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Abstract 
Many practical problems dealing with the design of Very Large Scale Integrated 

(VLSI) circuits can be modeled as graphs in which vertices represent components 

of the circuit and edges represent a relationship between these components. When 

expressed as graphs, these problems can then often be solved using graph theoretic 

methods. Unfortunately, many such problems are NP-complete, hence no practical 

exact solutions are known to exist. 

In this dissertation, we study NP-complete problems taken from the realm of 

partitioning for Field-Programmable Gate Arrays (FPGAs). We adopt a two-pronged 

approach of theory and practice, developing practical heuristics driven by theoretical 

study. 

The theoretical approach is motivated by well-quasi-order (WQO) theory, which 

can be used to show, among other things, that when some hard problems have fixed 

parameters, polynomial-time solutions exist. This is of significance in the area of 

FPGA partitioning, in which practical problems are often characterized by fixed-

parameter instances. WQO techniques are not generally practical, however, and we 

develop new methods to solve several important problems in VLSI that are not even 

amenable to WQO techniques. 

Vie begin with a representative partitioning problem, Min Degree Graph Partition 

(MDGP), the fixed-parameter version of which is closed under the immersion order. 

\Ve show that the obstruction set ( set of immersion minimal elements) for this problem 

is computable; we prove both upper and lower bounds on the obstruction set size; 
and we completely characterize all fixed-parameter MDGP simple tree obstructions. 

\iVQO theory tells us only that fixed-parameter MDGP is solvable in (high-degree) 

polynomial time. We attack the problem using what we refer to as kd-candidate 

subsets, culminating in linear-time decision and search algorithms. The kd-candidate 

subset method also paves the way for an efficient heuristic for the FPGA Minimization 

problem. 
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We then broaden our scope to incorporate delay minimization into FPGA parti-

tioning. We develop, analyze and test a novel method called critical path compression, 

inspired in part by compiler optimization techniques. 

We then look at a variety of generalizations of MDGP. Some of these problems 

are not immersion closed; others are not even defined in a way that WQO theory 

applies. However, almost all of them are efficiently solvable via the kd-candidate 

subset approach. 

Interspersed in these results are many refinements of what is known about the 

complexity of these problems. We also discuss a few other solution strategies, and 

present many open problems. 
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Chapter 1 

Introduction and Background 

The technology of VLSI circuit design has progressed rapidly in recent years. The 
process of transforming an abstract circuit design into a physical entity has become 
increasingly complex. In order to handle this complexity, the process is broken down 

into a series of tasks, each of which can be handled relatively independently. Some 

of these tasks are behavior modelling, functional and logic minimization, logic fitting 
and simulation, partitioning, placement, routing and fabrication ([SY]). In this work, 
we focus on the partitioning stage. 

Another consideration in circuit design is that of the physical layout style, some 
of which are full-custom, gate-array, standard-cell, macro-cell, programmable logic 
array (PLA) and field-programmable gate attay (FPGA) ([SY]). Our interest is in 

partitioning for FPGA layouts. 

This particular aspect of partitioning is itself a broad problem, with numerous spe-
cific formulations. many of which have been extensively studied ([AK]). These prob-
lems, when translated into graphical terms, are usually NP-complete, and ultimately 
tackled by approximation and heuristic algorithms. However, theoretical results of 
Robertson and Seymour ([RSI], [RS2], [RS3], [RS4]) can often be used to show that in 

many cases fixed-parameter versions of the problem are in fact solvable in polynomial 

time. This is of significance when dealing with FPGA partitioning problems, which 
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are inherently confined to instances with bounded parameters. Unfortunately. even 

theoretically efficient algorithms are often not practical. Nevertheless, the theoretical 

study often paves the way to new and better heuristics. 

In this chapter, we give an introduction to the topic, some definitions and back-

ground information. 

In the second chapter, a representative and fundamental partitioning problem is 

defined and studied from a theoretical perspective. The fixed-parameter versions of 
this problem are relevant to FPGA partitioning. They are known to be solvable in 

(high-degree) polynomial time, because of their closure under the immersion order. In 
this work, we show that the obstruction sets for these graph families are computable 
by demonstrating upper bounds on the obstruction set sizes. We also determine lower 
bounds, and completely characterize the simple tree obstructions. We then show that 

both the search and decision versions of the problem are solvable in linear time. While 
this problem does not capture all of the issues important in FPGA partitioning, it 
serves as a useful starting point for further study. 

The fundamental problem is extended to consider FPGA Minimization in the 
third chapter. Here we strive to partition a circuit into as few chips as possible, in 
order to minimize cost. and to enable realization of a circuit on a specific system. 
We delve deeper into the complexity of the problem, and derive a practical heuristic 

driven by theoretical results. 

In the fourth chapter, the fundamental problem is extended in yet another direc-
tion. The circuit system is considered in its dynamic state, with electrical current 
flowing through it. We seek to minimize the maximum time for a signal to flow from 
any input to any output. Here we must broaden our graphical representation of the 
circuit from undirected to directed graphs, and the theoretical picture changes signif-

icantly. In this chapter. we develop and study a new method for minimizing delay in 

a partitioned circuit. 

The fifth chapter deals with many variations of the fundamental partitioning prob-
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lem. Although many of these problems are no longer amenable to WQO techniques, 

we find that most of them can still be solved efficiently using the techniques of the 

second chapter. We conclude with some ideas for future study, from both a theoretical 

and a practical standpoint. 

Table 1.1 summarizes the main theoretical and practical results of this work. 

1.1 Definitions and Mathematical Preliminaries 

For our purposes, an undirected graph G = (Va, Ea) consists of finite sets of vertices 

Va and undirected edges Ea. Multiple copies of edges are allowed, but self-loops are 
ignored, because they have no consequence in any of the algorithms that we develop. 

A directed graph G = (Va, Ea) is defined similarly, except each edge pair has an 
ordering. 

The simplified notation G (V, E) is used when G is the only graph under 
consideration. 

If v is a vertex in G. the degree of v ( denoted 5a( v)) is the number of edges in G 

that are incident on v. When there is no ambiguity about the graph, we simply use 
i5 ( v) to denote the degree of v. The notation is extended to denote the degree of a 
set of vertices as follows: for S' \/;:;, c5a(S) is the number of edges in G that have 
exactly one endpoint in S. 

Two vertices u, v E V are adjacent or neighbors if uv E E. N( u) = { v : uv E E} 
denote the set of immediate neighbors of u. Note that 5( u) > IN( u) I if multiple copies 
of an edge adjacent to u exist. 

The notation I<n is used to signify a graph containing n vertices, in which every 
pair of vertices is connected by a single edge. 

A subgraph of G induced by some V' Va consists of vertex set V' and edge set 

{uvjuv E Ea,u E V',v EV'}. 
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Table 1.1: Summary of main results 

MDGP: in P when restricted to simple trees; 
Fixed-parameter MDGP: solvable in linear time, 

obstruction set computable, 
upper and lower bounds on obstruction set size, 

complete characterization of simple tree obstructions 
FPGA Minimization: NP-complete for many classes of graphs, 

development of theoretically-based heuristic; 
Fixed-parameter FPGA Minimization: exponential obstruction set size 

Delay Minimization: NP-complete for many classes of graphs, 
development of critical path compression heuristic; 
Fixed-k, d Delay Minimization: NP-complete 
Fixed-parameter Hypergraph MDGP: in P 

Heterogeneous MDGP: in P when restricted to simple trees; 
Fixed-parameter Heterogeneous MDGP: decision and search solvable in linear time; 

obstruction set computable 
Balanced MDGP(k,d,0): NP-complete 
MDC(d): exponential obstruction set size 

Sixteen WQO closure-preserving operators: whether closed or not 

4 



If, for every two vertices x, y E Va, there exists a series of edges from x to y, we 

say that G is connected. Each maximally connected subgraph of a graph is referred 

to as a component. Two vertices u, v E V are n-edge-connected if a minimum of n 

edges must be deleted to disconnect G in such a way that u and v lie in different 

components. 

An n-path is a connected, acyclic graph containing n > l vertices, each vertex of 
which has either 1 or 2 neighbors. 

The following two definitions are from [H]. A shortest u - v path is called a 

geodesic. The diameter of a connected graph is the length of any longest geodesic. 

A tree is a connected, acyclic graph. A simple tree is a tree in which there is at 

most one copy of each edge. A forest ( simple forest) is a graph whose components 
are all trees (simple trees). 

Two graphs H and G are said to be isomorphic if there is a bijection f : VH -+ Va 
such that uv E EH{=:> f(u)f(v) E Ea. 

A tree-decomposition of G = ( V, E) is a pair (T = CV-r, Er),!) where T is a tree 

and f is a function mapping Vr into a set of subgraphs of G, with f satisfying the 
following properties: 

1. UtEVrf ( t) = G: and 

2. for s, t E Vr, if u is on the path from s tot in T then f(s) n f(t) f(u). 

The width of a tree-decomposition (T, !) is maxtEVrlf(t)I -1. The treewidth of G 
is the minimum treewidth of all tree-decompositions of G. Figure 1.1 shows a graph 
and a corresponding tree-decomposition of width two. 

It is evident that every tree has treewidth 1. Therefore, the family of all trees is of 
bounded treewidth. As an example of a family of graphs with unbounded treewidth, 
consider the family of all w x w grids, for all w, each of which has treewidth w ([RSl]). 

Given graphs H and G, we say that H '.Si G, meaning His contained in G under 
the irnmersion order, if and only if a graph isomorphic to H can be obtained from 
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Figure 1.1: A graph and its tree-decomposition of width two 

G by a series of the following two operations: taking a subgraph, or lifting a pair of 
adjacent edges. A pair of adjacent edges uv, vw, with u =/= v =/= w is lifted by removing 
uv and vw and adding uw. Figure 1.2 illustrates that C4 is immersed in K 1 + 2K 2 

([Lall). 

The immersion order can also be viewed in terms of edge-disjoint paths: H is 
immersed in G if and only if there exists an injection from Vi-1 to Ve for which the 
images of adjacent elements of l'H are connected in G by edge-disjoint paths. 

A family F of graphs is said to be immersion closed if GE F, H ::;i G-+ H E F. 
The obstruction set for a family F of graphs is the set of graphs in the complement of 
F that are minimal in the immersion ordering. Therefore, if F is immersion closed, 
it has the following characterization: G is in F if and only if there is no H in the 

obstruction set for F such that H ::;i G. 

This tells us that there exists a membership algorithm for any immersion-closed 

family F: simply test for the presence of any immersed obstruction. This will succeed 
if the obstruction set is finite, which, as we shall soon see, is always the case. 
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A quasi-order is a reflexive, transitive relation. A quasi-ordered set ( X, ~) is well-

quasi-ordered if (1) any subset of X has finitely many minimal elements and (2) X 

contains no infinite descending chain x1 2 x 2 2 x 3 2 ... of distinct elements. 

Theorem 1.1 ([RS2}) Graphs are well-quasi-ordered under immersion. 

Theorem 1.1 tells us that, given an immersion-closed family of graphs F, a mem-

bership algorithm always exists. The following theorem gives us even more: that a 

polynomial-time algorithm always exists. 

Theorem 1.2 ([FL4}) For every fixed graph H, the problem that takes as input a 

graph G and determines whether H ~i G is solvable in time O(nh+3), where h is the 

order of the largest graph in the obstruction set for F. 

Theorems 1.1 and 1.2 together are powerful tools with wide applicability. See 

[FLl] and [FL2] for many examples. In this work, we focus on problems from the 

realm of FPGA partitioning, many of which are closed under the immersion order. 

Other WQOs are known; one of the most useful in terms of VLSI applications is 
the minor order, under which a graph His less than or equal to a graph G (H ~m G) 

if and only if a graph isomorphic to H can be obtained from G by a series of these 

two operations: subgraph and edge contraction. 

As in the case of the immersion order, there exists a polynomial-time decision 

algorithm for any minor-closed family of graphs ([RS4]). However, in the case of the 



minor order, the running time of the algorithms is much faster. Letting n denote the 

number of vertices in G, the time to recognize G is O(n 3) ([RS3]). 

Under either the immersion or the minor order, if a family of graphs has treewidth 

bounded by some constant h, then a linear-time recognition algorithm exists. Given h, 

and a graph G, it is possible in linear time either to determine whether the treewidth 

of G exceeds h (in which case G is a ''no" instance), or to find a tree-decomposition 

of G with treewidth at most h ([Bod]). Given such a tree-decomposition, testing for 

obstruction containment can be done in linear time ([RS3]). 

The results just mentioned are nonconstructive. They can be used to show the 

existence of polynomial-time decision algorithms. They do not address the issue of ac-

tual algorithm construction, which depends upon specific knowledge of an obstruction 

set. They do not give us any information on how to find the obstruction set. They 

do not give us any information on how to solve the search version of the problem; i.e. 

how to construct positive evidence of a "yes" instance. 

While these remarkable theoretical findings give us exciting new tools to cope 

with previously elusive problems, they also introduce a host of issues that must be 

resolved for any practical application. Of primary importance are the issues of non-

constructivity and high polynomial degree in the case of the immersion order. 

1.2 Hardware Technology 

The technology of very-large-scale integrated (VLSI) circuit design continues to 

progress rapidly. A relatively recent addition to the component library is the 

field-programmable gate array (FPGA), a collection of functional blocks with pro-

grammable connections ([OD]). Figure 1.3 gives a simplified picture of a conceptual 

FPGA. 

The specific function of each block and the connections between blocks are dy-

namically programmable. This feature enhances affordability and flexibility, and has 
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Figure 1.3: The FPGA 

significant advantages for the development of prototype systems. A given circuit is 

implemented by partitioning its logic into blocks and connecting the blocks as re-

quired. Since circuits are frequently too large to fit on a single chip, they must be 

partitioned over several FPGAs. 

FPGA chips come in a variety of sizes and styles ([X]). Typically, the functional 

blocks on a chip consist of an array of identical Configurable Logic Blocks ( CLBs ). 

Each CLB is a look-up table with a number of inputs (usually two to five), and one 

or two outputs. 

As mentioned earlier, there are many steps involved in taking a circuit from design 

to physical reality. One of these steps, which can take place either before or after 

partitioning, is that of technology mapping. Technology mapping refers to the process 

of transforming a large circuit at the gate level into a system of smaller units that can 

be realized as a set of communicating CLBs. Although technology mapping can be 

performed either before or after partitioning, most developers agree that it is more 

efficient to perform technology mapping first, and then do partitioning on a circuit 

system of CLBs. The subject of technology mapping will be discussed in more detail 
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in section 3.2.3. 

The usual sequence of events, then, is to perform technology mapping first, and 

then partitioning. The system of CLBs sent to the partitioner can be modelled 

by a graph, in which a node represents a CLB, and edges represent the connections. 

Physical connections between CLBs are usually established during a later phase of the 

design implementation, and are programmable in either direction, so the partitioner 

may work with an undirected graphical representation of the CLB system. The I/O 

cells around the periphery of the chip are also programmable in either direction. 

In building systems with multiple FPGAs, fabrication technology imposes severe 

restrictions: limits on pin counts (I/O cells) affect inter-chip connectivity; limits on 

chip area and density bound FPGA sizes. These physical dimensions give rise to 

many difficult combinatorial problems, one of which we explore in great detail in the 

next chapter. 
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Chapter 2 

A Fundamental Partitioning 

Problem 

We begin with a very fundamental problem. Although it is actually the simplest of 

all that we will consider in this work, we find that it is indeed very difficult, and of 

considerable independent interest. 

2.1 Problem Definition and Prior Results 

A circuit design is usually conceived at a high level, and expressed independently of 

the hardware in which it will eventually be implemented. Circuit partitioning is the 

process of dividing a circuit into smaller parts, so that it can be realized by hardware 

devices. Partitioning a design-level circuit in such a way that it satisfies the physical 

constraints of a hardware system is a complex problem that has been the subject of 

extensive study. See [Ahl [BKK]. [CLCDL], [HK] and [WK] for many examples. In 

this work. we focus specifically on hardware systems consisting of FPGAs. Within this 

context, an important question is that of whether a given circuit can be partitioned 

to fit onto a set of FPGAs such that the size and pin count constraints of each are 

met. We call this the Min Degree Graph Partition problem (MDGP) ([Lall). 
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Instance: a graph G = (V, E), and two integers k and d. 

Question: Is there is a partition of V into disjoint sets Vi, . .. , i,~ such that 

Vi: /¼/ :S k, and such that if Ei is the set of edges with exactly one endpoint in Vi, 
max1$i$m/Ei/ :s; d? 

Figure 2.1 shows a "yes" instance of MDGP(k=2,d=2) that has only one satisfying 

partition: V1 = {a,b}, Vi= {c,d}. 

Within this formulation, the parameter k represents the size ( in CLBs) of an 

individual type of FPGA chip, and the parameter d represents the pin-count of a chip. 

Given a graphical representation of a circuit, with each node representing a CLB and 

each edge representing a connection between two CLBs, MDGP asks whether the 
circuit can be realized on a set of FPGAs of a given type . 

Note the similarity between this problem and the Graph Partitioning problem of 
[ GJ]. In the latter problem, the goal is to minimize the sum of all edges that have 

their endpoints in different subsets, and there is no explicit constraint on the number 

of edges that may emanate from an individual subset. Therefore, Graph Partitioning 

does not model the situation in which there is a degree constraint on each subset. 
There are some important issues in circuit design, such as cost and performance, 

that are not addressed by this fundamental problem. Nevertheless, MDGP provides 
a useful starting point for the study of FPGA partitioning from a theoretical perspec-
tive. Much of the knowledge gleaned from this basic problem is of benefit in solving 
broader problems, some of which we will examine more closely in later sections. 

a b 

C d 

Figure 2.1: A partitioning problem 
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The MDGP problem is very difficult without parameter bounds, via a reduction 

from Multiway Cut: 

Theorem 2.1 ({Go}) Min Degree Graph Partition is NP-complete. 

Fortunately, however, the aforementioned fabrication limits can be used to advan-

tage. As long as k and d are bounded, the family of "yes" instances is closed in the 

immersion order, which leads to the following result. 

Theorem 2.2 ([Lal,LP}) For any fixed k and d, MDGP can be decided in polynomial 

time. 

Since the parameters k and d represent actual physical constraints, when partition-

ing for FPGAs we may assume that these parameters are bounded by the technology 

at hand. Fixed-parameter MDGP is, therefore, a relevant problem from the perspec-

tive of circuit partitioning. To distinguish fixed-parameter MDGP from generalized 

MDGP, we shall use MDGP(k,d) to denote the former. 

In section 1.1 we saw that, for any family of graphs closed under the immersion 

order and of bounded treewidth, a linear-time recognition algorithm exists. Unfortu-

nately. the family of '·yes'' instances of MDGP(k,d) is not of bounded treewidth. To 

see this. consider MDGP(l,4). Even this simple family of graphs contains thew x w 

grid for any w, a graph with treewidth w. 

Prior to this time. little more was known about the complexity of MDGP(k,d), and 

no efficient algorithms, or even brute force algorithms, were known to exist. Not much 

more could be said other than that MDGP(k,d) was nonconstructively decidable in 

polynomial time. Whether it was solvable in low-order polynomial time was an open 

question. as recently as 1995 ([LP]). Many issues remained, including the following: 

• WQO-based solutions are inherently nonconstructive. They depend on the ex-

istence of finite obstruction sets and, in general, we do not know what these 

obstruction sets are. or how to find them. 
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• Although the algorithms are polynomially bounded, the degree of the polyno-

mial is high: 0( nh+3 ), where h is the order of the largest obstruction. This 

polynomial presents yet another dimension of nonconstructivity: since we do 

not know the obstruction set, or even the order of the largest obstruction. we do 

not know the exact degree of the polynomial. Sometimes efficient algorithms can 

be devised to test for specific obstructions, but this is a difficult task (BGLR). 

• Obstruction sets are very difficult to identify. In some cases, obstruction set 

isolation has been performed exhaustively as part of a major research effort 

([KiL]). Other researchers have developed machinery to generate minor-minimal 

''no" instances of some graph families of bounded treewidth ([CD]). However, 

in general, there exists no easy, widely-applicable method of finding obstruction 

sets. 

• WQO-based solutions are decision algorithms: they simply tell us whether or 

not a given graph is a member of a particular graph family. They do not address 

the corresponding search problem by constructing evidence. In most practical 

problems, knowing that a graph is a "yes" instance is not enough. In the case of 

graph partitioning, for example. a solution in the form of a satisfying partition 

is essential. 

• WQO-based solutions apply only to ordinary graphs. Practical problems, espe-

cially those that model VLSI problems, are often represented more accurately 

by hypergraphs. Although WQOs are known to exist on hypergraphs ([GGL], 
[Se]), these orders have not yet been shown to be of practical importance for 

these types of problems. 

In subsequent sections. we will address each of these issues. 

14 



2.2 New Results 

We know by Theorem 2.2 that MDGP(k,d) is solvable in polynomial time. In this 

section, we present some tools that will ultimately be used to show that MDGP(k,d) 

is actually solvable in linear time. These tools will also assist in formulating self-

reduction strategies, finding MDGP(k,d) obstruction sets, and understanding the 

complexity of MDGP when it can be assumed that the instance graph has a pre-

defined structure. 

2.2.1 Algorithmic Tools 

We now present some definitions, observations and lemmas that will be of general 

use throughout most of this work. (Recall that we refer to fixed-parameter MDGP 

as MDGP(k,d).) 

Observation 2.1 A star graph (see Figure 2.2) with k + d rays is an obstruction 

to MDGP(k,d); therefore. no obstruction to MDGP(k,d) contains a vertex with more 

than k + d neighbors. 

Similarly, no "yes" instance of MDGP(k,d) contains a vertex with more than d+ k 

neighbors: hence the ''yes" family has bounded degree. 

Figure 2.2: A star graph with six rays 
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Definition 2.1 Let Np( v) denote { v} U { w : :3 a path from v to w of length :::; p}. 

Definition 2.2 A connected subset of a graph G is a subset S Va such that the 

subgraph of G induced by S is connected. 

Lemma 2.1 G is a ''yes'' instance of MDGP(k, d) iff there exists a solution in which 

every subset is connected; thus, in this solution, every vertex v is partitioned only with 

other vertices in N1,-d v). 

Proof If there exists such a solution for G, then G is a "yes" instance. 

For the converse, assume that G is a "yes" instance, and that we have a satisfying 

partitioning. Consider any subset S such that the subgraph G' of G induced by S is 
not connected. We can then separate S into distinct connected subsets, one for each 
connected component of G'. Each of these is of size less than k. Additionally, each 
is of degree no more than d, because there exist no edges between the new subsets. 
Because every subset is now connected and of size no more thank, each vertex v E 5 
is partitioned only with other vertices in Nk-I ( v ). D 

Definition 2.3 Given k and d, let cP denote the value 1 + I:f=1 (k + d)(k + d - I l- 1 . 

Lemma 2.2 !JG is an obstruction to MDGP(k,d). then Vv EV, Vp > 0, INp(v)I:::; cp. 

Proof By Observation 2.L u has at most k + d immediate neighbors, so Ji\\(v)I ::::; 
1 + (k + cl). Each neighbor at distance q > 0 from v has at most k + d - I neighbors 
not contained in Nq_i(v), so INp(v)I::::; 1 + I:f=1(k + d)(k + d - l)i-I. D 

It is useful to observe that, when k + d > 2, Cp = 1 + (k + d) x (k:~-d~~-i. 

Definition 2.4 A ''kd-satisfying subset'' is a subset of size no more thank and degree 

no more than d. 

Definition 2.5 A "kd-candidate subset'' is a connected kd-satisfying subset. Given 

k. d and a verte:r v. let C',. denote the set of all kd-candidate subsets containing v. 
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We note that, because a kd-candidate subset is connected and of size no more than 
k, its diameter is bounded by k - l. Furthermore, for every v in some kd-candidate 

subset C, every other vertex in C is in Nk-d v ). 

For example, consider the graph G in Figure 2.3 as an instance of MDGP(3.2). 

Then Nk-i(a) = N2(a) = {a,b,c,d}, and C0 = {{a,c},{a,b,c}}. 

Lemma 2.3 Given kd-satisfying subsets Cl and C2, either Cl - C2 or C2 - Cl is 
a kd-satisfying subset. 1 

Proof Since neither Cl - C2 nor C2 - Cl can have size exceeding k, we need only 

consider their respective degrees. 

If Cl n C2 = 0. then we are done. Otherwise, let I= Cl n C2, A= Cl - C2, B = 
C2 - Cl, D = V - Cl - C2 (see figure 2.4). 

Denote by NAB the number of edges having an endpoint in A and an endpoint 

in B. NAn,NAr,NBn,NBr and NDI have analogous meanings. The degree of Cl is 

N4D +NAB+ Nnr + NBr, and the degree of C2 is NAB+ NBD+ NAI + Nnr-

Figure 2.3: An instance of MDGP(3,2) 

1 Independently proved in (CLCDL]. 
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Figure 2.4: Cl = Au/, C2 = Bu I 

By the definitions above, we have 

and 

Summing yields 

so 

Thus either 

or 

N.4B +NB[+ NBD d. 

The former bounds the degree of Cl - C2, the latter the degree of C2 - Cl. D 
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Lemma 2.4 Given kd-satisfying subsets Ci, C2, ... , Gp, a disjoint set of kd-satisfying 

subsets Di, D2, ... , Dq exists such that Ci U C2 U ... U Cp = Di U D2 U ... U Dq. 2 

Proof The proof is by induction on p. For the basis case, p = l, the set of sub-
sets is already disjoint and satisfying. As inductive hypothesis, assume that, given 

Ci, C2, ... , Cp, p :::-: Lan appropriate set of subsets Di U D 2 U ... U Dq. q :::-: 1, exists. 
Given Cp+i, we construct a set of kd-satisfying subsets Di U D 2 U ... U Dq, such that 

Di UD2 u ... UDq' = C'i UC2 u ... UCp+i• Initially Di UD2 u ... UDq, = Di UD2 u ... UDq, 
so Di U D 2 U ... U Dq, = Ci U C2 U ... U Gp, and the Di's are disjoint and satisfying. Let 

T = Cp+i• For each Di, 1 ::; i ::; q', we do the following. If Din T = 0, do nothing. 
Otherwise, DinT =I-/- 0, with InDj = 0, 'v 1::; j::; q',j -1-i. By Lemma2.3, either 
Di - T or T - Di is satisfying. If the former, we change Di to Di - T; if the latter, 
we change T to T - Di. At the end of consideration of each Di, if Tis nonempty, q' 

is incremented by one, and Dq' is set to T. Finally, any empty Di may be removed, 
and q' decremented accordingly. D 

The proof of Lemma 2.4 suggests a subset disjointing algorithm. Such an algo-

rithm is used by [CLCDL] in an FPGA partitioning heuristic. The heuristic first 
forms subsets to satisfy constraints, and then makes the subsets disjoint in a later 
step. Our work proceeds further, however, as we shall now describe. 

The algorithm suggested by the proof of Lemma 2.4 is of quadratic-time com-
plexity. It can, however, be implemented to run in time linear with respect to IVI, 
assuming we are given one kd-candidate (rather than mere kd-satisfying) subset for 
each v E G. In the proof described above, Tis compared against each Di. If we begin 
with kd-candidate subsets, however, there is only a constant number of Di's with 
which any T can have a nonempty intersection. Each of T, Di is initially formed from 
a kd-candidate subset, and never made larger. If there exist u E T, v E Di such that 

u 1 N2*(k-i)( v ), the intersection of T, Di must be empty, by the following reasoning. 
Suppose otherwise: :lx E T n Di. Because x E T and u E T, it must be the case that 

2 Independently claimed in [CLCDL]. 
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the distance from u to x is at most k - l. Because x E D; and v E Di, it must be 

the case that the distance from x to v is also at most k - I. Therefore, the distance 

from u to vis at most 2 * (k - 1), which contradicts u 1 N2•(k-I)(v). 

Therefore, each subset can be indexed by the vertex for which it serves as a kd-

candidate subset, and no checking need be done of subsets indexed by vertices '·too 

far apart." Specifically, the subset disjointing algorithm proceeds as follows. We are 

given a set of p = /V/ kd-candidate subsets, one for each v E V. As the algorithm 

progresses, and subsets are modified, they may lose their connectivity. They. will, 

however, always be kd-satisfying. Furthermore, because vertices are never added to 

subsets, it will always be the case that for any subset C, u E C, v E C --+ u E Nk-I ( v ). 

We will denote the subset indexed by vertex v as Sv. 

Step l: For each vertex v, compute {x/x E N2.(k-i)(v)}. 

Step 2: This step consists of an outer loop, which executes for each vertex Vi, 2 ::; 

i::; /V/. For each Vi, an inner loop executes for each {vi/vi E N 2•(k-i)(vi), and j < i}. 
The inner loop is as follows: 

if Sv, n Sv1 # 0 
then 

if (' (' '-'v, - '-'v 1 

then 
is of degree no more than d 

Sv, = Sv, - Sv1 

else 

Step 1 executes in linear time. as does the outer loop of Step 2. The running time 

of the inner loop of Step 2 is bounded by a constant. Therefore. the complexity of 

the entire subset disjointing algorithm is linear. 

This algorithm is of linear time complexity, does not possess large constants of 

proportionality, and runs quickly in our experimentation. It does, however, require 

the availability of /VI kd-candidate subsets, the computation of which is much more 

costly, as we shall see in Section 2.2.3. 
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The proposition that follows is an important tool in our subsequent work, and 

finds many applications within, including the following: 

• finding linear-time decision and search algorithms for MDGP(k,d), as well as a 

host of related problems 

• showing that the obstruction set for MDGP(k,d) is computable 

• characterizing the simple tree obstructions to MDGP(k.d) 

• proving complexity results for MDGP and other problems 

Additionally, it has also been used in ([Go]) in which it was dubbed the Locality 

Condition, a term that we will retain here. 

Proposition 2.1 The Locality Condition: G is a ''yes" instance of MDGP(k,d) 

iff 't/v E V, Cv =/= 0. 

Proof Suppose 't/v E V, Cv -=f. 0. Then, by Lemma 2.4, a satisfying partition can 
be found, ensuring that G is a "yes" instance. For the converse, suppose G is a 

"yes'' instance. Then. by Lemma 2.1 and by the definition of kd-candidate subset, 

't/v E V, Cv -=f. 0. D 

2.2.2 Self-reduction 

It is sometimes possible to solve a search problem by reducing it to a related decision 
problem. For example, one might seek to find a satisfying subset assignment for Min 
Degree Graph Partition with the aid of a routine that merely tells whether such an 
assignment exists. 

This approach to algorithm design is called self-reducibility, and has been for-
mulated in many ways in the literature. In its most limited form, an assortment 

of restrictions is placed on the decision algorithm, its input and the lexicographic 
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position of the output produced (see, for example, [Sc]). In more general forms, in-

put/output limitations are eliminated and decision algorithms quite distant from the 

original problem are permitted (see, for example, [FL3]). Additional variations exist, 

some even incorporating randomness or parallelism (see, for example, [FF), [KUW]). 

It is not difficult to see that, for any fixed k and d, MDGP is self-reducible in 

polynomial time. That is, one can construct a satisfying subset assignment, if any 

exist, with at most a polynomial number of calls to a decision algorithm, known from 

the last section also to run in polynomial time. It can in fact be self-reduced with 

only a linear number of calls. 

Theorem 2.3 The search version of MDGP(k,d) can be solved in O(np(n)) time, 

where p(n) denotes the time required to solve the decision version of the problem. 

Proof First, use the decision algorithm to ensure that the graph is a "yes" instance. 

If the graph is a "yes" instance, we know, by Lemma 2.1 that there exists a solution 

in which every subset is connected. We now describe an algorithm that constructs 

such a solution. The algorithm does this by modifying the input graph G. As subsets 

are constructed, if a vertex v is assigned to a nonempty subset S, this assignment is 

forced by the placement of at least d + l copies of an edge between v and some vertex 

w E S'. At the end of the algorithm, the subsets in the modified graph are identified 

as follows. Vertices u and v are in the same subset S iff there exists a path from u to 

r such that there are at least d + l copies of each edge in the path. 

In what follows. we will refer to a vertex assigned to a subset as a committed 

vertex. Those not yet assigned to a subset are uncommitted. Initially, no vertices are 

committed. An outer loop executes at most once for each vertex. 

An arbitrary uncommitted vertex v is selected for this inner loop, and v is now 

committed to a new subset S. Vv'e next show how, in an inner loop, Sis constructed 

in O(p( n)) time. 

Every time the inner loop begins, the current version of the graph is known to 

be a --yes" instance. By Lemma 2.1, we know, therefore, that there exists a solution 
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in which every subset is connected ( as the algorithm progresses, it zeroes in on one 

of perhaps many potential initial solutions). The number of uncommitted immediate 

neighbors of vis bounded by a constant; these vertices form a "neighbor pool." At all 

times, the neighbor pool consists of all uncommitted immediate neighbors to vertices 

in S. Initially all vertices in the neighbor pool are unmarked. A vertex in the neighbor 

pool will be marked if it can be determined that its addition to S produces a graph 

that is a "no" instance. 

If at any time in the inner loop there are no unmarked vertices in the neighbor 

pool, then there is no way to expand S while maintaining its connectivity. In that 

case, by Lemma 2.1, and the fact that the modified graph remains a "yes" instance, 

it must be that S is a kd-candidate subset, and we exit the inner loop. 

We select any unmarked vertex w from the neighbor pool, and any vertex y E S' 

for which an edge wy exists. We augment the graph with d additional copies of 

wy. If the augmented graph is a "no" instance, the added edges are taken back out. 

Additionally, vertex w is marked, because its commitment to S produces a graph 

that is a "no" instance. If the augmented graph is still a "yes" instance, then the 

extra edges are retained. Additionally, w is now committed to S. All uncommitted 

neighbors of w are added to the neighbor pool. If the size of S is now k, then S 

cannot be expanded; thus the graph is a "yes'' instance, and we discard the neighbor 

pool and exit the inner loop. If there are no unmarked vertices in the neighbor pool, 

then S cannot be made larger while preserving connectivity; thus the graph is still a 

"yes" instance, and we discard the neighbor pool and exit the inner loop. If neither 

of these conditions occurs, then the inner loop is not exited, and a new unmarked w 

is selected. 

The neighbor pool is always of size bounded by a constant. This is because the 

number of neighbors of every vertex is bounded, and no more thank vertices are ever 

in S'. The process continues until a subset size of k is reached, or until no neighbor in 

the neighbor pool can be pulled into the subset. One of the inner loop terminating 
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conditions occurs in O(p( n)) time. D 

2.2.3 More on Decision and Search 

Theorem 2.4 The decision version of MDGP(k,d) can be solved in linear time. 

Proof In linear time, any graph containing a vertex with at least k + d neighbors 

can be eliminated as a ''no'' instance. Otherwise, INk-i(v)I, Vv EV is bounded by a 

constant; ICvl for each vis of constant size; the set of all kd-candidate subsets can be 

computed in linear time: and by the Locality Condition, a solution exists iff each set 

is nonempty. D 

Theorems 2.3 and 2.4 yield a quadratic time search algorithm for MDGP(k,d). 

However, we can do even better than that. 

Theorem 2.5 The search version of MDGP(k,d) can be solved in linear time. 

Proof If a solution is known to exist. one can be constructed as follows. Find an 

arbitrary kd-candidate subset for each vertex. This can be done in linear time, since 

the complete set of kd-candidate subsets for each vertex can be computed in constant 

time. Eliminate overlapping as described in the proof of Lemma 2.4. As per the 

discussion following that proof, this can be done in linear time. D 

It must be pointed out that. although solving MDGP(k,d) is asymptotically ef-

ficient, in practice this is not really the case. This is due to the large constants of 

proportionality introduced by our methods. The search algorithm for MDGP(k,d) 

consists of two parts: 1) finding kd-candidate subsets for each vertex, and 2) elimi-

nating overlapping. The second part is quite efficient, as discussed following the proof 

of Lemma 2.4. This is not the case, however, for the first part. 

Finding a kd-candidate subset containing some vertex v can be done by examining 

every possible combination of at most k-1 vertices from Nk_i(v). Since INk-i(v)I 
Ck-1 - 1 c1c_1 , the constant of proportionality for this method is bounded by I::7::-J ( 
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2k 2k 
> I:7::-J ( ) > ( ) > (2k;~{ 2 )k. It may not be necessary to consider all of 

i k - I 
these combinations, since a kd-candidate subset must be connected. However, the 

multiplicative constant Ck-I introduced by the size of Nk-I ( v) remains, and this is 

exponential in k. 

Although the constants of proportionality of these methods are large and pro-

hibitive, they pale in comparison to those introduced by WQO methods. WQO 

constants arise from testing for minor containment, which consists of "towers of 2's" 

functions. See [FLl], [BL], and [RSl] for more on this subject. 

2.2.4 Obstruction Sets 

If the obstruction set for an immersion-closed family of graphs is known, then a 

constructive decision algorithm automatically exists. Unfortunately, there exist very 

few examples of immersion- or minor-closed families of graphs for which complete 

obstruction sets have been isolated. As an example of the difficulty of identifying 

complete obstruction sets, the reader is referred to [KiL], the major result of which 

is the identification of the complete 110-element obstruction set for a single instance 

of a minor-closed family of graphs. 

In this section, we show that, given any fixed k and d, the obstruction set for 

MDGP(k,d) is computable. This enables the generation, in principle, of the obstruc-

tion set for any fixed-parameter instance of MDGP. Such a task is formidable in its 

magnitude, however, as we shall see later. 

Observation 2.2 An obstruction to MDGP(k,d) contains at most d + l copies of 

any edge 

Lemma 2.5 An obstruction to Iv!DGP(k,d) contains at most ck vertices. 

Proof Suppose G is an obstruction to MDGP(k,d), with IVI > Ck. Because G is a 

"no" instance, by the Locality Condition there exists some v such that Cv = 0. By 
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Lemma 2.2 there exists some w E V such that w ¢:. Nk( v ). Consider G' = G - { w}. 
Because every element in Cv must be drawn from Nk_i( v), Cv for G' is also empty. 

Thus. by the Locality Condition, G' is a "no" instance, so G was not minimal. D 

Theorem 2.6 The obstruction set to MDGP(k,d) is computable. 

Proof By Lemma 2.5 there is a bound on the number of vertices in an obstruction, 

and by Observation 2.2 the number of copies of any edge in an obstruction is bounded. 

The obstruction set can be computed by generating and checking the finite number 

of graphs that satisfy these bounds. D 

Although this is a finite number, it is very large. The upper bound on the number 

of vertices is ck, with at most ck
2
~ck edges, each of multiplicity up to d + l. As a 

rough upper bound on the number, we consider the number of labelled simple (p, q) 
p 

graphs (graphs with p vertices and q edges). This number is given by ( ( 2 l ) ([HP]). 
q 

A better, but still inexact. bound would be 9p, the number of unlabelled graphs of p 

vertices, although even this would not take into account edge multiplicity. 

Counting unlabelled graphs is difficult (see [HP] for a thorough discussion of this 

topic). The precise answer for gP is known, but cannot be stated simply. An approx-
( p ) 

2 
imate answer of gp ~ -2 -,- is also known ([Wi]). This number is greater than 2P for p. 

p 2:: 10, which can be seen as follows. 
I P l 2 

Vv'e note that -2 -
2
- = 2( r 2-Pi = ((v2)P-i )P > ( (v2)P-i )P. This last quantity is larger p! p! p! p 

than 2P when ( \/'2)P-l > 2p. which is always the case when p 2:: 10. 

Figure 2.5 shows some sample MDGP(k,d) obstructions for small values of k and 

d (note that MDGP(k,d) obstructions must be connected). From these examples, 

several structural observations are evident. For example, Ck+l is an obstruction for 

MDGP(k,1); a graph with one vertex v of degreed+ l and no other vertices except 

for v·s immediate neighbors is an obstruction for MDGP(l,d) (which, in the case of 

simple graphs. is a star graph). 
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Figure 2.5: Some MDGP(k,d) obstructions 
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We next show that there is an exponential lower bound on the size of this ob-

struction set. We do this by completely characterizing the simple tree obstructions 

to MDGP(k,d), and then showing an exponential lower bound on trees satisfying this 

configuration. Thus, all trees defined and discussed in the remainder of this section 

are simple. 

We define a kdq-tree Tkdq, for 1 :S q '.S k as follows: 

l. Tkdq contains a vertex c with IN(c)I = 6(c) = d + q. 

2. Some set of q neighbors of c form the roots of subtrees. These subtrees are of 

sizes s 1, s2, ... , sq, where s1 + s2 + ... +Sq = k. 

3. Each of the remaining d neighbors of c forms the root of a subtree of size 

max(si), 1 :Si :Sq. 

Figure 2.6 shows a sample kdq-tree for k = 8, d = 2, q = 2. Figure 2.7 shows all 

of the kdq-trees for k and d ranging from 1 - 3. 

For any tree T and vertices u, vl:luv E Er, we will denote by Tuv the connected 

subtree of T - uv with root v. Any such connected subtree, relative to some vertex 

u, will be referred to as a subtree of u. 

Lemma 2.6 Any kdq-tree Tkdq is a ''no" instance to MDGP(k,d). 

Proof Assume some Tkdq is a ''yes'' instance. Consider any subset S containing c in a 

satisfying partition of Tkdq· For each subtree Tcy of c, one of the following must hold: 

l. y i S. The degree of S is at least one for each such y. 

2. y E S, but Tcy not entirely included in S. The degree of S is at least one for 

each such y. 

3. y E S', and Tcy entirely included in S'. 
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Figure 2.6: A kdq-tree (k = 8, d = 2, q = 2) 
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Figure 2.7: kdq-trees 
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Since the size of S is bounded by k, and by the definition of Tkdq, there can be at 

most q - l y's of the third type. The total number of y's is d + q, therefore there are 

at least d + l y's of the first and second types, each contributing at least one to 6(S). 
This contradicts the assumption that Tkdq was properly partitioned. D 

Lemma 2.7 Any kdq-tree Tkdq is a minimal "no" instance to MDGP(k,d). 

Proof To show that Tkdq is minimal, we must consider the graph obtained by any 
immersion operation, and show that some partition P exists. An immersion operation 

can be one of 1) edge removal; 2) vertex removal; or 3) lifting a pair of adjacent edges. 

Before considering each of these operations in turn, we examine four scenarios: 

Scenario 1: Suppose the degree of e is reduced by one of these operations: 1) 
removal of an edge ex or 2) removal of a vertex x adjacent to e. In either of these 

cases, at least one edge ex is removed. By the definition of kdq-tree, there exist q - l 

subtrees of e, not including Tex, of total size no more than k - l. A subset S of size 
no more than k can be formed consisting of these q - l subtrees along with e. The 
degree of e was reduced to at most d + q- l by the immersion operation, and at least 

q- l subtrees of e have been included in S, which is therefore of degree no more than 
d. What remains of Tx can be partitioned into a subset by itself, as can the other 

subtrees of c. Each of these subsets is of size no more than k, and degree 1 or 0. 
Scenario 2: Suppose two edges uc and cw, both incident on e, are lifted. By the 

definition of kdq-tree. there exist q - 1 subtrees of c, not including Tcu, of total size 
no more than /,; - 1. A subset S of size no more than k can be formed by taking the 
union of c with these q - l subtrees. The degree of c was reduced to at most d + q - 2 

by the immersion operation. and at least q - l subtrees of c have been included in S, 
which is therefore of degree no more than d. All other subtrees of e can be partitioned 

by themselves into subsets of degree 1. 

Scenario 3: Suppose some immersion operation does not reduce the degree of e, 
but disconnects the graph. There would then exist some set of at least q subtrees of e 
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of size no more thank - l, along with some disconnected component. The q subtrees 

could be partitioned along with c into a subset of degreed and size no more than k. 

The remaining subtrees of c could be partitioned into subsets of size no more than 

k and degree 1. The disconnected component could be partitioned by itself into a 

subset of size no more than k and degree 0. 

Scenario 4: Suppose some immersion operation does not reduce the degree of c or 

disconnect the graph, but results in reduction in the size of some subtree of c. This 

situation is the same as Scenario 2, except that there is no disconnected component. 

D 

We now examine each of the three immersion operations in turn. 

1. Edge removal. If an edge adjacent to c is removed, Scenario 1 results. Otherwise, 

Scenario 3 results. 

2. Vertex removal. If the vertex removed is c, each subtree of c fits into a subset 

of size no more thank and degree 0. If the vertex removed is one adjacent to c, 

we have Scenario 1. If the vertex is of degree 1, we have Scenario 4. Otherwise, 

we have Scenario 3. 

3. Lifting a pair of adjacent edges. If both of the lifted edges were incident on c, 

we have Scenario 2. Otherwise, the result is Scenario 3. 

Lemma 2.8 For any tree T, and any v E Vr with o( v) > d, any kd-candidate subset 

C including v includes at least J( v) - d entire subtrees of v. Additionally, if any set 

of at least 6( v) - d entire subtrees of v is of total size at most k - 1, these subtrees, 

along with v. form a hf-candidate subset. 

Proof Suppose C is a kd-candidate subset for v, but includes fewer than o(v)-d 

entire subtrees of v. Then C excludes part of more than o( v) - ( o( v) - d) = d 

subtrees of v, each of which contributes at least 1 to the degree of C, and thus C is 

not a kd-candidate subset including v, a contradiction. 
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For the second statement of the lemma, we need only determine the degree of 

the subset, because its size is at most k, and it is connected. The degree of the 

subset is exactly 1 for every excluded subtree of v, and this number is no more than 

8( v) - ( 8( v) - d) = d. Therefore, the subset is of degree no more than d, and satisfies 

the definition of kd-candidate subset including v. 

We observe that Lemma 2.8 also holds for forests. 

Lemma 2.9 Any tree obstruction to MDGP(k,d) is a kdq-tree. 

Proof Suppose we have a tree obstruction T. Because T is a "no" instance, by the 

Locality Condition there exists some vertex v E V(T) that has no kd-candidate subset. 

Because v has no kd-candidate subset, 6'( v) > d, and because T is an obstruction, by 

Observation 2.1 o( v) :S d + k. For 1 :S q = o( v) - d '.S k, we have: 

1. T contains a vertex c = v with IN(c)I = 8(c) = d + q. 

Suppose that, associated with this vertex c, there exists a set of q subtrees of c 

containing a total of fewer than k vertices. Then, by Lemma 2.8, c would have a 

kd-candidate subset. Therefore, every such set of q subtrees of c contains at least k 

vertices. 

To see than no such set contains more than k vertices, note that removal of any 

vertex of degree 1 from any subtree of c would still yield a set of q subtrees of c 

containing at least k vertices, and by Lemma 2.8, c would still have no kd-candidate 

subset. Thus such a T would not be minimal. 

We conclude that: 

2. Some set of q neighbors of c form the roots of subtrees. These subtrees are of 

sizes s1, s2, ... , sq, where s1 + s2 + ... +sq= k. 

Now, consider the remaining d neighbors of c, and the subtrees of which they are 

roots. By reasoning analogous to that above, we note the following: if one of these 

subtrees is of size less than max(s;), 1 :S i :S q, then c has a kd-candidate subset; if 

one of these subtrees is of size greater than max( si), 1 :S i :S q, then Tis not minimal. 

Thus it must be the case that: 
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3. Each of the remaining d neighbors of c forms the root of a subtree of size 

max(si), 1 ::; i::; q. 

Therefore, by 1, 2, and 3, T satisfies the definition of kdq-tree. 

Theorem 2. 7 A tree is an obstruction to MDGP(k,d) iff it is a kdq-tree. 

Proof Follows from Lemmas 2. 7 and 2.9. 

We now address the issue of a lower bound on the size of the MDGP(k.d) obstruc-

tion set. 

Theorem 2.8 Wnen k > d + 4, the size of the obstruction set of MDGP(k,d) is at 
least max{2d+l, 2k- 3 }. 

Proof Consider any tree consisting of a root vertex with d + 2 children: one degree-1 

vertex, and d + l roots of arbitrary Tk-l trees (trees containing k - l vertices). (See 

Figure 2.8.) Any such tree is a kdq-tree; specifically it is a kd2-tree. By Theorem 2. 7, 

such a tree is an obstruction to MDGP(k,d). 

C'\ 0 V···V 
2 d+J 

Figure 2.8: A general tree obstruction to MDGP(k,d) 
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We begin by examining the number of nonisomorphic rooted trees containing p 

vertices. (The topic of exactly counting rooted trees is thoroughly discussed in [HP]: 

here we seek only to show an exponential lower bound.) We show by construction 

that the number of nonisomorphic rooted trees with p vertices (p 2) is at least 2P-2 . 

For p = 2, we observe that there exists only one rooted tree containing 2 vertices. For 

p > 2, we construct 2 trees with p vertices for each nonisomorphic rooted tree Tp-I 

containing p-1 vertices. One of these trees consists of a new root vertex with the root 

of Tp-I as its single child. The other tree is identical to Tp-I, except for the addition 

of a new vertex of degree 1 incident on the root. Figure 2.9 shows the nonisomorphic 

rooted trees containing 2 - 5 vertices constructed by this method. The roots are 

double-circled in the figure. Arrows indicate the most recently added vertices. 

No two of these newly constructed trees are isomorphic. If they were, their roots 

would have to be of the same degree, hence they were constructed from nonisomorphic 

subtrees. Removing the most recently added vertex would yield isomorphic subtrees. 

r 
4 !\0--t 

0 

-@ 4 r-I 

f l~ 
6 

ll} r~r~ 
6 

Figure 2.9: Some nonisomorphic rooted trees 

34 



We observe that, in any graph matching the configuration of Figure 2.8, there is 

only one vertex that can be designated as c. Any other vertex that has one subtree 

of size 1 must have at least one other subtree of size exceeding k. 

The general obstruction shown in Figure 2.8 contains rooted subtrees with k - 1 

vertices each; hence even if all of these subtrees had the same configuration. the 

number of such obstructions is at least 2k- 3 . 

Additionally, this general obstruction contains d + 1 of these rooted subtrees. 

Even if no repetition were allowed in the configuration of these subtrees, the number 

of obstructions matching this configuration would still be bounded below by ( 2
•-

3 
) 

d+ I 

> ( 2kd-:;d )d+l > 2d+l when 2k- 3 > 3d + 2. This is always the case when k > d + 4. D 

It should be mentioned that the lower bound on MDGP(k,d) obstruction set 

size established here is quite loose. In addition to the omissions mentioned in the 

proof above, no attempt has been made to count kdq-trees in the case of q =f. 2. 

Furthermore, the MDGP(k,d) obstruction set includes many graphs that are not 

trees. Even without considering all of these possibilities, however, the MDPG(k,d) 

obstruction set is seen to be exponential in both k and d. 

2.2.5 Tractability on Restricted Classes of Graphs 

Thus far, we have considered the fundamental problem from a very general perspec-

tive. In reality, the graphs that serve as input to real instances of FPGA partitioning 

might not be so generalized. Circuits may, in fact, have a certain measure of under-

lying structure. Many circuit graphs are of treewidth at most two, a class of graphs 

known as series-parallel. In some situations it may even be possible to assume that 

the input graph is a tree or a forest, or even a simple tree or simple forest. Although 

the tractability of MDGP on most of these graph families is still an open question, 

we can show that MDGP, restricted to simple trees ( and hence, forests) is efficiently 

solvable. 

Theorem 2.9 MDGP. restricted to simple trees, is decidable in O(n 2 log n) time. 
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Proof Given a simple tree T, first check whether any vertex has degree d + k or more. 

If so, T is a "no" instance, because it contains an obstruction (the star graph with 

d+k vertices). 

Otherwise, for each v E T, do the following. If the degree of v is no more than d, 

then { v} is a kd-candidate subset for v. If the degree of vis more than d, we perform 

the following steps: 

1. Compute the size of each subtree of v. This takes 0( n) time. 

2. Sort the sizes of the subtrees of v. This takes 0( n log n) time. 

3. Check the total size t of the smallest b'( v) - d subtrees of v. This takes 0( n) 

time. 

4. If t is less than k, then v along with the set of smallest b'( v) - d subtrees of v 

form a kd-candidate subset, by Lemma 2.8. Otherwise, by Lemma 2.8, v has 

no kd-candidate subset. 

By the Locality Condition, if any vertex has no kd-candidate subset, then T is a 

"no" instance, otherwise it is a "yes" instance. 

The outer loop executes at most once for every vertex, and the inner loop is in 

0(n log n). Therefore. the complexity of this procedure is 0(n 2 log n). 

Because each simple tree can be handled independently, Theorem 2.9 generalizes 

to simple forests. 

We conclude this section by noting that the algorithm outlined in the proof of 

Theorem 2.9 is not designed for efficiency; our primary purpose here is to establish 

that the problem is in P. We conjecture that, by careful use of tree traversals and 

data structures, the complexity may be 0(n log n) or even better. 
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Chapter 3 

Extending the Fundamental 

Problem: FPGA Minimization 

The fundamental problem has given us a basis for theoretical study of FPGA parti-

tioning. In this chapter, we proceed further to incorporate one of the primary issues 

in VLSI design, that of cost minimization. 

3.1 Problem Definition and Prior Results 

Although some results have been obtained for MDGP and MDGP(k,d), the problem 

as stated is not entirely representative of the issues inherent in FPGA partitioning. 

MDGP is useful as a starting point, however, and can be generalized in ways that 

address other issues. 

A primary consideration in FPGA partitioning is cost. While we have shown 

algorithms that can decide whether an input graph is a ''yes" instance of MDGP(k,d), 

and while we can even find a feasible partition in linear time, thus far we have ignored 

the question of minimizing the number of subsets in a partition. Since the number 

of subsets in a partition represents the number of FPGAs used in the realization of a 

circuit (hence the cost). it is important that this issue be considered. 

37 



It is easy to modify the definition of the problem to accommodate this additional 

constraint, in a problem that we call FPGA Minimization: 

Instance: a graph G = (V, E), and three integers k, d and p. 

Question: Is there is a partition of V into disjoint sets Vi, . .. , Vm such that 

m p, Vi: l¼I k, and such that if Ei is the set of edges with exactly one endpoint 

in ½, max1$i$m/Ei/ d? 

FPGA Minimization is NP-complete, since it contains MDGP as a special case 

in which p = IV/. 
However, once again the physical limitations inherent in partitioning for FPGAs 

allow us to assume constant bounds on some of the parameters. Since the size and 

pincounts of the devices are constrained by the technology, we consider the variant of 

FPGA Minimization in which these two parameters are fixed. In this situation, which 

is more representative of the real problem of partitioning a circuit over the minimum 

number of FPGAs, we wish to minimize p, the number of subsets in a partition. We 

will refer to the decision version of this problem asp-way MDGP(k,d). Unfortunately, 

even this restricted version is very difficult. 

Theorem 3.1 (/Go}) p-way fl1DGP(k,d) is NP-complete. 

3.2 New Results 

In this section. we present a theoretical study of FPGA Minimization and p-way 

MDGP(k.d). We will also look at the version of the problem in which all three 

parameters are fixed, which will be denoted by MDGP(k,d,p ). We find that many of 

the results for MDGP(k,d) apply in this setting as well, although FPGA Minimization 

and its variants provide some curiosities of their own. Additionally, we learn that 

FPGA Minimization remains N'P-complete even on very restricted graph families. 

Since p-way MDGP(k.d) is of potential relevance in real circuit partitioning, in 
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this section we also turn our attention to the task of developing a practical algorithm 

to solve this problem. Because it is NP-complete, we know there exist no efficient 

exact algorithms (unless P = NP). For this reason, most researchers depend upon 

heuristics to provide quick and workable solutions. We will present a new approach 

that is motivated by the theoretical study of MDGP(k,d). 

3.2.1 Refining the Tractability of FPGA Minimization 

We begin with a further exploration into the tractability of FPGA Minimization. 

Specifically, we look at what happens when the input instance graph must conform 

to a certain structure. We find that even with severe restrictions, including some for 

which it is known that MDGP is in P, FPGA Minimization remains NP-complete. 

By Theorem 2.9, we know that MDGP, when restricted to simple forests, is in 

P. We also know that connectivity is not an issue for MDGP (each connected sub-

graph can be solved independently). In the case of FPGA Minimization, the problem 

remains NP-complete for disconnected graphs, even for forests in which each com-

ponent is a simple chain. This can be shown via an easy reduction from Partition 

[GJ]: 

Instance: a finite set A and a "size" s( ai) E z+ for each ai E A, 1 :S i :S IAI. 
Question: Is there a subset A' .4 such that 

L s(ai) = L s(ai)? 
a;EA' aiEA-A' 

Given an arbitrary instance P of Partition, we construct in polynomial time an 

instance of FPGA Minimization. consisting of a graph G and integers k, d and p. G 

is composed of a disconnected collection of IAI simple chains, each corresponding to 
~IAI s(a) some ai E A, 1 :S i :S IAI and containing s(ai) nodes. We set k = l Lo-~ ' J, d = 0, 

and p = 2. 
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If Pis a "yes" instance of Partition, then G may be partitioned into 2 subsets, each 

of degree O and size k. The first subset contains the chains corresponding to the a;'s 

E A; the other contains the chains corresponding to the a/s E A'. Conversely, suppose 

G is a "yes" instance of FPGA Minimization for these values of k, d and p. Then, 

because d = 0, each chain corresponding to some ai is completely contained in one 

subset. There are 2 subsets, each of size k. Therefore one subset contains the chains 

representing the ai 's E A in some solution to P; the other subset contains the chains 

representing the a/s E A'. Figure 3.1 illustrates the FPGA Minimization instance 

produced from an instance of Partition in which !Al = 7, and s(ai) = 8, s(a 2 ) = 
7,s(a 3 ) = 5,s(a 4 ) = 3,s(as) = 3,s(a6) = 2,s(a1) = 2, with a satisfying partitioning 

indicated in dotted lines. 

The complexity of FPGA Minimization restricted to simple trees is still an open 

question, but we have the following result for FPGA Minimization on trees. 

Theorem 3.2 FPGA Minimization, restricted to trees, is NP-complete. 

Proof Given an instance P of Partition, we construct a tree instance of FPGA 

Minimization as follows. G consists of !Al nonsimple chains, C1 , C2, ... , CiAI, with Ci 

containing s( ai) nodes and every edge having multiplicity IAI + l. 

;°\ /\ //\0 1 1 \\ J \\ 
J 

. ·a· -----············ 

\ \ I\ I\ 

Figure 3.1: A disconnected instance of FPGA Minimization 
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Additionally, G contains a root vertex v connected by one edge to each Ci, and 
LIAI 

also connected by one edge to l'-k s(a,) J - 1 other vertices, v1, v2, . .. , v :"'IAI , a 
L ~. ( il J-1 

'l;"""'IAI 
Finally, k = l L,.,,-k s(ai) J, d = IAI, and p = 3. Figure 3.2 illustrates the tree FPGA 

Minimization instance produced from a Partition instance in which IAI = 4, and 

s(a 1 ) = 4.s(a 2 ) = 3,s(a 3 ) = 2,s(a 4 ) = 1. 

If P is a ''yes" instance of Partition, then G may be partitioned as follows. One 

subset, of degree IAI = d, contains v and v1, v2, ... , v :"'IAI , a , and is of size 
Lb-'•-~ ( ,J J-1 

'\'IAI 
l L..,j-k s(a,) J = k. There are 2 other subsets, one containing all the chains correspond-

ing to the Si's in A, the other containing all the chains corresponding to the Si's in 
'\'IAI 

A'. Each is of size l L,,,,-k s(a,) J = k, and of degree no more than JAi = d. 

Figure 3.3 shows the partitioning of the tree instance of Figure 3.2. Each subset 

is outlined in dotted lines. 

Figure 3.2: A tree instance of FPGA Minimization 
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Figure 3.3: Partitioning a tree instance of FPGA Minimization 

Conversely, suppose G is a "yes" instance of FPGA Minimization. We observe 
,:---IAI 

that the subset S containing v must also contain l L,..,i-b s(a;) J - 1 subtrees rooted by 

v:s neighbors, otherwise the degree of S would exceed IAI = d. All of these subtrees 
,:---IAI 

must be of size 1, otherwise the size of S would exceed k = l L...,=h s(a;) J. Therefore, 

S contains v and v1, v2 , .... v LIAI ·) . Each chain representing some ai must be s(a l ,- I J -1 
completely contained in one subset, and there can be no more than 2 other subsets, 

. LIAI s(a,) each of size l ,-h J = k; therefore each of these subsets represents either A. or A' 

in a solution to P. 

This result generalizes to show that, for non-simple graphs, FPGA Minimization 

is .1/'P-complete for many classes of graphs, including series-parallel graphs, and all 

graphs of bounded treewidth. 

Table 3.1 summarizes, for comparison, the complexity results for MDGP and 

FPGA Minimization. 
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Table 3.1: Complexity of MDGP and FPGA Minimization 

Graph Class MDGP I FPGA Minimization I 
General Graphs NP-complete NP-complete 

Simple trees in P unknown 

Trees unknown NP-complete 

Simple forests in P NP-complete 

Forests unknown NP-complete 

Simple Series-Parallel Graphs unknown unknown 

Series-Parallel Graphs unknown NP-complete 

Simple Graphs of Bounded TW unknown unknown 

Graphs of Bounded TW unknown NP-complete 

3.2.2 MDGP(k,d,p) Results 

In this subsection, we present some findings pertinent to MDGP(k,d,p ), the version 

of FPGA Minimization in which all three parameters are fixed. MDGP(k,d,p) is 
somewhat of a curiosity. When all three parameters are fixed, we find that WQO 

theory applies ( the '·yes" family is closed under immersion). At the same time, how-

ever, fixing all three parameters trivializes the problem from a complexity perspective. 
Any graph with more than k x p vertices is a "no" instance, thus the problem can 

(in principle) be solved in constant time by table lookup. 

In practice, however, the time required to construct such a table is prohibitive; 
MDGP(k.d,p) cannot be practically solved in this manner. It may still be beneficial to 
examine this problem from a WQO-theoretic point of view, in hopes of finding a fast 

obstruction-based heuristic. For example, in [GLR], it was shown that an obstruction-

based heuristic for Layout Optimization ( a problem closed under the minor order) was 
extremely effective, if not exact. This heuristic was based upon the observation that 

the vast majority of ''no" instances contained one of a very small set of obstructions, 
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all of which had fast containment tests. 

Self-reduction 

At this time it is unknown whether there exists a fast obstruction-based heuristic for 

MDGP(k,d,p ). If an efficient decision heuristic were found, however, it could be used 

together with a fast self-reduction algorithm. We now show that such a self-reduction 

exists. It assumes G = (\·. E) is a "yes" instance (this can be checked with the 

decision algorithm) and then constructs a solution as outlined subsequently. 

A set of p ( or fewer) "core" vertices ( representatives of distinct subsets) is identified 

as the algorithm progresses (initially this set is empty). Each vertex v is tested to 

see if its commitment to the same subset as some core vertex c still results in a "yes" 

instance (the commitment is done by adding d + 1 edges between v and c). If the 

resulting graph is still a "yes" instance, the added edges are retained, forcing those 

vertices to occupy the same subset during the remainder of the algorithm. If the 

resulting graph is a ''no'' instance for every candidate c, then v is a new core vertex, 

and will never be assigned the same subset as any other core vertex. Since the graph 

was a "yes" initially, at most p vertices will be designated as core vertices. Each vertex 

is tested with at most p other vertices. Since p and d are constants, the algorithm 

runs in linear time. 

Obstruction Sets 

A decision algorithm based on table lookup for this problem is certainly infeasible, 

because of the large number of '·yes" instances. One might entertain the concept of 

an obstruction-based approach instead, if one could be devised that used only a small 

subset of obstructions in an efficient manner. Although we have no positive results 

in this direction, we present here some findings on the size of the MDGP(k,d,p) 

obstruction set. At this time. these results are of no known practical value, and are 

included solely as a combinatorial exercise of unknown potential for future use. 
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Lemma 3.1 Any graph consisting of p (d + l)-regular (d + l)-edge-connected (k- l)-

components, along with a 2-vertex component connected by d + l edges, is an obstruc-

tion to MDGP(k,d,p). 

Proof Let G be any such graph. We first show that G is a "no" instance to 

MDGP(k,d,p). (See Figure 3.4 for sample (d + 1)-regular (d + 1)-edge-connected 

(k-1 )-components fork = 10, d = 7.) Each (k-1)-component must be self-contained 

in a subset, because of its ( d + l )-edge-connectivity. The 2-vertex component can-

not be separated into two subsets, since the vertices are connected by d + l edges. 

Additionally, the 2-vertex component does not fit into any subset containing a ( k-1 )-

component. Therefore, a satisfying partitioning of G requires p + l subsets. 

Next we show that G is minimal. Removing any vertex from the 2-vertex compo-

nent allows the remaining vertex to fit into a subset with any ( k - l )-component. 

Figure 3.4: Some 8-regular, 8-edge-connected 9-components 
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Removing any vertex from a (k - 1)-component allows the remainder of that compo-

nent to fit into a subset with the 2-vertex component. Removing an edge from the 

2-vertex component allows its two vertices to fit into subsets with any two (k - 1)-

components. Any other immersion operation causes some vertex v from a ( k - l )-

component to have its degree reduced to no more than d. A satisfying partitioning 

can then be done by placing v into a subset with some other (k - 1)-component, and 

placing the 2-vertex component with the remainder of v's component. D 

Lemma 3.2 The number of (d + l)-regular (d + l)-edge-connected (k - l)-graphs is 

proportional to kd. 

Proof We consider here the case where dis odd (asimilar construction applies when d 

is even). A (k-1 )-cycle, in which each edge appears d!I times satisfies the definition 

of ( d + l )-regularity and ( d + l )-edge-connectivity. Consider any u, v, w, x in this 

graph, such that u =/= v =/= w =/= x, and /uvl = /vwl = /wxl = diI. The graph 
obtained by removing one copy of uv and one copy of wx, and adding uw and vx is 

still ( d + l )-regular and ( d + l )-edge-connected. This can be repeated ½ * ( df - 1) 

times to produce ½ * ( d!l - 1) nonisomorphic ( d + l )-regular ( d + l )-edge-connected 

( k - l )-graphs. D 

Theorem 3.3 The size of the set of immersion-minimal elements of fixed-parameter 

MDGP{k,d,p) is at least exponential in p. 

Proof By Lemma :3.2, we know that there are O(kd) (d + 1)-regular (d + 1)-edge-
connected (k - 1)-components. By Lemma 3.1, any graph consisting of p such com-

ponents ( along with the 2-component) is an obstruction to MDGP(k,d,p ), and there 

are at least 0( P +P kd ) = 0( (PP;:;)') such graphs. When kd > 2p ( a likely situation in 
FPGA partitioning) (p+kd)! > kdP > 2P. , p!kd! pP 

There are some cases when the MDGP(k.d) obstruction set is completely con-
tained in the MDGP(k,d,p) set. In the most general setting, then. the obstruction 
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set for MDGP(k,d,p) is larger than that for MDGP(k,d). It can contain the entire 

MDGP(k,d) obstruction set, along with exponentially (in p) many more obstructions. 

3.2.3 p-way MDGP(k,d): A Practical Heuristic 

As observed earlier, p-way MDGP(k,d) is of practical significance, in that it describes 

the problem of partitioning a logic circuit to fit onto a minimum number of FPGAs. 

The decision version of the problem is NP-complete, so no practical exact algorithms 

are known. It is, however, a well-studied problem, and many efficient heuristics have 

been proposed for it. This will be discussed in more detail later on. 

In this section, we explore some of the issues involved, including some of the 

difficulties of applying theory to practice in this setting. We then present a new 

heuristic for FPGA Minimization that employs some of the traditional approaches, 

but is also driven in part by theoretical results. 

Circuit Characteristics 

vVe begin with an overview of the process of converting a logic design into a format 

suitable for partitioning. 

A combinational logic circuit may be represented as a directed acyclic graph 

(DAG), in which nodes represent I/O and boolean functions. At this level of repre-

sentation, the functions consist of primitive gates. Directed edges represent the flow 

of output from one node to input of another. 

As mentioned in Section 1.2, the FPGA contains a set of CLBs, each of which is 

a look-up table. A look-up table is a programmable logic block with x inputs and y 

outputs. It is capable of simultaneously implementing any set of y functions over x or 

fewer inputs. Typically, the number of inputs is approximately four, and the number 

of outputs two, but this varies somewhat for different FPGA types ([X]). 

An important step in the process of converting a circuit from a design consisting 
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of gates to an implementation with CLEs is that of technology mapping. This is the 

process of splitting the design into communicating components, each of which can be 

realized with a single CLE. Technology mapping is itself a complex process, and a 

topic of independent interest ([MR]). 

Partitioning the circuit over a set of FPGAs can be performed either before or after 

technology mapping, and there are pros and cons to both choices. Partitioning before 

technology mapping allows the partitioner more latitude, in that technology mapping 

forces an early commitment of gates to the same CLE. On the other hand, technology 

mapping greatly reduces the complexity of the circuit. An FPGA typically has 20-30 

times more gates than CLEs ( [X]). Thus the partitioning instance is simpler at the 

CLB level than the gate level. Experiments were performed in [We] to compare the 

two approaches, and the results of these experiments indicate that it is preferable to 

perform technology mapping first. 

In what follows, therefore, we assume that the logic circuit has already been tech-

nology mapped. Our instance then consists of a set of CLBs with interconnections. 

In addition, there are inputs to the system called primary inputs (Pis) and outputs 

called primary outputs (POs ). The graphical instance remains directed and acyclic 

after technology mapping. Vertices representing Pis have no incoming edges, and 

vertices representing POs have no outgoing edges. The precise function performed by 

each CLB is of no consequence to the partitioner. 

Figure 3.5 illustrates a simplified example, consisting of three CLBs, each with 

two inputs and one output. There are two Pis and one PO. 

A net in a circuit is a set of pins (I/O's of the chip or of the CLBs) connected 

by the same wire. A netlist is a list of nets. In the circuit of Figure 3.5 the netlist 

consists of five nets: { P fl . .4}. { P 12. A, C}, {A, B, C}, {B, POl }, and {B, C}. Two 

of these nets ( { .4, B, C} and { B. C}) are internal, in that they are not connected to 

any PI or PO. Nets that are connected to I/0 are said to be external. 

When partitioning a circuit over FPGAs, if two ( or more) CLBs connected by an 
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Figure 3.5: An example circuit 

internal net are placed onto different FPGAs, each of the FPGAs containing one of 

these CLBs will require one I/O pin to accommodate that net. In graphical terms, 

such a net contributes 1 to the degree of each subset. Any external net will require 

one I/O pin on an FPGA if any CLB in that net is contained on the FPGA, even if 

all CLBs involved in the net are partitioned onto the same FPGA. 

At this point, we become aware of some discrepancies between our theoretical 

model and applications. There are three primary issues: 

1. Our model consists of an undirected graph, while circuits have direction (from 

Pls to POs). For the purposes of FPGA partitioning, it turns out that this is not 

a problem. because the FPGA is programmable. I/O pins may be programmed 

in either direction. Thus, we may safely ignore direction in our theoretical 

model for partitioning. 

2. In our graphical representation of a circuit, each node represents a CLB. and 
edges represent connections between CLBs. However, from the above discus-

sion, it is clear that edges between CLBs and Pis/POs play an important part 

in the partitioning process. For example, if the circuit in Figure 3.5 were parti-

tioned to fit onto a single FPGA, the subset representing that FPGA would still 

need to have a degree of 3, representing the nets required for the Pis and PO. 

Fortunately. for theoretical purposes we can also accommodate this shortcoming 
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with graph gadgets. Every PI and PO can be represented as a ( d + 1 )-edge-

connected k-component, and the parameter p in FPGA Minimization can be 

incremented by the number of Pis and POs. 

3. The third issue is not so easily dismissed. When converting a circuit into its 

graphical counterpart. we note that many of its nets require hyperedges: edges 

with more than two endpoints. We could change a hypergraph into an ordinary 

graph by converting each hyperedge into a clique: a set of vertices all of which 

are connected to each other. This "fix" would preserve connectivity information. 

However, Figure 3.6 illustrates what happens when a hyperedge consisting of 

vertices { a, b, c} is converted to a clique. In the example, nodes a and b have 

been partitioned into one subset and node c into another. In the hypergraph 

representation, each subset has a degree of 1; in the simple graph representation, 

each subset has a degree of 2. Such a "fix" can never cause a partitioner to find 

a partitioning for a ''no" instance, however, it could fail to find a partitioning for 

a "yes" instance. Converting a hypergraph to a simple graph, for the purposes 

of partitioning, is a well-known issue, and it has been speculated in [Le] that this 

cannot be done in a way to preserve complete correspondence. The heuristic 

that we will present handles hypergraphs. In later sections, we find ways to 

deal with hypergraphs from a theoretical point of view . 

• r------; p 

\ 
C C 

Figure 3.6: Partitioning a hypergraph and a simple graph 
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Prior Work 

Circuit partitioning is a widely studied problem. It has been formulated in many 
ways, and many different types of heuristics exist. See [AK] for a quite comprehen-

sive survey. Partitioning specifically for FPGAs has also been well researched. See 

[CLCDL], [HK], [KBK] and [WK] for several examples. 

These heuristics vary greatly, but they sometimes contain some common elements. 

There may be a clustering phase, in which CLBs are committed to sharing FPGAs 

early in the partitioning process. This is often done in a greedy fashion. There is 
often an element of randomization, perhaps in the choice of initial CLBs for clustering. 
Randomization allows the potential for different partitioning runs to produce different 

results; usually the partitioner is run many times and a best solution chosen. Another 

element that is almost always present is some kind of iterative improvement phase, 

usually based on swapping the placement of individual nodes in order to improve the 
quality of an existing partition. See [KL] and [FM] for a thorough discussion of these 

techniques. 

A New Approach 

The heuristic we present here has many of the same characteristics as other known 
heuristics. It differs in that it was initially motivated by the theoretical study of 

MDGP and FPGA Minimization, and is driven by some of those ideas. 

I\fany heuristics rely very heavily upon the iterative improvement phase; indeed 
some heuristics even begin with an arbitrary partitioning and depend solely upon 
iterative improvement. This appears to work reasonably well when the objective 
function is to minimize the number of connections between subsets, without regard 

for minimizing the number of subsets. Because we seek to minimize the number of 
subsets, this strategy alone is not of much use, because it does not incorporate any 
wav to eliminate subsets. 
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In our heuristic, we attempt to concentrate more on the early clustering phase, 

and less on later improvement. We build our subsets one at a time, with a strong 

focus on the efficient packing of each subset. After each new subset has been created, 

an iterative improvement pass is made over that subset and all other existing subsets. 

This iterative improvement phase attempts to swap CLBs from subset to subset in 

such a way to improve their packing, in order to make room for more CLBs in each 

subset. This will be described in more detail later. 

By the lemmas and theorems presented in Chapter 2, we know that we can (in 

principle) efficiently find a solution to MDGP(k,d). This can be done by exploiting the 

Locality Condition: if a solution exists, we can find it by confining our search for kd-

candidate subsets to a bounded-size neighborhood for each vertex. No vertex v need 

ever share a subset with another vertex not in Nk-I ( v ). This property no longer holds 

generally for FPGA Minimization. Indeed, Figure 3.7 shows a graph that can only 

be partitioned properly by violating this "near neighborhood" property, assuming 

k = 2, d = 2, and p = 2. 

Nevertheless, it still seems reasonable to begin with clusters from a bounded-size 

neighborhood. Even though graphs can be contrived to thwart almost any heuristic 

approach ( see [Go] for a discussion of this topic), our experiments ( results to fol-

low) indicate good results from confining the search for cluster expansion to near 

neighborhoods of the initially chosen vertex. 

o---o<C3>0---o 

Figure :3.'i: An instance of FPGA Minimization 

52 



Although many partitioning algorithms are not designed for hypergraphs, for pur-

poses of FPGA partitioning we must cope with graphs containing hyperedges. The 

primary data structures for the program are the CLB lists and the netlists, both of 

which are maintained as linked lists of pointers crossreferencing each other. For the 

circuit illustrated in Figure 3.5, the CLB list and netlist data structures are as in 

Figure 3.8. 

The general strategy we present here for FPGA Minimization is quite simple. The 

main partitioning algorithm, FPGA_Min is as follows: 

Algorithm FPGA_Min 

num_subsets +- 0 
do 

num_subsets +- num_subsets + 1 
randomly select a seed CLB for the new subset 
expand_subset 
if num_subsets > 1 

improve_partition 
until all CLBs assigned 

The only routines that need further explanation are expand_subset and zm-

provcpartition. 

In procedure expand_subset, the current subset is expanded from some randomly 

chosen initial CLB v. The expansion is done by selecting the best candidate CLB 

from N,.,_i( v ). The best CLB is the one which, when added to the current subset, 

yields the highest value. Value is calculated using the following formula: 

subseLsi;;;e . 
value= b d + (subseLszze * SIZE_BONUS) su set_ egree 
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' ' 

CLB LIST: NET LIST: 

II Name:C;J l)N,vnhcrofCLBs: I: 

CLB list: H ______ : 
Numherof nc ·: Net tyre: External : 

Netlisr 

l)Name:CLBB 

...1.. 

2) Numhcr of CLBs: 2 

Net type: External 
-----------· 

CLB list: B--B-i-·---------: 

L..:::=== 3) Numhcrof CLBs: 3 ' 
Net type: lntcrn\11----------------+-; 

CLB list: ~:::::(;-

4) Numhcr nfCLBs: 2 

Net type: Internal 

CLB list: B-Bi _______ 

1 

5) Numhcrof CLBs: I 

Net type: External 

CLBlist: q---------·-·: 

' ' 
'-' - - --- --- ---------------- ----- -- _______________________________________ :: ... J~--· ----

---------------------------------------------------------------------------------:------------
-- ••••••• - ••••••• ••••••••••••••••••• ••••••• •••••••••••••••••••••••••••••••••••••••••L ••••••••••••••• 

' ' 
'-------------------------------------------------------------------------------------' 

Figure 3.8: Data structure for FPGA Minimization 
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This formula reflects the fact that, given two subsets of the same size, we favor the 

one with the smaller degree, and given two subsets of the same degree, we favor the 

one with the larger size. Additionally, in the case of more than one subset of identical 

subseLsize:subseLdegree ratio, the larger subset receives a higher value, via a posi-

tive value for SIZE_BONUS. In experimental runs, a value of 0.01 for SIZE_BONUS 

produced the best results, so this value was used throughout. Ties were broken arbi-

trarily. The process continues until no candidate CLB can be added without violating 

size or pincount constraints. 

The value formula given here is defined for an individual subset. It is used to 

guide the addition of new CLBs to an existing subset. The idea is somewhat similar 

to the ratio cut of [WC], a more sophisticated concept used as a metric of overall 

partition quality. The ratio cut between each two subsets is the number of edges 

between those two subsets divided by the product of the two subset sizes. 

The improve_partition procedure is a simplified iterative improvement algorithm, 

inspired by the method of [KL]. It iterates through pairs of CLBs that have already 

been mapped to subsets. If swapping CLB x from subset X with CLB y from subset 

Y produces an improvement in the sum of the values of the two subsets, without 

violating constraints, the swap is performed. At the end of each improve_partition 

execution, a check is made to see if any subset has been modified in such a way to 

admit additional CLBs to be added and, if so, the CLBs are added. If any more CLBs 

are added, improve_partition executes again. 

The outer loop executes at most once per CLB. The expand_subset routine 1s 

confined to Nk-d v) for seed CLB v. so its complexity is constant. 

The improve_partition routine is the most time-consuming step. It executes at 

most once per CLB pair, and then repeats if at least one new CLB can be added to 

any subset. (Repetition until no better solution is found is a characteristic of most 

iterative improvement procedures.) Therefore, improve_partition is of cubic complex-

ity, and the complexity of the overall algorithm is O(n 4 ). The algorithm performed 
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sufficiently well for our purposes. For this reason, and because this heuristic is not of 

significant independent interest, no attempt was made to improve this efficiency. 

Many attempts were made to extend this basic approach. For example, the im-

prove_partition procedure was modified to move one, two, or three CLBs in a single 

"swap." However, none of these attempts significantly improved the performance of 

the algorithm, and all increased its running time. 

It is of note that the iterative improvement phase of this algorithm differs from 

that of traditional [KL] and [FM] type algorithms. Usually these strategies allovv 

hill-climbing out of local minima as follows. At the beginning of each pass, every 

node is unlocked. As the pass proceeds, the algorithm iteratively selects, swaps and 

locks the module pair with the highest gain. Thus, in each iterative improvement 

pass, every module moves exactly once. If, at the end of the pass, any intermediate 

solution is an improvement over the solution at the beginning of the pass, the better 

solution is kept and the process repeats. During the iterative improvement phase 

of our algorithm, however, a swap is done only on pairs that allow immediate gain. 

This simplifies the iterative improvement phase, at the expense of eliminating the 

possibility of movement out of local minima. However, our experimental results have 

demonstrated that the technique is effective in this case, in terms of both solution 

quality and runtime, probably because the initial clustering itself is quite good. 

Experimental Results 

In spite of its simplicity, the heuristic we have discussed here for FPGA Minimization 

produces results that compare favorably with other known methods. For comparison 

purposes, tests were run over the standard partitioning benchmarks [Be], and results 

compared to those found by [CLCDL], [HK] and [KBK]. In each case, the circuits 

were technology mapped to an FPGA with a capacity of 64 CLBs and 58 I/Os. 
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The comparisons are tabularized in Table 3.2, in which the total number of FPGAs 

calculated for each circuit is given. For all but circuit c3540, we ran each test ten 

times, and selected the best partitioning result. Circuit c3540 was easy to partition 

into seven subsets, but we were only able to find a partitioning into six subsets on 

two of perhaps a thousand runs. It is difficult to compare runtimes, since these are 

unreported in most cases [CLCDL, HK, KBK]. However, our runtimes are very close 

to those that have been reported, but are not an improvement. 

It should be noted that, although our simple heuristic produces results that com-

pare favorably with other known heuristics, it does not outperform them, either in 

partition quality or runtime. In fact, two of the benchmark tests ( c3540, c6288) can-

not possibly be partitioned onto fewer FPGAs of capacity 64 CLBs. Therefore, no 

partitioner will ever demonstrate improvement in solution quality for these circuits 

in this configuration. An effort is presently underway to develop new benchmarks, 

that better represent current circuits [Al]. The heuristic we present here differs from 

many others in that it was motivated by the theoretical study of MDGP, but it may 

not necessarily represent advancement in circuit partitioning methods. One of its 

main purposes in this work is to serve as the first step in a two-step method for delay 

minimization, a topic we discuss subsequently. 

Table 3.2: Partitioning results 

circuit (CLBs, IOBs. nets) CLCDL HK KBK ours 

c:3540 ( 37:3. 72. 569) 6 6 .., 6 I 

c5315 (535. :301. 936) 12 12 11 11 

c7552 ( 611. 31:3, 10.57) 11 11 11 11 

c6288 (833, 64. 1472) 14 14 14 14 
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Chapter 4 

Extending the Fundamental 

Problem: Delay Minimization 

Although FPGA Minimization is a significant problem in the FPGA arena, there are 

other issues in addition to minimizing the number of chips utilized. One important 

concern is minimization of delay through the system. 

4.1 Problem Definition 

Recall that for the FPGA Minimization problem, the objective is to realize the system 

on as few chips as possible while satisfying constraints, in order to minimize cost. A 

Configurable Computing Machine ( CCM) system is often composed of a fixed set of 

FPGAs, and may also incorporate memory, a CPU, and other components ([VM]). 

Since such a system has a predefined number of FPGAs already available, the ''cost" 

of an implementation is the same regardless of the number of chips actually utilized. 

Within a static system of FPGAs, an important issue in a partitioning solution 

is the delay through the system. In this section, we turn our attention to this new 

problem variation, which we call Delay Minimization. 

Before presenting the formal definition of the problem, we introduce some new 
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concepts. 

A topology graph Ta is an undirected, simple graph that describes the connectivity 

of the FPGAs in a specific CCM system. The nodes of Ta are in one-to-one corre-

spondence with the FPGAs in the system. For every pair of FPGAs that are directly 

connected in the CCM, there exists an edge between the nodes of Ta representing 

these FPGAs. There are no other edges. 

A circuit instance contains primary inputs (Pis), primary outputs (POs) and 

CLBs. (Recall that Pis are the external inputs to the circuit, and POs are the 

external outputs.) Paths in a combinatorial circuit are acyclic, and flow from Pis to 

POs. Each such path begins with a PI, proceeds through a series of CLBs and ends 

with a PO. Each step in the path (from PI to CLB, from CLB to CLB, from CLB 

to PO) incurs a delay. The precise value of the delay depends upon the particular 

underlying hardware, although we may make some assumptions. 

In the case of a step from CLB to CLB, the delay depends upon the partitioning 

and the topology. During partitioning, "virtual" CLBs of a circuit instance are as-

signed to "physical" CLBs of FPGAs. Each FPGA is represented by one node of the 

topology graph Ta. The delay incurred by a step from CLB A to CLB B depends 

upon where these two CLBs are located relative to each other after partitioning. Com-

munication between two CLBs residing on the same FPGA chip will be less costly 

than that between two CLBs residing on different chips. Furthermore, communication 

between two CLBs residing on different chips will be less costly if those two chips are 

directly connected. V·le will use the terms delta_local, delta_neighbor, and delta_global 

to describe these three different delay values. 

If CLBs A and B both lie on the same FPGA chip, the cost of a step from A to 

B is delta_local. If these CLBs are on different FPGAs, but the FPGAs are directly 

connected ( as indicated by Ta), the cost of the step is delta_neighbor. The final 

possibility is that the CLBs are on different, unconnected FPGAs, in which case the 

cost of the delay is delta_global. 
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The actual values of these delays may vary from system to system. We can reason-

ably assume, however, that delta_neighbor is approximately ten times delta_local, and 

that delta_global is at least 50 percent greater than delta_neighbor. For our purposes, 

we will assume values of delta_local = 3, delta_neighbor = 30 and delta_global = 50 

[Bou]. We may also assume that the delay from a PI to a CLB, or from a CLB to a 

PO, is delta_local [Bou]. 

The critical path is the longest (in terms of delay) path from any PI to any PO, in 

the partitioned circuit. Given a partitioning P of some circuit instance represented 

by a DAGG, relative to some topology graph Tc, denote by cp(P) the delay of the 

critical path of P. In G, any node with no incoming edges is a PI, and any node with 

no outgoing edges is a PO. 

Vie now define Delay Minimization as follows. 

Instance: a directed acyclic graph G, a simple, undirected graph Tc, and three 

integers k, d and t. 

Question: Is there is a partition P of Ve into disjoint sets ½, ... , Vm such that 

1. m !Vrcl, 

2. "i/i : I½ j k. 

:3. if Ei is the set of edges with exactly one endpoint in½, max 1::;i::;mlEil d, and 

4.cp(P)::;t? 

The complexity of Delay Minimization follows in a straightforward manner from 

that of FPGA Minimization. 

Theorem 4.1 Delay l\iinimi:::ation is JVP-complete. 

Proof An instance of FPGA Minimization could be solved by Delay Minimization as 

follows. 

60 



The FPGA Minimization instance consists of a graph G, and three integers k, d, 

and p. We form an instance of Delay Minimization consisting of G', Tc, k', d' and t. 
To form G', we begin with G and then direct the edges as follows. For each edge 

uv E G', if we have already constructed in G' a directed path from u to v, then direct 

uv from u to v. If not, then direct uv from v to u. This can be done in polynomial 

time, and introduces no cycles in G'. Since G' is a DAG, it contains at least one 

source (PI) and one sink (PO). 

Ta consists of a graph containing p isolated vertices. The longest possible delay 

through G' is delta_local ( delay from some source node representing a PI to the first 

node representing a CLB in the critical path) +(IVc,I- 3)x delta_global + delta_local 

( delay from the last node representing a CLB in the critical path to some sink node 

representing a PO). Therefore, we set t = delta_local +( I Va, I - 3) x delta_global + 
delta_local + 1. Finally, k' = k and d' = d. 

The critical path of G' cannot exceed t in any partitioning satisfying the other 

constraints. Therefore, G, k, d,p is a "yes" instance of FPGA Minimization if and 

only if G', T G, k, d, t is a "yes" instance of Delay Minimization. D 

Analogously, it can be seen that Fixed-k, d Delay Minimization is NP-complete, 

and that Delay Minimization, like FPGA Minimization, remains NP-complete on 

many classes of graphs. 

We conclude this subsection by addressing a discrepancy between our theoretical 

model and the circuit it represents. Earlier we discussed ways to accommodate, in 

our graphical model, Pls and POs for MDGP and the FPGA Minimization. Recall 

that these problems were stated in terms of undirected graphs. In the case of Delay 
Minimization, some vertices already represent Pls and POs. However, these nodes 

do not represent CLBs, and hence must not be partitioned into the same subsets as 

nodes representing CLBs. 

The model can accommodate this requirement. To describe more accurately a real 

circuit instance, the graph representing the circuit could be augmented with chains 
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containing k - 1 nodes, one chain for every PI and PO node. Each edge in each chain 

is of multiplicity d + 1, and a chain is connected to every PI and PO node, by an 

edge of multiplicity d + 1. For Pis, all of these edges are directed toward the PI. For 

POs, all of these edges are directed away from the PO. Finally, the topology graph Tc 
is augmented with isolated vertices, one for each PI and PO. These "gadgets'' force 

each PI and PO to lie in a unique subset. Critical path computation can be modified 

to accommodate these changes, which are described for theoretical purposes only. 

4.2 A Practical Heuristic 

Delay Minimization differs from the other problems we have considered so far, m 

that it is defined over directed graphs. The WQO theory that we have discussed 

earlier in this work no longer applies. Notions of closure under immersion order 

and obstruction sets are undefined with regard to this problem. For this reason, 

and because Delay Minimization is NP-complete, we focus our efforts in this section 

toward the development of a new heuristic. 

As was the case for FPGA Minimization, the heuristic we present here works on 

hypergraphs, since real circuit instances contain nets with more than two endpoints. 

Many of the example circuits that follow contain such nets. 

4.2.1 Circuit Characteristics 

Consider again the circuit depicted in Figure 3.5, and reproduced here in Figure 4.1 

for clarity. 

This circuit has five paths. Suppose this circuit is to be implemented on a system 

with a 11·3 topology (three completely-connected FPGAs). Recall that we assume de-

lay penalties of 3 nanoseconds for delta_local and 30 nanoseconds for delta_neighbor. 

Some possible mappings and resulting delays are presented in Table 4.1. (The nota-

tion A: 1 denotes that CLB A is mapped to FPGA 1.) 
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Figure 4.1: An example circuit 

Table 4.1: Possible mappings for circuit 3.5 

II A:l B:2 C:31 A:l B:l C:2 j A:l B:2 C:l I A:l B:l C:l I 
36 9 36 9 

66 66 39 12 

PI2 B POI ;36 g 36 g 

66 66 39 12 

PI2 C B POI 36 36 36 9 

System Delay 66 66 39 12 
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In this particular example, it is always better to use fewer FPGAs, but this is not 

necessarily true, as we now demonstrate. 

Assuming k = 9, d = 4, Figure 4.2( a) illustrates a circuit whose delay is shorter on 

three chips than two. With these parameters, there is only one way to partition this 

circuit onto two chips. This two-chip partitioning is shown (in dotted lines) in Fig-

ure 4.2(b). Because every chip crossing has delay either delta_neighbor or delta_global, 

the path of longest delay is that which goes through the double-circled node and 

makes two chip crossings. Figure 4.2( c) shows a partitioning of this circuit onto three 

chips, in which no path makes more than one chip crossing. 

4.2.2 Prior Work 

Performance-driven partitioning is a relatively new research area, but it is already a 

topic of strong interest. See [KS], [NS], [RW], [ST], [TSO] and [We] for a sampling of 

various approaches to the problem. The problem formulations and objective functions 

often differ significantly from researcher to researcher, as do the solution approaches. 

Sometimes device constraints are considered; sometimes not. Sometimes replication is 

utilized: sometimes not. Sometimes the focus is on clustering for delay minimization. 

Sometimes partitioning is done before technology mapping, although this tends to be 

the exception. Because the ways of defining the problem are so various, it is difficult 

to compare directly the merits of one method to another. 

Comparing results is further complicated by the fact that, although partitioning 

benchmarks exist, there are no standard timing constraints for these benchmarks. 

Therefore, the objective timing function is defined in various ways, which depend 

heavily upon other problem parameters specific to a particular technique. 
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Figure 4.2: A Delay Minimization example 
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In this work, we focus on the development of an iterative improvement delay 

optimization strategy that works in conjunction with an independent partitioning 

step. For this reason, we refer to our approach as the two-step method [La2]. The 

first step is partitioning, and the second step consists of assigning the partitioned 

subsets to physical FPGAs and performing iterative timing improvement. 

4.2.3 A New Approach - The "Two-Step" Method 

As mentioned in the previous section, many timing heuristics operate by incorporat-

ing delay considerations into a partitioning heuristic. Such approaches have merit; 

however, our two-step method is different in that it performs timing optimization as 

an independent step after partitioning. 

There are several advantages to this approach: 

1. Since the system has already been partitioned, the complexity of the timing 

step is reduced. 

2. If a good partitioning of a system is already known, this can be used as a starting 

point for timing optimization. 

:3. Our post-partitioning timing heuristic can be viewed as an independent 

iterative-improvement step which could be applied as a post-processing step 

after any other timing heuristic. 

The first step of the two-step method, that of partitioning, can be performed 

by the partitioner of choice. For our tests, we used our own partitioner, but any 

partitioner may be used. 

The second step consists of two parts. In the first part, "virtual" FPGAs ( the 

subsets of the partitioning) are assigned to physical FPGAs. The second part consists 

of an iterative improvement algorithm to improve the delay through the system, by 

moving CLBs of the circuit graph from one subset (hence FPGA) to another. When 
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a virtual FPGA is assigned to a physical one, virtual CLBs (the CLBs of the circuit 

graph) are also assigned to physical CLBs. In the discussion that follows, the term 

CLB is used to refer either to a virtual or a physical CLB when the context makes 

the meaning clear. 

In the first part of the second step of the two-step method, virtual subsets of 

the partitioned circuit are assigned to physical FPGAs, represented by the topology 

graph. Initially, this was done in a greedy fashion, as follows. Each virtual subset is 

assigned to the available FPGA which results in the fewest number of nets requiring 

global communication. This approach seemed to have little effect on the critical path, 

however, at the expense of some computation time. 

An experiment was done using one circuit and a partitioning of that circuit into 

five subsets. Every possible way of mapping those five subsets onto adjacent FPGAs in 

a linear array topology was examined. For each of these mappings, we compared the 

initial delay with the final delay after performing the delay optimization heuristic. 

There seemed to be no discernible pattern at all. Those mappings with the best 

final delay were not associated with those having the best initial delay. For each of 

these mappings. we also counted the number of nets containing at least two CLBs 

mapped to non-adjacent FPGAs. The number of such nets varied very little from 

mapping to mapping, ranging from a low of 630 to a high of 650. Again, there was 

no correspondence with final outcome. 

Based on the above experiment, the decision was made to perform the virtual-

to-physical FPGA mapping arbitrarily, with one exception. Whenever possible, con-

nected physical FPGAs are utilized, in order to eliminate artificial "improvement" 

induced by an obviously inefficient initial placement. For example, if only 4 non-

adjacent FPGAs in a 16-FPGA system are utilized, a large improvement would be 

seen by simply re-assigning the subsets to adjacent chips. We avoid this "artificial" 

improvement by initially choosing, as much as possible, FPGAs that can directly 

communicate. 
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The focus of the discussion for the remainder of this chapter is on the second part 

of the second step of the two-step method: the iterative improvement algorithm. 

4.2.4 An Iterative Improvement Algorithm for Improving 

Delay in a Partitioned Circuit 

The second step of the two-step method begins with a technology-mapped circuit, and 

a partitioning of that circuit, as input. The technology-mapped circuit is represented 

by the netlist file produced by the technology mapping software found in [Be], used 

without modification. The partitioning is represented by a file that enumerates the 

subsets of the partitioning, and the specific CLBs contained in each subset. 

The topology of the FPGA system is also part of the program input, and includes 

the number of FPGAs available, and their connectivity. This information dictates 

the delay values ( delta_local, delta_neighbor or delta_globa0. 

The Connection Graph 

A directed acyclic graph (DAG) called a connection graph ([WKMKY]) is constructed 

from the technology-mapped circuit. If each CLB computes one function, the con-

nection graph is formed as follows. A node is created for each PI and each PO, and 

a node is created for each CLB. If a PI is connected to a CLB, a corresponding di-

rected edge is placed into the connection graph. Similarly, directed edges are added 

to represent connections from CLBs to POs, and from the output of one CLB to the 

input of another. 

The connection graph corresponding to the circuit of Figure 4.1 is shown in Fig-

ure 4.3. 

Many FPGAs contain CLBs that can implement two functions ([X]). In this case, 

the connection graph must contain a node for each CLB function. We illustrate this 

situation. 
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Figure 4.3: A connection graph 

Figure 4.4 shows a technology-mapped circuit containing two CLBs, and Fig-

ure 4.5 shows the corresponding connection graph. Figure 4.6 illustrates the situation 

if such CLBs are not separated into two nodes. The resulting graph is no longer a 

DAG. Additionally, information is lost, for example the fact that PII serves as input 

to CLB A functionl but not to CLB A function2. In this situation, it is not possible 

to determine the critical path. 

After the mapping from virtual to physical FPGAs has been performed, the edges 

of the connection graph are weighted with delays corresponding to communication 

costs. Edges to POs or from Pls are given a delay of delta_local. Each edge delay, 

then, is either delta_local, delta_neighbor, or delta_global. 

For example, suppose the circuit of Figure 4.4 were implemented on a system 

of two connected FPGAs. Furthermore, assume delta_local = 3 nanoseconds and 

delta_neighbor = 30 nanoseconds. If CLB A were mapped to FPGAl, and CLB B to 

FPGA2, the edge delays on the connection graph would be as depicted in Figure 4.7. 

Finding the Critical Path 

From the connection graph with edge delays, we compute the maximum delay through 

the system. Since we wish to find the longest (in terms of delay) path from any input 

to any output, we augment the connection graph with two special nodes Vs and Vt, 
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Figure 4.5: A connection graph for two-function CLBs 
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Figure 4.6: A cyclic connection graph 
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Figure 4.7: A connection graph with edge delays 
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The node Vs is of in-degree O and is connected by a directed out-edge of delay 0 

to every PI node. The node Vt is of out-degree 0, and every PO node has a directed 

out-edge of delay O to Vt. Now, to find the delay through the system, we simply 

compute the longest (in terms of delay) path from Vs to Vt in the directed, acyclic 

connection graph. 

The Longest Path problem is known to be NP-complete for general graphs, but 

in 'P for DAGs [GJ]. In [WKMKY], the longest weighted path from Vs to Vt in the 

connection graph is computed with a breadth-first search. Such an approach suffices 

for DAGs, and was initially utilized in our heuristic. However, breadth-first search 

does not necessarily observe topological sort 1 order, which can cause nodes to be 

processed multiple times. 

Consider the DAG of Figure 4.8, in which each edge is of delay 1. When processing 

Vs, suppose node x (longest path delay from Vs of 1) is pushed onto the stack first, 

followed by node y (longest path delay from vs of 1). 

Because y is at the top of the stack, it is processed next, and node z is assigned 

a current longest path delay of 2. When x is removed from the stack, its neighbor 

y has its longest path delay increased to 2, so must be pushed onto the stack again. 

Similarly, when processing y, the longest path delay of z increases again. 

Figure 4.8: A DAG with edge delays 

1 A topological sort of the nodes of a DAG is the operation of arranging the nodes in order in such 

a way that if there exists an edge ( i, j), then i precedes j in the list. [BB] 
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An efficient alternative exists that does not use a stack, and guarantees that each 

edge will be processed exactly once. First, the nodes of the DAG are sorted into 

topological order. (This can be done in O(n) time using a depth-first search [BB], 

and only needs to be done once.) The longest path to each node is initialized to 0. 

Then, for each node u (proceeding in topological order), the longest path to each 

neighbor v of u is updated if the longest path to u plus the delay of edge uv exceeds 

the current longest path to v. When processing each u, it is evident that the current 

longest path to u is at its maximum, since all vertices with edges to u have already 

been processed. 

Critical path is re-computed extremely often in our heuristic. By using the more 

efficient topological sort technique rather than breadth-first search to compute critical 

path, we were able to greatly improve the efficiency of our heuristic. Experimental 

results pertaining to this will be presented in Section 4.2.4. 

Iterative Improvement Overview 

Iterative improvement strategies for partitioning usually operate by swapping pairs 

of modules (i.e., CLBs). or moving a single module from subset to subset. Such 

approaches were attempted for delay optimization in this research, and poor results 

were achieved. 

The difficulty with these approaches is that simple pairwise swaps, or single mod-

ule movement. seldom produce improvement in the delay of the critical path. There-

fore. we have developed an iterative improvement scheme that we call critical path 

compression. Critical path compression works by reassigning groups of CLBs, specif-

ically chosen for potential delay improvement, from one FPGA to another. This 

scheme proceeds as follows. 

At any given moment, there exists a critical path in the connection graph ( ties 

may be broken arbitrarily). We will refer to this specific path as IT. If the number of 
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chip crossings in II can be reduced, by reassigning CLBs from II to different FPGAs, 

the result will be a decrease in the delay of II. It could be the case that the reduced-

delay II is still the critical path. However, it also may be the case that some different 

path, II', is now the critical path. In fact, it may be the case that the delay of II' is 

bigger than the original delay of II. 

Figure 4.9 shows an example in which compressing II produces a new. worse 

critical path. In (a), module a is in one FPGA, modules b, c, e and fare in a second 

FPGA, and module dis in a third FPGA. If all FPGAs are connected, delta_/ocal = 3 

and delta_neighbor = 30, the critical path is PI a b c d PO and is of 

delay 69. Moving module b from the second FPGA to the first, and moving module 

c from the second FPGA to the third, reduces the delay of path b c 

d PO to 42, but produces a new critical path, PI e b c f PO of 

delay 96. 
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Figure 4.9: Compressing a critical path 
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It is infeasible, of course, to try all possible ways of re-assigning the CLBs from II 

to FPGAs. Therefore, we have devised specific patterns in the critical path for which 

to search. Specifically, we look for patterns in the FPGAs to which consecutive CLBs 

in the critical path are assigned. 

For example, in the example of Figure 4.9, we saw the following pattern in the 

critical path. A CLB (a) was assigned to some FPGA x, some set S of CLBs following 

a (band c) were assigned to some FPGA y =/ x, and the CLB following S (d) was 

assigned to some FPGA z =/ y. In any such pattern, the number of chip crossings 

is reduced if some initial segment of S is reassigned to FPGA x, and the rest of S 
assigned to FPGA z. 

There are five distinct types of patterns for which we search. We refer to these 

five strategies as critical path compression techniques. They are called 1) Elimination 

I, 2) Elimination II, 3) Substitution I, 4) Substitution II, and 5) Resequencing. Each 

of these critical path compression techniques will be described later. 

Each of these five techniques can be activated or de-activated. This enabled us 

to test each for effectiveness individually, and in combination with others. The user 

then has the flexibility of choosing which of the techniques to utilize, and may choose 

to deactivate those that have a higher running time and/or smaller potential for gain. 

More will be said about this in the section describing experimental results. 

The iterative improvement algorithm operates by examining II, and sequentially 

attempts each of the activated critical path compression techniques. With each tech-

nique, II is examined for the existence of some specific pattern of assignments of CLBs 

to FPGAs. For each occurrence of this pattern, the following is done. 

The CLBs are reassigned to FPGAs, in the manner dictated by the critical path 

compression technique in effect at the moment. This reassignment requires that edge 

delays in the connection graph be modified to reflect the new placement of the CLBs. 

Then II is recomputed, and its delay recorded. Finally, the changes are undone, and 

the next occurrence of the pattern is processed. 
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It is possible that no matching patterns are found, in which case the iterative 

improvement algorithm terminates. 

It is also possible that matching patterns are found, but for each attempt, either 

constraints are violated, or the new critical path is of delay no better than that of 

the original. In this situation, a local minimum has been reached, and the algo-

rithm terminates. (The topic of escaping local minima will be discussed in the next 

subsection.) 

The final possibility is that at least one of the reassignments produced a critical 

path of delay shorter than the original. In that case, this reassignment is applied 

again and maintained. The new critical path is again designated as II ( this path may 

or may not be the same as the original II), and the iterative improvement algorithm 

repeats. 

Because the algorithm only repeats if the delay of the critical path is reduced, the 

algorithm eventually terminates. 

Because each critical path compression technique is independently coded, and so 

can be run independently, new critical path compression strategies can easily be in-

corporated into the existing code. The overall idea is somewhat similar to that of 

peephole optimization, a technique for optimization of compiler output. In this strat-

egy, a "peephole'' is passed along the code stream, and the code within the peephole is 

examined for the existence of certain patterns. If the pattern is found, an appropriate 

substitution is attempted, and retained if it can be successfully implemented. 

Strategies for Escaping Local Minima 

A standard consideration in iterative improvement algorithms is escaping local min-

ima. If the algorithm only implements changes that result in improvement, it can 

never effect a potentially greater improvement that requires an "uphill move:" going 

through an intermediate, worse solution. 
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Many traditional swapping algorithms (e.g. [FM, KL]) enable uphill moves in 

the following way. A module is "locked" after it has been moved from one subset to 

another. At the beginning of each "run," all modules are unlocked. Until all modules 

are locked, all pairs of unlocked modules are examined, and the pair with the greatest 

gain is selected, swapped and locked. Note that this gain may indeed be negative 

in terms of overall solution, effecting an uphill move. After all modules are locked, 

the best intermediate solution is chosen. If this solution is better than what existed 

at the beginning of the run, it is kept and another run is performed. Note that this 

strategy requires that all modules be moved in each pass. 

Our critical path compression techniques move sets of modules, not always pairs. 

Additionally, they work by examining the critical path only, and any module move-

ment may result in the formation of a completely different critical path, with different 

candidate CLBs. If each module were locked after being moved, any group of mod-

ules containing a locked module could not be considered for movement. For this 

reason, the locking mechanism does not provide enough flexibility for our purposes. 

Therefore, to enable uphill moves. we employ the following strategy. 

A user-defined value, look_ahead, is obtained. This value must be an integer at 

least 1, and is typically a small value. (The effects of various precise values will be 

examined in Section 4.2.4.) 

The following is then done, for each activated critical path compression technique. 

A counter is initialized to look_ahead. The smallest critical path seen is recorded. This 

is initialized to the value of the current critical path, and updated any time a smaller 

critical path is found. Recall that for each critical path compression technique, some 

specific pattern of assignments of CLBs to FPGAs is sought. This pattern may occur 

many times in II, and, depending upon the technique at hand, may involve several 

different ways of reassigning CLBs to FPGAs. Each possibility is attempted, and 

the one which produces the largest decrease in critical path is noted. (Note that this 

decrease may in fact be negative. if the reassignment increases the delay of the critical 
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path.) If the counter is 1, processing terminates for this critical path technique, and 

the configuration that produced the best critical path is applied and maintained. Oth-

erwise, the counter is decremented, and the set of module movements that produces 

the largest decrease in critical path is implemented, even if the result is an increase 

in the critical path delay. The current critical path compression technique is applied 

again. In this way, it is sometimes possible to find a better overall solution, that 

could not have been found without going through the intermediate, worse solution. 

It is noteworthy that. without locking modules, it is possible for a looping situation 

to develop. However, if this does happen, it will terminate when the number of 

iterations is done. Experimental results with differing values of look_ahead will be 

presented later. 

Critical Path Compression Techniques 

We now describe the five different strategies for critical path compression: the process 

of compressing the delay of the critical path, II, through a partitioned circuit. 

The algorithm considers only the sequence of CLBs in II. This path is searched 

for every occurrence of a particular pattern of assigned FPGAs in consecutive CLBs. 

The precise definition of the pattern depends upon which of the five strategies is 

under consideration. In this subsection, we establish a common framework for all of 

these strategies. 

Each strategy considers only the current critical path, II. In each strategy, II is 

searched for some segment of consecutive CLBs matching some pattern of assignment 

to FPGA.s. Returning again to the example of Figure 4.9, we saw the following pattern 

in the critical path. A single C LB (a) was assigned to some FP GA x; some set S 

of n CLBs (in this case n = 2) following a (band c) were assigned to some FPGA 

y -/= x; and the single CLB following S (d) was assigned to some FPGA z -/= y. In 

this setting, then, the pattern sought is a set of n consecutive CLBs assigned to the 
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same FPGA, such that the CLBs immediately preceding and immediately following 

the set are assigned to different FPGAs. The set of n consecutive CLBs is referred to 

as the "target sequence" because these are the CLBs that we will attempt to reassign 

to different FPGAs. In this particular example, we require the target sequence to 

consist of consecutive CLBs assigned to the same FPGA, but this will vary from 

strategy to strategy. In each of the strategies, the target sequence is also defined in 

terms of the CLBs immediately preceding and immediately following. We will refer 

to the "extended target sequence" as the target sequence, along with the single CLB 

immediately preceding the target sequence, and the single CLB immediately following 

the target sequence. 

Definition 4.1 Denote by t 1 , t 2 , ... , tn the set of n CLEs of a target sequence. De-

note by x the CLE immediately preceding a target sequence. Denote by y the CLE 

immediately following a target sequence. 

We note that either of x, y may be a "dummy CLB" if the target sequence is at 

the beginning or the end of II. 

A representative snapshot of an extended target sequence is illustrated in Fig-

ure 4.10. 

Definition 4.2 Given CLE c, denote by f( c) the index of the FPGA to which c is 

currently assigned. If CLE c is a ''dummy CLE," then f( c) = 0. 

Definition 4.3 Given FPGA indices i 2:: 0 and j 2:: 0, denote by d(i,j) the com-
munication delay between the FPGAs with these indices. If either i = 0 or j = 0, 
d(i,j)=0. 

vVe note that Vi,j cl(i,j) E {0, delta_local, delta_neighbor, delta_globa[}. 
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-0--0---------
Figure 4.10: An extended target sequence 

Elimination I 

The first critical path compression strategy we describe is called Elimination I. We 
define its extended target sequence as follows. 

Definition 4.4 An Elimination I extended target sequence is one such that: 

• f(ti) = f(ti)'t/i E [1, n], 

• J(x) =f J(ti), 

• J(y) =J J(ti) and 

• either J(x) =JO or J(y) =f 0. 

For example, suppose that II, in its entirety, consists of six CLBs, assigned to 

FPGAs 1. 2, and 3, as shown in Figure 4.11. 

There first two extended target sequences are: 

1. xis the "dummy CLB," f(x) = 0, n = 1, t 1 = CLB 1, f(t 1) = 2, y = CLB 2, 

f(y) = 3. 

2. x = CLB 1, f(x) = 2, n = 2, t1 = CLB 2, t2 = CLB 3, f(t1) = 3, y = CLB 4, 
f(y) = l. 

We can now define Elimination I: 
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Figure 4.11: A critical path 

Definition 4.5 Elimination I is the assignment, for some p + q = n, of the first p 

CLBs of an Elimination I target sequence to the FPGA indexed by f(x), and the last 

q CLBs of the sequence to the FPGA indexed by f(y), if appropriate FPGAs exist, 

and changes can be made without violating size or pincount constraints. 

Appropriate FPGAs do not exist if, for example, x is the ''dummy CLB" and 

p > 0. We reiterate that it is possible for one, but only one, of x, y to be the "dummy 

CLB." 

Prior to Elimination I, the n+2 CLBs in the extended target sequence are assigned 

to the following FPGAs, in the following order: 

1: f(x), 2: f(ti), ... , (n + 1): f(ti), (n + 2): f(y). 

The delay of this sequence is • 

d(J( x ), J(ti)) + ( ( n - l) x deltaJocal) + d(f ( t1 ), f(y) ). 

After Elimination I, the sequence of assigned FPGAs becomes: 
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1: J(x),2: f(x), ... ,(p+ l): f(x),(p+2): f(y), ... ,(p+q+2): f(y). 

The delay of this sequence is 

(p x delta_local) +d(f(x), f(y)) + (q x delta_local) = (n x deltaJocal) +d(f(x), f(y)). 

We may then compute the change in delay of critical path II ( de) as follows: 

de= d(f(x),f(y)) + deltaJocal- d(f(x),f(t1))-d(f(ti),f(y)) 

Figures 4.12, 4.13, and 4.14 illustrate the effects of Elimination I in a specific 

example. Assume k = 2 and d = 5. Assume also that there is direct communication 

between FPGAs 1 and 2, and between FPGAs 2 and 3, but that FPGAs 1 and 3 

must communication by means of a global bus. 

In Figure 4.12, II = PI A C D POI, and is of delay 86. The first 

extended target sequence for Elimination I consists of a dummy x, t 1 = A, y = C. 

Moving CLB A into FPGA f (y) = 3 is not possible, because this would violate k. 

The next extended target sequence is x = A. t 1 = C, y = D. Again, it is not 

possible to move CLB C from FPGA 3 into FPGA /( x) = 2 because of constraint 

violation. It is, however, possible to move CLB C into FPGA f(y) = l, as shown 

in Figure 4.13. The delay of the original II is reduced to 39. The current II is now 

PI A B E P02, and is of delay 66. 

Elimination I is attempted again on the new II. The first extended target sequence 
consists of a dummy x, t1 = .4, y = B. CLB A can be moved into FPGA f(y) = 3, 

as shown in Figure 4.14. The delay of TI is now 39, which cannot be improved. 
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Figure 4.12: Elimination I example: part 1 

\ FPGAI 

Figure 4.13: Elimination I example: part 2 
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' ' ' ' ' ' 
\ FPGAI 

' ' ' ' : ' 
' ' ' ' 

------... 

FPGA2 FPGA3 , 

Figure 4.14: Elimination I example: part 3 

' ' ' ' ' 

Can Elimination I increase the delay in II? If this is the case, then we have 

d(f(x),f(y)) + delta_local > d(f(x),f(ti)) + d(f(ti),f(y)) 

Table 4.2 illustrates the possibilities. In the table (and others that follow) d1 
indicates delta_local, dn indicates delta_neighbor, and d9 indicates delta_global. The 

only situation in which the delay of II increases is when d(f ( x ), f(y)) = delta_global, 
d(f(x),f(ti)) = delta_neighbor, d(.f(ti),f(y)) = delta_neighbor, and delta_global 2'. 
(2x delta_neighbor) - delta_local. Using our assumed values of 50 for delta_global, 30 
for delta_neighbor, and 3 for delta_local, Elimination I always results in a decrease in 

the delay of II. 

Recall that it is possible that a reduction in the delay of II results in the production 
of a new critical path of even larger delay. Such a move would actually be implemented 

only if uphill moves have been activated. This applies to all of the critical path 

compression strategies. 
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Table 4.2: Effect of Elimination I 

d(f(x),f(y)) d(f (x ), f(ti)) d(f(ti),f(y)) Path delay effect 
0 0 dn decrease 
0 0 dg decrease 
0 dn 0 decrease 
0 dg 0 decrease 
d1 dn dn decrease 
d1 dg dn decrease 
d1 dn dg decrease 
d, dg dg decrease 
dg dn dn decrease if d9 < (2 x dn) - d1 
dg dg dn decrease 
dg dn dg decrease 
dg dg dg decrease 
dn dn dn decrease 
dn dg dn decrease 
d,,, d,,, dg decrease 
dn dg dg decrease 

Elimination II 

Elimination II is very similar to Elimination I. The only difference is in the definition 

of the target sequence, which now requires the existence of at least two CLBs assigned 

to different FPGAs. 

Definition 4.6 An Elimination II extended target sequence is one such that: 

• :li E [L n] lf(ti) =/= f(ti), 

• f(x)=/=f(ti) . 

• f(y)=/=f(ti), 

• f(y) =I= f(t;), 

• Vj E [Ln].f(tj) E {.f(ti),.f(t;)}, and 
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• either f(x) =IO or f(y) =I 0. 

Referring again to Figure 4.11, the two extended target sequences are: 

l. x is the "dummy CLB," f(x) = 0, n = 3, ti = CLB 1, f2 = CLB 2. t3 = CLB 

3, i = 2, f(ti) = 2, f(ti) = 3. y = CLB 4, f(y) = l. 

2. x = CLB 1, f ( x) = 2, n = 3, t 1 = CLB 2, t2 = CLB 3, t3 = CLB 4, i = 4, 

f(ti) = 3, f(ti) = 1, y = CLB 5, f(y) = 3. 

We define Elimination II: 

Definition 4. 7 Elimination II is the assignment, for some p + q = n, of the first p 

CLBs of an Elimination II target sequence to the FPGA indexed by f(x), and the last 

q CLBs of the sequence to the FPGA indexed by f(y), if appropriate FPGAs exist, 

and changes can be made without violating size or pincount constraints. 

Elimination II has even greater potential than Elimination I for reducing delay in 

the current critical path. because at least one additional chip crossing ( that between 

the FPGAs indexed by f(ti) and f(ti)) is always eliminated. 

Substitution I 

Substitution I applies a different method to an Elimination I extended target sequence. 

Rather than assigning the CLBs of the target sequence to the FPGAs indexed by f( x) 

or f(y), an attempt is made to assign them to a completely different FPGA. As was 

the case for Elimination I, it is required that at least one of f(x),f(y) be nonzero. If 
both f(x), f(y) were zero, that would mean that the target sequence encompasses the 

entirety of IT, and that all CLBs in IT are assigned to the same FPGA. Reassigning 

all of IT to a different FPGA would have no effect on the delay of IT. 
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Definition 4.8 Substitution I is the assignment of all n CLBs of an Elimination I 

target sequence to some FPGA indexed by z, such that z Ft {f(x),f(ti),f(y)}, if 

changes can be made without violating size or pincount constraints. 

In contrast to Elimination I, where an attempt is made to move the target sequence 

to one or two different FPGAs (f(x) and/or f(y)), in Substitution I attempts are 

made to move the target sequence to any FPGA other than f(x),f(ti) or f(y). 

Prior to Substitution I, the n+2 CLBs in the extended target sequence are assigned 

to the· following FPGAs, in the following order: 

1 : f(x), 2: f(ti), ... , (n + 1): f(ti), (n + 2) : f(y). 

The delay of this sequence is 

d(f(x),J(ti)) + ((n -1) x deltalocal) + d(f(t1),f(y)). 

After Elimination I, the sequence of assigned FPGAs becomes: 

1: J(x),2: z, ... ,(n + 1): z,(n + 2): J(y). 

The delay of this sequence is 

d(f(x), ::) + ((n - 1) x deltaJocal) + d(z, J(y)). 

\Ve may then compute the change in delay of critical path II (de) as follows: 

de= d(.f(x), z) + d(z, f(y)) - d(f(x), f(ti)) - d(f(ti), f(y)) 

The delay of II decreases with Substitution I only if 

d(f(x),::) + d(z,f(y)) < d(f(x),f(ti)) + d(f(ti),f(y)) 

Table 4.3 summarizes all of the possibilities. 
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Table 4.3: Effect of Substitution I 

J d(f(x),z) I d(z,f(y)) I d(f(x),J(t1)) I d(f(t1),f(y)) I Path delay effect I 
0 dn 0 dn no change 
0 dn 0 dg decrease 
0 dg 0 dn mcrease 
0 dg 0 dg no change 

dn 0 dn 0 no change 
dn 0 dg 0 decrease 
dn dn dn dn no change 
dn dn dn dg decrease 
dn dn dg dn decrease 
dn dn dg dg decrease 
dn dg dn dn rncrease 
dn dg dn dg no change 
dn dg dg dn no change 
dn dg dg dg decrease 
dg 0 dn 0 mcrease 
dg 0 dg 0 no change 
dg dn dn dn mcrease 
dg dn dn dg no change 
dg dn dg dn no change 
dg dn dg dg decrease 
dg dg dn dn mcrease 
dg dg dn dg mcrease 
clg clg clg dn mcrease 
clg dg clg dg no change 
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It is noteworthy that the actual values of delta_local, delta_neighbor and delta_global 

do not affect whether or not Substitution I increases or decreases the delay of II. These 

values do, of course, affect the amount of increase or decrease. 

Substitution II 

Substitution II is very similar to Substitution I, in that an attempt is made to reassign 

all of the FPGAs of the target sequence to a different FPGA. The CLBs in the target 

sequence must be initially assigned to two FPGAs rather than one, however. A 

Substitution II extended target sequence is the same as an Elimination II extended 

target sequence, except that both x and y may be the "dummy CLB." If f ( x) = 0 

and f (y) = 0 ( the target sequence encompasses all of II), it would decrease the delay 

of II to reassign all of these CLBs to some other FPGA, if they are all reassigned to 

the same FPGA. 

Definition 4.9 Substitution II is the assignment of all n CLBs of a Substitution II 

target sequence to any FPGA z, such that z rt_ {.f(x),f(ti),f(ti),f(y)}, if changes 

can be made without violating size or pincount constraints. 

Substitution II has greater potential than Substitution I for critical path com-

pression, because it will always eliminate at least one additional chip crossing ( that 

between the FPGAs indexed by .f(ti) and f(t;)). As was the case with Substitution 

I, it does not guarantee reduction in the delay of II. Under our assumptions, however, 

there is only one situation in which Substitution II fails to reduce the delay of II. 

If .f ( tn) = .f (ti), then the target sequence contains at least two chip crossings, and 

Substitution II always reduces the delay of II. Therefore, for the following discus-

sion. assume f(tn) = J(t;). Substitution II replaces a delay of d(f(ti), f(ti)) in the 

target sequence with a delay of delta_local. In addition, delays of d(f ( x), f(ti)) and 

cl(f(t;),f(y)) are replaced, respectively, with d(f(x),z) and d(z,f(y)). The delay of 

II increases, then, only if 
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deltaJocal + d(J(x),z) + d(z,f(y)) > d(J(t 1),J(ti)) + d(J(x),J(t1)) + d(J(ti),d(y)). 

Using our assumed values for delta_/ocal = 3, delta_neighbor = 30, and delta_gfobal 
50, this cannot happen unless both of d(J(x),z),d(z,f(y)) are delta_g/obal, and 

all of d(J( ti), J( ti)), d(f ( x ), f( ti)), d(J(ti), d(y)) are delta_neighbor. (Recall that none 

of these latter three values is delta_/ocal, by the definition of the extended target 

sequence.) 

Resequencing 

For Resequencing, we require a two-subset target sequence, identical to that for Sub-

stitution II, except that the target sequence must contain at least two chip crossings. 

This means that there must exist some CLB tk, i < k :Sn, such that J(tk) = f(t 1). 
We now define Resequencing, with the assumption that p > 0 CLBs in the target 

sequence are initially assigned to J(ti) and q > 0 CLBs in the target sequence are 

initially assigned to J(ti). 

Definition 4.10 Resequencing is either 

1. the assignment of the first p CLBs of a Resequencing target sequence to f ( t1) 

and the last q CLBs of the sequence to J( ti), or 

2. the assignment of the first q CLBs of a Resequencing target sequence to f(ti) 
and the last p CLBs of the sequence to f(t 1 ), 

if changes can be made without violating pincount constraints. 

We note that the predetermined values of p and q ensure it is not possible for 

Resequencing to violate size constraints. 

Resequencing eliminates all but one chip crossing in the target sequence. Since 

the number of chip crossings in the target sequence may be more than two, it is 
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impossible to calculate in general the delay of the critical path after a Resequenc-

ing. Furthermore, the analysis is dependent upon the assumed delay values. Using 

our assumptions, however, Resequencing always reduces the delay of II, as we now 

demonstrate. 

By the definition of Resequencing, there are two different resequencing possibili-

ties: either the first p CLBs are assigned to J(ti) and the last q CLBs to J(ti), or the 

first q CLBs to J(t;) and the last p CLBs to f(ti). There are also two possibilities 

for the value of J(tn), which may be either f(ti) or J(ti). Note that, if J(tn) = f(t;), 
there are at least three chip crossings in the target sequence. This gives rise to four 

possibilities. In each case, we assume the minimum number of chip crossings in the 

target sequence. If more chip crossings exist, Resequencing produces even further 

reduction in the delay of II. 

1. First resequencing order, f(tn) = f(ti). 
A delay of d(f(ti),f(ti)) is replaced with a delay of delta_local, and a delay 

of d(f(ti), f(y)) is replaced with a delay of d(f(ti), f(y)). The delay of II can 

increase only if 

deltaJocal + d(f(ti), f(y)) > d(f(ti), f(t;)) + d(J(ti), f(y)) 

The largest possible value of the left hand side is delta_local + delta_global = 53. 

The smallest possible value of the right hand side is 2 x delta_neighbor = 60. 

Therefore, the delay of II is decreased. 

2. First resequencing order, f(tn) = J(ti). 

Two delays of d(f( ti), f (ti)) are replaced by two delays of delta_local. Since 

d(f(ti),f(t;)) is at least delta_neighbor, the delay of II is decreased. 

3. Second resequencing order, f(tn) = f(ti). 
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A delay of d(J(ti),f(ti)) is replaced with a delay of de/ta_local, and a delay of 

d(f(x),f(ti)) is replaced with a delay of d(f(x),J(ti)). The delay of IT can 

increase only if 

deltaJocal + d(J(x), J(ti)) > d(f(ti), J(ti)) + d(f(x), J(ti)) 

The largest possible value of the left hand side is delta_/ocal + delta_global = 53. 

The smallest possible value of the right hand side is 2 x de/ta_neighbor = 60. 

Therefore, the delay of II is decreased. 

4. Second resequencing order, f(tn) = J(ti). 

Two delays of d(f(ti), J(ti)) are replaced with two delays of delta_local. A 

delay of d(f(x),f(ti)) is replaced with a delay of d(J(x),J(ti)), and a delay 

of d(f(ti), J(y)) is replaced with a delay of d(J(ti), J(y)). The delay of IT can 
increase only if 

(2 x deltaJocal) + d(J(x), J(ti)) + d(J(ti), J(y)) > 

(2 x d(f(ti);J(ti))) + d(J(x),J(ti)) + d(J(ti),f(y)) 

The largest possible value of the left hand side is (2 x delta_/ocan + (2 x 
delta_globa0 = 106. The smallest possible value of the right hand side is 4 x 
delta_neighbor = 120. Therefore, the delay of II is decreased. 

Experimental Results 

We tested our heuristic on all combinational circuits from [Be], except for those that 
were partitioned onto a single chip, for which delay would then be optimum. We also 

-
excluded circuit c499xc2, which easily partitions onto two chips, and the optimization 
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heuristic could not improve the delay. The statistics of the remaining circuits are 

shown in Table 4.4. The circuits are listed in order of size. "LP" refers to the number 

of CLBs in the longest path between any PI/PO pair. 

The "xc2" circuits have been technology mapped for FPGAs of the Xilinx 2000 

series, with chip capacity of 64 CLBs and 58 I/O pins. The "xc3" circuits have been 

technology mapped for the Xilinx 3000 series, with chip capacity of 144 CLBs and 96 

I/O pins. All of our experiments were performed on a Sun ULTRA-I workstation. 

Three different hardware topologies were utilized in these tests, each containing 

16 FPGAs: linear array, mesh and ring. 

In every case, we begin with a satisfying partitioning of the circuit, as the first 

step in the two-step method. Recall that the partitioner of choice may be used for 

the first step; in our experiments we used our own partitioner. 

There is no known efficient way to determine the optimal delay through a cir-

cuit. so in general we cannot compare the current delay to the optimum. Therefore, 

for purposes of comparing the critical path compression strategies, and the overall 

effectiveness of the algorithms, we measure percentage improvement in the delay. 

Table 4.4: Circuit statistics 

Test / CLBs / Pls / POs / Nets / LP / 

c2670xc3 150 157 64 361 12 

c3540xc3 283 50 22 489 23 

c3540xc2 ;373 50 22 567 21 

c.5315xc3 377 178 123 699 12 

c7.552xc3 489 206 107 921 11 

c5315xc2 535 178 123 936 14 

c7552xc2 610 206 107 1056 13 

c6288xc2 833 32 32 1456 90 

c6288xc3 833 32 32 1472 91 

93 



We begin by analyzing the effectiveness of the uphill move strategy. For each 

of the nine circuits, and for each of one hundred partitionings of each circuit, we 
tested various values of look_ahead. Because the purpose of this experiment was 
to analyze the uphill move strategy only, we fixed all other program parameters. 

We chose to activate all five critical path compression strategies and use a linear 
array topology. The values of look_ahead used were 1 (which disables uphill moves 
completely), 2, 4, 6, 8 and 10. Summaries of these test results appear in Tables 4.5, 4.6 

and 4.7. 

Each column in each table represents one value of look_ahead. In Table 4.5, each 
table entry is the percentage improvement in the delay, averaged over the one hundred 
runs. In Table 4.6, each table entry is the best final delay. In Table 4.7, each table 

entry is the average CPU time (in seconds) of the entire program, including processing 

all input files. 

Table 4.5: Hill-climbing experiment: percentage improvement 

test ,, look..ahead = I look..ahead = 2 /ook..ahead = 4 /ook..ahead = 6 /ook..ahead = 8 /ook..ahead = 10 

c2670xc3 9.43 10.95 13.47 12.35 13.00 12.11 

c3540xc3 15.90 21.53 24.98 2,5.64 23.27 23.01 

c:3540xc2 13.08 14.38 17.43 16.20 16.73 16.62 

c5315xc3 21.48 22.06 24.30 24.14 22.99 23.71 

c7552xc3 21.23 21.80 24.57 25.76 25.27 28.18 

c5315xc2 16.42 20.09 23.19 23.70 22.80 23.35 
c7552xc2 13.05 15.40 17.16 18.61 17.10 18.69 
c6288xc2 13.95 17.10 18.15 19.07 18.53 18.72 

c6288xc:3 1.5.56 18.53 19.94 19.56 20.05 20.41 

94 



Table 4.6: Hill-climbing experiment: final delay 

test /ook..ahead = I look..ahead = 2 look..ahead = 4 /ook..ahead = 6 look...ahead = 8 /ook..ahead = 10 

c2670xc3 ,.,.., 77 77 77 77 ..,.., 
I I I I 

c3540xc3 126 102 102 102 102 102 
c3540xc2 232 232 211 211 211 211 
c5315xc3 92 89 89 89 89 89 
c7552xc3 128 101 101 101 101 101 
c5315xc2 207 177 177 177 177 177 
c7552xc2 221 209 204 198 198 198 
c6288xc2 676 663 636 636 636 636 
c6288xc3 525 525 505 505 491 491 
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Table 4.7: Hill-climbing experiment: CPU time 

test look..ahead = 1 look..ahead = 2 look..ahead = 4 look..JJhead = 6 look..ahead = 8 look..JJhead = 10 

c2670xc3 0.14 0.16 0.20 0.22 0.26 0.29 

c3540xc3 0.27 0.43 0.61 0.69 0.74 0.85 

c3540xc2 0.43 0.59 0.84 1.02 1.20 1.37 

c5315xc3 0.37 0.42 0.52 0.60 0.68 0.75 

c7552xc3 0.55 0.68 0.71 0.97 1.06 1.16 

c5315xc2 0.72 1.02 1.39 1.63 1.91 2.09 

c7552xc2 0.80 1.06 1.34 1.69 2.13 2.17 

c6288xc2 2.05 3.09 4.61 5.98 7.09 8.57 

c6288xc3 1.72 2.66 4.00 5.01 5.86 6.63 

In our testing, improvement was seldom seen beyond a look-ahead of six. CPU 

time increases significantly with larger values of look_ahead. Therefore, a value of 10 

for look_ahead seemed more than adequate, and was utilized throughout the remainder 

of the testing. 

The next set of experiments was performed to compare the results over the three 

different topologies (linear array, mesh and ring). Again, one hundred partitionings 

of each of the circuits were utilized. In every case, all five critical path compression 

strategies were activated. The results are shown in Tables 4.8 and 4.9. Each entry 

of Table 4.8 is the average percentage improvement of the one hundred runs. Each 

entry of Table 4.9 is the best final delay. CPU times for all topologies are comparable 

to those of the last column of Table 4. 7, and are not reported specifically. 
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Table 4.8: Topology comparison: percentage improvement 

test II linear array I mesh I ring I 
c2670xc3 12.11 13.42 12.43 

c3540xc3 23.01 25.46 23.38 

c3540xc2 16.62 19.17 15.57 

c5315xc3 23.71 26.64 23.65 

c7552xc3 28.18 28.86 25.87 

c5315xc2 23.35 24.74 22.57 

c7552xc2 18.69 20.10 17.80 

c6288xc2 18.72 20.20 18.68 

c6288xc3 20.41 18.91 19.68 
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Table 4.9: Topology comparison: final delay 

test II linear array I mesh I ring I 
c2670xc3 77 77 77 

c3540xc3 102 102 102 

c3540xc2 211 214 228 

c5315xc3 89 89 89 

c7552xc3 101 101 105 

c5315xc2 177 166 186 

c7552xc2 198 180 198 

c6288xc2 636 600 656 

c6288xc3 491 485 491 

There does not appear to be any predictable difference in the behavior of the 

algorithm under different hardware topologies. 

We then ran tests to compare the effectiveness of the different critical path com-

pression strategies. (Recall that look_ahead has been set at 10.) For these tests, we 

used a linear array topology. Again, each circuit was run on one hundred different 

partitionings, and the results averaged. Each circuit was tested in six different modes: 

1) only Elimination I activated; 2) only Elimination II activated; 3) only Substitution 

I activated; 4) only Substitution II activated; 5) only Resequencing activated; and 

6) all five strategies activated. Tables 4.10, 4.11 and 4.12 show the results of these 

experiments. Each entry in Table 4.10 is the average percentage improvement; each 

entry in Table 4.11 is the final delay; and each entry in Table 4.12 is the average CPU 

time. 
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Table 4.10: Strategy comparison: percentage improvement 

test Elim I Elim II Sub,t I Subst II Reoeq ALL 

c2670xc3 8.61 0.00 1.92 8.56 0.91 12.11 

c3540xc3 20.90 0.48 6.90 2.25 1.16 23.01 

c3540xc2 13.98 0.77 4.26 5.62 1.47 16.62 

c5315xc3 18.00 5.57 6.13 10.68 1.05 23.71 

c7552xc3 21.37 0.80 9.71 10.57 1.47 28.18 

c5315xc2 13.12 3.08 5.08 17.20 3.43 23.35 

c7552xc2 8.74 1.24 4.47 11.79 2.42 18.69 

c6288xc2 10.93 2.89 5.75 16.68 3.65 18.72 

c6288xc3 18.30 4.37 6.97 12.65 2.67 20.41 
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Table 4.11: Strategy comparison: final delay 

test Elim I Elim II Sub•t I Subst II Reseq ALL 

c2670xc3 78 80 80 80 80 77 

c3540xc3 102 126 126 126 126 102 

c3540xc2 245 289 255 263 275 211 

c5315xc3 89 92 92 92 92 89 

c7552xc3 101 168 151 148 145 101 

c53!5xc2 207 227 234 187 227 177 

c7552xc2 227 225 225 224 249 198 

c6288xc2 683 757 769 673 723 636 

c6288xc3 525 599 573 565 573 491 

100 



Table 4.12: Strategy comparison: CPU time 

test Elim I Elim II Subst I S ubst II Reseq ALL 

c2670xc3 0.16 0.13 0.19 0.14 0.11 0.29 

c3540xc3 0.36 0.20 0.36 0.18 0.17 0.85 

c3540xc2 0.31 0.27 0.68 0.42 0.20 1.37 

c5315xc3 0.33 0.29 0.52 0.33 0.27 0.75 

c7552xc3 0.48 0.41 0.76 0.48 0.39 1.16 

c5315xc2 0.50 0.48 1.07 0.78 0.40 2.09 

c7552xc2 0.52 0.48 1.22 0.82 0.47 2.17 

c6288xc2 1.04 0.82 4.00 1.80 0.90 8.57 

c6288xc3 1.68 0.86 3.04 1.40 0.93 6.63 

From these experiments, it seems evident that, although all of the strategies pro-

duce results, the most successful ones are Elimination I and Substitution II. Substi-

tution I appears to take the most CPU time, relative to percentage improvement. 

In Section 4.2.4, we discussed a topological sort technique for finding the longest 

weighted path in a DAG. Our heuristic was initially coded using breadth-first search 

to find the critical path, and then modified to use the topological sort technique when 

it became evident that this was much more efficient. Our final set of experimental 

results compares CPU times of using these two methods for computing critical path. 

Table 4.13 reports CPU times only. In each case, a value of 10 was used for look_ahead, 

a linear array topology was used, and all five critical path compression strategies were 

activated. The average CPU time over one hundred runs is reported. 

In summary, critical path compression seems to be an effective tool for improving 

the delay in a partitioned circuit. Additionally, the algorithmic platform is expand-

able. and can be augmented in the future with new strategy techniques. The running 

times seem quite dependent upon the length of the longest PI/PO path, which is 
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Table 4.13: Breadth-first search (BFS) vs. topological sort (TS): CPU time 

test II BFS I TS I 
c2670xc3 0.40 0.29 

c3540xc3 1.18 0.85 

c3540xc2 2.22 1.37 

c5315xc3 1.00 0.75 

c7552xc3 1.30 1.16 

c5315xc2 3.57 2.09 

c7552xc2 3.49 2.17 

c6288xc2 206.43 8.57 

c6288xc3 176.97 6.63 

what one would expect. The topological sort technique is superior to breadth-first 
search for computing critical path. This is especially evident in a computation in 
which critical path computation is done frequently on paths of significant length. 
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Chapter 5 

Variations of the Fundamental 

Problem 

In this chapter, we examine some other problems that are related to the fundamental 

problem. Most of these problems are of independent interest. Some have already been 

studied by other researchers. We discuss them here to present some new findings. 

5.1 Hypergraphs 

As discussed in Section 3.2.3, circuit designs are often represented by hypergraphs 

rather than ordinary graphs. A hypergraph differs from an ordinary graph in that 

more than two vertices are allowed in an edge. In such a representation, vertices rep-

resent circuit nodes (for example, CLBs), and edges represent nets that may connect 

more than two nodes. As such, hypergraphs are important as a representation tool 

in VLSI applications. 

We generalize MDGP to hypergraphs as Hypergraph MDGP: 

Instance: a hypergraph G, and two integers k and d. 

Question: Is there is a partition of V into disjoint sets ½, ... , Vm such that 

Vi : Iv; I :S k, and such that if Ei is the set of hyperedges with at least one endpoint 
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in ·Vi and at least one endpoint not in \I;, max1::;i::;mlEil :S d? 

If more than one vertex of some hyperedge E is partitioned into set S1 , with at 
least one vertex of E partitioned into set S2 , E contributes only 1 to the degrees of 
both S1 and S2 . This is a consequence of the fact that we assume the routing is done 

internally on the CLB. 

Hypergraph MDGP is, of course, NP-complete because it is a generalization of 

MDGP. 

Because Hypergraph MDGP is no longer defined in terms of ordinary graphs, 

none of the WQO-theoretic results discussed here apply directly. There is at least 
one known WQO over hypergraphs, however ([GGL]). A hypergraph H is a minor 
of another hypergraph G if H arises from G as the result of successive elementary 
operations, performed in any order. Elementary operations consist of the deletion of 
a node or an edge (subgraph operation), the replacement of an edge by any subset 
of itself (generalization of subgraph operation), and the identification of two nodes in 

an edge (generalization of contraction). Whether practical use can be made of this 
hypergraph WQO is an open question. None of the problems discussed in this work 
is closed in the ordinary minor order. Therefore, if practical use can be made of the 
hypergraph minor order, it will probably not be with partitioning problems of this 
type. 

Even though none of the WQO results from Chapter 2 seem to apply to Hyper-
graph MDGP(k,d) (the fixed-parameter version of the problem), some of the non-

WQO results from that chapter do hold. 

We now define a path in a hypergraph: a path from vertex v to vertex w consists 
of a sequence of hyperedges E1, E2, ... , En, such that v E E 1 , w E En, and Ei n Ei+l -/= 
0, \fl :S i :S n - l. 

Lemma 5.1 A hypergraph His a "yes" instance of Hypergraph MDGP iff there exists 

a solution in which every subset is connected; hence every v is partitioned only with 

other vertices in ]\Tk_ i( v). 
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Proof See proof of Lemma 2.1. D 

We observe that, if G is a "yes" instance of Hypergraph MDGP(k,d), the number 

of vertices that are neighbors of v can be unbounded. For example, consider a graph 

G with n vertices, and exactly one hyperedge that contains all n vertices. G is a 

"yes" instance of Hypergraph MDGP(k,d) for any k, d 2:: 1, although the number of 

neighbors of every vertex is unbounded. See Figure 5.1 for a partitioning of such a 

graph, with k = d = l (subsets are indicated by dotted lines). Thus, Lemma 2.2 does 

not hold for hypergraphs, for any constant. 

Using the same definitions of kd-satisfying subset and kd-candidate subset. 

Lemma 2.3 holds for hypergraphs, with only slight modification. 

Lemma 5.2 Given kd-satisfying subsets Cl and C2, either Cl - C2 or C2 - Cl is 

kd-satisfying. 1 

Proof Since neither Cl - C2 nor C2 - Cl can have size exceeding k, we need only 

consider their respective degrees. 

If Cl n C2 = (/J, then we are done. Otherwise, let I= Cl n C2, A= Cl - C2, B = 
C2 - Cl, D = V - Cl - C2 (see figure 2.4). 

Denote by NAB the number of edges with an endpoint in A and an endpoint 

in B. NAD, NA1, NBD, NBr and ND1 have analogous ~eanings. When dealing with 
hypergraphs, we must also consider NABC, etc., which denotes the number of edges 

with endpoints in A, B, and C. 

Figure 5.1: A "yes" instance of Hypergraph MDGP(k,d) 
1 Independently proved in [CLCDL]. 
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The degree of Cl is NAB+NAD+NB1+ND1+NABD+NAB1+NAD1+NBD1+NABDI, 

and the degree of C2 is NAB+NA1+NBD+ND1+NABD+NAB1+NAD1+NBD1+NABDI· 

By the definitions above, we have 

and 

Summing and simplifying yields 

Thus either 

or 

NAB+ NBD+ NBI + NABD +NAB]+ NEDI+ NABDI d. 

The former bounds the degree of Cl - C2, the latter the degree of C2 - Cl. D 

Lemma 5.3 Given kd-satisfying subsets Ci, C2, ... , Gp, a disjoint set of kd-satisfying 
subsets Di, D2 , ... , Dq exists such that Ci U C2 U ... U Cp = Di U D2 U ... U Dq .2 

Proof See proof of Lemma 2.4. D 

Proposition 5.1 The Hypergraph Locality Condition: G = (V, E) is a "yes" 
instance of Hypergraph MDGP(k,d) iff'./v E V,(Cv,G) f. 0. 

Proof See proof of Proposition 2.1. D 

Theorem 5.1 The search and decision versions of Hypergraph MDGP(k,d) can be 
solved in polynomial time. 

2Independently claimed in [CLCDL]. 
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Proof Because Lemma 2.2 does not hold for Hypergraph MDGP(k,d), we cannot 

limit the search for kd-candidate subsets to a bounded neighborhood. However, we 

can still determine whether a kd-candidate subset exists for each vertex (hence, by the 

Hypergraph Locality Condition whether the graph is a "yes" instance) by examining 
all ( IVI ), 1 :S i :S k, possible subsets. Since k is a constant, this can be done in 

I 

0( nk) time. If there exists a kd-candidate subset for every vertex, a disjoint set can 
be found in polynomial time, by the proof of Lemma 5.3. D 

Although this problem is in P, the degree of the polynomial is high. It is not 
known whether Hypergraph MDGP(k,d) can be solved in low-order polynomial time. 

Recall that the heuristic presented in Chapter 3 accommodates hypergraphs for 
the FPGA Minimization problem. 

5.2 Partitioning for Heterogeneous Systems 

In the MDGP problem, we were given two parameters, k and d, which represent, re-

spectively, the size and pin-count of a type of FPGA chip. In some circuit partitioning 

situations, there exists a variety of chip types from which to choose. In this section, 
we generalize MDGP to allow for such a system of heterogeneous FPGAs. Rather 
than considering a single style of FPGA with k logic blocks and d pins, we consider a 
set of x FPGA types, with logic block and pin count constraints k1, d1 ; k2, d2; ... ; kx, dx 
([BKK]). We call this problem Heterogeneous MDGP, and formalize it as follows. 

Instance: a graph G, and a pair list L containing 2 x x integers: 
k1, di i k2, d2; ... ; kx, dx. 

Question: Is there is a. partition of V into disjoint sets ½, ... , Vm such that 
V\;;,1 :Si :S rn,:lj,1 :S j :S x, such that l½I :S kj, and 6(½) :S dj? 

The fixed-parameter version of Heterogeneous MDGP will be referred to as 
MDGP(L). 

Since Heterogeneous MDGP is a generalization of MDGP, its NP-completeness 
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follows from that of MDGP. However, when all parameters are fixed, we have the 

following. 

Theorem 5.2 MDGP(L) can be decided in polynomial time. 

Proof We observe that MDGP(L) is immersion closed. Given a satisfying partition, 

neither the subgraph operation nor edge lifting invalidates that partition. D 

Although Heterogeneous MDGP is very similar to MDGP, it is not possible in 

general to convert an instance of MDGP(L) to an instance of MDGP(k,d). 

Consider MDGP(L), with L consisting of two pairs: k1 = 2, d1 = 1, k2 = 1 and 

d2 = 2. We will refer to this specific instance of MDGP(L) as MDGP(2,1; 1,2). The 

graph G in Figure 5.2 is an obstruction. If MDGP(2,1; 1,2) = MDGP(k,d) for some 

k and d, then G is also an obstruction for MDGP(k,d). G is a "yes" instance for any 

k 2: 3, so if it's an obstruction, it must be the case that k = 1 or k = 2. Suppose 

k = 1. Then G is a "yes" for any d 2: 3, so it must be the case that d = 1 or d = 2. 

On the other hand, if k = 2, then G is a "yes" for any d 2: 2, so it must be the case 

that d = 1. So we have three possibilities: 

Figure 5.2: MDGP(2,l; 1,2) =J MDGP(k,d) 
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d. 

1. MDGP(2,l; 1,2) = MDGP(l,l). The subgraph G1,1 of Figure 5.2 is a "no" 

instance; therefore G is not an obstruction. 

2. MDGP(2,l; 1,2) = MDGP(l,2). The subgraph G1,2 of Figure 5.2 is a '·no'' 

instance; therefore G is not an obstruction. 

3. MDGP(2,l; 1,2) = MDGP(2,l). The subgraph G2,1 of Figure 5.2 is a "no" 

instance; therefore G is not an obstruction. 

Therefore, MDGP(2,l; 1,2) is not the same as MDGP(k,d) for any values of k and 

It is also possible to find "yes" instances of MDGP(L) that are "no" instances of 

MDGP(ki, di), Vl ::; i ::; x. For example, consider the graph of Figure 5.3 which is a 

"yes" instance of MDGP(2,1; 1,2) but is a "no" for both MDGP(2,l) and MDGP(l,2). 

We find that almost all of the known results for MDGP(k,d) hold for MDGP(L), 

with only slight modification. 

Definition 5 .1 Let tmax = max( ki + di), 1 ::; i ::; x. 

Observation 5.1 A star graph with tmax rays is an obstruction to MDGP(L); there-

fore, no obstruction to MDGP(L) contains a vertex with more than tmax neighbors. 

Figure 5.3: A "yes" instance of MDGP(2,l; 1,2) 
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Similarly, no "yes'' instance of MDGP(L) contains a vertex with more than tmax 

neighbors; hence the "yes" family has bounded degree. 

Similar to the lemmas and definitions we had for MDGP(k,d), we have the fol-

lowing: 

Lemma 5.4 G is a "yes" instance of MDGP(L) iff there exists a solution in which 

every subset is connected; hence every v is partitioned only with other vertices in 

Nk,-1(v), for some 1 i x. 

Definition 5.2 Given tmax, let c; denote the value 1 + Lf=1(tmax)(tmax - l)i-l_ 

Lemma 5.5 If G is an obstruction to MDGP(L), then Vv E V, Vp > 0, INP( v )I c;. 

Definition 5.3 A ''kidi-satisfying subset" is a subset of size no more than ki and 

degree no more than di, for some 1 i x. 

Definition 5.4 A ''kidi-candidate subset" zs a connected kidi-satisfying subset. 

Given x, k1, d1; ... ; kx, dx and a vertex v, let C~ denote the set of all kidi-candidate 
subsets containing v. 

Lemma 5.6 Given kmdm-satisfying subset Cl, and kndn-satisfying subset C2, either 

Cl - C2 is a kmdm -satisfying subset or C2 - Cl is a kndn -satisfying subset. 

Proof Since Cl - C2 cannot have size exceeding km, and C2 - Cl cannot have size 

exceeding kn, we need only consider their respective degrees. 

If Cl n C2 = 0, then we are done. Otherwise, let I= Cl n C2, A= Cl - C2, B = 
C2 - Cl, D = V - Cl - C2 (see Figure 2.4). 

Denote by NAB the number of edges with an endpoint in A and an endpoint in 

B. NAD, NA!, NBD, NBI and NDI have analogous meanings. The degree of Cl 1s 

NAD +NAB+ NDI + NBI, and the degree of C2 is NAB+ NBD+ NAI + NDI· 
By the definitions above, we have 
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and 

Summing yields 

so 

Thus either 

or 

NAB+ NB[+ NBD::::; dn. 

The former bounds the degree of Cl - C2, the latter the degree of C2 - Cl. 

Lemma 5. 7 Given k;d;-satisfying subsets C1, C2, ... , Gp, a disjoint set of k;di-

satisfying subsets D 1, D2, ... , Dq exists such that C1 U C2 U ... U Cp = D1 U D2 U ... U Dq. 

Proof See the proof of Lemma 2.4. 

Proposition 5.2 Heterogeneous Locality Condition G zs a "yes" instance of 

MDGP(L) iff Vv E V, C~ =f-0. 

Proof See the proof of Proposition 2.1. 

In a straightforward manner, other results from MDGP(k,d) follow: 

Theorem 5.3 The search version of MDGP(L) can be solved in O(np(n)) time, 

whe1·e p(n) denotes the time required to solve the decision version of the problem. 

Theorem 5.4 The decision and search versions of MDGP(L) can be solved in linear 

time. 

Theorem 5.5 The obstruction set to MDGP(L) is computable. 
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The proofs are all analogous to those for MDGP(k,d). 

The complexity of Heterogeneous MDGP restricted to simple trees (hence, simple 

forests) can also be addressed in a manner similar to that for MDGP. 

Lemma 5.8 For any simple tree T, and any i, l i x, and v E V(T) with 

c> ( v) > di, any kidi -candidate subset C including v includes at least O ( v) - di entire 

subtrees of v. Additionally, if any set of at least o( v) - di entire subtrees of v is of 

size less than ki. these subtrees, along with v, form a kidi-candidate subset. 

Proof See the proof of Lemma 2.8. D 

Theorem 5.6 Heterogeneous MDGP, restricted to simple trees, is in P. 

Proof Given a simple tree T, first check whether any vertex has degree tmax or more. 
If so, T is a "no" instance, because it contains an obstruction. 

Otherwise, for each v E T, do the following. If the degree of v is no more than 

di, for some 1 i x, then {v} is a kidi-candidate subset for v. If the degree of vis 
more than di, \fl i x, then we perform the following steps: 

1. Compute the size of each subtree of v. This takes O(n) time. 

2. Sort the sizes of the subtrees of v. This takes O(n log n) time. 

3. Mark v. 

4. For each i, 1 i x, if the total size of the smallest o(v) - di subtrees of vis 
less than ki, then unmark v. For each i, this takes O(n) time, hence the overall 
step takes 0( n 2 ) time. 

5. If vis unmarked, then v has a kidi-candidate subset, by Lemma 5.8. Otherwise, 
by Lemma 5.8, v has no k;di-candidate subset. 
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By the Heterogeneous Locality Condition, if any vertex has no kidi-candidate 

subset, then T is a "no" instance, otherwise it is a "yes" instance. 

The complexity of the algorithm as a whole, then, is O(n3 ). 

Because each tree in a simple forest can be handled independently, Theorem 5.6 

generalizes to simple forests. 

5.3 Labelled Graphs 

It may be possible that there exists a set of special components in a circuit that must 

be mapped onto FPGAs in such a way that no more than one of the special nodes is 
present in a single FPGA. We model this situation as a graph that contains special 
nodes designated as terminals. The immersion order on such graphs is known to 
be well-quasi-ordered ([RS3]). We define a terminal partition of G as a partition in 

which each subset contains at most one terminal from G. Labelled MDGP can then 

be formulated as follows. 

Instance: a graph G, in which some of the vertices are terminals; two integers k 
and d. 

Question: Is there is a terminal partition of V into disjoint sets Vi, . .. , Vm such 
that Vi : I Vi I k, and such that if Ei is the set of edges with exactly one endpoint in 

Vi, maxl:Si:SmlEil d? 

This problem is a generalization of MDGP, hence is NP-complete. Fixed-
parameter Labelled MDGP (Labelled MDGP(k,d)) is immersion closed, and is 
amenable to other MDGP techniques in a fairly straightforward manner. The prob-
lems are not interchangeable, however. An instance of Labelled MDGP(k,d) cannot 
always be cast as an instance of MDGP(k,d). A simple example is a graph consisting 
of only two vertices, both of which are labelled, connected by d + I edges. Such a 
graph is an obstruction to Labelled MDGP(k,d) for any k > 0. Specifically, it is an 

obstruction to Labelled MDGP(2,d). The only MDGP family for which this graph 
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is an obstruction is MDGP(l,d). Therefore, it would have to be the case that La-

belled MDGP(2,d) is the same as MDGP(l,d), which is untrue. A graph consisting 

of two unlabelled vertices connected by d + l edges is a "yes" instance of Labelled 

MDGP(2,d), but a "no" instance of MDGP(l,d). 

A generalization of the labelled version of MDGP is the colored version, in which a 

subset of the vertices is colored from a finite set oft colors, and a satisfying partitioning 

requires all vertices of each color to be in the same subset. On closer inspection, we 

observe that the colored version and the labelled version are equivalent. The labelled 

version is a special case of the colored version, in which there is exactly one vertex 

of each color. The colored version can be solved using any algorithm for the labelled 

version by connecting all vertices of the same color with d + l edges, labelling exactly 

one vertex of each color, and then removing colors. 

Sometimes in a graphical representation of a circuit, the set of nodes is separated 

into two disjoint sets, Vx and V~, where Vx denotes the set of interior nodes and Vy 

denotes the set of boundary nodes ([BKK]). This reflects the function performed by a 

specific node, and the fact that a given FPGA has distinct interior logic blocks and 

exterior I/0 pins. We can easily state this problem in terms of a graph, however, 

it does not seem possible to model it in a way to obtain immersion closure. The 

difficulty is that the lifting operation can either increase or decrease the number of 

boundary vertices in a subset. 

5 .4 Balanced Partitioning 

Another occasional goal in circuit partitioning is to obtain a solution in which the 

subset sizes are balanced; i.e. no two subsets differ in size by more than some constant 

c. The problem we define here, Balanced MDGP, is identical to MDGP, except that 

we insist that the sizes of any two subsets in the partition be within c of each other. 

Instance: a graph G = (V, E), and three integers k, d and c. 
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Question: Is there is a partition of V into disjoint sets Vi, . .. , Vm such that 

Vi : I¼ I :S k, such that Vi, j : II¼ I - I Vi II :S c, and such that if Ei is the set of edges 

with exactly one endpoint in ¼, max19$mlEil :S d? 

This problem is a generalization of MDGP, hence it is NP-complete. What is 

interesting is what happens when all three integer parameters are constants. We refer 
to this version of the problem as MDGP(k,d,c). The complexity of the problem then 
depends on the value of the constant c. 

If c 2: k - l, then MDGP(k,d,c) is identical to MDGP(k,d) and is in P. However, 

if c = 0, we have the following result: 

Theorem 5.7 For any fixed k and d, MDGP(k,d,O) is NP-complete. 

Proof Let .M be an arbitrary instance of p-way MDGP(k,d), consisting of a graph 
G and an integer p. The constants k and d are the same for both problems. We 

could then decide whether M is a "yes" instance by solving the following instance 
of MDGP(k,d,O). We form the graph instance of MDGP(k,d,O), G', by augmenting 
Gas follows. We add (pk) - IV(G)I isolated vertices. We also add one component 
consisting of a k-path, with each edge having multiplicity d + 1. Figure 5.4( a) shows 
an instance of p-way MDGP(k,d) (k = 3, d = 2, p = 3), and Figure 5.4(b) shows the 
corresponding instance of MDGP(3,2,0). 

If G is a "yes" instance of p-way MDGP(k,d), then G' is a "yes" instance of 

MDGP(k,d,O). G can be partitioned into p subsets, each of size no more thank and 

degree no more than d. The vertices of G' that correspond to those of G can be 
partitioned in the same way. The (pk) - IV(G)I isolated vertices can be distributed 
among the p subsets so that each subset is of size k. The d + I-edge-connected k-
component of G' is self-contained in a single subset. Thus, G' can be partitioned into 
p + l subsets of identical size. 
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0--0..::::::=::::::~--o..::::::=::::::~--o 

(a) 

0--0..:::::::::::::~--o..::::::=::::::~--o 

(b) 

Figure 5.4: Instances of p-way MDGP(k,d) and MDGP(k,d,O) 

Figures 5.5( a) and (b) show the partitionings of the instances depicted in Fig-

ures 5.4(a) and (b). 

Conversely, suppose G is a "no" instance of p-way MDGP(k,d). It is either the 

case that every partitioning violates either k or d, or that G can be partitioned to 
satisfy k and d, but the number of subsets always exceeds p. In the first case, G' would 

also not be partitionable. In the second case, any partitioning of G' would consist 
of one subset of size k containing the d + I-edge-connected k-component, along with 

more than pother subsets. Since the total number of vertices in G' is pk+ k, at least 

one of the subsets is of size less than k, and a perfect balance is not achieved. D 

The cases of c = 0 and c = k - 1 are, of course, the easiest and least interesting. 
We have not addressed the complexity of the problem when confined to connected 
instances, nor have we considered Balanced FPGA Minimization. The complexity of 
MDGP(k,d,c) for O < c < k - 1 remains an open question. 
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(a) 

(h) 

Figure 5.5: Partitioning the graphs of Figures 5.4(a) 

117 



Chapter 6 

Future Directions and Conclusion 

In this chapter, we present some research results that may have future application 

potential, as well as some open problems. 

6.1 Theoretical Directions 

6.1.1 Closure-Preserving Operators 

The topic of this section has been previously studied by [BFL]. Many of these results 

were independently discovered, although to the best of our knowledge have not been 

published, with one exception which will be pointed out later. 

We define sixteen families of graphs, each of which in turn is defined in terms 

of an arbitrary minor-closed ( or immersion-closed) family of graphs. We examine 

the properties of the resulting families, and consider the question of whether minor 
closure ( or immersion closure) is preserved. 

As an example application, consider the question of planarity. The family of 

planar graphs is closed under the minor order (but not the immersion order). A 

graph may be said to be "almost planar" if there exists a way to remove a small fixed 

number of vertices to produce a planar graph. Knowing that the family of planar 

graphs is minor closed, can we assume that the family of "almost planar" graphs is 
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minor closed? 

A general way to state the question we consider is as follows. Given a graph 

G that is not necessarily a member of some family F, where F is minor closed ( or 

immersion closed), do there exist some k vertices ( or edges) that can be added to ( or 

taken away from) G to form G' E F? These alternatives (minor vs. immersion order, 

vertices vs. edges, added vs. taken away) produce eight families. 

To obtain eight more families, we rephrase the question as follows. Given a graph 

G that is not necessarily a member of some family F, where F is minor closed ( or 

immersion closed), is it the case that for every set of k vertices (or edges) added to 

( or taken away from) G forms G' E F? 

We use a shorthand notation of abcde to denote each family, in which 

• a is either "M" (Fis minor closed) or "I" (Fis immersion closed), 

• b is either ":3" ( some set of vertices or edges) or "V" ( all sets of vertices or 

edges), 

• c is either "+" (adding vertices or edges) or "-" (removing vertices or edges), 

• d is a constant denoting the number of vertices ( or edges) to be added ( or 

removed), and 

• e is either "v" (vertices) or ,:e" (edges). 

In [BFL], M:3-kv was examined, and shown to be minor closed. Given a minor-
closed family F of graphs, G is in M:3-kv if there exists a way to remove k vertices 

from G, forming G' such that G' is in F. Returning to our example application above, 
we conclude that the family of "almost planar" graphs is minor closed. 

We now examine all sixteen graph families in detail. 

l. Fk = M:l+kv: G = (ViJ, Ee) E M:l+kv if there exists a set S of vertices, 

Sn Ve = 0, ISi = k, such that G' = (Ve US, Ee) E F. 
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Theorem 6.1 M:l+kv is minor closed, and M:l+kv F. 

Observation 6.1 We note that for any G E Fk, it is already the case that G 

is in F, because G is a subgraph of G'. 

Proof Noting that S is a set of disjoint vertices, it is easy to see that for 

any minor H = (VH, EH) of G = (Va, Ea), H' = (VH US, EH) is a minor of 
G' = (Va US, Ea). Therefore, H' E F, HE Mv:l+kv, and M:l+kv is minor 
closed. D 

Because adding isolated vertices does not seem to destroy any inherent structure 

in a family of graphs, it is tempting to conjecture that M:l+kv=F. However, 

consider F defined by graphs G such that either 1) G has 5 or fewer vertices, or 2) 
G has a vertex cover ( a set of vertices that includes at least one endpoint of each 

edge) of size 1 or less. (The second property has been added to make F infinite, 
which is not necessary to disprove equivalence, but shows that inequivalence 
applies to both finite and infinite families.) Fis minor closed. If G is any graph 

with 5 vertices that does not have a vertex cover of 1 or less, G E F, but G ft. 
M:l+kv for any positive value of k. 

2. Fk = MVM+kv: G = (11a, Ea) E MV+kv if for every set S of vertices, 

/S/ = k, G' = (Va u S,Ea) E F. 

Theorem 6.2 M'i+kv is minor closed, and M'i+kv F. 

Proof This family is observed to be identical to M:l+kv. If G' = (Va US, Ea) E 
F for some set S of size k, then certainly G' E F for all sets S of size k, since 
S is a set of disjoint 

3. Fk = M:l-kv: G = ( 11a, Ee) E M:l-kv if there exists a set S of vertices, 

S 1''a, /SI= k, such that G' = (Va - S, Ea) E F. 
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Theorem 6.3 (BFL) M3-kv is minor closed, and F M3-kv. 

Observation 6.2 Every graph in F is also in Fk, because F is closed under 

subgraphs. 

4. Fk = MV-kv: G = (Ve, Ee) E MV-kv if for all sets S of vertices, S Ve, ISi = 

k, G' = ("Vi; - S, Ee) E F. 

Theorem 6.4 MV-kv is minor closed, and F MV-kv. 

We restrict our attention only to graphs for which IVel 2:: k. 

Proof Consider any H = (VH,EH) ~MG= (Ve,Ee), such that H has at 

least k vertices. If H was obtained by removing a vertex or an edge from G, 

then for S any set of k vertices in H, H' = (VH - S, EH) is a subgraph of 

G' = (Ve - S,Ee). Therefore, by the minor closure of F, H' E F, and HE 

MV-kv. 

Now suppose H was obtained by contracting edge (u, v) in G (removing u), and 

let S be any set of k vertices in H. If v rJ_ S, then H' = (VH - S, EH) ~M G' = 

(Vi; - S, Ee). If v ES, then H' = (VH - S, EH)= (Ve - S- u, Ee), which is a 

subgraph of (Ve - S. Ee) E F. 

Observation 6.2 applies to this family. D 

Observation 6.3 There is only a finite number of graphs in Fk that do not 

belong to F. 

Consider some G E Fk, but not in F. Then G contains some obstruction 0. 

But we must be able to remove any set of k vertices (edges) to get G' in the 

closed family. Therefore, no matter how we remove the vertices (edges), we 

need to capture 0. Thus all graphs in Fk that are not in Fare of size bounded 

by the members of F's obstruction set. 
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For any Fk to which this observation applies, there exists a low-order polynomial 

time recognition algorithm, even if Fk is not minor (immersion) closed. 

5. Fk = M:l+ke: G = (Va, Ea) E M:l+ke if there exists a set EK, EK n Ea = 
0, IEnl = k, such that G' = (Va, Ea U En) E F. 

Theorem 6.5 M:l+ke is not minor closed, and M:l+ke F. 

Proof Let F be the (minor-closed) family of graphs that have no cycles, and let 

k = 1. The graph G1 illustrated in Figure 6.l(a) is in F, and is also in M:l+ke 

because there exists a way to add an edge to this graph, with the resulting graph 

still in F. However, consider the graph H1 of Figure 6.1 (b) that is a minor of 

G1 . There is no way to add an edge to this graph and still remain in F. 

Observation 6.1 applies to this family. 

0 

(a) G 1 (b) H 1 

Figure 6.1: Graphs G1 and H1 
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6. Fk = MV+ke: G = (Va, Ea) E MV+ke if for every set EK, EK n Ea 

0, IEKI = k, G' = (Va, Ea U EK) E F. 

Theorem 6.6 MV+ke is minor closed, and MV+ke F. 

Proof Consider H = ( Ve - v, Ea), and let EK be any set of k edges that can be 

added to H. Then H' = (Va -v, Ea U EK) is a subgraph of G' = (Va, Ea U EK), 

G' E F, so by the minor closure of F, H' E F, and HE M:l+ke. 

Consider H = (Va, Ea - (x, y)), and let EK be any set of k edges that can be 

added to H. If (x, y) ft EK, then H' = (Va, Ea U EK - (x, y)) is a subgraph of 

G' = (Va,EaUEK), If(x,y) EEK, then H' = (Va,EaUEK-d, where EK-I is 

of size k-l. Since (Ve, EaUEK) E F for any EK of size k, C\lc, EaUEK-d E F. 

If H = ( VH, EH) was formed by contracting edge ( u, v) in G ( removing u), then, 

for any set EK of k edges, H' = (VH, EHUEK) is a minor of G' = (Ve, EaUEK ), 

H' E F, and H E MV+ke. 

Observation 6.1 applies to this family. D 

7. Fi. = M:1-ke: G = (Ve, Ee) E M:1-ke if there exists a set E1,. of edges, EK 

Ea, IE1 .. I = k, such that G' = C\lc, Ea - EK) E F. 

Theorem 6. 7 M:l-ke is not minor closed, and F M:1-ke. 

Proof Let F be the family of graphs all of whose vertices are of degree 0, 1, 

or 2. F is minor closed. Consider k = l. The graph G2 in Figure 6.2(a) is 

in M:l-ke, because removal of the middle edge yields a graph in F. However. 

graph H2 shown in Figure 6.2(b), which is a minor of G2 , is not in M:1-ke. 

Observation 6.2 applies to this family. D 

8. Fk = MV-ke: G = (Va, Ea) E MV-ke if for all sets EK of edges, EK Ea, 

G' = (Ve, Ee - E1\·) E F. 
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(a) G 
2 (b) H 2 

Figure 6.2: Graphs G2 and H2 

Theorem 6.8 M\f-ke is minor closed, and F M\f-ke . 

Proof For H = (Va-v, Ea), H' = (Va-v, Ea-EK) for any set EK of k edges, 

is a subgraph of G' = ("Vi:;, Ee - EK) E F. Thus H' E F. The same reasoning 
shows that H = (Va, Ea - (x, y)) E M\1'-ke. 

If H = ( VH, EH) was formed by contracting edge ( u, v) ( eliminating u) in G, 

then consider H' = (VH, EH - EK) for any set EK of k edges. H' is a minor of 

G' = ( Va, Ea - Et), where E'K contains all the edges of EK, except edges of 
the form ( v, x) where ( v, x) is not an edge of G are replaced with ( u, x ). 

Observation 6.2 applies to this family. D 

Observation 6.3 applies to this family. 

9. Fk = El+kv: G = CVi:;, Ee) E El+kv if there exists a set S of vertices, 
S' n lie= 0. /S/ = k, such that G' = (Va u S, Ea) E F. 

Theorem 6.9 El+kv is immersion closed, and El+kv F. 

Proof Noting that S is a set of disjoint vertices, observe that for any immersed 

H = (h1,EH) of G = (Va.Ea), H' = (VH U S,EH) is immersed in G' = 
(Vi:;US',Ea). Therefore, H' E F, HE El+kv, and El+kv is immersion closed. 
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Observation 6.1 applies to this family. As in M3+kv, we might conjecture that 

B+kv=F. However, consider F defined by graphs G such that either 1) G has 

5 or fewer vertices, or 2) G is cycle free. F is immersion closed. In any graph 

with 5 vertices that contains a cycle, GE F, but G (f_ M3+kv for any positive 

value of k. 

10. Fk = I'v'+kv: G = (Ve, Ee) E IV+kv if for every set S of vertices, ISi = k, 

G' = (Ve US, Ee) E F. 

Theorem 6.10 IV+kv is immersion closed, and IV+kv F. 

Proof This family is seen to be identical to B+kv. If G' = (Ve U S, Ee) E F 

for some set S of size k. then certainly G' E F for all sets S of size k, since S 

is a set of disjoint vertices. 

11. Fk = B-kv: G = (Vi:;, Ee) E El-kv if there exists a set S of vertices, S 

Ve, ISi = k, such that G' = (Ve - S, Ee) E F. 

Theorem 6.11 B-kv is not immersion closed, and F B-kv. 

Proof Consider the family F of graphs that have no edges, which is observed to 

be closed under immersion, and let k = 1. The graph G3 shown in Figure 6.3(a) 

is in B-kv, because removal of the middle vertex yields a graph in F. However, 

for the immersed H3 of G3 shown in Figure 6.3(6), there is no way to remove a 

single vertex to obtain a graph in F. 

Observation 6.2 applies to this family. 

12. A =IV-kv: G = (Vi;. Ee) EIV-kv if for all sets S of vertices, S Ve, ISi = k, 

G' = (\-c -S,Ec) E F. 

Theorem 6.12 IV-kv is not immersion closed, and F IV-kv. 
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(a) G 
3 

(b) H 
3 

Figure 6.3: Graphs G3 and H3 

Proof Consider the family F of graphs that have no cycles, which is observed 

to be closed under immersion, and let k = 1. 

The graph G4 shown in Figure 6.4(a) is in I\f-kv, because removal of any vertex 

yields a graph in F. However, for the immersed H4 of G4 shown in Figure 6.4(6 ), 

removal of the isolated vertex does not yield a graph in F. 

Observation 6.2 applies to this family. D 

Observation 6.3 applies to this family. 

13. F1r =El+ke: G = (Va, Ea) E B+ke if there exists a set EK, EK n Ea 

0, IEKI = k, such that G' = (Va, Ea U EK) E F. 

Theorem 6.13 B+ke is not immersion closed, and B+ke F. 

Proof Let F be the family of cycle-free graphs, which is immersion closed, 

and let k = 1. There exists a way to add an edge to the graph G of Fig-

ure 6.l(a), with the resulting graph still in F. However, for the immersed Hof 

Figure 6.1(6 ), there is no way to add an edge without introducing a cycle. 

Observation 6.1 applies to this family. 

14. F1; = IV+ke: G = (Vi:;, Ea) E IV+ke if for every set EK, EKnEa = 0, IEKI = k, 

G' = (vc, Ea U EK) E F. 
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(a) G 
4 (b) H 

4 

Figure 6.4: Graphs G4 and H4 

Theorem 6.14 IV+ke is immersion closed, and IV+ke F. 

Proof Consider H = (Va -v, Ea), and let EK be any set of k edges that can be 

added to H. Then H' = CVi:;-v,EaUEK) is a subgraph of G' = (Va,EaUEK), 

G' E F, so by the immersion closure of F, H' E F, and H E B+ke. 

Consider H = (Va, Ea - ( x, y)), and let EK be any set of k edges that can be 

added to H. If (x,y) (/_ EK, then H' = (Va,Ea U EK -(x,y)) is a subgraph of 

G' = (Va,EaUEK). If(x,y) EEK, then H' = (Va,EaUEK_i), where EK-I is 

of size k-1. Since (Va, EaUE1,;) E F for any EK of size k, (Va, EaUEK-d E F. 

If H was formed by lifting (u,v),(v,w) (adding (u,w)), consider EK any set of 

k edges that can be added to H to form H'. If E1,; n {(u, v), (v, w)} = (/J then 

H' is immersed in G' = (Vi:;,Ea U EK)- If either or both of (u,v),(v,w) EEK, 

then H' is a subgraph of G' = (Va, Ea U EK U (u, w)), which is in F because 

the set of added (unredundant) edges is of size :S k. 

Observation 6.1 applies to this family. 

15. A = El-ke: G = (Vi;, Ea) E El-ke if there exists a set EK of edges, EK 

Ea, IE1\· I = k, such that G' = (Vo, Ea - EK) E F. 

Theorem 6.15 El-ke is immersion closed, and F B-ke. 
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Proof Let EK denote the set of k edges whose removal from G yields a G' = 
(Va, Ea - EK) E F. If H is a subgraph of G, then it is easy to see that 

H' = (VH, EH - (EK n EH)) is a subgraph of G'. 

Suppose H was formed by lifting ( u, v ), ( v, w) ( adding ( u, w) ). If EK n 
{( u, v ), ( v, w)} = 0 then H' = (VH, EH - EK) is immersed in G'. Otherwise, a 

set of edges of size k (or less) can be removed from H by removing EK, which 

contains at least one non-existent edge from H, as well as (u, w). The resulting 

graph is a subgraph of G'. 

Observation 6.2 applies to this family. 

16. Fk = IV-ke: G = (Va, Ea) E IV-ke if for all sets EK of edges, EK C Ea, 

G' = (Va, Ea - EK) E F. 

Theorem 6.16 IV-ke is immersion closed) and F IV-ke. 

Proof If H = (Ve-v, Ee), then H' = (Va-v, Ee-EK), where EK is any set of 

k edges from H, is a subgraph of G' = (Va, Ea - EK). If H = (Va, Ea - (x, y)) 

then H' = (Va, Ee - (x, y) - EK) is a subgraph of G' = (Va, Ea - EK). 

Suppose H was formed by lifting ( u, v ), ( v, w) ( adding ( u, w) ), and consider 

any set E1.; of k edges in H. If ( u, w) E EK, then H' is a subgraph of G' = 
(Ve,Ee- (EK -{(u,w)} U {(u,v)})), which is in F. If (u,w) <t EK, then H' 

is immersed in G' = (Ve, Ee - EK). 

Observation 6.2 applies to this family. 

Observation 6.3 applies to this family. 

The theorems presented in this section guarantee only the existence of polynomial-

time decision algorithms for the closed families of graphs. In practice, of course, what 

is usually required is not only a yes answer, but proof in the form of a specific solution. 
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For nine of the families that are closed under their corresponding orders, a solution 

can be easily and quickly constructed. They are the families for which a solution may 

be constructed by choosing any k vertices or edges to be added or taken away. These 

families are: M:l+kv, MV+kv, MV-kv, MV+ke, MV-ke, B+kv, IV+kv, IV+ke, 

and IV-ke. 

The other two closed families, M:3-kv and B-ke, appear to be the only two of 

the sixteen that are of theoretical and potential practical interest. For both of these 

families, a solution can be constructed via self-reduction. 

In [BFL] a self-reduction algorithm is presented to show that a solution to M:3-

kv, in the form of the construction of S, can be obtained in O(IVl 4 ) time. We note 

that a somewhat simpler self-reduction can be performed, yielding the same time 

bound, by employing "related" oracles for M:3-nv, where n takes on the successive 

values k, k - 1, ... , 0. The same approach yields a search algorithm for B-ke. In 

[FL4], a general 0( n log n) self-reduction technique called scaffolding is introduced. 

Scaffolding also uses related oracles, but is primarily applicable to layout permutation 

problems. 

Table 6.1 summarizes closure-preserving operator results. 

6.1.2 Other Circuit Partitioning Problems 

In addition to practical generalizations of the MDGP problem, there exist other com-

binatorial problems of relevance to FPGA partitioning. See [Go] for a sampling of 

such problems, along with many open questions. In this subsection, we describe some 

new results for one of these, Minimum Degree Cut, which is defined as follows. 

Instance: a graph G = (V, E), some of whose vertices are terminals, and an 

integer d. 

Question: Does G have a terminal partition in which each subset has degree d 
or less? 

Recall that a terminal partition of G is a partition in which each subset contains 
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Table 6.1: Summary of closure-preserving operators 

F1. Closure Notes 

1. M:3+kv yes Fk <; F 

2. MV+kv yes Fk <; F 

3. M:3-kv yes Fk 2 F 

4. MV-kv yes F -:> F* k_ 

5. M:3+ke no Fk <; F 

6. MV+ke yes Fk <; F 

7. M:3-ke no Fk 2 F 

8. MV-ke yes F -:> F* k_ 

9. B+kv yes Fk <; F 

10. IV+kv yes Fk <; F 

11. B-kv no Fk 2 F 

12. IV-kv no F -:> F* k_ 

13. B+ke no Fk <; F 

14. IV+ke yes Fk <; F 

15. B-ke yes Fk 2 F 

16. IV-ke yes F => F* k_ 

* Only finite number of graphs E Fi., (/:. F 
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at most one terminal from G. 

This problem has polynomial-time complexity ([Go]), which makes the fact of 

its immersion closure less interesting. No practical algorithm is known, however. 

We present some results about the obstruction set of the fixed-parameter version of 

Minimum Degree Cut (MDC( d) ). It is unlikely that an obstruction-based algorithm 

will be practical for this problem. Nevertheless, knowledge gleaned from the study of 

these sets may still be useful. This was the case with MDGP(k,d), in which study of 

the obstruction set paved the way to linear-time search and decision algorithms. 

Observation 6.4 Every obstruction to MDC(d) contains at least 2 terminal vertices. 

Observation 6.5 No obstruction to MDC(d) contains an edge with multiplicity ex-

ceeding d + l. 

Observation 6.6 A graph consisting of a single non-terminal vertex, with three ter-

minal neighbors, is an obstruction for MDC(l). 

Lemma 6.1 No obstruction to MDC(d) contains a non-terminal vertex with fewer 

than three neighbors. 

Proof First observe that there can be no obstruction with an isolated nonterminal. 

Denote by H some obstruction to MDC( d). Suppose some non-terminal v E VH 

has exactly one neighbor, w. H' = H - { v} has a terminal partition P in which w 

belongs to some subset S. But adding v to S in P yields a terminal partition of H. 
Suppose some non-terminal v E VH has only two neighbors, u and w. H' obtained 

by replacing { u, v }, { v, w} with { u, w} has a terminal partition P. 

If u and w are in the same subset S of P, we can obtain a terminal partition of 

H by adding v to S. So we must have u E S1,w E S'2 for S1,S 2 of P. But then 

P - S1 U (S'1 U v) is a terminal partition of H. 

Observation 6. 7 Any connected graph consisting only of terminal vertices is a ''no" 

instance of MDC(d) if any of the terminals is of degree greater than d. 
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Definition 6.1 A d-star terminal graph Sd is defined as follows: 

1. There is one terminal vertex v of degree d + I. 

2. Every neighbor of v is a terminal, with no other neighbors. 

3. sd is connected. 

Lemma 6.2 Any d-star terminal graph Sd is an obstruction to MDC(d). 

Proof By Observation 6.7, Sd is a "no" instance of MDC(d). We only need to show 

that Sd is minimal. We note that the only situation in which a vertex other than 

v could have degree more than d is that in which the graph consists of only two 

terminals connected by d + I edges. Any immersion operation, then, results in all 

terminals having degree less than d, and the resulting graph is a "yes" instance of 

MDC(d). D 

Figure 6.5 shows the set of Sd obstructions for MDC(4). Note that all vertices in 

Figure 6.5 are assumed to be terminals. 

Figure 6.5: Some obstructions to MDC( 4) 
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Theorem 6.17 The size of the obstruction set to MDC( d) is at least exponential in 
yd, 

Proof The proof hinges on counting the number of Sd obstructions. Such graphs 

can be put into correspondence with sets of positive integers totalling d + l, and the 

number of these is exponential in vd ([Ro]). D 

6.1.3 Faster Immersion Testing 

We have seen that WQO theory provides a powerful tool for proving polynomial-

time decidability. In the case of the minor order, every immersion-closed family F 
automatically has an asymptotically fast algorithm (O(n3 ) at worst). In the case of 

the immersion order, the best we can guarantee is 0( n h+ 3 ), where h is the order of 

the largest member of the obstruction set for F. 
These complexity orders are a consequence of the time required to decide whether 

a fixed graph His a minor of (immersed in) a given graph G. Should an algorithm be 

found that could perform immersion testing faster, this would translate into a faster 

known algorithm for all immersion-closed families. 

At this time, it is unknown whether or not there exists a O(nk) (k any fixed 

constant) algorithm for deciding immersion containment, in which k does not depend 

upon the obstruction set for F. 

6.1.4 Other Issues 

In Chapters 2, 3, and 4, we investigated the complexity of MDGP, FPGA Mini-

mization. and Delay Minimization, when restricted to certain graph families. These 

results for MDGP and FPGA :Minimization were summarized in Table 3.1. The com-

plexity of Delay Minimization, under these restrictions, is the same as that for FPGA 

Minimization. 

The entries marked "unknown" in the table are open questions. Additionally, the 
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complexity of many of the problems in Chapter 5 when restricted to particular graph 

families, is unknown. Since many of these generalizations have potential applications 

to circuit partitioning, and because it is sometimes the case that assumptions may 

be made about the structure of real circuits, these issues are worthy of further study. 

There are also many open questions with respect to partitioning problems over 

hypergraphs, and for heterogeneous partitioning. We have shown some results for 

the fundamental problem in these settings. We have no positive results for FPGA 

Minimization, however, except for the heuristic which does works on hypergraphs. 

6.2 Practical Directions 

One area of potential promise for future research is that of more practical heuristics, 

especially in the area of timing. Hardware technology continues to advance rapidly, 

and the software for realizing rapid prototype systems on this hardware must keep 

pace. 

There is an open question related to critical path compression, that encompasses 

both theory and practice. The question is, under what circumstances can compression 

of the current critical path result in the creation of a new, worse critical path? If 
this information could be known in advance, even some of the time, critical path 

compression could be made more efficient. 

Code replication is a significant topic in circuit design. In fact, many researchers 

consider it an essential tool ([TSO]), without which near-optimal delays are almost 

impossible. A possible project would be to incorporate replication into the critical 

path compression technique. 

The CPU time for our critical path compression algorithm increases significantly 

when the current critical path is very long. One way to deal with this shortcom-

ing would be to ignore target sequences that exceed some predefined length. The 

reasoning behind this is that very long sequences might be unlikely candidates for re-
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assignment. The amount of time spent investigating reassignment of very long target 

sequences is perhaps not justified. 

Other areas of potential research include, but are not limited to, the following: 

• More effective clustering methods for partitioning, that incorporate timing con-

cerns. 

• Expanded iterative improvement techniques for delay optimization. 

• Improved implementation strategies to make the code itself more efficient. 

• Scalable strategies that can handle extremely large circuits, or circuits with 

extremely long critical paths. 

6.3 Conclusion 

In summary, we have examined a set of partitioning problems that have relevance 

to VLSI design, particularly FPGA partitioning. We have explored theoretical prop-

erties of these problems, and have found some results concerning their tractability. 

We have seen that many of these problems are in P when all parameters are fixed, 

and many have been shown for the first time to be solvable in linear time. We have 

learned a great deal about the immersion order obstruction sets for some of these 

families, and have discovered that many of these sets are computable. 

From this theoretical perspective, we have also explored more practical algorith-

mic possibilities. A promising area of new research is that of partitioning for delay 

minimization, and we have developed a new iterative improvement technique toward 

this end. Many unresolved problems and open issues have been discovered along the 

way. 
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