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ABSTRACT

Anolis carolinensis, an arboreal lizard common to the southeastern

United States, has been studied often in lab settings, but infrequently in its

natural habitats with respect to the ecology of this species. The current

study conducted exploratory statistical modeling of associations between 18

habitat features and the occurrence of A. carolinensis in study plots at the

northern distributional limits of this species in eastern Tennessee.

Statistical hypothesis-testing procedures and stepwise computer

algorithms are commonly used by ecologists to analyze observational (non-

experimental) multivariate data, such as the data analyzed in this study.

However, such procedures and algorithms are frequently, but

inappropriately, used to find the single supposedly 'best" statistical model

and/or support interpretations of the "importance" or causal nature of

variables in the model. Thus, such analyses provide only a narrow

scientific view of the multivariate data and the many potentially useful

models.

The present study developed a genetic algorithm-informational

modeling (GAIM) approach to a) reduce certain computational and

statistical limitations imposed by stepwise algorithms and hypothesis-

testing procedures, respectively, and b) conduct a wider exploration of any

observational multivariate data set. The GAIM approach utilizes a genetic

algorithm, which bases its searching power on biological and evolutionary

concepts, and the informational approach to statistics, which bases its

ability to rank and evaluate models on statistical likelihood and

information theory. It is suggested that researchers use an approach that
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provides a wider view of the data (e.g., finds many models that fit the data

well instead of just one or a few models), such as the GAIM approach, to

more fully explore observational multivariate data. The set of well-fitting

models obtained from a GAIM analysis can then be used to propose

combinations of variables or factors that could be investigated by

experiments in order to test causal hypotheses and/or produce predictive

models.

One hundred sixty-six plots were placed in four different habitats along

the Little Tennessee River where A. carolinensis occurs. Plots were

surveyed for the presence/absence of this species in summer and winter

seasons and habitat variables, both in and adjacent to the plots, were

measured. Logistic regression modeling using the GAIM approach was

conducted separately on the summer and winter data sets. For the summer

data, the most frequent variables in the final set of GA models were

(including the intercept): distance to potential overwintering rock, summer

canopy categorization, distance to habitat edge, herb/shrub/vine cover,

svimmer sunlight index, ambient temperature, and standardized distance

along the habitat edge from the west boundary of habitat.

For the winter data, the most frequent variables in the final set of

models were (including the intercept): ambient temperature, presence of

live overstory evergreen tree trxmks, presence of overwintering rock,

standardized distance along the habitat edge from the west boundary of

habitat, distance to potential overwintering rock, and canopy cover

categorization. In each data set, the variables which most frequently



occurred in the final model set were also the ones which most frequently

possessed statistically significant parameter estimates.

The summer models suggest that further research on A. carolinensis

might focus on a) sunlight and thermal factors and b) habitat features

related to certain spatial scales beyond the sximmer home range scale.

Future research might also examine responses of this species to winter

habitat featxires such as a) shelter and potential basking sites, b) sunlight

availability and temperature, and c) spatial features beyond the typical

winter home range size. Methods using experimental control, or at least

partial control, over field variables are needed to determine the specific

responses of this species to key habitat features and the causal mechanisms

imderlying those responses. In addition, more studies are needed which

take approaches based on biophysical and physiological ecology, especially if

they can be linked to reproductive output, population ecology, and habitat

use on local and regional scales.
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PART 1: INTRODUCTION



OVERVIEW

Considerable theoretical and empirical research has been conducted in

an effort to understand the complex relationships between an organism

and/or a species and its habitat. Habitat can potentially influence heat

balance and physiology (Gates 1980, Porter 1989), growth (Porter 1989),

reproduction and life history traits (Steams 1976), individual fitness

(Fretwell 1972), and abundance and distribution of populations and species

(Hutchinson 1957, MacArthur 1972). An understanding of the interactions

between an organism and its habitat is important for gaining insight into

individual behavior, physiological performance of individuals, life history

traits, population dynamics and the viability of populations, community

stmcture and organization, and evolution.

Habitat is an important concept in ecology, but its definition, like that

of niche, has varied among ecologists over time (see Udvardy 1959, Davis

1960, Whittaker et al. 1973, Kulesza 1975). In this dissertation, habitat is

defined as the area or place that contains the physical, chemical, and biotic

resources required by individuals or populations of a given species (see

Davis 1960), or even a species itself. Such resources can include water,

humidity, sunlight, heat, shade, nesting or egg-laying sites, food, structural

vegetation, and refugia from both predators and potentially threatening

weather conditions. The importance of habitat is that it contains or

consists of the crucial resources which are required by organisms for

survival, growth, and reproduction and which promote the continued

existence of populations and species.



Concerns over the futiire of many animal populations and species

have been expressed by both scientists and the public with increasing

frequency during the 20th century as more humans and human

developments (e.g., housing, roads, railways, and industrial developments)

appeared to negatively affect many animal populations and their habitats.

These concerns helped contribute to federal laws being passed in the

United States which required that wildlife and their habitats, as well as

other natural resources, be given consideration whenever human

activities were planned and conducted on public lands (Morrison et al.

1992:7-9). Some of these laws included the National Environmental Policy

Act (NEPA) of 1969, the Endangered Species Act of 1973, the Federal Land

Policy and Management Act of 1976, and the National Forest Management

Act (NFMA) of 1976 (see Morrison et al. 1992:8-9).

In order for wildlife to be given consideration in the process of

planning human activities on public lands, knowledge of the associations

and interactions between wildlife and their habitats is needed. Such

knowledge existed for certain game species, but little insight was available

about the habitat requirements of many animal species. This has led

biologists to study many game and nongame animals in order to formulate

models of relationships between animals and their habitats and to

potentially predict how changes made to habitats might affect animal

populations (Morrison et al. 1992:9). A number of such quantitative

models can be found, for example, in Vemer et al. (1986).

Increased study of animals and their habitats may have been fostered by

federal legislation and public concern, but the quantitative nature of these



studies was driven by the increasingly quantitative approach being used in

ecology. The actual emergence of ecology as'a science, around the

beginning of the 20th century, is said to have started when biologists began

applying mathematical and experimental methods to analyzing

community structure and succession, population dynamics, and organism-

environment relations (Kingsland 1991). Not all "ecological" studies in the

early part of the 20th century were either quantitative or experimental, but

such approaches became more frequent. The use of mathematical models

and statistics in ecology increased during the second half of the 20th

century.

Researchers studying animal habitats also began to adopt more

quantitative methods. In particular, the ability to analyze multiple

variables at the same time and to handle large data sets efficiently and

accurately was realized with both the development of multivariate

statistical techniques and the availability of high-speed digital computers to

ecologists. Those two developments, combined with certain ecological

developments, provided a synthesis in the 1970s that produced

multivariate statistical analysis of habitat requirements of animals (Shugart

1981).

The application of multivariate statistics to ecological data analysis has

been an important aspect in the development of ecology as a quantitative

science, as well as in the development of habitat studies. However,

misuses and misapplications of statistics have occurred in these

developments and continue to occur today. The rationale for the research

presented in this dissertation, as discussed in the next section, is based on a)



certain concerns over the misuses of multivariate statistics in ecology and

in studies of animal-habitat relationships and b) the desire to examine

possible associations between green anoles {Anolis carolinensis) and

habitat features by using multivariate analyses.

RATIONALE AND OBJECTIVES

Concerns about misuses of multivariate techniques (inclusive of

multiple regression) and misinterpretations of subsequent results have

been discussed with respect to ecological data in general (e.g., see James and

McCulloch 1985, 1990), and animal-habitat data in particular (e.g., see

Johnson 1981a, b, Karr and Martin 1981). Three general statistical concerns

addressed in this dissertation are:

1. The heavy reliance in ecology on statistical hypothesis-testing
procedures (of the "frequentist" or "classical" approach) and the very
limited use of other statistical approaches, particularly for purposes
of statistical model selection.

2. The belief among many ecologists that a single "best" model exists
for any multivariate data set and the subsequent use of stepwise
procedures to find the supposedly "best" model.

3. The formulation of causal inferences, rather than correlative
descriptions, based on multivariate analysis of observational
(non-experimental) data.

Statistical hypothesis-testing procedures (henceforth referred to simply

as hypothesis-testing procedures) include such tests of significance as a

f-test, f-test, Chi-square test, likelihood ratio test (or G-test), Mann-Whitney

U-test, Kruskal-Wallis test, and Wilcoxon's signed-ranks test. Not unlike

many researchers in the natural and social sciences, ecologists tend to use

hypothesis-testing procedures far more frequently than other approaches.



such as the informational approach. Evidence to support this statement is

not difficult to find; one only has to scan the 'Methods' sections of papers

in ecological joiimals to find that the vast majority of researchers

exclusively use hypothesis-testing procedures in their statistical analyses.

A particular point of debate is the overreliance of ecologists on hypothesis-

testing procedures for selection of an appropriate statistical model (or

models) when other, often more advantageous, methods exist to help

balance problems of overfitting and imderfitting. For example, most

ecologists use test procedures as the basis for model building (adding and

removing variables) and model selection in linear regression, even though

Mallows' Cp criterion has been available for such analysis for over 20 years.

Each statistical approach or methodology can be viewed as a statistical

"tool" that may be more useful in some situations than other approaches

or tools. Although hypothesis-testing procedures may perform well for a

variety of research designs, data sets, and questions, other statistical

approaches may be of equal or greater utility especially imder certain

conditions or with certain data. The informational approach, based on the

ground-breaking work of Akaike (1973, 1974), is a viable alternative to

hypothesis-testing procedures which has certain statistical advantages over

such test procedures.

The informational approach uses statistical likelihood as part of a

numerical criterion to help analysts select statistical models which best fit

the data and, in turn, isolate meaningful variables that can be investigated

via additional studies for possible causal relations. Many ecologists who

work on capture-recapture data (see, e.g. Szymczak and Rexstad 1991,



Bumham and Anderson 1992, Lebreton et al. 1992) are rapidly adopting the

informational approach for the analysis and estimation of survival and

recapture rates. The informational approach is the approach used for

statistical modeling in this dissertation.

The second important statistical concern is that many ecologists believe

that an observational multivariate data set (i.e., multivariate data collected

without an experimental design in which variables can be controlled by the

investigator) will have a single "best" statistical model which has a

superior fit to the data over alternative models. However, with any

multivariate data set it is fairly probable that no single model will be better

than all other models (Gorman and Toman 1966, Hocking 1983, McCuUagh

and Nelder 1989:8); such data can often be described equally well,

statistically and biologically, by several or more models. In practice, many

ecologists overlook this point and commonly use stepwise procedures to

find a single, supposedly "best" model when analyzing multivariate data.

However, stepwise procedures have certain limitations (see Beale 1970,

Mantel 1970, Hocking 1976,1983, Moses 1986, Myers 1986, James and

McCulloch 1990) which make it unlikely that a single best model could be

foimd if many independent variables are used. Analysts often forget these

points and operate imder the notion that a stepwise procedure does find

the single best statistical model to fit the data.

The third statistical problem of interest regards the interpretation of

observational data. Cautionary notes have been soimded about the dangers

of making predictions (see Hocking 1983, Snee 1983) and causal

interpretations (see Johnson 1981b, James and McCulloch 1985, 1990) based
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on observational data that involves many variables. Such data help

produce models or hypotheses about possible causation, but only controlled

experiments provide rigorous tests of causal hypotheses/models (James

and McCulloch 1990, Lubchenco and Real 1991). However, examples of

risky interpretations and inferences about causation based on observational

data can be foimd in the research published on animal-habitat

relationships in such journals as Ecology, Conservation Biology, and the

Journal of Wildlife Management, as well as in meetings/workshop

proceedings (see, e.g., various papers in Capen 1981, Vemer et al. 1986).

Researchers often collect observational multivariate data on animal-

habitat relationships, use a stepwise procedure to find the supposedly

"best" model, and then make either strong inferences about the causation

between dependent and independent variables or specific predictions of

outcomes, or both. In addition, specific management or conservation

recommendations are often based on observational data and subsequent

analysis, though such recommendations would be better based on a

designed experimental approach (see Marzluff 1986).

The objectives of this study are two-fold. The first is to outline the

framework of a new methodology, the genetic algorithm-informational

modeling (GAIM) approach, for the analysis of observational multivariate

data. The GAIM approach is proposed as an alternative to stepwise

procedures for modeling multivariate data and as an attempt to address the

three statistical concerns outlined previously in this section. The second

objective is to apply the GAIM approach to observational A. carolinensis-

habitat data in order to a) demonstrate how to use the GAIM approach and



b) obtain insight into possible associations between the presence of A.

carolinensis and various habitat features. Such insight, along with what is

already known about this species, can help formulate hypotheses about A.

carolinensis-habiidLi relationships which could be tested by future research.

Anolis carolinensis is a small, mainly arboreal lizard found in the

southern United States. Over the past 25 years, more than 1,000 papers

have been published on A. carolinensis, the vast majority of which have

been laboratory-based studies. The limited aspects of the ecology of this

species which have been studied have been done so on only a few

populations. Part 2 of this dissertation summarizes the rather limited

number of studies which provide insight into the natural history of A.

carolinensis. Because this species can potentially populate a diversity of

habitats. Part 2 also provides a survey of the physiographic provinces,

potential vegetation types, ecoregions, and descriptions of habitats in which

A. carolinensis has been reported to occur.

The GAIM approach proposed in this dissertation utilizes the

informational approach to statistics. Much of the valuable insight into the

informational approach is scattered among many books, journal articles,

and contributed volumes, with only a small number of articles being

published in ecological journals. Thus, Part 3 provides an overview of the

informational approach which includes many references to relevant

literature published in the fields of statistics and ecology. Part 3 also

discusses the heavy reliance on hypothesis-testing procedures by ecologists

and some possible reasons for this reliance. The informational approach is
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a viable alternative to hypothesis-testing procedures because it has some

advantages over hypothesis-testing procedures, as described in Part 3.

An important problem in statistical modeling of multivariate data is

how to find models that have a very good fit to an observational data set

when a large number of independent variables exist and the researcher

cannot easily evaluate all possible models. Part 4 of this dissertation

addresses three aspects of this problem. First, although ecologists

commonly use various stepwise procedures to find only one or a few

models to fit a data set which has many independent variables, a solid case

for abandoning the use of such procedures is made in Part 4.

Second, the concepts behind genetic algorithms (GAs), the way in

which a simple GA works, and the use of a GA as an alternative searching

algorithm to stepwise procedures for multiple regression are discussed in

Part 4. A genetic algorithm (GA) is any computer algorithm which is based

(although loosely) on the concepts of genetic recombination, natural

selection, mutation, and biological evolution and can search for and find

useful solutions to a problem when the problem has too many potential

solutions to individually evaluate or rank (see Holland 1992a, b, Forrest

1993, Goldberg 1994). Luh et al. (submitted) proposed using a genetic

algorithm in conjunction with an informational model-selection criterion

for variable selection in multiple regression. Some researchers have

apparently been using GAs for estimating statistical parameters including

estimates of standard errors (see Chatterjee and Laudato 1995), but the use

of a GA in conjunction with an informational criterion for the problem of

statistical model selection was developed and used by H.-K. Luh, J. J.
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Minesky, and H. Bozdogan in 1995 independently of the work by Chatterjee

and Laudato (1995).

Third, Part 4 proposes a general methodology, the GAIM approach, as

an alternative to the commonly used combination of stepwise algorithms

and hypothesis-testing procedures for purposes of model selection when a

large number of independent variables exist. Although Luh et al.

(submitted) showed how to apply a GA to multiple regression modeling,

they did not address the inadequacy of trying to find the single "best"

model when using either stepwise procedures or GAs for modeling

observational multivariate data. However, the GAIM approach proposed

in Part 4 most importantly emphasizes the need to examine and report a

set of very good models rather than one supposedly best model and

provides the computer/GA and statistical methods to do so. The GAIM

approach provides an analyst with a "wider" view of the models and data

than could be obtained with stepwise procedures. Specific

recommendations are provided in particular for multiple logistic

regression modeling.

Application of the GAIM approach to the analysis of two different

observational data sets on A. carolinensis-hahiteLt associations is then

presented in Part 5. The green anole, Anolis carolinensis, is an especially

good candidate for many ecological studies because of its excellent

colonizing abilities (Williams 1969), fairly wide distribution across the

southern United States (Conant and Collins 1991), occurrence in a variety

of habitats (see Part 2), small home range sizes (Gordon 1956, King 1966)

compared to many other vertebrates, arboreal habits making it rather
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visible, and sometimes high local abtmdance (Gordon 1956, personal

observation).

In the present study, home range sized plots were surveyed for the

presence of A. carolinensis in four different habitats along the Little

Tennessee River during both the summer and winter activity seasons. A

suite of habitat variables were also measured during those seasons. The

GAIM approach was then used to find a set of statistical models that fit the

data very well for the summer and winter seasons. The analyses can

provide insight into A. carolinensis-hahitat relationships to aid researchers

in designing and conducting future observational and experimental studies

on the habitat ecology of this species.

Habitat variables were measured at different spatial and temporal scales

in the current study. The author's concepts and definitions of different

habitat scales are provided in the Appendix (including Table 1-1) at the end

of Part 1. Although only a few of the spatial scales were measured in this

study, definitions of all the different scales provide readers with a more

complete sense of the author's concepts and use of habitat scales for this

research on A. carolinensis.
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HABITAT SCALES

Habitat has a multitude of scales or levels which, taken collectively,

form a continuum across space or time. However, a complete set of

definitions is difficult to find in any one published paper or book for the

spectrum of habitat scales encountered by animals. This might be due to

the fact that researchers either adopt or formally define only the particular

habitat terms and scales that are most relevant to their specific topic or

subdiscipline (such as animal ecology, plant ecology, biophysical ecology,

conservation ecology, and landscape ecology). For example, habitat

selection theory emerged, at least in part, from foraging theory and both

areas often treat the term "microhabitat" as a foraging patch within the

home range of an animal. Biophysical ecologists typically consider

microhabitat to be a small spatial scale related to the organism's current

interchange of heat, water, and gases with the immediate environment. In

addition, some researchers have defined spatial scales of habitat, but only

over the range of scales for which their research was conducted (see, e.g.,

Morris 1987).

Herein are provided some working definitions of a wide range of

habitat spatial scales (see Table 1-1 for a summary of these definitions).

General definitions of the smaller scales should be based on the basic

biological activities of the organism, but the actual size of the habitat unit

or the duration of the time frame will be determined by the particvdar

species or population being studied and either the specific or collective

activities being performed by the organisms. On the other hand,

definitions of spatial scales beyond the area that is used during a typical
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individual's lifetime do not need to be based primarily on the biological

activities and resource acquisition of an individual. Instead, definitions of

larger spatial scales should be based on 1) relevant structural, physical, and

chemical factors in an area that includes a subpopulation, a population, or

several populations, and 2) processes associated with expansion and

contraction of populations and/or the range of the species. Larger scales

should be defined in terms of such features as vegetational types,

topography, aspect, soil types, and local or regional climatic features or

categories, in conjimction with, when possible, any biological processes that

occur on a scale equal to or greater than the area of a subpopulation or

population and/or the duration of one generation.

Considering these concepts of habitat scales, "microhabitat", at the

smaller end of the spatial continuum, is defined in this dissertation as the

habitat used by an individual in a population, on average, in conjunction

with a specific biological activity during a specific time or segment of a daily

activity pattern. The activity can be performed for either directly obtaining

one or more resources or conducting one or more functions not directly

related to resource acquisition such as sleeping, molting, egg-laying,

nesting, or displaying to or communicating with other individuals. Thus,

a researcher could measure microhabitat variables related to an organism's

site for either displaying to conspedfics, basking, nesting, sleeping, or so on.

Note that any individual will likely encounter and use several or more

different microhabitat patches over the course of a day because 1) several or

more microhabitat patches might be used for acquiring a resource or

conducting a certain activity, 2) each specific activity might require a
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different microhabitat patch, and 3) each resource might be located in a

different microhabitat.

At a spatial level above microhabitat, "seasonal-use" (SU) habitat is the

habitat area used by a given individual in a population during a "season",

where "season" is determined by both important biological activities and

environmental factors. This definition considers the fact that many species

or populations exhibit differences in the size and/ or characteristics of a

typical home range depending on the climatic season (e.g., summer vs.

winter) and/or a particular biological activity "season" (e.g., reproduction

vs. non-reproduction). For many territorial species, territories are

defended with greater intensity at certain times of the year or life-cycle than

others. In other species, territories are formed and defended during a

particular season coinciding with specific activities. Thus, it is useful to

define a habitat scale, such as the SU habitat, based on certain biological

activities conducted during certain climatic and or biological seasons.

At a level above the SU habitat, "overall home range" (OHR) habitat

can be defined as the habitat scale that approximately equals the area used

by an individual in the population over either one complete cycle of

defined alternating biological activity "seasons" or one complete cycle of

climatic seasons (such as one year in non-tropical climates). The SU and

OHR scales will be equal in those species or populations in which

individuals do not seasonally change their spatial use of habitat.

For those species which change their use of habitat both across seasons

and over an entire life-time, "life-time" (LT) habitat scale is the typical

habitat area used over the life span of a given individual. This definition
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is more easily used for non-migratory species, but could be applied to

certain seasonal migratory species provided that biologically meaningful

insight could be obtained through the use of the definition.

The term "macrohabitat" could possibly be used synonymously with

OHR and/or LT habitat. If so, this use of macrohabitat is similar to the

definition used by other biologists. For example, Morris (1987:363) defined

macrohabitat as "... distinguishable units whose minimum area

corresponds to that within which an average individual performs all of its

biological fxmctions (home range) during a typical activity cycle". He does

not define the terms "minimum area" or "activity cycle" any further in a

biological context. However, if 1) minimum area is taken as the area

needed for resource acquisition sufficient for growth and reproduction and

2) activity cycle is taken as a cycle over the reproductive and non-

reproductive seasons or over the active ("summer") and non-active

("winter") seasons, then OHR habitat and macrohabitat are similar.

Beyond the OHR and LT habitat scales, the "population level" (PL)

habitat scale is that habitat area occupied by a particular population or

subpopulation of a given species at a given time. Ecologists,

conservationists, and resource managers are often interested in

determining the size of the habitat needed for a minimum viable

population (MVP). Shaffer (1981) first defined an MVP as "... the smallest

isolated population having a 99% chance of remaining extant for 1000 years

despite the foreseeable effects of demographic, environmental, and genetic

stochasticity, and natural catastrophes.", but also suggested that other

probabilities of survival or time frames could be used as well. The
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definition of PL habitat does not address this point. In conservation

biology, the "minimum dynamic area" (MDA) is defined as the size of

habitat needed to maintain an MVP for a given species and estimates of

MDA can be obtained from knowledge of home range sizes of individuals

and groups (Thiollay 1989).

Although some animal ecologists do describe their study sites and/ or

study habitats in terms of Kuchler's (1964) vegetation types or some

accepted vegetational classification scheme, it appears that most animal

ecologists do not provide such descriptions in their publications.

Reporting such descriptions of study sites and habitats provides the readers

with a greater sense of the habitat in which the species or commumty of

species lives. Unless quantitative measurements of the habitat are

reported, other researchers should be provided with at least a description of

the study sites in terms of some accepted vegetational scheme in order to

make mental comparisons of the reported study sites to their own sites.

For many terrestrial animals, descriptions of PL and MVP habitats

could be given, at least partly, in terms of Kuchler's (1964) potential natimal

vegetation types or other vegetational community classifications on a

similar scale. For example, PL and/or MVP habitats for the Carolina

chickadee {Parus carolinensis) could be described in terms of vegetational

communities such as oak-hickory-pine forest (see Skeen et al. 1993), cedar

glade (see Quarterman et al. 1993), and Appalachian oak forest (early

successional stages, see Stephenson et al. 1993) instead of simply as "edge"

or "forest". Part 2 of this dissertation provides a list of the potential natural
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vegetation types (based on Kuchler 1964) in which A. carolinensis is likely

to inhabit throughout its range.

Beyond the PL and MDA habitat scales, ecologists often define or

describe geographical areas in which either at least one population is found

(such as a map of coimty occurrences) or all of the known viable

populations of a species occur (the species "range"). Use of such

geographical descriptions or maps often lack references to relevant climatic

and vegetational information for terrestrial animals. However, the

development of a classification scheme of ecoregions ("ecosystems of

regional extent") by Bailey (1976,1983, 1995) gives ecologists the

opportunity to describe fairly large geographical areas occupied by

populations or a species in terms of climatic, land form, and vegetational

features.

Bailey's (1995) ecoregions scheme is a hierarchical classification of

ecosystems as the map units. The largest xinit is the domain, within which

exist successively smaller ecosystem units, such as divisions and provinces.

The map boundaries of domains and divisions are defined mainly on large

scale, ecological climate zones based on the works of Koppen (1931) and

Trewartha (1968). Large scale vegetational features are the basis for then

subdividing each division into provinces (Bailey 1995). Further

subdivision of provinces and even smaller units could be used by

ecologists to describe the regional and local distribution of terrestrial and

semiaquatic animal species at levels above that of MDA habitat. Part 2 of

this dissertation lists the ecoregions (down to province) in which A.
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carolinensis is known to occur as reconstructed by the author from many

distributional reports for this species.
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Table 1-1. Definitions used in this dissertation for the different areas or

scales of habitat used by animals. All terms, except those provided with a
cited reference, have been defined by the author.

Term Definition

Microhabitat

Seasonal-Use (SU)
Habitat

The habitat area used by an individual in a
population, on average, in conjunction with a
specific biological activity (e.g., egg-laying,
nesting, hibernating, communicating to
conspecifics, or obtaining any type of resource)
during a specific time or segment of a daily
activity pattern.

The habitat area used by a given individual in
a population during a "season", where
"season" is determined by both important
biological activities conducted by organisms
in the population and environmental factors
in the habitat.

Overall Home Range
(OHR) Habitat

The habitat area that approximately equals the
area used by an individual in a population
over one complete cycle of either defined
alternating biologic^ activity "seasons" or
climatic seasons.

Life-Time (LT)
Habitat

Population Level
(PL) Habitat

Minimum Dynamic
Area (MDA)

Range

The typical habitat area used over the hfe
span of an individual.

The habitat area occupied by a particular
population or subpopulation of a given
species at a given time.

The size of habitat needed to maintain a

minimum viable population (MVP) for a
given species (ThioUay 1989).

The geographical area which encompasses
all of the known viable populations of a
species (based on usage of this term in the
discipline of biogeography).
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BACKGROUND ON POLYCHROTIDAE AND ANOLIS

Family: Polychrotidae

The phylogenetics and taxonomy of the lizard family Iguanidae has

been under scrutiny in recent years. Etheridge and de Queiroz (1988)

showed that eight major suprageneric groups exist within the Iguanidae,

but they could not ascertain clear relationships of the major groups to one

another. Frost and Etheridge (1989) performed a phylogenetic analysis of

the Iguania (Iguanidae, Agamidae, and Chamaeleonidae) and foxmd

evidence for partitioning Iguanidae into eight families. One of these

families, Polychridae, includes the genus Anolis and several other related

genera.

The Polychridae (= Polychrotidae) of Frost and Etheridge (1989)

corresponds to the group which Etheridge and Williams (1985) and

Etheridge and de Queiroz (1988) called the "anoloids" (anoles and their

relatives). Members of Polychrotidae range from small to medium sized

lizards and most species are arboreal. This family is neotropical in origin

and its present distribution covers the southeastern United States, Mexico,

Central America, the West Indies, and much of South America (Frost and

Etheridge 1989).

Background on Anolis

The genus Anolis is a widespread and an ecologically diverse group

within Polychrotidae. Although no exact total count has been made

recently, it is believed that around 300 species of Anolis exist. Schwartz and

Flenderson (1991) list and describe 128 species found in the West Indies

alone. Members of this genus occur in a wide variety of habitats including



30

grassy areas, mesic forests, rock outcrops, xeric woodlands, scrub, gardens,

plantations, and urban areas (see Schwartz and Henderson 1991). Most

Anolis are arboreal, but a few are saxicolous, semi-aquatic, or terrestrial

(Etheridge and de Queiroz 1988). Anoles are primarily insectivorous,

although some species may also eat earthworms, millipedes, spiders, ticks,

snails, slugs, crustaceans, frogs, lizards, small birds, and/or fruit (see

Schwartz and Henderson 1991).

Reproduction has not been studied in all species of Anolis, but for

those in which it has females are known to usually produce one egg at a

time with ovulation occurring alternately between the two ovaries (Fitch

1970, Smith et al. 1972, Fitch 1982). Fitch (1982) reviewed reproductive

cycles in tropical reptiles and indicated that Anolis breeding seasons vary in

length from a short season available each year in areas with distinct dry

seasons to a year-round event in areas with sufficient temperature and

rainfall. Also, the length and timing of the breeding season within a given

species of Anolis appears to be related to climatic variation (Fitch 1982).

Many studies on the ecology, evolution, and behavior of various

Anolis species have been conducted. However, since about 300 species

occur in this genus it becomes apparent after examining much literature

that a thorough knowledge of the biology of probably only a small number

of species exists. For most species a rather limited and scattered

understanding of the ecology, evolution, and behavior has been gained.
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ANCESTRY, DISTRIBUTION, AND HABITATS
OF ANOLIS CAROLINENSIS

Possible ancestry and colonization history

The green anole, Anolis carolinensis, is the only species within

Polychrotidae which is native to the continental United States. Anoles are

divided into two sections, the alpha and beta anoles, based on vertebral

morphology and these sections show somewhat different geographical

affinities (Etheridge 1960 cited in Williams 1969). Mexico and Jamaica have

only beta anoles. Central America has both alphas and betas. South

America has predominantly alphas, and Hispaniola, Puerto Rico and the

Lesser Antilles all have only alphas. Cuba has both alpha and beta anoles

and the United States has the alpha anole, A. carolinensis. Probably 12 or

so species in the Caribbean belong to the Anolis carolinensis complex; a

group of species which occur on the crowns and upper trunks of trees and

which have green bodies (usually), certain scale features, and a moderate

body size (less than 91 mm snout-vent length) relative to other anoles

(Williams 1969). Since Mexico has only beta anoles the relationships of A.

carolinensis are West Indian (Williams 1969).

Cuba has two species, A. allisoni and A. porcatus, which are very

similar to A. carolinensis. It is suspected that A. porcatus is the ancestor to

A. carolinensis (WiUiams 1969). Using allozyme information and

estimates of genetic distance, Buth et al. (1980) indicated that the genetic

distance between A. porcatus from Havana, Cuba and three populations of

A. carolinensis from the U.S. was slightly higher than interpopulation,

intraspecific distance estimates for other lizards. However, only two to

three individuals were used from each population and no other species
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were compared to these. The data of Buth et al. (1980) indicate a possible

close relationship between these two species, but do not provide conclusive

evidence that A. porcatus is the ancestor of A. carolinensis.

Shochat and Dessauer (1981) used antiserum to serum albumin from

A. carolinensis to examine possible relationships between this species and

other anoles, but did not find any close relationships between any West

Indian anoles and A. carolinensis. Hass et al. (1993), using the same

antiserum to serum albumin from A. carolinensis as Shochat and Dessauer

(1981), obtained data on immunological distance units between this species

and A. allisoni and A. porcatus from Cuba. They found that these two

Cuban species were equally close to A. carolinensis in immunological

distance. Though A. porcatus, rather than other West Indian anoles, is

often thought to be the ancestor to A. carolinensis, more conclusive

evidence is still needed to confirm this relationship.

Williams (1969) indicated that A. carolinensis and members of the

carolinensis complex are rather good colonizers based on biogeographical

evidence. It is quite clear that anoles of the Caribbean have been able to

travel across open water by rafting to colonize many islands of the region

(Williams 1969). It is likely that the ancestor to A. carolinensis colonized

the mainland U.S. from Cuba since ocean currents are in that direction and

the distance between Cuba and Florida is 100 miles or less (Williams 1969),

regardless of the proof of the exact ancestor to A. carolinensis. Though the

origins of A. carolinensis are neotropical, it has been able to colonize the

mainland U. S. and push its distributional limits to areas of cold winters in
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eastern Tennessee and North Carolina and to locations of low rainfall in

central Texas.

The summaries in the next two sections on the distribution, climates,

physiographic provinces, ecoregions, potential natural vegetation types,

and habitats of A. carolinensis further illustrate the ability of this lizard of

neotropical origin to colonize and inhabit fairly diverse areas.

Distribution, climates, and physiographic provinces

The distribution of A. carolinensis is from North Carolina and eastern

Tennessee south through Florida and to Key West, throughout the Gulf

Coast region, into southern Arkansas and southeastern Oklahoma, to

eastern and central Texas, and is established in the lower Rio Grande

Valley (Conant and Collins 1991). The northern limits of the distribution

of A. carolinensis correspond approximately to the 50 op (10 ©C) "isocryme"

as indicated by Gordon (1956), which appears to be the isotherm of the

average annual low temperature. This northern limit is also generally

south of or near the 4.4 ̂ C average January isotherm (Wilson and

Echtemacht 1987:758, Fig. 1). Thus, temperature may play a role in

determining the northern limits of this species. The western distributional

limit in central Texas may be related to rainfall as it is approximated by

areas where the average annual rainfall is less than 25 inches or 63.5 cm

(Gordon 1956). Biogeographic analysis of 24 central Texas coimties by

Gehlbach (1991) suggests that the tallgrass prairie, which emerged with the

start of warmer-drier climates in post-glacial time, is the major barrier to

dispersal in an east-west direction for many terrestrial vertebrates

(including A. carolinensis) in central Texas. Since central Texas is a
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transition zone for many terrestrial vertebrates between an eastern

deciduous forest region and a central-western evergreen woodland region

(Gehlbach 1991), it is possible that the western distributional limit of A.

carolinensis is defined by the interplay between climate and the structural

habitat rather than some single aspect of climate alone.

The climate over the distribution of A. carolinensis falls into three

groups/types according to the climate classification scheme of Kbppen as

modified by Trewartha (1968). In extreme southern Florida the climate is

that of the Tropical Humid Climates group and the Tropical Wet-and Dry

type (Trewartha 1968). This climate has hot summers and very mild

winters with a rather small range in annual temperatures. Precipitation is

seasonally distributed and a distinct dry season exists (Trewartha 1968).

In parts of south-central and southern Texas the climate is that of the

Dry Climates group and the Steppe or Semiarid type. This climate has an

annual loss of water from evapotransporation exceeding the annual gain

from precipitation. The summers are hot and at least eight months have

an average temperature over 50 op (10 ̂ C). Daily and annual temperature

ranges can be rather large (Trewartha 1968).

The climate group and type foimd over most of the distribution of A.

carolinensis is that of the Subtropical Climates group and the Subtropical

Humid type. This climate occurs at middle latitudes in htunid areas where

the influence of both tropical and polar air masses is experienced.

Summers are hot and winters are relatively mild. Most areas of the

Subtropical Humid type experience freezing temperatures and frost and

parts of the southern United States do experience severe cold spells.
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Temperatures in Montgomery, Alabama and New Orleans, Louisiana have

been recorded as low as -5 ° and 7 (or -20.56 and -13.89 ®C), respectively

(Trewartha 1968:299). Along the Gulf Coast temperatures as low as 10

(-12.22 OC) have been recorded and Trewartha (1968:299) states that "No

other part of the world near sea level in these latitudes has such low winter

minima.".

Anolis carolinensis occurs in many physiographic regions throughout

the southern United States. Using both Fenneman's definitions and

mapping of physiographic provinces (Fenneman 1931, 1938, United States

Geological Survey 1970) and various distributional accoimts from

individual states, it is easily seen that A. carolinensis occurs in nearly all

the major physiographic provinces in the 11 states in its range (Table 2-1^).

In some physiographic provinces, such as the Coastal Plain, this species is

fairly widespread. However, in other provinces, such as the Blue Ridge

and the Appalachian Plateau, A. carolinensis occurs at elevations of 2250 ft

or 686 m (Cochran 1938) or lower 0ones and Ressler 1927, King 1939,

Johnson 1958) and often along stream or river edges.

Vegetation types, ecoregions, and habitats

The potential natural vegetation of the United States was described and

mapped by Kiichler (1964). Although some distributional accoimts of A.

carolinensis actually mention the Kiichler vegetation type in which this

lizard was found, most do not. However, a particular vegetation type can

be inferred based on either a description of the vegetation of the area or a

geographic overlap of the A. carolinensis location and a Kiichler vegetation
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type. Table 2-2 smmnarizes the results of a literature survey which

documents either the occurence or non-occurence of A. carolinensis in

Kiichler vegetation types, as well as infers the possible presence of this

lizard in such vegetation, in the southern United States. In general, this

lizard is more common to many of the eastern forest types than to the

central and eastern grasslands types and the western shrub and grassland

types. However, some of the grassland and forest combinations (types 80,

90, 91, and 92) and some of the grassland types (type 79), aU foimd in

Florida, can provide conditions suitable for the occurrence of this species.

Other grassland types, such as those in Louisiana and eastern and coastal

Texas, possibly provide suitable habitat for this lizard.

The drier grasslands (types 65, 69, 74, 76), grassland and forest

combinations (types 84-87), and western shrub and grasslands of Texas and

Oklahoma (Table 2-2) are habitats within the Dry Climates group/Steppe

type of Koppen. A. carolinensis does not occur in most of these drier

habitats (see Table 2-2). However, in some of these dry regions in Texas it

does occur, but probably does so in trees or shrubs along streams, rivers, or

lakes where water is available rather than in the grassland vegetation. For

example, Greg Sievert (personal communication) has observed adult and

juvenile A. carolinensis in Big Bend National Park in Texas in shrubs and

small willow trees along a stream, but not in the more characteristic

grassland habitats of the region. The occurrences of A. carolinensis in

coimties with some of the drier habitats in Texas are thought to possibly

^All tables and figures can be found in the appendix at the end of the
specific "Part" of this dissertation in which they are first cited.
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represent introductions (Brown 1950:86, Dixon 1987:90), but this cannot be

determined from distributional records alone.

Bailey (1976,1980) described ecoregions of the United States as

geographical ecosystems classified according to regional variations in

landform, climate, and vegetation. An ecoregion is a continuous area and

can "... be thought of as a geographical area over which the environmental

complex, produced by climate, topography, and soil, is sufficiently uniform

to permit development of characteristic types of ecological associations."

(Bailey 1976). This concept differs from the "biome" concept of Shelford

(1963) since a biome is based primarily on climax vegetation, whereas an

ecoregion is defined by a number of ecological and environmental

characteristics (Bailey 1976). Indeed, Bailey (1976) states that the proper

classification of ecoregions should be based ecological associations of both

plants and animals, but the data for such associations is lacking. Thus, the

classification is based largely on climate and vegetation. This classification

system can assist in management of land and resources, organization of

resource inventory data, and interpretation of inventory data (including

flora and fauna) (Bailey 1980).

The ecoregion concept consists of a hierarchy of levels and Bailey (1976)

provided for nine such levels. Only the first four levels will be related to

the distribution of A. carolinensis. A domain is the top level and is a

subcontinental area having similar or related climates. A division is an

area within a given domain which includes a single regional climate as

described by Koppen's types and modified by Trewartha (1968). Next, a

province is a broad vegetation region having the same or similar types of
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zonal soils and a fairly uniform regional climate. The fourth level is the

section which is an area within a province defined by the climatic climax as

indicated by Kiichler's (1964) potential natural vegetation types (Bailey

1976). Thus, a section level in Bailey's classification scheme often

corresponds with either a single Kiichler vegetation type or a combination

of two or more types.

Table 2-3 indicates the ecoregions in which A. carolinensis occurs over

its 11 state range. None of the references found on A. carolinensis actually

mention Bailey's ecoregion classification so the association of this lizard

with any section level has been inferred in Table 2-3 based on the

distributional accoimts of this lizard. In some cases information on

occurrence of A. carolinensis in certain Kiichler vegetation types (as in

Table 2-2) indicates that this species is associated with the predominant

vegetation in a given ecoregion section. Most of the distribution of A.

carolinensis falls within the Subtropical and the Hot Continental divisions

of the Humid Temperate domain of Bailey's (1976, 1980) ecoregion

classification. The forests of the Subtropical division are mainly coniferous

and mixed dedduous-coniferous forest, while those of the Hot Continental

division are deciduous forests. Within the southern United States, A.

carolinensis apparently occurs in all of the ecoregion sections of these two

divisions, as well as the Everglades province of the Savanna division of

the Humid Tropical domain in southern Florida (Table 2-3).

Green anoles are not likely to be common in the Prairie division and

Desert division of Bailey's ecoregions in Texas since these regions receive

less annual precipitation than other regions throughout this lizard's range.
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However, natural populations and some possible introductions of A.

carolinensis do occur in both central and southern Texas (Dixon 1987) so it

is a faunal element of the Juniper-Oak-Mesquite (2522), Mesquite-Acacia

(2523), and Tarbush-Creosote Bush (3212) sections (Table 2-3). It should be

remembered that the vegetation within a given section is not entirely of

one plant community or association, but that the vegetation may vary

according to more local environmental conditions. Thus, as mentioned

with the Kiichler vegetation types of Table 2-2, A. carolinensis probably

does not occur frequently or at all in the drier grasslands of Texas, but along

riparian habitats in such areas.

The occurrence of A. carolinensis in many section levels of Bailey's

(1976, 1980) ecoregion classifications and in many of Kiichler's (1964)

vegetation types is, in part, probably due to this lizard's ability to colonize

and inhabit a wide variety of habitat conditions. Typically this species has

been described as one which inhabits ecotonal or "edge" habitats (Gordon

1956) and somewhat open areas with dense groimd cover (Dundee and

Rossman 1989). However, it can be found deep in forests in Louisiana

(Dundee and Rossman 1989) and areas with abundant vegetation and

shade, including shady residential areas, in Alabama (Mount 1975).

Many of the early faunal surveys and distributional accounts of A.

carolinensis in the literature gave brief accounts of the vegetation or

habitats within which this species was foimd and Table 2-4 provides a

summary of these early accoimts as well as later ones. Not all of the

literature accounts of the habitat for A. carolinensis are summarized in this

table, but rather a representative cross-section is provided. Without
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repeating much of the information already presented in the previous

tables, Table 2-4 shows that A. carolinensis occurs in many different types

of habitats throughout its range, including many human-dominated

habitats and urban areas, evergreen woodlands, deciduous forests, swamp

habitats, and the Everglades of Florida.

NATURAL HISTORY OF ANOLIS CAROLINENSIS

Territoriality, movements, and home range size

Many laboratory studies have examined the behavioral interactions

between individuals of A. carolinensis regarding territoriality (see, e.g.,

Greenberg and Noble 1944, Cooper 1977, Crews 1980). However, the focus

of the discussion here is on studies which have been conducted in the field.

Cordon (1956) found that aggressive encoimters between adult males

began during late February and early March in study sites in Louisiana.

Males then establish and defend territories diiring April through August

which coincides with the breeding season at his study areas. A male

territory holder would begin each day looking around its territory usually

from an observation post. The individual would challenge any intruders

and court females within his territory. Only a small number of the

interactions between males in the field actually resulted in physical contact

or combat (such as biting) between the individuals as most encoimters

involved challenge and bluffing by one male. Encounters in which

physical contact did occur between males took place during early spring

(Cordon 1956). At a study site in South Carolina, Jenssen et al. (1995a)

found that male A. carolinensis patrolled and defended a territory from
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other males dtiring the breeding season (through July), but not so

immediately after the breeding season (August-September).

Aggression and territoriality in the field are exhibited by adult females,

but can be more difficult to observe since females tended to be less

conspicuous than males (Gordon 1956). Territories of females overlapped

with a territory or home range of a male. In some cases more than one

adult female resided within at least part of an adult male's territory. In

such cases a dominant female existed and encoimters would occur between

the dominant female and the others, as well as among subordinate

females. Encounters usually took place when one female entered the

basking site of another or intruded into the immediate vicinity of a feeding

female (Gordon 1956).

Movements of marked individuals have been examined for A.

carolinensis in a few cases. Gordon (1956) estimated average horizontal

distances moved for an "unrestricted" data set and a "restricted" data set.

The imrestricted data on any marked individual included any and all

movements between recaptures during the year, including movements to

and from "hibemacula" (overwintering sites). The restricted data,

however, included the more typical movements made during the year,

such as movements within a territory or home range, and excluded the

more infrequent movements which were not made on a routine basis.

Examples of these excluded infrequent movements, which often covered

somewhat larger distances, were movements to enter overwintering sites,

reestablish a territory or home range, and feed opportunistically when
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termites appeared in large numbers in certain spots during nuptial flights

(Gordon 1956).

For the xmrestricted data on all size classes combined, females moved

an average distance of around 13 ft (3.96 m) at the Bridge City site and 22 ft

(6.71 m) at the Plauche site, whereas males moved an average distance of 14

ft (4.27 m) at the Bridge City site and 21 ft (6.40 m) at the Plauche site.

Overwintering areas were in closer proximity to summer habitat at Bridge

City than Plauche, therefore accoimting for these smaller distances for

Bridge City anoles (Gordon 1956). For the restricted data covering the more

typical movements over the year, the average distance moved for females

was 8 ft (2.44 m) at the Bridge City site and 12 ft (3.66 m) at the Plauche site,

whereas the average for males was 10 ft (3.05 m) at the Bridge City site and

12 ft (3.66 m) at the Plauche site (Gordon 1956). The Bridge City site was

dominated by woody perennials, whereas the Plauche site was dominated

by herbaceous annuals (Gordon 1956), so perhaps some differences here

could be related to habitat structure.

King (1966) estimated horizontal movement distances for A.

carolinensis at a southern Florida study site. Fie found that the average

distance moved by adult males was 2.89 + 1.92 m and by juveniles was 2.13

+ 0.86 m over a 12 week period. King could not obtain an average for adult

females since only one such individual was recaptured.

By observing and videotaping focal males, Jenssen et al. (1995a) were

able to estimate distances moved in association with several behaviors

during part of the breeding season (May-July) and post-breeding season

(August-September). Average distances moved by these males in
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conjunction with any given event were fairly short during the breeding

season and even shorter during the post-breeding season. For example, the

greatest average distance moved per bout was 2.3 m/bout during travel

events (i.e., moving from one perch to another without pausing for > 60

seconds and without conducting other behaviors) during the breeding

season. During the breeding season however, adult males moved

frequently, spent 25% of their day moving through their territories, and

showed high rates of display and locomotion compared with other lizards

(Jenssen et al. 1995a).

Gordon (1956) also provided some rough estimates of home range sizes

for two populations in Louisiana using the "restricted" data from known

individuals captured three or more times. He assumed that a home range

was somewhat circular and the average distance moved between recaptures

by any individual approximated half the diameter of a home range. To get

the diameter of the home range size Gordon simply doubled the average

distance moved. Whether or not this provides an accurate measure of

home range diameter is not known.

Some reports of territory sizes of adult males were given by Gordon

(1956), but no comprehensive or systematic estimates were made. One

adult male living near the sow-pen area of one site, for example, had a

territory of approximately 15 by 16 ft (4.57 by 4.88 m) and a maximum

height of about 13 ft (3.96 m). Gordon (1956) indicated that territory shape

and size were often determined by the vegetation structure and boundaries

were often defined by the natural breaks in the vegetation. Jenssen et al.

(1995a) reported a mean home range volume of 173.6 m^ (standard error
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37.9) for males during May-September in South Carolina, but did report the

non-vertical distances used to calculate this volume.

Re-production

Numerous laboratory studies have been conducted on the behavioral,

hormonal, and neuroendocrine aspects of courting, reproduction, and the

reproductive cycle of A. carolinensis (see Crews 1980). However, only a few

studies have examined aspects of reproduction in wild populations and

most of the available information comes from Louisiana populations. The

information presented here is mainly from studies of green anoles either

collected in the field or studied in the field, rather than from laboratory-

maintained anoles.

Very little aggression occurs between male A. carolinensis in Louisiana

from October to February, but by 1 April males have established individual

territories (Gordon 1956). Females establish their home ranges overlapping

one or more male territories. Mating in A. carolinensis begins in late

March in Louisiana (Hamlett 1952) and has been observed as early as 1

April in an eastern Tennessee population (Minesky, personal observation).

The peak period for mating in eastern Tennessee is from mid-May to mid-

July (Wade 1981). Copulation continues through August in Louisiana

(Hamlett 1952, Gordon 1956), but ends by August (only one copulation

observed in early August) in South Carolina (Jenssen et al. 1995a).

The gravid condition of females occurs from early April through

August in Louisiana (Hamlett 1952, Dessauer 1955, Gordon 1956) and from

early May through mid-August in Tennessee (Wade 1981). Occasionally a

few gravid females occur in March (Gordon 1956) and on into September
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(Hamlett 1952) or October (Cagle 1948). Dtiring the early part of the

reproductive season in Louisiana less than half of all females are gravid,

but after 1 May nearly all females are gravid (Hamlett 1952). Cagle (1948)

foimd that in a May sample in Louisiana the percentage of gravid females

increased with the size class of the females.

Females ovulate one egg at a time and ovulation alternates between

the two ovaries (Hamlett 1952). Some females do contain two oviducal

eggs, one in each oviduct, at the same time (Cagle 1948, Hamlett 1952,

Gordon 1956, King 1966, Wade 1981), with larger females apparently being

more likely to have two oviducal eggs than smaller females for both

Louisiana (Cagle 1948, Gordon 1956) and Tennessee (Wade 1981)

populations. Ovulation occurs about every 13-14 days, on average, in the

lab (Hamlett 1952). Eggs are usually laid one per clutch based on

observations of gravid females brought into the lab (Hamlett 1952, Gordon

1956, Michaud 1990) and females held in outdoor enclosures (Michaud

1990). Oliver (1955:244) reported that females in Florida usually lay two

eggs per clutch, but this may be incorrectly based on the fact that females

can have two oviducal eggs, at different developmental stages, present at

the same time. Eggs are laid from late April through August in Louisiana

(Hamlett 1952) and southern Florida (King 1966). Predation on eggs does

occiu- as Tinkle (1959) reported that eggs of A. carolinensis were found in

the stomach of one Lampropeltis getulus in Louisiana.

Hatchlings first appear during June in Louisiana (Gordon 1956) and

during Jidy in Texas (Michael 1972), Florida (King 1966), and eastern

Tennessee (Minesky, unpublished data). The body size of hatchlings is
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about 22-25 mm from eggs laid in the lab (Hamlett 1952) and 19.4-24.4 mm

for eggs collected in the field and then brought into the lab (Gordon 1956)

for Louisiana individuals. In southern Florida, field caught hatchlings

(with open umbilicus) were 19-22 mm SVL (King 1966). Individuals 22-26

mm SVL and weighing 0.2-0,4 g, many of which still have a visible yolk

scar, have been observed in a population in eastern Tennessee (Minesky,

impubhshed data). In a non-captive Texas population, young with

umbilical scars generally ranged from 22-27 mm SVL (Michael 1972).

Growth, maturity, and longevity

Actual growth rates for non-captive A. carolinensis have been

published by only a few researchers. Gordon (1956) reported average daily

increments in body length for various size classes of two different

populations in Louisiana and Michael (1972) published growth rates for a

Texas population. Their results indicated that hatchlings grow rather

rapidly (usually 0.2 mm/day or more for Louisiana and 2.5 mm/month for

Texas), males grow more rapidly than females, and larger females and

males grow the slowest of any size class prior to winter. Growth during

winter occurs in many individuals in Louisiana although it is slower than

growth in other seasons (Gordon 1956).

Michael (1972) foimd that in a Texas population the growth rates of

August and September hatchlings were not significantly different, but both

were significantly less than July hatchlings prior to winter. By November,

the difference between mean SVLs for the August hatchlings and the

September ones was 3.4 mm, but by the following April this same

difference was only 1.1 mm. This suggests that the September hatchlings.
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although entering winter at a smaller size than August hatchlings, may be

growing faster in the early spring and closing the size gap. Similar

comparisons with July hatchlings could not be made due to low survival

rates of July individuals (Michael 1972). Growth rates on captive animals

have also been reported by Fox and Dessauer (1958) and Michaud (1990).

Sexual maturity is defined as having at least one oviducal egg for

females and as having mature spermatazoa for males. Females in

Louisiana become mature after reaching a minimum body size of 45 mm

(Gordon 1956), 46 mm (Cagle 1948), or 45-48 mm (Flamlett 1952). The

smallest female with an oviducal egg from a sample of Tennessee

individuals was 48 mm SVL (see Wade 1981:58), but eggs have been

palpated in some Tennessee females as small 44 mm (Michaud 1990) and

45 mm (Minesky, unpublished data) SVL. In central Florida near Orlando

females typically mature at 44-45 mm SVL, but some sexually mature

females as small as 42 mm SVL have been found (Michaud 1990), whereas

in the Miami area the smallest female with an oviducal egg was 41 mm

SVL (King 1966). Females in a Texas population reach sexual maturity at 45

mm SVL by their second summer (Michael 1972). From his field study of

A. carolinensis in Louisiana Gordon (1956) indicated that adult size was

attained by all individuals which were marked as hatchlings and then

recovered during the mating season after their first winter season.

Tennessee females appear to reach sexual maturity during the spring or

summer after their first winter (personal observation).

Male A. carolinensis in Louisiana mature at a body size of

approximately 45 mm SVL and sexual maturity is reached at least during
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the mating season after the first winter (Gordon 1956). Fox and Dessauer

(1958), studying captive green anoles, foimd that males imder 55 mm could

produce sperm, but lacked completely developed accessory sex organs.

Thus, sexual maturity in terms of being capable of mating is not attainable

by males less than 55 mm. Males in a non-captive Texas population can

reach lengths of 55 mm by 18 months and 60 mm by 36 months after

hatching, but most of the matings seem to be done by those males over 60

mm SVL (Michael 1972).

Survival of hatchlings and juveniles is considered to be rather low

(Gordon 1956, Michael 1972) although precise estimates are not readily

available. Accurate estimates of longevity of A. carolinensis are also scarce.

Gordon (1956:252) stated that "No accurate measure of longevity was

obtained." and reported that the longest period between recoveries of

marked anoles was 522 and 587 days. He also indicated that the turnover

rate in the population each year was very high. On a two acre study area in

northern Florida, Oliver (1955) reported that 98% of the 200 marked green

anoles were not found only 12 months after first being captured and no

individuals were found after 16 months. In southern Florida King (1966)

found a low frequency of recapture occurred over about half a year study

time, possibly indicating a high turnover rate in the population and short

life span.

Michael (1969) considered one marked male initially captured at 58

mm SVL to be at least five years old at the time it was hit and killed by a

car. However, subsequent data on growth rates on this urban population

in Texas (Michael 1972) show that males average about 55 mm SVL after
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12-15 months of life rather than the 24 months or more initially reported

by Michael (1969). This would suggest that this individual was probably

first caught in its second October of life and therefore four years old at the

time of its death. Regardless, his data do report one of the longest lived

non-captive green anoles for any study. Based on mark-recapture data in

eastern Tennessee, A. carolinensis can reach an estimated minimum age of

two years and some individuals have attained at least 4 years of age

(Minesky, unpublished data).

Daily activity

Activity by A. carolinensis occurs primarily during daylight hours,

although some movement and feeding in warmer months has been

observed at night under bright moonlight conditions in Louisiana (Gordon

1956). This species sleeps at night in trees and other vegetation in warm

weather and in or imder suitable cover during winter (Gordon 1956). Male

territory holders would become active shortly after dawn in Louisiana. At

overwintering sites during winter, Gordon (1956) observed activity and

even feeding as early as 0907-0931 hrs when air temperatures were 67-69

(19.44-20.56 OC).

During April in northern Florida, this species is most active from 0800

to about 1000 or 1100 hrs and then again from 1600 to about 1800 or 1900 hrs

(Oliver 1955). King (1966) coxmted the number of active green anoles at

various times of day in March and August in southern Florida. He found

the peak numbers of active individuals occurred around 1130 hrs in March,

but very little activity occurred before 0930 or after 1530 hrs. Active
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numbers peaked at 0930 and 1530 hrs in August, while mid-day showed the

fewest active individuals (King 1966).

Time spent by adult male A. carolinensis on various activities between

0900 and 1900 hrs during May-July and a post-breeding period (August-

September) was reported by Jenssen et al. (1995a) in South Carolina.

During May-July, 49% of the daily time budget (on average), was spent in

various activities vs. 51% of the time spent being stationary. Most of this

activity time was spent "traveling", moving from one perch to another

with only short pauses (< 60 seconds) and no other activities taking place at

the time (such as foraging, displaying, avoiding predators, etc.). During the

August-September period however, adult males were active only 21% of

the time during the day in which most of this time was spent slowly

creeping from one perch site to another (Jenssen et al. 1995a).

Winter activity

In the face of cold temperatures in winter, lizards (and ectotherms in

general) can either become dormant (by means of hibernation or cold-

induced torpor) or remain active and pay the associated energy costs

(Ragland et al. 1981). Winter activity by ectotherms can potentially take

place for extended periods on a daily basis, for short periods on a daily basis,

for extended periods only during favorable weather, or for short periods

only during favorable weather. Activity levels of ectotherms dxiring

winter can range from low to moderate levels, such as emergence from

winter refugia and facultative basking during favorable weather

conditions, to high levels, such as active thermoregulation, foraging, and

digestion.
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The term hibernation has been used by Hamilton (1948), Neill (1948b),

Dessauer (1953), Gordon (1956), Michael (1972), Michael and Bailey (1972),

and Crews (1980) in association with the reduction in or apparent lack of

activity by Anolis carolinensis during winter (see also Gregory 1982).

Whether or not one considers the behavior of this species during winter as

either that of "activity" or "hibernation" (or even some combination of

activity and cold-induced inactivity) really depends on how these terms are

defined. Neill (1948b:107) rather simplistically defined hibernation as "... to

include any sort of retreat from winter conditions, whether or not actual

dormancy is involved.". Gregory (1982), in a review of reptilian

hibernation, indicated that any period of winter dormancy has usually been

termed hibernation and stated "In this chapter, winter dormancy in reptiles

is called hibernation." (Gregory 1982:56). This rather loose definition of

hibernation apparently stems from both the fact that specific features of

reptilian hibernation have not been determined and the idea that

behavioral definitions of hibernation may be just as useful as physiological

ones (see Gregory 1982). Thus, for A. carolinensis and other reptiles,

hibernation has been defined predominantly by behavior rather than

physiology (or even a combination of both).

Even though Neill (1948b) and Gordon (1956) used the term

hibernation regarding winter behavior in A. carolinensis, both also

reported this species to be active on warm winter days. Activity occurred

when temperatures were 60OF (15.56^0 or greater and inactivity occurred

at temperatvu-es of 550F (12.78^0 or less (Gordon 1956). A wide variety of

other reptiles also show both activity and inactivity during the winter (see
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Gregory 1982). The term "discontinuous hibemator" has been used to

describe species which are at times active in winter, but this classification

does not easily distinguish such animals from winter-active ones (Gregory

1982).

During rather cold periods and on cloudy days in the winter, A.

carolinensis will take cover. This species has been foimd in or under rotted

logs (Hamilton 1948, Gordon 1956) and in rotting stumps, piles of fallen

logs, holes in fence posts, pits filled with concrete gravel, and in clusters of

peach baskets (Gordon 1956) in Louisiana, under rotted logs, bark scraps

and under the bark of old stumps in Georgia (Neill 1948b), and in rock

crevices in Tennessee (Minesky, personal observation and this study)

during winter.

Activity has been reported for A. carolinensis during winter such as

emergence from cover and basking when weather conditions and

temperatures were mild (Gordon 1956, Ragland et al. 1981, Gatten et al.

1988, Gibbons and Semlitsch 1991, Jenssen et al. 1996). In Tennessee near its

northern distributional limits, A. carolinensis has been observed basking

on sunny winter days even when ambient air temperatures are between

-1.0 and 1.0 ̂ C. Body temperatures on such days may be as low as 10.4 to 15

OC when anoles begin basking or have been active for probably a short time

(Echtemacht and Minesky, impublished data). During cold, cloudy

weather, rainy days, and at night in the winter this lizard seeks shelter in

rock crevices or other suitable cover (personal observation).

At one study site along the Little Tennessee River at least four lizard

species {Sceloporus undulatus, Cnemidophorus sexlineatus, Eumeces
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fasciatus, and Scincella lateralis) are sympatric with A. carolinensis and

have been seen during spring or summer for several years. It is an

extremely rare occurrence for any individuals of these other lizard species

to be active during December, January, or February at this site and yet it is

common to see A. carolinensis during this time (personal observation).

Another reason why "hibernation" may not be an appropriate term to

describe the winter behavior of A. carolinensis is because some growth can

apparently occur during winter. Growth in body length occurs in juvenile

and adult A. carolinensis in Louisiana during winter, although rates of

growth are slower than those observed in other seasons (Gordon 1956).

Small amounts of growth, as well as shedding of skin, have also been

observed in a few winter individuals in Termessee (Minesky, unpublished

data). It would seem rather unusual for an animal which "hibernates" to

undergo a measurable amount of growth.

Jenssen et al. (1996) found that A. carolinensis in South Carolina

emerged from cover on sunny days from November through mid-April.

During this time, observations made between 1000-1500 h on sunny days

with temperatures between 12-32 revealed that these lizards spent 66.8%

of their time in the sun. Of their total ennergence time, only 6.4% was

spent foraging, while 92.2% was spent being stationary (i.e., at rest), on

average (Jenssen et al. 1996). So although A. carolinensis shows basking

activity and some foraging, the average time spent being stationary during

winter was higher than that for May-July (50.7%) and August-September

(78.8%) periods in South Carolina Oenssen et al. 1995a). Overall average

distance moved during emergence time in winter was considerably less by
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adults (females and males combined: 2.66 cm per h from November-

February and 1.68 cm per h from March-April, Jenssen et al. 1996) than that

in summer months (26 m per h from May-July and 8 m per h from

August-September, Jenssen et al. 1995a).

All of these behavioral observations suggest that A. carolinensis shows

some activity (although sometimes reduced compared with other seasons)

and none of the behavior associated with "hibernation", particularly in

comparison with any sympatric lizard species. Therefore, the term

hibernation will not be used here to describe the winter behavior of A.

carolinensis. Some studies, as discussed in the next subsection, suggest that

the physiology and metabolism of A. carolinensis during winter are

reduced compared to that during other seasons.

Winter thermal physiology and metabolism

Geographic variation within A. carolinensis occurs with respect to

Critical Thermal Minimum (CTMin) values. Wilson and Echternacht

(1987), comparing adult male A. carolinensis, found that those from

eastern Tennessee had significantly lower CTMin values than adult males

from southern Georgia and central Florida after all lizards had been

acclimated to cold in the lab.

Gatten et al. (1988) foimd that aerobic metabolism during exercise did

not change seasonally in A. carolinensis from Tennessee. However,

January and March animals had lower post-exercise lactate levels than

animals from other seasons, thus indicating less glycolytic metabolism was

occurring during exercise. Gatten et al. (1988) concluded that, because

glycolysis provides the majority of ATP during intense muscular activity.
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the ability of A. carolinensis to fuel locomotion by glycolytic metabolism

was reduced in anoles from winter and early spring compared to those

from other seasons. Thus, A. carolinensis is somewhat active in winter,

but may have a reduced capability to fuel muscular activity via glycolysis.

Ragland et al. (1981),compared sympatric winter field-caught A.

carolinensis and Cnemidophorus sexlineatus from east-central Alabama in

terms of oxygen consumption. C. sexlineatus is a species known to be

inactive from late August to at least April. The winter lizards were

brought into the laboratory and oxygen consumption, measured at 10, 20,

and 30 ̂ C, was higher for A. carolinensis than C. sexlineatus (Ragland et al.

1981). This indicates that A. carolinensis is not nearly as "dormant" in

winter as C. sexlineatus (Ragland et al. 1981) from a metabolic standpoint.

Other studies have also measured resting metabolic rates (via oxygen

consumption) in A. carolinensis at various temperatures (see Gatten et al.

1988 for review and Jenssen et al. 1996:207). Results from the different

studies are very similar, despite some differences in protocol, within the

temperature at which lizards were tested. In general, the various studies

show that resting metabolism at 10 can be between seven to nine times

lower than that at 30 ̂C.

Jenssen et al. (1996) concluded that A. carolinensis in South Carolina

during the winter often raise their body temperatures above the ambient

temperature, but do not precisely regulate body temperatures. They

characterized winter A. carolinensis as "passive thermal generalists"

because these lizards moved infrequently and did not shuttle between

sunny and shaded patches. If the anoles were to actively thermoregulate to
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maintain optimal body temperatures observed in spring and summer, they

suggest, then the metabolic cost would be 2.5 times that observed for the

mean winter body temperature of 23 ®C. Such a scenario would cause

anoles in South Carolina to utilize much of their limited lipid reserves

because foraging activities were infrequent and night-time temperatures

were probably too low for sufficient digestion. This thermal passivity

during winter was then speculated to be an "adaptive compromise"

between an inability to remain dormant and the need to conserve energy

during any winter activity (Jenssen et al. 1996). However, Jenssen et al.

(1996:207) admit that the regressions of body temperature and air

temperature on the hour of day and the fairly constant average body

temperatures during the day "... provides evidence of some

thermoregulation ..." by A. carolinensis during winter.

Obviously, the winter behavior of A. carolinensis is different from

other reptiles which are dormant for the entire winter (such as other lizard

species which are sympatric with this species). Whether A. carolinensis

actually has a physiological inability to remain in a prolonged dormancy

and/or adaptations for conserving energy by being thermally passive

during winter is still open for debate and in need of further research.
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PART 3 : THE INFORMATIONAL APPROACH TO

DATA ANALYSIS : AN ALTERNATIVE TO

STATISTICAL HYPOTHESIS-TESTING PROCEDURES



82

"May I repeat: statistics is a tool, for us practitioners,
and we should use whatever tool is most appropriate
for getting at the question we want to answer.

C. Toft (1990:359)

INTRODUCTION

Statistics and biology

Statistics can be viewed as a discipline which provides principles and

methods used for 1) designing the collection of data, 2) summarizing,

analyzing, and interpreting sample data, and then 3) answering questions

and / or drawing generalities about the phenomenon being studied

Qohnson and Bhattacharyya 1996:3-14). Statistics can be an important tool

for researchers in biology because some uncertainty always exists in any

attempt to detect and describe patterns in the data, answer specific

questions, and/or draw conclusions or inferences.

Bamett (1973) described and reviewed several approaches to statistics,

including a considerable discussion of the classical (also called the

frequentist or hypothesis-testing) approach and a brief mention of the

informational (or information) approach. The mformational approach

was still in its infancy at the time that Bamett's (1973) comparative work

was published. Today, many publications can be found on the theory,

methodology, and applications of the informational approach (e.g., see

Bozdogan 1994a, b, c and the references therein).

The classical approach practiced today emphasizes the estimation of

parameters and the testing of a hypothesis regarding the estimated

parameters for understanding data and making inferences. The word
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"hypothesis" is used throughout this chapter to mean a statistical

hypothesis, which is not necessarily the equivalent of a biological

hypothesis. The informational approach views data analysis as methods

for selecting the best model(s) to fit the data at hand. Models are ranked

and selected by using a numerical criterion, based on mathematical

likelihood, that is calculated for each model under consideration.

In this chapter, comparisons are made between only the informational

and classical approaches because 1) the informational approach is used in

this dissertation as an alternative to the classical approach and 2) the

classical approach is most familiar to and most often used by biologists.

Although applications of the informational approach have been

increasing over the past 20 years in many scientific fields, most biologists

rely almost exclusively on the classical approach for data analysis. At }east

four possible interconnected reasons can possibly explain this reliance on

the classical approach. First, the classical approach is largely (and

sometimes solely) the methodology in which most biologists have been

formally educated. Most statistics courses taught in statistics departments

and/ or biology degree programs in the United States focus primarily on the

classical approach, despite the fact that other approaches are useful for data

analysis.

Second, the classical approach has a longer history and association with

biology than other approaches. The classical approach is largely rooted in

the work of R. A. Fisher, J. Neyman, and E. S. Pearson during the first half

of 20th century. Although these statisticians disagreed on a number of

issues, the concepts and methods used in the classical approach represent a
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combination of the principles they established (Bamett 1973). The long

association between the classical approach and biology is evident from the

early applications of the methods of Fisher to agriculture, genetics, and

evolution, and of Neyman and Pearson to various biological problems. As

a result of the classical approach's long history, this approach is the one

adopted by the majority of college statistics textbooks and most computer

software packages for data analysis. Also, the long association between

biology and the classical approach probably accounts, in part, for this

approach being utilized more frequently than other approaches in most

biology lab manuals and most statistically-oriented publications in biology.

Third, most publications in biological journals which either discuss the

merits of certain statistical methods or inform biologists about particular

statistical techniques have done so mainly within the context of the

classical approach. For example, many such publications appearing in

ecological journals during the present decade have been in the context of

hypothesis-testing procedures (see, e.g., James and McCulloch 1990,

Petranka 1990, Seaman and Jaeger 1990, Simberloff 1990, Toft 1990,

Dutilleul 1993, Legendre 1993, Potvin and Roff 1993, Scheiner and

Gurevitch 1993, Shaw and Mitchell-Olds 1993, Trexler and Travis 1993,

Johnson 1995, Smith 1995). Such works have performed greatly needed

services for ecologists: that of interpreting much of the statistical literature

and/or providing statistical guidelines. However, some researchers in

ecology have demonstrated the usefulness of the informational approach

over the classical approach for analyzing certain data (see Burnham and

Anderson 1992, Lebreton et al. 1992, Burnham et al. 1995a, b).
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Lastly, the classical approach has predominated over other approaches,

in statistics as a whole, partly because of the viewpoints of influential

statisticians, most notably R. A. Fisher, and the path that these views

directed the field of statistics (Akaike 1994). This idea of Fisher's influence

on the discipline of statistics centers around his view and use of

mathematical likelihood. Basically, Fisher's restricted view of likelihood

limited the use of likelihood to many of the procedures and tests practiced

in the classical approach (Akaike 1994). However, the view of likelihood

put forth by Akaike (1973) and others expands statistical analysis into the

realm of the informational approach. These ideas and views of likelihood

will be discussed further in a later section.

Why another statistical approach?

The use of statistics in the biological sciences has increased rapidly over

the past 50 - 60 years (Sokal and Rohlf 1995:5-6). With such an increase,

most biologists have probably felt overwhelmed at times by the many

statistical methodologies and controversies that have appeared in the

literature. So why do biologists need yet another approach, such as the

informational approach, for their statistical "toolboxes"?

First, because the nature of science requires that scientists look for

better ways to investigate phenomena and to answer questions. Scientists

should not become complacent by thinking that the traditional methods of

inquiry are the only ones that are of any use, particularly when potentially

more useful methods are developed.

Second, criticisms and concerns about the classical approach have

appeared in the literature of many disciplines (e.g., statistics, psychology.
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sociology, education, and biology), mainly over aspects of hypothesis-

testing procedures. Concerns have been expressed about certain

philosophical xmderpinnings and statistical methods of hypothesis-testing

procedmes, as well as the overemphasis of and/or overreliance on these

procedures for scientific inquiry (see Table 3-1 for examples of concerns).

Some of these concerns will be discussed later when comparisons between

the classical and informational approaches are made. Alternative methods

which have been suggested for either complete replacement of hypothesis-

testing procedures or accompanied use include : graphical examination

(Deming 1975), estimation of parameters and standard errors (Salsburg

1985, Jones and Matloff 1986, Yoccoz 1991), estimation of the standard error

of each mean for use in multiple comparisons of means (Perry 1986),

estimation of confidence intervals (Jones and Matloff 1986, Matloff 1991,

Yoccoz 1991), use of model selection and model checking techniques

(Stewart-Oaten 1995), and use of the informational approach for model

selection (Akaike 1973, Sakamoto et al. 1986, Bozdogan 1987, Bumham and

Anderson 1992).

Last, the informational approach has certain advantages over

hypothesis-testing procedures, both statistical and philosophical. For

example, the informational approach's modeling viewpoint and use of

model-selection criteria fits nicely with the goals of analyzing many types

of biological data where determining patterns and/or finding a good set of

descriptor or predictor variables are important. Biologists might find data

analysis to be more straightforward using the informational approach than

using hypothesis-testing procedures because 1) models are ranked and
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selected based on their numerical criterion values and 2) alpha values, P-

values, and statistical probability tables are not needed. In addition, new

practitioners of statistics might be able to better grasp concepts and methods

of data analysis by using the informational approach (by itself or combined

with another approach) than by relying heavily on hypothesis-testing

procedures. A more thorough discussion of advantages of the

informational approach will be discussed later.

The main purpose of this chapter is to provide both a basic overview of

the informational approach and general comparisons of it with the classical

approach in order to show that the informational approach is a viable

statistical alternative to hypothesis-testing procedures. Researchers can

evaluate the comparisons being made, read the literature cited herein, and

then make free choices about which methods of data analysis to use rather

than become restricted by tradition or dogma. Some researchers, as

mentioned previously, have broadened the statistical analysis of ecological

data by using the informational approach (see Bumham and Anderson

1992, Lebreton et al. 1992, Bumham et al. 1995a, b). It is in this spirit of

broadening the discussion about methods of data analysis in biology and

giving biologists more choices that this chapter (and much of this

dissertation) is presented.
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OVERVIEW OF BOTH THE CLASSICAL AND INFORMATIONAL

APPROACHES TO STAHSTICAL ANALYSIS

The classical approach

The classical approach has two main aims ; 1) the estimation of

parameter values and 2) the testing of a statistical hypothesis, both usually

performed for a given model (Bamett 1973). Parameter estimation

involves using sample data in the point estimation of a particular feature

(parameter) of the population and/or the estimation of a region or

confidence interval within which the parameter is expected to reside

(Bamett 1973). The objective of hypothesis testing is to decide whether a

supposition about some feature or parameter of a population is well

supported by the sample data Qohnson and Bhattacharyya 1996:327).

The bulk of most textbooks on classical statistics is composed of

hypothesis-testing methods and the most common 'tools' in many

ecologists' statistical tool boxes consist of hypothesis-testing procedures.

Thus, discussions in this chapter of the criticisms of the classical approach

and comparisons of this approach to the informational approach will often

center around such hypothesis-testing procedures. The basic steps of

hypothesis testing within the classical approach can be summarized as

follows (see Johnson and Bhattacharyya 1996:327-335, Sokal and RoWf

1995:157-169):

1. Define the null hypothesis and the altemative hypothesis.

2. Choose a test statistic to evaluate the null hypothesis based
on its appropriateness for the data and on the expected
distribution of the data.
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3. Specify an alpha level (probability of making a type I error)
in order to define the rejection region. Examine the power
of the test to protect against a type II error given the
particular alpha level and sample size.

4. Calculate the test statistic for the given data.

5. Make a decision based on the alpha level and the defined
rejection region : either reject the null hypothesis if the
calculated test statistic is greater than the critical value of
the test statistic or do not reject the null hypothesis if the
test statistic value is less than the critical value. Calculate
the significance level (P-value) for the test.

Null and alternative hypotheses are usually stated in terms of the

parameters being estimated (such as means, variances, regression

coefficients, etc.). A researcher states his or her idea about the true value of

the parameter in the form of the alternative hypothesis (Hi). The negation

of this claim about the parameter is the null hypothesis (Ho). The choice of

a specific test procedure is then based on the type of data, the expected

distribution underlying the data, and the hypothesis to be tested. Many

different test procedures exist and each one has specific assumptions about

the data and its distribution.

Specifying an alpha level is up to the discretion of the researcher,

although in many scientific fields 0.05 is the standard, albeit arbitrary, value

accepted. The alpha value defines the region of the distribution of

parameter values for which values of the estimated parameter would lead

to the rejection of the null hypothesis in favor of the alternative one. The

alpha value represents the probability of rejecting Ho when Hq is indeed

true (i.e., probability of making a type I error).
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The result of a test procedure leads to a decision to either reject Ho or to

accept Hq. Acceptance of the null hypothesis is usually taken to mean that

the evidence was not strong enough to discredit Hq, rather than to suggest

that Hq is actually true (although researchers often incorrectly suggest that

Hq is "true"). The decision regarding Hq is often used as a basis for

inference and is then interpreted in the context of the research question.

The significance level (P-value) of the test indicates how likely (or

unlikely) is the particular decision regarding Hq given both the assumed

probability distribution and the idea that many samples could be taken.

Thus, if the P-value is 0.04, then 96 of 100 random samples would likely

produce estimated parameter values leading to the rejection of the null

hypothesis. A P-value of 0.04 also means that a Type I error likely occurs

in 1 out of 25 samples. Another way to view a P-value is as a measure of

the strength of the rejection of Hq. The smaller the P-value the stronger

the evidence supposedly is against Hq. However, the P-value is not a

measure of the probability of the truth of Hq.

The overview given above on the classical approach is generally that

which can be foimd in most introductory statistics books. This overview is

indeed very brief because it is assumed that the reader already has a

working knowledge of the classical approach and hypothesis-testing

procedures. Although the basic steps of hypothesis testing are presented

here in a somewhat factual manner, some criticisms of hypothesis-testing

procedures will be discussed at various times in this chapter.
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The informational approach

The informational approach utilizes a statistical modeling framework

and has a different view of statistical likelihood than that found in the

classical approach. The informational approach uses the likelihood term as

a component of a criterion used in the model selection process. Thus, it is

first necessary to discuss statistical models, model selection, and the

different views of likelihood.

A "model", in ordinary English-usage, is a replica of an object or a

description of some object or occurrence. The model can describe

something using simply words, a mathematical formulation, or a statistical

representation. In statistics, a model is "... something whose structure, and

hence behaviour, corresponds in some sense to that of a particular reality

or phenomenon." and the 'structure' of a model contains components of

chance (Gilchrist 1984:14). A statistical model can be seen as a probability

distribution (Sakamoto et al. 1986) or a description or an expression of the

important features of the data in terms probabilities (Bozdogan, personal

communication). The term "model" is henceforth used to mean a

statistical model. A regression model, where independent variables are

used to describe the variation in the dependent variable, is a well known

example of a statistical model. Because data have some error associated

with them, any model based on the data has some uncertainty also.

Given these definitions of a model and the fact that some amount of

uncertainty exists is any model, the aim of statistical modeling is to build

models to a data set and determine which model (or models) best describes

or explains the phenomenon underlying the data. Even in the biological
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literature, the importance of selecting the best model is echoed by

Burnham and Anderson (1992:16):

"Future data analysis through model building and selection
should begin with an array of models that seem biologically
reasonable. Then, the central problem of data analysis is
selection of an appropriate model as the basis of inference."

Selection of the most appropriate model to describe the data is not a trivial

problem in statistics; much time and effort over the years has been applied

to this problem. The need for proper model evaluation and selection has

lead to the development of model selection criteria, including those used

in the informational approach.

One important distinction between the classical and informational

approaches is the way in which likelihood is viewed and used. According

to Akaike (1994), Fisher's great accomplishment was the development of

the concept of mathematical likelihood, but that his main view of and use

of likelihood was restricted to the estimation of parameters. Although

Fisher may have been aware of other possible uses of likelihood, he

restricted his use of likelihood in this manner and thus restricted the

potential use of the log likelihood term as a general criterion of a model's

fit to the data. This latter use of likelihood as a criterion is the view taken

by those using the informational approach. Given this restricted view and

use of likelihood by Fisher, Akaike (1994:29) suggests the following scenario

in the development of modem statistics :

"A framework was then established to view the test of significance
as the basic procedure for the solution of the problems of
specification and restrict the estimation to the parameter of a given
model. Thus the test and estimation formed a paradigm to make
statistics into what was called a normal science by Kuhn (1970).
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However, it seems that the use of test procedures advocated by this
paradigm eventually produced a very restricted image of statistics in
applications which was conditioned by the availability of proper test
procedures."

In other words. Fisher's restricted view of likelihood led the field of

statistics down a road which limited the use of likelihood to estimating

parameters values of a given model and testing the statistical significance

of those parameter values. However, for over 25 years Akaike and others

have expanded Fisher's concept of likelihood and linked it with the

probabalistic concept of entropy (or information) to develop the

informational approach to statistics. This approach uses numerical,

information-based criteria in order to compare alternative models and to

select the model(s) which best fits (fit) the data at hand, rather than limiting

the analysis to estimating parameters for only one or a few models.

The informational approach began to develop with the work of

KuUback and others (see Bamett 1973:263-66 and Sakamoto et al. 1986:37-

55). This approach reached new heights when Akaike (1973, 1974) proposed

an information-based criterion (now called Akaike's Information Criterion

or AIC) as a numerical criterion for evaluating two or more statistical

models in a model selection problem.

The objective in any problem of model selection is to evaluate the

closeness or goodness-of-fit of each model to the data. If the "true" model

is known, then the Kullback-Leibler (K-L) information quantity

(negentropy) can be used as a measure of the closeness of a proposed model

to the true model (Akaike 1973, Sakamoto et al. 1986, Bozdogan 1987). In

reality, however, the true model is not known, only the sample data are at

hand, and an estimate of the K-L information quantity is needed. Akaike
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(1973) linked together likelihood theory and information theory by

showing that the mean log likelihood is an estimator of the K-L

information quantity. He thus demonstrated that the log likelihood could

be used as ; 1) a measure of the fit between a model and the data and 2) part

of a numerical criterion for model selection. The log likelihood could be

calculated using maximum likelihood estimation (MLE) procedures at the

estimated parameter values for a given model.

However, selection of the best model(s) cannot be based solely on the

log likelihood term. The Principle of Parsimony states that the best

explanation or description is the simplest one which is capable of capturing

the essential aspects of the phenomenon being studied. Statistically,

adherence to parsimony would help reduce both the risk of overfitting a

model (Sakamoto et al. 1986, Bozdogan 1987,1988a, b, 1990) and the

problems associated with overfitting (Bumham and Anderson 1992,

Bozdogan, forthcoming book). Thus, the analyst should select the simplest

statistical model that sufficiently explains or describes the phenomenon.

AIC and all other informational criteria for model selection take into

consideration both the fit of the model and the Principle of Parsimony by

utilizing the basic form : criterion = lack-of-fit term + penalty term. The

lack-of-fit term is a measure of the discrepancy between the model and the

data and is estimated using MLE procedures. The smaller the lack-of-fit the

better the given model is for describing the data; the larger this term

becomes then the poorer the fit. If more and more parameters are added to

the model the lack-of-fit decreases. However, selection of the best model

cannot be accomplished by the lack-of-fit term alone because the problem of
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overfitting would not be addressed, hence a penalty term is incorporated

into the criterion.

AIC is specifically defined as:

AIC = -21n L(0A:) + 2k , (3.1)

where 'In L(0fc)' is the maximum loglikelihood value when MLE methods

are used to estimate the parameter values for the model. In is the natural

logarithm, and k is the total number of estimated parameters in the model

(Akaike 1973, Sakamoto et al. 1986). The first term in AIC is a measure of

the lack-of-fit of a given model to the data and is often part of the standard

output of many statistical software packages. The 2k term of AIC is the

penalty (or complexity) term of the model; the more parameters in the

model, the larger the penalty term becomes. The penalty term helps

address the Principle of Parsimony. This second term also accounts for the

bias associated with using MLE procedures to estimate the fit between the

model and data (Sakamoto et al. 1986, Bozdogan 1987).

In model selection problems AIC is calculated for various alternative

models which are considered to be alternative representations of the "true"

underlying structure of the data or the population from which the data

were sampled (see, e.g., analyses in Sakamoto et al. 1986). The model with

the smallest criterion is considered the "best" model to describe the data at

hand. The practical importance of AIC is that the evaluation of alternative

models takes into account both the goodness of fit and the number of

estimated parameters in each model, thereby directly addressing concerns
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about under- and overfitting the data (Sakamoto et al. 1986, Bozdogan 1987,

Bumham and Anderson 1992). These points will be discussed later in

more detail.

The use of numerical criteria in problems of model selection were used

in statistics prior to AIC. For example, in multiple regression problems the

adjusted and Mallows' Cp have been used to measure the quality of fit

of a model and to compare competing models. Akaike's development of

AIC simply extended the idea of a numerical criterion into a new realm by

combining aspects of information theory and statistics and by viewing

likelihood in a different way from that of Fisher and the classical approach.

After Akaike's ground-breaking work other informational criteria

have been developed including: consistent AIC (CAIC) and CAIC with

Fisher information (CAICF) (Bozdogan 1987), the information-theoretic

measure of complexity (ICOMP) (Bozdogan 1988a, b), and Bayesian

modifications of AIC and other Bayesian criteria such as Kashyap's

Criterion (see Bozdogan 1990). These criteria generally follow the basic

ideas put forth by Akaike's development of AIC, but have different second

terms than AIC.

Bozdogan (1988a, b) developed the model selection criterion called

ICOMP with a penalty term defined in terms of the interdependencies

among model components such as among parameter estimates and among

residuals (Bozdogan 1988a, 1990) rather than simply as a multiple of the

number of estimated parameters. Two approaches can be taken with

ICOMP to calculate the penalty term. The first approach uses an

information-based measure of complexity of the estimated covariance
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matrix of the parameter estimates as the penalty term (Bozdogan 1990).

The second approach uses a measure of the complexity of the inverse-

Fisher information matrix (IFIM) (Bozdogan 1990). In both cases

complexity is based on the complexity measure of van Emden (1971, cited

in Bozdogan 1988a, 1990). For any symmetric matrix, M, with b number of

rows and b number of columns complexity is :

Ci[M] = (l/2){bln[tr(M)/b] - ln[det(M)]}, (3.2)

where: In = the natural logarithm,

tr = the trace of the matrix,

det = the determinant of the matrix.

In the first approach ICOMP is defined as (following Bozdogan 1990, but

using 2 times the complexity as indicated by Bozdogan and Haughton

1998):

ICOMP = -21n Wk) + 2{Ci[cS^)] + Ci[C^)]}. (3.3)

The first term is the same as the first term in AIC. Ci denotes the measure

of complexity of a covariance matrix defined by van Embden (1971, cited in

Bozdogan 1988a, 1990). Cov^) is the estimated covariance matrix of the
estimated parameter values and Cov(e) is the estimated covariance matrix

of the estimated residual terms, e. These matrices are obtained using

maximum likelihood estimation procedures. The covariance matrices

contain information about variances and covariances which can be used to
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measure interdependendes among terms (recall, for example, that a

correlation matrix can be obtained from a covariance matrix). A more

detailed formula for ICOMP in equation (3.3) is:

ICOMP = -21n L(efc) + 2{(/:/2)ln[tr(Co^))/fc] -
(l/2)ln[det(Co^))] + (n/2)ln[tr(Cov(e))/n] -
(l/2)ln[det(Co^))]}. (3.4)

Sample size is denoted by n and all other notation follows that given in

equations (3.1) through (3.3).

In the second approach to ICOMP, the penalty term is calculated as the

complexity of the estimated inverse-Fisher information matrix over the

entire parameter space. IFIM measures the accuracy of the model, as well

as the complexity of the parameter estimates and provides a way to see how

different covariance structures in different models might influence the

accuracy of the parameter estimates (Bozdogan 1990). This approach also

models the random error terms, e, as independent and/or dependent. The

formula for ICOMP-IFIM (following Bozdogan 1990, but again using 2

times the complexity according to Bozdogan and Haughton 1998) is:

ICOMP-IFIM = -2In L(0A:) + 2{(r/2)ln[tr(F-l)/rl -

(l/2)In[det(Fl)]}, (3.5)

where: F'l = the estimated inverse-Fisher information matrix of the
parameter estimates and

^ 1
r = rank or dimension of F"^.
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The second term here represents two times the complexity of the inverse

Fisher information matrix (Bozdogan 1990).

Like AIC, both approaches to ICOMP are derived from information

theory, adhere to the Principle of Parsimony, and choose the best overall

model based on the minimum criterion value. However, unlike AIC,

ICOMP incorporates the interdependencies of parameter estimates and

residual terms into the criterion (Bozdogan 1990). This consideration of

the interdependency of model components is of practical importance in

model selection in multivariate data sets where either parameter estimates

or error terms may be correlated to some degree. ICOMP essentially

considers the "better" models to be those having a small lack of fit to the

data and having lesser amounts of interdependency in their structure

(Bozdogan 1990).

Interested readers can find more thorough statistical coverages of AIC

in Akaike (1973, 1974), Sakamoto et al. (1986), and Bozdogan (1987) and of

the approaches to ICOMP in Bozdogan (1988a, b, 1990). Many examples of

applications of the informational approach to statistical data analysis can be

fotmd in Sakamoto et al. (1986) and Bozdogan (1994a, b, c).

COMPARISONS OF THE CLASSICAL AND

INFORMATIONAL APPROACHES TO STATISTICAL ANALYSIS

The classical and informational approaches differ with respect to

certain philosophical and statistical points. One difference, as mentioned

previously, was Fisher's view of likelihood which led to the restricted use

of likelihood for testing statistical hypotheses about parameters of a given
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model (Akaike 1994). Thus, hypothesis-testing has come to play a major

role in data analysis and inference in the classical approach. The

informational approach, however, takes a modeling viewpoint and uses

the log likelihood as the basis for developing numerical criteria to

distinguish how well various competing models fit a data set. Thus, this

approach considers data analysis, in part, to consist of optimizing a

criterion for selecting the best model(s) to fit the data at hand.

An example will illustrate this difference in viewpoint between these

two approaches. Consider the analysis of variance (ANOVA) commonly

used by biologists. Given two treatment groups, A and B, and one control

group, C, a researcher wants to determine whether differences exist

between the control and treatments and between the two treatments

themselves. Using the classical approach, the null and alternative

hypotheses could be stated as: Hq: ]uA = I"B = I^C and Hi: ]UA l^B MC. A

test statistic (F-test) would be calculated to test the null hypothesis.

Regardless of the specific alternative hypothesis, the analysis here is always

a test between only two competing hypotheses. If the null is rejected, then

further hypothesis tests (i.e., post-hoc test procedures, multiple

comparisons) are needed to determine which means are different.

The informational approach handles the ANOVA problem as one of

selecting the best model supported by the data. If all possible outcomes

were biologically reasonable then the researcher would have the following

models to evaluate:
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Model Number Model Number of Estimated Means

1  = MB = 1

2  (MA = MB) MC 2
3  (MA = MC) ''MB 2
4  (MB = MC) MA 2
5  MA" MB" MC 3

Note that Model 1 corresponds to the null hypothesis of the classical

approach and is the simplest model because all means are equal and only

one mean has to be estimated from the data. The model with the lowest

information criterion value, such as AIC, would be the model that best fits

the data. Note that the estimation of parameters and the evaluation and

selection of the best-fitting model are all done as one process in this

analysis. This is unlike the classical approach where more than one stage

of hypothesis-testing procedures must be performed.

Many statisticians and researchers realize that analysis of complex data

not only can be viewed as a problem of model selection rather than of strict

hypothesis-testing, but actually requires a modeling approach. One reason

for this particular viewpoint regarding complex data is because statistical

hypotheses are either difficult to state or irrelevant to the biological

questions being asked. Even if one could state a statistical hypothesis to be

tested, the nature of the complex data and the goals of the analysis do not

provide simple direct links between statistical hypotheses and biological

hypotheses.

Closely linked to the reason stated above is that the analyst's goals in

analyzing complex data are to imcover patterns or relationships and to

understand and simplify the complexity in the data rather than to test
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statistical and/or biological hypotheses. Such a goal has been discussed at

length with respect to analysis of ecological and evolutionary data (e.g.,

Quinn and Dunham 1983), but Toft (1990:359) makes the point clearly:

"In fact, many practitioners, including those in fields other than
ecology, are using statistical methods primarily to understand
"information" in the data, rather than primarily as strict hypothesis-
testing. Many fields examining complex phenomena, like ecological
processes, are turning to multivariate procedures simply to detect
patterns in the data; no hypotheses are tested (i.e., these have been
called "h5^othesis-free" procedvures)."

Toft (1990) did not mention the informational approach, but it is easy to see

that the informational approach fits nicely into what she called

"hypothesis-free" procedures (regardless of whether or not this refers to

statistical or biological hypotheses).

As an example, suppose a researcher is interested in examining

patterns of microhabitat use for nesting sites by three species of passerines

over several seasons in a given deciduous forest in the Great Smoky

Mountains. How can this be stated in terms of a single, statistical null

hypothesis when several or more variables are to be measured? It cannot.

If only one microhabitat variable, say nest height, was examined, then the

biological null hypothesis and the statistical null hypothesis could be

identically stated as: Hq: mean height for A = mean height for B = mean

height for C. For the multivariate case, however, the data might be

analyzed by discriminant analysis to see how the species separate out in

multivariate space. Separation of the species in multivariate space would

help the analyst understand and quantify any patterns in the use of nesting

microhabitats among the species.



103

Techniques often used in the modeling of complex biological data

include multiple regression, multi-way contingency tables (log linear

models), discriminant analysis, principal component analysis, and factor

analysis. The main goal of using these techniques is to find the best models

which uncover patterns or relationships, simplify complex data, and/or

serve as the foundation for inference. Over the later part of this century

selection of the best model(s) to fit the data when using such techniques

has been conducted with hypothesis-testing procedures, but this usage is

being questioned more frequently (see, e.g., Burnham and Anderson 1992,

Lebreton et al. 1992). Use of the informational approach for model

selection, however, has certain advantages over hypothesis-testing

procedures, which should be of interest to biologists. These advantages

center around the following issues: 1) problems of overfitting and

vmderfitting the data, 2) problems concerning alpha levels and P-values,

and 3) comparisons of nested versus non-nested models.

Any approach to model selection must consider the potential problems

of overfitting and underfitting the data. Overfitting is when more

parameters are included in the model than are needed to adequately

describe or explain the essential attributes of the data. These extra

parameters do not improve the fit of the model to the data. When

overfitting occurs the model possesses high variances associated with

parameter estimates (see, e.g., Myers 1986, Bumham and Anderson 1992).

Perfect fit could be obtained to the data by having as many parameters as

observations, but this would only result in extremely complex models with

excessive variances. It is undesirable to have either a perfectly fit model or
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an overfit model because such models become too specific and lose

predictive power (ability to be used for prediction with other data sets).

Underfitting occurs when too few parameters are included in the

model to capture the essential information in the data. This causes

variances to become too small and squared bias to become large (see, e.g.,

Myers 1986, Bumham and Anderson 1992:Fig. 1). Bias is the expected value

of a parameter estimate minus the true value of the parameter. Squared

bias is simply the square of this difference. Model bias can be thought of as

the distance between the fitted model and the true model. Underfitting

produces a larger distance between the fitted model and the true model and

unreasonably small variances and parameter estimates. As more

parameters are fitted to the data the model bias decreases, but variance

becomes larger (see Bumham and Anderson 1992:Fig. 1). Ideally, models

should be chosen which have small variances and small bias.

The informational approach directly addresses this need to balance

between overfitting and underfitting because the actual number of

parameters in the model (model size) or an estimate of model complexity

are incorporated into the model-selection criterion. However, hypothesis-

testing procedures only directly compare the goodness-of-fit of one model

to that of another model. An analyst has to perform several or more

hypothesis tests and make multiple decisions based on those tests in order

to compare several competing models of different sizes and begin to

address overfitting and underfitting. Some researchers simply rely on

automatic software programs, such as stepwise algorithms, to perform

model selection, but such procedures do not guarantee that the best model
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will be selected or that the problem of over- and underfitting will be

adequately addressed.

This requirement of having to perform multiple test procedures when

conducting multiple tests with the classical approach leads to the issue of

lack of control of an overall error rate (alpha level). In the case of ANOVA

the researcher can control the overall alpha level of the post-hoc

procedures. However, before one performs any post-hoc tests the actual

ANOVA is conducted to determine if any differences in means exist. If the

ANOVA has an alpha level of 0.05 and the post-hoc alpha level is

controlled to 0.05, then what is the overall error rate for drawing inferences

from the entire analysis? Is it 0.05 plus 0.05 or is it somehow simply 0.05?

With the informational approach, only one analysis need be performed

with an ANOVA in order to determine which group means differ, if any

(refer to the earlier ANOVA example).

Given the way in which many classical methods to multiple decisions

and modeling are conducted (see, e.g.. Bishop et al. 1975:155-168, Fienberg

1980:56-80, McCullagh and Nelder 1989:1-5), one can see that this problem

of the unknown, overall alpha level is not just restricted to ANOVA, but

occurs with many applications of hypothesis testing. Use of the

informational approach (or any methodology which uses a criterion to

rank models) appears to address this problem because one overall analysis

can be performed in order to select the best model for the data (e.g., see

Sakamoto et al. 1986). Lebreton et al. (1992) used AIC to model survival in

marked populations and addressed the overall alpha issue when they

stated (p.lll):
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"We recommend use of Akaike's Information Criterion here
as a way to assist in selecting a basic model from the global
model. Then specific biological questions can be addressed by
using only a few formal tests between this AlC-selected model
and neighboring ones, thus limiting the increase in the
overall risk of rejection of at least one null hypothesis
otherwise caused by multiple tests."

The viewpoint held by others is that the informational approach can

entirely replace hypothesis-testing procedures for performing model

selection (see Akaike 1973, Sakamoto et al. 1986). One overall analysis can

be conducted in place of multiple significance tests, thus avoiding inherent

problems of unknown overall alpha levels associated with the classical

approach (see, e.g., Bozdogan 1988b). Models with similar criterion values

could be further compared by examining diagnostic measures and

considering the analyst's biological knowledge and insights, rather than

using hypothesis tests.

Other problems concerning alpha levels that are inherent in the

classical approach are the arbitrariness of selecting an alpha level and the

overemphasis on Type I error. Why do most researchers choose 0.05 as this

value? It seems this number has become a 'Magic Number' against which

a null hypothesis is either accepted or rejected (Toft 1990) without any

consideration of any other information. In the ecological literature, for

example, this strong adherence to a critical value of 0.05 for hypothesis

testing has been criticized (see Toft and Shea 1983, Petranka 1990, Toft 1990).

Toft (1990:360) even stated that"... most of us forget that it's a convention

and treat it as omniscience.".
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Type II error is just as critical as Type I error in many biological studies,

particularly with exploratory analyses and multivariate analyses.

However, choosing an alpha value of 0.05 mistakenly places more

emphasis on Type I than Type 11 error. With specific reference to statistical

model selection, Bumham and Anderson (1992:20) stated:

"The 0.05 a-level is not considered appropriate because then
too much of the emphasis is on type I error when type n error
is equally important. Yet, by realizing this, authors were
admitting that the problem of data-based model selection was
not one of classical null hypothesis testing."

Various suggestions to remedy the abuse and misuse of alpha levels

have been made. In the ecological literature, for example, it has been

suggested that the exact critical value of each test be reported in a journal

article to allow readers to independently assess the significance (see

Petranka 1990) and that the power of a test should be determined and

attention be paid to Type n error as well as to Type I error (Toft and Shea

1983, Toft 1990). These suggestions are good ways to deal with problems

concerning alpha levels, but researchers can avoid such problems inherent

in hypothesis-testing procedures by using the informational approach.

Competing models can be ranked according to their informational criterion

values. Data analysis thus focuses on selection of the best model(s) given

the data at hand rather than testing hypotheses and having various

problems related to imprecise and/or unknown alpha values.

Another advantage of the informational approach centers around both

the real meaning of P-values and conclusions or inferences based on

tmknown samples vs. the data at hand. Analysts often forget that the

actual P-value does not solely reflect the data at hand, but reflects what
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would be expected to occur if the researcher would repeatedly sample the

study population. Hence, the P-value is based on data that the researcher

never obtained (see, e.g.. Carver 1978:385). On the other hand, the value of

a criterion such as AIC or ICOMP is based on the data at hand and the given

model for which the criterion is calculated, not necessarily on unknown

repeated samples. Conclusions and/or inferences drawn from tests and

associated P-values are partly based on non-existing data, whereas

conclusions from analyses using the informational approach are based

more on the data at hand.

The informational approach also has the advantage, in more complex

modeling situations, of allowing comparisons of non-nested models,

whereas classical test statistics limit comparisons to that of only nested

models (see Akaike 1985, Bozdogan 1988b, Bumham and Anderson 1992).

For example, say that survival estimates for three age classes, SI, S2, and S3,

in an animal population are to be compared. The possible outcomes

(models) are:

Model Number Model

1  SI ̂  S2 ̂  S3

2  (SI = S2) ̂  S3
3  (SI = S3) S2
4  SI (S2 = S3)
5  SI = S2 = S3

Model 1 is essentially the full model; it has the most parameters to estimate

(three) of any model. Models 2-5 are all nested within Model 1 (i.e., they

are all subsets or special cases of Model 1). Any model could be compared



109

to Model 1 using hypothesis-testing procedures, such as the likelihood ratio

test statistic. However, Models 2 and 3, for example, are not special cases of

one another (i.e., are not nested) and classical model selection cannot

compare these two models (or any other non-nested models). Thus,

hypothesis-testing procedures have limitations on the actual number of

models which can be compared. Indeed, researchers modeling survival

rates from telemetry and capture-recapture records have been able to

compare non-nested models using AIC (Szymczak and Rexstad 1991,

Bumham and Anderson 1992, Lebreton et al. 1992), but this could not have

been accomplished using the classical approach.

In addition to these statistical advantages, the informational approach

can provide an easy, straight-forward method to analyze data and present

the analysis to readers, particularly for complex data, for several reasons.

First, the analyst does not have to rely on numerous different test statistics

and associated statistical tables. Instead, one can use MLE procedures with a

particular technique (ANOVA, regression, discriminant analysis, etc.) in

order to estimate the loglikelihood term for a given model, which is then

used to calculate the criterion value. Second, the analyst does not have to

rely on mviltiple tests and make mviltiple decisions based on those tests.

Instead, the competing models can be ranked according to their AIC (or

other criterion) values and the initial process of selecting the best models

simply involves choosing those models with the lowest values.

Third, for a given analysis the whole process of estimating parameters,

calculating criterion values, and ranking the models can be performed with

one computer program (or several linked routines). Fourth, it is not
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uncommon for readers of journal articles or attendees at meetings to be

somewhat confused by the presentation of numerous statistical tests, P-

values, and a bewildering array of significance stars or asterisks when a

researcher summarizes the analysis of complex or multivariate data.

However, an analyst using the informational approach can easily

summarize and present the results by using tables which show the best

models and their sizes (number of parameters), criterion values, penalty

term, and the parameters or variables present. Readers can then easily see

the best model for each given level of model size, along with which

parameters are present. Graphs can also be used to show model diagnostics

for the various models which have the lowest criterion values.

The informational approach, when used as a tool for model selection,

is more likely than hypothesis-testing procedures to require that the analyst

use biological information when selecting the best models to fit complex

data. This idea is discussed in Part 4 of this dissertation, but can be

summarized as follows. Many complex or multivariate data sets are

unlikely to have one clearly "best" model based on just the ranking of

criterion values. In such cases the analyst is forced to use an informational

criterion as an initial measure for selecting the best models. Then,

additional statistical information (e.g., diagnostic measures) and the

analyst's biological knowledge and expertise should guide the selection of

the final model or models (Bumham and Anderson 1992, see Part 4 of this

dissertation for specific details of these different stages of model selection).

Unfortunately, users of hypothesis-testing procedures often base their

analyses or model selection either entirely or largely on the results of
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significance tests, thereby allowing the statistical analysis to completely

dictate their findings. Perhaps this is not an inherent short-coming of the

classical approach, but a fault of our collective misuse of this approach.

Many critics of hypothesis testing have said that significance tests are relied

upon too heavily by researchers in a variety of fields. Thus, substantive

knowledge is often imder-utilized for analysis and inference. In part, this

problem is possibly caused by use of the word "significant" in the

hypothesis-testing framework. A "significant" test result is often

incorrectly interpreted to mean a "biologically important" result and the

analyst does not then use his/her full biological knowledge in the

interpretation of the data.

No such language regarding "significance" exists within the framework

of the informational approach. Some guidelines do exist which suggest

that models with AICs differing by only one or two can be considered as

being equivalent (see Sakamoto et al. 1986:84-85). However, these are just

guidelines and not "dogma" (at least until misguided users turn the

guidelines into dogma). Every analyst must use biological information to

decide which model is best suited for describing the data (and answering

the relevant questions) when two or more models have similar AIC

values.
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SOME PERTINENT LITERATURE ON THE FUNDAMENTALS

AND APPLICATIONS OF THE INFORMAHONAL APPROACH

General and technical literature

Unfortunately, no one or two books are presently available to serve as a

complete resource on the informational approach that provide both a basic

and comprehensive discussion (including many univariate and

multivariate techniques) and also covers readily available computer

software that would easily permit most biologists to quickly begin utilizing

the informational approach. However, biologists who have had at least a

few statistics courses could leam the basics of the informational approach

by reading Sakamoto et al. (1986). Biologists who have taken some

graduate-level statistics will probably find useful both Sakamoto et al.

(1986) and the Proceedings of the first US/Japan Conference on the

Frontiers of Statistical Modeling (Bozdogan 1994a, b, c).

Some of the more common statistical techniques often used by

biologists are listed in Table 3.2 along with references which provide

methodologies and/or applications of the informational approach with

such techniques. For example, Sakamoto et al. (1986) give background

information on the application of AIC with ANOVA. In addition,

interested readers could read Rosenblum (1994) for comparisons of both the

various informational criteria and these criteria with hypothesis-testing

methods for one factor ANOVA.

Multiple regression (linear or logistic) and multivariate techniques

such as log linear models for analysis of multi-way contingency tables,

discriminant analysis, and principle components analysis are also listed in
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Table 3.2. Hypothesis-testing procedures are often used in conjunction

with many multivariate techniques, but the main objective with such

techniques is really selection of the most appropriate model(s) rather than

hypothesis testing, per se. For example, many statistics textbooks take the

hypothesis-testing approach to modeling, but discuss the use of Mallows'

Cp as one way to address the balance between overfitting and underfitting

in regression analyses (e.g., see Myers 1986). The use of Mallows' Cp in

multiple regression analyses suggests that analysts indeed know that

hypothesis-testing procedures are often inadequate when it comes to

wrestling with overfitting and underfitting. Like Mallows' Cp, model

selection criteria used in the informational approach can provide a way to

balance between overfitting and underfitting. However, informational

criteria, unlike Mallows' Cp, can be used for more than just regression

analyses.

Although Table 3.2 does not provide a comprehensive review of the

literature, it does give readers a place to start to see how both statisticians

and researchers are using the informational approach for selection of

appropriate models based on the data at hand. A forthcoming book on

statistical modeling and the informational approach is being completed by

Hamparsum Bozdogan which should be of interest to many biologists.

Applications of the informational approach in biology

The use of AIC is a practical alternative to the classical approach for

problems of model selection with biological data sets (Bumham and

Anderson 1992). Researchers in other disciplines, such as engineering and

psychometrics, were apparently exposed to the applications of AIC in their
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respective literature earlier than biologists. For example, not long after

Akaike's 1973 paper the use of AIC with multidimensional scaling was

published in the psychometric literature by Takane (1978). In 1986, the

Psychometric Society held a symposium on AIC at its annual meeting and

then published four feature papers on AIC in its journal Psychometrika

(see Akaike 1987, Bozdogan 1987, Sclove 1987, Takane et al. 1987).

Comparatively, the advantageous aspects of the informational approach

have been only "recently" utilized by researcher in the biological sciences.

Nevertheless, biologists are beginning to use informational criteria with

the modeling framework as an alternative to hypothesis-testing

procedures.

One of the earlier, and now readily accepted, applications of the

informational approach in ecology has been in the estimation and

modeling of siirvival rates from capture-recapture data (see Huggins 1991,

Szymczak and Rexstad 1991, Bumham and Anderson 1992, Lebreton et al.

1992, Anderson et al. 1994, Bumham et al. 1995a, b, Spendelow et al. 1995).

It is not uncommon to see researchers in ecology and wildlife biology using

AIC to select the best model(s) which provide estimates of survival rates of

different age, size, and / or sex classes within an animal population. Other

applications of the informational approach in research on animal

populations include selecting the best model for describing fish growth

(Tsangridis and Filippousis 1994), assessing the factors associated with

mortality of rainbow trout caught by sportfishing (Schisler and Bergersen

1996), and modeling the relationships between habitat features and the
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presence of black bears (van Manen 1994, van Manen and Pelton 1993) and

green ancles (Minesky, Part 5 of this dissertation).

In toxicology, AIC has been used recently in modeling the uptake of

methyl mercury by red blood cells of rats (Wu 1995) and in determining

which characteristics of metal ions could best be used to predict the relative

toxicity of those metals in freshwater conditions (McQoskey et al. 1996).

Examples of the use of the informational approach in epidemiological

research include modeling and estimating the rate of spread of HTV in a

cohort of men (Byers et al. 1988), selection of statistical models to determine

the genetic risk factors associated with Ixmg cancer (Sellers et al. 1994), and

determining both the genetic and environmental factors associated with

physiological lung functioning (Chen et al. 1996). In physiology and

medicine, AIC has been used in multivariate autoregressive modeling of

feedback systems and homeostasis in humans (see Wada et al. 1994).

The informational approach using AIC has also been applied to

research in biochemistry, molecular biology, and genetics. AIC, along with

classical hypothesis testing, has been used in computer software to help

researchers fit curves to enzyme kinetic data (Perella 1988). AIC has also

been used to examine linkage relationships among genetic loci (Shiraishi

1988, Na'iem et al. 1993). Thus, the informational approach to statistical

analysis is being successfully applied to a wide variety of biological research.

COMMENTS ON THE USE OF THE INFORMATIONAL APPROACH

Any statistical methodology has limitations. Obviously, small sample

sizes are always a concern in any analysis. With the informational
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approach the lack-of-fit term is a function of sample size and the penalty

term (when expressed as a multiple of k) is a fxmction of the number of

parameters. It has been recommended that when using AIC the number of

estimated parameters be less than 2/n (n/2 at most, where n = sample size)

(Sakamoto et al. 1986:83). With any statistical technique, a larger sample

size is preferable to a smaller one.

Use of AIC assumes that the true model is included within the global

model or set of models being considered (Bumham and Anderson 1992).

The global model here refers to the most general model and the one with

the correct 'structure' (i.e., constraints placed on parameters) for the given

data (Biumham and Anderson 1992). This assumption applies to all

statistical modeling approaches and all model selection criteria, not just

those used in the informational approach. In addition, if the researcher

fails to measure a biologically important variable, then any criterion or

statistical test procedure would be unable to evaluate and select the true

model. One has to be practical and realize that such situations are related

more to one's imperfect prior knowledge than to a limitation of the

criterion being used. Researchers should always keep in mind that 1) one

or more truly meaningful variables might not have been measured, 2) the

"true" model might not actually be in the set of models being evaluated,

and 3) no single study defines the "truth" in science. "This last point serves

to emphasize that statistical modeling can help to uncover and

approximate the truth about a phenomenon, but one or a few models

obtained from a study must be further verified or validated by additional

independent studies. These studies should be in the form of modeling of
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the same phenomenon by other researchers and testing the model's

predictions or conclusions (hopefully by means of experiments). Soimd

conclusions or inferences cannot result from one study alone. Additional

research must bear out the inferences and the scientific community must

then reach a concensus.

AIC is not a formal test of significance of a model (GUchrist 1984:161),

nor are any informational criteria. AIC does not show that a model has a

statistically significant fit to the data or that two models are significantly

different in the same sense that 'significant' is used in the context of the

classical approach. The informational and classical approaches are

philosophically and statistically different. To say then that AIC is less

useful because it is not a formal test would be to reject the advantages of

the informational approach over the classical approach and to consider the

classical paradigm as the only legitimate approach to statistical analysis.

Again, how one views likelihood is important here. The Fisherian view

leads the analyst to use likelihood as the basis for hypothesis-testing of a

given model. The informational view formalized by Akaike leads the

analyst to use likelihood as the basis for model selection criteria without a

strict need of alpha values, statistical tables, and P-values. Failure by an

analyst to see how analyses can take place without hypothesis-testing

procedures and alpha values might be related to either being unaware of

the informational view of likelihood or being unable to break out beyond

the classical Fisherian view of likelihood.

If two or more statistical models have very similar values of the

criterion no single best model exists to describe the data. Sakamoto et al.
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(1986) consider any difference greater than 1 to 2 between the AIC values of

two models to be of importance, otherwise the models can be considered

statistically equivalent in their fit to the data. Bumham and Anderson

(1992) point out that in situations where models have nearly equal AIC

values, biological factors must be considered if a single best model is to be

chosen.

Too often, however, it is assumed that a single best model or a single

best explanation exists for complex data sets. Look, for example, at how

stepwise selection procedures are often used in multiple regression and

multivariate analyses to supposedly find a single best' model

(combination of variables) by evaluating only a small number of the total

possible models that exist for the given data. Researchers often report the

model produced by a stepwise analysis as 'the best' model, but statisticians

have warned that stepwise procedures will likely produce only a good

model and not the best' model (see James and McCuUoch 1990 for an

overview of problems associated with using stepwise procedures). In some

cases, no single best model exists based on either statistical or biological

grounds. Some variables may be essentially equivalent substitutes for

other variables. As McCuUagh and Nelder (1989:23) stated:

"Note that even if we could define exactly what is meant by an
optimum model in a given context, it is most unlikely that the
data would indicate a clear winner among the potentially large
number of competing models. We must anticipate that, clustered
around the best' model will be a set of alternatives almost as good
and not statistically distinguishable."

Therefore, assumptions that every large, complex data set will have a

uniquely best model may likely be incorrect. "The informational approach.
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through the use of criteria to rank and compare models, can be used to

identify a single best model when such a model exists. However, this

approach also forces analysts to admit that, for certain data sets, several

alternative models may be equally as good and that no single best model

exists. In addition, reporting the criterion values of a number of competing

models allows readers of the published research to compare such models

for themselves, rather than to rely on the analyst's limited results and

interpretation coming from stepwise analysis.

An important practical consideration regarding the use of the

informational approach by biologists at the present time is that many

computer routines in statistical software do not provide the direct output

of AIC. However, some routines do calculate AIC for certain analyses. For

example, SAS (SAS Institute Inc. 1989a) outputs AIC values for linear

regression models (in PROG REG) and for logistic regression models (in

PROG LOGISTIG). In time series analysis, one can obtain AIG values for

multivariate autoregressive models from the PROG STATESPAGE

procedure in SAS (Brocklebank and Dickey 1986). Analysts should check

the manuals of their favorite statistical software to see which routines

calculate AIG directly. If one can obtain the likelihood term for each

competing model, then AIG values can be calculated by hand or in a

separate routine by the user.

IGOMP and IGOMP-IFIM are not calculated directly by most statistical

software packages. However, these criteria can be calculated using

MATLAB (1989), SAS IML (SAS Institute 1989b), or other software which

can perform matrix algebra. Using such software the analyst can write the
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necessary code to calculate both the -21og likelihood term and the

complexity term for each model. An important first step is finding the

correct formulas for these terms for the particular analysis being used.

Procedures to calciilate likelihood terms for many techniques can be found

in various statistics publications and in some statistical software manuals.

The general formulas for complexity terms in ICOMP and ICOMP-IFIM

were provided earlier in this chapter and can also be found in many of the

publications of H. Bozdogan. For ICOMP, the analyst specifically needs to

calculate the estimated covariance matrix of the estimated parameter

values (Cov(0)) and the estimated covariance matrix of the estimated

residual terms (Cov(e)) for each model based on the technique being used

(i.e., ANOVA, linear regression, logistic regression, log-linear models, etc.).

The formulas for these covariance matrices can be obtained from many

statistics books and statistical software manuals. For ICOMP-IFIM, the

analyst specifically needs to write the computer code to calculate the

estimated inverse Fisher information matrix and the necessary formulas

can be found in certain statistical textbooks and statistical software packages.

In some cases these matrices needed for the complexity terms of ICOMP

and ICOMP-IFIM can be obtained from the output in some software

packages and then incorporated into another routine to calculate the

numerical values of the complexity terms and the criteria.

For those researchers who are not confident in writing their own

computer code to calculate AIC, ICOMP, or ICOMP-IFIM, all is not lost.

Certain computer routines can be foimd in some books (e.g., several

FORTRAN routines appear in Sakamoto et al. 1986). Also, as more
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researchers use the informational approach and write computer programs

for their data analysis, more programs will become available to all

researchers. Eventually, the increased use of the informational approach

will also cause statistical software producers to incorporate routines to

provide users with AIC, ICOMP, and ICOMP-IFIM as standard or optional

output.

CONCLUDING REMARKS

To many biologists who use the classical approach, data analysis is

usually equivalent to testing statistical hypotheses. Testing the statistical

significance of parameter values is a central objective, but such significance

is not necessarily equivalent to biological importance. Statistical modeling

is performed in many analyses of biological data, but this is usually

conducted using hypothesis-testing procedures. However, some biologists

are using the informational approach which is known to be a viable

alternative to such procedures.

Data analysis using the informational approach involves statistical

modeling and model selection by using numerical criteria which serve for

the evaluation and comparison of alternative models. Thus, modeling is

conducted without the use of hypothesis-testing procedures. The criteria

are derived from combining statistical likelihood theory and information

theory as first shown by Akaike (1973). Estimation of parameter values and

evaluation of the various models are done in one overall analysis.

Practitioners of the informational approach focus on the selection of the

most appropriate model(s) to describe the data at hand, realizing that the
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data support only a certain amount of inference. The informational

approach has certain statistical advantages over hypothesis-testing

procedures which were discussed in this chapter.

Toft's (1990) statement, quoted at the beginning of this chapter, was

made specifically about a debate over the uses and advantages of non-

parametric versus parametric tests. However, her comment could be

applied to any discussion about choosing an appropriate statistical method

data analysis. It is in this spirit of "using the most appropriate tool" that

the informational approach to statistical analysis is used in this dissertation

and should be considered by biologists for addition to their statistical tool

boxes. Biologists should be both aware of alternatives to the classical

approach and open to the possibility of expanding their ability to better

analyze their data. Use of the informational approach would certainly

expand this ability.

Some researchers and statisticians would say that one only needs to use

the informational approach and not statistical hypothesis-testing

procedures. At the present time, whether or not a researcher uses the

informational approach exclusively or in conjunction with hypothesis-

testing procedures will largely depend on practical considerations, the

researcher's viewpoints, and the viewpoints of journal editors and

reviewers. Healthy discussions of the utility of the informational approach

for analysis of biological data should continue. Biologists must ask

themselves "Does the classical approach have primacy over all other

statistical approaches?". Many biologists are beginning to find the answer

is "No" and that the informational approach has great utility in the
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biological sciences. Perhaps Baxter's (1991:356-357) words (appearing as a

book review) should be kept in our thoughts about data analysis :

"... Professor Akaike is quietly assembling his own theory of statistical
estimation based on entropy, information and likelihood, centred
aroimd the Akaike information criterion (AIC), ... and that this theory
is more likely to survive than most, being based on data and common
sense rather than dogma."

Are statistics and data analysis evolving? Changes certainly are

occurring in how data analysis is conducted and in how researchers and

statisticians view the discipline of statistics. Will a new synthesis emerge?

Whether a new synthesis will emerge or the various approaches will

continue to be separate in practice (with a researcher using just one

approach on a given data set) remains to be seen. Certainly the rapid

growth of computers in research and recent advances in statistical and

graphics software are shaping the way biologists conduct data analysis.

What might emerge as a new synthesis of data analysis and modeling?

One possibility might be the combination of graphical methods for visual

display and summary of data and models, informational criteria (or

Mallows' Cp in some cases) for model selection, mathematical diagnostics

and graphical diagnostics (along with some confidence intervals and / or

certain hypothesis-testing procedures) for model checking and diagnostics

assessment. Indeed, many statisticians have been preaching such a path to

statistical enlightenment (although their model selection process is based

on hypothesis-testing procedures rather than the informational approach),

but few biologists firmly practice the complete faith.
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Multivariate analysis is one area that appears to be changing, though

perhaps slowly, along the lines described above. Statistical modeling of

complex or multivariate data should, and often does, occur in stages. First,

model selection criteria, such as AIC or ICOMP, can be used to rank the

many competing models. Second, the initial 'best' models can be

examined further using diagnostic measures and graphical techniques.

Then, the final stage of selection of the best models include biological

interpretation of models and parameter values along with common sense.

This whole process is somewhat counter to the way model selection is

currently practiced by many biologists who rely strictly on hypothesis tests,

P-values, and stepwise algorithms. However, Part 4 of this dissertation

presents a new method for analysis of observational ecological data

whereby the informational approach is combined with a genetic algorithm

for use with multiple logistic regression models.

Should a new synthesis of data analysis or statistical methods be

nurtured, taught, and used by biologists and statisticians alike? In this

researcher's opinion, yes. "The tools now available to biologists for data

analysis go far beyond the mere realm of hypothesis-testing procedures. It

would be a mistake for undergraduate and graduate programs in the

biological sciences to teach students only the classical approach. This

would narrowly train biological researchers about statistics and data

analysis. Students in the biological sciences should be exposed to a variety

of statistical methods and approaches in order to provide the students with

the all of powerful tools they will use in their professional careers.

Teaching the informational approach, along with other approaches and
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methods, would be a step toward diversifying the statistical skills of new

biologists.
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Table 3-1. Selected examples of publications which have expressed
concerns about statistical hypothesis-testing procedures and the use and/or
abuse of such procedures in scientific research. Publications listed here
either broadly discuss concerns with hypothesis-testing procedures or
express concerns in the context of specific types of analyses or problems.
Names of authors and date of publication are given under "Publication".
"Discipline" describes the type of journal in which the publication
appeared and/or the scientific audience mainly addressed by the
publication^. "Concerns/Criticisms" provides a brief summary of the
expressed concerns about the use of and/or overreliance on hypothesis-
testing procedures^.
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Publication Discipline^ Concerns / Criticisms^
Morrison and Henkel (1970)* Phil., Soc. sci., Stat. 1,2, 3,4, 7, 8, 9,10,

11,12

Deming (1975) Stat. 1,2,4,11

Pratt (1976) Stat. 9

Roberts (1976) Stat. 9

Carver (1978) Ed. 1,2,12

Meehl (1978) Soc. sci., Stat. 1,2,3,4,12

Guttman (1985) Stat.

Salsburg (1985) Med., Stat. 7,8,10,11,12

Jones and Matloff (1986) Biol. 1,2,4,10,11

Perry (1986) Biol., Ent. 1,2,3,4,9

Bozdogan (1988b) Stat. 6,7

Matloff (1991) Biol. 1, 2, 4,11

Yoccoz (1991) Biol., Ecol. 1,2,3,10

Bumham and Anderson (1992) Biol., Ecol. 5,6,7

Johnson (1995) Ecol. 1,2,4,10,11

Stewart-Oaten (1995) Ecol. 4,7,11
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^iol. = biology, in general, Ecol. = ecology, Ed. = education, Med. =
medicine, PMl. = philosophy of science, Soc. sd. = social sdences (sociology,
psychology), and Stat. = statistics.
^1 = statistical significance of a hypothesis-testing procedure does not auto
matically indicate substantive importance
2 = hypothesis-testing procedures are a function of sample size (e.g., the
larger the sample the more likely the test result will show statistical
significance)
3 = rejection of a null hypothesis could as easily be due to violation of one
or more assumptions underlying the test procedure as due to real
differences among parameters being tested
4 = the null hypothesis is nearly always false in practice (i.e., researchers
often already know that differences exist - why else would they collect the
data?); some authors suggest researchers should focus instead on the
magnitude and substantive meaning of the differences
5 = hypothesis-testing procedures usually start with an assumed model
without checking the model's validity and/or usually only two models can
be compared at a time with a single, given test
6 = hypothesis-testing procedures have certain statistical weaknesses when
the task is to select an appropriate model to fit the data (e.g., too much
emphasis placed on type I error and/or comparison of non-nested models
is impossible)
7 = choice of alpha level is arbitrary
8 = hypothesis-testing procedures most often set up a decision to be made
between only two competing hypotheses, but relevant research questions
are not usudly simple 'yes or no' questions
9 = hjqjothesis-testing procedures have a limited role to play in data
analysis and inference; these procedures should be used for only certain
types of questions and analyses
10 = researchers rely too heavily on the use of statistical hypothesis-testing
procedures for purposes of inference and/or inquiry when other methods
are equally or more useful for such purposes
11 = hypothesis tests and statistical significance do not reveal all aspects of
the data that are needed to make informed decisions or to take action

12 = for various reasons based on logic and philosophy, hypothesis-testing
procedures either a) are not superior to other methods of reasoning and
inquiry or b) represent a distortion of the scientific method
*Morrison and Henkel (1970) provide a collection of author's concerns
about hypothesis-testing procedures that go beyond the list above and
summarize such concerns (see their p.305-311) based on both statistical and
philosophical issues.
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Table 3-2. Various statistical techniques commonly used by biologists
and references which provide some explanation of how to use the
informational approach in conjunction with these techniques.
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Technique Reference(s)

ANOVA

Simple contingency tables

Log linear models (multi-way
contingency tables)

Multiple linear regression

Polynomial regression

Multiple logistic regression

Factor analysis

Principle components analysis
(with some structure in data)

Multivariate tests of the

homogeneity of covariance
matrices

Sakamoto et al. (1986:202-222)

Sakamoto et al. (1986:121-137)

Sakamoto (1982), Tsuruta and Nogami
(1986), Bozdogan (1988&)

Sakamoto et al. (1986:180-184)

Sakamoto et al. (1986:165-179)

van Manen and Pelton (1993), van Manen
(1994), Minesky (Parts 4 and 5 of this
dissertation)

Akaike (1987)

Flury and Neuenschwander (1994)

Bozdogan and Sclove (1984), Bozdogan et al.
(1994)
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PART 4: THE GENETIC ALGORITHM WITH AN

INFORMATIONAL CRITERION: AN ALTERNATIVE METHOD

FOR STATISTICAL MODELING OF OBSERVATIONAL DATA
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INTRODUCTION

The nature and complexity of the physical and biological worlds often

require ecologists to take a multi-stage research approach in order to

propose causal models and eventually uncover causal factors. The first

stage occurs when well-defined questions have not yet been formulated

and observational (non-experimental) data are collected on a large set of

biologically relevant variables regarding a general question or

phenomenon. In this early exploratory stage of inquiry, ecologists

frequently analyze such data using multiple regression methods and

multivariate statistical techniques. The results from this first stage are next

used to construct possible causal models. Then, the actual testing of causal

models and the possible uncovering of causal factors requires an

experimental approach Games and McCuUoch 1990).

A key problem in the analysis of the large set of independent variables

in any observational study is to find the best statistical models which

capture the essence of the data with smaller, more parsimonious sets of

variables than the full set. This process of selecting the best statistical

models is non-trivial when many variables are used and the number of

possible models is in the tens of thousands or more. In such cases

ecologists typically select one (or a few) models by using stepwise computer

algorithms which build models by adding or removing one variable at a

time to an initial model. However, stepwise algorithms have been

considered inadequate for use with multiple regression modeling (Hocking

1976,1983; Moses 1986). James and McCuUoch (1990) stated that stepwise

procedures are misused with multiple regression and multivariate analysis
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in ecology and systematics and that researchers should avoid using such

procedures.

The purpose of this part of the dissertation is to introduce ecologists to

the use of a genetic algorithm (GA) in combination with informational

model-selection criteria for conducting statistical model selection (based on

the initial work of Luh et al., submitted manuscript) for multiple

regression and multivariate techniques. This method is proposed as an

alternative to the commonly used, but rather problematic stepwise

procedures. A GA is a searching algorithm which utilizes certain

principles of genetics, evolution, and natural selection to find the best

solutions to a given problem when thousands or even millions of

potential solutions exist (Holland 1992a, Forrest 1993, Goldberg 1994). An

informational criterion provides a numerical value, based on a

combination of statistical and informational theory, which includes a

measure of both the fit of the model to the given data and the number of

estimated parameters or complexity of each model (see Akaike 1973,

Sakamoto et al. 1986, Bozdogan 1987, 1988a, b). The importance of such a

criterion is that it is calculated for each statistical model and it provides a

valuable means to rank and compare competing models and then to select

the most parsimonious model (or set of models) for a given data set.

In the proposed methodology, a random population of statistical

models is generated for the data at hand and the value of an informational

criterion is calculated for each model in this population. Then, the GA

allows models to recombine and produce a new generation of models. The

value of the informational criterion is calculated for each new model in
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this second generation. Whether or not a given model survives into a

subsequent generation and/or recombines with other models depends on

the model's "fitness" value, represented by its numerical value of the

informational criterion, and some elements of chance. Thus, the GA

searches the vast set of models to find the best models by means of a

sampling process based on concepts of evolution and natural selection.

In general, it is proposed that researchers who perform statistical

modeling on observational data use this GA-informational methodology

to obtain a set of "best' models, rather than continue to rely on stepwise

procedures which provide a limited view of the data by finding only a few

good models out of the vast set of possible models. The set of best models

obtained from a GA can potentially provide more insight into the data

than just one or two models obtained from stepwise procedures, thus

enabling researchers to better use observational studies for refining

questions and designing experiments. The purpose of any observational

study and its use of multivariate analysis is not to support strong

inferences, but to provide insight and information which then contributes

to the next phase of research (see James and McCuUoch 1990). The use of a

GA and informational criteria can assist ecologists in this aim when

observational data are analyzed. In particular, this alternative approach is

explained for the case of multiple logistic regression and some suggestions

are made to possibly improve logistic regression modeling of observational

data.

Much of the work presented here has been the product of a

collaboration between the author and Drs. Hang-Kwang Luh and
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Hamparsum Bozdogan. Dr. Luh wrote the computer code for the GA and

contributed to discussions on the applications of the GA to ecological

studies. Dr. Bozdogan provided both expertise in the informational

approach to statistical modeling and a computer program for estimating

both the maximum loglikelihood term and the regression parameters for

the case of logistic regression. The author expanded this existing program,

with the assistance of Dr. Bozdogan, to calculate both the estimated

variance and one of the informational model selection criteria (called

ICOMP-IFIM) for the logistic regression model. The author also developed

the guidelines and methodology for both the handling of the GA output

and the subsequent selection of the best variables and models. This

development of methodology was critiqued by Drs. Luh and Bozdogan.

Presentation of the proposed methodology starts with an introduction

of the multiple logistic regression model and comments on some

important assumptions about this model that researchers must consider.

Then, a review is presented on the problem of selecting the best statistical

model (combination of independent variables) when many independent

variables exits. Finally, an overview of GAs is provided along with the

potential application of a GA to statistical modeling and guidelines for such

application. Part 5 of this dissertation then applies the proposed

methodology to statistical modeling of actual field data in order to describe

possible green anole-habitat relationships in four habitats in eastern

Tennessee.
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THE LOGISTIC REGRESSION MODEL

Overview

Logistic regression has been used for data analysis in a wide variety of

research in the biological and health sciences where the dependent variable

usually has just two possible values. This technique can be useful in the

analysis of certain ecological data (Trexler and Travis 1993). A thorough

treatment of the logistic regression model and its applications can be found

in Hosmer and Lemeshow (1989). A brief overview is provided here

followed by a more mathematical and statistical review.

Recall that linear regression is a technique for modeling the linear

relationship between a dependent variable (also known as the outcome or

response) and one or more independent variables (also called the predictor

or explanatory variables or simply, the covariates). The dependent and

independent variables are measured as continuous variables, but the

model can include categorical (discrete) independent variables.

Logistic regression and linear regression both belong to the family of

generalized linear models (McCullagh and Nelder 1989). However, logistic

regression differs from linear regression in several ways. First, the

outcome variable (Y) in logistic regression is binary rather than

continuous. The outcome can be any response variable which exhibits a

dichotomy and is usually recorded as 0 ("failure") or 1 ("success"), although

the model can be expanded to handle outcomes with three or more discrete

values. Independent variables (rs) can be continuous, categorical or a

combination of both.
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A second difference is that the mean of the outcome, given some

values of the independent variables, exists as a non-linear function, unlike

the linear relationship in linear regression. This mean is often called the

conditional mean or the expected value of Y given x. A graph of the

conditional mean values versus the values of x produces the familiar S-

shaped logistic curve. Thus, the logistic distribution, rather than the

normal distribution as for linear regression, is relevant to logistic

regression (Hosmer and Lemeshow 1989:5-6). Other distributions can be

used in the regression-type analyses of binary data, but the logistic model is

often preferred because it is easily used, very flexible, and biologically

interpretable (Hosmer and Lemeshow 1989:6).

A third difference between logistic and linear regression regards the

error terms. In linear regression the errors are assumed to have a normal

distribution with a mean of zero and a constant variance across the range

of X values. In logistic regression the distribution of errors is binomial with

a mean of zero and a variance equal to the expected value of Y given x

(noted as E( YI x)) times 1 minus E(Y I x) (Hosmer and Lemeshow 1989:7). If

the observed value of the outcome is 1, then the error equals 1 - E(Ylx);

otherwise if the observed value of the outcome is 0, then the error equals

[- E(Ylx)]. Thus, the distribution of the errors is binomial in logistic

regression, rather than normal and the value of the error depends on the

value(s) of the independent variables.

Lastly in logistic regression, iterative maximiim likelihood estimation

(MLE) methods must be used for proper estimation of parameters, rather

than the least squares method, because of the binomial nature of the data.
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The interested reader is referred to McCnllagh and Nelder (1989) for a

review of MLE methods used to calculate these parameter values. Despite

these differences some of the same principles and methods used in linear

regression can be applied or adapted to logistic regression analysis (see

Hosmer and Lemeshow 1989).

The multiple logistic regression model

The multiple logistic regression model for the case where all

independent variables are continuous variables (at least interval in scale) is

defined as (see Hosmer and Lemeshow 1989:25-26):

E(y I x) = n(x) = e®o + + <^^2 + - + '

l^.^(Co+fi,Arj+fi2X2 + ...+CpA:p)
(4.1)

where: E(y I x) = Tt(x) = the conditional mean of Y given x,

X = the vector of independent variables (xy X2, x^),

p = the number of independent (continuous) variables,

e = the base of the natural logarithm (value = 2.71828),

Co = the intercept parameter, and

Qy &2' •••' ̂  = Ihe regression parameters for the respective x.

Here tt(x) also represents the probability that the outcome is a "success"

(y=l) given some value of x.

If the data set has one or more independent variables which are

categorical, such as sex or habitat type, then each of those variables can be

coded as a design (dummy) variable. A categorical variable with three



149

levels (categories) requires only two design variables. In general, the

number of design variables needed for a given categorical variable is

simply 1 - c, where c is the total number of levels for that independent

variable. Thus, 1 - c regression parameters would be estimated for each

categorical variable in a model. If d represents the total number of

categorical independent variables in the model, then the total number of

regression parameters to be estimated would be:

d

k = l + p + Z{l+c). (4.2)
1

Since p independent variables measured on a continuous scale exist in the

model, the number of parameters needed to be estimated for those

variables is also p. The 1' in the above formula is included because one

parameter estimate for the intercept is needed in the model (when the

outcome is binary). The design variables and their parameters can be

incorporated into the multiple logistic regression model of equation (4.1)

(see Hosmer and Lemeshow 1989:26-27 for details). For simplicity, equation

(4.1) will be used to denote the logistic regression model whether the

model contains only continuous variables or both categorical and

continuous variables (the specific equation for the model with both

continuous and categorical variables can be found in Hosmer and

Lemeshow 1989: 26-27). Note, however, if all the independent variables in

the logistic regression model are categorical, then the model is equivalent
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to a loglinear model (mtiltiway contingency table) when associations

among the independent variables are not included (Freeman 1987:258-261).

Different methods can be used for coding categorical variables as design

variables for computational purposes, but not all statistical software uses

the same method. The method which uses a referent group (reference cell)

is the most commonly used. Interested readers can find details of this

method and others for coding categorical variables in Hosmer and

Lemeshow (1989:47-56).

Recall that for continuous independent variables the logit

transformation provides a way to linearize the relationship between each

of those variables and the outcome (Hosmer and Lemeshow 1989:6-7). The

logit transformation is simply:

logit = In Tify)

1 - nix)

(4.3)

The logit transformation on irfa:) produces values which can potentially

range from - (» to + oo (depending on the values of x), rather than values

bounded by 0 and 1. The logit can be thought of in terms of statistical odds.

Remember that Y is binary (0 or 1) in the case of logistic regression. Thus,

the odds is the probability that Y = 1 given the values of the independent

variables (x) divided by one minus the probability that Y = 1 given the

values of the independent variables (x). The natural logarithm of the odds

is simply the logit. In addition, the logit function allows equation (4.1) to

be expressed in linear form (Hosmer and Lemeshow 1989:25):
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logit = fio + + ̂2^2 + - +

It is this linear form of the logit that is used in logistic regression analysis.

In order to fit a model to the data the regression parameters, fig, must

be estimated. Estimation of logistic regression parameters uses the

principle of maximum likelihood whereby the estimated value for any

given parameter is the one which maximizes the likelihood function

(Hosmer and Lemeshow 1989:8-9, 25-27). The log of the likelihood

function is simpler to work with and is defined for a logistic regression

model as:

n

In L(0jt) = X [(yi)ln(Ti(xi)) + (1 - i/i)ln(l - Tt(xi))] • (4.5)
j=l

The symbols are the same as those used in equation (4.1). The yi are the

observed values of the outcome for each observation from i = 1, 2,..., n, the

n(xt) are the fitted values of equation (4.1) using the observed values of all

of the independent variables for each observation, and n is the total

number of observations (see Hosmer and Lemeshow 1989:25-28 for further

details).

Differentiation of the loglikelihood function produces likelihood

equations used for obtaining maximum likelihood estimates of the Cs (see

Hosmer and Lemeshow 1989:27-28) for the equations). In practice, the

actual estimation of the parameters requires using iterative methods (see
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McCullagh and Nelder 1989). Many packaged statistical programs calculate

the estimated parameter values and the loglikelihood value for a given

logistic regression model for the user.

Two important assumptions deserve discussion with respect to the

logistic regression and linear regression models. The first important

difference between these regression models is that linear regression

assumes a linear relationship between the values of the outcome and

independent variables. In logistic regression, however, each continuous

independent variable is assumed to have a linear relationship, not with

the outcome values or the expected mean, but with the logit values

(Hosmer and Lemeshow 1989:84-85, 88-91, McCullagh and Nelder 1989:107-

109). Whether researchers in ecology are checking their data for linearity in

the logit is not known because no mention of this assumption has been

made in many papers reporting the use of logistic regression (see, e.g.,

Buehler et al. 1991, Burger et al. 1994, Diller and Wallace 1994, Larsen et al.

1994, Chandler et al. 1995, Coker and Capen 1995, DeLong et al. 1995,

Drewien et al. 1995, Gorenzel and Salmon 1995, Nadeau et al. 1995, Hinsley

et al. 1996, BCindvall 1996).

Checking the logit assumption of linearity could be done either before

model selection begins or after a final model has been selected and further

refinement of the variables is an issue. A variable with a distinct non

linear logit pattern could be excluded from models during the model

building process based on only its non-linear logit form and not on its true

association with the dependent variable. Thus, it seems that the best stage

to check this assumption would be before the model selection process
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begins. This way each variable is given the fullest opportunity to enter

models in the selection process. Researchers should check the logit

assumption at the univariate stage or at least decide a priori whether or not

non-linearity in the logit is important from both a statistical and biological

viewpoint; otherwise biologically relevant variables could be incorrectly

excluded from models.

Hosmer and Lemeshow (1989) provide some suggestions on

transforming or categorizing a continuous variable in order to overcome

violations of the logit asstimption. Several methods for examining the

logit linearity assumption can be found in Hosmer and Lemeshow

(1989:84-86, 89-91). One simple and graphical way involves looking at a

plot of the logit versus the grouped values of the independent variable in

question. Several steps are required to produce such a plot, including

grouping the values of the independent variable into perhaps ten groups of

approximately equal sizes (details are given in Hosmer and Lemeshow

1989:84-85, 90). A linear regression of approximately 0.7 or greater could

be considered as sufficient evidence of linearity in the logit. Failure to

meet such a criterion would then lead to consideration of possible

transformations or categorizations of the variable. If simple and

interpretable transformations do not produce linearity in the logit, then

categorization of the variable in question can be conducted.

Hosmer and Lemeshow (1989) give some advice on the possible

methods of categorization of independent variables, but some common

sense can work well. The specific categorization of a continuous variable

can be based on natural break-points in the data which might be found by
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examining the logit plot. A variable not showing natural break-points

could be split into three to five groups of roughly equal size, where each

group is really a cell (or category level) in a contingency table. Examination

of the proportions and odds-ratios across cells is then useful in

determining the proper categorization of the variable (see Hosmer and

Lemeshow 1989:97-98 for an example). Those cells with similar

proportions of the outcome 'presence' and similar odds-ratios can be

combined. Also, any cells with zero coxmts should be changed such as by

combining them with non-zero cells in a meaningful way (Hosmer and

Lemeshow 1989:84).

The second major difference in the assumptions between linear and

logistic regression is that the model variance is assumed to equal one in

logistic regression because of the binomial nature of the outcome

(McCuUagh and Nelder 1989:124-126). However, ecological binomial data

may often show overdispersion (variance >1) and variance should

therefore be estimated. Researchers in ecology are most likely assuming

model variance = 1 when conducting logistic regression analysis because no

estimates of model variance are being reported (see, e.g., Brennan et al.

1986, Capen et al. 1986, Johnson and Temple 1986, Smith and Connors 1986,

Diefenbach and Owen 1989, Buehler et al. 1991, van Manen and Pelton

1993, Burger et al. 1994, Diller and Wallace 1994, Larsen et al. 1994, Bartlett

1995, Chandler et al. 1995, Coker and Capen 1995, DeLong et al. 1995,

Drewien et al. 1995, Gorenzel and Salmon 1995, McNay and Voller 1995,

Nadeau et al. 1995, Hinsley et al. 1996, Kindvall 1996). A discussion of the

merits of logistic regression in ecological research (Trexler and Travis 1993)
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also fails to mention this assmnption or what to do if model variance is

greater than one. In addition, statistical software packages often used by

ecologists apparently assume variance = 1 when conducting calculations

and performing model selection (personal observations).

The variance assumption can possibly have major consequences

because hypothesis-testing procedures often used in the model selection

process do not incorporate information about overdispersion into the

selection of an appropriate model. Researchers analyzing capture-recapture

data also face this problem and some analysts have recommended that

estimates of variance be incorporated into the process of model selection

(see Lebreton et al. 1992). One way to incorporate an estimate of variance

into the model selection process is to use informational model-selection

criteria such as ICOMP or ICOMP-IFIM. A more detailed discussion of how

to incorporate an estimate of model variance into the modeling process in

logistic regression will be provided in a later section.

THE PROBLEM OF MODEL SELECTION

The classical approach vs. the informational approach

The evaluation of competing statistical models and the selection of a

suitable model for description and/or inference can be viewed as a central

part of any data analysis, not only for regression (see Sakamoto et al. 1986,

Bumham and Anderson 1992). An important question is "What method

or approach should be used for statistical model selection?". Ecologists

typically answer this question by adopting statistical hypothesis-testing

procedures.
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With hypothesis-testing procedures an alpha value (the probability of a

Type I error) is used to judge whether a statistical parameter based on the

sample data is different from a hypothesized value of the parameter, given

an underlying probability distribution for a sample. The null hypothesis

states the value of the parameter against which the estimated sample

parameter is to be compared. The alpha value provides some acceptable

level of the probability (most often at 0.05) of incorrectly concluding that

the value of the sample parameter is statistically different from the value

stated in the null hypothesis when both are really the same value. Thus,

the emphasis in the classical approach is on the testing of statistical null

hypotheses.

Ecologists rely mainly on hypothesis-testing procedures and tests of

significance, not only for univariate analyses, but also for statistical

modeling of multiple regression and multivariate data. Some statisticians

and researchers, however, have been drawing attention to the

informational approach as a viable alternative to hypothesis-testing

procedures (see Akaike 1973, Sakamoto et al. 1986, Bozdogan 1987, 1988a, b,

1990, 1994a, b, c). Bumham and Anderson (1992) and Lebreton et al. (1992)

have recommended the use of such model-selection criteria, based on the

work of Akaike (1973) and others, for statistical modeling of ecological data.

Recall that the main points about the informational approach, as discussed

in Part 3, are:

1. Statistical analysis is viewed as a process of evaluating various
statistical models being fit to a given data set and selecting the best
models according to the values of an informational criterion (e.g.,
see Sakamoto et al. 1986, Bozdogan 1987, 1988a, b).
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2. Information-based criteria are used to evaluate each model's fit to
the data and to provide a relative method of ranking and comparing
models.

3. The models with the lowest numerical values of the criterion are
the models which best fit the data at hand.

4. An informational criterion has two components, a lack-of-fit term
and a penalty term.

5. The lack-of-fit term measxores how poorly the given model fits the
data; the smaller the value of this term the better the model fits the
data. This term is calculated as -2(loglikelihood), where maximum
likelihood estimation (MLE) procedures are used to estimate the
parameter values under the given model.

6. The penalty term can be a multiple of the number of parameters
estimated in the model (such as in Akaike's Information Criterion
(AlC)), or a measure of the complexity of the model based on
the model's covariance or correlational structure among the
parameters.

7. The penalty term provides a way to balance problems of over- or
underfitting the data and to adhere to the Principle of Parsimony.

A number of criteria, other than information-theoretic criteria, for the

selection of the best model (or subset of independent variables) have been

used in linear regression (see Hocking 1976:14-21). The Cp criterion first

described by Mallows in the 1960s (see Gorman and Toman 1966, MaUows

1973, Hocking 1976) for linear regression has also been considered for

model selection in logistic regression analysis (see Hosmer and Lemeshow

1989:121-125). In a way, statisticians and researchers using such criteria

have demonstrated (either knowingly or unknowingly) that regression

analyses are not statistical hypothesis-testing problems, but rather are

problems in optimizing some criterion which estimates the fit of each
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model to the data. This is exactly what informational statisticians have

been advocating for many statistical analyses, not just for regression: that

statistical analyses can often be viewed as a process of optimization rather

than a process of testing statistical null hypotheses.

The informational approach, with its use of criteria and an

optimization process, does have some advantages over hypothesis-testing

procedures, as described previously in Part 3. These important advantages

of the informational approach are that:

1. It performs weU in a wide-variety of applications (e.g., see Bozdogan
1994a, b, c), without the need to use alpha levels, P-values, and
statistical tables.

2. It allows for the comparison of non-nested models, unlike
hypothesis-testing procedures.

3. It provides a straightforward way to help address the problem of
overfitting of models to the data by directly incorporating a penalty
term into model-selection criteria.

4. The results from the criterion values and the initial model selection

process are fairly easy to interpret.

More detailed discussions of the informational approach can be found in

Akaike (1973), Sakamoto et al. (1986), Bozdogan (1987, 1988a, b, 1990),

Bumham and Anderson (1992), and Lebreton et al. (1992).

The objective of observational studies

An observational study is one in which the data were collected without

the design and controls of a scientific experiment. James and McCulloch

(1990:130-132, see especially their Figure 1) outlined the stages of a general

research procedure to caution and remind ecologists of the fact that the
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objective of any observational study is to produce descriptive models, not

to provide strong inferences about causation as is often done. The first

stage is to use observational data to produce descriptive models. Multiple

regression and multivariate analyses are tools of exploratory data analysis

which help to produce such models. Next, insight about causation (from

various sources) in conjimction with descriptive models from

observational studies should be used to develop causal models. Finally,

the actual testing of causal models is then conducted with controlled

experiments (or perhaps quasiexperiments, James and McCulloch 1990).

The nature of observational data does not lend itself to making strong

inferences about causation or sound predictions. Only data obtained from

well-designed, controlled experiments can provide sound predictions or

inferences about causation (James and McCulloch 1990).

Keeping this research procedure in mind, how should researchers

analyze observational data? The answer depends partly on the total

number of possible statistical models, or "model space". The model space

is an exponential function of the number of independent variables and can

be vast in many exploratory observational studies. For example, if a

researcher measured 16 independent variables for analysis with logistic

regression, then 17 total covariates exist (16 plus the intercept) and the

model space is comprised of 2^^ -1 = 131,071 possible logistic regression

models. Twenty covariates places the model space over one million

possible models. Regardless of whether one uses the informational

approach or any other statistical approach, the only guaranteed way to find

the best model is to evaluate all possible models ("exhaustive searching").
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However, this can be time consuming and costly when large numbers of

variables are analyzed.

A second point of concern is whether a single best model actually exists

for cases of a vast model space. It is quite likely that no single model will be

better than all other models (Gorman and Toman 1966, Hocking 1983,

McCuUagh and Nelder 1989:8). This point is further emphasized by some

principles that the analyst should keep in mind according to McCullagh

and Nelder (1989). First, all models are incorrect, but some models wiU be

more useful than others (see Box 1979). The analyst should try to find the

most useful models. Second, the analyst should not"... fall in love with

one model to the exclusion of alternatives." (McCullagh and Nelder

1989:8). This is particularly true for vast model spaces when observational

data are involved.

Observational data should be analyzed so that sufficient information

and insight are obtained in order to construct useful descriptive models

(remember the outline of the stages in a research procedure discussed by

James and McCuUoch 1990:130-132). The best way to produce good

descriptive models in this research process is to examine a large number of

models in order to gain more insight about variables and the data than by

simply searching for a single best model. In addition, this wider view of

the data could better assist researchers in developing causal models and

designing experiments to help uncover causal mechanisms and

relationships.

Unfortunately, the current practice of analyzing observational data

does not often follow such guidelines and objectives as those outlined by



161

McCullagh and Nelder (1989) and James and McCulloch (1990). Too often

analysts search the model space for a single best model, but the techniques

commonly used cannot necessarily find a best model in a vast model space.

A discussion of some searching and modeling procedures and their

limitations are presented next.

Searching a vast model space and the limitations of current procedures

During the 1960s and 70s various computer algorithms were

developed, such as stepwise procedures and branch-and-boimd algorithms,

to address the problem of searching a vast model space (see Hocking 1976,

1983 for a bit of the history). "Stepwise procedmes or algorithms" here

means any of the automated computer programs which use a stepwise

selection (based on Efroymson 1960), forward selection (FS), or backward

elimination (BE) process of adding or deleting one variable at a time to a

model (see Hocking 1976,1983 for specific definitions). In actual practice,

the most common way that ecologists conduct model selection for either

multiple regression or multivariate analysis is to use some type of stepwise

algorithm in conjunction with hypothesis-testing procedures.

Stepwise algorithms and hypothesis-testing procedures are used to

decide whether a given variable should enter or leave the specific model

being examined. For example, stepwise procedures for linear regression

often use F-tests. For each step in the analysis the F-ratio is calculated based

on values of the residual sum of squares and the residual mean squares (or

on incremental increases in R^). A variable is added to the initial model at

a given step ("forward selection" process) if that variable maximizes the F-

ratio over those F-ratios of the other candidate variables. Some minor
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differences in methods exist depending on whether the algorithm is a

process of FS, BE, or stepwise regression. Interested readers can find further

details in Hocking (1976:8-9), Myers (1986:117-122), and Sokal and Rohlf

(1995:654-659) for linear regression.

Stepwise procedures for logistic regression use the likelihood ratio chi-

square test rather than F-tests because error terms follow a binomial

distribution (Hosmer and Lemeshow 1989:106). Regardless of whether a

stepwise procedure is used for logistic regression, linear regression, or a

multivariate analysis, the analyst must pre-select a critical value to set a

"decision rule" for allowing a variable to be either included or excluded

from the model.

Although stepwise procedures are commonly used they have serious

limitations and are often misused (ecologists have been notably warned by

James and McCuUoch 1990:137-138 of some problems). One limitation of

any stepwise algorithm is that it may find good models, but can easily miss

finding excellent models or even the best set of models (Mantel 1970,

Hocking 1976, Moses 1986). Indeed, the purpose of stepwise procedures for

multiple regression "... is simply to find the smallest set of predictor

variables that does an adequate job of prediction." (Sokal and Rohlf

1995:661). This is a potential limitation of any searching-type algorithm

because only an exhaustive search can guarantee that the best models will

be found. However, this limitation is a greater one for stepwise algorithms

than some other searching algorithms because stepwise procedures search a

"local" space rather than a "global" model space. Stepwise procedures add

or delete one variable at a time and therefore search only along one or a
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few of the many potentially useful searching paths. The total number of

possible models (2^-1) that is actually evaluated with FS algorithms is

only k{k + 1)12, at most (Beale 1970, Mantel 1970). Stepwise algorithms

that use both FS and BE procedures potentially evaluate more models, but

still relatively few. Any stepwise procedure evaluates only a relatively

small set of models out of the total possible number.

Another limitation is that the combined use of hypothesis-testing

procedures and stepwise algorithms restricts the available searching space

because such procedures can compare only nested models. For example,

model "A" containing variables Xi, X2, and X4 and model "B" containing

Xi, X3, and X4 are non-nested. Both models could be tested individually

against the model possessing Xi, X2, X3, and X4 because "A" and "B" are

nested in this larger model. However, models "A" and "B" could not be

compared to each other by using any hypothesis-testing procedure because

neither model is a nested subset of the other.

The final results of a stepwise search can vary from one run to another

depending on various conditions specified for the search which points out

that a single best model may be an illusion. The final model obtained

greatly depends on the pre-selected P-values and the type of stepwise

procedure used (Myers 1986:122). Also, results of stepwise procedures are

not consistent among analyses of the same data (Moses 1986:356-357).

Another method for variable selection and model building is one

employing an interactive method, whereby subject-matter information and

certain statistical techniques can be incorporated in the analysis (Henderson

and Velleman 1981). For example, interactive methods for multiple linear
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regression suggested by Henderson and Velleman (1981) can involve

several or more techniques and steps in which the analyst plays an active

role. First, exploratory methods (based on Tukey 1977, for example) are

used to find potentially skewed univariate distributions and unusual

patterns or data points. Second, the analyst can uncover possible nonlinear

relationships by plotting y against each independent variable (remember,

linear regression assumes a linear relationship between y and each x).

Third, the information obtained from the first two steps form the basis for

re-expressing (i.e., transforming or combining) variables "... in order to

improve symmetry and linearity where this seems advisable." (Henderson

and Velleman 1981:395). Fourth, correlations and partial correlations are

used to find the better candidate variables for beginning the model building

(maximxim partial residuals and maximum absolute residuals can be used

to aid this step). Fifth, partial regression plots of the better candidate

variables are examined to help select which independent variable (s) to

actually place in the model. Finally, after the final regression model is

built, residuals and diagnostic measures can be examined. It should be

noted that Henderson and Velleman (1981) outlined such steps as one

possible approach to interactive regression, not as a formal, rigid

methodology.

The advantage of the interactive approach is that decisions about

model selection are made much more so by the analyst than the computer.

However, some potential disadvantages of an interactive approach do exist,

especially when used on observational data with many variables. In

practice, the emphasis of interactive approaches is on selecting a single
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final model. Again, this may be sufficient for experimental data, but such a

goal should not be pursued with observational studies where the analyst

really should explore many potentially good models. Though an

interactive approach allows the analyst greater control of selecting variables

and provides an in-depth look at a small group of models, it does not really

evaluate many models for large data sets and does not permit an in-depth

look at the overall data or model space. A second disadvantage is that

interactive approaches often proceed in a "stepwise" marmer in practice,

even though automated stepwise procedures are not used, because the

analyst tends to add variables to the model one at a time rather than in

pairs or groups (personal observation). A large number of combinations of

different variables or groups of variables are not examined. Although in-

depth examinations are made of univariate regressions and relationships

between pairs of independent variables, these are not always sufficient to

determine how groups of three or more variables will work in concert

together. The simple addition of one or two variables at a time might

occur because of the time and effort it takes for the interactive analyst to

examine the data and make decisions. Later, it will be shown how the GA-

informational approach proposed here (and by Luh et al., submitted

manuscript) can incorporate some of the initial steps of an interactive

approach and also overcome these disadvantages by adding or deleting

groups of variables to candidate models and evaluating a large number of

candidate models.

Alternatives to the commonly used stepwise procedures should be

sought after by ecologists. For example, when a relatively small set of
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variables (12 or fewer) exists for an observational data set, analysts should

take advantage of available computer technology and model-selection

criteria (such as Mallows' Cp, AIC, ICOMP, etc.) to initially evaluate all

possible models. Then, additional statistical examination and biological

knowledge can help obtain a set of 'best" models or a list of good variables

to provide insight for constructing preliminary causal models to be tested

by experiments.

When a large number of variables exist, analysts could use algorithms

based on the work of Furnival and Wilson (1974) to obtain sets of models

rather than just a few models. Such algorithms, often called branch-and-

bormd (or leaps-and-bound or best-subsets) algorithms, search for the 'best"

models of a given size (number of variables or estimated parameters). For

example, if 20 independent variables exist for the regression problem, then

the analyst could obtain the five best models for each subset having 19

variables, 18 variables, 17 variables, and so on. One problem with the

branch-and-boimd algorithms is that hypothesis-testing procedures and

simple criteria are often employed. Some analysts use measures as the

criterion to select the best regression models with these algorithms, but one

can use Mallows' Cp instead (as is preferred for logistic regression by

Hosmer and Lemeshow 1989). The use of informational criteria with

branch-and-bound algorithms has been fairly unexplored. Another

difficulty is that branch-and-bound algorithms are not always available for

use with every technique in many software packages. For example, some

software supports a branch-and-bound (best subsets) routine for linear

regression, but not for logistic regression. Analysts must take additional
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time and steps to apply the best subsets linear regression software to logistic

regression by using the application suggested by Hosmer et al. (1989; see

also Nordberg 1981, Nordberg 1982, Hosmer and Lemeshow 1989:118-126).

In summary, the methods commonly used to find a single best model

to describe a multivariate observational data set are inappropriate for such

purpose for several reasons. First, stepwise algorithms, because of their

searching methods and combination with hypothesis-testing procedures as

described in this section, search only a limited part of the overall model

space. Second, analysts typically conduct only one or two stepwise rims on

a data set even though the results of stepwise searching can vary from one

nm to another. Third, it is extremely unlikely that a single statistical

model is clearly superior to all other models for any complex observational

data set (Gorman and Toman 1966, Hocking 1983, McCuUagh and Nelder

1989). Finally, finding and relying upon only a single model for a

multivariate observational data set is not in keeping with scientific

research goals. That is, the analysis of observational data should obtain the

best insight into such data by obtaining descriptive models. Then, the

observational models can be used, along with other information, to

propose possible causal models that can be tested by experimental methods

in order to provide possible causal explanations (James and McCulloch

1985,1990).

Analysts should strive to obtain a wider view of any multivariate

observational data than is provided by the current use of stepwise

algorithms. Also, valuable methods and searching algorithms should not

be restricted to being used only with hypothesis-testing procedures or to
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being available in software packages for only certain techniques. Recently

Luh et al. (submitted manuscript) proposed combining the informational

approach with a genetic algorithm (GA) as a reliable method to search a

vast model space. Their application was to linear regression, but their

method can be extended to any multivariate modeling problem. In the

next section, an introduction to a GA and its application to logistic

regression modeling are provided, along with an explanation of how the

GA can produce a large set of the best models for examination and how to

interpret various results.

THE GENETIC ALGORITHM AND ITS APPLICATION

TO STAHSHCAL MODELING OF OBSERVAHONAL DATA

Overview of a simple genetic algorithm

The work of John Holland and his students during the 1960s and early

70s laid the grotmdwork for what are known as genetic algorithms (GAs;

see Goldberg 1989, Ch. 4 for a general history of the development and the

early application of GAs). Much of this early work was then formally

published by Holland (see the new edition, Holland 1992a, of his original

work) showing that GAs are optimization algorithms useful for solving

complex problems. Many works on GAs have been published since 1975

and GAs have been applied to problem solving and optimization in such

diverse fields as engineering, game-theory, political science, artificial

intelligence, image processing and pattern recognition, biology, business,

economics, and the social sciences (Goldberg 1989:125-142).

A GA uses concepts of genetics, natural selection, and evolution to

search for the best solutions to a specific problem for which a vast number
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of possible solutions exist (Holland 1992a, b). Many different types of GAs

exist, but a simple GA is the type used in this dissertation. A simple GA

has the following features (see Goldberg 1994:113):

1. 'strings' composed of binary codes and of a fixed length,

2. a population of strings which is finite in size, and

3. three basic operators which are selection, crossover (recombination),

and mutation.

In a simple GA, a solution or answer to a specific problem is

represented by a 'string'. Each string is rather analogous to a chromosome

because both contain information coded along its length as a series of units.

The chromosome's information units are genes, whereas the strings units

are called 'bits'. The location of a bit can be referred to as a 'locus',

analogous to a genetic locus on a chromosome. Each bit has a binary code,

in any simple GA, whereby information is simply coded in an either-or

manner (e.g., "0" or "1"). The combination of the binary information of all

the bits on a given string forms a specific solution to the problem that is

being solved. Simple GAs have strings of constant and equal lengths

(fixed-length property).

In any complex problem, the quality of the solutions will greatly differ.

Some strings will have excellent solutions, others will be of average

quality, and still others will be of poor quality. The quality of a string's

solution is analogous to the fitness value of an individual organism in a

population. Indeed, the entire set of all possible solutions to a problem can

be viewed as a "fitness landscape". The distribution of fitness values of

strings determines the topology of the fitness landscape. Some simple
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problems will have a single best solution and thus, a single fitness peak in

the landscape. Many complex problems, however, will have different

solutions of equal (or approximately equal) quality and therefore, will have

a fitness landscape of many peaks and valleys.

A GA provides a probabilistic strategy of searching for the strings with

the highest quality solution or fitness in any fitness landscape. A simple

GA starts with a randomly chosen, initial group of strings that compose the

starting 'population' of potentially interbreeding strings. Each subsequent

population has the same number of strings as the initial population. Then,

the GA searches for the best solutions in the solution space (or fitness

landscape) by using concepts of natural selection, recombination of

information (crossing-over), and mutation.

This searching process can be viewed as the evolution of a population

of solutions such that the composition of the population changes over

time and that some solutions of high fitness values appear during the

history of the evolving population. High fitness solutions will be found by

the GA because variations exist in the fitness values among solutions and

the natural selection operator acts on this variation. Variation continues

to exist from one generation of solutions to the next because of the

recombination (mating) and mutation of solutions that takes place in the

GA. Thus, the population of solutions "evolves" and solutions with high

fitness values will appear during the history of the solutions without all of

the possible solutions having to be evaluated by the algorithm (Holland

1992a, b, Goldberg 1994).
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How exactly is a simple GA conducted? First, the algorithm randomly

generates each binary-coded bit for a string (a solution). The user of a

simple GA sets the number of bits based on the amount of information

needed by a string to provide a real solution to the given problem. Next,

the GA continues to randomly generate one string at a time until a

preselected number of strings is obtained, thus fornung the initial

population. The quality of the solution of each string in the population

must then be evaluated based on a defined fitness fimction. For example,

say that the problem at hand is to find the shortest total distance traveled

(or time spent travelling) by a traveling salesperson who must routinely

visit clients who are spread out over a wide area (i.e, the "traveling

salesman" problem). Each string would represent the sequence of clients

(locations) in order of their visitation by the salesperson. The fitness

function would be the total distance traveled over a given sequence of

chents (route). In this example, higher fitnesses would actually be the

lower distances traveled. The next several steps in a simple GA involve

the three important operators: selection, recombination (crossover), and

mutation.

The selection process chooses the better solutions, based on their fitness

values, and then the recombination or crossover operator "mates" those

strings (i.e, recombines their information) in order to produce a new

generation with potentially better solutions. Different methods exist for

conducting the selection process and forming the mating pool. One

method is to calculate the mean fitness value of the population which then

represents a cutoff point. Then, only those strings whose fitness values are
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at or above the cutoff point are selected for the mating pool. Another

method is to subtract the fitness value of each model from the highest

value in the population. Next, the average of these differences and the

ratio of a model's difference value to the mean difference is calculated for

each model in that population. Then, the GA selects those models whose

ratio is greater than one to form the mating pool. Regardless of the

selection method used, the objective is to choose a group of strings with the

higher quality solutions (fitness values) in the present population to form

the mating pool.

The next step in a GA is to conduct the mating of the selected strings

via a recombination operator. Sexual reproduction is a mechanism that

can produce considerable genetic variety among the offspring of any two

parents. Such variety is due to genetic recombination that takes place

during meiosis (to form gametes) and zygote formation when one egg and

and one sperm unite out of all the nximerous possible combinations of

genetically different gametes. This concept provides a model for genetic

recombination, but in practical terms the actual mating or recombination

process in a simple GA is performed like the crossover process between

homologous chromosomes during meiosis.

The recombination process starts by choosing a pair of parents from the

mating pool. For any parent pair, a point between two adjacent loci on the

strings is randomly selected as the crossover point. Often in GAs, each

point between such loci has an equal probability of being chosen, unlike the

crossover probability found among real chromosomes. The strings of the

two parents, are broken into two pieces at the same crossover point. Then,
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each piece downstream of the crossover point is reconnected to the

upstream piece on the other parent. For example, say that parent string A

has the binary sequence 1110 0 and parent B has 10101. The GA might

randomly choose the crossover point as the location between locus 3 and 4

and the parent strings each break apart at that point. The recombination

process would then combine the 1 11 piece of parent A with 0 1 of parent B

to form the offspring A1 string as 1 11 0 1. Likewise, offspring B1 would be

1010 0 because 1 0 1 of Parent B combined with the 0 0 piece from parent

A. Because simple GAs have strings of fixed length, the parent strings

must break at the same point here and the offspring are always the same

length (number of bits or loci) as the parents. The process of recombination

continues to occur as new pairs of parents are chosen one pair at a time,

until the number of strings in the second population (new generation) is

equal to that of the initial population. GAs could have population sizes

varying or increasing, but for simplicity this discussion will consider

population size to be constant from one generation to the next.

Some flexibility exists with the recombination process because the

analyst can program a specific crossover rate (i.e., the percentage of times

that crossing-over actually takes place in a population) into the GA. A

crossover rate of 1 means that crossing-over (mating) occurs in 100% of the

pairings between parents and the subsequent generation is composed of

only offspring strings. A rate of zero means that no crossing-over occurs

between any parents, thus, the next generation is formed solely of members

of the mating pool. The higher the crossover rate the more likely that the

population in each generation consists of new offspring strings and
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therefore, new solutions are introduced into the searching process.

Obviously, tradeoffs exist because a high rate of crossover runs the risk that

good strings from the current population do not become part of the next

generation. However, low crossover rates rim the risk of slowing down

the search because too few new strings are produced.

Recombination among strings in the mating pool of the initial

population produced the second population (generation). This second

population can consist entirely of offspring strings or of a mixture of

offspring and parent strings, depending on the specific crossover rate set by

the analyst. Each subsequent population of new strings is produced from

the previous population in the same manner that produced the second

population from the initial population. It should be noted that the analyst

chooses and sets the number of generations that the GA performs.

Selection and crossover are not the only means by which new strings

are produced. Mutation of strings in a simple, binary-coded GA can

produce new strings by simply changing the code of a single bit. For

example, a string with the binary code 10 10 1 could have a random

mutation occur at locus five so that this string now becomes 10 10 0. In

simple GAs, a site for mutation is chosen randomly along a string. Any

string is subject to mutation, but the analyst specifies the probability or rate

(usually low) of mutation. Mutation is useful in a GA because it can

produce diversity among strings and help the searching/sampHng process

'jump' out of a particular area in the fitness landscape and perhaps into a

yet unexplored area.
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Overall, the operators in a simple GA proceed similarly to processes

occurring in biological populations. Strings with the higher fitness values

produce more offspring than strings with lower fitnesses by means of

selection and recombination. A consequence of the selection and

recombination processes, especially when conducted over many

generations, is that good information from the better parent strings is

combined to form potentially better offspring solutions to the problem.

A GA-informational modeling approach for logistic regression

The selection of appropriate statistical models out of a vast model space

is an optimization problem and the combination of a GA and an

informational model-selection criterion can be a potentially effective

method of solving this problem. The combined use of a GA and an

informational criterion for statistical model selection was described by Luh

et al. (submitted manuscript) for linear regression. Recently, Bearse et al.

(1997) and Bearse and Bozdogan (1998) have applied the basic GA

methodology of Luh et al. (submitted manuscript) to other regression

techniques.

The basic approach of Luh et al. (submitted manuscript) is presented

here, but also provided are both specific suggestions for modeling complex

observational data and recommendations for applications to logistic

regression which Luh et al. (submitted manuscript) did not address. The

general aspects of the genetic algorithm-informational modeling, or GAIM,

approach outlined here can be used for any multivariate analysis, not just

for logistic regression.
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Two important problems must be addressed by the analysis of

observational data sets where a vast model space exists. First, the analyst

must find the best models out of the numerous possible models. Second,

the analyst should examine a wide "field" of potentially useful models,

rather than search for a single best model. The GAIM approach suggested

here can address those two problems.

In the GAIM approach, a statistical model is represented as a string of

bits (i.e, a combination of independent variables). Each string represents a

unique combination of variables. The GA then searches for the best

models, mimicking aspects of genetics and biological evolution as

previously described, while using an informational criterion as the fitness

function.

Before proceeding with the actual GA for logistic regression, the analyst

should preview univariate logistic regression models for each independent

variable. In addition, the assumption of linearity in the logit should be

checked by exarnining plots as described earlier (also see Hosmer and

Lemeshow 1989:84-86, 89-91). Any continuous variable that does not meet

this linearity assumption should be transformed (and thus remain

continuous in scale) and re-checked for linearity. If transformations do not

satisfy the linearity assumption, then the continuous variable can be

converted into a categorical variable following as described earlier (see

Hosmer and Lemeshow 1989:97-98). All categorical variables should be

checked for any cells with zero or low counts. Any necessary changing of

categorical variables or combining of categories can be made in statistically

appropriate and biologically substantive ways.
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One difficulty with a categorical variable is the proper reading of the

design variables in the GA code. A dichotomous categorical variable is

handled easily by the GA because only one design column in needed in the

data (X) matrix to code for such a variable (as is the case for any continuous

variable as well). However, categorical variables with three or more levels

require some care in the GA. For example, suppose a data set has three

independent variables which are continuous in scale (Xi, Xz and X3), but

the fourth variable (X4) is categorical with three levels (see Table 4-1). The

three levels might represent age classes of subjects (e.g., juveniles,

subadults, and adults) or habitats (meadow, deciduous forest, and

evergreen forest). Three levels requires the coding of two design (dummy)

variables in the data matrix. Observations would be coded as 1 0 in the first

category level, as 0 1 in the second level, and 0 0 in the third level.

Whenever X4 is used in the analysis the GA code would have to be written

so that both columns representing the design variables would be read and

entered into the model.

The analyst should also examine correlations between independent

variables or examine logistic regression models consisting of pairs of

variables. This would be done to determine whether two independent

variables which were highly correlated would pose problems for matrix

operations. It could also provide some insight into which variables might

have similar and redundant information. The GA code can be written to

prevent two or more highly correlated variables from entering the same

models together. The code would allow one such variable to enter a model
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if randomly chosen, but then prevent the correlated variable from

subsequently entering that model.

With any multivariate technique analysts should likewise check basic

statistical assumptions and examine plots of the data before actually

running the GA. The form of the variables should be checked and any

categorization or transformation of variables should be performed before

starting the GA runs. All checks of this nature can be performed using

various exploratory techniques and plots. Some hypothesis-testing

procedures can be used also for inspection of simple models with one or

two variables, but I prefer using informational criteria for these analyses.

The first step in the actual GA for statistical modeling is to encode the

various possible combinations of independent variables in order to

correctly represent the possible models in the model space. This means

that each logistic regression model is encoded as a string of zeros and ones.

Each locus or bit on a string represents either the presence (1) or absence (0)

of a particular independent variable. The left-most locus (the 'starting'

locus or locus 0) represents the intercept term. Locus 1 (the locus

immediately to the right of locus 0) represents the independent variable Xi,

locus 2 represents X2, locus 3 represents X3, and so on through the pth

independent variable (where p = the total number of independent

variables). In this encoding scheme each string has the same length

(number of loci = p + 1), but has a different sequence of binary codes to

represent a unique model. For example, consider the data in Table 4-1.

The string of 1 1 1 1 1 represents the model consisting of (in sequence from

left to right) the intercept term, Xi, X2, and X3 (the first three continuous
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variables), and X4 (the categorical variable). The string of 1 0 1 0 1

represents the model consisting of the intercept term, X2, and X4.

The next step is to randomly generate the bits for each model one at a

time. Each bit in a model is randomly assigned either a '0' or a 1'. This

process of randomly generating models continues until the prespecified

number of models (population size) is reached to form the initial

'population'. An optimal population size is not known for the use of a GA

for statistical model searching. Such a size likely depends in part on the

complexity and size of the data set. It is suggested that analysts choose a

moderate population size of 30-75 models until further research sheds

insight on this issue.

The fitness of each model is then determined by calculating the

model's criterion value. Informational criteria, such as AIC, ICOMP, and

ICOMP-IFIM, are useful measures of a model's fit to the data, can be used

with any multivariate technique, and are highly suitable to model selection

in conjunction with a GA. On the other hand, hypothesis-testing

procedures are neither easily used nor desirable for use with a GA. For

logistic regression, any informational criterion can be used as the fitness

function. However, recall that the analyst should include an estimate of

the model's variance or adjust the criterion based on model variance

because logistic regression models assume that variance = 1, but ecological

data may often exceed this assumed variance. One method to include an

estimate of variance in the criterion value for logistic regression is

discussed later.
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Another important technical point regards calculation of the fitness

value whenever a categorical variable with two or more design variables is

in the model. Suppose, for example, that the model 10 10 1 occurs in the

initial population for the data example in Table 4-1. Variable X4 at locus 5

represents a categorical variable with two columns of design variables in

the data matrix. The GA code must read both of the columns of those

design variables in the data matrix, along with the column for the intercept

and the column for Xz in order to properly calculate the criterion value for

model 10101.

The next step is to select the mating pool based on the fitness

(informational criterion) values of all models in the initial population. A

GA used by the author (and written by Hang-Kwang Ltih) selects the

mating pool based on the following procedure :

1. for each model in the current population, subtract the criterion
value from the highest criterion value to obtain a 'difference' value,

2. calculate the average of these difference values,

3. divide the difference value of each model by the average difference
to obtain the 'difference ratio', and

4. select only those models with difference ratios > 1 to enter the
mating pool.

The analyst does not know the actual criterion values that will appear in

different populations. Thus, standardized rules and numerical values

across all generations in the GA, such as those described above, are needed

for efficient selection of the mating pool. The rule of selecting only those

models with difference ratios > 1 for the mating pool work well for
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informational criteria because the lowest criterion values represent the best

models. This rule would have to be changed if the model-selection

criterion being used had large numerical values associated with the best

models. The number of models selected to be in the mating pool equals

half of the population size. This helps guarantee that the subsequent

population will be the same size as the current population because any

mating between two models produces only two offspring models.

The chance that a given model in the mating pool actually 'mates'

(undergoes the crossing-over or recombination process) is directly

proportional to its difference ratio. For example, a model with a ratio = 8 is

four times more likely to mate with another model than a model with a

ratio = 2.

The rules and methods of the overall selection process provide that the

better the fitness (i.e., the lower the informational criterion value) then the

greater the probability a model is selected to be a parent model (i.e., selected

for both the mating pool and the actual mating process). In this way

selection of parent models mimicks the natural selection process in

biological populations.

Two models are chosen to mate with each other based on these rules

and methods of the selection process. Mating is performed by means of the

crossover (recombination) operator based on the process of crossing-over

between two homologous chromosomes during meiosis, as described

previously for a simple GA. The method used in the GAIM approach is a

simple one-point breaking and crossing scheme in which a single point
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between adjacent loci is chosen at random as the break point. Other

schemes could be used whereby two or more crossover points are chosen.

After the first two models mate two more models are selected out of

the mating pool for mating. Note that either of the first two parents are

still eligible to be chosen again as a parent. The process of selecting parent

models from the mating pool is a lottery-type process in which subsequent

drawings are performed with replacement and the chance of being chosen

is always proportional to a model's difference ratio. Recall that any two

parent models do not always mate unless the crossover rate = 1. A

crossover rate of 0.7, for example, means that the chance of mating between

any two chosen parents is 70%. If the two parents do not mate, then they

themselves are placed in the next generation since no offspring were

produced. The process of drawing parent models and producing offspring

models continues imtil the new population is equal in size to the initial

population.

The GA then calculates the criterion values for each model in the new

population. The selection and mating process is then conducted just as it

was for the initial population and another new offspring population is

produced. These processes continue one generation after the other until

the GA has produced the total number of populations set by the analyst at

the beginning of the run. Thus, the GAIM approach selects the better

models in a given population, recombines their information (variable

combinations) to form new (offspring) models, and then continues these

processes over a number of generations. Thus, the GA, in conjunction



183

with an informational model-selection criterion, is able to sample or search

for the best models in the model space.

The GAIM approach does not simply end here with the selection of the

model with the lowest criterion value as "the best" model for the data. For

any large observational data set it is quite likely that a single best model

(i.e., one that is far superior to all others) does not exist (e.g., see McCuUagh

and Nelder 1989:23). Thus, one objective of the GAIM approach is to use

the GA as a sampling mechanism so that many models can be initially

examined from the vast model space. The informational criterion serves

as an initial model selection criterion.

The analyst should first sort the output file from the GA according to

the values of the criterion (and secondarily by the number of estimated

parameters, k, in the model). Next, the criterion values should be

examined to see just how close models are to the actual lowest value found

and how close each model is to the models ranked immediately above and

below it. One is reminded that the differences between AIC values of the

candidate models are important, not the actual criterion values, and that

differences larger than 1-2 between two models are statistically relevant

(Sakamoto et al. 1986). Thus, a difference in AIC of <2 suggests that the two

models are statistically equivalent. Analysts should adopt similar

guidelines, along with common sense, with other informational criteria.

One scenario that could occur for a vast model space is that one model

truly has a much lower criterion value than all other GA models. Before

accepting this model which has the minimum criterion value (Model 1) as

the "best model" from the GA, the analyst should perform a few checks.
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The first check would be to see whether Model 1 is a nested subset of some

of the good GA models which had the next lower criterion values. If not

and these other good models have more estimated parameters than Model

1, then the analyst should delete one or two variables from the good

models to see whether the new smaller models have criterion values equal

to or lower than Model 1. For example, suppose Model 1 from the logistic

regression analysis using a GA has the variables Xq, Xi, X2, X3, X5, and X6

ik=6) and Model 2 has the variables Xq, X2, X3, X5, X6, X7, and Xg {k=7).

Model 1 is not nested in Model 2 so the analyst should calculate criterion

values of subsets of Model 2 which lack X7 or Xg (as well as both of these

variables) and compare the values to that of Model 1.

A second check to make, when one model appears to have a much

lower criterion value than all other GA models, is to use logistic regression

diagnostics on Model 1 and perhaps some of the other models. To balance

and complete the analysis, the analyst can use the diagnostics to further

examine the fit of Model 1 (and perhaps a few other good models) and gain

insight into how well the model actually fits the data. The use of logistic

regression diagnostics will be discussed later in this section.

Other scenarios of results from observational data will occtir in which

many candidate models may often have similar criterion values.

Therefore, the analyst should take a different strategy from the usual

viewpoint of simply selecting "one best model". The GAIM approach

includes taking additional steps such as examining the relationship

between the criterion values and k, as well as reporting the frequency

distribution among a set of "best models".
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The first step to take is to define a set of best models obtained from the

combined runs of the GA. One way is to define this set of the 'best GA

models" is to choose those models which have criterion values within 2-3

of Model 1 (the minimum criterion model from all GA runs combined).

Another way is to take the criterion value of each Model 1 from each GA

nm, calculate the median criterion value of the Model Is, and then obtain

the best GA models as those models within 2-3 units from this median

value. The range of 2-3 as the cutoff point in these cases allows for a more

conservative and wider view of the data (but still includes good models)

than perhaps a tighter cutoff defined as models within 1-2 units of the

minimum criterion model.

The next step after defining the best GA models is to examine these

models for possible trends. Some trends to be examined are the

relationships between k (the number of estimated parameters in a model)

and the lack-of-fit terms, penalty terms, and informational criterion values

of the best GA models. This can be accomplished using box plots or other

graphical representations.

For example, suppose the best GA models for a particular analysis

(defined by one of the methods mentioned previously) contained 100

models ranging from fc = 5 to 9. One possible outcome would be that no

distinct trend existed between k and the criterion values in this set of best

GA models. This situation might suggest that deletion of some variables

from the larger best models does not alter the fit of the smaller best models

to the data. If the analyst found that the models with A: = 5 or 6 were indeed

subsets of the models with /: = 8 or 9, then the smaller models might be the
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better group of models. Any number of trends between the criterion

values and k can occur. The point is that the analyst should examine the

best GA models for any trends to gain better insight into the data.

In aU cases, the analyst should also examine the estimated variance of

the logistic regression models. The model-selection criterion can be used as

a primary criterion, but the estimated variances could be incorporated into

the penalty term of the criterion and/or used as a secondary criterion. For

logistic regression models, the estimated variances of the best GA models

could be examined for potentially large variances and used as a secondary

criterion. Some models even among the best GA models could possibly

have unreasonable variances (such as variances > 3; see Lebreton et al. 1992

for comments about large model variances in multinomial models). The

analyst cotild further exclude any models which have larger variances

from the best GA models.

Another step to take in order to gain insight into the data is to

construct a frequency distribution of the variables which occur in the best

GA models. The percentage or proportion of models in which a variable

occurs is plotted by the list of variables in the analysis. The analyst can use

this wide view of the data to identify a group of potentially useful variables

around which causal models could be proposed. This group of most

frequent variables in the best GA models, the analyst's knowledge of the

biological meaning of these variables, and information from other studies

can then be incorporated into the building of causal models and the design

of experiments to test the causal models. Thus, the frequency distribution

of variables among a set of best GA models provides some of the most
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useful information because it gives the analyst a wider view of the data

than could be obtained from the conventional use of stepwise procedures.

The criterion values tell the analyst which models best fit the data at

hand, but do not confirm exactly how well a given model fits the data

across all of the observations. The use of logistic regression diagnostics

such as AX2, AD, Afi, and h (see Pregibon 1981, Hosmer and Lemeshow

1989:149-157) can certainly play an important role in model checking, verify

how well a model fits the data, and be used to compare specific aspects of

the fit of competing models. If the set of best GA models has more than 10-

20 models, then it may be cumbersome to obtain and scrutinize the

diagnotic measures for all the best models. However, a few of the best GA

models could be examined to verify that the models do fit the data well.

For logistic regression, Hosmer and Lemeshow (1989) recommend

obtaining the diagnostic measures for each covariate pattern rather than

for each observation when the number of covariate patterns (/) is much

less than the sample size (n). Their recommendation makes good sense

and analysts should check different software to see whether the diagnostics

are calculated for each observation or for each covariate pattern. The LR

(stepwise logistic regression) routine in BMDP software (Engleman 1988),

for instance, calculates the building blocks for the diagnostics for each

covariate pattern. Users can take the output from this routine and put it

into a spread sheet, calculate other diagnostic measures from that output,

and graphically display and interpret the results. Hosmer and Lemeshow

1989:158-168) provide some guidelines on the interpretation of logistic

regression diagnostics.
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However, if the analyst finds that the model(s) is(are) not correct, based

on the diagnostics, other measures which assess the goodness-of-fit of a

model, or biological knowledge, then other models could be carefully

considered. Hosmer and Lemeshow (1989:168-170) discuss conditions

which the analyst should consider in such cases for logistic regression

models. It is possible that one or more biologically important variables

were not measured in the study. The analyst can do little in this situation

to correct this problem because retroactive collection of data is often

unrealistic.

Another possibility for explaining the poor fit of models is that the

identification of the scale of certain variables is insufficient. Recall that

during the early stages of analysis the assumption of linearity in the logit

should have been checked and variables violating this assumption were

then transformed or made into categorical variables. Also, categorical

variables were checked for zero cells and non-significant cells and possible

rescaled. Imprecise scale selection of these variables could potentially

contribute to a lack of fit in the models (Hosmer and Lemeshow 1989:170).

More precise methods for improve scale selection than those discussed in

this text have been published, but the methods can be computationally

difficult (see Hosmer and Lemeshow 1989:170 for references to these

methods). Hopefully, the analyst's biological knowledge will help to

identify biologically relevant variables during the design phase, to collect

the data in an accurate way, and to produce reasonable scale changes in

troublesome variables so that additional procedmes of scale selection are

not needed.
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Another condition to consider is that extra variation might be

contributing to the lack of fit. Inclusion of the estimated variance into the

penalty term of the criterion might help reduce the chance that the best

models exhibit problems of this kind, but it is certainly no guarantee.

Variances of the best GA models should be inspected as suggested

previously. Some methods to handle the extra variation incorporate

additional parameters into a model and interested readers should see

Hosmer and Lemeshow (1989:170) for references.

In order to incorporate an estimate of variance into a model-selection

criterion for logistic regression, the criterion employed is ICOMP-EFIM

defined by Bozdogan (1990, 1994d; and using "2" times the penalty term as

suggested by Bozdogan and Haughton 1998) as:

ICOMP-IFIM = -21n L(fe + 2[Ci(F-l)], (4.6)

where: In L{Qk) = the maximum loglikelihood value when
maximum likelihood estimation (MLE) methods
are used to estimate the parameter values of the
model

In = the natural logarithm,

A .

Cl(f'^) = the maximal informational complexity of the
estimated inverse-Fisher information matrix (F'^).

The first term in equation (4.6) is a measure of the lack of fit of a given

model to the data at hand. This term is the same one found in AIC for

logistic regression and was defined in equation (4.5). The second term of
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ICOMP-IFIM is the penalty term in the form of a scalar measure of the

informational complexity of the inverse-Fisher information matrix. The

complexity term in ICOMP-IFIM is defined as (Bozdogan 1990,1994d):

Ci(F-l) = (r/2)ln[tr(pl)/r] - (l/2)ln[det(pl)] (4.7)

A ̂
where: r = rank or dimension of

F"1 = the estimated inverse-Fisher information matrix,

tr = the trace of a matrix, and

det = the determinant of a matrix.

It is in the calculation of F"l, and therefore in the penalty term, that the

estimate of model variance can be incorporated.

The estimated inverse-Fisher information matrix is a block diagonal

matrix defined for logistic regression (Bozdogan, personal communication)

as:

F"1 = [(var)(Cov(6)) 0'
0  2(\^)2/n] (4.8)

where: Cov(6) = the estimated covariance matrix of the maximum-
likelihood estimated logistic regression parameters,

0 = a fc by 1 vector of zeros (and k = the number of estimated
parameters in the model),

0' = a 1 by fc vector of zeros,

v^ = the estimated model variance, and

n = the total number of observations.
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The estimated covariance matrix of the parameters is calculated as the

inverse of the matrix X'VX (using formal notation, Cov(6) = [X'VX]"!). The

matrix X'VX is called the information matrix (Hosmer and Lemeshow

1989:28), but is not the same thing as the Fisher information matrix. X is

just the data matrix itself containing the observed data for all n subjects or

observations. The X matrix also contains, as its first colximn, a column of

ones to represent the intercept term for each observation. X' is simply the

transpose of X. The V matrix is a diagonal matrix made of n columns and

n rows, in which the diagonal elements are TTi(l - Tii) for i = 1, 2, 3,..., n (see

Hosmer and Lemeshow 1989:29).

This approach with ICOMP-IFIM allows the analyst to incorporate

model variance directly into the penalty structure of the model via the F"1

term. For those models with the same covariance structures, models with

a larger variance will generally have a larger penalty term. In addition,

those models with lower correlations or associations among model

parameters generally have less complex covariance structure and therefore

lower penalty terms (Bozdogan 1990, 1994d). Thus, ICOMP-IFIM gives

consideration to both the model variance and the degree of

multicollinearity among model parameters in the evaluation of each

candidate model. If the analyst used hypothesis-testing procedures, then

such considerations would have to be done as an analysis separated from,

rather than intimately part of, the comparison of candidate models.

Variance can be estimated (as its biased form) for each candidate model

and incorporated into the calculation of ICOMP-IFIM as:
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= Pearson's chi-square goodness-of-fit statistic/n

n

= Z nixi)[l-n{xi)]) (4.9)
M

n

The notation follows that of equations (4.1) and (4.5). The division by n to

give a biased estimate is in keeping with the idea that some bias exists in

the estimated parameters (Bozdogan, personal communication). Other

methods of calculating model variance could be used (e.g., dividing

Pearson's statistic given above by either (n - 1) or the number of covariate

patterns in the model). The analyst should decide which method best

serves the data and modeling goals.

Incorporating the estimated variance into ICOMP-IFIM is by no means

the only way to consider extra variation or overdispersion in logistic

regression models. Estimated variance could potentially be incorporated

into other informational criteria (such as a possible variance inflation

factor into AIC). However, model variance would not be so easily

incorporated into standard hypothesis-testing procedures used for model

selection. Researchers using logistic regression should evaluate model

variance and report the method they used to incorporate such variance

into the model selection process when models have variances exceeding

one.

Practical matters

A few issues of practical importance should be mentioned regarding

the use of a GA and informational criteria for model selection. First,
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because one objective of the GAIM approach is to obtain insight from a

potentially large set of models, the GA's output file can be rather large

depending on the pieces of information from each model that the analyst

saves. For example, storing the estimated parameter values of each model

obtained from the GA could potentially make an output file large and

cumbersome for subsequent analysis. This of course depends on the

computing resources available to the analyst. If large output files are a

potential problem, then the analyst covdd save a simple output file

consisting of the following for each logistic regression model obtained in

the GA: the binary coding, the -2(loglikelihood) term, the number of

estimated parameters, the criterion value, and the estimated variance. An

alternative would be to save only the models (along with their Cs and

other output) which have criterion values below some cutoff. This cutoff

value could be based on the criterion of a good model that was obtained

from either the analyst's expectations of the data, a stepwise analysis, or a

quick-and-dirty GA.

Another practical point to consider regards being able to easily identify

the models and their variables in the output. The analyst can convert the

binary coded bits of each model in the output file to easily recognized labels

for the variables, such as either Xi, X2, X3-type representations or

abbreviated names. The models and their summary information could

then be read into a spreadsheet or graphics package in order to produce

desired tables and/or graphs.

Third, Wald statistics and the associated P values for parameter values

(regression coefficients or estimated Cs) of candidate logistic regression
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models do not need to be calculated by the GA. However, such values and

statistics can be obtained for the best GA models by using standard statistical

software. Statistical hypothesis-testing procedures could be used to

supplement the GAIM approach, perhaps in the context of diagnostic

analysis and model checking, particulary when presenting the results to

audiences unfamiliar with the informational approach to statistical

modeling.

Lastly, an important practical matter regards obtaining the actual code

for a GA since statistical software commonly used by ecologists does not

have such codes. The code for a simple GA and the calculation of the

informational criterion can be written in any one of the many computer

languages or even by using some software packages which have many

defined functions to make programming easier. One key is to be sure the

language or software can perform the matrix operations (such as obtaining

the determinant, trace, and inverse of a large matrix) needed for calculating

model-selection criteria and possibly manipulating data matrices.

Public-domain codes do exist for various GAs (see Goldberg 1994:115 for

sources of such codes). These public-domain codes would no doubt have to

be modified and linked with programs to calculate model-selection criteria.

Analysts should also see Davis (1991) for discussions and guidelines on

how to apply GAs to problems of optimization. Ecologists coxild collaborate

with statisticians and computer scientists in order to develop GAs and

build upon the ideas presented here. GAs are becoming extremely popular

and useful in many disciplines. Many computer scientists are familiar

with GAs and could easily write a GA for statistical model selection
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problems. Collaborations among scientists could produce novel GAs for

statistical analyses of vast model spaces and improve upon the simple GA

presented in this dissertation.

SUMMARY AND CONCLUDING REMARKS

Observational (non-experimental) studies have been and continue to

be an important part of the research procedure in ecology. This research

procedure consists of several stages, of which observational studies are

typically the first (see James and McCxiUoch 1985:4,1990:132). Observational

studies help lead to producing descriptive models. Information about

possible causation, from a variety of sources, and a descriptive model (or

models) are used to form a causal model. Experiments then test the causal

model(s) to provide for strong inferences, valid predictions, and/or insight

about causal mechanisms. It is this overall process which leads to the goal

of uncovering causation Games and McCuUoch 1985,1990). Other

discussions about ecological research procedures seem to overlap with that

described by James and McCuUoch (1990) (see, e.g., Hom and Cochran

1991:464-466, Schemer 1993:3-7), and most ecologists would probably agree

with this basic procedure.

Despite the importance of observational studies in the overall research

procedure, serious problems often occur with both the application and the

subsequent interpretation of multivariate analysis of observational data

Games and McCuUoch 1990). This part of the dissertation has focused on

three interrelated problems regarding multivariate analysis of

observational data:
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1) the reliance of ecologists on stepwise procedures.

2) the tendency of analysts to select only one or a few statistical models
from a vast model space, and

3) the mistake of jumping directly from exploratory analyses to
conclusions and inferences about causal mechanisms.

The GA-informational modeling (GAIM) approach described in this part of

the dissertation can potentially help analysts address these problems.

Stepwise algorithms are commonly used by ecologists, particularly in

conjunction with hypothesis-testing procedures, to select variables and

build statistical models. However, this approach has a number of

limitations and problems, namely that stepwise procedures;

1) do not necessarily find the best model or even the best set of models
(Mantel 1970, Hocking 1976, Moses 1986),

2) search only a limited part of the model space (Mantel 1970, Beale
1970), and

3) provide the analyst with only a few good models, and therefore a
limited view of the data and models.

James and McCulloch (1990) have emphasized, based on these points and

additional reasons, that ecologists should stop using stepwise procedures.

Another problem with the current approach to multivariate analysis of

observational data is the tendency of analysts to search for and select a

single model. For most data sets with many variables a single best model

probably does not exist (Gorman and Toman 1966, Hocking 1983,

McCuUagh and Nelder 1989:8). This is particularly pertinent to

observational studies because models obtained from such studies should

not be viewed as an end-point, but rather as a means to formulate

descriptive models that then help construct initial causal models to be
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tested by experiments. Yet, analysts often search their observational data

using stepwise procedures in order to find "the best" model. Even

interactive methods of variable selection (e.g., Henderson and Velleman

1981) are sometimes used to find a single model. Such approaches to

analyzing observational data produce an extremely narrow, restricted view

of the data because the intention is to find a single best model rather than

to find a large set of best models or the best subsets of models.

Analysis of observational data often goes from selecting a single best

model to then making strong inferences about causal mechanisms and/or

predictions based on this 'T^est" model. Such a process is a problem of

overinterpretation of the data because the analyst jumps directly from the

exploratory analysis of observational data to conclusions of cause-and-effect

(James and McCulloch 1990). Observational studies are best used in the

early stages of inquiry in order to further refine future research questions

and to help develop experiments. Observational studies can produce

descriptive models, but only controlled experiments (or quasiexperimental

designs) can truly allow researchers to make firm conclusions about

causation or to make useful predictions Qames and McCulloch 1990).

Serious problems occur in the research procedure (the procedure

outlined by James and McCulloch 1990) because of the combined effects of

relying too heavily on stepwise procedures, believing that a single best

model must be foxmd in all cases, and jumping from the analysis of an

observational studv to conclusions of cause-and-effect. The GAIM

approach to analyzing multivariate observational data can potentially help

ecologists address these problems. The GAIM approach emphasizes that
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analysts can obtain a wide view of their multivariate observational data by

using a genetic algorithm (GA) to search a vast model space and by

examining both a set of best models and the frequency of variables in that

best set.

The GAIM approach is conducted in stages, some of which have been

advocated by statisticians in other contexts for a many years. In Stage 1, the

analyst inspects the multivariate data and obtains a preliminary view. This

stage involves such activities as checking assumptions about the data with

respect to the statistical techniques being used, conducting univariate

analyses, graphing the data one or two variables at a time, transforming or

rescaling variables, and possibly combining variables.

In Stage 2 of the GAIM approach, which is rather new to statistical

analysis, the analyst uses a genetic algorithm (GA), in conjimction with an

informational model-selection criterion, to search or sample the vast

model space and find the best combinations of variables to fit the data. GAs

can find solutions to complex problems by using concepts of genetic

recombination, natural selection, mutation, and evolution. GAs have a

proven history of success with problem-solving in many areas (Goldberg

1994, Forrest 1993, Holland 1992a, b) and they can be successfully applied to

statistical analysis of large observational data sets. Likewise, the

informational approach to statistical modeling also has a history of success

in engineering and the sciences (see Bozdogan 1994a, b, c). This approach

views modeling as a problem in optimization of a criterion rather than as a

problem in using statistical hypothesis-testing procedures. Specifically, the



199

informational approach, unlike hypothesis-testing procedures, can rank

and compare both nested and non-nested models.

The analyst should perform at least two or three independent runs of

the GA in Stage 2 on the data. The output produced by each GA consists of

many more models than that produced by stepwise procedures. The

analyst then ranks the GA models based on their values of a criterion such

as AIC or ICOMP.

In Stage 3 of the GAIM approach the analyst: 1) selects a "window" of

values of the criterion in order to define the set of best GA models, 2) plots

the criterion values of the best GA models with respect to k (or other

measures of interest), 3) decides whether other criteria (such as model

variance and/or biological considerations) should be used to further

redefine the set of best GA models, 4) examines the frequencies of

independent variables among the best GA models to determine whether

some variables are more common than others, and 5) when possible, uses

diagnostic measures to obtain further insight.

The use of a GA in the GAIM approach has certain advantages. First,

biologists can easily imderstand what the GA is doing as it searches the

model space because a GA is based on basic biological concepts. Second, a

great deal of flexibility can be programmed into a GA. The user can be

given options for choosing the number of generations, population size,

mutation rate, recombination (crossover) rate, and the number of models

to be produced in the final output.

The utility of the GAIM approach is that its results are much better

suited to the actual purpose of analyzing observational data than the
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results obtained from stepwise procedures; that is, to produce descriptive

models which can be used to help formulate causal models. This utility

stems from the fact that the GAM approach focuses on a set of best GA

models and the variables most frequently fovmd in that set rather than on

the parameter values of the variables found in a supposedly single "best"

model.

Just because an equation can be fitted to observational data does not

mean that the parameter values can be interpreted with great confidence or

that the equations permit strong inference. In regression analysis,

researchers must"... recognize that the fitting of equations to observational

data (as opposed to data from carefully designed experiments) is, at best, a

risky business." (Hocking 1983:226). This is risky because errors occur in

both the dependent variable and each of the independent variables,

sampling is not adequate in the experimental region, and correlations are

often high among many independent variables (Snee 1983:230).

Likewise, it is risky with any multivariate technique to fit equations to

observational data and then attempt to make solid inferences about the

numerical values of the parameters or about causation. Multivariate

analysis of observational data is a descriptive or correlative analysis and an

exploratory type of investigation rather than a confirmatory one Qames

and McCulloch 1990). Some multivariate methods can be confirmatory

(i.e., statistical inferences or conclusions can be made and extended beyond

the sample to a larger population). However, confirmatory conclusions

can be valid only when a truly random sample has been obtained from a
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large population (Tukey 1980, James and McCuUoch 1990) and conditions

mentioned above (see Snee 1983) are not problematic.

It cannot be emphasized enough that any multivariate observational

data set does not lend itself easily to the selection of one best model for the

purposes of making solid inferences and predictions. Observational data

often leads to the formation of descriptive models which, when combined

with additional observations and research findings, help researchers

construct initial causal models Qames and McCuUoch 1990). Such causal

models can also be thought of as biological hypotheses. Testing competing

hypotheses by means of experiments is a method of inductive inference.

Scientific knowledge and imderstanding often advances most rapidly when

the experiments can cleanly eliminate all but one of the alternatives in this

inductive process (Platt 1964).

An important purpose of coUecting and analyzing observational data is

to help researchers develop alternative hypotheses (or models) to be tested

by well-designed, controlled experiments. Much of what this purpose

entails, as weU as what the GAIM approach advocates, is the process of

scientific inquiry caUed abduction. The philosopher Charles S. Peirce is

credited with formaUy describing abduction. Sometimes abduction is

defined as the initial process of producing alternative explanatory

hypotheses (see, e.g. Akaike 1994). Some philosophers and scientists,

however, define abduction as a process of making observations, forming

hypotheses to explain the observations, and the subsequent process of

evaluating the alternative hypotheses and then deciding which one is the

best explanatory hypothesis (see Josephson 1994:8-9). Peirce seems to have
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considered that creativity and originality in thinking comes mainly from

proposing hypotheses or suggestions, rather than from induction alone

whereby hypotheses are merely tested. For simplicity, consider abduction

here to mean the process of generating hypotheses.

Akaike (1994) convincingly argues that: 1) R. A. Fisher's view of

likelihood was limited to the idea of estimating parameters while

assximing a given model (and model structure), 2) the Fisherian view of

statistics put abductive inference out of the realm of consideration by

theoretical statisticians, and 3) the introduction of AIC and the

informational approach changed the way in which likelihood was viewed

such that the logUkelihood can be seen as a general criterion for comparing

models which may have distributional structures that are different. The

informational approach uses nximerical criteria, which are justified in

theory and proven by successful application, to evaluate and compare

competing models or hypotheses.

Akaike (1994:33) emphasizes that the concept of a true model depends

on the modeling objectives (such as the construction and application of the

model) and "... the basic choice of a model is realized only through the

mental activity of the researcher.". The informational viewpoint allows

for some creativity and subjective activity in the process of generating

hypotheses ("abduction"), whereas the hypothesis-testing framework is

limited to the inductive testing of a given hypothesis versus the null

hypothesis (Akaike 1994). Akaike (1994) further states:"... the generation of

an innovative hypothesis is always highly dependent on personal activity,

it is obvious that blind adherence to the concept of objectivity must be
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eliminated to regain the creative power of statistical methods in scientific

activities.".

One could extend Akaike's statements to the current application of

stepwise algorithms, in conjimction with hypothesis-testing procedures,

which is based on this blind adherence to statistical objectivity and a desire

to find a single best model. However, such an unthinking approach does

not provide researchers with the full potential of both the statistical muscle

and creative power needed in the abductive process when analyzing

observational multivariate data.

For an observational data set which has a small number of variables,

chances are fairly good that one or a few clearly best models exist.

However, as the number of variables increases linearly the number of

models increases exponentially to produce a vast model space. In such

cases it is unlikely that a minimum AIC model exists and the analyst

would not have a clear choice of a single best model (Akaike 1985:16,

1994:34).

The lack of a clearly best model might be seen as a deterrence. Akaike's

point is well taken, but the GAIM approach shows that insight can still be

obtained from a vast model space for several reasons. First, this approach

deals with observational multivariate data in which the analyst does not

expect a single best model to even exist. Second, the nature of the analyses

with such data is exploratory, not confirmatory. Third, the GAIM approach

emphasizes the use of an informational criterion as an initial screening

criterion, not as the definitive criterion. Other statistical measures, as well

as biological knowledge, can be used to further screen and select the best
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models produced by the GA. Fourth, the objective is to obtain a set of the

best GA models and then examine the frequency of variables in that set.

Individual variables or combinations of variables that occur most

frequently in the best GA models provide insight into possible

relationships to investigate in future experiments. Thus, the GAIM

approach, though using an informational criterion on a vast model space,

can provide a method for obtaining insight from observational data and

directing the formation of biological hypotheses.

The GAIM approach emphasizes that:

1. Analysts should not expect a single best model to exist for
observational multivariate data which have a vast model space.

2. The use of a GA, in conjxmction with an informational criterion, can
help the analyst find a set of very good models to fit the data.

3. An informational criterion serves as an initial statistical criterion for
the selection of models, but additional statistical and/or biological
criteria can be used to select the best models from the GA output.

4. The frequency distribution of the variables which appear in the final
"best" set of models and the analyst's insight and expertise can then
be used together to formulate descriptive models.

5. The descriptive models and insight from other observations, studies,
and published papers can be used to construct initial causal models.

Points 2-5 above fit into the process of abduction, rather than into

induction. The initial causal models or hypotheses are then tested by

performing well-designed, controlled experiments in a process of inductive

inference to determine the best hypothesis.

Besides helping researchers formulate both descriptive and initial

causal models, the GAIM approach can provide better opportunities than

stepwise procedures to compare models from other studies against a richer
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set of original models for purposes of external validation of observational

studies. The validation process is much more limited in scope with

stepwise procedures because each researcher only reports a single "best"

model and its estimated parameter values, thus providing a very narrow

view of the data and models to the scientific commimity. Ideally, external

validation would involve a comparison of sets of models and variable

frequencies from a number of studies. Model validation and scientific

inference might better be served if a set of best models and the frequency

distribution of variables were reported, as suggested in the GAIM approach.

Weak inferences about causation could possibly be obtained when

independently conducted observational studies produce the same results,

provided that the same study methods and statistical procedures were used.

However, the strongest inferences come from well-designed, controlled

experiments that can eliminate competing hypotheses in favor of one

hypothesis.

Conservation decisions and wildlife management plans are being based

on inferences and predictions obtained from observational data published

in ecology, conservation biology, and wildlife biology journals. Such

decision making may be too risky because multivariate observational data

and the estimated parameter values fit to such data do not necessarily

permit strong inferences and reliable predictions, particularly for data that

has a vast model space. Habitat modeling is one area of analysis being used

to provide explicit conservation and/or management plans for many

species even though the habitat studies: 1) use stepwise procedures (or

other limited searching methods) on multivariate observational data.
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2) report only one or a few of the actual models fitted to the data, and 3)

lack external validation by other studies on the same species and habitats.

No doubt decisions must be made, but the risks of making strong

inferences and predictions based on observational data from a single study

must be addressed by researchers, policy makers, and the public.

Conservation and management would be better served in the long term if

researchers followed the research procedure reiterated by James and

McCulloch (1990) to ultimately test causal mechanisms and policy makers

based their decisions on this entire research procedure, not simply on an

observational study. If experiments were not possible in certain field

situations, then weak inferences could possibly be obtained from several

independently conducted, observational studies (on the same species or

habitats) which did not rely upon stepwise procedures and the statistical

hypothesis-testing framework for a very limited view of the data. The

GAIM approach is potentially useful for providing a wider view of the data

than stepwise procedures, helping to formulate descriptive and initial

causal models, and acting as a tool for richer external validation.

No doubt abuses of the GAIM approach can occur. Some abuses of the

stepwise methods have occurred because of the improper use of such

methods and the subsequent interpretations, rather than because of claims

made by developers of such methods (see Hocking 1976:8-9, Hosmer and

Lemeshow 1989:87). With the GAIM approach, for example, one could

ignore nearly all of the output and simply pick the model with the lowest

criterion value to be the single "best" model. By no means is such a

method recommended here. Instead, it is recommended that analysts use
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the methods discussed in Stage 3 of the GAIM approach and interpret the

results in light of the comments of Hocking (1983), James and McCulloch

(1985,1990), Moses (1986), and others regarding the purposes and

limitations of observational studies. As for overinterpretation or

misinterpretation of results, the GAIM approach itself cannot guard against

these problems. Analysts themselves must guard against problems of

interpretation, but perhaps the GAIM approach will help analysts adopt a

different philosophy toward interpreting the analysis and objectives of

observational data.

This chapter also discussed specific changes in the way logistic

regression analysis of observational data can be conducted from that which

is presently being used by ecologists. First, analysts should carefully

examine the assumption of linearity in the logit for each independent

variable and make any necessary transformations or scale changes in those

variables in violation of this assumption.

Second, the approach suggested here utilizes the informational

approach instead of hypo thesis-testing procedures. This is in keeping with

the growing philosophy that statistical modeling is not a hypothesis testing

problem per se, but rather a problem in optimizing some criterion for

model selection (see Sakamoto et al. 1986, Bozdogan 1987, 1988a, b,

Bumham and Anderson 1992, Lebreton et al. 1992).

Third, it is suggested that a GA, in conjunction with an informational

model-selection criterion, be used to search a vast model space for the best

models. This is extremely different, both methodologically and
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philosophically, from the use of stepwise procedures for logistic regression

modeling.

Fourth, the assumption that model variance is equal to one for logistic

regression models should be checked because standard statistical packages

typically do not check and ecological data may not satisfy this assumption.

Analysts should incorporate estimated variance or a variance-inflation

factor into the calculation of the model-selection criterion. One method

suggested here was the incorporation of a model's estimated variance into

the calculation of its ICOMP-IFIM value.

The GAEM approach is potentially applicable to multivariate analyses,

not just multiple regression analysis. Ecologists should end their heavy

reliance on both stepwise procedures and the idea that a single best model

exists for any large observational data set. Alternative methods for

searching and evaluating statistical models exists for observational data.

Data sets containing >12 variables could be analyzed using branch-and-

bound algorithms or the GAIM approach discussed here. Data sets with

<12 variables can be analyzed more effectively by using already existing

algorithms to enumerate all possible models and to calculate the values of

a model-selection criterion, such as Mallows' Cp for regression cases or an

informational criterion, rather than by using a stepwise procedure.

Criterion values can be used to make an initial selection of the best models.

Then the analyst can follow the procedures used in Stage 3 of the GAIM

approach to obtain a wide view of the data and models which can

ultimately be used to formulate initial causal models or hypotheses about

causation.
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The GAIM approach discussed in this chapter is in its infancy. Further

research needs to examine the performance of the GAIM approach in the

statistical modeling of observational data and in helping researchers

produce descriptive models, build initial causal models, and design

experiments to test causal models. A wide variety of data sets should be

explored with the proposed GAIM approach. It could be particularly

interesting for researchers to model old data sets using the GAIM approach

and then compare the new GAIM results to their previous results obtained

from stepwise procedures. The two methods may produce similar results

in some cases, but for many complex, multivariate data sets it is expected

that the GAIM approach will provide different insights.
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Table 4-1. Example of a data matrix with sample data for three
continuous independent variables (Xi, X2, and X3), one categorical
independent variable with two design variables (X4), and a column of ones
representing the intercept term (Xq).

1  10 2 9 1 0

1  12 8 5 1 0

1  10 4 7 1 0

1  16 8 5 1 0

1  8 2 11 0 1

1  10 4 13 0 1

1  14 6 11 0 1

1  10 4 9 0 1

1  18 2 13 0 0

1  16 8 15 0 0

1  20 10 13 0 0

1  20 8 19 0 0
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THE PRESENCE OF ANOLIS CAROLINENSIS AMONG

FOUR HABITATS IN EASTERN TENNESSEE:

AN ANALYSIS USING THE GAIM APPROACH
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INTRODUCTION

Considerable theoretical and empirical research has been conducted in

an effort to understand the complex relationships between an individual

organism and/or a species and its habitat. Habitat can potentially influence

heat balance and physiology (Gates 1980, Porter 1989), growth (Porter 1989),

reproduction and life history traits (Steams 1976), individual fitness

(Fretwell 1972), abundance and distribution of populations and species

(Hutchinson 1957, MacArthur 1972), and species diversity (Mac Arthur

1964). Thus, understanding interactions and relationships between an

organism or a population and its habitat(s) is critical to xmderstanding

individual behavior, individual physiological performance, life history

traits, population dynamics and the viability of populations, community

structure and organization, and evolution.

Concems over the future of many animal populations and species

contributed to passing federal laws in the United States which required that

wildlife and their habitats, as well as other natural resources, be given

consideration whenever human activities are planned and conducted on

public lands (Morrison et al. 1992:7-9). Protection and conservation of

species and their habitats also became a growing concem among scientists

and the public. Scientific information and insight are needed in order to

meet the requirements of federal laws and to conserve and manage species

and their habitats. Thus, many studies of animal-habitat relationships

have been and continue to be conducted to meet these needs (Morrison et

al. 1992).
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Researchers studying animal-habitat relationships often use

multivariate statistical techniques (inclusive of multiple regression) to

analyze observational (non-experimental) data. The application of such

techniques has been an important aspect in the development of a

quantitative approach to animal-habitat studies. However, misuses and

misapplications of multivariate statistics have been reported to occur in

animal-habitat studies, in particular (e.g., see Johnson 1981a, b), and in

ecological research, in general (e.g., see James and McCuUoch 1985, 1990).

Two problems critical to the analysis and interpretation of observational

multivariate data exist: 1) using stepwise algorithms to find a supposedly

single "best" model and 2) inappropriately making specific predictions

and/or causal inferences.

Many observational data sets may have 15 or more biologically

relevant variables. Statistical model selection with such data can be a

difficult process because multicollinearity can occur and the total number

of possible models, or "model space", may be vast (i.e., in the himdreds of

thousands of models or more). Researchers typically use stepwise

algorithms, such as "forward selection", "backward elimination", and

"stepwise selection" procedures (see Hocking 1976, 1983 for reviews), in

conjunction with hypothesis-testing procedures in order to find a single

"best" model to fit the data.

Analysts often believe that a stepwise procedure actually finds the

single "best" model or at least report the use of such a procedure as having

foimd the "best" model. A few points are thus warranted regarding model

selection via stepwise procedures. First, stepwise procedures search and
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evaluate a very small proportion of the model space (Beale 1970, Mantel

1970), providing researchers with only a narrow view of their data and

model space. Second, stepwise algorithms cannot compare non-nested

models when using hypothesis-testing procedures. Considering such facts

it is no surprise that statisticians have stated that stepwise procedures

cannot find the single best model (if it exists) or even the best set of models

(see e.g.. Mantel 1970, Hocking 1976, Moses 1986). Third, it is fairly probable

that no single model will be better than all other models for any

multivariate data set (Gorman and Toman 1966, Hocking 1983, McCullagh

and Nelder 1989:8); such data can often be described equally well,

statistically and biologically, by several or more models. James and

McCulloch (1990) have suggested that ecologists stop using stepwise

procedures on multivariate data.

The second problem critical to the analysis and interpretation of

observational multivariate data is when interpretation of the results

incorrectly leaps from a correlative description to a causal explanation

(James and McCulloch 1990). For example, analysts of observational data

have often taken the supposedly "best" model obtained from a stepwise

procedure and made specific inferences about the causation between

dependent and independent variables and/or precise predictions.

Cautionary notes have been sounded about the dangers of making such

causal interpretations (see Johnson 1981b, James and McCulloch 1985, 1990)

and predictions (see Hocking 1983, Snee 1983) based on observational data.

Such data help produce models or hypotheses about possible causation, but

controlled experiments provide the actual tests of causal hypotheses or
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models up)on which causal inferences can be based (James and McCulloch

1990, Lubchenco and Real 1991). The different steps or phases of a research

procedure should be 1) collect multivariate observational data and conduct

exploratory analysis of the data, 2) formulate descriptive models based on

that exploratory analysis, 3) use the descriptive models and information

from other studies about possible causation to propose causal hypotheses or

models, 4) test the causal model(s) by preferably using a controlled field or

lab experiment (see James and McCulloch 1985, 1990).

Based on the issues and concerns mentioned above, the genetic

algorithm-informational modeling (GAIM) approach has been suggested

(Part 4 of this dissertation) as an alternative to stepwise procedures for

analyzing observational multivariate data. The GAIM approach

emphasizes the need to find and report a set of very good models and

provides the computer and statistical tools to do so. The GAIM approach

uses a genetic algorithm (GA) in conjunction with an informational

model-selection criterion to help the analyst select a set of very good

models (see Part 4 of this dissertation) and obtain a wider view of the data

and models.

GAs are computer algorithms which can find very good solutions to

complex problems in which hundreds of thousands or more possible

solutions exist. GAs, which are based on the concepts of biological

evolution, natural selection, and genetic recombination, have been used

successfully in many problem-solving applications (Holland 1992a, b,

Forrest 1993, Goldberg 1994). The ability to find a set of well-fitting

statistical models in a vast model space can be achieved by using an
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informational criterion, such as Akaike's Information Criterion (AIC;

Akaike 1973) or Bozdogan's Informational Complexity criterion (ICOMP;

Bozdogan 1988a, 1990, Bozdogan and Haughton 1998), as the fitness

function in a GA (see Part 4 of this dissertation).

The present study examines potential associations between habitat

features and the presence of Anolis carolinensis (Sauria: Polychrotidae)

based on observational data from field studies. Anolis carolinensis is a

small, mainly arboreal lizard foimd in the southern United States, is a

member of a genus of tropical origin, and is the only native anoline species

in the continental United States. Populations of A. carolinensis in eastern

Tennessee represent some of the most northern populations of this species.

Despite being common in many habitats across its distribution, most

research on this species is laboratory-based and quantitative field research is

considerably lacking on the relationship between habitat and A.

carolinensis.

The objectives of this study are two-fold. The first is to demonstrate

the application of the GAIM approach to the analysis of observational data

on A. carolinensis-hahitat relationships. The second objective is to obtain

insight, in the form of descriptive models, into possible associations

between the presence of A. carolinensis in home range sized plots, during a

summer and a winter season, and various habitat features across foiur

habitat types in eastern Tennessee. Such insight, along with what is

already known about this species, could be used to formulate causal models

or hypotheses about A. carolinensis-hahitat relationships which could be

tested by future experiments. In this way, the ultimate goal of testing
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causal models, via an experimental approach (as emphasized by James and

McCnlloch 1990) would be better served than by simply making causal

inferences based on analysis of observational data alone.

STUDY SITES

The study was conducted on wooded slopes adjacent to the Little

Tennessee River (Monroe and Bloimt Coimties, Tennessee) in an area

straddling the Blue Ridge and Ridge and Valley Physiographic Provinces.

The natural potential vegetation is classified as Appalachian oak forest

(Kiichler 1964). The lower Little Tennessee River valley has been inhabited

by humans for at least 12,000 yr B.P. and dating back to the Paleo-Indian

cultural period (Delcourt et al. 1986). The last Native American group to

inhabit this vaUey was the Overfull Cherokee during the 1700s and early

1800s before they were supplanted by European-Americans (Chapman

1985). Botanical evidence from archaeological deposits (Chapman and

Shea 1981, Chapman et al. 1982) along with the independent

paleoecological record from natural ponds (Delcourt et al. 1986) suggests

that humans have influenced the vegetation of the valley for about the

past 10,000 yr.

Early alterations of the local vegetation by humans occurred during the

late Archaic cultural period (5000 to 2800 yr B.P.) when cultivation and

associated land-clearing was first taking place (Delcourt et al. 1986). More

extensive changes in the valley's vegetation occurred over the past 300 yr

through land clearing and cultivation, which extended into the uplands, by

the Overfull Cherokee and European-Americans (Delcourt et al. 1986). In
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the 20th centviry the valley has been altered by the building of dams and

associated land-use changes. The last dam built on the Little Tennessee

River was Tellico Dam which impoxmded the lowest reaches of the river

after its flood gates closed in 1979.

Selection of habitat sites for this study was based on five criteria. First,

a site had to have a southerly aspect since A. carolinensis appears to be

limited to such slopes in eastern Tennessee (personal observation).

Second, a distinct edge had to be present on the southern part of a site,

where edge is defined as a line of distinct change in the structural

vegetation and landscape such as occurs between a wooded slope and either

a pasture, road, river, or power line right-of-way. Third, a site had to be in

close proximity (<100 m) to other areas where A. carolinensis occurs.

Fourth, a site had to be connected with other wooded habitat in either an

east or west direction (parallel to habitat edge). The third and fourth

criteria both ensured that sites were not isolated patches of habitat and not

inaccessible to colonization by A. carolinensis. Lastly, a site had to be

readily accessible and capable of being surveyed and sampled without an

extremely large cost in time. Sites with steep slopes or vertical rock faces

without accessible ledges were too difficult to sample.

Four habitat sites were chosen which fulfilled these criteria. Habitat A

is river bluff site with a narrow strip of vegetation between the river and

bluff face and with short steep slopes and ledges leading to the bluff face.

An abandoned railroad bed (now a rail-less dirt path) lies between the river

and bluff. The width of vegetated habitat along the river is approximately

0.5-4 m and from 6-20 m between the dirt path and vertical bluff face. The



228

habitat is dominated by deciduous trees with common species being black

locust {Robinia pseudoacacia), hackberry {Celtis occidentalis ), redbud

{Cercis canadensis), and ash spp. {Fraxinus spp.). Other trees include

various oaks {Quercus spp.), honey locust (Gleditsia triacanthos), black

walnut {Juglans nigra), winged elm {Ulmus alata), slippery elm (Ulmus

rubra), sycamore {Platanus occidentalis), eastern red cedar (Juniperus

virginiana), and an occasional tuhp poplar {Liriodendron tulipifera),

mimosa {Albizia julibrissin), and box elder {Acer negundo). Various

woody shrubs and vines and the herbaceous flatseed sunflowers {Verbesina

occidentalis - common; and Verbesina virginica - occasional) occur

throughout much of the site. Numerous cracks and fissures in the south-

facing bluff provide potential refuge sites for A. carolinensis during cold

weather.

Habitat B is a wooded, south-facing slope with two rock seams running

in an east-west direction; one near the crest of the slope and another at

about mid-slope. This habitat is adjacent to Habitat A and the seams of

rock are actually exposed rock extending laterally from the bluff.

Deciduous trees dominate the slope with common trees being various oak

(spp.) and hickory (spp.), black locust, and hackberry. Other trees include

sycamore, redbud, walnut, and a few mimosa and eastern red cedar.

Various woody shrubs and vines and the herbaceous flatseed sunflowers

are also present. The south edge at Habitat B is created by the river for a

short distance and a pasture for the larger part. The pasture extends up

along the east edge of the habitat where a small hollow runs between

Habitat B and the slopes to the immediate east. A small herd of cattle graze
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in the pasture and occasionally along the slope of Habitat B itself and

within flat areas of Habitat A. Both Habitat A and B are under federal land

ownership as part of the land acquisition and impoundment created by the

Tellico Dam project administered by the Tennessee Valley Authority

(TV A).

Habitats C and D are located about 6.4 and 8.2 river km (5.5 and 7.3 km

straight-line distance), respectively, upriver from Habitats A and B. A state

highway runs between the Little Tennessee River and Habitats C and D.

Habitat D is approximately 2.2 river km (2.0 km straight-line distance)

upstream from Habitat C. Habitat C is a wooded hillside dominated by pine

{Pinus spp.) with some oaks present. No rock seams or outcrops occur

within the sampled area, but a small bluff and rock outcrop (where A.

carolinensis is present) occurs just to the west of Habitat C with continuous

forest present between the two areas. The habitat edge is created by a

treeless patch maintained for local electrical lines running between the site

and the highway.

Habitat D is a wooded slope bordered to the east by a small body of

water backed-up by the impoimdment of Chilhowee Dam and to the south

by a state highway. The vegetation of the sampled area is a mixture of both

deciduous and evergreen trees consisting of pines and oaks. Farther up the

slope and outside the sampled area pines dominate. Ground cover at this

site includes some woody shrubs and sapling trees, but very little

herbaceous cover. The southern edge at this habitat is created by a narrow

treeless area between the site and the highway. A small rock outcrop

occurs between Habitat D and the highway, but no bluff or rock outcrops
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occur within the sampled habitat. Both Habitat C and D have a history of

past fires (at least groimd fires) as indicated by fire scars on fallen logs and

the lower portions of tree trunks.

METHODS

Habitat scales

Habitat is defined in this study as the area or place that contains the

physical, chemical, and biotic resources required by individuals or

populations of a given species (see Davis 1960), or even a species itself.

Such resources can include water, humidity, sunlight, heat, shade, nesting

or egg-laying sites, food, structural vegetation, and refugia from both

predators and potentially threatening weather conditions.

In the present study, surveys for the presence of lizards were conducted

in small plots (radius = 2.5 m, smface area approximately = 19.6 m^)

which approximated the area used by A. carolinensis as summer territories

and winter home ranges in eastern Tennessee (J. J. Minesky, unpublished

data). This size is similar to that for this species in Louisiana (Gordon 1956)

and South Carolina (Jenssen et al. 1995). Habitat variables were measured

at various scales ranging from within the plots to the categories of four

habitat types (sites) themselves.

The plots represent the "seasonal-use" (SU) habitat scale defined here

as the habitat area used by a typical individual in a population during a

certain climatic season and/or a biological "season" (e.g., reproductive vs.

non-reproductive seasons). The summer "season" and winter "season" are

defined in the subsection "Surveying of plots". Because A. carolinensis
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uses somewhat different habitat patches in the course of a given year it is

important to define the SU habitat scale based on such seasons. Within the

SU habitat an individual will encoimter several or more "microhabitats",

each being a habitat patch used by an individual in conjunction with a

specific activity during a specific time or segment of a daily activity pattern.

The activity can be performed for either directly obtaining one or more

resources or conducting one or more fimctions not directly related to

resource acquisition such as sleeping, molting, egg-laying, nesting, or

displaying to or communicating with other individuals.

At a level above the SU habitat, "overall home range" (OHR) habitat is

the habitat scale that approximately equals the area used by an individual

in the population over either one complete cycle of defined alternating

biological activity "seasons" or one complete cycle of climatic seasons (such

as one calendar year). Anolis carolinensis often uses different home ranges

during summer vs. winter seasons in eastern Termessee, thus it is

important to make the distinction between SU and OHR habitat scales. For

those individuals which change their use of SU or OHR habitat and/or

location of home ranges over an entire life-time, "life-time" (LT) habitat is

the habitat area used over the typical life span of a non-migratory

individual. The term "macrohabitat", depending on how it has been

defined by other researchers, may be similar in scale to that of OHR or LT

habitats.

The "population level" (PL) habitat scale is that habitat area occupied by

a particular population or subpopulation of a species during a given imit of

time, such as a season or year. This scale is does not necessarily address the
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concept of minimum viable population (MVP, Shaffer 1981) or "minimum

dynamic area" (MDA, Thiollay 1989) because PL habitat is defined for time

scales of interest shorter than those typically used with MVPs.

Each habitat or site in the present study represents a different PL habitat

because a) the total area available in each habitat could support A.

carolinensis territories/home ranges and a potential population for at least

two consecutive seasons and b) basic vegetational and physical features

were distinct from adjacent habitats, but fairly similar within a given

habitat. No distinction was made between potential "source" and "sink"

populations or habitats, but hatchlings were observed in all four habitats.

Plots

The actual area used for possible sampling ("sampled area") within

each habitat excluded the extreme east and west areas of a habitat because

those areas either made a transition into or formed a distinct boundary

with the adjacent habitat. The actual sampled area within each habitat

varied in dimensions due to differences in size and physical features of the

fovir habitats. The approximate length along the southern edge and the

maximum distance up the slope, respectively, for each of the sampled areas

were: 236 and 22 m (Habitat A), 60 and 45 m (Habitat B), 67 and 45 m

(Habitat C), and 26 and 45 m (Habitat D). The number of circular plots, used

as sampling units, within each habitat was proportional to the approximate

total area of each habitat to be sampled such that 30-35% of each habitat was

sampled. Thus, the number of plots used was 51 for A, 43 for B, 51 for C,

and 21 for D for a total of 166 plots.
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Nearly all plots (160) were randomly located in the habitats using

randomly generated, whole integer coordinates for a) the distance (m)

along the southern edge from the western corner of the sampled area and

b) the distance (m) up the slope from the southern edge. The remaining six

plots were placed non-randomly in Habitats A and C to sample some

locations which might have been missed by random coordinates due to

local variations in the topography of the sites (such as on bluff ledges or in

small depressions). Plot centers were marked with either rebar steel rods,

wooden stakes, or paint marks.

Surveying of plots

Each plot was surveyed twice for the presence of A. carolinensis, once

in summer and once in winter. The summer survey period was 22 May

through 22 July 1991 and only the presence of adult A. carolinensis

(females > 45 mm and males > 50 mm SVL) was recorded. This "season" or

period was chosen because it was a time when adults had firmly established

summer territories, mating was taking place, and adult activity and

visibility were stiU high (personal observations). Monthly counts of A.

carolinensis along transects showed that the number of adult individuals

visually observed declines from April through August and September, but

numbers are most consistent between June and July (unpublished data).

These differences between April and August/ September are probably due

to a combination of changes in lizard activity, mortality, and in leaf and

vegetation cover. Hatchlings first appear in early July and continue to be

produced through late September or early October so that peak densities of

young-of-the-year occur in September and October in eastern Tennessee.
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Thus, hatchlings and juveniles were not used in the summer analysis

because their numbers changed too dramatically over the summer and

early-faU, which would certainly influence the probability of finding a

lizard in a plot.

The presence of juveniles, along with adults, was recorded in the

winter surveys because no further recniitment of individuals occurs after

mid-autumn. The winter survey period ("season") was defined as the time

from to late December through early March for the following reasons.

First, A. carolinensis in eastern Tennessee begin seeking shelter from low

overnight temperatures as early as late September, but this process of

shifting from summer to winter microhabitat is not completed imtil late

October for adults and mid- to late-November for juveniles (personal

observations). In March anoles begin to move further away from over

wintering shelters, at least during the day, in response to warmer

temperatures. Second, visibility in the habitat is not constant until after

leaf fall has been completed sometime after early November. The actual

survey period for the winter study started on 31 December 1991, but because

of frequent cloudy conditions it extended through 21 March 1992.

Plots within each habitat were randomly selected and the same random

sequence was used for both summer and winter studies. If, however, two

plots were adjacent (plot edges within 1.5 m of each other), then both plots

were surveyed consecutively on the same day in order to minimize the

chances of coimting the same lizard in two different plots on different days.

True random selection of the order of habitats themselves was not feasible

since Habitats A and B were separated by a considerable distance from both
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C and D and travel time wasted potential time for surveying. Time

available for surveying plots was more effectively utilized by visiting

Habitats A and B in conjimction since they were adjacent and by visiting

Habitats C and D in conjunction since they were closer to each other than

to the other habitats. Thus, the following standard, alternating sequence

was adopted for visiting the habitats during the siirvey: ABQD, DCBA,

BADC, CDAB, ABDC, DCAB, BACD, and CDBA, where the sequence

within a block of four letters represents the order of visitation of these

habitats on a given survey day and the sequence of eight blocks of letters

represents the different orders of habitats to visit on different survey days.

After the sequence CDBA was completed, the surveying sequence was

repeated beginning with ABCD. Plots in all four habitats were surveyed on

any given day as long as weather conditions permitted.

Surveying was only conducted during mostly simny to sunny

conditions starting about 3-4 hr after sunrise and ending about 7-8 hr after

sunrise. Actual survey times were between 1000 and 1400 hr (Eastern

Daylight Savings Time) for summer and between 1100 and 1430 hr (Eastern

Standard Time) for winter. These times are ones of considerable activity by

A. carolinensis in eastern Tennessee (personal observation). During the

winter season no plots were surveyed if ambient air temperature was

below 5.0®C, regardless of time of day and sky conditions.

Each plot was surveyed by either one observer (J. Minesky) or two

observers (J. Minesky and D. MacDonald). Many plots could be identified

before entering so the survey often began with the observer(s) scanning the

vegetation before going into the plot. One observer always had binoculars
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to assist in scanning tree canopy. The observer(s) visually scanned the plot

from the ground up to the top of the trees in summer and from the ground

up to about 2mm winter. Often toward the end of the survey time the

lower vegetation was searched more closely by moving branches, stems,

and vines in order to see within the vegetation matrix. The presence,

number, size class and, when possible, the sex, of any A. carolinensis was

recorded for each plot. In addition, the presence and number of lizards of

any other species both within and adjacent to the plot were noted.

Initially, all plots were to be surveyed for a total of 20 observer-

minutes. However, early in the summer study it was realized that all 166

plots might not be surveyed before the cutoff time of late July because of

the narrow window of time available each day for surveying, the

sometimes rapidly changing weather conditions, and the occurrence of

cloudy weather for several days at a time. Thus, the first 82 plots were

surveyed for the full 20 observer-minutes, but the remaining plots were

surveyed only imtil at least one A. carolinensis was seen or the 20

observer-minute mark occurred, whichever came first. This ensured that

all plots were surveyed before the specified end of the survey period.

Habitat variables and their measurement

Habitat variables, regardless of the spatial or temporal scales, were

measured with reference to each plot (remember that a plot represents a

potential home-range or SU habitat). Based on previous qualitative field

observations, the directly-measured and subsequently derived variables

(Table 5-1) were thought to have some biological association with the

presence of A. carolinensis. Some variables contain information about
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structural features within the plot (e.g., those relating to tree trunk sizes

and numbers, herb/shrub/vine cover, presence of dead fallen woody

material, and presence of rock), whereas other variables contain

information about habitat features both within and down the slope of a

plot (e.g., sunlight and canopy cover). Variables measuring distance to

habitat edge and distance to potential over-wintering rock span across

different spatial scales (from SU to OHR scales or beyond) to which A.

carolinensis might respond. Because A. carolinensis is ectothermic, the

ambient air temperature at 1-1.25 m above ground level was measured

after surveying each plot to consider the possible influence of temperature

(which could not be controlled in the study).

Some habitat variables measured in the summer season were used in

the winter analysis and vice versa. This permitted consideration of

possible temporal influences of habitat variables which might be relevant

from a green anole's perspective (e.g., perspective between summer and

winter SU habitat scales). For instance, although a green anole presumably

does not require the protective shelter and thermal properties of rocks

during summer, the probability of an anole being present in a plot in

summer might be higher if the plot were closer to rocks. This scenario

might be due to the shorter distance the individual would need to move to

find shelter at the onset of cooler weather.

All measurements of tree trunk number and size, herb/shrub/vine

cover, and presence of dead fallen woody material were made during the

summer season. No tree falls were noted between summer and winter

which would have required re-measurement of the tree variables.
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Herb/shrub/vine cover was not remeasured in the winter because very

little if any evergreen ground cover existed in each plot.

Data analysis

Data were analyzed using logistic regression, a statistical technique

which is applicable both to analysis of certain ecological data (Trexler and

Travis 1993) and extensively used in the modeling of animal-habitat

relationships (e.g., Capen et al. 1986, Brennan et al. 1986, Johnson and

Temple 1986, Smith and Conners 1986, van Manen and Pelton 1993, Oilier

and Wallace 1994). Logistic regression is useful for modeling the

relationship between a binary dependent variable and a set of continuous

and/ or discrete independent variables (Hosmer and Lemeshow 1989,

Trexler and Travis 1993). The value of the dependent variable in the

present study was either "presence" or "absence" of A. carolinensis in a plot

as determined by svirveying the plot within a given season. The habitat

variables were the independent variables.

Three major differences exist in both the philosophy and methodology

of statistical modeling between this study and that of other studies using

logistic regression. First, the objective here was to find a set of models

which fit the data well rather than to search for a supposedly single 'best"

model. The 'best" model is the one which has a distinctly superior

statistical fit to the data over all other models. Second, the GAIM approach

was used rather than stepwise procedures (in conjimction with hypothesis-

testing procedures) to analyze the data. Third, an estimate of model

variance for each logistic regression model was used in the analysis rather
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than assuming that model variance = 1, as researchers commonly assume

with logistic regression. These points are explained further as the methods

of data analysis are outlined below.

Stepwise procedures typically search and evaluate a very limited part of

any vast model space. A forward selection (FS) procedure, for example,

would evaluate kik + 1)12 models at most, where k is the total number of

independent variables (Beale 1970, Mantel 1970). In this study with 19

variables (including the intercept), only 190 out of 524,287 (= 2^^ -1) models

would be evaluated at best by a FS procedure. Researchers can evaluate

many more models with a GA than with a stepwise procedure because of a)

the differences between the searching abilities of GAs and stepwise

procedures and b) the ease with which the programming code in a GA can

be modified by the researcher (see Part 4). Thus, a GA always has the ability

to evaluate more models than a stepwise procedure and give a researcher a

wider view of the data.

As Forrest (1993:875) indicated, GAs can find very good solutions to a

problem, but are not appropriate for problems ".... in which it is important

to find the exact global optimum.". In other words, a GA cannot

necessarily find 'the single best' model in the problem of statistical model

selection when the model space is vast and many good models exist. The

real utility of a GA is that it can find many very good models to fit the data

when the model space is vast. Use of a GA is therefore appropriate for

multivariate analysis of observational data where the analyst needs to

conduct exploratory analysis and obtain more insight into the data (such as
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in obtaining a set of well-fitting models out of the vast model space) than

can be provided by stepwise procedures.

The three basic components or stages of the GAIM approach (see Part 4)

were used to find a set of very good models for both the summer and

winter data. The first stage involves checking both the form of the

variables and assumptions about the data, transforming or rescaling

variables, and conducting univariate analyses. Each categorical variable

was checked for both zero and low cell (category) cotmts for both the

"present" and "absent" responses and appropriate recombinations of such

cells (categories) with other cells were made. For example. Habitats C and D

had low cell counts for the "present" response (only two and one,

respectively) for the summer data (but not for winter). Thus, Habitats C

and D were combined into one habitat category ("Pine/Mixed").

For continuous variables the assumption of linearity in the logit was

examined where the logit is defined as the natural logarithm of the

quantity [Pr(Y="present")/Pr(Y="absent")]. This assumption was examined

at the imivariate stage rather than after the multiple regression model was

obtained because a) biologically relevant variables can be associated with

the outcome variable in ways that are not linear in the logit and b)

elimination of such relevant variables based only on non-linearity in the

logit is not a desired event during the model selection process.

Examination of the linearity assumption followed a method based on that

of Hosmer and Lemeshow (1989:2-6, 85) which involved a) dividing a

continuous variable into groups with approximately similar numbers of

observations, b) calculating for each group: the mid-point value, the
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proportion of observations with the outcome as "present", and the logit,

and then c) plotting the logit versus the group mid-point for each group.

Usually ten groups of approximately equal sizes were used for this analysis

but, in a few cases, fewer groups had to be used due to either the ordinal

nature or the limited number of observed values of some continuous

variables. A Linear regression of approximately 0.7 or greater was

considered sufficient evidence of linearity in the logit. Failure to meet this

criterion led to consideration of possible transformations or categorizations

of the variable. Most of the continuous variables for both summer and

winter data exhibited non-linearity in the logit. Categorization of all

variables violating the logit linearity assumption was then conducted

because suitable, simple transformations were not found.

The specific categorization of any continuous variables which were

non-linear in the logit was based either on natural break-points in the data

or on examination of the proportions and odds-ratios across categories.

Initially, those variables not showing natural break-points were split into

three to five categories of roughly equal size. Those categories with similar

proportions of the outcome "presence" and similar odds-ratios were

combined. Also, any zero cells were combined with non-zero cells. Most

categorizations of habitat variables were accomplished by making simple

dichotomies, but some variables required three or four categories. The

category with the lowest proportion of plots having green anoles present

for each variable was designated as the reference cell (i.e., the category to

which others are compared as in the calculation of odds ratios; see Hosmer

and Lemeshow 1989:45-50). The final form and description of each
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explanatory variable is given in Tables 5-2 (summer data) and 5-3 (winter

data).

Finally in stage one, univariate logistic regression models were fit to

the data and the univariate likelihood ratio test statistics (G), ICOMP-IFIM

values, regression parameters (fis), and Wald statistics were examined for

both the original and rescaled variables. In all cases where rescaling was

needed, the fit of the rescaled variable was better, based on ICOMP-IFIM

values, than the fit of the original variable.

The second stage of the GAIM approach involves the use of a GA to

find a set of models that fit the data very well. A description of the basic

workings of a GA can be found in "The Genetic Algorithm And Its

Application To Statistical Modeling of Observational Data" in Part 4 of this

dissertation, as weU as in Goldberg (1989) and Holland (1992a, b). The GA

used in this study was written by Dr. Hang-Kwang Luh in MATLAB (The

Math Works, Inc. 1989). Each categorical variable (regardless of the number

of categories) and continuous variable was represented as a bit on the

model "string". Any categorical variable with more than two categories

simply had all of the design variable columns in the data matrix either

enter or exit a model whenever the bit representing the variable itself

entered or exited a model (see "A GA-Informational Modeling Approach

for Logistic Regression" in Part 4).

An informational model-selection criterion was used in the fitness

function of the GA. Akaike (1973) first proposed the use of an information

criterion for model selection and since then information criteria have been

utilized in a variety of scientific fields for the purpose of statistical model
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selection (e.g., see Bozdogan 1994a, b, c). The use of informational criteria

for model selection in ecological research has been increasing over the past

10 years, particularly in the analysis of captme-recapture data (see Szymczak

and Rexstad 1991, Bumham and Anderson 1992, and Lebreton et al. 1992,

Anderson et al. 1994, Bumham et al. 1995a, b). Aspects of the

informational approach, including some advantages over hypothesis-

testing procedures, can be found in Sakamoto et al. (1986), Bozdogan (1987,

1988a, b, 1990), Bumham and Anderson (1992), and Lebreton et al. (1992), as

well as in Part 3 of this dissertation.

The specific model selection criterion used in the GA's fitness function

was ICOMP-IFIM. This criterion is defined by Bozdogan (1990,1994d) as:

ICOMP-IFIM = -2(Loglikelihood) + 2[Ci(IFIM)]. (5.1)

Models with the lowest ICOMP-IFIM values are considered to have the

better fit to the given data. The first term is the maximum likelihood

estimate of the lack-of-fit of the model to the data (the same as that in AIC):

lower values indicate a better fit than do higher values. The second term

represents the measure of complexity of the estimated inverse-Fisher

information matrix (EFIM) and acts as a penalty. Two times Cl[IFIM] is

used here based on the formulation by Bozdogan and Haughton (1998).

This complexity or penalty term provides information on the degree of

association among the model parameters: those models with lower

correlations or associations among model parameters generally have less

complex covariance structure and therefore lower penalty terms (Bozdogan
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1990, 1994d). Complex covariance structures and high multicoUinearity are

often undesirable qualities in multivariate models. Thus, 2Ci[IFIM]

provides a way to penalize those models with high multicoUinearity and

the complex covariance structure and to incorporate this information

directly into the model-selection criterion. Consideration of covariance

complexity and multicoUinearity when using hypothesis-testing methods

for model selection often must be done as a separate process from the direct

comparison of competing models (e.g., see methods for evaluation of

multicoUinearity in logistic regression models by Miarx and Smith 1990).

Equations for calculating CilIFIM] for logistic regression were given in Part

4 (equations 4.7 and 4.8).

The usual assumption with logistic regression models is that model

variance = 1. Researchers who use logistic regression on biological data

typicaUy do not check this assumption (or at least do not report estimated

variances if different from one) and most software provides logistic

regression output based on variance = 1. However, estimating the variance

would be appropriate because many binomial and multinomial data

structures can exhibit the undesirable property of over-dispersion (variance

>1). Thus, variance was estimated for each candidate model as the Pearson

X2 value divided by n and incorporated into the calculation of ICOMP-IFIM

in the GA (see Part 4 of this dissertation and equation 4.9 for details). AU

other components of ICOMP-IFIM being equal among competing models,

those models with larger variances would have larger ICOMP-IFIM values,

thus reflecting a poorer fit, than models with smaUer variances.
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All 18 variables and the intercept were entered into the GA for each

analysis. For the summer analysis, four separate runs of the GA were

performed (for a total of 11,300 models) with the following number of runs,

number of generations, and models per generation, respectively: 2:50:50,

1:80:60, and 1:30:50. For the winter analysis, three separate runs of the GA

were performed, each with 50:50 (for a total of 7500 models). For both

sununer and winter analyses, the point mutation rate (the frequency of

switching of a single, randomly selected bit from either one to zero or vice

versa) was 0.01 per generation and the crossover rate (the probability of

mating or crossover between two chosen strings) was 0.7. Two highly

associated variables in the summer analysis, LDS and SMOS, were not

allowed to enter the same summer models together. However, either LDS

or SMOS was allowed to enter a model, when randomly selected in a

string, if that model lacked the variable's highly associated counterpart.

GA programs, including the calculation of ICOMP-IFIM, were written

in MATLAB (The Math Works, Inc. 1989) and executed on either a VAX

mainframe computer (University of Tennessee Computing and

Administrative Systems) or a Power Macintosh 8100/100 (Department of

Ecology and Evolutionary Biology, University of Tennessee). All analyses

of the GA output were conducted by the author.

Statistical hypothesis-testing procedures were used to a) provide a

familiar point of reference to readers who are unfamiliar with

informational criteria and b) supplement the informational modeling

approach for examination of certain candidate models. When such

procedures were conducted, estimated parameter values (regression
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coefficients), Wald statistics, and the associated P values were obtained

using the LOGISTIC procedure in SAS (SAS Institute Inc. 1989) and an

alpha level of 0.10 was used as a "guidepost" rather than as a "Magic

Number" (see Toft 1990).

The third stage of the GAIM approach involves a) selecting a

"window" of criterion values in order to define the set of best models

foimd by the GA, 2) deciding whether other criteria (such as model

variance and/or biological considerations) should be used to further

redefine the set of best GA models, 3) plotting the criterion values of the

best GA models with respect to k (the number of estimated parameters in

the model) or other measures of interest, 4) examining the frequencies of

independent variables among the best GA models to determine whether

some variables are more common than others, and 5) when possible, using

diagnostic measures to obtain further insight.

Models having the lowest ICOMP-IFIM values were obtained from the

GA runs to form the initial best GA models. Model variance was used as a

secondary criterion to further refine this set of models. Models having

variances considered to be too large (> 3.00) were excluded from further

examination. Graphs of ICOMP-EFIM vs. k and the frequency of each

independent variable were examined (using JMP) in the final set of best GA

models. The phrase "best GA models" means that the reported models

were the best models that the GA runs actually found, not that all of the

possible "best" models were found. These "best GA" models are simply

very good models based on the criteria (ICOMP-IFIM and, secondarily,

model variance).
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For certain models, the logistic regression diagnostics of isX^j, ADj, Afiy,

and hj were used to further examine how well a model fit the data across

all observations and to compare specific alternative models. Calculations

of AX^y, ADp and A&j first involved obtaining residual terms and /lyfor

each covariate pattern (i.e., each unique combination of observed values of

the independent variables in a model) by using certain commands in the

LR procedure in BMDP (see Engleman 1988). All residuals and the

subsequent diagnostics were thus formulated for each covariate pattern xj

(where x represents the observed values of the independent variables and

the total / covariate patterns for a model are indexed by j = 1, 2,..., /) rather

than for each of the n observations as suggested by Hosmer and Lemeshow

(1989:152).

Residual measures obtained from the LR procedure in BMDP were the

standardized Pearson residuals, (rsj)^, and the deviance residuals, (dj)^.
These residuals, along with values for hj and the predicted probabilities for

each covariate pattern were put into a spreadsheet in JMP and used to

calculate AX^j, ADj, and Afiy based on Pregibon (1981) and Hosmer and

Lemeshow (1989:149-156).

The hj values are diagonal elements of the hat matrix (H), a matrix

which contains information from both the data (design) matrix and the

estimated probabilities. A measure of leverage is provided by hj. When

the predicted probability of a covariate pattern is between 0.1 and 0.9, then

large hj values (upper boimd of which is 1) can be interpreted as a large

distance from the mean and a large leverage on the estimated parameter

values (Hosmer and Lemeshow 1989:154).
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AX^j is based on the Pearson residual and represents the change in the

Pearson statistic when all observations with a given covariate pattern

are deleted from the model. ADj is based on the deviance residual and

represents the change in the deviance statistic when all subjects with a

given covariate pattern are deleted from the model. A large value in either

AX^j or ADj indicates that the particular covariate pattern is poorly fit by

the model. A&j is a generalized estimate of the standardized change in the

logistic regression parameters between the model with all the covariate

patterns included and the model with a particular covariate pattern

excluded from the model imder examination. Thus, large A&j values

indicate which covariate patterns have the greatest influence on the

estimated parameters of a given model (Hosmer and Lemeshow 1989).

Because the distribution of diagnostic measures is not known for most

logistic regression cases under the hypothesis that the model fits the data, a

graphical assessment of these measures was used following methods

outlined by Hosmer and Lemeshow (1989:157-166). Graphs of the

diagnostics A6y, AX^j and ADy versus the predicted probability were plotted

using JMP software. For AX^j and ADj, focus was on covariate patterns

with large values relative to other patterns and where "large" was

considered to be > 2.71 (the critical value for with alpha = 0.10 and df =

1). This definition of "large" for AX~j and ADj, in order to identify poorly

fit covariate patterns, is more rigorous than the definition of > 4.0 (alpha =

0.05 and df = 1) used by Hosmer and Lemeshow (1989:163). Both numerical

value and visual inspection should guide the analyst in determining what

is "large". Graphically, the analyst should pay attention to any points "...
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that fall some distance from the balance of the data plotted." (Hosmer and

Lemeshow 1989:162) in plots involving diagnostics.

Both graphical and numerical information was then viewed in

combination to find covariate patterns which were not fit well by the

model. The greatest concern should be placed on covariate patterns which

exhibit a) moderate to high leverage (large hj values), b) large influence on

the values of the estimated parameters (large A6y), and c) poor fit (large

AX2y or ADp, all within the range of estimated probabilities between 0.1 and

0.9 where leverage values are expected to be relatively large. Such patterns

can have the greatest potential impact on interpretations and conclusions

about a model, whereas those patterns which have poor fit and high

leverage can be "biologically plausible" depending on their configurations

of the covariates (e.g., see Hosmer and Lemeshow 1989:164-167).

RESULTS

Summer models

Anolis carolinensis were present in 45 of 166 plots (27.1%) during the

summer survey. Anoles were present in 36 of 51 plots (70.6%) in Habitat A,

6 of 43 plots (14.0%) in B, and 3 of 72 plots (4.2%) in the Pine/Mixed habitat

(Habitats C and D combined). A summary of each variable in relation to

the presence/absence of A. carolinensis is given in Table 5-4 for both

categorical and continuous variables. Univariate logistic regression models

(with both the intercept and each variable in its final form) had criterion

values ranging from 126.60 (for HABS) to 194.60 (for LOSD; Table 5-4).

Except for LOSD, each explanatory variable had a univariate ICOMP-IFIM



250

value less than that of the intercept-only model (194.21), although criterion

values for STMD, HSSD, SSSD, and WSUN were close to (within 2-3 units)

that of the intercept-only model. This suggested that each of the variables

alone, except for LOSD and perhaps STMD, HSSD, SSSD, and WSUN, had a

strong to moderate association with the presence of A. carolinensis in

summer plots. In general, the best univariate variables, based simply on

ICOMP-IFIM values, were HABS, DPOR, LDS, WCD, DES, and NLU.

Because of a singularity problem when variables LDS and SMOS

occurred together in any model, two different "full" models had to be fit;

one without LDS and one without SMOS. Both of the "full" models fit the

data better than the intercept-only model by both the classical statistical

method (without SMOS: G = 114.92, df = 23, P< 0.0001; without LDS: G =

114.79, df = 22, P < 0.0001) and by the informational method (without

SMOS: ICOMP-ETM = 143.81; without LDS: ICOMP-IFIM = 143.57).

However, most regression parameters in both of the "full" models had

associated P values > 0.10. For the model without SMOS, 19 of 24

parameters (including that of the intercept) showed P >0.10 and only four

parameters showed P < 0.05 (range: 0.0010 to 0.0312). The results for the

model without LDS were nearly identical. This situation (rather smaU P

value in the model test statistic, but larger values associated with the

regression parameters themselves) sometimes occurs in linear regression

where it suggests the possible existence of multicoUinearity (Neter et al.

1985:278-282, Moses 1986:353-355). The parameter estimates of EVG and

ESSD, for the full model without SMOS, were both highly correlated with

the parameter estimate of the intercept (r = -0.90 and -0.87, respectively), as
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well as with each other (r = 0.95). In addition, the WSUN parameter was

moderately correlated with DPORl and DPOR2 (r = -0.62 and -0.53,

respectively). A similar situation occurred among parameter estimates of

the fuU model without LDS. Despite the presence of some collinearity all

18 variables and the intercept were included in the analysis using the GA

(with the one restriction involving LDS and SMOS) in order to examine

the utility of using ICOMP-IFIM with the GA in such cases.

The four GA runs produced models with a wide range of ICOMP-IFIM

values (103.56-211.58). When criterion values were sorted from lowest to

highest, many models differed only slightly (< 0.50) from the models that

ranked immediately above or below. Thus, initial examination of the GA

models was confined to those models within a specific cutoff value which

was defined as 3.00 plus the median criterion value of the single best

models from each of the GA runs. The median of the best four criterion

values was 103.92; therefore, models with criterion values < 106.92 were

examined. This produced 115 models (henceforth called the "best summer

GA models") used for the examination of the frequency of each variable

and trends in the fit of models. Model variance was not used as a

secondary criterion for these 115 models because variances were near 1.0

(range: 0.60-0.86).

Possible trends in the lack-of-fit, complexity, and ICOMP-IFIM values

across the number of parameters (k) were examined graphically by

grouping models according to fc, such that each group had at least 5% of the

115 best GA models. Box plots showing the 10th, 25th, 75th, and 90th

quantiles and median values for each group suggested that the lack-of-fit
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values decreased with increasing k (Fig. 5-la), whereas the complexity

values increased with increasing k (Fig. 5-lb). Obviously, a trade-off exists

between these two components of ICOMP-IFIM; those models with k= 16

or 17 generally fit the data better than those with < 13 parameters with

respect to just the lack-of-fit term, but the larger models tended to have

greater complexity values than the smaller models. Considerable overlap

in ICOMP-IFIM values occurred, with no dear increase or decrease in this

criterion across k for these 115 models (Fig. 5-lc). In general for the best

summer GA models, the smaller models {k = 11-12) were at least

equivalent to the larger models (/c = 16 or 17) in their overall fit to the data

because ICOMP-IFIM values of the smaller models tended to be equivalent

or slightly smaller than those values for larger models.

Overall, five variables (INT, DPOR, SSSD, STMD, and DAES) occurred

in 100%, three variables (SCAN, DES, and HSSD) were in 75.0-99.9%, and

two variables (HABS and ROCK) were in 50.0-74.9% of the best summer

GA models (Fig. 5-2). Of the nine variables which occurred in less than

half of these models, six were related to either the number or size of

standing tree trunks (LDS, SMOS, LOSD, NLU, EVG, and ESSD) and two

were related directly to winter canopy/sunlight conditions (WCD and

WSUN).

Because the smaller models seemed to fit the data as well as the larger

models, the frequency of variables among different model size classes was

examined. Four size classes of the best summer GA models, k = 11-13,14,

15, and 16-17, were designated with at least 25 models per size class (32, 29,

25, and 29 models, respectively). DPOR, SSSD, STMD, DAES, and the
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intercept were present in 100% of the models within each of the model size

classes (Fig. 5-3). DES occurred in all models regardless of k, except for one

model in the k = 11-13 group. SCAN appeared in 100% of the models with

15 or more parameters, but in 79.3% and 59.4% of the models with 14 and

11-13 parameters, respectively. The percent occurrence for HSSD was

highest in the largest model class, but stayed fairly constant among the

other model classes (65.5%-76.0%). HABS was more infrequent (53.1%) in

the smallest model class compared to the other size classes (range: 58.6-

72.0%). ROCK showed a large decline in occurrence from the k = 16-17

models (69.0%) to the k = 11-13 models (37.5%). The remaining variables

all occxirred in less than 50% of the models across all size classes with LDS,

SMOS, LOSD, and WCD each showing greater than two-fold declines from

k = 16-17 to A: = 11-13 models (Fig 5-3).

Hypothesis-testing procedures on the estimated parameter values

(Wald X2 tests, SAS PROC LOGISTIC) were used to supplement the

previous graphical analyses. Because the data are observational and not

based on an experimental design, the estimated logistic regression

parameter values and their associated P values should be interpreted as

approximations rather than as exact or highly reliable values. Models with

16 or 17 parameters typically had four or more parameters each with P >

0.10. This finding, along with the graphical results of Figures 5.1c, 5.2, and

5.3, suggested that simpler models {k < 16) should be examined more

closely. Eighty-six of the 115 best summer GA models had fewer than 16

parameters.
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The variables which were most frequent among the best summer GA

models had statistically significant parameter estimates more often than

the least frequent variables. To illustrate this point. Table 5-5 simply shows

a maximum of ten models for each model size under k = 16 with the

lowest ICOMP-IFIM values. The variables which occurred in 100% of the

best 115 GA models (INT, DPOR, SSSD, STMD, and DAES) were also the

variables which always had significant parameters in the best models

shown in Table 5-5. The least frequent variables (frequency <60%) among

the best 115 GA models always had non-significant parameter estimates

(LDS, SMOS, LOSD, EVG, ESSD, WCD, DEW, and ROCK) or were

completely absent (NLU) from the best models in Table 5-5. This suggests

that these least frequent variables had little to contribute statistically to

models which already contained INT, DPOR, SSSD, STMD, and DAES.

Variables such as HABS, SCAN, and HSSD, which occurred with

moderate frequency overall (60-85%; Fig. 5-2), had significant parameter

estimates in 29.7% (11/37), 65.6% (21/32), and 45.2% (14/31), respectively, of

the models in Table 5-5 in which they each occurred. Among these three

variables, the one that occurred most frequently among the best GA

models, SCAN, had the highest ratio of significant to non-significant

parameter estimates among models in Table 5-5, whereas the least frequent

variable, HABS, had the lowest ratio. The statistical significance of HABS,

SCAN, or HSSD in any model appeared to be related to whether or not

certain other variables were present. The estimated parameter for DES2,

but not DESl, was significant in all but one of the models in Table 5-5. This

suggests that DES either may not really contribute to any given model or
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may simply need to be categorized or put in a different form or scale in

future modeling efforts. The latter interpretation is the one currently

preferred.

INT, DPOR, DES, SSSD, STMD, and DAES more consistently a)

occurred in the best sximmer GA models and b) possessed significant

parameter estimates among those GA models than any other variables.

Moderate consistency was exhibited by SCAN and HSSD. Together, these

eight variables were also the ones which formed Model 1 of the summer

GA results. Model 1 has both the lowest ICOMP-IFIM value and the

smallest number of parameters (A: = 11) of all the summer GA models.

Interestingly, Model 1 is a subset of 75/114 (65.8%) of the best GA models

(deletion of one, two, or three variables from those models leads to Model

1). For example, deletion of either variable 13 (ROCK), 1 (HABS), 3 (LDS)

and 13, or 7 (LOSD) and 10 (ESSD), from Models 2, 4, 5, and 7 respectively,

all lead to Model 1 (see Table 5-5).

For comparison with Model 1, parameter estimates for the best

summer GA models which had 11 parameters, as well as Models 2-19, are

shown in Table 5-6. All parameter estimates in Model 1 had associated P

values < 0.10 except for DESl. By comparison, at least two parameters had

associated P values > 0.10 in the the two other GA models with 11

parameters and among GA Models 2-19 (Table 5-6). These non-significant

parameters most often belonged to those variables which occurred less

frequently among the best summer GA models, such as HABS, LDS, ESSD,

DEW, and ROCK.
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Deletion of any single habitat variable from Model 1 produced only

models with higher ICOMP-IFIM values (range: 106.34-148.64) than this

model. The subset model of GA Model 1 which consisted of INT, DPOR,

SCAN, DES, SSSD, STMD, and DAES (HSSD deleted) came the closest to

the ICOMP-IFIM value of Model 1. Based on ICOMP-IFIM, Model 1 seems

to provide a better fit to the data than any of these subsets. However,

because all possible models were not evaluated, some possibility remains

that other models (either larger or smaller than k = 11) exist which are

equivalent to or better than Model 1 for the summer data.

The emphasis on the sununer results is not on any one model or on

the specific estimates of any given parameters, but rather on the frequency

of variables and the frequency of the approximate statistical significance of

variables among the best GA models. Overall, the results suggest that

those variables which occurred most frequently were also the ones which

were most frequently significant based on classical testing procedures. The

variables which occurred in 100% of the best sxunmer GA models, INT,

DPOR, SSSD, STMD, and DAES, also constituted all but two of the variables

which occurred in Model 1 from the GA results.

Winter models

Anolis carolinensis were present in 62 of 166 plots (37.3%) during the

winter survey. The frequency of occurrence in plots according to habitat

type was: 34 of 51 (66.7%) in Habitat A, 16 of 43 (37.2%) in B, 5 of 51 (9.8%) in

C, and 7 of 21 (33.3%) in D. Univariate logistic regression models

(containing each variable in its final form and the intercept) had ICOMP-

IFIM values ranging from 180.14 to 222.21 (Table 5-7). Each explanatory
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variable had a univariate ICOMP-IFIM value less than that of the intercept-

only model (219.52), except for NLOW. However, ICOMP-IFIM for the

intercept-only model was within two to three units of those umvariate

models of EVG, SOTW, DFW, HSCW, and SSWD. Thus, each variable

alone, except for perhaps NLOW, EVG, SOTW, DFW, HSCW, and SSWD,

showed a strong to moderate association with the presence of A.

carolinensis in winter plots. The best univariate variables appeared to be

ROCK, DPOR, HAB, WSUN, WTM, and WCD.

The full model for the winter data had a better fit than the intercept-

only model (ICOMP-IFIM = 154.59 vs. 219.52; G = 105.95, df = 23, P< 0.0001).

However, the full model had 10 of 24 parameters with associated P values >

0.10, but only ten parameters with P values between 0.05 and 0.0001 and

one parameter with a P value < 0.0001. As with the summer data, this

situation suggested the possibility of some multicoUinearity among the

habitat variables. Correlations between the parameter estimates of the

intercept and other variables in the full model were moderate (0.50 < I r I <

0.63) in five cases (NLUW, NLOW, SOTW, ESWD, and WSUN) and

slightly high in one case (r = -0.76; EVG). The correlations between

parameter estimates of variables other than the intercept were moderate in

four cases (between SOTW and NLOW, SOTW and LDW, ESWD and EVG,

and WSUN and WCD).

Despite possible multicoUinearity, the full set of variables was used in

each GA rim for the same reason stated for the summer analysis. ICOMP-

IFIM values from the three winter GA runs combined ranged from 143.61

to 229.93. These values differed by less than 0.50 between a given model
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and the model ranked just above or below for many pairs of adjacent

models. The initial cutoff value for the winter GA models, calculated in

the same manner as that for the summer analysis, was 146.97 and a total of

184 winter GA models had criterion values below this cutoff. Within this

set of the best winter GA models, four variables other than the intercept

(WTM, EVG, ROCK, and DAEW) were present in 100%, five variables

(NLUW, DPOR, NLOW, SCW, and DEW) occurred in 75.0-99.9%, and six

variables (HAB, LDW, SOTW, ESWD, WCD, and HSCW) each occurred in

50.0-74.9% of those models (Fig. 5-4). Unlike the findings for the summer

models, only three variables (DEW, SSWD, and WSUN) were found in

fewer than half of the best GA models.

Both the lack-of-fit and complexity terms had a rather linear trend with

k; lack-of-fit decreased and complexity increased with increasing k values

(Fig. 5-5a,b). In general, the smaller models tended to be equivalent in

ICOMP-IFIM values to larger models, but some of the largest models {k =

21-23) had the lowest criterion values (Fig. 5-5c). Overall, 77.7% (143/184) of

the best GA models had 17 or more parameters.

Most of the top twenty GA models had 17 or more parameters and/or a

variance > 3.00 (Table 5-8). For example, GA Model 1 possessed 21

parameters and a variance = 5.80. Only GA Models 2 and 13 out of the top

20 had both k <17 and variance < 3.00. In addition, each model with k>17

had three or more parameter estimates which likely contributed

statistically little to a model (i.e., associated P value > 0.10). These

combined qualities (i.e., large model size, large variance, and possible non-

contributing parameters) are undesirable in a model despite a low ICOMP-
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IFIM value. However, among the best 184 GA models, one, one, three,

five, 11, and 18 models had 11,12,13,14,15, and 16 parameters, respectively

and a variance < 3.00. For example. Models 2 and 13, both had a variance

< 3.00 and fewer parameters than the other top 20 GA models. Model 13 is

a subset of both Models 1 and 2, but it is the only subset of these models

(foxmd with the GA) which had both k<15 and ICOMP-IFIM rank less

than 40th.

Deletion of two or more of the variables which possessed non

significant parameters in Model 1 produced smaller sized models which

had ICOMP-IFIM values < 145.00 and variances < 3.00. It was decided,

therefore, that further analysis of the winter models should be conducted

by obtaining a limited number of subset models from a selected group of

GA models. Another option would have been to conduct two or three

more GA rims, possibly altering the rates of mutation and/ or crossing over

or increasing the size of the population and/or number of generations.

Because most of the top GA models were subsets of either Model 1, 2, 3, or

6, these four models served as the parent models for the subset analysis.

Only those subsets which included the intercept term were enumerated

here because aU of the best 184 GA models possessed the intercept. All

possible subsets having 11-14 habitat variables were obtained from Models

1, 3, and 6 (which all had 15 habitat variables). For Model 2 (13 habitat

variables), all possible subsets having 6-12 habitat variables were

enumerated. Results from each of the "subset analyses" on the four parent

models were combined and duplicate models were deleted so that a given

model was represented only once.
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The lowest ICOMP-IFIM value found for any of these subset models

was 143.36 {k = 15 and variance = 1.91), which was slightly lower than that

of GA Model 1. Because this model with the lowest ICOMP-EFIM value of

any of the winter models had 15 parameters and a variance imder 3.00,

further examination of the winter models was then restricted to those

models which satisfied all of the following criteria; a) k < 16, b) variance <

3.00, and c) ICOMP-EFIM value below 147.28 (= 3.00 plus the median of the

lowest criterion values from the four subset analyses). This produced 154

winter models (referred to as the "final best" winter models) from the

combined GA and subset analyses which were below the new cutoff value.

Model variances and the number of parameters among the final best

models ranged from 1.25 to 2.83, and from 10 to 15, respectively.

Considerable similarity in the lack-of-fit terms (-2 loglikelihood),

complexity values, and variances existed among the final winter models.

No clear increase or decrease occurred in ICOMP-IFIM values across k

among the final best winter models (Fig. 5-6). This suggests that these

models are probably similar in their fit to the data regardless of their size.

Among the top ten models with the lowest ICOMP-IFIM values, at least

one model from each size group was represented.

INT, WTM, EVG, ROCK, and DAEW each occurred in 100%, DPOR and

sew each occurred in over 90%, and DEW occurred in 77.9% of the final

best models (Fig. 5-7). HSCW, SSWD, NLOW, and SOTW occurred in

64.3%, 57.1%, 67.5%, and 51.3%, respectively, of these models. Variables

which occurred in < 50.0% of the final best models were (in decreasing

order of frequency): LDW, WCD, ESWD, NLUW, HAB, and DFW. WSUN
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was absent from all of the 154 final best models. Those variables which

ocairred in over 95% of the best 184 GA models also occurred in over 95%

of the final best winter models. The greatest declines in frequencies of

occxirrence for the habitat variables from the best 184 GA models to the

final 154 winter models was seen with HAB (from 67.4% to 6.5%), NLUW

(from 82.1% to 27.3%), LDW (from 66.8% to 46.8%), ESWD (from 70.7% to

28.6%), and DFW (from 32.6% to 0.65%).

In order to examine changes in the frequency of variables among

model classes of the final best models, four size classes were designated

with at least 15% of the 154 total models in each class {k = 15, n = 62; k = 14,

n = 40; it = 13, n = 26; A: = 10-12, n = 26). Besides the intercept (INT), the

variables WTM, EVG, ROCK, and DAEW occurred in 100% and DPOR and

sew were in at least 83.9% and 92.3%, respectively, of each the model

classes (Fig. 5-8). WSUN was not foimd in any of these best models and

DFW was fovmd in only one model. Large declines in variable frequency

from larger (k = 14 or 15) to smaller models {k < 12) were observed for

NLUW (58.1% to 0%), SOTW (61.3% to 23.1%), ESWD (42.5% to 0%), and

WCD (45.2% to 7.7%). More moderate to smaller declines were seen in

NLOW (75.0% to 50.0%), LDW (55.0% to 34.6%), HSCW (73.1% to 42.3%),

SSWD (60.0% to 46.2%), and DEW (82.5% to 69.2%).

The models with the lowest ICOMP-IFIM values among the final best

models for a given model size class {k = 10 through 15; maximum of ten

models per size class) are shown in Table 5-9. Model 1 possessed INT,

WTM, DPOR, NLOW, LDW, EVG, SOTW, SOW, ROCK, HSCW, SSWD,

DEW, and DAEW. The regression parameters of NLOW, LDW, SOTW,
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HSCW, and SSWD in Model 1 had associated P values > 0.10, but the other

parameters were significant (P < 0.10; DEW had a P value = 0.10).

Among the models shown in Table 5-9, INT, WTM, DPOR, EVG,

ROCK, and DAEW always had significant parameter values (P < 0.10); SOW

had significant parameter values in all but a few cases across those models.

WTM2 was non-significant in all of these models even though WTMl was

significant. As with the summer models, this variable may simply need to

be categorized or treated in a different form or scale in future modeling

efforts. For the present models, WTM is considered to be relevant because

of the potential influence that ambient air temperature has on anole

activity in the winter. NLOW, ESWD, WCD, DFW, and SSWD always had

non-significant parameter estimates, and LDW and SOTW were significant

in only one of the models in Table 5-9. FISCW and DEW were significant

in some models, but not others; their statistical significance was probably

related to which other variables were present in a given model. Results

from Figures 5-6 and 5-8 and the patterns of the statistical significance of

parameters in Table 5-9 suggest that those variables which occurred most

frequently were also the ones which were most often significant based on

classical testing procedvires.

Although Model 1 had the lowest ICOMP-IFIM value, other models

had fairly similar criterion values, as well as equal or lower numbers of

parameters, complexity values, and variances to Model 1 (Table 5-9).

For example. Models 2-6 and 8-12 all have criterion values within 1.50 of

Model 1, 14 or fewer parameters, complexity values less than Model 1, and

variances similar or less than that of Model 1. In particular. Model 4 (k =
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13, ICOMP-IFIM = 144.20) and Model 5 (it = 12, ICOMP-IFIM = 144.36) appear

to be very good alternative models to Model 1. Thus, no single model

appears to be vastly superior to all other models, based on ICOMP-IFIM,

complexity, and model variance, within the set of final best models for the

winter data.

Differences between any two of the top 12 models were mainly due to

either inclusion or deletion of either NLOW, LDW, and SOTW (and

occasionally WCD), or some combination thereof, from a model. Recall

that these variables were ones which occurred at moderate (50-70%) or low

(< 50%) frequencies among the final best 154 winter models. It appears that

some of these less frequently occurring variables might be able to

statistically substitute for one another in the winter models.

Logistic regression diagnostic measures were examined for each of the

models which had the lowest ICOMP-IFIM value within size class k = 10,

12,13, and 15 among the final best winter models. Diagnostic results were

similar among these four models, but for simplicity results are presented

for final winter Models 1 {k = 15, ICOMP-IFIM = 143.36) and 144 {k = 10,

ICOMP-IFIM = 147.12). Graphical examination of diagnostic measures

indicated that only a few covariate patterns for either Model 1 or 144

possessed moderate to high values for all three diagnostic measures:

leverage {hp, A6y, and poor fit (either or ADy). Such covariate patterns

are indicated by arrows in Figures 5-9 and 5-10.

Only a small proportion of the covariate patterns of Model 1 had hj

values that fell away from the balance of the data or even had moderately

large leverage values; at least 90% of the covariate patterns had hj values
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under 0.20 (Fig. 5-9a). The plot of predicted probability and A6; shows that

only six covariate patterns had fairly large values of ACy relative to the

other data (Fig. 5-9b). Afiy is calculated using both hj and AX^j (see Hosmer
and Lemeshow 1989:155-156), so a large A&j value could resxilt when either

hj or AX^j (or both) are moderate to large. Only two of the covariate

patterns that had moderate to large values of ABj also possessed moderate

to exceptionally large leverage values (points indicated by the arrows in Fig.

5-9b). The other data with large Afij had relatively low leverage values so

the major constituent of their large ABj was from AX^j.

The plots AX^j (Fig. 5-9c) and ADj (Fig. 5-9d) versus predicted

probability for final winter Model 1 indicated that 10% or less of the

covariate patterns had diagnostic values greater than the conservative

cutoff of 2.71. Only a few such points in both of those plots also had both

moderate to large hj and ABj values (as indicated by arrows in Figs 5-9c, d).

Similar findings regarding diagnostics were observed for final winter

Model 144. Only a few covariate patterns had fairly large hj values,

whereas about 11 points possessed leverage values of relatively moderate

size between 0.2 and 0.3 (Fig. 5-lOa). The plot of ABj versus predicted

probability showed that only two covariate patterns faU away from the

balance of the data (Fig. 5-lOb) and it is only those two points which also

have both moderate to large hj and poor fit.

The plots of AX^j (Fig. 5-lOc) and ADj (Fig. 5-lOd) versus predicted

probability for Model 144 indicated that seven covariate patterns had

diagnostic values greater that 2.71 and also fell away from the balance of the

data. However, only one of these covariate patterns also possessed a large
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leverage value (= 0.33) and large Afiy, and only one possessed a relatively

moderate leverage (= 0.21) and large A6y.

Recall that covariate patterns which have both moderate to large

values of leverage (hj) and poor fit (as measured by moderate to large

values AX^j and ADj), as well as moderate to large A6y, can have the

greatest potential impact on interpretations and conclusions about a model.

Those patterns which have poor fit, but low leverage can be "biologically

plausible" (i.e., are imusual, but can have reasonable biological

explanations for their values). By such guidelines, both winter Models 1

and 144 fit the data quite well because each model had only two covariate

patterns which possessed poor fit, moderate to large Afij, and moderate to

high leverage.

DISCUSSION

Statistical approach used in this study

Unlike the conventional methods used to analyze observational

multivariate data, namely stepwise algorithms with hypothesis-testing

procedures, the present study demonstrates the genetic algorithm-

informational modeling (GAIM) approach which;

1. takes advantage of a GA's ability to evaluate many more models
in one overall analysis of a vast model space than could be
evaluated by stepwise algorithms,

2. uses an informational model-selection criterion as the primary
criterion, rather than hypothesis-testing methods, to rank and
choose models,

3. emphasizes the need to examine the frequency of independent
variables among a set of "best" models found by the GA, and

4. de-emphasizes the often misdirected activity of choosing a "single-
best" model for observational multivariate data.
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GAs have a proven record of finding valuable solutions to complex

problems that have extremely large numbers of potentially good and bad

solutions (e.g., see Holland 1992a, b, Forrest 1993, Goldberg 1994), mainly

because of the way in which the actual searching for solutions takes place.

GAs can treat each solution to a specific problem as a unique "string" of

information, similar to the genetic information on a chromosome. Then,

a randomly selected population of strings or solutions is evaluated on its

ability to address the problem by means of a defined "fitness" function or

criterion. Fitness being used in a sense similar to that of Darwinian or

evolutionary fitness. The strings are then "mated" in a manner

mimicking chromosomal crossing-over during meiosis. The offspring are

evaluated for their "fitness" or ability to solve the problem.

Whether or not an offspring string is selected to form a new mating

pool is based on the fitness value of the string. Those selected strings are

mated and another "generation" of solutions is produced. This process

continues for many generations in a process mimicking biological

evolution, such that very good solutions to a problem are uncovered.

Readers are referred to Goldberg (1989,1994) and Holland (1992a, b) for both

overviews and more details about GAs.

The GAIM approach described in Part" 4 and its application in the

current study show how a GA can be used as an alternative to stepwise

selection algorithms. Two factors are important for using a GA as a

searching algorithm in problems of statistical modeling: the ability to

represent a statistical model as a string of variables and the ability to

evaluate and rank models by some fitness function or criterion. It is a
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simple process to represent models as strings of information. It is also

fairly easy to define the fitness fimction by using an informational model-

selection criterion, such as AIC or ICOMP-EFIM.

GAs can do two important things over stepwise algorithms. First, GAs

can form new models by adding or removing two or more variables at a

time, whereas stepwise algorithms typically only handle changes in one

variable at a time. Second, GAs used in conjxmction with an informational

criterion can compare any models, unlike stepwise algorithms which

compare only nested models when used in conjimction with statistical

hypothesis-testing procedures. Statistical modeling in the present study

primarily utilized an informational approach instead of hypothesis-testing

procedures. This is in keeping with the growing philosophy that statistical

modeling is not a hypothesis testing problem per se, but rather a problem

in optimizing some criterion for model selection (see Sakamoto et al. 1986,

Bozdogan 1987, 1988a, b, Bumham and Anderson 1992, Lebreton et al.

1992). Model selection criteria are often formulated to include measures of

both the lack-of-fit and model size or complexity into one numerical

summary value.

Because of the two attributes mentioned in the paragraph above and

the nature of its searching operations, a GA can provide a much wider and

diverse search of the model space and produce many more models in one

analysis that a stepwise algorithm. Granted, a GA which operates for more

than just a few "generations" takes longer to run than a single stepwise

search on a given data set. However, the analyst must consider speed

versus the total amoimt of information gained.
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Stepwise procedures have been used regularly in the multivariate

analysis of ecological data, but their use and misuse have been criticized

(see James and McCulloch 1990 for an overview, as well as Part 4 of this

dissertation). One important potential misuse is when an analyst uses

stepwise algorithms to search for a single "best" model (James and

McCulloch 1990). When a data set has many variables it is unlikely that a

single model will be clearly superior over all other models (Gorman and

Toman 1966, Hocking 1983, McCuUagh and Nelder 1989:8).

The GAIM approach emphasizes the need to find a set of very good

models rather than to find a single "best" model when it comes to

analyzing multivariate observational data. With such a data set it is

unlikely that a single best model will exist to capture the essence of the

data. By finding a set of good models and reporting them as such, the

analyst shows the scientific community a wider variety of models than

would be shown from results of stepwise algorithms. In addition, other

scientists can consider and evaluate a wider variety of models found by the

GAIM approach, instead of having to accept a supposedly single "best"

model reported from the stepwise searching.

Likewise, by reporting a set of best models rather than a single best

model researchers provide others with both a wider view of the

researchers' findings and the opportunity to compare models from

subsequent studies against a richer set of original models for purposes of

both external validation and formulation of initial causal models. The

validation process is much more limited in scope if each researcher of a
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particular phenomenon only reports a single model which, if the study

used stepwise selection, is likely to be just one of a number of good models.

Another problem with observational multivariate data is that analysts

will often interpret the imcovered correlations or associations in terms of

causation and/or confirmatory conclusions. Although some statistical

methods can be confirmatory (i.e., statistical inferences can be made and

extended beyond the sample to a larger population), confirmatory

conclusions are valid only imder certain conditions (see, e.g., Snee 1983:230,

Tukey 1980, James and McCuUoch 1990). Typically, such conditions do not

exist with observational (non-experimental) data.

The GAIM approach adheres to the fact that observational multivariate

data should be analyzed in an exploratory fashion and/or correlational

manner, whereby the analyst uses the results of the analysis to propose

possible hypotheses and questions for further research. This has been

suggested as the appropriate role of observational data in ecology (see James

and McCuUoch 1985, 1990). ControUed experiments, not observational

studies, are best suited for addressing and testing hypotheses regarding

causal mechanisms (James and McCuUoch 1985, 1990, Lubchenco and Real

1991). The GAIM approach provides a researcher and the scientific

community that wiU scrutinize the research with a wider view of the data

by providing more models and a frequency distribution of variables among

the best GA-produced models. These outputs from the GAIM approach can

potentially provide more insight into the data so that a richer process of

generating hypotheses and suggesting experimental studies can take place.
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Such an "abductive" process (i.e., that of proposing hypotheses) is an

important role of observational studies.

In addition to using the GAIM approach, the present study verified and

took into consideration specific assumptions to logistic regression analysis

which seem to be either overlooked or unreported by many analysts.

Specifically, analysts using logistic regression should examine whether:

1. continuous variables are linear in the logit, and
2. model variance differs considerably from 1.0.

Consideration of these two factors can be performed in association with or

directly part of the GAIM approach.

This study checked the assumption of linearity in the logit for all of the

continuous variables and changed the form of those variables which were

non-linear in the logit prior to performing model selection. Hosmer and

Lemeshow (1989:84-86, 89-91) mention this logit assumption and provide

some suggestions, such as transforming or categorizing the variable, to

overcome violations. Checking this assumption could be done either

before model selection begins or after a final model (or set of models) has

(have) been selected and further refinement of the variables is an issue.

A variable with a distinct non-linear association (in the logit) with the

dependent variable could be excluded from models during the model

building/selection process based on only its non-linear logit form and not

on its true association with the dependent variable. The best stage to check

this assumption might then be before starting the model selection process.

This was the approach used in this study in order to give each variable the

fullest opportunity to enter models in the selection process. The logit
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response function, as determined by the animal's association with a given

habitat variable, should not automatically be assumed to be linear over the

range of the continuous habitat variable.

Many ecologists who use logistic regression are not reporting any

examination of the logit assumption for continuous variables (see, e.g.,

Buehler et al. 1991, Burger et al. 1994, Diller and Wallace 1994, Larsen et al.

1994, Chandler et al. 1995, Coker and Capen 1995, DeLong et al. 1995,

Drewien et al. 1995, Gorenzel and Salmon 1995, Nadeau et al. 1995, Hinsley

et al. 1996, Kindvall 1996, Munger et al. 1998). Either the assumption is not

being checked or it is not being reported, but one cannot tell by simply

reading the publications previously mentioned. Researchers should be

sure to check this assumption or at least decide a priori whether or not

non-linearity in the logit is important from both a statistical and biological

viewpoint. Otherwise, relevant habitat variables measured on a

continuous scale might be incorrectly excluded from models simply

because the variables were not linear in the logit.

Model variance is assumed to equal one for logistic regression models

because of the binomial nature of the outcome variable (McCiillagh and

Nelder 1989:124-126). Because ecological binomial data may often exhibit

overdispersion (variance > 1.0), model variance should be estimated. In

this study, the variance of each model was estimated instead of assuming

model variance = 1. Researchers likely assume a model variance of 1 when

using logistic regression in animal-habitat studies as no mention of this

variance is being reported (see, e.g., Brennan et al. 1986, Capen et al. 1986,

Johnson and Temple 1986, Smith and Connors 1986, Diefenbach and Owen
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1989, Buehler et al. 1991, van Manen and Pelton 1993, Burger et al. 1994,

Diller and Wallace 1994, Chandler et al. 1995, Coker and Capen 1995,

DeLong et al. 1995, Gorenzel and Salmon 1995, Nadeau et al. 1995, Kindvall

1996, Munger et al. 1998). A discussion by Trexler and Travis (1993) of the

merits of logistic regression in ecological research also fails mention this

assumption or what to do if model variance is greater than one.

The variance assumption may seem to be a minor point, but it can

influence the selection of models. That is one reason why some

researchers performing model selection on capture-recapture data, where

others often assume model variance equals one because they are using

multinomial models, recommend estimating model variance and

incorporating these estimates into the model selection process (Lebreton et

al. 1992). In the ourrent study, an estimate of variance for each model was

both incorporated into the model's criterion (ICOMP-IFIM) value and

considered in its own right when selecting the best set of models after

ICOMP-IFIM values were used to tentatively select the best models. It

should be further emphasized that hypothesis-testing procedures do not

incorporate information about extra variance into the selection of an

appropriate model in logistic regression analyses.

Summer models

The most frequently occurring variables among the best set of GA

models describing the associations between habitat features and the

presence of Anolis carolinensis in summer plots were (including the

intercept): distance to potential overwintering rock (DPOR), summer

canopy categorization (SCAN), distance to habitat edge (DES),
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herb/shrub/vine cover (HSSD), summer sunlight index (SSSD), ambient

temperature (STMD), and standardized distance along the habitat edge

(DAES). These were also the same variables which most frequently

possessed significant parameter estimates (by classical hypothesis-testing

methods) and which occurred in the model with the lowest ICOMP-IFIM

value.

It should be noted that the following interpretations of habitat

variables and their parameters are not being suggested as reflecting the

biological "importance" of the independent variables as is incorrectly done

in many multivariate analyses (see James and McCulloch 1990:136-138).

Rather, the interpretations here only suggest how the probability of the

presence of A. carolinensis in a summer plot might be related to these

habitat variables in a biological manner. Methods using experimental

control, or at least partial control, over field variables would be needed to

possibly interpret the importance and/or causal aspects of the variables and

their parameter estimates. Such rigorous interpretation is not attempted

here because of the observational nature of the data.

Anolis carolinensis has been described as an "edge" species (e.g., see

Gordon 1956) meaning that it is often associated with ecotones or habitat

edges where vegetation is present, but any overstory canopy is open or thin

enough to allow at least moderate amounts of sunlight to reach the lizards'

habitat patches. Though all four sampled habitats did have a considerable

"edge" component, plots were sampled as far as 40-45 m from the habitat

edge in three of the habitats and in closed, partially open, and open canopy

structures. The combination of variables that occurred most frequently
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among the best summer GA models seems to qualitatively support the

general characterization that A. carolinensis is an edge species.

Given the other variables in the model, SCAN, DES, SSSD, and to

some extent DAES, reflect the possible associations between A. carolinensis

and edge conditions and/or canopy gaps in woodland habitats. The specific

categories used for SCAN and SSSD and the positive values of their

respective estimated parameters suggest that this species might be

associated more so with open and partially open canopies than closed

canopies and more so with moderate to moderately high than extreme

(low and high) levels of sunlight in the habitats sampled. In Louisiana, A.

carolinensis was most often found in open areas, clearings, and along edges

during the breeding season rather than in dense, shaded woodlands

(Gordon 1956).

DES provides a categorization of the distance to the distinct habitat edge

present in each of the habitats (see Table 5-2). Anolis carolinensis was most

likely to be found at the intermediate distance of 8-14 m from the habitat

edge (DES2 category). The large (non-significant) P value of the DESl

parameter when this variable occurs with other variables among many of

the top models suggests a need to restructure DES, possibly so that it

consists of just two categories in future models. It is possible that other

variables in the model may influence the parameter value of DESl,

especially if the DESl category was associated with less suitable habitat

featvires (such as farther distances from rock).

Lizard body temperatures can be affected by environmental factors such

as ambient air temperature, substrate temperature, and solar radiation in
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quantifiable ways (see, e.g., Bartlett and Gates 1967, Porter and Gates 1969,

Porter 1989). The two sunlight/canopy-related variables, SCAN and SSSD,

and DES are possibly appearing in the top summer models because

sunlight can be a resource for the ectothermic A. carolinensis. Air and

substrate temperatures and solar radiation can be influenced by canopy

cover and the amount of sunlight reaching potential perch locations (e.g.,

shrubs, tree trunks below canopy level, and lower parts of the tree canopy)

in wooded habitats.

Measurement of SSSD incorporates information regarding sunlight

and both overstory and xmderstory canopy cover, perhaps more so than

SCAN, because it was measured as the sunlight striking a horizontal

surface at approximately 1.5 m above the groimd (see Tables 5-1 and 5-2).

The positive parameter estimates of SSSD among the best models suggest

that A. carolinensis might be less likely to occvir in the highest or lowest

sunlight patches than in patches with moderate sunlight. Such patches

with moderate sunlight could potentially provide lizards with more

opportunities to shuttle between sunlight and shade in order reduce the

chances of overheating or being at suboptimal body temperatures for very

long.

Sunlight and canopy might also play a role in such non-thermal

aspects of the ecology of A. carolinensis as visual acuity, color perception,

and communication. This species uses physical displays, including head

bobbing and extending the colored throat-fan, as a means of intraspecific

communication in its natural habitats (Gordon 1956, Jenssen et al. 1995).

Being diurnal, A. carolinensis probably has greater visual acuity in well
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lighted conditions than in shaded ones. Color and its perception in

wooded habitats are influenced by the amount of light and canopy cover

(Endler 1993). Thus, simlight and canopy cover might play a role in the

perception of color and visual communication in A. carolinensis during

the spring and summer seasons when courtship and territorial defense are

taking place.

Ambient air temperature (STMD) in the summer plots was one of the

weaker variables among univariate models in terms of its association with

the presence of A. carolinensis. However, the fact that this variable appears

in all of the best GA models suggests that it may provide useful

information when in conjunction with other habitat variables. The

positive parameter estimates of STMD suggest that A. carolinensis might

be more likely to occur in plots with moderate temperatures than cooler (<

25.5°C) or warmer (> 28.8°C) ones. The range of temperatures during the

actual surveys was not as great as the full range of temperatures occurring

over any given summer day. However, it is possible that STMD appears in

so many models because it interplays with habitat features in ways not

directly measured here and/or stands in for some habitat or microclimatic

parameter that was not measured.

Herb/shrub/vine groimd cover (HSSD) occurred frequently among the

best summer models. The positive parameter values, given the other

habitat variables also present in the best models, suggest that A.

carolinensis might be more likely to be associated with lower to moderate

groimd cover than with either the lowest (< 19.0%) or the highest (> 42.0%)

amounts of such cover. Whether these intermediate levels of ground
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cover are related to asp>ects of feeding, detection of groiind predators, or

thermoregulation are not known. It is possible though that adults have

home ranges possessing moderate ground cover, but which are near or

adjacent to areas with more groimd cover where hatchlings and juveniles

could have close access to high amounts of such cover. The presence of

adults, not juveniles, was the observed outcome variable in the summer

plots and advdts perch more often on trees than juveniles which often

perch on herbs and shrubs (Part 4 and unpublished data).

Distance-related variables DPOR and DAES, and even SCAN and

SSUN, given the other variables also in the best models, suggest that the

presence of A. carolinensis might be associated with habitat features on a

spatial scale larger than an individual's summer home range. SCAN and

SSUN were measured in a way that shows that sunlight in a plot and

canopy cover are related to canopy structure beyond the scale of a plot's

own size (see Table 5-1). The amount of sunlight reaching an anole's

location along a slope or bluff area is influenced by the degree of canopy

openness or closure both adjacent to and directly above the anole's

location. Thus, the scale beyond the home range itself can have some

relationships to sunlight levels in the summer home range or territory.

Distance to potential over-wintering rock (DPOR) is probably not

thermally critical to green anoles during the summer. However, summer

home ranges might occur fairly close to potential overwintering rocks if

survival advantages occur to minimize the distance needed to travel in

order to reach such rocks once overnight temperatures begin to drop in

autumn. Positive parameter estimates for DPOR suggest that the
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probability of occurrence of A. carolinensis is highest when the distance to

potential rock shelter is < 10 m, followed by distance category 11-20 m

(DPOR2). In Louisiana, median distances moved by marked individuals to

over-wintering sites were 43 ft (~13.1 m) at Bridge City and 68 ft (~20.7 m) at

Plauche (Gordon 1956:167). Slightly larger distances to winter cover for

Louisiana anoles could reflect either behavioral differences or actual

physiological differences from Tennessee anoles, perhaps in response to

autumn climatic differences between these locations.

In many habitats and microhabitats in Tennessee, fewer anoles are seen

in locations far from rocks (personal observations). Although a maximum

distance which could be travelled by this small, ectothermic lizard to reach

a suitable overwintering site is not known, it seems reasonable to suggest

that survival might be enhanced by locating a summer home range as close

to such sites as possible. The best strategy might be to remain rather close

to the rock shelter during summer so that an anole would not get caught

out in a fast moving cold front in autumn. This distance to rock shelter (or

other suitable cover) could possibly be associated with some locomotor or

behavioral limitations of A. carolinensis to move to such shelter when

overnight temperatures begin to first decline significantly. Adult A.

carolinensis typically begin moving to overwintering rocks around mid-

September (personal observation).

The high frequency of DPOR in these summer models might suggest

that these lizards have a limited distance that they venture away from

potential overwintering rocks, even in the summer. An alternative

interpretation is that the rocks themselves create open areas or gaps in the
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canopy because of the difficulty trees might have in growing on or between

closely clustered rocks. Thus, lizards might associate more closely to rocks

because of the canopy gaps produced and a greater availability of sunlight

during the reproductive and growing season (mainly spring and summer).

Another distance-related variable, distance along the habitat edge

(DAES), appears in all of the top summer GA models. Green anoles were

more likely to occur in plots away from the east and west ends of the

sampled habitats than near those ends, as suggested by the positive

parameter value and the specific categorization used for DAES (see Tables

5-6 and 5-2). AU four of the habitats have either distinct habitat changes or

transitions with other habitats at their east and west boxmdaries. DAES

possibly suggests that A. carolinensis shows a gradient in its distribution in

these riparian and edge habitats.

The central parts of these habitats might have the more suitable habitat

features, whereas the east and west ends of each habitat transition or

change into habitats less suitable for these lizards. For example. Habitat A

(river bluff) shows both a gradual decline in the amount of rock present

and an increase in canopy cover at its western end. Habitat B exhibits a

decrease in available rock at its east end and Habitat D makes a fairly abrupt

turn to the north along a small body of water not far from its east end. In

designing this study the actual areas to be sampled within each habitat were

chosen so as to avoid any overlapping with or distinct changes into

adjacent habitats. However, A. carolinensis might respond to transitions

or changes into adjacent habitats over a distance larger than that

anticipated when the boundaries of the sampled areas were first delineated.
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Observational data and interpretations of such data are best suited for

providing preliminary insight into a phenomenon or pattern and

suggesting possible causal questions or models to test by means of

experiments (James and McCuUoch 1985, 1990). The summer analysis

presented here on A. carolinensis-habitat relationships attempts to adhere

to these roles of observational research. The exploratory analysis of the

summer data suggests that overall factors to examine in future research on

A. carolinensis might be a) sunlight and thermal factors and b) habitat

features related to certain spatial scales beyond the actual home range scale

of this species.

Experimental manipulations of canopy cover in summer home ranges

could be performed. Patches that supported an adult male and one or more

adult females during one or more summers could be shaded in different

amounts. The plots would then be svirveyed for changes in anole

occurrence over one or more summers following manipulation to

examine the possible effect of shading on probability of occurrence of A.

carolinensis.

Many studies of Anolis lizards encompassing a habitat or niche

component have focused on a spatial scale equivalent to the local perch

area or territory (e.g.. Rand 1964, Schoener 1968, 1975, Jenssen 1973) or have

been conducted within one study site or habitat. The present study suggests

that future studies of A. carolinensis should perhaps consider the

importance of various spatial scales when examining this lizard's ecology

and patterns of habitat use. Field and/or lab experiments might be able to

estimate the extent to which the presence and/or abundance of A.
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carolinensis is associated or even influenced by habitat variables at

different spatial scales.

One approach to this spatial aspect would be to alter the distances from

overwintering rock to home ranges/territories that were known to be used

each summer. This could be performed by hiding the rocks from view and

accessibility from the anoles or by making the rocks of low quality winter

shelter (e.g., put structures in to keep the rocks heavily shaded at all times).

Only the habitat of the rocks and extremely close to rocks would be altered.

Would anoles continue to utilize summer territories which themselves

continue to be good summer patches, but which are now located 20, 30 or

40 m from suitable sunny winter rocks because the closer rocks are now

shaded and unsuitable for winter shelter and basking sites?

Another experimental approach, highlighting both the spatial aspect

and possible thermal and biological relevance of overwintering rocks

would be to supplement habitats with such rock shelters. A sample of

rather similar habitat patches could be selected, whereby the patches are

fairly far from overwintering rocks and the probability of occurrence of A.

carolinensis is fairly low. Half of the sample would have artificial

overwintering rock shelter constructed within or very near each patch,

whereas the other half of the sample remained as it was (control group).

Presence of A. carolinensis before and after the habitat manipulations

would be measured to see the effect of the manipulations on occurrence of

this anole. In addition, thermal aspects of the habitat patches would be

measured before and after the manipulations by means of thermocouples
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and/or thermocouples inside copper lizard models. The thermal data

would also be compared between the two groups of patches.

The variables DES and DAES may suggest some relationship of A.

carolinensis occurrence to the larger physical features of the habitat itself.

The locations directly on the habitat edge and near the east and west

boimdaries, where the habitats transition into other habitats, might be less

suitable to anoles than core locations. To test this, one coiild alter habitat

features at the east and west boundaries to make the locations more

suitable and census plots in such locations before and after manipulations

for changes in the presence of A. carolinensis. The alterations should be

done in a manner to make habitat features in the boimdary plots more like

those in the more centrally located plots. In turn, centrally located plots (in

terms of DAES) could be modified to resemble the initial state of the plots

at the east and west habitat boimdaries of the sites used in this study.

Habitat models alone will not likely provide useful tools to effectively

predict the occurrence or abundance of a species, particularly when based

on observational data. Experimental approaches are very much needed.

Some experimental studies of Anolis habitat use have been performed (see

Sexton and Heatwole 1968 for an outdoor caged-experiment). In addition

to experimental studies using habitat manipulations, more field research is

needed in the areas of thermal relations, biophysical ecology, energetics,

food/ prey availability, and community ecology in order to better

imderstand any patterns in the distribution and abxmdance of A.

carolinensis in the northern part of its range. Useful research on this anole

would include studies taking a similar approach to that of Riechert and
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Tracy (1975), Dunham et al. (1989), and Porter (1989) whereby researchers try

to relate biophysical and physiological ecology to reproductive output and

population ecology.

Winter models

The most frequently occurring variables among the set of best models

describing the associations between habitat features and the presence of

Anolis carolinensis in winter plots were (including the intercept): ambient

temperature (WTM), presence of live overstory evergreen tree trunks

(EVG), presence of overwintering rock (ROCK), distance along the habitat

edge from west boundary of habitat (DAEW), distance to potential

overwintering rock (DPOR), and canopy cover categorization (SCW). All of

these variables occurred in 100% of the best final winter models, except for

DPOR and SCW which occurred in over 90% of those models (all seven of

these variables were also the ones which most often possessed significant

parameter estimates via hypothesis-testing procedures). This suggests that

at least three habitat aspects in combination seem to be related to the

occurrence of A. carolinensis in winter plots: a) shelter and potential

basking sites (ROCK, DPOR), b) sunlight availability and temperature (EVC,

SCW, WTM), and c) spatial features (DAEW, and to some extent DPOR).

Several winter variables which occurred in approximately 50-80% of

the final model set, DEW, HSCW, SSWD, NLOW, and SOTW, did not

frequently have significant parameter estimates. However, they might

account for some information not completely accounted by the more

frequent variables. These less frequent variables do seem to lend some

support to the three key habitat aspects mentioned above. DEW has a
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relationship to spatial features and SSWD, NLOW, and SOTW has some

relationship to canopy and sunlight conditions. These last three variables

might be capturing some information related to summer sunlight/canopy,

more than winter, because they measure summer sunlight in a plot

(SSWD) and number (NLOW) and size totals of deciduous trees (see Tables

5-1 and 5-3). Such information might have relevance to winter conditions

and/or suggest spatial and temporal relevance of such information to the

lizards for their use of summer and winter home ranges that are likely to

be in close proximity (< 20 m apart). As for HSCW (herb/shrub/ vine

foliage groimd cover), it may be weakly associated with habitat use of

juveniles and subadults, both in winter and summer, as such individuals

tend to be associated with that type of habitat structure more than adtilts

(tmpublished data).

What can be stated about the possible relationship between A.

carolinensis occurrence and the three aspects of habitat uncovered by the

analyses? First, the probability of A. carolinensis occurring in a patch is

associated with available overwintering rock, given the other habitat

variable also in the models. Shelter from cold temperatures is needed by

A. carolinensis, as it is for ectotherms living in any seasonal temperate

zone. The presence of rocks which possess crevices can provide shelter

from cold winter temperatures, both during the day and night.

Rocks along south-facing slopes can also provide potential basking sites

for A. carolinensis. This anole emerges from refugia on sunny winter days

at sites in this study as well as other sites across the species range (Ragland

et al. 1981, Gatten et al. 1988, Jenssen et al. 1996). Green anoles in eastern
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Tennessee will perch in sunny areas, basking on rocks, bare soil and

sometimes fallen logs (unpublished data) and on various structures in

other parts of its range (e.g., Louisiana - Gordon 1956). Perhaps A.

carolinensis does not possess the physiological capabilities to become

dormant, as do other lizards in temperate zones, because it is of tropical

origin (i.e., phylogenetic constraint). Research is needed to address such

physiological capabilities or limitations of this species relative to typical

winter dormant lizards.

Second, sunlight and temperature appear to be associated with the

occurrence of A. carolinensis in winter plots. This is directly related to the

aspects discussed above regarding basking and lack of complete dormancy

in winter. This species appears to have a need to bask and raise its body

temperature. Lab experiments show that seasonal gonadal recrudescence is

enhanced by daily fluctuations in temperature and high body temperature

(Tb aroimd 32 ̂C; Noeske and Meier 1977, Licht 1971,1973). However,

feeding in winter does not seem to occur very often for A. carolinensis in

South Carolina (Jenssen et al. 1996) or eastern Tennessee (personal

observations), although the number and diversity of arthropods active on

and near the rock faces on sunny winter days suggests that anoles have the

opportunity to do so. Raising Tb to higher levels than those typically

observed in the field would impose considerable metabolic costs to these

lizards in winterQenssen et al. 1996). Based on such considerations and on

results from their work, Jenssen et al. (1996) hypothesized that northern A.

carolinensis compromise between raising Tb high enough for physiological
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purposes (perhaps gonadal recrudescence) and too high to inflict

detrimental metabolic costs.

Regardless, because of physiological needs and/or possible phylogenetic

constraints to become dormant, A. carolinensis likely requires winter

habitat (including microhabitat) features that provide both thermal and

solar radiation resources to allow for elevated Th during the day and

shelter from the cold at night (and on cloudy days). Exposed rocks, with

crevices, located along south-facing slopes provide such features. Also, the

microclimate around the rocks is warmer than surrounding habitat; where

many rocks or a bluff occur the thermal environment is usually warmer

than adjacent areas without many rocks. The rocks can also act as a heat

sink late in the day and into the evening hours in winter. Exposed tree

roots or logs with cracks can also provide shelter and basking sites for A.

carolinensis, but more anoles tend to utilize rocks and bluffs during winter

in eastern Tennessee (unpublished data).

Third, spatial features such as DAEW, DPOR, and possibly DEW may be

useful in describing associations between A. carolinensis and habitat

features. DAEW might be of relevance to winter anoles for the same

reasons as explained for the summer models. That is, the west and east

ends of the study sites here typically showed transitions into habitats that

were less suitable for or absent of anoles.

Even though ROCK occurred in all of the models in the final winter

set, DPOR still appeared in most of those models. Perhaps the mere

characterization of presence/absence of rock (ROCK variable) in a plot was

not sufficient information. Some patches of habitat did not have
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"potential overwintering rocks" (i.e., those possessing crevices or holes -

see Table 5-1) within them, but did have bare soil, fallen logs, and small flat

rocks upon which anoles could bask. Such plots were sometimes within a

few meters or so of potential overwintering rock (such as plots in category

DPORl - see Tables 5-3 and 5-7). Thus, DPOR appears to contribute to the

winter models in a way that also suggests a spatial component to the ROCK

variable.

Overall, these results and interpretations can suggest hypotheses and

questions to be examined by future research. One question to examine, as

suggested by this research and other field observations, regards the

interplay between rocks, sunlight availability/canopy structure, and

thermal features of habitat patches. Artificial rock shelters could be

constructed in the field, some of which are unshaded (control) and others

which are partially shaded treatment, and placed in replicate habitats.

Alternatively, the researcher could partially shade existing overwintering

rocks and leave others in sunlight. The treatments and control rocks could

be surveyed for the presence and abimdance of A. carolinensis.

Lizard body temperatures and air and substrate temperatures would be

recorded. In addition, copper lizard models with thermocouples could be

placed in all the treatments and controls to obtain data over many days

under various climatic conditions during winter. The data would provide

a means to compare the treatment and controls on the basis of lizard and

lizard model body temperatures. Using these data, biophysical modeling

could provide profiles of possible thermal advantages of unshaded versus

partially shaded rocks.
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Using a similar design, one could individually enclose each treatment

and control and stock the enclosures with male-female pairs. If raising

body temperature does influence gonadal recrudescence, then habitat

manipulations related to shaded versus partially shaded rocks, and

subsequent differences in thermal microhabitat conditions, could be used

to test such effects on the level of recrudescence or onset of reproduction in

spring and number of eggs (= clutches) produced in A. carolinensis.

The winter models frequently possessed the presence of overwintering

rock (ROCK) and both summer and winter analyses showed that DPOR was

one of the most frequently occurring variables among the best models

foimd. In locations where rocks with crevices are absent or far away (or at

distances not easily perceivable by these anoles), anoles probably use dead

stumps or trees, fallen logs, or along roots of trees below the surface of the

groxmd for overwintering sites. If the thermal quality of such alternative

sites is lower than that of rocks, then the probability of A. carolinensis

being in an area far from rock crevices might be lower than in areas close to

such cover. Studies of the thermal differences among the various winter

shelters and winter basking sites, the physiological costs and benefits of the

use of these microhabitats, and the abiUty of these lizards to move to the

shelters across a wide range of distances are needed. Such studies would

require an approach based on biophysical and physiological ecology.

How do population estimates, reproductive output, and overwintering

survival rates differ among habitats, such as the four different habitats used

in this study? Such parameters should be compared among habitats which

differ in the availability of rocks with crevices for winter shelter, canopy
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cover, and solar radiation levels. Do different habitats also differ in

important population and reproductive parameters? The fact that A.

carolinensis occurs in a variety of microhabitats and habitats, but with

apparent different probabilities of occ\irrence, in eastern Tennessee

presents a great opportunity to try to link biophysical models with

reproductive and population parameters in a manner following research

by Dxmham et al. (1989) and Porter (1989).

Although presence-absence data were analyzed in this study, densities

of A. carolinensis per winter plot varied both within and among the four

habitats. Given the relatively warm winters that occur in eastern

Tennessee, could anoles survive which occvirred m plots that lacked

overwintering rock (or were greater than some minimum distance from

rock) if the winter happened to be particularly severe? This point, again,

suggests that the thermal quality of various overwintering structures

should be examined, but also in context of the severity or mildness of a

given winter season. It is also possible that the presence of A. carolinensis

in some winter plots could be a function of the generally mild winters that

are occurring. Thus, plots or habitats that lack overwintering rock might

represent "marginal" patches or "sink" habitats, respectively, when winters

are relatively mild. During severe winters, such plots or habitats might not

support A. carolinensis. In addition, could the winter survival of A.

carolinensis in plots that lack rock or are relatively far from rock be a key to

northward range expansion of the species. Using an approach similar to

that taken by Porter and Tracy (1983) on the distributional limits of the

desert iguana {Dipsosaurus dorsalis), evaluation of habitat features.
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measurement of climatic and microclimatic variables, and biophysical

modeling covdd possibly help address these questions.

Relationships between habitat features and distribution of A.

carolinensis should be examined on large spatial scales. Given the results

of this study and what can be uncovered from additional studies like this

one, it might be expected that the availability of rock crevices and/or bluffs,

levels of solar radiation, and profiles of winter temperatures at various

locations and spatial scales would be related to the geographic distribution

across the northern part of this species range. What can such variables tell

us about the northern limits to the range of A. carolinensis? What will

happen to these northern distributional limits with changes in the global

climate? Biophysical modeling, combined with habitat and environmental

measurements, might help answer such questions.

The analyses conducted in the present study utilized data from fotir

habitats in eastern Tennessee at the northern distributional limits of A.

carolinensis. Such analyses should be conducted in similar habitats at

different latitudes between, for example, Tennessee and southern Georgia.

The lower latitudes would probably have rather different variables appear

in the models and would likely lack variables such as presence of

overwintering rock and distance to rock. A comparative approach such as

this could provide insight into different associations between the

occurrence of this anole and various habitat features. Physiological data

and biophysical models to accompany the habitat analyses would provide

quantitative ways to compare important physiological and thermal
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parameters related to similar structural habitats along a latitudinal

gradient.

Regarding the statistical analysis itself, the winter data analysis proved

to be a more elaborate process than for the summer data. Perhaps this was

because of more collinearity among winter variables and/or the possibility

that more winter variables were able to substitute for one another than in

summer data. Regardless, subset analyses on the winter GA results were

conducted to find smaller models having equally good fit as the slightly

larger models first foimd by the three GA runs. Perhaps additional GA

runs were needed to uncover smaller models. Similarly, larger numbers of

generations or sizes of each population may have produced better results

given the somewhat complex nature of the winter data. More frequent

crossovers and/ or mutation rate may have been needed.

The point is that a single, standard GA is not going to produce perfectly

tidy results for every data set. One alternative approach is to run one pass

with the GA, examine the preliminary results, and check whether or not

some smaller subset models fit the data better (in terms of their

informational criterion values). If a good number of smaller, better models

were missed, then parameters in the GA such as mutation rates, crossover

rates, population size, and/or generation size, could be altered. In addition,

a researcher could use a more sophisticated GA than the one used in the

present study (computer scientists are now producing a wide variety of

GAs). It is just a matter of more research being needed to determine the

full applicability and range of potential benefits of using the more

sophisticated GAs for statistical modeling.
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Non-habitat factors

The current study examined possible associations between the presence

of A. carolinensis and only habitat features. The presence of an animal in a

patch or a larger area, however, can be associated with or even influenced

by factors such as competitors, predators, food availability and/or quality,

disease, and parasites.

For A. carolinensis, potential competitors would most likely be other

lizards and insectivorous birds, but very little information exists to

evaluate any positive or negative associations between green anoles and

other vertebrates. The occurrence of other lizards, regardless of the species,

was recorded during the survey of each plot as either "present" (non-

anoline lizard either inside the plot or within 2 m of plot edge) or "absent"

(non-anoline lizard not observed inside the plot or within 2 m of plot

edge). Because some plots were surveyed only long enough to find A.

carolinensis, only plots which were sampled for at least 19 observer

minutes were used in this analysis. A two-way contingency table was used

to analyze this limited data for the possible association (whether positive or

exclusionary) between A. carolinensis and all other lizard species

combined. In only one case was a non-anoline individual actually seen

within a given plot when a non-anoline species was considered "present"

according to the categorization.

Results from the summer data do not support the possible association

between the presence/absence of A. carolinensis and that of other lizards

(X2 = 0.930, df = 1, P = 0.335, Table 5-10). For the winter data, there were

only two cases of another lizard species within or adjacent to any of the
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plots (one plot with and one without A. carolinensis), thus providing

similar findings to that for the summer data. In general along the Little

Tennessee River, A. carolinensis seems to occur in greater numbers than

any other lizard species (personal observations and data from the present

study). Data on insectivorous bird numbers at the time of this study are

lacking, but qualitative observations in the four study habitats and several

others suggest that A. carolinensis is the most common diurnal vertebrate

in these habitats. Thus, the limited information available shows no

support for possible associations between A. carolinensis and all other

lizards combined, but it cannot be said that such associations or

competitive interactions which might influence A. carolinensis

distribution are indeed absent.

As for predation, not a single predatory attempt on A. carolinensis has

been witnessed by the author during eight years of field work in Tennessee.

This is not to say that predation on A. carolinensis does not occur because

tail autotomy occurs (personal observations), but that the lack of data on

predatory events prevents any information about predation from being

thoroughly evaluated. Snakes (e.g.. Coluber constrictor (Colubridae)), have

been observed attacking primarily ground-dwelling lizards such as

Eumeces spp. (Scincidae) and Cnemidophorus sexlineatus (Teiidae) in one

of the habitats (personal observations). Anolis carolinensis is arboreal to

semi-arboreal and therefore might be difficult for many snakes to capture.

In addition, the habitat in which potential snake predators have been most

frequently observed. Habitat A, is also the habitat in which A. carolinensis

is most abundant (personal observations).
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The survey methods in this study were used to determine the presence

of lizards and not potential predators. Potential snake and bird predators

on A. carolinensis are rather widely-foraging, habitat generalists.

Therefore, evaluating possible associations between the occurrence of

anoles and such predators would require different survey methods than

those used in this study.

Data on diseases and parasites is also lacking for A. carolinensis in

Tennessee. Disease and/or parasite factors might be related indirectly to

the presence of A. carolinensis in a given plot via their potential

relationships with the abundance of lizards in a given habitat or locality.

Lizard or saurian malaria (Plasmodium) is one possible factor, but its

existence has not yet been studied in Tennessee populations. Decreases in

several hematological, physiological, reproductive and behavioral

parameters in Sceloporus occidentalis have been correlated with lizard

malarial infection (see Schall 1983), but whether lizard malaria influences

the distribution of A. carolinensis either within or among habitats is not

known. Information is also lacking on other parasites and their ecological

implications for A. carolinensis.

Limitations of this study

Any scientific study has limitations on the extent to which knowledge

is gained and/or inferences can be made due to the nature of the study

design, sampling scheme, and data structure. The present study is no

exception. The summer and winter studies reported here were

observational in nature and not experimental, thus causal relationships

between the presence of A. carolinensis and habitat features carmot be
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made. Useful descriptions of associations, but not clear causal

relationships, can be obtained from observational studies analyzed with

regression analyses (linear: Moses 1986:357, James and McCulloch 1990:137-

138; logistic: James and McCulloch 1990:144-145). It would also be

inappropriate, for example, to say that the variables in the best model(s) are

the most "important" variables either statistically or biologically to explain

the presence of this species. Observational studies with many regressor

variables simply cannot assess the biological importance of variables,

particularly when stepwise selection procedures are used (James and

McCulloch 1990:136-138).

This study was exploratory rather than confirmatory due to both its

observational nature and the sampling design. Although plots were

randomly placed and randomly surveyed within habitats, the four habitats

themselves were not randomly selected from among all habitats along the

Little Tennessee River. Various constraints (e.g., travel time between sites,

available time frame for the study, access to sites, and limited man-power)

forced sites to be chosen which could be adequately sampled given such

constraints. Thus, inferences here can probably be extended only to the

specific types of habitat which were sampled and not to all habitats in

eastern Tennessee or even along the Little Tennessee River. Such a

limitation is common among field studies where the overall sampling

may not have been entirely random in design.

Just because certain variables occur most frequently does not

automatically infer that they are the most "biologically important"

variables. Likewise, variables which did not occur frequently among the
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best GA models are not necessarily biologically unimportant. For example,

winter sunlight estimates (WSUN) did not appear in the final set of winter

models. This does not mean that sunlight, per se, is not important because

anoles bask in svinlight during sunny winter days. Other sunlight and/ or

canopy variables in the final models may have been able to capture some of

the information about sunlight better than WSUN given the other

variables that also appeared in the models.

Biological importance of habitat variables must ultimately be verified

through experimental approaches, if possible, not via statistical modeling

of observational data. Thus, the most frequent variables among the best

GA models could be the ones that receive the attention and interest of

future experimental research as mentioned previously.

The role of observational studies of animal-habitat relationships
in forming conservation and management plans

The search for models, based on observational multivariate data, as a

tool for testing "hypotheses", predicting ecological relationships or

outcomes, and/or forming conservation policy and management plans is

fairly popular in ecology, conservation biology, and wildlife management.

Many such studies can be foimd in the the edited volume Wildlife 2000

(Vemer et al. 1986), the Journal of Wildlife Management, Ecology, and

Conservation Biology. Unfortunately, the use of observational data for

purposes of prediction is often risky and unreliable (see discussion of this

topic in Part 4 as related to Hocking 1983, Snee 1983).

Researchers have also incorrectly used statistical modeling of

observational data to "test hypotheses" or determine the effects or
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influences of one or many things on another. In a study of fish

assemblages in streams and beaver ponds, for example, multiple regression

on a set of observational data was used to test"... the hypothesis that

change in species richness per pond with pond age was a result of physical

habitat changes." (Snodgrass and Meffe 1998:931). After forcing two other

variables into models, the researchers used stepwise selection indicating

that significant predictive power of pond age beyond that of other variables

would be demonstrated if any of the age categories were still found in the

model. Such "tests" and assessments of "predictive power" based on non-

experimental data can only be rather weak tests of hypotheses if we are to

believe most statisticians and the cautions of James and McCulloch (1985,

1990).

Morris (1987) used multivariate techniques and linear regression

analysis to test hypotheses about which spatial scales small rodents were

"selecting" in his study of habitat selection processes based on

observational data. The non-experimental approach used by Morris (1987)

cannot make inferences or draw conclusions about which scale of habitat is

being selected by the animals. His observational study could suggest

hypotheses to test regarding habitat scales, but only an experimental

approach could confirm or refute hypotheses about which scales are being

selected.

Studies using multivariate statistical methods to analyze observational

data can be viewed as an exploratory stage (James and McCulloch 1985,

1990) in the research process, whereby associations or correlations are

found. Exploratory data analysis on observational data helps lead to the
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formulation of causal models (working models or research hypotheses)

which then can be tested using experimental or quasi-experimental

designs. The uncovering of causal relationships most likely culminates

from research which progresses in stages beginning with simple

observations and/ or natural history information, proceeding to the

building of descriptive models based on observational studies and

exploratory data analysis, followed by formulation of initial causal models

and the proper design of experiments to test causal relationships, and then

ending in the confirmation of causation using confirmatory statistical

methods (see James and McCulloch 1990:130-132).

Habitat models based on observational data can assist in the

formulation of initial causal models or hypotheses regarding the

relationships between an animal and habitat features. Hypotheses should

then be investigated by means of field experiments or quasi-experiments,

but not via purely observational studies.

Field experiments may be difficult to do, especially in obtaining enough

replicates to test all possible combinations of conditions or habitat

variables. Researchers could look at controlling one or two habitat factors

at a time and having enough replicates for such a study. The analysis can

then concentrate on determining how much variation in the

presence/absence data of the animal is accounted for by controlling for

effects of those two variables.

Researchers wanting to ultimately gain insight on the causal

mechanisms behind any ecological phenomenon should follow the

research procedure described by James and McCulloch (1990). An example
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of how the full research procedure, from observational field studies to

laboratory experiments, has been used to study habitat use/ selection by a

spider can be foimd in the work of Dr. Susan E. Riechert. First, field studies

were conducted on Agelenopsis aperta to examine associations between

reproductive success both food availability and the thermal environment

(Riechert and Tracy 1975). Observational data were then collected on

microhabitat use to examine potential differences between sites occupied by

spiders and the general habitat (Riechert 1976, 1979). Then, lab experiments

were conducted to test field observations and two specific hypotheses

regarding habitat selection (Riechert 1985). An approach using biophysical

and physiological ecology that examines the influences of environmental

features on the population ecology of a lizard can be foimd in the work of

Dunham et al. (1989).

Statistical inferences based on a single observational study are

extremely weak and can be invalid. Researchers should not make strong

statements about causal relationships based on findings from an

observational study. Likewise, conservation and management plans, if

possible, should not be based solely on the results of habitat modeling of

observational data. The validity and reliability of forming conservation

and management plans on just observational field data has never been

fully demonstrated to the satisfaction of many scientists.

Statistical inferences are the strongest when based on sound

experimental studies and a variety of data, rather than on observational

studies. When possible, conservation and management decisions should

be based on a diversity of information coming from observational studies.
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experimental studies, mathematical modeling and simulations, biophysical

and physiological ecology, and expert knowledge on the population,

species, or community in question.

The reality is that ecologists, conservationists, and managers are caught

in a dilema. Management and conservation decisions must be made

regardless of the amount or quality of the information that is available.

Observational data and models resiilting from the exploratory analysis of

such data are all that exist in many cases. In addition, conducting

experimental studies can be costly and time-consuming with respect to

many species and their habitats. What can be done?

When experimental studies are too difficult to conduct, mathematical

and/or biophysical models do not yet exist for the given species, and

decisions must be based on observational data alone, then at least four

things should occur. First, all stake holders should be made explicitly

aware of the fact that observational data do not provide a necessarily "true"

or complete picture of ecological organisms and systems, nor does such

data provide for accurate quantitative predictions. Second, predictions and

forecasts should be carried out in qualitative, rather than specific

quantitative, terms. For example, predictions of the influence of potential

habitat alterations to change either the probabiUty of occurrence of an

organism or the density of organisms in a population should be made in

qualitative categories such as "likely", "highly likely", "unlikely", "highly

unlikely" to produce a change. Third, conservation and management

decisions should be made with caution and an understanding of the

limitations of observational data and exploratory analyses. Lastly,



301

monitoring programs should always be established for species and habitats

in need of management and/or conservation decisions. In this way the

imperfect knowledge could be modified, if necessary, in accordance with

new data and insight, in keeping with an adaptive management approach.

Final comments

Many studies of A. carolinensis have been conducted in laboratory

settings, but it seems that findings from lab studies have shed little

knowledge directly on the ecology of this species. If we are to better

understand the ecology of A. carolinensis, then lab-based studies must be

pertinent to the ecology of this species. In addition, more experimental or

quasi-experimental approaches need to be conducted in the field in order to

understand causal mechanisms.

The GAIM approach used in this study for statistical modeling of

observational multivariate data provides a way to take a wider view of an

observational multivariate data set and models to fit the data than

conventional methods which search for a single "best" model by using

stepwise procedures. Then, the GAIM results can provide a set of very

good models and a set of very good variables to act as a starting point for

future experimental studies. This approach follows the research program

and roles of observational studies in ecological research described by James

and McCuUoch (1985, 1990).

No doubt, much additional work is needed to determine the full

practicality and overall utility of the GAIM approach for statistical

modeling problems. It is hoped that researchers will rigorously investigate

such matters with respect to multivariate modeling.
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Table 5-1. The original names, forms, and descniptions of the
measurement of the original variables for the study of the relationship
between the presence of Anolis carolinensis and habitat features in four
habitats along the Little Tennessee River in Tennessee. Cat indicates a
variable is categorical; Con indicates a variable is continuous in scale.

Original Original
Variable Form Description of Original Measurement
HAB Cat The different habitats; Habitats A (HABA), B

(HABB), C (HABC; reference cell), or D
(HABD)

DPOWR Cat Distance from the plot center to the nearest
potential overwintering rock (rock with
crevices or holes into which lizards could
crawl); four levels: < 10 (DPOWRl), 11-20
(DPOWR2), 21-30 (DPOWR3), and >31 m
(reference cell)

ROCK Cat Presence or absence (reference cell) of potential
overwintering rock within a plot

NLOV Con Number of live overstory tree trunks (those > 75
imn in diameter at breast height (DBH)) in a
plot

NLU Con Number of live understory tree trunks (those
< 74 mm DBH) in a plot

EVG Cat Presence or absence (reference cell) of any live
overstory evergreen tree trunks in a plot

SMEV Con Sum of DBHs (mm) of all live evergreen tree
trunks in a plot

LDBH Con DBH (mm) of the largest live tree trunk in a plot

SMBG Con Sum of the DBHs (mm) of all the live overstory
tree trunks in a plot
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Table 5-1. (continued).

Original Original
Variable Form Description of Original Measurement
DFW

HSFC

SCAN

WCAN

Cat Presence or absence (reference cell) of any dead
fallen woody tnmks, logs, branches, or limbs;
all items had to have at least 0.5 m length
within a plot and any branches or limbs
also had to project at least 0.5 m above ground
level; logs or trunks had to be > 3 cm in
diameter; these criteria eliminated any small
material which was unlikely to be used by
lizards for perch sites

Con Herb, shrub, and vine foliage cover during
summer measured by looking down on four
ground transects (each running N, S, E, and W
from plot center to the edge of a plot) from a
height of 1.5 m above the groimd and counting
the presence or absence of such cover at 20 cm
intervals along each transect; expressed as the %
of 96 total transect counts with cover present

Cat Categories of summer canopy cover based on
inspecting the relative amoimts of sunlight vs.
shade on both the ground and vertical vegetation
in a plot and by viewing the canopy within about
a 120° area facing south from plot center during
mid- to late summer; three levels: open canopy,
gap, or along habitat edge (plot dominated largely
by sunlight; SCANl), parti^y open canopy (plot
with relatively equal mixture of sim and shade;
SCAN2), or closed canopy (plot dominated by
shade; reference cell)

Cat Winter canopy visually categorized at the end of
winter survey using the same methods and
categorizations as for SCAN
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Table 5-1. (continued).

Original Original
Variable Form Description of Original Measurement
SSUN Con Summer sunlight as estimated from scoring

patches of sun or shade flecks on a Sun/Shade
Board (SSB); the SSB is a board approximately
2.5 m long, painted white, and divided into 40
rectangles (starting 30 cm from the proximal
end of the board and continuing its entire
length) with each rectangle approximating the
area of three to four bodies of adult green
anoles lying side-by-side (55 mm long and 35
mm wide) and representing a patch of sunlight
suitable for basking by an adult; each rectangle
was scored as sim (1), approximately equal sim
and shade (0.5), or shade (0), by holding the SSB
parallel to the ground at 1.5 m above the plot
center and orienting the SSB along each of five
different randomly selected compass directions
selected from eight primary directions (N, NE,
E, SE, S, SW, W, and NW); to be scored as either
sun or shade a rectangle had to have more than
half of its area in either full sun or full shade;
any rectangle having filtered sunlight/partial
shading over half or more of its area or having
equal areas of full sun and full shade was scored
as 0.5; a plot's overall estimate of sunlight was
the sum of the 200 rectangle scores and
expressed as a %

WSUN Con Winter sunlight estimated in same manner as
SSUN within a plot, but during winter season

DE Con Distance from plot center to the habitat edge as
measured to the nearest whole m

STEMP Con Summer air temperature (ambient) taken 1 m
above ground within a plot after surveying a plot
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Table 5-1. (continued).

Original Original
Variable Form Description of Original Measurement
DAE Con Distance (to nearest whole m) along the habitat

edge from the western end of a site to the plot
center; because the four habitats differed greatly
in their sizes this distance was standardized by
dividing the distance value of a given plot by
the total distance along the habitat edge for that
particular habitat so that all values were
between zero and one



317

Table 5-2. The names, final forms, and descriptions of the final form of
the habitat variables used in the summer data andysis for the study of the
relationship between the presence of Anolis carolinensis and habitat
features in four habitats along the Little Tennessee River in Tennessee. Cat
indicates a variable is categorical; Con indicates a variable is continuous in
scale. The numbering scheme given here for the variables will be used for
the summer variables in other tables.

Summer Final

Variable Form Description of Final Summer Form
1. HABS Cat

2. DPOR Cat

3. LDS Cat

4. SMOS Cat

5. SCAN Cat

6. DES Cat

7. LOSD Cat

Refinement of FLAB because HABD had similar

odds ratio as reference cell HABC; three levels:
Habitats A (HABA), B (HABB), and C and D
combined (reference cell)

Refinement of DPOR since original DPOWR3
had a zero cell; three levels: <10 (DPORl),
11-20 (DPOR2), or > 21 m (reference cell)

Categorization of LDBH due to non-linearity
in logit and lack of trees in some plots; four
levels: live trunks absent or largest diameter at
breast height (DBH) <74 (LDSl), 75-149
(LDS2), 150-235 (LDS3), or > 236 mm DBH
(reference cell)

Categorization of SMBG due to non-linearity
in logit and lack of trees in some plots; three
levels: live trees absent or only live trees < 74
mm present (SMOSl), sum 75-189 mm
(SMOS2), or sum >190 mm DBH (reference
cell)

Same as original

Categorization of DE due to non-linearity in
logit; three levels: < 7 (DESl), 8-14 (DES2), or
> 15 m (reference cell)

Categorization of NLOV due to non-linearity in
logit; two levels: < 1 or > 2 (reference cell)
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Table 5-2. (continued).

Summer

Variable

Final

Form Description of Final Summer Form
8. NLU

9. EVG

10. ESSD

Con

Cat

Cat

11. WCD Cat

12. DEW Cat

13. ROCK Cat

14. HSSD Cat

15. SSSD Cat

16. WSUN

17. STMD

Con

Cat

18. DAES Cat

Same as original

Same as original

Categorization of SMEV due to non-linearity
in logit and lack of trees in some plots; two
levels: live evergreens absent or sum < 99, or
otherwise sum > 100 mm DBH (reference cell)

Refinement of WCAN since closed canopy level
did not occur for any plot during the winter;
two levels: open, gap, or edge vs. partially
open canopy (reference cell)

Same as original

Same as original

Categorization of HSFC; two levels: 19.0-41.9%
or otherwise (reference cell)

Categorization of SSUN due to non-linearity in
logit; two levels: 34.5-74.0% or otherwise
(reference cell)

Same as original

Categorization of STEMP due to non-linearity in
logit; two levels: 25.6-28.7°C or otherwise
(reference cell)

Categorization of DAE; two levels: 0.269-0.599
or otherwise (reference cell)
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Table 5-3. The names, final forms, and descriptions of the variables
used in the winter data analysis for the study of the relationship between
the presence of Anolis carolinensis and habitat features in four habitats
along the Little Tennessee River in Tennessee. Cat indicates a variable is
categorical; Con indicates a variable is continuous in scale. The numbering
scheme given here for the variables will be used for the winter variables in
other tables.

Winter

Variable

Final

Form Description of Final Winter Form
1. HAB Cat

2. NLUW Cat

3. WTM Cat

4. DPOR Cat

5. NLOW Cat

6. LDW Cat

7. EVG Cat

8. SOTW Cat

Same as original

Categorization of NLU due to non-linearity in
logit; three levels; < 1 (NLUWl), 2 (reference
ceU), or > 3 (NLUW2)

Categorization of WTEMP due to non-linearity
in logit; three levels: 10.5-14.9°C (WTMl), 15.0-
20.0°C (WTM2), or < 10.4 or ̂ 20.1°C (reference
cell)

Same as categorization for summer analysis

Categorization of NLOV due to non-linearity in
logit; two levels: < 2 or > 3 (reference cell)

Categorization of LDBH due to non-linearity in
logit and some plots did not have trees; two
levels: DBH of largest live trxmk < 185 mm, or
no live trunks present or largest live DBH >
186 mm (reference cell)

Same as original

Categorization of SMBG due to non-linearity in
logit and some plots did not have trees; two
levels: only live understory trunks present or
the sum of the DBHs of all live overstory
trunks < 189 mm, or no live tnmks present or
sum of the DBHs of all live overstory trunks >
190 mm DBH (reference cell)
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Table 5-3. (continued).

Winter

Variable

Final

Form Description of Final Winter Form
9. ESWD Cat

10. sew Cat

11. WCD

12. DFW

13. ROCK

14. HSCW

Cat

Cat

Cat

Cat

15. SSWD Cat

16. WSUN

17. DEW

Con

Cat

18. DAEW Cat

Categorization of SMEV due to non-linearity in
logit; two levels: live trees absent or sum of
live evergreen tnmks >100 nun DBH, or only
live deciduous trunks present or sum of live
evergreen trunks < 99 nun DBH (reference
cell)

Refinement of SCAN; two levels:
open/ gap/edge, or otherwise (reference cell)

Same as categorization for summer analysis

Same as original

Same as original

Categorization of HSFC due to non-linearity in
logit; two levels: < 22.9 or > 34.0 %, or
otherwise (reference cell)

Categorization of SSUN due to non-linearity in
logit; two levels: SSUN < 27.9 or > 49.6, or
otherwise (reference cell)

Same as original

Categorization of DE due to non-linearity in
logit; two levels: < 7 or > 17 m, or otherwise
(reference cell)

Categorization of DAE; two levels: 0.300-0.599,
or otherwise (reference cell)
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Table 5-4. Univariate logistic regression summary information for the
summer habitat variables. Variable No. and Name refer to the number and

abbreviated name for each habitat variable, respectively, as given in Table
5-2 and Outcome is the outcome of the survey of each plot (P= presence and
A= absence of Anolis carolinensis). ICOMP-IFIM is the model selection
criterion value for the univariate logistic regression model which includes
the habitat variable and the intercept term. a. For each categorical variable
the following summary information is reported: the categories (Level) of a
variable (the reference cell is given last and p= presence and a= absence of a
particular habitat feature; see Table 5-2 for descriptions), the numbers of
observed plots having Anolis carolinensis present or absent in each level
(Outcome), and ICOMP-IFIM for the univariate model, b. For each
continuous variable (see Table 5-2 for descriptions) the following summary
information is reported: ICOMP-IFIM for the univariate model and, for
each possible outcome of the plot survey, the 25% quantile (Q), median,
75% quantile, mean, and standard deviation of the mean (Stand. Dev.).

a.

Independent Outcome

Variable Level P A ICOMP-IFIM

1. HABS A 36 15 126.60

B 6 37

C/D 3 69

2. DPOR 1 39 39 151.64

2 4 14

3 2 68

3. LOS 1 13 34 174.24

2 22 18

3 8 32

4 2 37

4. SMOS 1 13 34 181.37

2 19 18

3 13 69

5. SCAN 1 26 29 180.30

2 17 62

3 2 30
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Table 5-4. (continued).

Independent Outcome
Variable Level P A ICOMP-IFIM
6. DES 1 12 31 176.32

2  23 22

3  10 68

7. LOSD 1 31 70 194.60

0  14 51

9. EVG p 2 33 184.81
a  43 88

10. ESSD 1 42 88 188.95

0  3 33

11. WCD 1 44 77 174.87

0  1 44

12. DEW p 27 100 187.72
a  18 21

13. ROCK p 18 20 186.23
a  27 101

14. HSSD 1 33 68 192.29

0  12 53

15. SSSD 1 20 34 191.83
0  25 87

17. STMD 1 27 56 193.49

0  18 65

18. DAES 1 20 29 189.38

0  25 92



Table 5-4. (continued).
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Independent Outcome 25% 75% Stand. ICOMP-

Variable Variable 0 Median O Mean Dev. IFIM

8. NLU P 0 1 3 1.87 2.46 178.06

A 0 0 1 0.64 1.02

16. WSUN P 80.0 89.5 96.0 85.93 11.96 192.58

A 62.0 80.5 89.0 75.07 17.50
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Fig. 5-1. Summer GA models: box plots showing trends in the (a) lack-
of-fit term (-2LogL), (b) complexity term, and (c) model selection criterion,
ICOMP-BFIM, across the different model sizes, represented by k (number of
estimated regression parameters), for the best 115 summer logistic
regression models found by the genetic algorithm (GA) analysis. Some
models with different k values were grouped together so that no level of k
had less than 5% of the 115 total models. The line across the graph parallel
to the X-axis shows the mean value of the given term for the 115 models.
The line within each box represents the median for the given level of k.
The 25% and 75% quantUes are represented by the ends of a box, while the
10% and 90% quantiles are shown as the short lines outside the ends of a
box.
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Fig. 5-2. Summer GA models: the frequency of independent variables
in the best 115 logistic regression models from the genetic algorithm (GA)
output mcxieling the relationship between habitat features and the
presence of Anolis carolinensis in summer plots. Percent represents the
percentage of best summer GA models in which a given variable occurred.
Variable acronyms are defined in Table 5-2.
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Fig. 5-3. Summer GA models: trends in the frequency of independent
variables in the different model sizes (k levels) in the best 115 logistic
regression models from the genetic algorithm (GA) output modeling the
relationship between habitat features and the presence of Anolis
carolinensis in summer plots, (a) = 16 to 17 estimated parameters {n =
29). (b) A: = 15 estimated parameters (n = 25). (c) = 14 estimated
parameters (n = 29). (d) = 11 to 13 estimated parameters {n = 32). Percent
represents the percentage of best summer GA models of a specific k size
in which a given variable occurred. Variable acronyms are defined in
Table 5-2.
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Table 5-7. Univariate logistic regression summary information for the
winter habitat variables. Variable No. and Name refer to the number and
abbreviated name for each habitat variable, respectively, as given in Table
5-3 and Outcome is the outcome of the survey of each plot (P= presence and
A= absence of Anolis carolinensis). ICOMP-IFIM is the model selection
criterion value for the univariate logistic regression model which includes
the habitat variable and the intercept term. a. For each categorical variable
the following summary information is reported: the categories (Level) of a
variable (the reference cell is given last and p= presence and a= absence of a
particular habitat feature; see Table 5-3 for descriptions), the numbers of
observed plots having Anolis carolinensis present or absent in each level
(Outcome), and ICOMP-IFIM for the univariate model, b. For the
continuous variable WSUN (see Table 5-3 for description) the following
summary information is reported: ICOMP-IFIM for the tmivariate model
and, for each possible outcome of the plot survey, the 25% quantile (Q),
median, 75% quantile, mean, and standard deviation of the mean (Stand.
Dev.).

a.

Independent
Variable Level

Outcome

P  A ICOMP-IFIM

1. HAB A 34 17 186.61
B 16 27

C 5 46

D 7 14

2. NLUW 1 48 86 216.32

2 2 12

3 12 6

3. WTM 1 19 36 202.48
2 33 23

3 10 45

4. DPOR 1 47 31 182.55

2 7 11

3 8 62

5. NLOW 1 51 82 222.21

0 11 22
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Table 5-7. (continued).

a.

Independent Outcome
Variable Level P A ICOMP-TFTM

6. LOW 1 40 45 214.16
0  22 59

7. EVG p 8 27 217.27
a  54 77

8. SOTW 1 29 32 216.72
0  33 72

9. ESWD 1 48 59 214.31
0  14 45

10. sew 1 29 26 212.77
0  33 78

11. WCD 1 57 64 202.64
0  5 40

12. DEW p 42 85 217.86
a  20 19

13. ROCK p 31 7 180.14
a  31 97

14. HSCW 1 50 70 218.58
0  12 34

15. SSWD 1 50 67 217.00
0  12 37

17. DEW 1 30 24 209.81
0  32 80

18. DAEW 1 22 19 215.00
0  40 85



Table 5-7. (continued).

b.

340

Independent Outcome 25% 75% Stand. ICOMP-
Variable Variable 0 Median O Mean Dev. IFTM
16. WSUN P 82.0 89.0 95.5 87.0 10.5 200.66

A 58.5 76.25 88.25 72.6 17.7
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Fig. 5-4. Winter GA models: the frequency of independent variables in
the best 184 logistic regression models from the genetic algorithm (GA)
output modeling the relationship between habitat features and the
presence of Anolis carolinensis in winter plots. Percent represents the
percentage of best winter GA models in which a given variable occxirred.
Variable acronyms are defined in Table 5-3.
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Fig. 5-5. Winter GA models; box plots showing trends in the (a) lack-
of-fit term (-2LogL), (b) complexity term, and (c) model selection criterion,
ICOMP-IFIM, across the different model sizes, represented by k (number of
estimated regression parameters), for the best 184 winter logistic regression
models found by the genetic algorithm (GA) analysis. Some models with
different k values were grouped together so that no level of k had less than
5% of the 184 total models. The line across the graph parallel to the X-axis
shows the mean value of the given term for the 184 models. The line
within each box represents the median for the given level of k. The 25%
and 75% quantiles are represented by the ends of a box, while the 10% and
90% quantiles are shown as the short lines outside the ends of a box.
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Fig. 5-6. Final best winter models: box plots showing lack of any clear
trend in the model selection criterion, ICOMP-IFIM, across the different
model sizes, represented by k (number of estimated regression parameters),
for the final best winter logistic regression models (n = 154) found by the
genetic algorithm (GA) analysis and subsequent subset analysis. Some
models with different k values were grouped together so that no level of k
had less than 5% of the 1 total models. The line across the graph parallel to
the X-axis shows the mean value of ICOMP-IFIM for the final winter
models. The line within each box represents the median ICOMP-IFIM for
the given level of k. The 25% and 75% quantiles are represented by the
ends of a box, while the 10% and 90% quantiles are shown as the short Imes
outside the ends of a box.
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Fig. 5-7. Final best winter models: the frequency of independent
variables in the final best logistic regression models (n = 154) from the
combined results of the genetic algorithm (GA) output and subsequent
subset analysis modeling the relationship between habitat features and the
presence of Anolis carolinensis in winter plots. Percent represents the
percentage of final best winter models in which a given variable occiirred.
Variable acronyms are defined in Table 5-3.
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Fig. 5-8. Final best winter models: trends in the frequenq^ of
independent variables in the different model sizes {k levels) in the final
best logistic regression models (n = 154) from the combined results of the
genetic algorithm (GA) output and subsequent subset analysis modeling
the relationship between habitat features and the presence of Anolis
carolinensis in winter plots, (a) k = 15 estimated parameters (n = 62). (b) k
= 14 estimated parameters (n = 40). (c) k= 13 estimated parameters (n = 26).
(d) fc = 10 to 12 estimated parameters (n = 26). Percent represents the
percentage of final best winter models of a specific k size in which a given
variable occurred. Variable acronyms are defined in Table 5-3.
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Fig. 5-9. Winter Model l{k= 15, ICOMP-IFIM = 143.36, model variance
= 1.91): graphical presentation of logistic regression diagnostic measures,
(a) Plot of leverage (hj) versus predicted probability. In general, hj is
expected to be: small when the predicted (estimated) probability is between
0-0.1 and 0.9-1.0, moderate to small when predicted probability is between
0.3-0.7, and large when predicted probability is between 0.1-0.3 and 0.7-0.9
(Hosmer and Lemeshow 1989:157). (b) Plot of ABj versus predicted
probability. Afiy measures the change in the estimated parameter values of
the logistic regression model, in general, when a particular covariate
pattern is deleted from the model. Note that only a few points stand out or
fall away from the others (in this case those > 0.6). (c) Plot of AX^j versus
predicted probability. AX^j measures the change in the Pearson chi-square
statistic, a summary measure of the goodness-of-fit of a model, when a
particular covariate pattern is removed from the model, (d) Plot of ADj
versus predicted probabUity. ADj measures the change in the deviance, a
summary measure of the goodness-of-fit of a model, when a particular
covariate pattern is removed from the model. Model 1 fits the winter data
fairly well across the covariate patterns because only about 10% of the
covariates had either AX^j or ADj greater than the conservative cutoff of
2.71. Overall, the model fits very well as suggested by the fact that only two
points, those indicated by the arrows, had moderate to high values for
leverage and poor fit (large values of hj, ABj, and either AX^jor ADj).
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Fig. 5-10. Winter Model 144 (k = 10, ICOMP-MM = 147.12, model
variance = 1.38): graphical presentation of logistic regression diagnostic
measures, (a) Plot of leverage {hj) versus predicted probability. In general,
hj is expected to be: small when the predicted (estimated) probability is
between 0-0.1 and 0.9-1.0, moderate to small when predicted probability is
between 0.3-0.7, and large when predicted probability is between 0.1-0.3 and
0.7-0.9 (Hosmer and Lemeshow 1989:157). (b) Plot of A&j versus predicted
probability. Afiy measures the change in the estimated parameter values of
the logistic regression model, in general, when a particular covariate
pattern is deleted from the model. Note that only a few points stand out or
fall away from the others (in this case those > 0.6). (c) Plot of AX^y versus
predicted probability. AX^j measures the change in the Pearson chi-square
statistic, a summary measure of the goodness-of-fit of a model, when a
particular covariate pattern is removed from the model, (d) Plot of ADj
versus predicted probability. ADj measures the change in the deviance, a
summary measure of the goodness-of-fit of a model, when a particiilar
covariate pattern is removed from the model. Model 144 fits the winter
data fairly well across the covariate patterns because only about 10% of the
covariates had either AX^j or ADj greater than the conservative cutoff of
2.71. Overall, the model fits very well as suggested by the fact that only two
points, those indicated by the arrows, had moderate to high values for
leverage and poor fit (large values of hj, A&j, and either AX^j or ADj).
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Table 5-10. The 2x2 contingenq^ table for the summer survey data
used to examine the possible association between Anolis carolinensis and
other lizard species. Only data from the field plots which were surveyed
for at least 19 observer minutes were used in the analysis. Presence (P) for
A. carolinensis (AC) was determined as the observation of at least one
adult individual inside the plot, whereas Absence (A) was defined as the
lack of observation of any adult inside the plot. Presence (P) and Absence
(A) of lizard species other than A. carolinensis (OTHER) were determined
as the observation of at least one individual (adult or juvenile) of any
non-anoline lizard and the lack of observation of any non-anoline lizard
either inside the plot or within 2 m of the plot edge, repectively. Numbers
in parentheses represent the "expected" number for each cell given the
observed counts in the table.

OTHER

P  A

P  3 (1.84) 17 (18.16)

AC

A  10 (11.16) 111 (109.84)
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PART 6: SUMMARY
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SUMMARY OF PREVIOUS FARTS

The research reported in this dissertation examined possible

associations between habitat features and the occurrence of Anolis

carolinensis in four habitats along the Little Termessee River. Because

observational (non-experimental) data were used to examine such possible

associations, a new approach to exploratory statistical modeling, the genetic
algorithm-informational modeling (GAIM) approach, was developed and

applied to these data.

Habitat defines the biotic and abiotic parameters and sets the limits

within which an organism must live, grow, and reproduce. Thus,

understanding the relationships and interactions between an orgamsm and

its habitat is fundamental to gaining insight into the behaviors and

physiological performances of individuals and populations, the life history

traits, population ecology, and evolution of populations and species, and
community structure and dynamics. Because of the scientific importance

of habitat to an organism's biology, as well as public and legislative

concerns over loss of habitats and species, much research has focused on

relationships and interactions between an organism and its habitat.

Many ecological studies of animal-habitat relationships are based on

observational multivariate data. Ecologists often use stepwise algorithms,

hypothesis-testing procedures and multivariate techniques (which also

include both multiple linear and multiple logistic regression) to analyze

such data sets. Typically, ecologists run the data through a stepwise

algorithm, using hypothesis-testing procedures to evaluate the merits of

adding or removing a variable to a given model, in order to find a single
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"best" model that supposedly fits the data better than any other models. In

addition, analysts often use this single "best" model to draw inferences

about causation and/or make quantitative predictions. Some of the

problems inherent to using stepwise algorithms and hypothesis-testing

procedures in such a manner to analyze observational multivariate data

are summarized below.

1. Stepwise algorithms are not guaranteed to find the single best model
because they search and evaluate only a very small number of the
total possible models.

2. For most observational multivariate data sets, it is unlikely that a
single model fits the data exceedingly better than all other models.
Thus, it is often inappropriate for analysts to interpret the results as
if the best model was found.

3. The problem of model selection is really not one of testing
hypotheses, statistical or otherwise, but one of evaluating and
comparing competing models.

4. Selection of a single supposedly "best" model provides a limited and
narrow scientific view of the data.

5. Observational data, because of their non-experimental nature, are
not well suited for being the basis on which to make predictions and
draw causal inferences. Statisticians and certain ecologists have
cautioned against the dangers of such "over-interpretation" of
observational data.

The GAIM approach was developed in this dissertation research as a means

to potentially avoid such problems associated with stepwise algorithms,

hypothesis-testing procedures, and over-interpretation of observational

data.

The GAIM approach combines the utility of an informational model-

selection criterion with the searching power of a genetic algorithm (GA).
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The informational approach to statistical analysis, which uses

informational criteria for model selection, is an alternative to hypothesis-

testing procedures and has been recently used in some ecological research.

The following are important points about this statistical approach,

particularly with respect to the use of informational criteria in the GAIM

methodology:

1. The informational approach views statistical analysis not as
statistical hypothesis-testing, but as a process of model evaluation
and selection whereby selection is based on the numerical values of
an informational criterion.

2. An informational criterion is used to evaluate each model's fit to
the data and to provide a method of ranking and comparing models
relative to one another.

3. The models with the lowest numerical values of the criterion are
the models which best fit the data.

4. An informational criterion has two components, a lack-of-fit term
and a penalty term.

5. The lack-of-fit term, calculated as -2(loglikelihood) using maximum
likelihood estimation procedures, measures how poorly the given
model fits the data.

6. The penalty term can be a multiple of the number of parameters
estimated in the model or a measure of the complexity of the
model's covariance or correlational structure among the parameters.

7. The penalty term provides a way to balance problems of over- or
imderfitting the data and to adhere to the Principle of Parsimony.

An informational criterion can statistically rank and compare any

models for a given data set, but how can an analyst handle the logistics of

comparing many models when thousands or more potential models (i.e.,

different combinations of variables) exist and stepwise algorithms evaluate
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only a very limited number of models? A GA can be used to search such a

vast model space for models that fit well to the data. A GA is a computer

algorithm based loosely on genetic and evolutionary concepts. GAs have

been applied in many disciplines and with great success to a wide variety of

searching and problem solving cases.

In the GAIM approach, a GA can search for models that fit well to a

given multivariate data set when thousands or more statistical models

exist. An informational model-selection criterion (such as AIC or ICOMP-

IFIM) is used by the GA to statistically raidc and compare the various

models generated by the GA's searching methods. Hypothesis-testing

procedures would be of little value in a GA because they cannot, unhke

informational criteria, rank and compare any two models unless one

model is a subset of the other model.

The GAIM approach allows the analyst to examine the frequency of

variables that appear in a set of well-fitting models obtained from the GA

instead of searching for a single "best" model. How weU the models fit the

data is determined initially by the values of the informational criterion for

the models found by the GA. Analysts can give subsequent consideration

to other appropriate statistical and biological information about the models

in order to refine the set of models found by the GA. Thus, use of the

GAIM approach can allow the analyst to take a wider and richer view of the

data than could be obtained from a single well-fitting model (or even a few

models) foimd by stepwise algorithms and hypothesis-testing procedures.

The results from the GAIM analysis could be used to propose sets of

variables or features that analysts should consider in future observational
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studies and/or experiments. This seems to be a more appropriate way to

view the analysis of observational multivariate data, given the statistical

and interpretational limitations of such data.

The GAIM approach was applied to the exploratory analysis of possible

associations between 18 habitat features and the presence of Anolis

carolinensis among four habitats in eastern Tennessee. Very little

ecological information, based on field studies, exists on A. carolinensis,

especially at the northern limits of this anole's range. Thus, this study

represents fundamental exploratory research that can potentially provide

some direction for future ecological research on this species.

The application of the GAIM approach to the summer data showed

that the most frequent variables in the final set of models were (including

the intercept): distance to potential overwintering rock, summer canopy

categorization, distance to habitat edge, herb/shrub/vine cover, summer

simlight index, ambient temperature, and standardized distance along the

habitat edge from the west botmdary of habitat. These variables were also

the ones which most frequently possessed statistically significant parameter

estimates. The summer results suggest that further research on A.

carolinensis might focus on a) sunlight/canopy and thermal factors and b)

habitat features (such as habitat edges, canopy gaps, and overwintering

rocks) related to certain spatial scales beyond the summer home range

scale.

For the winter data, the most frequent variables in the final set of

models were (including the intercept); ambient temperature, presence of

live overstory evergreen tree trunks, presence of overwintering rock.
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standardized distance along the habitat edge from the west boimdary of

habitat, distance to potential overwintering rock, and canopy cover

categorization. These variables were also the ones which most frequently

possessed statistically significant parameter estimates. Future research

might examine ecological, physiological, and biophysical responses of this

species to winter habitat features such as a) shelter and potential basking

sites, b) sunlight availability and temperature, and c) spatial features

beyond the typical winter home range size.

Anolis carolinensis occurs in a diversity of potential natural vegetation

types, ecoregions, and habitats across its geographic range in the

southeastern and southcentral United States. The research presented in

this dissertation examined A. carolinensis-habitat associations in only one

ecoregion and only a few habitats out of aU of those in which this species

occurs. Detailed studies of the habitat ecology of A. carolinensis are lacking

for many habitats and ecoregions. One ecological study alone does not

constitute the "definitive work" on either a population or a species. The

nature of science and of statistical data analysis and interpretation requires

that patterns imcovered or conclusions drawn from a data set must be

verified by additional studies of the same kind.

The research presented in this dissertation is an exploratory study, not

a confirmatory one. Thus, it should be a starting point for further habitat

studies of Anolis carolinensis both in Tennessee and other parts of its

range. Investigations are much needed into the many aspects of the

ecology of A. carolinensis that this dissertation research either does not or

could not address. Methods using experimental control, or at least partial
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control, over field variables are needed to determine the specific responses

of this species to key habitat features and the causal mechamsms

underlying those responses. In addition, much could be gained from

studies that take approaches based on biophysical and physiological ecology,

especially if they can be linked to reproductive output, population ecology,

and habitat use on local and regional scales. If biologists are to understand

the habitat ecology, population biology, distribution and biogeography, and

evolution of this species, then such ecological studies, including basic

habitat modeling, wiU be required.
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