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Abstract

The goal of this research is to investigate to what degree randona artificial

dendritic nets can differentiate between temporal patterns after modifying the

synaptic weights of certain synapses according to a learning algorithm based on

the Fourier transform.

A dendritic net is organized into subnets, which provide impulse responses to a

function as a basis for Fourier decomposition of the input pattern. Each subnet is

randomly generated. According to the simulations, randomly generated subnets

with appropriate parameters are good enough to provide the impulse responses

for the Fourier decomposition.

The electrical potential pattern across the membrane of the dendrites follows

the cable equation. The simulations use a linear synapse model, which is an

approximation to biologically realistic synapses. Both excitatory and inhibitory

synapses are present in a dendritic net.

The simulations show that random dendritic nets with a small number of

subnets can be modified to differentiate between electrical current patterns to a

high degree when the membrane conductance of the dendrites is high, and they

also show that the random structures are highly fault-tolerant. The performance

of a random dendritic net does not change much after adding or deleting subnets.
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Chapter 1

The Problem to Solve

1.1 The Problem

The objective of this research is to explore how random dendritic nets process

information, represented as an electrical current pattern.

An electrical current pattern feeds into a dendritic net, and the network pro

duces electrical potential output as the result of manipulation of the input pattern.

In the learning step, ideally the dendritic net learns to recognize the input tem

poral electrical current pattern after modifying the dendritic net itself, i.e. the

dendritic net is tuned to this particular input pattern. The simulations show

to what degree artificial random dendritic nets can be modified to differentiate

between electrical potential patterns, which represent information.

The simulations are not intended to model exactly any part of the nervous



system. The emphasis is on how the general dendritic structure can process in

formation in a specific way.

1.2 What Are the Open Problems?

It appears that the most highly evolved information processing system is the

human brain [Hameroff 87, p.35]. From the computing point of view, the human

brain may be considered the most sophisticated computer.

Despite numerous publications of the research on the human brain reporting

impressive progress, we still know very little about how the human brain works

[Bullock 93, Preface]. Understanding how the brain works is not just accumulating

data through experiments and local observations of brain tissues activities, which

have been mistaken for understanding how the brain works [Bullock 93, Preface].

In order to understand how the brain works, higher-level theories and modeling

about how various cognitive processes work are needed.

We do not know how brains learn, make judgments, or take action, all of which

require theories of information processing. It means that we do not know enough

about the brain, despite the fact that we have a huge amount of data about it.

Let's move down a little bit. The stomatogastric ganglion (mass of nerve cells)

of the spiny lobster normally has 28 neurons. The network serves to "drive the

muscles controlling the teeth of the gastric mill so that food can be ground up



for digestion" [Churchland 92, p.4]. The diagram of the circuit reveals impressive

details [Churchland 92, p.5]. "What is not understood is how the neural cells

interact to constitute a circuit that produces the rhythmic pattern" [Churchland

92, p.5]. Even for this simple network, the global behavior is hard to understand

though we know an impressively large number of details about the constituent

neurons. But still we don't know if it is detailed enough. This example shows

that neuroscience in many areas is data rich, but theory poor [Churchland 92,

p. 16], even for a small system. This statement doesn't imply that neuroscience is

theory poor in all aspects. It depends on the level of abstraction we are looking at.

Clearly, at the very highest level, we have artificial neural nets to model massive

connections, but they are quite remotely based on the neural system and hence

are not realistic. Whether a model is realistic enough or not depends on what

abstraction level the investigator looks for.

The central problem is that there is no accurate, comprehensive theory about

how a neuron works with other neurons, though we have a large amount of data

about neurons. This is an example in neuroscience which looks deceptively simple

to us, but it is not trivial to construct a realistic simulation to model it. For this

kind of accuracy in the rhythmic patterns, one may need to describe a very detailed

pulse generation process in the neurons and to have an accurate synapse model in

between neurons. Subneuronal processes, which include possible feedback loops,

might also be involved. The whole network is a dynamical system.



1.3 Why Random Dendritic Nets ?

In this research, the goal is not so ambitious as to try to understand how the brain

works, i.e. how it processes various information, or even how a neuron works with

another neuron in general. Instead, the focus is on exploring the information

processing capabilities of dendritic nets, which extend among neurons. This kind

of information processing is a local interaction among neurons through spanning

dendritic trees.

Axons provide long-range, nonlocal information transfer. For complex infor

mation processing, a network needs highly, often randomly, interconnected el

ements. The ubiquitous, innumerable local interactions, often dendrodendritic

nets, provide high connectivity for computation [Pribram 91, p.5]. Local circuit

neurons are found in many locations in the central nervous system. Computation

is strongly influenced by local interactions that modify the postsynaptic dendritic

process [Pribram 91, p.5 & p.10].

If synapses are allowed to grow stronger, weaker or to die out and the dendritic

structure can then be arranged in a certain way, then this dendritic net may be

able to adapt to the external stimulus and to come out with a slightly nonran-

dom structure to recognize the stimulus, an electrical current pattern. Another

possibility to change a dendritic net structure is for dendrites to grow [Lund 78,

p. 169].



"The brains of highly developed animals contain more Golgi type II cells than

Golgi type I cells" [Dowling 92, p.45]. The main difference between the mouse

and the primate cerebral cortex is that there are more neurons with short or

with no axon, i.e. Golgi type II neurons, in the primate brain than in the mouse

brain [Dowling 92, p.45-46]. It is reasonable to suppose that these neurons with

short or with no axon are not isolated, but have interactions with other neurons.

Since they have short axons or are without axons, they can be involved in local

interaction. This means that there is more local interaction among nearby neurons

in the primate brain than in the mouse brain.

Dendrites axe not exclusively for receiving input information and axons are not

exclusively for providing output [Dowling 92, p.45]. For example, in Golgi type II

neurons, which have short or, sometimes, no axons, dendrites and axon terminals

are often both pre- and post-synaptic [Dowling 92, p.45]. Some dendrites and

axons share the ability to transmit electrical signals, and in many neurons both

information input and output can be on the same set of dendrite-like fine processes

[Levitan 97, p.9].

Neurons with local interaction can be found in many locations of the sen

sory and central nervous system. They often form dendrodendritic connections

[Pribram 91, p.5]. The reason may be that a considerable amount of important

information processing happens in the subtle local neuronal interactions. In this

study, the simulations concern dendrodendritic information processing.



This work may be considered a step toward understanding the working of the

brain, which apparently shows superior intelligence not attainable by the current

(digital) computer hardware and software systems. The information processing in

dendrodendritic connections may be viewed as a computing model. Some partic

ular distinctions of dendrodendritic processing include being parallel and analog.

There are many dendritic spines on dendrites for receiving analog information

across synapses from other dendrites. The tree structure with synapses can do

merging (convergence), branching (divergence), and other modifications on the

information.

1.4 What's New About the Work in Computer Science ?

The main reason to explore the information processing capabilities of dendritic

nets is that they may play an important role in the brain, particularly the human

brain, which can be seen as the most sophisticated computing device. Note that

even an insect's brain, which guides the highly intelligent and coordinated behav

ior of the insect, cannot be simulated satisfactorily and efficiently by any current

hardware and software system on the digital computer. Essentially we want to see

how dendritic nets can possibly work in the brain. We have tried to run realistic

simulations as far as it was practical to do so.

Though artificial neural nets are far different from the biological networks



composed of real neurons, yet they capture one of the most important aspects of

neurons: connections, which are usually complicated. A more realistic dendritic

net, which also has complicated connections, can manipulate patterns in some

ways that cannot be achieved in artificial neural networks. The following describes

properties of dendritic nets and compares the more realistic dendritic net with the

artificial neural network.

The common property of dendritic nets and artificial neural network is that

they all have complicated connections, branching, and merging. These are some

of the mechanisms to manipulate the input pattern.

A segment of the membrane of a dendrite can be described as a resistor and

a capacitor in parallel. Normally an electrical potential pattern across the mem

brane propagating along a dendrite becomes smaller in amplitude along the den

drite, a phenomenon called passive spread [Levitan 97, p.54], due to electrical

resistance across the membrane and along its axis. Longitudinal gradients of

electrical potential dissipate with time.

A dendrite can change the shape of an input electrical potential pattern due to

the capacitor across the membrane. The voltage that builds up across the circuit

of resistor and capacitor rises and falls more slowly than the current impulse across

the membrane [Bowling 92, p.429]. It is a way of manipulating the input pattern

by changing its shape. The effect of capacitors and resistors on electrical patterns

are not shown in artificial neural networks. Given any plausible combination



of Gm, membrane conductance, Ra, longitudinal resistance, and Cm, membrane

conductance, there can be no sharp edges in any electrical potential pattern in

a dendritic net. In particular, the smoothing effects of a dendrite suppress the

high frequency components of the input electrical current pattern. This turns a

segment of dendrite into a low pass filter, which loses part of the information of a

pattern propagating along it.

We have stayed 35 close to real neurons as practically possible. At least our

simulations have shown how well this kind of structure can process information

with our learning algorithm.

In the multi-layer feed-forward artificial neural networks, there is no time de

lay of information propagation on two different paths from the input node to the

output node. The flow of information from one layer to the next is synchronized.

This kind of network does not need delay for its operation. The input is not

temporal. The input to represent a complicated pattern, such as a two dimen

sional grey-scale character composed of pixels, is usually a discrete encoding of

the pattern. The encoding is done off-line, not in the neural network.

Recurrent artificial neural networks use feedback, and layer-to-layer informa

tion passing is synchronized. They are also capable of processing temporal input

patterns in which each pattern is represented as a time series of data.

There are two sources of time delay in a dendritic net. The major source is

the time for an electrical pattern to get across a synapse. A minor source is the



time needed for the electrical potential pattern to travel along the dendrite. In

our simulations, the delay of a synapse is randomly generated between [0,2 msec]

and the branch lengths of a dendritic tree are less than 60 microns.

In this study, a dendritic net is an analog system simulated by numerical

computation. The input to a dendritic net is a temporal pattern. The information

flow in a dendritic net is not synchronized. The times spent for information passing

over two different paths from the input to any point in the network are different,

depending on the delays of the synapses on the paths, the electrical properties of

the dendrites in the two paths, and the length difference of the paths. With the

unsynchronized mergings of patterns from many different paths, dendritic nets

offer a very complicated manipulation of patterns.

An important issue was to explore learning by means of the modifications in

synapses of the dendritic net in order to recognize an input pattern or to differ

entiate between patterns. The modification is local and simple for each synapse.

The local modifications can lead to a global emergent property [MacLennan 92].

In our context, the local modifications will make the whole dendritic net capable

of recognizing a temporal pattern or of differentiating between temporal patterns

in an input set (defined in Section 4.2), which is an emergent global capability of

the dendritic net.

One distinct structure of real dendritic nets is their seemingly random struc

ture. Randomness or near-randomness is almost everywhere in nature. It is



significant if a near-random structure can self-modify itself locally into a more

nonrandom structure in some way to recognize or differentiate between patterns.

The former random structure seems to be unbiased and does not process informa

tion for any purpose, but the latter nonrandom structures can recognize a pattern

or differentiate between the patterns in an input set. Our simulations show how

well this can be done by a dendritic net.

In computer science, one of the goals is to build fast, fault-tolerant computers.

As the simulations show, random dendritic nets are very fault-tolerant. This

work may provide a basis for future massively parallel analog hardware with high

fault-tolerance.

1.5 Related Work

As a result of advances in experimental techniques in the past two decades, a large

amount of data about neurons has accumulated and has served as the empirical

basis for the biologically realistic models [Hines 97]. The following list taken

from [Hines 97] shows what has been modeled: the cellular mechanisms that

generate and regulate chemical and electrical signals, drug effects on neuronal

function, presynaptic and postsynaptic mechanisms underlying communication

between neurons, integration of synaptic inputs, action potential initiation and

conduction, cellular mechanisms of learning, cellular oscillations, thalamic net-

10



works of certain configurations to study spindle rhythmic oscillations [Destexhe

97], and neural information encoding.

[Bazhenov 98] studies the dynamical properties of synaptically coupled neu

rons and neurons coupled in lattice and chains. A coupled chain of neurons with

reciprocal inhibition between neighboring neurons exhibited synchronous oscilla

tions.

In [Bush 95], one column of layer V of the visual cortex using 80 pyramidal

cells and 20 basket cells is simulated to study how networks of cortical neurons

are organized to allow long-range contextual inputs to influence local processing.

According to the chapter called "Computational Overview" of [Churchland 92,

p.61-p.l40], higher-order models are what we generally find in books on artificial

neural networks. The abstraction is at a high level, far from real neural networks.

They do not model details about how two neurons interact. Our simulations

are situated between realistic dendrodendritic nets and high level artificial neural

networks.

A model for higher-level information processing in dendritic nets, one kind

of interaction among neurons, has been formulated in [MacLennan 92]. It is a

theoretical framework based on the generalized Fourier transform. It does not

specify how detailed the implementation has to be. My simulations are of this

kind.

Simulating large biological neural nets demands high computing power [Lytton

11



96] provides a method to reduce simulation time; its purpose is not to simulate

any part of the nervous system. In [Lytton 96], a single lumped state-variable is

used to represent a large number of converging synaptic inputs, because all of the

synapses of a single type are doing identical, potentially redundant calculations at

slightly different times. The Markov synapse model [Destexhe 94a, Destexhe 94b,

Destexhe 95a, Destexhe 95b, Destexhe 95c, Destexhe 96], which preserves some

major aspects of biophysically realistic synaptic processes, is used for simulations.

The simulations were run on mutually-excitatory neurons receiving similar input

spiking. Each individual synapse is not represented as a distinct entity. This

arrangement maintains a single queue of spike arrival times instead of N queues

for N synapses. "Typically, the time of a presynaptic activation is added to the

appropriate synaptic delay and then stored on a queue." "When the calculated

time is reached in the simulation, the item is removed from the queue and the

postsynaptic element is activated." This approach greatly reduces the computing

time spent on simulating neural networks composed of large numbers of neurons

and synapses.

Note that Lytton's method is for synapses with similar spike pulse trains at

the presynaptic side. This method cannot be applied to my simulations where the

electrical potential travels along passive dendrites, i.e. conductors with electrical

resistance and capacitance, and across synapses where complicated configurations,

i.e. branching, merging, superposition, integration, and delay, happen along den-

12



drites and across synapses. The electrical potential patterns coming from different

paths leading to the synapses will have different shapes, therefore, the synapses

in my simulations will not have similar input spiking.

In my simulations, the patterns are not identical spike trains. Instead, the

patterns are manipulated by the dendritic net and hence have an irregular shape.

In this work, I am interested in the results of the manipulation of patterns by

the network, i.e. in changing pattern shapes and amplitudes in dendritic struc

tures of branching, superposition, and integration of temporal electrical potential

patterns. The simulations show to what extent artificial random dendritic nets

can be modified to differentiate between electrical potential patterns, which rep

resent information. The emphasis is on how the dendritic structure can process

information.
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Chapter 2

Modeling Dendrites and Synapses

2.1 The NEURON Simulation Environment

All simulations were run under NEURON, a simulation language interpreter and

environment for simulating neural configurations and activities developed by Michael

Mines of Yale University and John W. Moore of Duke University Medical Centers.

Neuron processes, such as synapse models, can be compiled and incorporated

into the NEURON simulation environment by user modeling programs to specify

the activities of the neuron processes. NEURON provides an environment for

simulating dendrites constructed by passive cables, axons with the active Hodgkin-

Huxley property, and neuronal processes. The user writes modeling programs in

the language provided in NEURON and runs them in the NEURON simulation

environment.
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For our simulations, a program in C/C"'"'" was written to take a data file

which specifies a dendritic net as the input and to generate a NEURON modeling

program to be interpreted and run under the NEURON simulation environment.

2.2 Dendrites and Axons

Any segment of a dendrite is considered a cylinder whose electrical potential across

the membrane satisfies the partial differential equation of linear cable theory,

which is baised on the dendrite's equivalent circuit.

Dendrites are assumed to be passive, which means that conductance is fixed.

However, the membrane conductance depends on the electrical response: for a

strong response, the conductance starts to change. Therefore, the cable theory is

valid only when the response is about half the strength required for generating

an action potential (spike) [Tuckwell 88a]. For simulations on NEURON [Hines

84][Hines 89][Hines 97], a parameter is used to specify whether a cable segment is

passive or active.

An axon, which is an active cable (i.e. obeys the Hodgkin-Huxley equation),

will preserve the shape of electrical spikes propagating along it. Whenever the elec

trical potential difference across the membrane is higher than a certain threshold,

an action potential spike will be generated. The action potential will keep the

shape of the spike along the axon and transmit information to another area of the
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neural system.

2.3 Synapse Models

The electrical properties of all cells, including nerve cells, depend on the movement

of small inorganic ions across the cell membrane [Levitan 97]. Ion channels are

most important for nerve cells. Ions flow from one side of the membrane to

the other side through ion channels, which are proteins spanning the membrane.

Energy-driven pumps or carriers are proteins that carry an ion from one side of the

cell membrane to the other side. For nerve cells, energy-driven pumps or carriers

play a supporting role.

There are two kinds of synapses, electrical and chemical. Historically, we

happen to know more about chemical synapses than electrical synapses. Both

kinds of synapses axe important. In the following, we restrict our discussion to

chemical synapses, where synaptic currents are mediated by ion channels activated

by neurotransmitters released from the presynaptic terminals.

The synaptic process of chemical synapses consists of a sequence of stages

with associated quantities, i.e. presynaptic depolarization (electrical pulse), the

amount of neurotransmitters released, the number of postsynaptic ion channels

opened, and the generation of postsynaptic current and electrical potential. The

quantity of each stage is related to the quantity of the previous stage. The relation
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is approximately linear except for saturation and depletion of neurotransmitters.

We do not intend to discuss all existing synapse models. In the following

sections, Markov and linear synapse models are described. Both models can be

implemented and compiled into the NEURON simulation environment, which is

then able to interpret synapses defined in simulation programs.

2.3.1 Synapse Model Based on the Markov Process

The Markov synapse model described in this section was proposed and imple

mented by Destexhe and his coworkers [Destexhe 94a, Destexhe 94c, Destexhe

95a, Destexhe 95b, Destexhe 95c, Destexhe 96]. The implementation can be in

corporated into the NEURON environment. The following is a brief summary of

this synapse model:

(a) Ion channels are proteins in different conformation states.

(b) The transition from one conformation state to another is a Markov process.

The transition probability can be obtained by single-channel recording.

(c) If the concentration gradient is not extreme, the current through a synapse

is proportional to the fraction of open channels.

(d) This model is accurate for describing synaptic transmission even with 2-3

states.

The Markov synapse model has been used by Destexhe and associates to

demonstrate the input-output behavior on a single synapse.
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Practically, it is difficult to simulate large dendritic nets with many (sixty to

several hundred) synapses based on the Markov model when each synapse has its

own parameters and each synapse receives a different electrical potential pattern

at the presynaptic site. The problem lies in the difficulty of getting the parameters

and input pattern to work in a controlled manner. In fact, it is a good model,

which describes the synapse process realistically. For our purpose, we need to

use a simplified model to make large dendritic net simulations feasible under the

control of the person who does the simulation.

2.3.2 Linear Synapse Model

The following describes the linear synapse model, which captures the behavior of

a synapse operating in the linear range without saturation or depletion of neuro-

transmitters. The implementation of the linear synapse model under NEURON

is in Appendix A.

Let the resting potential be r, the presynaptic electrical potential at time t

be prct, the postsynaptic potential at time t be posit, and the multiplier (the

synaptic weight) be m. A linear synapse is defined such that it satisfies the

relation posU+i = r + m{pret — r). With reference to the resting potential, the

value of the presynaptic electrical potential above or below the resting potential

is multiplied by a multiplier (synaptic weight), which serves to amplify the input,

to obtain the postsynaptic potential above or below the resting potential at the
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next time slice.

The above formulation is for synapses without delay. For a synapse with

delay, a first-in-first-out buffer is implemented to hold the presynaptic electrical

potentials for a sequence of simulation time slices. At each time slice, at the end of

the buffer an electrical potential value comes out to be the postsynaptic electrical

potential, then the buffer is shifted one position toward the postsynaptic end, and

then the presynaptic electrical potential feeds into the front end of the buffer.

Note that it takes memory space in the computer to hold the buffer. The finer

the time slices for numerical simulations, the larger the memory space needed.

This simple mechanism is intended to maintain the linear relationship between

the presynaptic and postsynaptic electrical potentials relative to the resting po

tential. It is a reasonable approximation of a chemical synapse when conditions

are not extreme. There is only one parameter m, the synaptic weight, to set for a

linear synapse. This model is easy to work with for simulating large scale artificial

dendritic nets when one's purpose is to use the linear range of the synapse.

2.3.3 Choosing A Synapse Model for Simulation

There are a number of factors involved in choosing a synapse model: biological

realism, ease in controlling the simulation (simplicity), and computational feasi

bility.

Our purpose is to show how the dendritic structure can process information,

19



which is represented as an electrical current pattern. A dendritic net has to be

able to differentiate between input patterns. Consequently we are interested in the

linear range of the operation of a synapse, but not in the saturation range, where

the output of the synapse is about the same regardless what pattern amplitude

is currently feeding to the synapse from the presynaptic side. For this reason, we

chose to use the simplified linear synapse model.

The Markov model is comprehensive and biologically realistic. It tries to model

exactly how the biological chemical synapse operates, but for our simulations, it is

diflBcult to use the Maxkov synapse model due to the large number of parameters

involved, and providing different parameters for each Markov synapse in a large

dendritic net is another difficult issue. Many times, adjustments are made to bring

all synapses operating approximately in the linear range. This means that, for our

purpose, the results should be about the same using either the Markov model or

the linear model. In addition, it requires extra work to bring the Markov synapses

in the linear range for each run. Also, higher computing power is required to

simulate Markov synapses. This doesn't imply that the Markov model should not

be used in simulating large dendritic nets. If one needs to look into the detailed,

non-linear operation of synapses in a large dendritic net, the Markov model seems

to be the only choice.

We chose the linear model for simulation because the linear synapse model

implements the properties of the synapse we need and is easiest to use and takes
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least time to simulate on a computer. In addition, the linear model fits exactly

into the linear formulation of the learning algorithm for adjusting synaptic weights

(strengths) to recognize or differentiate between input patterns.
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Chapter 3

Simulating the Dendritic Net and

the Learning Algorithm

3.1 Constructing the Dendritic Net

In our simulations, an artificial dendritic net is composed of a number of subnets,

an input tree to feed into the subnets from the input side, and an output (sum

ming) tree to combine the subnets from the output side after the synapses. Each

subnet consists of a pair of random binary trees. There are synapses at the contact

points of the two binary trees. The linear synapse model is used for all synapses

in the dendritic structures in the simulations. Figure 3.1 shows the dendritic net

structure. See Figure 3.2 for typical subnets. In each subnet, the two tree roots

are the extremes at the top and the bottom. All tree branches are segments of
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Figure 3.1: Dendritic net structure

Figure 3.2: Subnets of a dendritic net
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dendrites. Note that, for a dendritic net with n subnets, there are (1 + n + 1)

dendritic trees in Figure 3.1. The whole structure is to implement the components

for the generalized Fourier transform. The subnets are grown randomly, and the

summing tree is for convergent connections. The values of the parameters of the

dendritic nets are shown in Table C.l of Appendix C.

For simplicity, all the structures are on a two-dimensional plane. The main

operations of a dendritic net on the input pattern include branching, merging,

superposition of overlapping electrical potential patterns, and then integration

in the summing tree. Two-dimensional modeling shows all of these operations.

Hence, it suffices for our purpose to have all structures on the same plane.

In simulations, each branch coming out of the tree root or out of a tree branch

ing point until the next branching point or until the end of the branch is called

a cable, with the parameters length, diameter, axial resistivity, membrane con

ductance, and membrane capacitance. For the purpose of numerical simulations,

a cable is further divided into a sequence of one or more compartments. Each

compartment has a corresponding equivalent circuit.

In constructing a random binary tree, the angle between two branches, the

length of each branch, and the delay of a synapse are generated uniformly, ran

domly in their respective ranges. All the dendrite segments have the same diame

ter. There is no interaction between any two subnets. If the information processing

being implemented doesn't require high precision, some weak interaction through
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synapses among subnets may be tolerable.

What our simulations do is to change the synaptic weights (strengths) of the

key synapses connecting to the summing tree to enable the net to recognize or

differentiate among the input patterns.

3.2 Modeling Dendrites with Cable Theory

The equivalent circuit of a neural membrane and the cable equation for describing

a segment of dendrite can be found in [Hines 84, Hodgkin 52, Koch 89, MacGregor

93]. The following is a description of the equivalent circuit for a neural membrane

and cable from [Hodgkin 52] and the formulation of cable theory from [Hines 84].

An equivalent circuit is shown in Figure 3.3. The lipid bilayer of the membrane

determines the membrane capacitance, and the membrane protein for ion channels

regulates the resistance of the membrane [Bowling 92, p.66]. Compared with the

internal axial resistance, the external resistance can be ignored, because of its

greater fluid volume [Kandel 81, p.48].
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Current can be carried through the membrane by charging the membrane ca

pacity and by the transmembrane currents. In the nervous system, there are

four ion species involved: sodium ions (Na"^), potassium ions (K"*"), calcium ions

(Ca'^'^), and chloride ions (Cl~) [Johnston 95, p.3]. There are two effects in

volved in determining each ion current: an electrical potential difference and a

concentration gradient

A one-dimensional cable can be described by the following equation [Hines 84]

based on the equivalent circuit:

1  d (T^a?dV\ ^ dV ^
+ IhHi27ra dx \ Ra dx ) dt

where a is the radius which is a function of the longitudinal coordinate x along

the cable, V is the electrical potential across the membrane (mV), Cm is the

membrane capacitance (/iF/cm^), Ra is the axial resistivity (flcm), and Ijjh is

the membrane current (amps/cm^).

For numerical simulation in the NEURON environment, each cable branch

itself can be a compartment or can be further divided into a sequence of compart

ments along the segment. The parameter nseg specifies the number of com

partments. Each compartment has the parameters L (micron), the length of

the compartment, D (micron), its diameter, e_pas (mV), the resting potential,

g_pas (5/cm^), the membrane conductance, ra, axial resistance (fi-cm), and cm
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(/zF/cm^), the membrane capacitance. All the parameters are specified in the

simulation program to run in the NEURON environment.

An efficient algorithm for solving the dynamic cable equation [Hines 84, Hines

89] on NEURON takes advantage of the acyclic tree structure of dendrites. It

greatly reduces computing time compared with considering the whole structure as

a general graph. A simulation program on NEURON specifies the dendritic prop

erties and how the compartments are connected to form the dendritic tree. The

user focuses on the structure and properties of the dendritic net. The NEURON

environment interprets the simulation program and takes care of the numerical

computation.

3.3 Linear System Theory

A linear system can be used as the framework to describe the electrochemical

dynamics of the dendritic net, which is approximately linear within a certain

range of its variables. The following briefly introduces basic linear system theory,

on which the learning algorithm is based. More detailed descriptions of linear

system theory can be found in [Faulkner 69, DeCarlo 89, Rugh 96]. For our

purpose, we restrict the treatment of linear system theory to the real numbers R

instead of to the complex numbers C .

Definition The unit step function u{t) is defined in the domain of real numbers
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except for zero, i.e. t € R - {0}. Its range is a subset of the real numbers R as

follows:

u(t) = 0 for i < 0, u(t) = 1 for i > 0, and u(i) undefined for t = 0. A

Definition The unit impulse function S(t), t E R, is the derivative of the unit

step function u(t) with respect to i as follows:

6(t) = 0 for t 7^ 0 and 5(t)dt = 1. A

The above unit impulse is an abstraction of a physical impulse of very short

duration, with the area under the impulse being 1. It serves as a standard impulse

for the system under study. The variable t is for time.

Suppose that we have a physical system with an electrical current pattern as its

input. We inject a unit current impulse in a very brief time period and watch the

output of the system. This output (impulse response) characterizes the system's

response to an arbitrary input pattern. The following definition abstracts this

input-output relation.

Definition The impulse response of a linear system S characterized by the

linear operator <f>, defined in the real numbers R, is the response (output) of the

system with input where a: is a positive real amplitude and t' is a real-valued

time variable. Then the normalized impulse response h{t) is

m = = <!ii'5((')].

In general, for the input impulse centered at t' = r, the normalized impulse

response is
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k(t -t) = 4152^ = mt' - t)).

In the above equation, the variable t in h and t' in 0 both refer to time, but

they vary independently. The linear operator <^, which is not a function, generates

a function of t for the impulse response. A

Once we know the normalized impulse response h{t — r) of the system 5 with

the input impulse x5(t' — r), we can predict the response of the system S to an

arbitrary input function. This means that the linear operator cf) of the system S is

completely characterized by its impulse response h{t — r). Note that the impulse

response (output) of a system can be measured for a physical or simulated system

by injecting an approximation of the (input) impulse x5{t' — r) into the system

at the input site at time r.

A dendritic net can work on both electrical current and electrical potential

impulses. Figure 3.4 shows a typical electrical potential impulse (at the input site)

generated by injecting a current square of short duration at the input site. For a

dendritic net working on current input patterns, the current square is considered

the impulse, and for a dendritic net working on electrical potential input patterns,

the electrical potential pattern as shown in Figure 3.4 is the impulse. Figure 3.5

shows the impulse response of a dendritic net's subnet to an impulse in Figure 3.4

or to the square current impulse of short duration.

Definition The convolution h[x)-k<j>{x) of real functions h{x) and ̂ (x), x 6 R

and h{x) — <j>{x) = 0 for x < 0, is the following integral:
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roo

h{x)-k (f>[x) = / h{x — t)(l>(t)dt.^
Jo

In a causal linear system, all relevant functions are zero for z < 0. Therefore,

the above definition limits the convolution to nonnegative z. The following theo

rem shows what response a system will have with an arbitrary input function. It

can be proved by dividing the input pattern into a succession of an infinite number

of rectangular pulses and then applying the linear operator to these rectangular

pulses. A sketch of the proof is on p.43.

Theorem The response (output) y{t) of a linear system 5, characterized by

the linear operator cj) with the impulse response h{t) for t > 0, to an arbitrary

input function x{t), t 6 [0,1"] C R, is the convolution of the input function x{t)

and the impulse response h{t) of the system S, i.e. y{t) = x{t)-kh{t). 4k

Note that in the above formulation there is one input site and one output site.

It can be easily extended to an input space and output space which are subsets

of an n-dimensional Euclidean space (R" for n € P°). For each pair of input site

from the input space (a subset of R") and output site from the output space (a

subset of R"), there is an impulse response associated with them.
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3.4 Solving the Equivalent Circuit of the Dendrite

3.4.1 Formulation and Solution in the Time Domain

Definition Let the real function f{t) be piecewise continuous and

I /o°° I < CO for some cr € R. Then the Laplace transform [Mohanty 87]

of f{t) is
/OO

me-^'dt,
-OO

where s € C and the real part of s is less than cr.

The inverse Laplace transform [Mohanty 87] is defined as

/(() = i-'(f (s)) = 5^ r'°° F(s)e"ds,
ZTtl Jc-^joo

where j = -v/—1, c > cr, and s = cr + jw for a; 6 R. A

Practically, a physical system runs in t > 0, and the system is determined by

the input and the initial condition in t > 0. The Laplace transform can then be

restricted to t > 0 as follows:

/•OO

F{s) = L{f{t)) = /
Jo

Consider the electrical circuit of a small dendrite segment as shown in Figure

3.6. Its Laplace transform equivalence is shown in Figure 3.7.

By summing current at Vi in Figure 3.7, we have the following equation:
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-i(s)+sc„ms)+ = 0.

The same can be done for the point V in Figure 3.7. Then we have the following

equation:

V{s)-V,{s) V{s)

Ra Rm

The relation between /(s) and V(s) can be established from the two equations.

Theorem Let a small segment of dendrite be described by the following two

simultaneous equations:

\  -lis) + 3C^ya(s) + = 0,

XiflzLiM + TM - 0
Ra ^ R„ ~

where Cm,Ro,Rm € R-°.

'M _
Rm Rm

Proof

By eliminating Vi(s) in the two equations, we get the expression for V(s) in

terms of I{s). A

The following defines the transfer function of a system.

Definition The transfer function H{s) of a system is the coefficient of the
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relation between the input I{s) and the output 0{s) in the Laplace transform

domain, i.e. 0{s) = H{s)I{s). A

The following theorem links the transfer function and the impulse response of

a system.

Theorem Let the transfer function of a system be H{s), and let the impulse

response of the system be h{t). Then h{t) is the inverse Laplace transform of

H{s)^ i.e.

h{t) = L-^H{s).

Proof

Since the impulse response is the output of the system when the input is the

Dirac-delta function, we have

lis) = Lm)

/oo
S{t)e~^^dt

-OO

j
— e f=o

= 1.
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Then

0{s) = H{s)Iis) = H{s) ■ 1 = H{s).

By taking the inverse Laplace transform of the above equation, we have

o{t) = L-^(0(5)) = L-\H{s)).

o(t) is the impulse response of the system when the input is S(t), i.e.

h{t) = L-\H{s))A

Definition The transfer function H{s) of a small dendrite segment is the

coefficient of the relation between the input I{s) and the output V{s) in the

Laplace transform domain, i.e. y(s) = H{s)I{s). 4k

Corollary The transfer function of the small dendrite segment is

V{s) 1 iC
H{s)= rr., -I{s) sCm(l + ̂) + ;^ sCm(jRm + -Ra) + 1

The equation to relate input I{s) and output y(s) in the Laplace transform

domain can be transformed back to the time domain when I{s) is known. Then

the relation between the input current i{t) and the output voltage v{t) in the time

domain can be established.

In the simulations, an input pattern is a sequence of current steps clamped
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to a dendrite. The following gives a detailed definition for an input pattern to a

small dendrite segment.

Definition An input pattern P{t) is a piece-wise continuous function defined

in a time interval [0, T], where T € R^°. Let to, ̂1,^2) he a monotonely

increasing sequence of numbers in R such that to = 0 and t„ = T. For each

subinterval [t,_i,t,), i n, there is an amplitude /,■ € R associated with this

interval such that P(t) = /,• if t € [t,_i,t,). For t = T, P{T) = P(t„) = A

In our simulations, n = 50, [0, T] = [0,2 msec], and the length of each time

subinterval is a constant (^msec). The input site of a small dendrite segment is

at one end of the segment, and the output site is at the other end of the segment.

Since the equation V(s) = i/(s)/(s), the Laplace transform, and the inverse

Laplace transform are all linear, each step among n steps in the input pattern

can be considered a separate input to one end of the small dendrite segment. We

need to calculate only one step in the input pattern as the input. An example of

input pattern is shown on p.78.

Definition A square input s,(t,/,) of current amplitude /,-, i G {1,2,3,..., n [

n € 1^°} and 7, G R, in the time interval <, > t,_i > 0, is defined as

follows:

It, t G for i ^ n or t G for i = n,

0, otherwise.

37



One way to solve a circuit equation is to transform the input pattern in the

time domain to the Laplace transform domain, then multiply the input in the

Laplace transform domain by the transfer function to get the output in the Laplace

transform domain, and then transform the whole equation back to the time domain

to get the output in the time domain.

The Laplace transform of the square input s,(t, /,) is

Jo

= r Iie-''dt
Jti-l

lie-''
iti
Iti-i

—s

$

Lemma The Laplace transform of the square input s,(t, /,) is ^(e —

Theorem Let the current input to one end of a small dendrite segment be

s,(t, /,) and let the time constant r be Cm{Rm + Ra)- Then the output electrical

potential at the other end of the dendrite segment is

0, if t < ti-i,

Vi{t, /,) =
t — t

IiRm{l - e r '), if i e

. liRme ^(1 - e' ' r ^), if t > tj.
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Proof

The output Vi{s,Ii) with the unit block 5,(t,/,) as the input in the Laplace

transform domain is as follows:

=  ̂

=  i (p-sti^l _ p-sti\
+ fe)

—  i (
Cm(^^^)5[5+ i ^Rm ' ̂ Cm{Rm^Ray

■Cm{Rm + /?a)(- " , ^ g )(e--^'-' -Cm{Rm-\- Ra) S 5 + Cm(Rm^Ra)

=  - -1 T
^  Cm(Rm+Ra)

= liRmi I I ~. i 1 j i )•

Note that L[u{t — t,)] = and L[u{t — t,)e 'd] = where the unit

step function is defined as follows:

C 0, t< ti,
u{t - ti) = I

U, t>ti.

The two Laplace transforms can be proved by substituting the functions u{t — ti)

and u{t — t,)e~°d-*i) in the definition of the Laplace transform.

By taking the inverse Laplace transform on the equation for K(s, R), we have
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the electrical potential output in the time domain:

Vi{t,Ii) = IiRm{[u{t - ti-l) - u{t - ti)] - u{t - CmCfim+Ka)

— ti)e <^rn(Rm + Ra)

Since the time constant r = Cm{Rm + Ra), the above is equivalent to the

following expression.

'0, if < < ti-i,

IiRm{l - e ^), if t e

. liRme e * '•' '), if < > U. 4

Observe that, in the time interval while the input is applied, the

output does not respond right away. Instead, it increases but gradually

slows down on the way up from 0 until it reaches /2m(1 — e r ) at time tj.

This process is an exponential saturation.

After ti, the input returns to 0. The output u,(t,/,) does not immediately

respond accordingly. Instead, it decays exponentially.

The most important parameter is the membrane resistance Rm, which is the

least upper bound to which go if the input is a step function u(to),

to > 0, of infinite length. In this case, when the time t approaches oo,

approaches Rm- Here, we assume that /,• 7^ 0. When /,■ = 0, u,(t,/,) = 0.
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How fast and how high goes up for t € and how fast it decays

for t > ti depends on the time constant r = Cm{Rm + Ra)- For a smaller time

constant r, the response Vi{t,Ii) to the input will be faster. The exponential

saturation process will be faster in and the exponential decay m t > ti

will be faster too.

A dendrite can be considered a linear system as described by the input-output

relation in the Laplace transform domain. Each pattern in the input set is a

sequence of 50 current steps. The output with an input pattern taken from the

input set is a summation over all the outputs with all pattern's constituent current

steps as the inputs.

Corollary Let P{i) be a dendrite's input pattern with n steps in [0, T] for

T € and P{t) = s,(t, /,) = /, €/? if t C [0,T], to = 0 and t„ = T,

and P{T) = F(t„) = Let the output be D{P{t)). Then

D{P{t)) = li)) = ̂=oVi{t, h).

The above applies to linear systems in general. A

Now from the time domain we explain why, compared with a square current

source at one end of a small dendrite segment, there is a distortion in the electrical

potential at the other end. Figure 3.8 shows the electrical potential v{t, I){mV)

for Rm = 0.6kCl, I = lOOOnA, Cm = and Ra = O.lfl, and Figure 3.9 shows

41



Eloctrlcal potantial <nV>

0.6

0.4

0.3

0.2

0.1

500 1000 1500 2000 2500

Total tlno: 30 Milliseconds <1^0.01 Milliseconds)

Figure 3.8: Electrical potential u,(t, Ii){mV) at Rm = O.QkQ, /,• = lOOOnA, Cm = IfJ'Fi
and Ra = O.lfi.
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Figure 3.9: Electrical potential Vi{t,Ii){mV) at Rm = /,• = lOOOraA, Cm = lA'-F't
and Ra = O.lfi.
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with Rm = 4kCl and the same other parameters. The source current is a

square as follows:

{lOOOnA, t € [0 msec, 8 msec],
0, otherwise.

As an example, comparing Figure 3.8 with Figure 3.9, the higher the time

constant r (the higher the membrane resistance Rm or the lower the membrane

conductance for this example), the higher the distortion, compared with the square

input current, and the lower the time constant r (the lower the membrane resis

tance Rm or the higher the membrane conductance), the higher the similarity

with the square input current. Note that membrane resistance is the inverse of

membrane conductance. The above is a description for the shape change. As

for the magnitude of the electrical potential pattern, the higher the membrane

resistance Rm, the higher the magnitude of the electrical potential.

The shape distortion is systematic. The higher the time constant r, the longer

the time for the electrical potential to rise exponentially to the maximum (expo

nential saturation) while the current square is being applied. Figure 3.9 shows

that the front part (for low time t) of electrical potential has been chopped off a

little compared with the square current input when the time constant r is high.

When the current square is over, the electrical potential starts to fall. How fast

it falls depends on the time constant t also. The higher the time constant r.
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the longer the time for the electrical potential to decay an amount and hence the

higher the trail (for high t) of the electrical potential. All the distortions described

here are the result of the lagging in the response to the input, both in rising and

falling, determined by the time constant.

In summary, the membrane resistance Rm (and hence the membrane conduc

tance) dominates how high the electrical potential will go. The maximum po

tential also depends on the time constant r, particularly when the input current

square is not long. How much the front part is chopped off and how much the tail

is raised depend on the time constant r. The parameters Rm and r completely

determine the lag in the response to the rise and fall of the input current pattern.

We have D{P{t)) = E"_oZ?(5,(t,/,)) = Il"_oU,(t,/,). This can be extended to

the limit when the number of current steps n -¥ oo. Any piecewise continuous

function can be approximated to any degree by a sequence of steps of the same

length, when the number of steps is sufficiently large. Now we can calculate the

response of a linear system to an arbitrary piecewise continuous input function

f{t) if the impulse response of the system h{t) is known.

The piecewise continuous input function f{t) can be split up into a succes

sion of rectangular impulses, each of width At [Faulkner 69, p. 15]. The area

of each impulse is /(r)AT. As Ar 0, this impulse generates a response of

(/(r)Ar)/i(t—r). Let the number of rectangular impulses be n. Then the summa

tion of the responses to the n impulses is the total response to all the rectangular
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impulses together. When n —>• oo, this total response g{t) is the convolution of

f{t) and h{t), i.e.
/OO

f{r)h{t - T)dT.
-OO

By the definition of integration, the total response g{t) of the system to the input

f{t) can be approximated within an arbitrary error e(€ R) by the responses of

the system to the n rectangular impulses when n > N for a sufficiently large N.

Note that the piecewise continuous input function f{t) can also be approximated

within an arbitrary error c'(€ R) when n > N' , where N' is suflBciently large. We

can pick n = ma,x{N, N'). Then we can approximate the response of the system to

any input with the error we desire with n rectangular impulses. Consequently, it

is sufficient to work with inputs composed of finite steps in the time domain. The

result will be as close to the continuous counterpart to any degree as we desire.

Note that no matter how small the constituent current steps are, the lagging of

the response is still present in each step, and the total response is the summation

of the responses to the individual current steps.

3.4.2 Properties of the Solution in the Frequency Domain

There are two parts in the frequency response: amplitude response and phase

response.

The amplitude response is a measure of the amplification shown in the output
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of an input frequency component, and phase response is a measure of a frequency

component's delay in terms of phase shift. The actual time delay of a frequency

component is defined as the phase delay.

Definition Let a system's transfer function be H(s). The amplitude response

[Rorabaugh 99, p.61] of the system is \H{juj)\, where u € R-° is the frequency. For

any frequency component with frequency u in the input pattern, the amplitude

of this frequency component is multiplied by \H{ju)\ in the output pattern.

Theorem The amplitude response of a small dendrite segment is

\H{ju)\ = Rm

+ 1'

where r = Cm.{Rm + Ra)-

Proof

We have

\H{ju)\ =
V{ju;)

1

juCmil + ̂)+
Rm

j^Cm{Rm + Ra) + 1

= Rm
1 — ju)Cm{Rm + Ra)

[ujCm[Rm + Ra)Y "t" ̂
Rm 1

[uCmiRm + Ra)? + 1
 — ju)Cm{Rm + Ra)
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yJ[u:Crr.{Rm + Ra)?^l

Let T = Cm{Rm + Ra), then

Rm\H{ju;)\ =
Vr^w^+T

Theorem Some properties of the amplitude response \H{ju})\ = =

Rrj of a small dendrite segment are as follows:

(a) \H{ju})\ is a monotonely decreasing function of a; for u; € R-° and \H{juj)\

0 when u oo,

(b) max(|/f(ja;)|) = R^ when a; = 0,

Proof

(a) For any two u;i,U2 G R-° and \H{juJi)\ = , =

\H{jui2)\ for T,Rm > 0 since y/rhJ^^TT < y/T^uj2'^ + 1. We have ui < uj2 =>

\H{jiOx)\ > \H{j(jJ2)\ n Hence \H{ju:i)\ is monotonely decreasing for ui € R-°. It is

clear that \H{jtx!)\ = -> 0 when u —>■ oo.

(b) For a monotonely decreasing function of u;, the maximum is at the mini

mum of its domain, i.e. at 0. Then max(|/f(ja;)|) = = l-^f(0)l = Rm-

A
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As an example, comparing Figure 3.10 and Figure 3.11, we can see how mem

brane resistance affects the amplitude response. In Figure 3.10, the membrane

resistance is SOfi, and in Figure 3.11, the membrane resistance is 80fi. When the

membrane resistance increases from a lower value (50fl) to a higher value (80fi),

the lower frequency components have higher amplitude response changes and the

higher frequency components have lower amplitude response changes.

Definition The phase response 6{u)) [Rorabaugh 99, p.61] is defined as

and the phase delay Tp(u;) [Rorabaugh 99, p.61] is defined as

Tp(u;) =
CJ

Theorem For a small dendrite segment, 0(cj) = tan~^(—a;r) and Tp(u)

tan-^(u;T)^ where T = Cm(Rm + Ra)-

Proof

We have the transfer function of a small dendrite segment

~ r/.\ ~ .ry n , , 1sCm(l + +
Urn '
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Figure 3.10: Amplitude response (J2) of a small dendrite segment with Rm = 50fi,
Cm = 0.002F, and Ra = Ifi.
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Frequency <Rad/sec>

Figure 3.11: Amplitude response (fl) of a small dendrite segment at Rm = 80f2, Cm =
0.002F, and Ra = If^.
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_

ju}Cm{Rm + Ra) + 1
_ iC(l - jujCmjRm + Rg))

1 + [u}Cm{Rm + -Ro)]^

s(,.A - .

= tun'^ [-LoCmiRm + Ra)]

= tan~^(—wr).

-e{u;)
Tpiu) =

u

— tan~^(—a;r)
u

tan~'(a;T) ̂
u

Definition The accumulated delay for a linear system S from the frequency ujp
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to the frequency ujq is defined as

ruq

Ds{u}p,UJq)= Tp(u})du!.
Jwp

The total delay for the linear system S is defined as

roo

Z?5(0j Oo) Dsiujp^UJq^ |aip=0,u;g->oo~
J 0

According to [Beyer 78, p.440],

'■0° tan~^(ax) — tan~^(6x) tt a/■o° tan ^(axj —tan (bx) , tt , a
Jo ; <'^=2'°8 6'

where a, 6 € R and a,6>0.

For a small dendrite segment, we have the total delay

Ds(o,cc) = r
Jo u

Suppose that we have two small dendrite segments and S2 with the time

constants ti and T2, respectively. The difference of the two total delays can be

calculated as follows:

n  en ^ rn \ tan"^(u;ri) - tan"^(a;r2) ,Dsi (0, 00) - 1)52(0,00) = / ^ J- i '-dw
Jo u
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TT Ti

Corollary Let ri and T2 be the time constants for the two small dendrite

segments Si and 82, respectively, and ri,r2 > 0 . The difference of the total

delays of and 82 is

Ds,iO,oo) - £>52(0,00) = ̂log—
Z  T2

In the above, when ̂  > 1 (or rj > r2), the difference of the two total delays

I log ̂  > 0- This means that there is more total delay in a dendrite segment 81

than in a dendrite segment 82 when the time constant ti of 81 is larger than the

time constant T2 of 82.

3.5 The Lecirning Algorithm for the Dendritic Net

The learning algorithm is based on the generalized Fourier transform [Maclennan

92, Maclennan 94] of the impulse response of the linear system.

Definition The inner product of any two functions C(0 and t G [0, T] C

R, is {Cit),(f>{t)) = Jo ({t)4>{t)dt. ̂

Definition An input set 7 of a linear system 8 defined in the interval [0, T] € R

of the system's operation range is any finite set of piecewise continuous functions
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(patterns) defined in the range [0, T].

If Jo pit)p{t)dt = constant (independent of p(t)) for all functions p{t), t €

[0, T], in the input set /, then / is a normalized input set.

The degree of similarity of any two patterns (functions) in a normalized input

set is defined as the inner product of the two patterns. If the inner product of two

patterns is larger, the similarity is higher. A

For normalized patterns C(0 d'il) input set I defined in [0, T], the

inner product (^(t), </)(t)) is maximized when C(0 = t € [0, T].

Lemma Suppose that the piecewise continuous functions C(f)) <P{1) are defined

in R and (^{t) = (f)(t) = 0 for t ̂  Then

TC(r -1) * m = / c((r -1) + p)<i>{p)dp.
Jo

Proof

Let ({T — t) = C{t). Then we have

aT-t)*4<.t) = m*m

= f P)<f>{p)dp
Jo

= f C{T-{t- p))4>{p)dp
Jo

T

= f C((^ - 0 + p)<f>ip)dp- 4
Jo
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Theorem

Suppose that the piecewise continuous functions ({t), (f){t) are defined in R

and = 0 for t ̂  [0?^]- Then

im, m = c{T -t)* <f>{t) \,=T, t € [0, T].

Proof

We already have

C(r -1) * = f c((r -t)+p)4>{p)dp.
Jo

Then we have

(1{T-t)-k<i){t) \t=T = / - t) + p)<i){p)dp \t=T
Jo

fT
=  / C{p)(t>{p)dp

Jo

= (C(0.<^(0)-

Hence (C(t), = C(T -t)-k 4>{t) |t=x • ♦

Note that either one of the two functions C(T — t) or can be interpreted as

an input pattern and the other as the impulse response of a system. One possible

interpretation is that C(T — i) is the impulse response of a system and is
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the input pattern. The equation in this theorem implies that if a lineax system

has an impulse response that is the time reverse of a particular pattern 0(t) in a

normalized input set /, i.e. ({T — t) = then the linear system is a pattern

matcher for The output of the linear system is the final value (at time T) of

the convolution of the input pattern 4'{t) € I with the system's impulse response

(j)(T — t), i.e. the time reverse of the input pattern ̂ (t).

Our purpose is to have a dendritic net which can differentiate between patterns.

Assume that a dendritic net is approximately linear. Then the convolution of the

impulse response of the dendritic net with the input pattern roughly describes the

operation of the dendritic net.

Theorem Suppose that the two piecewise continuous functions ̂ (t), (f>{i) are

defined in R and C(t) = = 0 for t ^ [O^T'] and that there is a complete

orthogonal basis of functions Qk{i)-, k € {0,1,2,...}, defined in the interval [0, T],

T € Then we have

k=o fo PkV)dt

Let Norm^ = Jq Qk^{t)dt for k G {0,1,2,...} be the normalization factors for

the subnets' impulse responses. Then

m,m) = E
fc=o Normfc
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Let Wk = connection weight of the key synapse for subnet

k (see Figure 3.1), and let Ok = Qki^) ̂  4>{^) \t=T be the final value of the output

pattern of the subnet k at the presynaptic site of the key synapse. Then

k=0

Proof

We already have

m,m) = aT-t)*4-{i) i.=r.

We can write C(T—<), which can be considered the impulse response of a linear

system, in terms of the complete orthogonal basis:

C(T -t) = ll^^oCkQkit),

where

((T - t)ek(t)dt

"  Sn ek\t)dt

By the definition of convolution, we have

\t=T
~  2fo
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Then

/■/T! j.\ voo C(0 ^ \t—T

Then the inner product can be written

{m,m) = \ [ *'^(«) i.=T

Then

m,m = t
t^Q fo ^k^tjdt

The rest of the proof is just by substitution. J|b

Suppose that we have a dendritic net organized according to Figure 3.1 in

Section 3.1, g/c(t) for k = 1,2,3,... is an orthogonal set, and the impulse response

of subnet k is gk(i)- Note that this is an ideal case. In a simulation, the impulse

responses of subnets may not be necessarily orthogonal.

Then the first factor ({t) Qk{t) |t=T is the value at the output site of subnet

k at time T, i.e. the value at the presynaptic side before going across the key

synapse to the summing tree (see Figure 3.1), when the input is the pattern C{t),

to which the whole network is tuned.

For learning, this value divided by Normjt will be used to set the synaptic

weight (the multiplier in the linear synapse model) of the key synapse connecting
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to the summing tree.

The second factor \t=T is the output of subnet k at time T, i.e. the

value at the presynaptic side of the key synapse connecting to the summing tree,

with an arbitrary input pattern

In summary, the first factor divided by the normalization factor for the subnet

connecting to the summing tree will be used as the multiplier (the connection

weight) for the key synapse, and the second factor is passed over from the presy

naptic side to the postsynaptic side.

These two values are multiplied together to yield the postsynaptic value of the

key synapse connecting to the summing tree from the subnet k. This postsynaptic

value for subnet k will be summed with other values coming out from all the other

subnets to get the output of the whole network.

Note that the summing tree does not exactly sum over all outputs from all

subnets through the key synapses. Instead, the electrical potential at the root of

the summing tree is roughly the superposition of all patterns coming from all the

branches of the summing tree. The superposition is the summation divided by

the number of branches. In addition, there are the longitudinal dissipation and

the smoothing effects of a pattern propagating along a dendrite (see Section 4.3).

Note that all branches of the summing tree have the same properties.

This paragraph summarizes the learning process. Before learning a pattern, a

pulse of brief duration is injected into the dendritic net at its input site so that the
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output patterns (functions) of subnets are approximately the impulse responses

of all respective subnets. Then, the normalization factors for all subnets are

determined. For learning a pattern, the pattern feeds into the whole network as

the input. In this pass, the value of the first factor ((t) *■ Qk{t) \t=T for subnet k

is determined. Then the value of the first factor is divided by the normalization

factor for this subnet, to set the synaptic weight of the key synapse of subnet k

connecting to the summing tree. This process runs through all subnets. In this

way, the network is intended to learn the specific input pattern and to become

tuned to this particular input pattern. If this pattern is fed into the dendritic net

again, the output will have the largest amplitude at time T compared to outputs

of the other input patterns taken from the normalized input set.

In the above formulation, the presynaptic activity, i.e. the electrical potential

at the output site of the A;th subnet, and the subnet's normalization factor deter

mine the synaptic efficacy of the corresponding A:th subnet's key synapse, i.e. the

synaptic connection weight being set to Cfc/Normjt.

In the formulation, the state of a dendritic net is represented by a vector of

synaptic weights of the key synapses.

Definition Let 5 be a dendritic net with n subnets which implement the

impulse responses Qk{t), k € {0,1,2, ...,n | n € N}, and let I = \ k €

{1,2,3,..., m I m € N} and t € [0, T], T G be a normalized input set.

The state of the dendritic net S with n subnets is a weight vector
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\Wi,W2,...,Wj^, where Wk € R. Wk is the synaptic weight of the key synapse

connecting subnet k to the summing tree. A

According to the simulations, subnets generated randomly do not have orthog

onal impulse responses. In the above and the following definitions, the dendritic

net S is not required to have subnets with orthogonal impulse responses. Hence,

Qk{t), k € {0,1,2, ...,n I n € N}, are not necessarily orthogonal in a simulation.

Definition Let 5" be a dendritic net organized into subnets which implement

the impulse responses k G {0,1,2, ...,n | n € A^}. S recognizes a particular

pattern 4>i{t) in the normalized input set I = {4>i{t) \ i G {1,2, ...,m}, m G

N, and t G [0,r],T' G R^°} by the final value if and only if there is a weight

vector [1^1,1^2, •••5 k^n], where Wj G R and j G {0,1,2, ...,n | n G N}, such that

the output at time T of the dendritic net S presented with as the input:

S{4>i{t)) = WkOk, where Ok = Qk{t) <f)i{t) is the maximum among all

outputs at time T: {S{(l>j{t)) | j G {1,2,3,..., m | m G N}}, with inputs

taken from the normalized input set I. A

The above definition recognizes an input pattern by the final value of the

dendritic net's output pattern. All the simulations use recognizing a pattern by

the final value.

Suppose that an input pattern runs from time 0 to time T. There is a pattern

coming out at the output site (see Figure 3.1). The output of the dendritic net

is defined as the value of the output pattern at time T, which is the final value of
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the output pattern, since the dendritic net runs from time 0 to time T. Note that

this output is a scalar value, not the output pattern.

There is another definition of a dendritic net recognizing an input pattern. In

neural processes, usually we are concerned about whether the maximal electrical

potential of the output pattern in time interval [0, T] is larger than the electrical

potential threshold for initiating an action potential. In this process, it is the

maximal value, not the final value of the output pattern that does the job. The

maximum of the output pattern is not necessarily the value of the output pattern

at time T. Recognizing a pattern by the maximal value of the output pattern can

be similarly defined. It will not be formally defined here.

This does not mean that recognizing patterns with final value cannot possibly

exist in the nervous system, since the nervous system is so complex. We can

not rule out the possibility that recognizing patterns with final value works with

other processes at a critical time when the recognizing process just finishes at

time T. For example, a conjunctive synapse could sample the output at time T.

Cooperation among processes in the neural system seems to happen everywhere.

Some restrictions on the input set may result in a higher probability of having

the two definitions of recognizing patterns be consistent.

In the following, we derive the condition of the input set under which the two

definitions of recognizing patterns are close or the same.

Lemma Suppose that the function <j){p) is defined in R, ̂(p) = 0 if p ̂  [0? ̂ ]-
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Then

lo (t>i{T -t)+ p)(l>{p)dp < Jq <fP{p)dp for t € [0, T].

Proof

Let CiPi't) he a function with variables p,t € R and C(P)0 4'{{T — 0 + P)-

Note that for any fixed value of t the function ( reduces to a function of a single

variable and this resulting function is a shift in the function (f> of its variable p in

the amount T — t.

Since = 0 if p ̂  [0,T], then CiPi't) = 0 if p ̂  [t — T,t], where t € [0,7"].

Note that t > 0 and t — T <0.

For any t in [0,r], consider the range [t — T, 7], which is a superset of both

[t — T,t] and [0,T]. Since we have (j){p) = 0 if p ̂  [O^^] and C{p,t) = 0 if

p ̂  [t — T,t], then 4>{p) = C(p, t) = 0 for p ̂  [t — T, T]. By the definition of ̂ (p, t)

and the fact that the integration of a function {4>{p) in this case) is equal to the

integration of its shifted function for any t in this case) in their respective

nonzero domains, we have

ILt C{P,i)dp = lo <i>^{p)dp.

The ranges of the integrations in the above equation can be expanded. Note

that ̂ (p, t) = 0 for p in (t, T] and (j>{p) = 0 for p in [t — 7,0). Then we have

(1) !l-TC{p^t)dp = <t>\p)dp.

Observe that

SI-t{(I>{p) - (l{p^t)fdp > 0
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(2) /t-r <l>'^{p)dp + !l.T C{P, t)dp > 2 fl.T <i>{p)C{p, t)dp.

Combining (1) and (2), we have

S^-T <i>'^{p)dp > S^-T<l>{p)C{p,t)dp-

Since (f>{p) is 0 in — T, 0), we have

So 4>\p)dt > !o <f>{p)(i{p,t)dt.

Finally, by the definition of ̂

/„'■ 4>((T-t)+p)4,(p)ip < Jl #(?)<(? for f € [O.T], *

Note that the left-hand side of the above inequality is ^(T — t € [0, T]

and the right-hand side is an instance of the left hand side with t = T. Then we

have the following result.

Corollary The maximum of the following expression

,A(T-<)♦<#■((), <€[o,r]

happens at t = T, and the maximum value is Jq <f>'^{p)dp A

Suppose that we have a dendritic net with impulse response (f>(T — t) and

the dendritic net is tuned to the pattern Note that (f>{T — t)-k <f>(t) is the

amplitude of the output pattern at time t. When the input to the dendritic net

is (f>{i), the maximum of the output pattern happens at t = T (by the Corollary).

This maximum amplitude of the output pattern is the inner product of the impulse

response and the input pattern.

Theorem Suppose that two arbitrary piecewise continuous functions ^(t), 4>[p)

are defined in R, C(0 = ^(0 = 0 if t ^ [0, T] for some T > 0.
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If zfi the maximum value of C(T — t) H € [0, T], does not

necessarily happen at t = T.

Proof

It suffices to prove that there exists two piecewise continuous functions ({t)

and (j){t) for some t' € [0, T) such that (^{T — t) H <^{t) C(^ — t) H <f>{t) \t=T n

The above requirement is equivalent to

T  T

f C((r - t) + p)4>ip)dp > f C{p)(f>ip)dp
Jo Jo

(1) f {CiC?" - t) +p]- C{p)}<f>ip)dp > 0.
Jo

Note that 0 < T — t' <T.

The following presents an example of two functions and a specific value of t'

to satisfy requirement (1).

Let

C(0 =

1, t€[0,r/2],

2, t€(T/2,r],

0, t € (T, oo) or t 6 (—oo,0).
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Then

C{T-t+p) =

fl, p^[-{T-t'),T/2-iT-t%

2, pe{T/2-{T-t'),T-{T-t')],

. 0, p € {T - {T - t'), oo) or p G (-00, -{T - t')).

We define the function <^(t) in terms of the function (p of two variables. For a

fixed t',

(f){t) = ip{t,T-t') =
'1, te[0,T-{T-t')],
<

_ 0, t G {T — {T — t'), 00) or t € (—00,0).

Then, for this instance, (1) becomes

^T/L{T-t')^^^ = T -1' > 0, for any t' G [0,r). A
This is not a surprise since ̂ {t) and <f>{t) are arbitrary functions. In general,

the maximum of the output pattern of an arbitrary dendritic net with an arbitrary

pattern cis the input is not necessarily the final value of the output pattern.

According to the Proof of the Theorem, we have

aT-t)*4,{t) i.=T<^ r{aiT-t')+p]-((pmp)dp > 0
Jo

for some t' G [0, T).
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The above is equivalent to the following:

C{T \t=T> C{T f {C[{T-t) + p]-Cip)}<f>{p)dp <0
Jo

for some t' G [0, T).

Corollary Suppose that the functions C(^)5<^(p) defined in R, ({t) =

4>{t) = 0 if t ̂  [0, T] for some T > 0.

C(r — t)-k (j){t) |t=r> (1{T — t)-k <j){t) for ({t) ^{t) and t' € [0, T) if and

only if {C[(r - t') + p] - (^{p)}<t>{p)dp < 0. *

The Corollary above suggests at least one way to pick the input set to make

the definition of recognizing patterns by the final value of the output pattern the

same as recognizing patterns by the maximum value of the output pattern.

Theorem Suppose that there are only positive piece-wise continuous mono-

tonely decreasing patterns (functions) in the normalized input set for a system.

Then recognizing a pattern by the final value and recognizing a pattern by the

maximal value are the same.

Proof

Let ̂ (t) and 4>{p), defined in [0,7], be any two patterns in the normalized

input set. Consequently, they are both positive and monotonely decreasing.

Let's examine the integration /o^{C[(7 — t ) -l-p] — Cip)}4>ip)dp in the Corollary.

Note that T—t' > 0 since t' € [0, T) and ̂ [(7—t')+p]—C(p) is negative since C(p) is
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monotonely decreasing. Then the whole integration Jq {CUT—t')+p)—C{p))4>{p)dp

is negative since <^(p) is positive.

By the Corollary, this integration holds true if and only if ({T — t)-k(j)(t) |t=T>

aT-t)-.4>{t) U'.

In this inequality, ({T — t) can be interpreted as the impulse response of the

dendritic net which is tuned to the pattern ̂ (t). The term ({T — t)* (f){t) \t=T

is the value of the output pattern at time T, and the term C,{T — t)-k \^_fi

is the value of the output pattern at time t'. This inequality is equivalent to the

statement that the value of the output pattern at time T is larger than the value of

the output pattern at any time starting from time 0 to any time less then T. This

means that the final value (at time T) of the output pattern is also the largest

value of the output pattern. Hence the two definitions for recognizing patterns

are the same under this condition. A

The condition that the patterns in the input set are positive and monotonely

decreasing is not the only way to pick an input set to meet the requirement in

the Corollary as long as the input set satisfies the inequality Jq {CiCT — t') +p] —

C{p)}<P{p)dp < 0 in the Corollary.

A pattern which rises sharply to its maximum and then falls gradually until

it settles around the dendrite's resting potential roughly meets the requirement

of the theorem. A normalized input set with elements of this kind roughly meets

the requirement for making the two definitions about the same. Many electrical
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potential patterns of various time constants in the neural system roughly satisfy

this requirement.

We have already defined the similarity of any two patterns in a normalized

input set as the inner product of the two patterns. Now we define a measure of

the difference between two output patterns. For two very different patterns, we

expect the dendritic net to differentiate between them better than between two

similar patterns.

Definition Let and 02(f) be two patterns in a normalized input set for

a dendritic net S operating in the time range [0, T], and let the output pattern of

S with input 0(t) be S{<f>{t)).

The measure of the difference when the dendritic net S takes the input pat

tern 0i(f) and when it takes the input pattern 02(f) is max{5(0i(f)) |te[o,r]

} — max{5(02(f)) |te[o,T]} when using the maximum values, and the measure is

[5(0i(f)) — 'S'(02(f))] \t=T when using the final values. 4k

3.6 Correlation and the Performance of a Dendritic Net

for Differentiating between Patterns

Random subnets do not necessarily implement the learning algorithm (see Sec

tion 3.5) accurately. For the purpose of measuring the performance of a dendritic

net, correlation is introduced to measure the association or the linear relationship
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between two random variables. It is used to relate inner products among input

patterns and the operation of dendritic nets on input patterns. Note that, accord

ing to the learning algorithm, ideally the operation of a dendritic net is an inner

product process on the input pattern and the pattern this dendritic net has been

tuned to.

This section is not intended to review fundamental statistics. Only relevant

definitions are presented here. How well a dendritic net performs is defined in

terms of correlation.

Definition Let X and Y be two random variables. The correlation between

X and Y can be estimated by the sample correlation r defined as follows:

r =

where the n pairs, n € of i € {1,2,3, ...,n}, for Xi,Yi € R are a

sample of size n from the bivariate population {X, Y).

For the ease of calculation, the sample correlation r is equivalent to

- nXY
r =

x/SlLiX-' - niXf^^Uy' - n{Yf

In the above, r G [—1,-t-l], where r = 1 indicates perfect positive correlation,

r = 0 shows no correlation, and r = —1 is for perfect negative correlation. A

Definition Let the normalized input set for a dendritic net D be / = {p,(t) |
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t € [0, r],T € R^°, and i € {1,2,3,..., n | n € N}}. For each pattern p,(t) in 7,

there is a sequence of inner products:

{Piit),P2{t)), {Pi{i),P3{i)), {Pi{t),Pn{t)).

Let the dendritic net be tuned to pattern pi{t) by setting the connection weights of

the key synapses according to the learning algorithm (see Section 3.5 for details),

and let Di denote the dendritic net D being tuned to the pattern pi{t). Then

there is a corresponding sequence of outputs (final values of the output pattern)

of the dendritic net:

Di{pi{t)), Di{p2{t)), Di{p3{t)), ..., A(Pn(t))-

Now, there are n ordered pairs in the following for calculating the correlation:

{{{Pi{t),Pk{t)),Di{pk{t))) I k e {l,2,3,...,n},n G I>°}.

The performance measure of the dendritic net D is the correlation between the

sequence of inner products and the sequence of the dendritic net's outputs (final

values) as shown in the above n pairs. The higher the correlation, the better the

dendritic net performs. A

For an input set with n patterns, there are n data pairs for each pattern. Then
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the total number of data pairs to calculate the correlation is for n patterns. In

our simulations, we have 20 input patterns. Therefore, there are 400 pairs of data

for calculating the correlation.

The following Central Limit Theorem is tahen from [Hays 71].

The Central Limit Theorem If a population has a finite variance cr^ and

mean /x, then the distribution of sample means from samples of N independent

observations approaches a normal distribution with variance a'^/N and mean fi as

sample N increases. When N is very large, the sampling distribution of means is

approximately normal. 4k

Definition Let the sample size be n (g I^°), let the jth observation of the

sample of the random variable X be Xi, and let the sample mean of X be X.

Then the sample standard deviation S is

One of the consequences of the Central Limit Theorem is to estimate the mean

of a sample. The following formulation is taken from [Berenson 96).

Theorem The (1 — a) x 100% confidence interval estimate for the mean fix is

X ±
y/n
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or

X  tn—\ 7^ ̂  i^x ̂  "t" tn—1 7=)
y/n y/n

where X is the sample average of n observations, S is the sample standard de

viation, and tn-i is the critical value of the t distribution with n — 1 degrees of

freedom for an area of q:/2 in the upper tail. A

3.7 Discussion on the Numerical Complexity of the Sim

ulations

Simulating a large artificial dendritic net demands much computing power. Nor

mally the larger the network, the longer it takes to run the simulation on a digital

computer. A more accurate statement is that the more complex the manipula

tion of the input pattern, the more time it takes to simulate. For a complicated

manipulation of the input pattern, small time slices may be needed for numeri

cal computation. Since the synaptic delay is implemented by a buffer, a larger

memory space for buffers is needed for smaller time slices.

Under NEURON, the numerical simulation of the dendrites includes two parts

[Hines 84, Mines 89, Mines 97]. The first part is to properly label cable segments

to take advantage of the acyclic tree structure of dendrites. The second part is

to solve the dynamic equation for the properly labeled tree structures. For large

dendritic nets, labeling could take a substantial portion of the total simulation
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time. The result of properly labeling the cable segments makes the second part

substantially faster than directly solving the dynamic equation for a general graph

structure.

Numerical instability is a problem in simulating highly complex dendritic nets,

especially when there are complicated branchings and mergings of complicated

patterns coming together at some points in the dendritic net. The only way to

avoid numerical instability is to make the time slices for simulation sufficiently

small so that the output stabilizes.

Note that if the time slices are reduced by half, it takes twice the time for

the second part (after labeling the cable segments) to simulate the same network

with the same input pattern. The complexity of a dendritic net depends on the

size of the network, the number and locations of branchings and mergings of the

dendrites, the number and locations of synapses, etc.
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Chapter 4

Results of Simulations and

Discussions

4.1 Goal of the Simulations

The goal of the simulations is to show how well random dendritic nets composed

of dendrites and linear synapses can be modified into a state which enables them

to differentiate between temporal electrical current patterns. We are interested in

the structure of dendritic nets for recognizing or differentiating between patterns.

4.2 The Input Set

The following describes the normalized input set / for the dendritic net simula

tions. In this normalized input set, all patterns are defined over the time interval
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[0,2 msec]. See Section 3.5 for the definition of a normalized input set.

There are 20 patterns of 50 electrical current steps in the normalized input set.

All the patterns are randomly generated. A pattern starts from time 0 at current

0, and comes back to 0 before reaching 2 milliseconds. In this process, the next

random number will be generated in the interval [—1, +1]. The next current step

value of the pattern will be the present current pattern value plus 0.2 multiplied

by this random number. Now we have a raw pattern of 50 values. A moving

averaging process of window size 6 is applied to these 50 values. Suppose that we

have raw data points in a sequence: ri, r2, rs,..., r„, axid n = 50. The new data

sequence will be di,d2,d3, ...,d„, and d,- = ^ ^here r,_fc

,0 < A: < 5, is set to 0 if i — A: < 0. Each pattern is a sequence of 50 current steps,

and each step is ^msec. After all patterns are generated, they are normalized.

The resulting patterns are the elements of the normalized input set.

The first 15 patterns (from pattern 0 to pattern 14) are positive, i.e. the

electrical current steps are all higher than 0. In the next 5 patterns (from pattern

15 to pattern 19), the electrical current steps may be less than 0. See Appendix

B for the figures of all patterns in the normalized input set I.

The similarity measure of two patterns is their inner product. All the inner

products for all pattern pairs taken from the normalized input set are shown in

Appendix D.

Note that the input set contains electrical current patterns, but not electrical
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potential patterns. In principle, the learning algorithm (see Section 3.5) does not

restrict the input to be a certain physical quantity. The input can be an electrical

current pattern or an electrical potential pattern.

4.3 Longitudinal Dissipation and Smoothing Effect of the

Dendrite

A pattern becomes smaller in electrical potential while propagating along a den

drite. Suppose that a current electrode at site 0 produces the change in membrane

electrical potential AVq. Let the membrane potential change at a distance of x

along the dendrite from the electrode site be Then the longitudinal

dissipation can be described by the following equation [Koester 81]:

= AVoe-"/\

f Rnwhere the length constant ̂  Rm and Ra are the membrane and axial

(longitudinal) resistances respectively. When axial resistance Ra increases, the ex

ponential decay factor decreases. It means that the longitudinal dissipation

goes faster when the axial resistance increases.

The amplitude response \H{juj)\ = of a dendrite segment is a mono-

tonely decreasing function of the frequency io, \H{ju)\ —>■ 0 when a; —>■ oo. It
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implies that the amplitude of a higher frequency component will get lower amplifi

cation than that of a lower frequency component, and the very high frequency com

ponents have amplitudes close to 0. Consequently, a pattern becomes smoother

while propagating along a dendrite because the amplitudes of higher frequency

components, which characterize the sharp details of the pattern shape, of the

pattern become smaller and the amplitudes of the lower frequency components

become larger. This means that large variations in patterns in higher frequency

components become smaller variations and amplitudes in lower frequency compo

nents are amplified while propagating along a dendrite.

Suppose that we have two normalized patterns f{t) and g{t) which are quite

similar in shape except in the sharp details. Consequently, they have the same

lower frequency components but have very different higher frequency components.

The similarity (as the inner product of f{t) and g{t)) could be quite different

as they differ in higher frequency components, but they are more similar on a

dendrite since higher frequency components are depressed. A dendritic net, which

is built from dendrites and operates as performing an inner product according to

the learning algorithm, cannot recognize or differentiate between patterns very

accurately if the input patterns differ only in the higher frequency components.

It means that a dendritic net does not correlate well to a high accuracy on the

similarity of pattern shapes when higher frequency components are present in the

input patterns.
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Figure 4.1: Electrical current steps to generate an electrical potential pattern

An example original electrical current pattern, which is a sequence of 50 steps

of current amplitudes clamped to the dendrite, is shown in Figure 4.1. This current

pattern generates Figures 4.2 - 4.5, which show the longitudinal dissipation and

the smoothing effect of a dendrite. The membrane conductance is 0.001 5/cm^,

a classical value for the dendrite, and the membrane capacitance is 0.8/iF/cm^.

The total length of the dendrite is 300 microns.

Comparing Figure 4.1 with Figures 4.2 - 4.5, we can see clearly that sharp

edges are gone, which reflects the smoothing effect of the dendrite. Figures 4.2

- 4.5 show the longitudinal dissipation: the longer the distance from the current

source, the lower the amplitude of the pattern shape.
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Figure 4.2: The electrical potential pattern at the site of the current source
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Figure 4.3: Longitudinal dissipation at 50 microns
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Figure 4.4: Longitudinal dissipation at 150 microns
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Figure 4.5: Longitudinal dissipation at 250 microns

4.4 Patterns Propagating under Various Membrane Con

ductances

The equivalent circuit and its solutions in Section 3.4 can be applied to a realistic

dendrite, which is a cable segment with diameter and length.

The units of a dendrite cable segment's parameters are given here. The unit

of the membrane conductance g-pas is 5/cm^, the unit of the diameter D is the

micron, and the unit of the length L is the micron. In the following definitions,

the numerical value and the unit of each parameter is written separately.

The conversion from the axial resistance To (fl-cm) to resistance Ra in the

equivalent circuit (see Figure 3.6) is defined as

i?a(niegaf2) = ro(fi — cm)L(micron)
^^D(mkron)p

ra(fl — m) ■ 10"^ • L{m) ■ 10~®
7r(^)2 . (10-6)2
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=  n lo^n
"(§)'2

raL
2~  ̂D\2 ' fi.

n^)

The membrane resistance Rm in the equivalent circuit can be defined in terms of

the membrane conductance g-pas as follows:

R,n{mega,Q.) = ^
1

27r(-^l™"°"))X(micron)g-pas(5/cm^)
1

Tr{D{m) n 10"®)Zr(m) • 10~® • g_pcis(5/m2) • 10^
1

TT • D • L • g-pas • 10~® • S • 10~2
1

IT n D • L • g_pas • iJ,S • 10"^

—mega fl
7c • D n L n g-pas • 10"^

The conversion from the membrane capacitance per unit area Cm (^F/cm^) to the

membrane capacitance Cm in the equivalent circuit is defined eis

^ / .-.N ^ / jD(micron),, , . ^CmilJ'F) = 2tv{ )L{micxon)cm{gF/cm^)

= 7r(Z)(m) • 10~®)T(m) • 10~® • CmigFfnF) • 10^

= wD • L • Cm • lO~^{fJ.F).

Thus, we have the formulas for a dendrite cable segment's parameters Cm-, Rm,
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and Ra. From these we can calculate the amplitude response \H{ju})\ =

and the phase delay Tp{u>) = ^ where r = Cm{Rm + Ra)i oi the dendrite

cable segment and compare them with the output pattern in the time domain.

An example input pattern is shown in Figure 4.1. This comparison explains the

difference between the shape of the input pattern at one end of the dendrite

segment and the shape of the output pattern at the other end of the dendrite

segment. There are three membrane conductance values, and for each membrane

conductance value, there are three plots, one each for the output pattern, the

amplitude response, and the phase delay of the dendrite cable segment.

In the NEURON runs, the parameters for the dendrite cable segment are as

follows:

Parameter Value Unit

ra 35.4 Q — cm

Cm 0.8 fiF/cm^

L 300 microns

D 3.00 microns

Figures 4.6 - 4.8, Figures 4.9 - 4.11, and Figures 4.12 - 4.14 show the output

pattern, the amplitude response, and the phase delay of the dendrite cable segment

with membrane conductance g-pas = 0.005 S'/cm^, g.pas = 0.001 S'/cm^, and

g_pas = 0.0002 5/cm^ respectively.
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Figure 4.6: Pattern shape at the output end of the small dendrite segment with mem
brane conductance 0.005 5/cm^
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Figure 4.7: Amplitude response (Q) of the small dendrite segment with membrane
conductance 0.005 5/cm^
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Figure 4.8: Phase delay of the small dendrite segment with membrane conductance
0.005 S/cm?
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Figure 4.9: Pattern shape at the output end of the small dendrite segment with mem
brane conductance 0.001 5/cm^
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Figure 4.10: Amplitude response (fi) of the small dendrite segment with membrane
conductance 0.001 5/cm^
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Figure 4.11: Phase delay of the small dendrite segment with membrane conductance
0.001 Sjcm?
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Figure 4.12: Pattern shape at the output end of the small dendrite segment with mem
brane conductance 0.0002 5/cm^
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Figure 4.13: Amplitude response (fi) of the small dendrite segment with membrane
conductance 0.0002 S/cxv?
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Figure 4.14: Phase delay of the small dendrite segment with membrane conductance
0.0002 5/cm2

85



Comparing the three groups of figures corresponding to the three membrane

conductances, the lower the membrane conductance, the higher the amplitude re

sponse at a lower frequency. This means that the lower frequency components are

magnified and the higher frequency components are suppressed when the mem

brane conductance value decreases. This is reflected in the output patterns in the

time domain. We see a rounder pattern at a lower membrane conductance value.

According to the plots of the phase delay, the lower the membrane conductance,

the larger the phase delay at lower frequencies. We see a greater shift of the pat

tern to the right when the membrane conductance is smaller. This describes the

distortion of the output pattern compared with the input pattern.

4.5 Dendritic Nets with Random Subnets for Differenti

ating Between Patterns

4.5.1 Introduction

The impulse responses of random subnets can be used as the components of the

Fourier transform in the dendritic net learning algorithm (see Section 3.5). As

the simulations show, the impulse responses of the random subnets do not have to

be orthogonal to work. In our simulations, we use normalized impulse responses

of the random subnets. Randomly generated subnets can do the job well when

the time constant of the dendrite is small so that the distortion of the input
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patterns on the dendrites is not severe. For a conductance equal to or larger than

0.001 S/cm^j and a membrane capacitance equal to 0.8/zF/cm^, random dendritic

nets with 5, 10, and 15 subnets can differentiate to a high degree between input

patterns of electrical current.

4.5.2 Parameters for Simulating Random Dendritic Nets

Table C.l in Appendix C shows the parameters for generating the random den

dritic nets in the simulations. Both excitatory and inhibitory synapses are present

in all random dendritic nets. Each synapse in a subnet is equally likely to be

excitatory or to be inhibitory. For a positive square input (electrical potential

higher than the resting potential) at the presynaptic site, some synapses will have

a postsynaptic electrical potential higher than the resting potential and all the

other synapses will have a postsynaptic electrical potential lower than the resting

potential. The parameter gjsyn is for the linear synapse model (see Appendix

A). The higher the g-syn, the closer the postsynaptic electrical potential is to the

presynaptic electrical potential. Some of the parameters are range variables, which

are uniformly, randomly generated in the indicated ranges. The branch length of

the first level of a dendritic tree is generated in the range [0,60 microns]. The

next level is generated in the range [0,60x (next level branch factor) microns]

and so on. Since patterns dissipate quite fast along a dendrite, an amplification

factor of 3 is introduced for each synapse. A pattern becomes three times higher
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across a synapse.

4.5.3 Differentiating Patterns by Random Dendritic Nets

A total of three membrane conductance values are used for generating random

dendritic nets. The subnet size of a random dendritic net can be 5, 10, or 15

subnets. For each conductance value and subnet size, there are 8 random dendritic

nets generated. Any two of the 8 random dendritic nets have different random

subnets. In order not to have any association between any two random dendritic

net structures, a given subnet in a dendritic net can not appear in any other

dendritic net with the same membrane conductance value and the same subnet

size. Each of the random dendritic nets takes input patterns from the same

normalized input set.

The performance of each random dendritic net is measured in terms of statis

tical correlation (see Section 3.6) to show how well this dendritic net differentiates

between patterns. The performances of the random dendritic nets with different

conductance values and different subnet sizes are shown in Tables C.2 - C.8. Each

table in C.2 - 0.8 shows the performance of 8 different random dendritic nets with

the same conductance value and the same number of subnets. The mean and the

standard deviation of the performances of all the 8 random dendritic nets are cal

culated and listed in the table, except for the dendritic nets with low membrane

conductance (0.00025/cm^), which show bad performance.
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All simulations in this section are summarized in Table C.9. This table shows

the confidence intervals for each set of 8 dendritic nets. According to the Central

Limit Theorem (see Section 3.6), when the sample size is very large, the distribu

tion of the sample means is approximately normal. In our case of 8 observations

(simulations), it should be treated as an approximation to the normal distribution.

The conclusion from the above simulations is that dendritic nets with mem

brane conductance 0.0015/cm^ or higher, membrane capacitance 0.8/xF/cm^, and

subnet sizes 5 — 15 can differentiate between electrical current patterns to a high

degree as indicated by the high correlations. Randomly generating the subnets

for the Fourier components is good enough for building competent dendritic nets

for differentiating between patterns.

Note that randomly generating structures is one of the easiest processes in

nature. The orthogonality of the impulse responses of the subnets does not seem

to be important. For random subnets with membrane conductance 0.005 S/cm^,

the average of the absolute values of the inner products of the impulse responses

of any two subnets is about 26% of the norm of a subnet's impulse response.

Random subnets work surprisingly well. Although a random process may be

the easiest way for the neural system to build subnets, we still do not know if the

real dendritic net works exactly the same way. At least we have simulated one

possible way the dendritic net can be modified to differentiate between patterns. It

would be interesting to set up a biological experiment to confirm the simulations.
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4.5.4 A Detailed Example of Differentiating Between Patterns by a

Random Dendritic Net

To get a feel for how well a dendritic net can differentiate between patterns,

the detailed results of simulating one of the dendritic nets with 10 subnets and

a conductance of 0.0055'/cm^ axe shown in Table C.IO and Appendix D. The

figures in Appendix D show the relation between the cross inner products of all

input patterns in the input set with the pattern the dendritic net is being tuned to.

They also show the final values of dendritic net output patterns for different input

patterns (see Section 3.6 for performance measure). Roughly, the final values of

output patterns are strongly associated with the cross inner products of input

patterns.

For each entry of Table C.IO, "Pattern number" indicates what pattern the

dendritic net is tuned to, and both "Rank for maximum value" and "Rank for

final value" show that pattern's rank, among ail the patterns in the input set,

when it is fed into this dendritic net. For example, in the first entry of Table

C.IO, when the dendritic net is tuned to Pattern 0 and takes Pattern 0 as the

input, the rank of the maximum value of the output pattern is 1 and the rank

of the final value of the output pattern is 2 compared with the output patterns

resulting from the input of all the patterns in the input set. Ideally, every entry

under "Rank for maximum value" and "Rank for final value" should be 1. This
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would mean the dendritic net perfectly recognized all the patterns in the input

set, and that recognizing by the final value and recognizing by the maximal value

coincided. The entries under "Rank for final value" in Table C.IO are mostly low

digits, which indicate that the dendritic net performs well, though not perfectly,

in ranking the patterns in the input set.

The relation between the final values and the pattern inner products is shown

in Figure 4.15. The correlation (see Section 3.6 for definition) between the final

values of output patterns and the inner products of input patterns is 0.9869.

With 400 data and the high correlation value, the probability that they axe not

associated is extremely low. The plot in Figure 4.15 and the correlation value

confirm that the two groups of figures, i.e. the final values of output patterns and

the inner products of input patterns (in Appendix D), are correlated and visually

similar.

In the presentation of the results, both ranking and statistical correlations

are used. Ranking is a kind of measure on how well a dendritic net recognizes

a pattern among all patterns in the input set. This measure is specific to the

input set used for simulation. Statistical correlation more objectively describes

how strong the input patterns and the final values of the output patterns relate.

It is good for measuring how well a dendritic net differentiates between patterns.

The patterns in the input set used in this study happen to be quite similar. As

a result, high statistical correlation is required for accurate ranking for this input
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Inner product Correlation between output final values and inner products of input patterns

10 subnets correlation coeff:.l).98b9

..

100

50

-50

150

-69 -68 -67 -66 -65 -64

Total 400 final values

-63 -62 -61

Figure 4.15: The correlation between the output final values and the input pattern inner
products for a dendritic net with 10 subnets and membrane conductance 0.0055/cm^.
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set. In dendritic nets where the patterns processed are not that close to each

other, the dendritic net may not need to have high correlation to rank the input

patterns accurately.

4.5.5 Fault-tolerance of Random Dendritic Nets

For the purpose of studying the fault-tolerance of random dendritic nets, 5-subnet

random dendritic nets are generated first, then 5 more random subnets are added

to make the number of subnets 10, and then 5 more subnets are added to make

15-subnet random dendritic nets. They can be viewed in the other way. The

10-subnet random dendritic nets are the results of deleting 5 subnets from the

15-subnet random dendritic nets, and the 5-subnet random dendritic nets are the

results of deleting 5 subnets from the 10-subnet random dendritic nets. There

are 8 random dendritic nets generated in each group of 5-subnet, 10-subnet, or

15-subnet random dendritic nets.

The performances of all random dendritic nets are measured to see if there are

significant increases or decreases in performance after deleting/adding random

subnets. All performances are measured in terms of correlations (see Section 3.6).

All the results of simulations are summarized in Tables E.l - E.4 of Appendix

E. The membrane conductance is 0.0015/cm^ and the membrane capacitance is

0.8//F/cm^ for the dendrites. The performances of 5-subnet random dendritic

nets are shown in Table E.l, Table E.2 shows the performances of 10-subnet
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random dendritic nets, and Table E.3 shows the performances of 15-subnet random

dendritic nets. All the performances are summarized in Table E.4.

Comparing Table E.l with Table E.2, the mean of performance increa.se by

adding 5 subnets to the 5-subnet random dendritic nets is 0.0066 in correlation.

Comparing Table E.2 with Table E.3, the mean performance increase from adding

5 subnets to the 10-subnet random dendritic nets is 0.0077 in correlation.

Comparing Table E.2 with Table E.l again, the performances of the dendritic

nets for Runs 1, 3, 4, 5, 8 increase as a result of adding 5 random subnets to the

5-subnet random dendritic nets, while the performances of the dendritic nets for

Runs 2, 6, 7 decrease as a result of adding 5 more random subnets to the 5-subnet

random dendritic nets.

Comparing Table E.3 with Table E.2 again, the performances of the dendritic

nets for Runs 2, 4, 5, 6, 7 increase adding 5 random subnets to the 5-subnet

random dendritic nets, while the performances of the dendritic nets for Runs 1,

3, 8 decrease adding 5 random subnets to the 10-subnet random dendritic nets.

As Table E.1-E.4 show, there is only small difference in the performance cor

relations of the dendritic nets with 5, 10, and 15 subnets. The conclusion is that

adding or deleting some subnets to or from a random dendritic net does not change

the performance of the dendritic net much. This implies that random dendritic

structures are highly fault-tolerant. It would be interesting to look at all struc

tures in the brain and to determine if random structures are the key to the high
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fault-tolerance of the brain. The emphasis is on randomness.

An interesting case to investigate is when the number of subnets is reduced to

1. Table E-5 lists the results. In general, the performance is not good, but among

the 8 dendritic nets generated, one shows good performance (correlation 0.9593).

This means that a properly wired dendritic net with 1 subnet can do a good job.

4.6 Discussion on The Input Set of Electrical Current Pat

terns and Its Associated Input Set of Electrical Poten

tial Patterns

Suppose that we have an input set I of electrical current patterns. Since an

electrical current pattern generates an electrical potential pattern at the same

site, the set of electrical potential patterns generated by the current patterns in

the input set I can be considered an associated input set Note that both I

and /' will lead to the same weight vector for the key synapses for learning. For

recognizing or differentiating between patterns, the learning algorithm can tahe an

input set of either electrical current patterns or electrical potential patterns. The

output also can be an electrical current pattern or an electrical potential pattern.

In the nervous system, the current coming from the presynaptic side of a

synapse can be considered an input, and the output is often an electrical potential

pattern, which determines whether the output will generate an action potential
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or not.

If we have a normalized input set of current patterns, then the associated

electrical potential patterns generated at the input site may not be necessarily

normalized due to distortion. If the distortion is small, then it is not significant

whether we use an input set of electrical current patterns or an input set of

electrical potential patterns

Suppose that the electrical potential is the more relevant quantity at the input

site and the output is an electrical potential pattern. If the input electrical current

patterns in the normalized input set generate distorted electrical potential patterns

when they are applied to a dendrite, then the dendritic net is taking a possibly

unnormalized input set /' of electrical potential patterns instead of the original

normalized input set I of electrical current patterns.

The shape change of the patterns due to distortion affects the normalization of

the patterns in the time interval of the input set, and may change the order of the

inner products among the patterns. Since the learning algorithm approximates the

inner product on normalized patterns, the shape distortion due to high membrane

resistance Rm has a great influence on the learning process when we work on a

normalized input set of electrical current pattern. In order to preserve the shapes

of the patterns to a high degree, the membrane conductance has to be high enough.

How laxge the conductance should be depends on how well the dendritic net has

to differentiate between input current patterns.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Dendritic nets with high membrane conductance and with a small number (5-15)

of randomly generated subnets can differentiate to a high degree between input

electrical current patterns by the final value of the output electrical potential pat

tern after modifying the synaptic weights of the key synapses. As the simulations

show, the statistical correlation coefficient between the final values of output pat

terns and the inner product of their corresponding input patterns with the pattern

to which the dendritic net is tuned is very high for high membrane conductance.

The modification of a dendritic net is small scale: for a random dendritic net with

n subnets for n G there are n synaptic weights to modify. It seems that

random structures are the easiest to build.
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The random dendritic structures are highly fault-tolerant. Adding or deleting

some subnets to or from a random dendritic net does not change the performance

much. This property is highly desirable for building computing devices.

5.2 Future Work

An important issue is to find out why dendritic nets with random subnets per

form well even when the impulse responses of subnets are quite dependent. It is

necessary to understand why the dependence of random subnets does not degrade

the performance much. This may be important for understanding the building

blocks of intelligence and the process of biological evolution.

We have shown that random dendritic structures are highly fault-tolerant. It

would be interesting to further examine whether random structures are the reason

why the brain is highly fault-tolerant.

In this work, we have investigated the capabilities of general dendritic struc

tures for recognizing electrical current patterns. For further simulations, the input

patterns may have to be more specific, and they could be obtained by recording

patterns at certain locations of the nervous system. For example, repetitive pat

terns are common in the nervous system. Normalizing input patterns may be an

important issue, since the amplitudes of patterns may vary widely.

Often, the nervous system operates on the maximal value of a pattern (e.g. to
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trigger an action potential). It may be interesting to see if we can find important

input patterns in some part of the nervous system for which maxima and final

values of the output patterns coincide. Another direction is to devise an algorithm

to work on the maximal values of output patterns.
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Appendix A

Implementation of the Linear

Synapse Model

The following lists the program to implement the linear synapse model. It can be

compiled with NEURON to get a special version of executable file of NEURON.

TITLE Linear Synapse

COMMENT

This file implements the linear synapse model.

For each time slice dt

1. Subtract the resting potential from the presynaptic electrical

potential and then multiply this resulting number by the

multiplier. Add the resting potential back to it to get a final

value intended to be the postsynaptic electrical potential.

Ill



2. Copy the final value in the above to the FIFO ring delay buffer.

At the same time the buffer is shifted one position.

The length of the buffer multiplied by the time slice dt is the

delay of the synapse.

3. The postsynaptic electrical potential is the output of the delay

buffer just being shifted out at the time slice preceding the

current time slice.

ENDCOMMENT

INDEPENDENT {t FROM 0 TO 20000 WITH 1 (ms)}

: The following two vscriables have to be the seime.

DEFINE MAX.DELAY 50000

VERBATIM

#define MAX_DELAY_IN_C 50000

ENDVERBATIM

NEURON {

POINT.PROCESS linear_synapse

RANGE g_syn, e, i, multiplier, raw_delay

POINTER pre

NONSPECIFIC.CURRENT i

:  GLOBAL
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UNITS {

(nA)

(mV)

(umho)

(nanoamp)

(millivolt)

(micromho)

ASSIGNED {

: pointer to presynaptic variable

pre

delay_v_buffer[MAX_DELAY] (mV) : Keep the voltages in this

:  array over time. Then

:  feed into the postsynaptic

:  compartment.

new_v (mV)

v_syn (mV)

current_ring_head_position : Put new data at this

:  location.

:  Get data from this

:  location.

current_ring_tail_position

i (nA)

PARAMETER {
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multiplier

: Synapse conductcoice

g_syn (umho)

: Delay of synapse.

raw_delay (ms)

: Resting potential,

e  (mV)

; The voltage at the postsynaptic compartment

: V (mV)

: Length of time slice, a global variable.

: dt (ms)

BREAKPOINT

SOLVE ring

VERBATIM

/*

Will do nothing before data moves to the postsynaptic

side.

*/
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if (t > raw_delay) { i = g_syn*(v - v_syn); }

ENDVERBATIM

}

PROCEDURE ringO

{

VERBATIM

if (t <= dt)

{

(int) current_ring_head_position = 0;

(int) current_ring_tail_position = 0;

}

new_v = (pre-e)*multiplier+e;

if (raw_delay > dt)

{

if (t <= raw_delay)

delay_v_buffer[(int) current_ring_head_position] = new_v;

(int) current_ring_head_position

= get.next_ring_position((int) current.ring.head.position);

}

else
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v.syn = delay_v_buffer[(int) current_ring_tail_position];

delay_v_buffer[(int) current_ring_head_position] = new_v;

(int) current_ring_head_position

= get_next_ring_position((int) current_ring_head_position);

(int) current_ring_tail_position

= get_next_ring_position((int) current_ring_tail_position);

}

else

{

v_syn = new_v;

}

/* Print out data on the ring buffer

printf("7.i '/.f y.i '/.f \n",

(int) current _ring_head_po s it i on,

delay_v_buffer[(int) current_ring_head_position],

(int) current_ring_tail_position,

delay_v_buffer[(int) current_ring_tail_position]);

*/

ENDVERBATIM
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VERBATIM

int get_next_ring_position(int array.index)

{

if (aarray.index < MAX_DELAY_IN_C)

{

return (airray.index + 1);

}

else

{

return (1);

}

}

ENDVERBATIM
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Appendix B

Patterns in the Normalized Input

Set

The following figures show the 20 patterns in the normalized input set. Each

pattern consists of 50 steps of current segments. The total time of a pattern is 2

milliseconds. Each current step runs for 0.04 milliseconds.
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Appendix C

Results of Differentiating

Between Patterns by Random

Dendritic Nets

The parameters used for dendritic net simulations (see Section 4.5.2) are listed in

Table C.l, and the results of Section 4.5.3 are summarized in the Table C.2 - C.9.

Table C.IO shows the ranking of the results in Section 4.5.4.
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Table C.l: Parameters for random dendritic net simulations

Parameter Value Unit

Total time for simulations 2 msec

Time slice 0.0005 msec

Number of levels in the dendritic trees 4

Branching angle of tree branches 0-60 degree
The number of synapses in a subnet 12-15

Direction of synapses forward

First level branch length of dendritic trees 0-60 micron

Next level branch factor .80

Diameter of dendrites 3 micron

Resting potential -65 mV

Axial resistance 35.4 Q, — cm

Membrane capacitance 0.8 nFjcrn^
Synapse amplification factor 3

Synapse delay 0-2 msec

g_syn for linear synapse 0.5

Table C.2: Correlation for the random dendritic net with capacitance = 0.8 /fF, con
ductance = 0.001 5/cm^, and 5 subnets

Run Correlation

1 0.7152

2 0.9788

3 0.9443

4 0.9452

5 0.9704

6 0.9489

7 0.9669

8 0.9696

Mean 0.9300

Standard deviation 0.0878
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Table C.3: Correlation for the random dendritic net with capacitance = 0.8 fiF, con
ductance = 0.001 5/cm^, and 10 subnets

Run Correlation

1 0.9802

2 0.9932

3 0.9516

4 0.9706

5 0.9507

6 0.6238

7 0.9717

8 0.9777

Mean 0.9274

Standard deviation 0.1234

or the random dendritic net with cap
, and 15 subnets

Run Correlation

1 0.9768

2 0.9621

3 0.9774

4 0.9681

5 0.9866

6 0.9846

7 0.9648

8 0.9684

Mean 0.9736

Standard deviation 0.0091
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Table C.5: Correlation for the random dendritic net with capacitance = 0.8 //F, con
ductance = 0.005 5/cm^, and 5 subnets

Run Correlation

1 0.6755

2 0.8163

3 0.8966

4 0.9106

5 0.6755

6 0.8981

7 0.9800

8 0.9578

Mean 0.8513

Standard deviation 0.1187

Table C.6: Correlation for the random dendritic net with capacitance = 0.8 /zF, con
ductance = 0.005 5/cm^, and 10 subnets

Run Correlation

1 0.9791

2 0.7201

3 0.9791

4 0.9618

5 0.9596

6 0.9728

7 0.8873

8 0.9721

Mean 0.9290

Standard deviation 0.0896
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Table C.7: Correlation for the random dendritic net with capacitance = 0.8 //F, con
ductance = 0.005 5/cm^, and 15 subnets

Run Correlation

1 0.9781

2 0.9385

3 0.9814

4 0.8731

5 0.9780

6 0.9145

7 0.9145

8 0.9927

Mean 0.9463

Standard deviation 0.0428

Table C.8: Correlation for the random dendritic net with capacitance = 0.8 /xF, con
ductance = 0.0002 S/cm^, and 10 subnets

Run Correlation

1 -0.4766

2 0.5321

3 0.3799

4 0.5528

5 0.4553

6 0.4430

7 0.1001

8 -0.5228
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Table C.9: Summary of the performances of the random dendritic nets

Membrane

conductance

Membrane

capacitance
Number

of
subnets

Mean of
correlations

Standard

deviation

Confidence interval of
99% for the mean of
any sample ofS corre
lations from 8 random
dendritic nets

0.0015/cm^ O.SfiF 5 0.9300 0.0878 0.8214 <p< 1.0000
O.OOlS'/cm^ O.SfiF 10 0.9274 0.1235 0.7746 <p< 1.0000
0.0015/cm^ O.SfiF 15 0.9736 0.0091 0.9623 < // < 0.9849
0.0055/0111^ 0.8/xF 5 0.8513 0.1187 0.7044 < /i < 0.9982
0.0055/cm^ O.SfiF 10 0.9290 0.0896 0.8181 <p< 1.0000
0.0055/cm^ O.SfiF 15 0.9463 0.0428 0.8933 <p< 0.9994
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Table C.IO: Ranks of maximum values and final values for a dendritic net with 10

random subnets and membrane conductance 0.005 5/cm^

Pattern number Rank for maximum value Rank for final value

0 1 2

1 3 4

2 3 4

3 16 1

4 12 1

5 13 2

6 13 1

7 4 1

8 5 2

9 11 2

10 15 2

11 7 1

12 7 5

13 8 2

14 1 8

15 18 1

16 1 1

17 1 1

18 2 2

19 1 1

132



Appendix D

Results of Simulating a Dendritic

Net with 10 Random Subnets

The following shows two groups of figures, where one group includes all the inner

products among the patterns in the input set and the other group contains the

final values of the output patterns of a dendritic net with 10 random subnets and

membrane conductance 0.005 ̂ /cm^ when taking the patterns in the input set

as the inputs (see section 4.5.4 for details). The inner product of two patterns

is done by summing over all the multiplications of the 50 corresponding current

steps of the two current patterns.

Each figure of inner products is followed by a figure of final values. These two

corresponding figures look similar. This means that this random dendritic net

performs well in differentiating between patterns in the input set (see Appendix
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Inn«r product Imnor preduets of *11 pattern* with pattern 0

I Hlt>t pettem 0 •

0  2 4 8  10 12 14 16 18 20
Total 20 pettem*

Figure D.l: Cross inner products of all patterns with pattern 0

Electrical potential <»V>

-61

Tuned to pettem 0

Final val

-62

I f-67

Total 20 pattern*

Figure D.2: Final values of the dendritic net tuned to pattern 0 for all input patterns

Inner product Inner product* of all pattern* with pattern 1

THWy~pmd3ct with pattern 1 '

0  2 4 6  8 10 12 14 16 18 20
Total 20 pattern*

Figure D.3: Cross inner products of all patterns with pattern 1
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ElMtrie*! pot«ntl«l <«V>

-61

Turwd to pottom 1

Flnol wol

-62

-63

-65

6  8 10 12 14 16 16 ZQ

Totol 20 pottamo

Figure D.4: Final values of the dendritic net tuned to pattern 1 for all input patterns

Irmar predueta of oil pottom* with pottora 2

-uJ ^
to With pottom 2

0  2 4 6 8  10 12

Totol 20 pottom*

14 16 18 20

Figure D.5: Cross inner products of all patterns with pattern 2

Eloetr-leol potontlol <hV>

-61

Tunod to pottom 2

Finoi wol

-66

•67

10 12 14 16 18 20

Totol 20 pottom*

Figure D.6: Final values of the dendritic net tuned to pattern 2 for all input patterns
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Inrw preduet Iniw product* of oil pottoma olth pottom 3

I wtth pottom 3 •

8  10 12 14 16 18 20
Totol 20 pottomo

Figure D.7: Cross inner products of all patterns with pattern 3

Eloetrieal potonttol <«V>

-61

T<*^od to pottom 3

Ftnol w*l

-62

-63

r

Totol 20 pottom*

Figure D.8: Final values of the dendritic net tuned to pattern 3 for all input patterns

IrvMr product* of oil pottom* «tth pottom 4product

ult^ pottom 4190

100

100
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9  10 12 14 16 18 20
Totol 20 pottom*

Figure D.9: Cross inner products of all patterns with pattern 4
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eivctrtcAl pet«nti«l <hV> Tuned to pettam 4

-61
Ptnel ual

n-62

-63

-64

-65

-67

-66

•63

10 12 14 18 18 20

Total 20

Figure D.IO: Final values of the dendritic net tuned to pattern 4 for all input patterns

Xmer product Imer products of oil pottoms with pottom 5

I with pattern 5 '

0  2 4 6 6 10 12 14 18 18

Total 20 patterns

Figure D.ll: Cross inner products of all patterns with pattern 5

Slectrleal potential <f*V>

-61

Tuned to pattern 5

Final waluee

-62

-63

-67

10 12 14 16 18 20

Total 20 patterns

0  2

Figure D.12: Final values of the dendritic net tuned to pattern 5 for all input patterns
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Irmsr preduets of *11 pattams p«tt«m 6Irvw product

Inner prcduete utth pattern 6
150

100

-SO

100

150

0  2 5  8 10 12 14 16 15

Total 20 petteme

Figure D.13: Cross inner products of all patterns with pattern 6

Electrleel potentiel <nV>

-61

Tuned to pattern 6

Final «mI

L-62

I

J

Total 20 pattame

Figure D.14: Final values of the dendritic net tuned to pattern 6 for all input patterns

Imer produeta of all pattame with pattern 7

Innar producta with pattern 7 •

O  2 8  10 12 14 16 18 20

Total 20 pattame

Figure D.15: Cross inner products of all patterns with pattern 7
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EI«ctrae«l potential <mV>

-61

Tunad t« pattam 7

Final val

-62

-67

-66

10 12 14 IS 16 20

Total 20 pattarna

Figure D.16: Final values of the dendritic net tuned to pattern 7 for all input patterns

Inrttr produeta of all pattama with pattam 6

Xnnar produeta wltft pattam 8 '

0  2 4 6 6 10 12 14 16 IS 20

Total 20 I

Figure D.17: Cross inner products of all patterns with pattern 8

Eloct^ieal potantial <aV> Tunad to pattam 6

Final val

-67

10 12 14 16 IS 20

Total 20

Figure D.18: Final values of the dendritic net tuned to pattern 8 for all input patterns
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Inrwr product Innor product* of oil ̂ attorn* ulth p«ttom d

Inrior producproduct* with pattern 9

0  2 4 6 8 10 12 14 16 18 20

Total 20 pattarm

Figure D.19: Cross inner products of all patterns with pattern 9

Electrical potantial <mV> Tuned to pattern 9

Final val

-€2

-63

-67

8  10

Total 20 pattams
14 16 18 20

Figure D.20: Final values of the dendritic net tuned to pattern 9 for all input patterns

Inner product Inner products of all pattern* with pattern 10

with pattern 10
150

100

-50

100

ISO

10 12 14 16 18 20
Total 20 pattam*

Figure D.21: Cross inner products of all patterns with pattern 10
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ei*ecrte«l pet«ntt*l <«V>

-€1

Tuwd to
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-64

-67

B  8 10 12 14 16 18 20
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Figure D.22: Final values of the dendritic net tuned to pattern 10 for all input patterns

Innar product Inner products of all patterns ulth pattern 11

ISO

100

ulth pattern 11
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Figure D.23: Cross inner products of all patterns with pattern 11

Electrical potential <nV>

-61

Tuned to pattern 11

Final values

10 12 14 16 18 20

Total ZO patterns

0  2 4

Figure D.24; Final values of the dendritic net tuned to pattern 11 for all input patterns
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Xrww product Inner product! of all pattoma with pattam 12

180

100

50

with pattam 12 •

0  2 4 6 S 10 12 14 16 18

Total 20 pattoma

Figure D.25: Cross inner products of all patterns with pattern 12

Elaetrleal petantlal (mV>
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Tunad to pattam 12

Final wal

-62

-65

0  2 4 6 8 10 12 14 16 18 20

Total 20 pattoma

Figure D.26: Final values of the dendritic net tuned to pattern 12 for all input patterns

Imar product Inrtar products of all pattoma with pattam 13

with pattam 13 •

0  2 4 8  10 12 14 16 18 20

Total 20 pattoma

Figure D.27: Cross inner products of all patterns with pattern 13
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Elsctrteal petvnti*! <nV>
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Total 20 Mttomo

Figure D.28: Final values of the dendritic net tuned to pattern 13 for all input patterns

Imor product* of *11 pottarm ulth pattom 14

«lt>t pattam 14 '

0  2 4 6 8 10 12 14 16 18 20

Total 20 pattam*

Figure D.29: Cross inner products of all patterns with pattern 14
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Tunad to pattam 14
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Figure D.30: Final values of the dendritic net tuned to pattern 14 for all input patterns
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Imar products of oil pottoma with pattam IS
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Total 20 pattama

Figure D.31: Cross inner products of all patterns with pattern 15

Elaetrlcal potential <mV>
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Tuned to pattam 15

Final val
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Total 20 pattama

Figure D.32: Final values of the dendritic net tuned to pattern 15 for all input patterns

Inner product* of all patterns with pattam 16
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Figure D.33: Cross inner products of all patterns with pattern 16
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Cl«ctrlcal pet«ntl«l <»V> Turwd to pott«rrt IS

Mm I vol
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6  8 10 12 14 16 IS 20

Totol 20

Figure D.34: Final values of the dendritic net tuned to pattern 16 for all input patterns

Innop preduet Irvwr prodMCta of oil pottoms Mittt pattom 17

IrwMT product* with p« :t*r>i 17

0  2 4 6 8 10 12 14 16 18

Total 20 pat tarn*

Figure D.35: Cross inner products of all patterns with pattern 17

Elaetrieal petantial <ii»V> Tunad to pattern 17

Final wal
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0  2 10 12 14 16 18 20
Total 20 pattam*

Figure D.36: Final values of the dendritic net tuned to pattern 17 for all input patterns
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IfVMr product
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Innor product* of *11 potterm with ppttom 18
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0  2 4 6 8 10 12 14 16 18
Totsl 20 psttoms

Figure D.37: Cross inner products of all patterns with pattern 18
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Figure D.38: Final values of the dendritic net tuned to pattern 18 for all input patterns
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Figure D.39: Cross inner products of all patterns with pattern 19
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Figure D.40: Final values of the dendritic net tuned to pattern 19 for all input patterns
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Appendix E

Results of Testing Fault-tolerance

of Random Dendritic Nets

The results of Section 4.5.5 are summarized in the following tables. For conve

nience, Table C.4 is duplicated here as Table E.3.
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Table E.l: Correlation for the random dendritic net with capacitance = 0.8 /xF, con
ductance = 0.001 5/cm^, and 5 subnets

Run Correlation

1 0.968713

2 0.945224

3 0.977928

4 0.957361

5 0.927237

6 0.981954

7 0.960796

8 0.955227

Mean 0.9593

Standard deviation 0.0177

or the random dendritic net with cap
, and 10 subnets

Run Correlation

1 0.9777

2 0.9247

3 0.9831

4 0.9672

5 0.9694

6 0.9807

7 0.9468

8 0.9777

Mean 0.9659

Standard deviation 0.0203
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Table E.3: Correlation for the random dendritic net with capacitance = 0.8 con
ductance = 0.001 5/cm^, and 15 subnets

Run Correlation

1 0.9768

2 0.9621

3 0.9774

4 0.9681

5 0.9866

6 0.9846

7 0.9648

8 0.9684

Mean 0.9736

Standard deviation 0.0091

Table E.4: Summary of the performances of the random dendritic nets

Membrane

conductance

Membrane

capacitance
Number

of
subnets

Mean of
correlations

Standard

deviation

Confidence interval of
99% for the mean of
any sample ofS corre
lations from 8 random
dendritic nets

0.0015/cm^ O.SpF 5 0.9593 0.0177 0.9374 <p< 0.9812
0.0015/cin^ O.SfiF 10 0.9659 0.0203 0.9409 <ix< 0.9910
O.OOl^/cm^ O.SfiF 15 0.9736 0.0091 0.9623 <p< 0.9849
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Table E.5: Correlation for the random dendritic net with capacitance = 0.8 fiF, con
ductance = 0.001 S/cra?, and 1 subnet

Run Correlation

1 0.3580

2 0.7613

3 0.2943

4 -0.0278

5 0.7789

6 0.9593

7 0.4393

8 0.8368
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Table E.6: Ranks of maximum values and final values for a dendritic net with 10 random

subnets and membrane conductance 0.005 5/cm^

Pattern number Rank for maximum value Rank for final value

0 1 2

1 3 4

2 3 4

3 16 1

4 12 1

5 13 2

6 13 1

7 4 1

8 5 2

9 11 2

10 15 2

11 7 1

12 7 5

13 8 2

14 1 8

15 18 1

16 1 1

17 1 1

18 2 2

19 1 1
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