sequence to the FPGA indexed by f(y), if appropriate FPGAs exist,

and changes can be made without violating size or pincount constraints.

Elimination II has even greater potential than Elimination I for reducing delay in

the current critical path. because at least one additional chip crossing (that between

the FPGAs indexed by f(ti) and f(ti)) is always eliminated.

Substitution I

Substitution I applies a different method to an Elimination I extended target sequence.

Rather than assigning the CLBs of the target sequence to the FPGAs indexed by f(x)

or f(y), an attempt is made to assign them to a completely different FPGA. As was

the case for Elimination I, it is required that at least one of f(x),f(y) be nonzero. If
both f(x), f(y) were zero, that would mean that the target sequence encompasses the

entirety of IT, and that all CLBs in IT are assigned to the same FPGA. Reassigning

all of IT to a different FPGA would have no effect on the delay of IT.

86

Definition 4.8 Substitution I is the assignment of all n CLBs of an Elimination I

target sequence to some FPGA indexed by z, such that z Ft {f(x),f(ti),f(y)}, if

changes can be made without violating size or pincount constraints.

In contrast to Elimination I, where an attempt is made to move the target sequence

to one or two different FPGAs (f(x) and/or f(y)), in Substitution I attempts are

made to move the target sequence to any FPGA other than f(x),f(ti) or f(y).

Prior to Substitution I, the n+2 CLBs in the extended target sequence are assigned

to the· following FPGAs, in the following order:

1 : f(x), 2: f(ti), ... , (n + 1): f(ti), (n + 2) : f(y).

The delay of this sequence is

d(f(x),J(ti)) + ((n -1) x deltalocal) + d(f(t1),f(y)).

After Elimination I, the sequence of assigned FPGAs becomes:

1: J(x),2: z, ... ,(n + 1): z,(n + 2): J(y).

The delay of this sequence is

d(f(x), ::) + ((n - 1) x deltaJocal) + d(z, J(y)).

\Ve may then compute the change in delay of critical path II (de) as follows:

de= d(.f(x), z) + d(z, f(y)) - d(f(x), f(ti)) - d(f(ti), f(y))

The delay of II decreases with Substitution I only if

d(f(x),::) + d(z,f(y)) < d(f(x),f(ti)) + d(f(ti),f(y))

Table 4.3 summarizes all of the possibilities.

87

Table 4.3: Effect of Substitution I

J d(f(x),z) I d(z,f(y)) I d(f(x),J(t1)) I d(f(t1),f(y)) I Path delay effect I
0 dn 0 dn no change
0 dn 0 dg decrease
0 dg 0 dn mcrease
0 dg 0 dg no change

dn 0 dn 0 no change
dn 0 dg 0 decrease
dn dn dn dn no change
dn dn dn dg decrease
dn dn dg dn decrease
dn dn dg dg decrease
dn dg dn dn rncrease
dn dg dn dg no change
dn dg dg dn no change
dn dg dg dg decrease
dg 0 dn 0 mcrease
dg 0 dg 0 no change
dg dn dn dn mcrease
dg dn dn dg no change
dg dn dg dn no change
dg dn dg dg decrease
dg dg dn dn mcrease
dg dg dn dg mcrease
clg clg clg dn mcrease
clg dg clg dg no change

88

It is noteworthy that the actual values of delta_local, delta_neighbor and delta_global

do not affect whether or not Substitution I increases or decreases the delay of II. These

values do, of course, affect the amount of increase or decrease.

Substitution II

Substitution II is very similar to Substitution I, in that an attempt is made to reassign

all of the FPGAs of the target sequence to a different FPGA. The CLBs in the target

sequence must be initially assigned to two FPGAs rather than one, however. A

Substitution II extended target sequence is the same as an Elimination II extended

target sequence, except that both x and y may be the "dummy CLB." If f (x) = 0

and f (y) = 0 (the target sequence encompasses all of II), it would decrease the delay

of II to reassign all of these CLBs to some other FPGA, if they are all reassigned to

the same FPGA.

Definition 4.9 Substitution II is the assignment of all n CLBs of a Substitution II

target sequence to any FPGA z, such that z rt_ {.f(x),f(ti),f(ti),f(y)}, if changes

can be made without violating size or pincount constraints.

Substitution II has greater potential than Substitution I for critical path com-

pression, because it will always eliminate at least one additional chip crossing (that

between the FPGAs indexed by .f(ti) and f(t;)). As was the case with Substitution

I, it does not guarantee reduction in the delay of II. Under our assumptions, however,

there is only one situation in which Substitution II fails to reduce the delay of II.

If .f (tn) = .f (ti), then the target sequence contains at least two chip crossings, and

Substitution II always reduces the delay of II. Therefore, for the following discus-

sion. assume f(tn) = J(t;). Substitution II replaces a delay of d(f(ti), f(ti)) in the

target sequence with a delay of delta_local. In addition, delays of d(f (x), f(ti)) and

cl(f(t;),f(y)) are replaced, respectively, with d(f(x),z) and d(z,f(y)). The delay of

II increases, then, only if

89

deltaJocal + d(J(x),z) + d(z,f(y)) > d(J(t 1),J(ti)) + d(J(x),J(t1)) + d(J(ti),d(y)).

Using our assumed values for delta_/ocal = 3, delta_neighbor = 30, and delta_gfobal
50, this cannot happen unless both of d(J(x),z),d(z,f(y)) are delta_g/obal, and

all of d(J(ti), J(ti)), d(f (x), f(ti)), d(J(ti), d(y)) are delta_neighbor. (Recall that none

of these latter three values is delta_/ocal, by the definition of the extended target

sequence.)

Resequencing

For Resequencing, we require a two-subset target sequence, identical to that for Sub-

stitution II, except that the target sequence must contain at least two chip crossings.

This means that there must exist some CLB tk, i < k :Sn, such that J(tk) = f(t 1).
We now define Resequencing, with the assumption that p > 0 CLBs in the target

sequence are initially assigned to J(ti) and q > 0 CLBs in the target sequence are

initially assigned to J(ti).

Definition 4.10 Resequencing is either

1. the assignment of the first p CLBs of a Resequencing target sequence to f (t1)

and the last q CLBs of the sequence to J(ti), or

2. the assignment of the first q CLBs of a Resequencing target sequence to f(ti)
and the last p CLBs of the sequence to f(t 1),

if changes can be made without violating pincount constraints.

We note that the predetermined values of p and q ensure it is not possible for

Resequencing to violate size constraints.

Resequencing eliminates all but one chip crossing in the target sequence. Since

the number of chip crossings in the target sequence may be more than two, it is

90

impossible to calculate in general the delay of the critical path after a Resequenc-

ing. Furthermore, the analysis is dependent upon the assumed delay values. Using

our assumptions, however, Resequencing always reduces the delay of II, as we now

demonstrate.

By the definition of Resequencing, there are two different resequencing possibili-

ties: either the first p CLBs are assigned to J(ti) and the last q CLBs to J(ti), or the

first q CLBs to J(t;) and the last p CLBs to f(ti). There are also two possibilities

for the value of J(tn), which may be either f(ti) or J(ti). Note that, if J(tn) = f(t;),
there are at least three chip crossings in the target sequence. This gives rise to four

possibilities. In each case, we assume the minimum number of chip crossings in the

target sequence. If more chip crossings exist, Resequencing produces even further

reduction in the delay of II.

1. First resequencing order, f(tn) = f(ti).
A delay of d(f(ti),f(ti)) is replaced with a delay of delta_local, and a delay

of d(f(ti), f(y)) is replaced with a delay of d(f(ti), f(y)). The delay of II can

increase only if

deltaJocal + d(f(ti), f(y)) > d(f(ti), f(t;)) + d(J(ti), f(y))

The largest possible value of the left hand side is delta_local + delta_global = 53.

The smallest possible value of the right hand side is 2 x delta_neighbor = 60.

Therefore, the delay of II is decreased.

2. First resequencing order, f(tn) = J(ti).

Two delays of d(f(ti), f (ti)) are replaced by two delays of delta_local. Since

d(f(ti),f(t;)) is at least delta_neighbor, the delay of II is decreased.

3. Second resequencing order, f(tn) = f(ti).

91

A delay of d(J(ti),f(ti)) is replaced with a delay of de/ta_local, and a delay of

d(f(x),f(ti)) is replaced with a delay of d(f(x),J(ti)). The delay of IT can

increase only if

deltaJocal + d(J(x), J(ti)) > d(f(ti), J(ti)) + d(f(x), J(ti))

The largest possible value of the left hand side is delta_/ocal + delta_global = 53.

The smallest possible value of the right hand side is 2 x de/ta_neighbor = 60.

Therefore, the delay of II is decreased.

4. Second resequencing order, f(tn) = J(ti).

Two delays of d(f(ti), J(ti)) are replaced with two delays of delta_local. A

delay of d(f(x),f(ti)) is replaced with a delay of d(J(x),J(ti)), and a delay

of d(f(ti), J(y)) is replaced with a delay of d(J(ti), J(y)). The delay of IT can
increase only if

(2 x deltaJocal) + d(J(x), J(ti)) + d(J(ti), J(y)) >

(2 x d(f(ti);J(ti))) + d(J(x),J(ti)) + d(J(ti),f(y))

The largest possible value of the left hand side is (2 x delta_/ocan + (2 x
delta_globa0 = 106. The smallest possible value of the right hand side is 4 x
delta_neighbor = 120. Therefore, the delay of II is decreased.

Experimental Results

We tested our heuristic on all combinational circuits from [Be], except for those that
were partitioned onto a single chip, for which delay would then be optimum. We also

-
excluded circuit c499xc2, which easily partitions onto two chips, and the optimization

92

heuristic could not improve the delay. The statistics of the remaining circuits are

shown in Table 4.4. The circuits are listed in order of size. "LP" refers to the number

of CLBs in the longest path between any PI/PO pair.

The "xc2" circuits have been technology mapped for FPGAs of the Xilinx 2000

series, with chip capacity of 64 CLBs and 58 I/O pins. The "xc3" circuits have been

technology mapped for the Xilinx 3000 series, with chip capacity of 144 CLBs and 96

I/O pins. All of our experiments were performed on a Sun ULTRA-I workstation.

Three different hardware topologies were utilized in these tests, each containing

16 FPGAs: linear array, mesh and ring.

In every case, we begin with a satisfying partitioning of the circuit, as the first

step in the two-step method. Recall that the partitioner of choice may be used for

the first step; in our experiments we used our own partitioner.

There is no known efficient way to determine the optimal delay through a cir-

cuit. so in general we cannot compare the current delay to the optimum. Therefore,

for purposes of comparing the critical path compression strategies, and the overall

effectiveness of the algorithms, we measure percentage improvement in the delay.

Table 4.4: Circuit statistics

Test / CLBs / Pls / POs / Nets / LP /

c2670xc3 150 157 64 361 12

c3540xc3 283 50 22 489 23

c3540xc2 ;373 50 22 567 21

c.5315xc3 377 178 123 699 12

c7.552xc3 489 206 107 921 11

c5315xc2 535 178 123 936 14

c7552xc2 610 206 107 1056 13

c6288xc2 833 32 32 1456 90

c6288xc3 833 32 32 1472 91

93

We begin by analyzing the effectiveness of the uphill move strategy. For each

of the nine circuits, and for each of one hundred partitionings of each circuit, we
tested various values of look_ahead. Because the purpose of this experiment was
to analyze the uphill move strategy only, we fixed all other program parameters.

We chose to activate all five critical path compression strategies and use a linear
array topology. The values of look_ahead used were 1 (which disables uphill moves
completely), 2, 4, 6, 8 and 10. Summaries of these test results appear in Tables 4.5, 4.6

and 4.7.

Each column in each table represents one value of look_ahead. In Table 4.5, each
table entry is the percentage improvement in the delay, averaged over the one hundred
runs. In Table 4.6, each table entry is the best final delay. In Table 4.7, each table

entry is the average CPU time (in seconds) of the entire program, including processing

all input files.

Table 4.5: Hill-climbing experiment: percentage improvement

test ,, look..ahead = I look..ahead = 2 /ook..ahead = 4 /ook..ahead = 6 /ook..ahead = 8 /ook..ahead = 10

c2670xc3 9.43 10.95 13.47 12.35 13.00 12.11

c3540xc3 15.90 21.53 24.98 2,5.64 23.27 23.01

c:3540xc2 13.08 14.38 17.43 16.20 16.73 16.62

c5315xc3 21.48 22.06 24.30 24.14 22.99 23.71

c7552xc3 21.23 21.80 24.57 25.76 25.27 28.18

c5315xc2 16.42 20.09 23.19 23.70 22.80 23.35
c7552xc2 13.05 15.40 17.16 18.61 17.10 18.69
c6288xc2 13.95 17.10 18.15 19.07 18.53 18.72

c6288xc:3 1.5.56 18.53 19.94 19.56 20.05 20.41

94

Table 4.6: Hill-climbing experiment: final delay

test /ook..ahead = I look..ahead = 2 look..ahead = 4 /ook..ahead = 6 look...ahead = 8 /ook..ahead = 10

c2670xc3 ,.,.., 77 77 77 77 ..,..,
I I I I

c3540xc3 126 102 102 102 102 102
c3540xc2 232 232 211 211 211 211
c5315xc3 92 89 89 89 89 89
c7552xc3 128 101 101 101 101 101
c5315xc2 207 177 177 177 177 177
c7552xc2 221 209 204 198 198 198
c6288xc2 676 663 636 636 636 636
c6288xc3 525 525 505 505 491 491

95

Table 4.7: Hill-climbing experiment: CPU time

test look..ahead = 1 look..ahead = 2 look..ahead = 4 look..JJhead = 6 look..ahead = 8 look..JJhead = 10

c2670xc3 0.14 0.16 0.20 0.22 0.26 0.29

c3540xc3 0.27 0.43 0.61 0.69 0.74 0.85

c3540xc2 0.43 0.59 0.84 1.02 1.20 1.37

c5315xc3 0.37 0.42 0.52 0.60 0.68 0.75

c7552xc3 0.55 0.68 0.71 0.97 1.06 1.16

c5315xc2 0.72 1.02 1.39 1.63 1.91 2.09

c7552xc2 0.80 1.06 1.34 1.69 2.13 2.17

c6288xc2 2.05 3.09 4.61 5.98 7.09 8.57

c6288xc3 1.72 2.66 4.00 5.01 5.86 6.63

In our testing, improvement was seldom seen beyond a look-ahead of six. CPU

time increases significantly with larger values of look_ahead. Therefore, a value of 10

for look_ahead seemed more than adequate, and was utilized throughout the remainder

of the testing.

The next set of experiments was performed to compare the results over the three

different topologies (linear array, mesh and ring). Again, one hundred partitionings

of each of the circuits were utilized. In every case, all five critical path compression

strategies were activated. The results are shown in Tables 4.8 and 4.9. Each entry

of Table 4.8 is the average percentage improvement of the one hundred runs. Each

entry of Table 4.9 is the best final delay. CPU times for all topologies are comparable

to those of the last column of Table 4. 7, and are not reported specifically.

96

Table 4.8: Topology comparison: percentage improvement

test II linear array I mesh I ring I
c2670xc3 12.11 13.42 12.43

c3540xc3 23.01 25.46 23.38

c3540xc2 16.62 19.17 15.57

c5315xc3 23.71 26.64 23.65

c7552xc3 28.18 28.86 25.87

c5315xc2 23.35 24.74 22.57

c7552xc2 18.69 20.10 17.80

c6288xc2 18.72 20.20 18.68

c6288xc3 20.41 18.91 19.68

97

Table 4.9: Topology comparison: final delay

test II linear array I mesh I ring I
c2670xc3 77 77 77

c3540xc3 102 102 102

c3540xc2 211 214 228

c5315xc3 89 89 89

c7552xc3 101 101 105

c5315xc2 177 166 186

c7552xc2 198 180 198

c6288xc2 636 600 656

c6288xc3 491 485 491

There does not appear to be any predictable difference in the behavior of the

algorithm under different hardware topologies.

We then ran tests to compare the effectiveness of the different critical path com-

pression strategies. (Recall that look_ahead has been set at 10.) For these tests, we

used a linear array topology. Again, each circuit was run on one hundred different

partitionings, and the results averaged. Each circuit was tested in six different modes:

1) only Elimination I activated; 2) only Elimination II activated; 3) only Substitution

I activated; 4) only Substitution II activated; 5) only Resequencing activated; and

6) all five strategies activated. Tables 4.10, 4.11 and 4.12 show the results of these

experiments. Each entry in Table 4.10 is the average percentage improvement; each

entry in Table 4.11 is the final delay; and each entry in Table 4.12 is the average CPU

time.

98

Table 4.10: Strategy comparison: percentage improvement

test Elim I Elim II Sub,t I Subst II Reoeq ALL

c2670xc3 8.61 0.00 1.92 8.56 0.91 12.11

c3540xc3 20.90 0.48 6.90 2.25 1.16 23.01

c3540xc2 13.98 0.77 4.26 5.62 1.47 16.62

c5315xc3 18.00 5.57 6.13 10.68 1.05 23.71

c7552xc3 21.37 0.80 9.71 10.57 1.47 28.18

c5315xc2 13.12 3.08 5.08 17.20 3.43 23.35

c7552xc2 8.74 1.24 4.47 11.79 2.42 18.69

c6288xc2 10.93 2.89 5.75 16.68 3.65 18.72

c6288xc3 18.30 4.37 6.97 12.65 2.67 20.41

99

Table 4.11: Strategy comparison: final delay

test Elim I Elim II Sub•t I Subst II Reseq ALL

c2670xc3 78 80 80 80 80 77

c3540xc3 102 126 126 126 126 102

c3540xc2 245 289 255 263 275 211

c5315xc3 89 92 92 92 92 89

c7552xc3 101 168 151 148 145 101

c53!5xc2 207 227 234 187 227 177

c7552xc2 227 225 225 224 249 198

c6288xc2 683 757 769 673 723 636

c6288xc3 525 599 573 565 573 491

100

Table 4.12: Strategy comparison: CPU time

test Elim I Elim II Subst I S ubst II Reseq ALL

c2670xc3 0.16 0.13 0.19 0.14 0.11 0.29

c3540xc3 0.36 0.20 0.36 0.18 0.17 0.85

c3540xc2 0.31 0.27 0.68 0.42 0.20 1.37

c5315xc3 0.33 0.29 0.52 0.33 0.27 0.75

c7552xc3 0.48 0.41 0.76 0.48 0.39 1.16

c5315xc2 0.50 0.48 1.07 0.78 0.40 2.09

c7552xc2 0.52 0.48 1.22 0.82 0.47 2.17

c6288xc2 1.04 0.82 4.00 1.80 0.90 8.57

c6288xc3 1.68 0.86 3.04 1.40 0.93 6.63

From these experiments, it seems evident that, although all of the strategies pro-

duce results, the most successful ones are Elimination I and Substitution II. Substi-

tution I appears to take the most CPU time, relative to percentage improvement.

In Section 4.2.4, we discussed a topological sort technique for finding the longest

weighted path in a DAG. Our heuristic was initially coded using breadth-first search

to find the critical path, and then modified to use the topological sort technique when

it became evident that this was much more efficient. Our final set of experimental

results compares CPU times of using these two methods for computing critical path.

Table 4.13 reports CPU times only. In each case, a value of 10 was used for look_ahead,

a linear array topology was used, and all five critical path compression strategies were

activated. The average CPU time over one hundred runs is reported.

In summary, critical path compression seems to be an effective tool for improving

the delay in a partitioned circuit. Additionally, the algorithmic platform is expand-

able. and can be augmented in the future with new strategy techniques. The running

times seem quite dependent upon the length of the longest PI/PO path, which is

101

Table 4.13: Breadth-first search (BFS) vs. topological sort (TS): CPU time

test II BFS I TS I
c2670xc3 0.40 0.29

c3540xc3 1.18 0.85

c3540xc2 2.22 1.37

c5315xc3 1.00 0.75

c7552xc3 1.30 1.16

c5315xc2 3.57 2.09

c7552xc2 3.49 2.17

c6288xc2 206.43 8.57

c6288xc3 176.97 6.63

what one would expect. The topological sort technique is superior to breadth-first
search for computing critical path. This is especially evident in a computation in
which critical path computation is done frequently on paths of significant length.

102

Chapter 5

Variations of the Fundamental

Problem

In this chapter, we examine some other problems that are related to the fundamental

problem. Most of these problems are of independent interest. Some have already been

studied by other researchers. We discuss them here to present some new findings.

5.1 Hypergraphs

As discussed in Section 3.2.3, circuit designs are often represented by hypergraphs

rather than ordinary graphs. A hypergraph differs from an ordinary graph in that

more than two vertices are allowed in an edge. In such a representation, vertices rep-

resent circuit nodes (for example, CLBs), and edges represent nets that may connect

more than two nodes. As such, hypergraphs are important as a representation tool

in VLSI applications.

We generalize MDGP to hypergraphs as Hypergraph MDGP:

Instance: a hypergraph G, and two integers k and d.

Question: Is there is a partition of V into disjoint sets ½, ... , Vm such that

Vi : Iv; I :S k, and such that if Ei is the set of hyperedges with at least one endpoint

103

in ·Vi and at least one endpoint not in \I;, max1::;i::;mlEil :S d?

If more than one vertex of some hyperedge E is partitioned into set S1 , with at
least one vertex of E partitioned into set S2 , E contributes only 1 to the degrees of
both S1 and S2 . This is a consequence of the fact that we assume the routing is done

internally on the CLB.

Hypergraph MDGP is, of course, NP-complete because it is a generalization of

MDGP.

Because Hypergraph MDGP is no longer defined in terms of ordinary graphs,

none of the WQO-theoretic results discussed here apply directly. There is at least
one known WQO over hypergraphs, however ([GGL]). A hypergraph H is a minor
of another hypergraph G if H arises from G as the result of successive elementary
operations, performed in any order. Elementary operations consist of the deletion of
a node or an edge (subgraph operation), the replacement of an edge by any subset
of itself (generalization of subgraph operation), and the identification of two nodes in

an edge (generalization of contraction). Whether practical use can be made of this
hypergraph WQO is an open question. None of the problems discussed in this work
is closed in the ordinary minor order. Therefore, if practical use can be made of the
hypergraph minor order, it will probably not be with partitioning problems of this
type.

Even though none of the WQO results from Chapter 2 seem to apply to Hyper-
graph MDGP(k,d) (the fixed-parameter version of the problem), some of the non-

WQO results from that chapter do hold.

We now define a path in a hypergraph: a path from vertex v to vertex w consists
of a sequence of hyperedges E1, E2, ... , En, such that v E E 1 , w E En, and Ei n Ei+l -/=
0, \fl :S i :S n - l.

Lemma 5.1 A hypergraph His a "yes" instance of Hypergraph MDGP iff there exists

a solution in which every subset is connected; hence every v is partitioned only with

other vertices in]\Tk_ i(v).

104

Proof See proof of Lemma 2.1. D

We observe that, if G is a "yes" instance of Hypergraph MDGP(k,d), the number

of vertices that are neighbors of v can be unbounded. For example, consider a graph

G with n vertices, and exactly one hyperedge that contains all n vertices. G is a

"yes" instance of Hypergraph MDGP(k,d) for any k, d 2:: 1, although the number of

neighbors of every vertex is unbounded. See Figure 5.1 for a partitioning of such a

graph, with k = d = l (subsets are indicated by dotted lines). Thus, Lemma 2.2 does

not hold for hypergraphs, for any constant.

Using the same definitions of kd-satisfying subset and kd-candidate subset.

Lemma 2.3 holds for hypergraphs, with only slight modification.

Lemma 5.2 Given kd-satisfying subsets Cl and C2, either Cl - C2 or C2 - Cl is

kd-satisfying. 1

Proof Since neither Cl - C2 nor C2 - Cl can have size exceeding k, we need only

consider their respective degrees.

If Cl n C2 = (/J, then we are done. Otherwise, let I= Cl n C2, A= Cl - C2, B =
C2 - Cl, D = V - Cl - C2 (see figure 2.4).

Denote by NAB the number of edges with an endpoint in A and an endpoint

in B. NAD, NA1, NBD, NBr and ND1 have analogous ~eanings. When dealing with
hypergraphs, we must also consider NABC, etc., which denotes the number of edges

with endpoints in A, B, and C.

Figure 5.1: A "yes" instance of Hypergraph MDGP(k,d)
1 Independently proved in [CLCDL].

105

The degree of Cl is NAB+NAD+NB1+ND1+NABD+NAB1+NAD1+NBD1+NABDI,

and the degree of C2 is NAB+NA1+NBD+ND1+NABD+NAB1+NAD1+NBD1+NABDI·

By the definitions above, we have

and

Summing and simplifying yields

Thus either

or

NAB+ NBD+ NBI + NABD +NAB]+ NEDI+ NABDI d.

The former bounds the degree of Cl - C2, the latter the degree of C2 - Cl. D

Lemma 5.3 Given kd-satisfying subsets Ci, C2, ... , Gp, a disjoint set of kd-satisfying
subsets Di, D2 , ... , Dq exists such that Ci U C2 U ... U Cp = Di U D2 U ... U Dq .2

Proof See proof of Lemma 2.4. D

Proposition 5.1 The Hypergraph Locality Condition: G = (V, E) is a "yes"
instance of Hypergraph MDGP(k,d) iff'./v E V,(Cv,G) f. 0.

Proof See proof of Proposition 2.1. D

Theorem 5.1 The search and decision versions of Hypergraph MDGP(k,d) can be
solved in polynomial time.

2Independently claimed in [CLCDL].

106

Proof Because Lemma 2.2 does not hold for Hypergraph MDGP(k,d), we cannot

limit the search for kd-candidate subsets to a bounded neighborhood. However, we

can still determine whether a kd-candidate subset exists for each vertex (hence, by the

Hypergraph Locality Condition whether the graph is a "yes" instance) by examining
all (IVI), 1 :S i :S k, possible subsets. Since k is a constant, this can be done in

I

0(nk) time. If there exists a kd-candidate subset for every vertex, a disjoint set can
be found in polynomial time, by the proof of Lemma 5.3. D

Although this problem is in P, the degree of the polynomial is high. It is not
known whether Hypergraph MDGP(k,d) can be solved in low-order polynomial time.

Recall that the heuristic presented in Chapter 3 accommodates hypergraphs for
the FPGA Minimization problem.

5.2 Partitioning for Heterogeneous Systems

In the MDGP problem, we were given two parameters, k and d, which represent, re-

spectively, the size and pin-count of a type of FPGA chip. In some circuit partitioning

situations, there exists a variety of chip types from which to choose. In this section,
we generalize MDGP to allow for such a system of heterogeneous FPGAs. Rather
than considering a single style of FPGA with k logic blocks and d pins, we consider a
set of x FPGA types, with logic block and pin count constraints k1, d1 ; k2, d2; ... ; kx, dx
([BKK]). We call this problem Heterogeneous MDGP, and formalize it as follows.

Instance: a graph G, and a pair list L containing 2 x x integers:
k1, di i k2, d2; ... ; kx, dx.

Question: Is there is a. partition of V into disjoint sets ½, ... , Vm such that
V\;;,1 :Si :S rn,:lj,1 :S j :S x, such that l½I :S kj, and 6(½) :S dj?

The fixed-parameter version of Heterogeneous MDGP will be referred to as
MDGP(L).

Since Heterogeneous MDGP is a generalization of MDGP, its NP-completeness

107

follows from that of MDGP. However, when all parameters are fixed, we have the

following.

Theorem 5.2 MDGP(L) can be decided in polynomial time.

Proof We observe that MDGP(L) is immersion closed. Given a satisfying partition,

neither the subgraph operation nor edge lifting invalidates that partition. D

Although Heterogeneous MDGP is very similar to MDGP, it is not possible in

general to convert an instance of MDGP(L) to an instance of MDGP(k,d).

Consider MDGP(L), with L consisting of two pairs: k1 = 2, d1 = 1, k2 = 1 and

d2 = 2. We will refer to this specific instance of MDGP(L) as MDGP(2,1; 1,2). The

graph G in Figure 5.2 is an obstruction. If MDGP(2,1; 1,2) = MDGP(k,d) for some

k and d, then G is also an obstruction for MDGP(k,d). G is a "yes" instance for any

k 2: 3, so if it's an obstruction, it must be the case that k = 1 or k = 2. Suppose

k = 1. Then G is a "yes" for any d 2: 3, so it must be the case that d = 1 or d = 2.

On the other hand, if k = 2, then G is a "yes" for any d 2: 2, so it must be the case

that d = 1. So we have three possibilities:

Figure 5.2: MDGP(2,l; 1,2) =J MDGP(k,d)

108

d.

1. MDGP(2,l; 1,2) = MDGP(l,l). The subgraph G1,1 of Figure 5.2 is a "no"

instance; therefore G is not an obstruction.

2. MDGP(2,l; 1,2) = MDGP(l,2). The subgraph G1,2 of Figure 5.2 is a '·no''

instance; therefore G is not an obstruction.

3. MDGP(2,l; 1,2) = MDGP(2,l). The subgraph G2,1 of Figure 5.2 is a "no"

instance; therefore G is not an obstruction.

Therefore, MDGP(2,l; 1,2) is not the same as MDGP(k,d) for any values of k and

It is also possible to find "yes" instances of MDGP(L) that are "no" instances of

MDGP(ki, di), Vl ::; i ::; x. For example, consider the graph of Figure 5.3 which is a

"yes" instance of MDGP(2,1; 1,2) but is a "no" for both MDGP(2,l) and MDGP(l,2).

We find that almost all of the known results for MDGP(k,d) hold for MDGP(L),

with only slight modification.

Definition 5 .1 Let tmax = max(ki + di), 1 ::; i ::; x.

Observation 5.1 A star graph with tmax rays is an obstruction to MDGP(L); there-

fore, no obstruction to MDGP(L) contains a vertex with more than tmax neighbors.

Figure 5.3: A "yes" instance of MDGP(2,l; 1,2)

109

Similarly, no "yes'' instance of MDGP(L) contains a vertex with more than tmax

neighbors; hence the "yes" family has bounded degree.

Similar to the lemmas and definitions we had for MDGP(k,d), we have the fol-

lowing:

Lemma 5.4 G is a "yes" instance of MDGP(L) iff there exists a solution in which

every subset is connected; hence every v is partitioned only with other vertices in

Nk,-1(v), for some 1 i x.

Definition 5.2 Given tmax, let c; denote the value 1 + Lf=1(tmax)(tmax - l)i-l_

Lemma 5.5 If G is an obstruction to MDGP(L), then Vv E V, Vp > 0, INP(v)I c;.

Definition 5.3 A ''kidi-satisfying subset" is a subset of size no more than ki and

degree no more than di, for some 1 i x.

Definition 5.4 A ''kidi-candidate subset" zs a connected kidi-satisfying subset.

Given x, k1, d1; ... ; kx, dx and a vertex v, let C~ denote the set of all kidi-candidate
subsets containing v.

Lemma 5.6 Given kmdm-satisfying subset Cl, and kndn-satisfying subset C2, either

Cl - C2 is a kmdm -satisfying subset or C2 - Cl is a kndn -satisfying subset.

Proof Since Cl - C2 cannot have size exceeding km, and C2 - Cl cannot have size

exceeding kn, we need only consider their respective degrees.

If Cl n C2 = 0, then we are done. Otherwise, let I= Cl n C2, A= Cl - C2, B =
C2 - Cl, D = V - Cl - C2 (see Figure 2.4).

Denote by NAB the number of edges with an endpoint in A and an endpoint in

B. NAD, NA!, NBD, NBI and NDI have analogous meanings. The degree of Cl 1s

NAD +NAB+ NDI + NBI, and the degree of C2 is NAB+ NBD+ NAI + NDI·
By the definitions above, we have

110

and

Summing yields

so

Thus either

or

NAB+ NB[+ NBD::::; dn.

The former bounds the degree of Cl - C2, the latter the degree of C2 - Cl.

Lemma 5. 7 Given k;d;-satisfying subsets C1, C2, ... , Gp, a disjoint set of k;di-

satisfying subsets D 1, D2, ... , Dq exists such that C1 U C2 U ... U Cp = D1 U D2 U ... U Dq.

Proof See the proof of Lemma 2.4.

Proposition 5.2 Heterogeneous Locality Condition G zs a "yes" instance of

MDGP(L) iff Vv E V, C~ =f-0.

Proof See the proof of Proposition 2.1.

In a straightforward manner, other results from MDGP(k,d) follow:

Theorem 5.3 The search version of MDGP(L) can be solved in O(np(n)) time,

whe1·e p(n) denotes the time required to solve the decision version of the problem.

Theorem 5.4 The decision and search versions of MDGP(L) can be solved in linear

time.

Theorem 5.5 The obstruction set to MDGP(L) is computable.

111

The proofs are all analogous to those for MDGP(k,d).

The complexity of Heterogeneous MDGP restricted to simple trees (hence, simple

forests) can also be addressed in a manner similar to that for MDGP.

Lemma 5.8 For any simple tree T, and any i, l i x, and v E V(T) with

c> (v) > di, any kidi -candidate subset C including v includes at least O (v) - di entire

subtrees of v. Additionally, if any set of at least o(v) - di entire subtrees of v is of

size less than ki. these subtrees, along with v, form a kidi-candidate subset.

Proof See the proof of Lemma 2.8. D

Theorem 5.6 Heterogeneous MDGP, restricted to simple trees, is in P.

Proof Given a simple tree T, first check whether any vertex has degree tmax or more.
If so, T is a "no" instance, because it contains an obstruction.

Otherwise, for each v E T, do the following. If the degree of v is no more than

di, for some 1 i x, then {v} is a kidi-candidate subset for v. If the degree of vis
more than di, \fl i x, then we perform the following steps:

1. Compute the size of each subtree of v. This takes O(n) time.

2. Sort the sizes of the subtrees of v. This takes O(n log n) time.

3. Mark v.

4. For each i, 1 i x, if the total size of the smallest o(v) - di subtrees of vis
less than ki, then unmark v. For each i, this takes O(n) time, hence the overall
step takes 0(n 2) time.

5. If vis unmarked, then v has a kidi-candidate subset, by Lemma 5.8. Otherwise,
by Lemma 5.8, v has no k;di-candidate subset.

112

By the Heterogeneous Locality Condition, if any vertex has no kidi-candidate

subset, then T is a "no" instance, otherwise it is a "yes" instance.

The complexity of the algorithm as a whole, then, is O(n3).

Because each tree in a simple forest can be handled independently, Theorem 5.6

generalizes to simple forests.

5.3 Labelled Graphs

It may be possible that there exists a set of special components in a circuit that must

be mapped onto FPGAs in such a way that no more than one of the special nodes is
present in a single FPGA. We model this situation as a graph that contains special
nodes designated as terminals. The immersion order on such graphs is known to
be well-quasi-ordered ([RS3]). We define a terminal partition of G as a partition in

which each subset contains at most one terminal from G. Labelled MDGP can then

be formulated as follows.

Instance: a graph G, in which some of the vertices are terminals; two integers k
and d.

Question: Is there is a terminal partition of V into disjoint sets Vi, . .. , Vm such
that Vi : I Vi I k, and such that if Ei is the set of edges with exactly one endpoint in

Vi, maxl:Si:SmlEil d?

This problem is a generalization of MDGP, hence is NP-complete. Fixed-
parameter Labelled MDGP (Labelled MDGP(k,d)) is immersion closed, and is
amenable to other MDGP techniques in a fairly straightforward manner. The prob-
lems are not interchangeable, however. An instance of Labelled MDGP(k,d) cannot
always be cast as an instance of MDGP(k,d). A simple example is a graph consisting
of only two vertices, both of which are labelled, connected by d + I edges. Such a
graph is an obstruction to Labelled MDGP(k,d) for any k > 0. Specifically, it is an

obstruction to Labelled MDGP(2,d). The only MDGP family for which this graph

113

is an obstruction is MDGP(l,d). Therefore, it would have to be the case that La-

belled MDGP(2,d) is the same as MDGP(l,d), which is untrue. A graph consisting

of two unlabelled vertices connected by d + l edges is a "yes" instance of Labelled

MDGP(2,d), but a "no" instance of MDGP(l,d).

A generalization of the labelled version of MDGP is the colored version, in which a

subset of the vertices is colored from a finite set oft colors, and a satisfying partitioning

requires all vertices of each color to be in the same subset. On closer inspection, we

observe that the colored version and the labelled version are equivalent. The labelled

version is a special case of the colored version, in which there is exactly one vertex

of each color. The colored version can be solved using any algorithm for the labelled

version by connecting all vertices of the same color with d + l edges, labelling exactly

one vertex of each color, and then removing colors.

Sometimes in a graphical representation of a circuit, the set of nodes is separated

into two disjoint sets, Vx and V~, where Vx denotes the set of interior nodes and Vy

denotes the set of boundary nodes ([BKK]). This reflects the function performed by a

specific node, and the fact that a given FPGA has distinct interior logic blocks and

exterior I/0 pins. We can easily state this problem in terms of a graph, however,

it does not seem possible to model it in a way to obtain immersion closure. The

difficulty is that the lifting operation can either increase or decrease the number of

boundary vertices in a subset.

5 .4 Balanced Partitioning

Another occasional goal in circuit partitioning is to obtain a solution in which the

subset sizes are balanced; i.e. no two subsets differ in size by more than some constant

c. The problem we define here, Balanced MDGP, is identical to MDGP, except that

we insist that the sizes of any two subsets in the partition be within c of each other.

Instance: a graph G = (V, E), and three integers k, d and c.

114

Question: Is there is a partition of V into disjoint sets Vi, . .. , Vm such that

Vi : I¼ I :S k, such that Vi, j : II¼ I - I Vi II :S c, and such that if Ei is the set of edges

with exactly one endpoint in ¼, max19$mlEil :S d?

This problem is a generalization of MDGP, hence it is NP-complete. What is

interesting is what happens when all three integer parameters are constants. We refer
to this version of the problem as MDGP(k,d,c). The complexity of the problem then
depends on the value of the constant c.

If c 2: k - l, then MDGP(k,d,c) is identical to MDGP(k,d) and is in P. However,

if c = 0, we have the following result:

Theorem 5.7 For any fixed k and d, MDGP(k,d,O) is NP-complete.

Proof Let .M be an arbitrary instance of p-way MDGP(k,d), consisting of a graph
G and an integer p. The constants k and d are the same for both problems. We

could then decide whether M is a "yes" instance by solving the following instance
of MDGP(k,d,O). We form the graph instance of MDGP(k,d,O), G', by augmenting
Gas follows. We add (pk) - IV(G)I isolated vertices. We also add one component
consisting of a k-path, with each edge having multiplicity d + 1. Figure 5.4(a) shows
an instance of p-way MDGP(k,d) (k = 3, d = 2, p = 3), and Figure 5.4(b) shows the
corresponding instance of MDGP(3,2,0).

If G is a "yes" instance of p-way MDGP(k,d), then G' is a "yes" instance of

MDGP(k,d,O). G can be partitioned into p subsets, each of size no more thank and

degree no more than d. The vertices of G' that correspond to those of G can be
partitioned in the same way. The (pk) - IV(G)I isolated vertices can be distributed
among the p subsets so that each subset is of size k. The d + I-edge-connected k-
component of G' is self-contained in a single subset. Thus, G' can be partitioned into
p + l subsets of identical size.

115

0--0..::::::=::::::~--o..::::::=::::::~--o

(a)

0--0..:::::::::::::~--o..::::::=::::::~--o

(b)

Figure 5.4: Instances of p-way MDGP(k,d) and MDGP(k,d,O)

Figures 5.5(a) and (b) show the partitionings of the instances depicted in Fig-

ures 5.4(a) and (b).

Conversely, suppose G is a "no" instance of p-way MDGP(k,d). It is either the

case that every partitioning violates either k or d, or that G can be partitioned to
satisfy k and d, but the number of subsets always exceeds p. In the first case, G' would

also not be partitionable. In the second case, any partitioning of G' would consist
of one subset of size k containing the d + I-edge-connected k-component, along with

more than pother subsets. Since the total number of vertices in G' is pk+ k, at least

one of the subsets is of size less than k, and a perfect balance is not achieved. D

The cases of c = 0 and c = k - 1 are, of course, the easiest and least interesting.
We have not addressed the complexity of the problem when confined to connected
instances, nor have we considered Balanced FPGA Minimization. The complexity of
MDGP(k,d,c) for O < c < k - 1 remains an open question.

116

(a)

(h)

Figure 5.5: Partitioning the graphs of Figures 5.4(a)

117

Chapter 6

Future Directions and Conclusion

In this chapter, we present some research results that may have future application

potential, as well as some open problems.

6.1 Theoretical Directions

6.1.1 Closure-Preserving Operators

The topic of this section has been previously studied by [BFL]. Many of these results

were independently discovered, although to the best of our knowledge have not been

published, with one exception which will be pointed out later.

We define sixteen families of graphs, each of which in turn is defined in terms

of an arbitrary minor-closed (or immersion-closed) family of graphs. We examine

the properties of the resulting families, and consider the question of whether minor
closure (or immersion closure) is preserved.

As an example application, consider the question of planarity. The family of

planar graphs is closed under the minor order (but not the immersion order). A

graph may be said to be "almost planar" if there exists a way to remove a small fixed

number of vertices to produce a planar graph. Knowing that the family of planar

graphs is minor closed, can we assume that the family of "almost planar" graphs is

118

minor closed?

A general way to state the question we consider is as follows. Given a graph

G that is not necessarily a member of some family F, where F is minor closed (or

immersion closed), do there exist some k vertices (or edges) that can be added to (or

taken away from) G to form G' E F? These alternatives (minor vs. immersion order,

vertices vs. edges, added vs. taken away) produce eight families.

To obtain eight more families, we rephrase the question as follows. Given a graph

G that is not necessarily a member of some family F, where F is minor closed (or

immersion closed), is it the case that for every set of k vertices (or edges) added to

(or taken away from) G forms G' E F?

We use a shorthand notation of abcde to denote each family, in which

• a is either "M" (Fis minor closed) or "I" (Fis immersion closed),

• b is either ":3" (some set of vertices or edges) or "V" (all sets of vertices or

edges),

• c is either "+" (adding vertices or edges) or "-" (removing vertices or edges),

• d is a constant denoting the number of vertices (or edges) to be added (or

removed), and

• e is either "v" (vertices) or ,:e" (edges).

In [BFL], M:3-kv was examined, and shown to be minor closed. Given a minor-
closed family F of graphs, G is in M:3-kv if there exists a way to remove k vertices

from G, forming G' such that G' is in F. Returning to our example application above,
we conclude that the family of "almost planar" graphs is minor closed.

We now examine all sixteen graph families in detail.

l. Fk = M:l+kv: G = (ViJ, Ee) E M:l+kv if there exists a set S of vertices,

Sn Ve = 0, ISi = k, such that G' = (Ve US, Ee) E F.

119

Theorem 6.1 M:l+kv is minor closed, and M:l+kv F.

Observation 6.1 We note that for any G E Fk, it is already the case that G

is in F, because G is a subgraph of G'.

Proof Noting that S is a set of disjoint vertices, it is easy to see that for

any minor H = (VH, EH) of G = (Va, Ea), H' = (VH US, EH) is a minor of
G' = (Va US, Ea). Therefore, H' E F, HE Mv:l+kv, and M:l+kv is minor
closed. D

Because adding isolated vertices does not seem to destroy any inherent structure

in a family of graphs, it is tempting to conjecture that M:l+kv=F. However,

consider F defined by graphs G such that either 1) G has 5 or fewer vertices, or 2)
G has a vertex cover (a set of vertices that includes at least one endpoint of each

edge) of size 1 or less. (The second property has been added to make F infinite,
which is not necessary to disprove equivalence, but shows that inequivalence
applies to both finite and infinite families.) Fis minor closed. If G is any graph

with 5 vertices that does not have a vertex cover of 1 or less, G E F, but G ft.
M:l+kv for any positive value of k.

2. Fk = MVM+kv: G = (11a, Ea) E MV+kv if for every set S of vertices,

/S/ = k, G' = (Va u S,Ea) E F.

Theorem 6.2 M'i+kv is minor closed, and M'i+kv F.

Proof This family is observed to be identical to M:l+kv. If G' = (Va US, Ea) E
F for some set S of size k, then certainly G' E F for all sets S of size k, since
S is a set of disjoint

3. Fk = M:l-kv: G = (11a, Ee) E M:l-kv if there exists a set S of vertices,

S 1''a, /SI= k, such that G' = (Va - S, Ea) E F.

120

Theorem 6.3 (BFL) M3-kv is minor closed, and F M3-kv.

Observation 6.2 Every graph in F is also in Fk, because F is closed under

subgraphs.

4. Fk = MV-kv: G = (Ve, Ee) E MV-kv if for all sets S of vertices, S Ve, ISi =

k, G' = ("Vi; - S, Ee) E F.

Theorem 6.4 MV-kv is minor closed, and F MV-kv.

We restrict our attention only to graphs for which IVel 2:: k.

Proof Consider any H = (VH,EH) ~MG= (Ve,Ee), such that H has at

least k vertices. If H was obtained by removing a vertex or an edge from G,

then for S any set of k vertices in H, H' = (VH - S, EH) is a subgraph of

G' = (Ve - S,Ee). Therefore, by the minor closure of F, H' E F, and HE

MV-kv.

Now suppose H was obtained by contracting edge (u, v) in G (removing u), and

let S be any set of k vertices in H. If v rJ_ S, then H' = (VH - S, EH) ~M G' =

(Vi; - S, Ee). If v ES, then H' = (VH - S, EH)= (Ve - S- u, Ee), which is a

subgraph of (Ve - S. Ee) E F.

Observation 6.2 applies to this family. D

Observation 6.3 There is only a finite number of graphs in Fk that do not

belong to F.

Consider some G E Fk, but not in F. Then G contains some obstruction 0.

But we must be able to remove any set of k vertices (edges) to get G' in the

closed family. Therefore, no matter how we remove the vertices (edges), we

need to capture 0. Thus all graphs in Fk that are not in Fare of size bounded

by the members of F's obstruction set.

121

For any Fk to which this observation applies, there exists a low-order polynomial

time recognition algorithm, even if Fk is not minor (immersion) closed.

5. Fk = M:l+ke: G = (Va, Ea) E M:l+ke if there exists a set EK, EK n Ea =
0, IEnl = k, such that G' = (Va, Ea U En) E F.

Theorem 6.5 M:l+ke is not minor closed, and M:l+ke F.

Proof Let F be the (minor-closed) family of graphs that have no cycles, and let

k = 1. The graph G1 illustrated in Figure 6.l(a) is in F, and is also in M:l+ke

because there exists a way to add an edge to this graph, with the resulting graph

still in F. However, consider the graph H1 of Figure 6.1 (b) that is a minor of

G1 . There is no way to add an edge to this graph and still remain in F.

Observation 6.1 applies to this family.

0

(a) G 1 (b) H 1

Figure 6.1: Graphs G1 and H1

122

6. Fk = MV+ke: G = (Va, Ea) E MV+ke if for every set EK, EK n Ea

0, IEKI = k, G' = (Va, Ea U EK) E F.

Theorem 6.6 MV+ke is minor closed, and MV+ke F.

Proof Consider H = (Ve - v, Ea), and let EK be any set of k edges that can be

added to H. Then H' = (Va -v, Ea U EK) is a subgraph of G' = (Va, Ea U EK),

G' E F, so by the minor closure of F, H' E F, and HE M:l+ke.

Consider H = (Va, Ea - (x, y)), and let EK be any set of k edges that can be

added to H. If (x, y) ft EK, then H' = (Va, Ea U EK - (x, y)) is a subgraph of

G' = (Va,EaUEK), If(x,y) EEK, then H' = (Va,EaUEK-d, where EK-I is

of size k-l. Since (Ve, EaUEK) E F for any EK of size k, C\lc, EaUEK-d E F.

If H = (VH, EH) was formed by contracting edge (u, v) in G (removing u), then,

for any set EK of k edges, H' = (VH, EHUEK) is a minor of G' = (Ve, EaUEK),

H' E F, and H E MV+ke.

Observation 6.1 applies to this family. D

7. Fi. = M:1-ke: G = (Ve, Ee) E M:1-ke if there exists a set E1,. of edges, EK

Ea, IE1 .. I = k, such that G' = C\lc, Ea - EK) E F.

Theorem 6. 7 M:l-ke is not minor closed, and F M:1-ke.

Proof Let F be the family of graphs all of whose vertices are of degree 0, 1,

or 2. F is minor closed. Consider k = l. The graph G2 in Figure 6.2(a) is

in M:l-ke, because removal of the middle edge yields a graph in F. However.

graph H2 shown in Figure 6.2(b), which is a minor of G2 , is not in M:1-ke.

Observation 6.2 applies to this family. D

8. Fk = MV-ke: G = (Va, Ea) E MV-ke if for all sets EK of edges, EK Ea,

G' = (Ve, Ee - E1\·) E F.

123

(a) G
2 (b) H 2

Figure 6.2: Graphs G2 and H2

Theorem 6.8 M\f-ke is minor closed, and F M\f-ke .

Proof For H = (Va-v, Ea), H' = (Va-v, Ea-EK) for any set EK of k edges,

is a subgraph of G' = ("Vi:;, Ee - EK) E F. Thus H' E F. The same reasoning
shows that H = (Va, Ea - (x, y)) E M\1'-ke.

If H = (VH, EH) was formed by contracting edge (u, v) (eliminating u) in G,

then consider H' = (VH, EH - EK) for any set EK of k edges. H' is a minor of

G' = (Va, Ea - Et), where E'K contains all the edges of EK, except edges of
the form (v, x) where (v, x) is not an edge of G are replaced with (u, x).

Observation 6.2 applies to this family. D

Observation 6.3 applies to this family.

9. Fk = El+kv: G = CVi:;, Ee) E El+kv if there exists a set S of vertices,
S' n lie= 0. /S/ = k, such that G' = (Va u S, Ea) E F.

Theorem 6.9 El+kv is immersion closed, and El+kv F.

Proof Noting that S is a set of disjoint vertices, observe that for any immersed

H = (h1,EH) of G = (Va.Ea), H' = (VH U S,EH) is immersed in G' =
(Vi:;US',Ea). Therefore, H' E F, HE El+kv, and El+kv is immersion closed.

124

Observation 6.1 applies to this family. As in M3+kv, we might conjecture that

B+kv=F. However, consider F defined by graphs G such that either 1) G has

5 or fewer vertices, or 2) G is cycle free. F is immersion closed. In any graph

with 5 vertices that contains a cycle, GE F, but G (f_ M3+kv for any positive

value of k.

10. Fk = I'v'+kv: G = (Ve, Ee) E IV+kv if for every set S of vertices, ISi = k,

G' = (Ve US, Ee) E F.

Theorem 6.10 IV+kv is immersion closed, and IV+kv F.

Proof This family is seen to be identical to B+kv. If G' = (Ve U S, Ee) E F

for some set S of size k. then certainly G' E F for all sets S of size k, since S

is a set of disjoint vertices.

11. Fk = B-kv: G = (Vi:;, Ee) E El-kv if there exists a set S of vertices, S

Ve, ISi = k, such that G' = (Ve - S, Ee) E F.

Theorem 6.11 B-kv is not immersion closed, and F B-kv.

Proof Consider the family F of graphs that have no edges, which is observed to

be closed under immersion, and let k = 1. The graph G3 shown in Figure 6.3(a)

is in B-kv, because removal of the middle vertex yields a graph in F. However,

for the immersed H3 of G3 shown in Figure 6.3(6), there is no way to remove a

single vertex to obtain a graph in F.

Observation 6.2 applies to this family.

12. A =IV-kv: G = (Vi;. Ee) EIV-kv if for all sets S of vertices, S Ve, ISi = k,

G' = (\-c -S,Ec) E F.

Theorem 6.12 IV-kv is not immersion closed, and F IV-kv.

125

(a) G
3

(b) H
3

Figure 6.3: Graphs G3 and H3

Proof Consider the family F of graphs that have no cycles, which is observed

to be closed under immersion, and let k = 1.

The graph G4 shown in Figure 6.4(a) is in I\f-kv, because removal of any vertex

yields a graph in F. However, for the immersed H4 of G4 shown in Figure 6.4(6),

removal of the isolated vertex does not yield a graph in F.

Observation 6.2 applies to this family. D

Observation 6.3 applies to this family.

13. F1r =El+ke: G = (Va, Ea) E B+ke if there exists a set EK, EK n Ea

0, IEKI = k, such that G' = (Va, Ea U EK) E F.

Theorem 6.13 B+ke is not immersion closed, and B+ke F.

Proof Let F be the family of cycle-free graphs, which is immersion closed,

and let k = 1. There exists a way to add an edge to the graph G of Fig-

ure 6.l(a), with the resulting graph still in F. However, for the immersed Hof

Figure 6.1(6), there is no way to add an edge without introducing a cycle.

Observation 6.1 applies to this family.

14. F1; = IV+ke: G = (Vi:;, Ea) E IV+ke if for every set EK, EKnEa = 0, IEKI = k,

G' = (vc, Ea U EK) E F.

126

(a) G
4 (b) H

4

Figure 6.4: Graphs G4 and H4

Theorem 6.14 IV+ke is immersion closed, and IV+ke F.

Proof Consider H = (Va -v, Ea), and let EK be any set of k edges that can be

added to H. Then H' = CVi:;-v,EaUEK) is a subgraph of G' = (Va,EaUEK),

G' E F, so by the immersion closure of F, H' E F, and H E B+ke.

Consider H = (Va, Ea - (x, y)), and let EK be any set of k edges that can be

added to H. If (x,y) (/_ EK, then H' = (Va,Ea U EK -(x,y)) is a subgraph of

G' = (Va,EaUEK). If(x,y) EEK, then H' = (Va,EaUEK_i), where EK-I is

of size k-1. Since (Va, EaUE1,;) E F for any EK of size k, (Va, EaUEK-d E F.

If H was formed by lifting (u,v),(v,w) (adding (u,w)), consider EK any set of

k edges that can be added to H to form H'. If E1,; n {(u, v), (v, w)} = (/J then

H' is immersed in G' = (Vi:;,Ea U EK)- If either or both of (u,v),(v,w) EEK,

then H' is a subgraph of G' = (Va, Ea U EK U (u, w)), which is in F because

the set of added (unredundant) edges is of size :S k.

Observation 6.1 applies to this family.

15. A = El-ke: G = (Vi;, Ea) E El-ke if there exists a set EK of edges, EK

Ea, IE1\· I = k, such that G' = (Vo, Ea - EK) E F.

Theorem 6.15 El-ke is immersion closed, and F B-ke.

127

Proof Let EK denote the set of k edges whose removal from G yields a G' =
(Va, Ea - EK) E F. If H is a subgraph of G, then it is easy to see that

H' = (VH, EH - (EK n EH)) is a subgraph of G'.

Suppose H was formed by lifting (u, v), (v, w) (adding (u, w)). If EK n
{(u, v), (v, w)} = 0 then H' = (VH, EH - EK) is immersed in G'. Otherwise, a

set of edges of size k (or less) can be removed from H by removing EK, which

contains at least one non-existent edge from H, as well as (u, w). The resulting

graph is a subgraph of G'.

Observation 6.2 applies to this family.

16. Fk = IV-ke: G = (Va, Ea) E IV-ke if for all sets EK of edges, EK C Ea,

G' = (Va, Ea - EK) E F.

Theorem 6.16 IV-ke is immersion closed) and F IV-ke.

Proof If H = (Ve-v, Ee), then H' = (Va-v, Ee-EK), where EK is any set of

k edges from H, is a subgraph of G' = (Va, Ea - EK). If H = (Va, Ea - (x, y))

then H' = (Va, Ee - (x, y) - EK) is a subgraph of G' = (Va, Ea - EK).

Suppose H was formed by lifting (u, v), (v, w) (adding (u, w)), and consider

any set E1.; of k edges in H. If (u, w) E EK, then H' is a subgraph of G' =
(Ve,Ee- (EK -{(u,w)} U {(u,v)})), which is in F. If (u,w) <t EK, then H'

is immersed in G' = (Ve, Ee - EK).

Observation 6.2 applies to this family.

Observation 6.3 applies to this family.

The theorems presented in this section guarantee only the existence of polynomial-

time decision algorithms for the closed families of graphs. In practice, of course, what

is usually required is not only a yes answer, but proof in the form of a specific solution.

128

For nine of the families that are closed under their corresponding orders, a solution

can be easily and quickly constructed. They are the families for which a solution may

be constructed by choosing any k vertices or edges to be added or taken away. These

families are: M:l+kv, MV+kv, MV-kv, MV+ke, MV-ke, B+kv, IV+kv, IV+ke,

and IV-ke.

The other two closed families, M:3-kv and B-ke, appear to be the only two of

the sixteen that are of theoretical and potential practical interest. For both of these

families, a solution can be constructed via self-reduction.

In [BFL] a self-reduction algorithm is presented to show that a solution to M:3-

kv, in the form of the construction of S, can be obtained in O(IVl 4) time. We note

that a somewhat simpler self-reduction can be performed, yielding the same time

bound, by employing "related" oracles for M:3-nv, where n takes on the successive

values k, k - 1, ... , 0. The same approach yields a search algorithm for B-ke. In

[FL4], a general 0(n log n) self-reduction technique called scaffolding is introduced.

Scaffolding also uses related oracles, but is primarily applicable to layout permutation

problems.

Table 6.1 summarizes closure-preserving operator results.

6.1.2 Other Circuit Partitioning Problems

In addition to practical generalizations of the MDGP problem, there exist other com-

binatorial problems of relevance to FPGA partitioning. See [Go] for a sampling of

such problems, along with many open questions. In this subsection, we describe some

new results for one of these, Minimum Degree Cut, which is defined as follows.

Instance: a graph G = (V, E), some of whose vertices are terminals, and an

integer d.

Question: Does G have a terminal partition in which each subset has degree d
or less?

Recall that a terminal partition of G is a partition in which each subset contains

129

Table 6.1: Summary of closure-preserving operators

F1. Closure Notes

1. M:3+kv yes Fk <; F

2. MV+kv yes Fk <; F

3. M:3-kv yes Fk 2 F

4. MV-kv yes F -:> F* k_

5. M:3+ke no Fk <; F

6. MV+ke yes Fk <; F

7. M:3-ke no Fk 2 F

8. MV-ke yes F -:> F* k_

9. B+kv yes Fk <; F

10. IV+kv yes Fk <; F

11. B-kv no Fk 2 F

12. IV-kv no F -:> F* k_

13. B+ke no Fk <; F

14. IV+ke yes Fk <; F

15. B-ke yes Fk 2 F

16. IV-ke yes F => F* k_

* Only finite number of graphs E Fi., (/:. F

130

at most one terminal from G.

This problem has polynomial-time complexity ([Go]), which makes the fact of

its immersion closure less interesting. No practical algorithm is known, however.

We present some results about the obstruction set of the fixed-parameter version of

Minimum Degree Cut (MDC(d)). It is unlikely that an obstruction-based algorithm

will be practical for this problem. Nevertheless, knowledge gleaned from the study of

these sets may still be useful. This was the case with MDGP(k,d), in which study of

the obstruction set paved the way to linear-time search and decision algorithms.

Observation 6.4 Every obstruction to MDC(d) contains at least 2 terminal vertices.

Observation 6.5 No obstruction to MDC(d) contains an edge with multiplicity ex-

ceeding d + l.

Observation 6.6 A graph consisting of a single non-terminal vertex, with three ter-

minal neighbors, is an obstruction for MDC(l).

Lemma 6.1 No obstruction to MDC(d) contains a non-terminal vertex with fewer

than three neighbors.

Proof First observe that there can be no obstruction with an isolated nonterminal.

Denote by H some obstruction to MDC(d). Suppose some non-terminal v E VH

has exactly one neighbor, w. H' = H - { v} has a terminal partition P in which w

belongs to some subset S. But adding v to S in P yields a terminal partition of H.
Suppose some non-terminal v E VH has only two neighbors, u and w. H' obtained

by replacing { u, v }, { v, w} with { u, w} has a terminal partition P.

If u and w are in the same subset S of P, we can obtain a terminal partition of

H by adding v to S. So we must have u E S1,w E S'2 for S1,S 2 of P. But then

P - S1 U (S'1 U v) is a terminal partition of H.

Observation 6. 7 Any connected graph consisting only of terminal vertices is a ''no"

instance of MDC(d) if any of the terminals is of degree greater than d.

131

Definition 6.1 A d-star terminal graph Sd is defined as follows:

1. There is one terminal vertex v of degree d + I.

2. Every neighbor of v is a terminal, with no other neighbors.

3. sd is connected.

Lemma 6.2 Any d-star terminal graph Sd is an obstruction to MDC(d).

Proof By Observation 6.7, Sd is a "no" instance of MDC(d). We only need to show

that Sd is minimal. We note that the only situation in which a vertex other than

v could have degree more than d is that in which the graph consists of only two

terminals connected by d + I edges. Any immersion operation, then, results in all

terminals having degree less than d, and the resulting graph is a "yes" instance of

MDC(d). D

Figure 6.5 shows the set of Sd obstructions for MDC(4). Note that all vertices in

Figure 6.5 are assumed to be terminals.

Figure 6.5: Some obstructions to MDC(4)

132

Theorem 6.17 The size of the obstruction set to MDC(d) is at least exponential in
yd,

Proof The proof hinges on counting the number of Sd obstructions. Such graphs

can be put into correspondence with sets of positive integers totalling d + l, and the

number of these is exponential in vd ([Ro]). D

6.1.3 Faster Immersion Testing

We have seen that WQO theory provides a powerful tool for proving polynomial-

time decidability. In the case of the minor order, every immersion-closed family F
automatically has an asymptotically fast algorithm (O(n3) at worst). In the case of

the immersion order, the best we can guarantee is 0(n h+ 3), where h is the order of

the largest member of the obstruction set for F.
These complexity orders are a consequence of the time required to decide whether

a fixed graph His a minor of (immersed in) a given graph G. Should an algorithm be

found that could perform immersion testing faster, this would translate into a faster

known algorithm for all immersion-closed families.

At this time, it is unknown whether or not there exists a O(nk) (k any fixed

constant) algorithm for deciding immersion containment, in which k does not depend

upon the obstruction set for F.

6.1.4 Other Issues

In Chapters 2, 3, and 4, we investigated the complexity of MDGP, FPGA Mini-

mization. and Delay Minimization, when restricted to certain graph families. These

results for MDGP and FPGA :Minimization were summarized in Table 3.1. The com-

plexity of Delay Minimization, under these restrictions, is the same as that for FPGA

Minimization.

The entries marked "unknown" in the table are open questions. Additionally, the

133

complexity of many of the problems in Chapter 5 when restricted to particular graph

families, is unknown. Since many of these generalizations have potential applications

to circuit partitioning, and because it is sometimes the case that assumptions may

be made about the structure of real circuits, these issues are worthy of further study.

There are also many open questions with respect to partitioning problems over

hypergraphs, and for heterogeneous partitioning. We have shown some results for

the fundamental problem in these settings. We have no positive results for FPGA

Minimization, however, except for the heuristic which does works on hypergraphs.

6.2 Practical Directions

One area of potential promise for future research is that of more practical heuristics,

especially in the area of timing. Hardware technology continues to advance rapidly,

and the software for realizing rapid prototype systems on this hardware must keep

pace.

There is an open question related to critical path compression, that encompasses

both theory and practice. The question is, under what circumstances can compression

of the current critical path result in the creation of a new, worse critical path? If
this information could be known in advance, even some of the time, critical path

compression could be made more efficient.

Code replication is a significant topic in circuit design. In fact, many researchers

consider it an essential tool ([TSO]), without which near-optimal delays are almost

impossible. A possible project would be to incorporate replication into the critical

path compression technique.

The CPU time for our critical path compression algorithm increases significantly

when the current critical path is very long. One way to deal with this shortcom-

ing would be to ignore target sequences that exceed some predefined length. The

reasoning behind this is that very long sequences might be unlikely candidates for re-

134

assignment. The amount of time spent investigating reassignment of very long target

sequences is perhaps not justified.

Other areas of potential research include, but are not limited to, the following:

• More effective clustering methods for partitioning, that incorporate timing con-

cerns.

• Expanded iterative improvement techniques for delay optimization.

• Improved implementation strategies to make the code itself more efficient.

• Scalable strategies that can handle extremely large circuits, or circuits with

extremely long critical paths.

6.3 Conclusion

In summary, we have examined a set of partitioning problems that have relevance

to VLSI design, particularly FPGA partitioning. We have explored theoretical prop-

erties of these problems, and have found some results concerning their tractability.

We have seen that many of these problems are in P when all parameters are fixed,

and many have been shown for the first time to be solvable in linear time. We have

learned a great deal about the immersion order obstruction sets for some of these

families, and have discovered that many of these sets are computable.

From this theoretical perspective, we have also explored more practical algorith-

mic possibilities. A promising area of new research is that of partitioning for delay

minimization, and we have developed a new iterative improvement technique toward

this end. Many unresolved problems and open issues have been discovered along the

way.

135

Bibliography

1:36

Bibliography

[AK] C. J. Alpert and A. B. Kahng, "Recent Directions in Netlist Partitioning: a

Survey," INTEGRATION, the VLSI Journal 19 (1995), 1-81.

[Al] C. J. Alpert, "The ISPD98 Circuit Benchmark Suite," preprint available from

http://vlsicad.cs.ucla.edu/cheese/ispd98.html.

[BB] G. Brassard and P. Bratley, Algorithmics Theory and Practice, Prentice Hall,

Englewood Cliffs, New Jersey, 1988.

[Be] Benchmark directory pub/Benchmark_dirs/Partitioning93. Send email to
benchmarks@cbl.ncsu.edu for details on ftp access.

[BGLR]

[BKK]

D. J. Brown, M. R. Fellows and M. A. Langston, "Polynomial-Time Self-
Reducibility: Theoretical Motivations and Practical Results," International

Journal of Computer Mathematics 31 (1989), 1-9.

H. D. Booth, R. Govindan, M.A. Langston and S. Ramachandramurthi, "Fast

Algorithms for /{ 4 Immersion Testing," Accepted for publication in Journal of

Algorithms. (A preliminary version of this paper was released as a technical

report.)

F. Brglez, R. Kuznar and K. Kozminski, "Cost Minimization of Partitions into
Multiple Devices," Proceedings of the 30th ACM/IEEE DAG (1993), 315-320.

[BL] D. Bienstock and M.A. Langston, "Algorithmic Implications of the Graph Mi-

nor Theorem," Handbooks in Operations Research and Management Science,

Elsevier Science B.V., 1995, 481-502.

[Bod] H. L. Bodlaender, "A Linear Time Algorithm for Finding Tree-decompositions
of Small Treewidth," Proceedings, 2sth Annual ACM Symposium on Theory of
Computing (1993), 226-234.

[Bou] D. Vl. Bouldin, private communication.

[CD] I{. Cattell and M. Dinneen, ''A Characterization of Graphs with Vertex Cover

up to Five,'' Proceedings ORDAL '94 (1994), 86-99.

137

[CLCDL] N. Chou, L. Liu, C. Cheng, W. Dai and R. Lindelof, "Local Ratio Cut and Set

Covering Partitioning for Huge Logic Emulation Systems," IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems Vol. 14, No. 9

(1995), 1085-1091.

[FF] J. Feigenbaum and L. Fortnow, "Random Self-reducibility of Complete Sets."

SIAM Journal on Computing 22 (1993), 994-1005.

[FLl] M. R. Fellows and M.A. Langston, "Nonconstructive Advances in Polynomial-

Time Complexity," Info. Proc. Letters 26 (1987), 157-162.

[FL2] M. R. Fellows and M. A. Langston, "Nonconstructive Tools for Proving

Polynomial-Time Decidability," J. of the ACM 35 (1988), 727-739.

[FL3] M. R. Fellows and M. A. Langston, "Fast Search Algorithms for Layout Per-

mutation Problems," International Journal of Computer Aided VLSI Design

3 (1991), 325-342.

[FL4] M. R. Fellows and M. A. Langston, "On Well-Partial-Order Theory and its

Application to Combinatorial Problems of VLSI Design," SIAM J. Disc. Math.

5 (1992), 117-126.

[FM] C. M. Fiduccia and R. M. Mattheyses, "A Linear Time Heuristic for Improving

Network Partitions," Proceedings ACM/IEEE Design Automation Conference,

(1982), 175-181.

[GGL]

[GJ]

[GLR]

R. L. Graham, M. Grotschel, L. Lovasz, Handbook of Combinatorics, The MIT

Press, Cambridge, Massachusetts, 1995, 390-391.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman and Company, New York, 1979.

R. Govindan. M. A. Langston, and S. Ramachandramurthi, "A Practical Ap-

proach to Layout Optimization," 6th International Conference on VLSI Design

(1993), 222-225.

[Go] R. Govindan, "Algorithmic Methods for Circuit Layout and Partitioning,"

Ph.D. Dissertation, University of Tennessee, 1998.

138

[H]
[HK]

[HP]

[KBK]

[KiL]

[KL]

[KS]

[KUW]

[Lal]

F. Harary, Graph Theory, Addison-Wesley Publishing Company, 1972.

D. J.-H. Huang and A. B. Kahng, "Multi-Way System Partitioning into a

Single Type or Multiple Types of FPGAs," FPGA '95 (1995), 140-145.

F. Harary, E. M. Palmer, Graphical Enumeration, Academic Press New York

and London, 1973.

R. Kuznar, F. Brglez and K. Kozminski, "Cost Minimization of Partitions into

Multiple Devices," 30th ACM/IEEE Design Automation Conference (1993),

315-320.

N. G. Kinnersley and M. A. Langston, "Obstruction Set Isolation for the Gate

Matrix Layout Problem," Discrete Applied Mathematics, 54 (1994), 169-213.

B. W. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning

Graphs,'' Bell System Technical Journal, 49(2) (1970), 291-307.

C. Kim and H. Shin, "A Performance-Driven Logic Emulation System: FPGA

Network Design and Performance-Driven Partitioning," IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 15(5) (1996),

560-568.

R. M. Karp, E. Upfal and A. Wigderson, "The Complexity of Parallel Search,"

Journal of Computer and Systems Sciences 36 (1988), 225-253.

M. A. Langston, "WQO-Based Methods," International Workshop on Com-

binatorial lvf ethods for Circuit Design, Schloss Dagstuhl, Germany, October,

199:3.

[La2] M. A. Langston, private communication.

[Le] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John

Wiley and Sons, 1990.

[LP] M. A. Langston and B. C. Plaut, "On Algorithmic Applications of the Immer-

sion Order," Discrete Mathematics, 182 (1998) 191-196.

[MR] H.-G. Martin and W. Rosenstiel, "A Comparing Study of Technology Mapping

for FPG A,'' Proceedings. Design, Automation and Test in Europe, 98EX123

139

(1998) 939-940.

[NS] K. Roy-Neogi and C. Sechen, "Multiple FPGA Partitioning with Performance

Optimization," Proceedings! FPGA '95 (1995) 146-152.

[OD] J. V. Oldfield and R. C. Dorf, Field Programmable Gate Arrays, John Wiley

& Sons, Inc., 1995.

[Ro] H. E. Rose, .4 Course in Number Theory, second edition, Clarendon Press,
Oxford, 1994.

[RSI] N. Robertson and P.D. Seymour, "Graph Minors V. Excluding a planar

graph," J. Combin. Theory Ser. B 41 (1986), 92-114.

[RS2] N. Robertson and P.D. Seymour, "Graph Minors IV. Tree-width and Well-
quasi-ordering," J. Combin. Theory Ser. B 48 (1990), 227-254.

[RS3] N. Robertson and P. D. Seymour, "Graph Minors XIII. The Disjoint Paths
Problem," J. Combin. Theory Ser. B 63 (1995), 65-110.

[RS4] N. Robertson and P. D. Seymour, "Graph Minors XVI. Wagner's Conjecture,"
to appear.

[RW] R. Rajaraman and D. F. Wong, "Optimal Clustering for Delay Optimization,"
Proceedings, 30th ACM/IEEE Design Automation Conference (1993) 309-314.

[Sc] C. P. Schnorr, "Optimal Algorithms for Self-reducible Problems," Proceedings,
1976 International Con/ erence on Automata, Programming and Languages
(1976), 322-337.

[Se] P. D. Seymour, private communication.

[ST] P. Sawkar and D. Thomas, "Multi-Way Partitioning for Minimum Delay for
Look-up Table Based FPGAs," Proceedings, 32nd Design Automation Confer-

ence (1995), 201-205.

[SY] S. M. Sait and H. ·Youssef, VLSI Physical Design Automation, IEEE Press,
1995.

[TSO] N. Togawa, M. Sato, and T. Ohtsuki, "A Circuit Partitioning Algorithm with
Path Delay Constraints for Multi-FPGA Systems," IEICE Trans. Fundamen-

140

tals E80-A, No. 3 (1997), 494-505.

[VM] J. Villasenor and W. H. Mangione-Smith, "Configurable Computing," Scien-

tific American, July 1998.

[WC] Y.-C. Wei and C.K. Cheng, "Ratio Cut Partitioning for Hierarchical Designs,"

IEEE Transactions Computer-Aided Design Vol. 10, No. 7 (1995), 911-921.
[We] U. Weinmann, More FPGAs, Abingdon EE&CS Books, 1994.

[Wi] H. S. Wilf, Algorithms and Complexity, Prentice-Hall, Inc., 1986.

[WK] N. Woo and J. Kim, "An Efficient Method of Partitioning Circuits for Multiple-

FPGA Implementation," 30th ACM/IEEE Design Automation Conference

(1993), 202-207.

[WKMKY] S. Wakabayashi, H. Kusumoto, H. Mishima, T. Koide, and N. Yoshida, "Gate

Array Placement Based on Mincut Partitioning with Path Delay Constraints,"

Proceedings, ISCAS'93 (1993), 2059-2062.

[X] Xilinx, Inc., The Programmable Logic Data Book, San Jose: Xilinx, 1994.

141

Vita
Barbara Catherine (Johnson) Plaut was born in La Crosse, Wisconsin, on Novem-

ber 24, 1952. In 1986, she obtained a Master's Degree in Computer Science from the

University of Kentucky in Lexington. The next three years were spent working for

SofTech, Inc., in Alexandria, Virginia. From 1989 until 1992 she stayed at home

with her two young daughters, where she produced and sold a nutritional software

package. In 1992 she began her pursuit of the PhD degree in computer science at the

University of Tennessee in Knoxville.

142

	Theoretical and algorithmic approaches to field-programmable gate array partitioning
	Recommended Citation

	Theoretical and algorithmic approaches to field-programmable gate array partitioning

