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ABSTRACT

This work develops a generic Statistical Process Control (SPC) framework for

characterizing the systematic variability seen in a historical database of batch profiles

in terms of meaningful scale parameters and studying the correlation with the final

product quality. The complete framework, in contrast to existing methods, is geared

towards giving meaningful results that can be easily connected to the actual process.

The variability in the profiles is partitioned into two parts - consistent and

inconsistent. The consistent variability is characterized using scale parameters. The

consistent variability is further partitioned as along the time and measurement axes

leading to time and magnitude scale parameters for the same, respectively. Time

scaling refers to the alignment of events in a batch while magnitude scaling refers to

the use of projection methods for extracting the systematic variability along the

measurement axis. The framework thus integrates the time synchronization of the

batch trajectories and the subsequent application of multivariate techniques for

monitoring and quality correlation purposes.

Tools for time and magnitude scaling are developed. The use of Dynamic

Time Warping (DTW) for time scaling is studied. A novel technique based on

translation of feature vectors is also developed and is shown to be especially suited

for time scaling batch profiles. Magnitude scaling is based on the application of

projection methods such as Principal Component Analysis (PGA) for extracting

directions of systematic measurement axis variability in the profiles. PGA is modified

to an evolving factor type method, for extracting easily interpretable factors.

Ill



Multivariate SPC charts for process monitoring on the scale parameters and the

residuals remaining after scaling are developed. The framework presented is an

offline analysis and can be readily adapted for online monitoring purposes.

A polymethyl methacrylate batch polymerization simulation is used in order

to demonstrate the application of the SPC framework. The importance of time scaling

in explaining a significant amount of the overall variability in the profiles and also

significant correlation with the final batch quality is established. Comparisons with

multiway principal component analysis (MPCA), the existing framework, show the

better sensitivity of the proposed technique to special cause disturbances. The ease in

the engineering interpretation of the results as contrasted to MPCA is also

established.
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Chapter 1

Introduction

Batch processes, as the name indicates, are used for the production of discrete

quantities of product. Any process that treats raw material as a discrete entity for a

finite amoimt of time to produce a finished product may be defined as a batch

process. The simplest example is cooking a dish where a finite amount of raw

material is processed in vessel for a finite duration of time to produce cooked food. In

the process industry, virtually every unit operations can be run in the batch mode -

crystallization, blending operations, distillation etc being the common examples.

Batch processes are widely used for producing specialty chemicals, e.g.,

pharmaceuticals, polymers, biochemicals etc. These processes are ideally suited for

manufactunng value added specialty chemicals where product volume is small,

market demand is uncertain, the procedure is subject to change and operational

flexibility is desired to produce different grades of the same product or a variety of

products using the same equipment as dictated by market demand. With increasing

emphasis on the production of such value added 'niche' area products, especially in

the developed countries, there is substantial interest in the design, monitoring and

control issues involved.

Batch processes are transient in nature with their state changing with time.

The products are typically produced by following a specified recipe which usually

consists of charging the batch vessel with a recipe of materials, processing imder

controlled conditions so that variables having significant effect on the product



characteristics follow a set trajectory and finally discharging of the product. On

completion of the batch, a range of quality measurements is usually made at the

quality control laboratory on a sample of the product, characterizing the batch as

acceptable or poor quality. These quality variables are usually difficult to measure

online. However data on several easily measurable variables such as temperatures,

pressures and flows are taken online and considering the recipe based nature of batch

processes, typically follow a trajectory or profile.

These profiles provide vital information characterizing the operation of the

batch and should be used for monitoring the operation of a batch. Their dynamic non

linear characteristics however, pose a challenge and limit the use of monitoring

methods as used in the continuous industry which operate around a fixed target or

steady state. Statistical Process Control (SPC) charts, the primary monitoring tool,

have thus been applied only to the final quality measurements at the end of each batch

since the final desired product quality is a fixed target. The method characterizes only

the batch to batch variability. Abnormal conditions can however develop during the

course of a batch (within batch variability), which may lead to a poor quality product

unless the problem is detected and remedied. The need for monitoriitg the profiles,

which would reflect such abnormalities, as the batch develops is obvious. In spite of

this, most industrial batch processes are run without any effective form of monitoring

to characterize their operation and for the most part, rely simply on the precise

sequencing and automation of the major steps in each run. Tools are therefore needed



for characterizing the variability in the batch profiles and studying the effect of such

variability on the final batch quality.

The profiles are a 'fingerprint' of the batch operation and data on several

successful and some imsuccessful batches is usually available in a historical database.

This historical database can be used to empirically model the normal batch operation.

The approach can also be extended to model the final batch quality from the profiles

in case such quality data is available. The main difficulty lies in handling the vast

amoimt of non-linear time trajectory data on highly correlated measurements with

batches having variable duration.

This work addresses the above issues and develops a systematic generic SPC

framework for the analysis and characterization of batch profiles using traditional

multivariate approaches. The framework is applicable to any batch process with one

or more online measurements and the trajectories for several past batches stored in a

historical database. The emphasis is on quantifying the variability in the profiles in

terms of simple meeiningful scale parameters. These scale parameters quantify the

consistent variability in the profiles.

Variability in batch profiles can occur in two ways, along the time scale and

along the measurement scale. Variation in the duration of the batch is an example of

the former while variation in the measurement itself is an example of the latter. SPC

charts are proposed for the scale parameters and for the residuals remaining after

extracting the consistent variability in the scale parameters. Techniques such as

simple interpolation, time warping and extraction of shapes and features are used for



characterizing the time scale variability. Measurement scale variability is

characterized using least square projection methods. The scale parameters which

contain important information on the within batch variability are used to model the

final batch quality by existing regression methods such as principal component

regression (PCR) and partial least squares (PLS).

The emphasis of our approach is to partition the variability in a meaningful

way so that abnormal scale parameters provide vital physical clues for diagnostic

purposes and the effect on batch quality. The analysis of operational and quality

control problems in past batches is thus facilitated. The framework is also easily

adapted for monitoring the progress of new batches in the SPC sense.

Recently, much work has been done in the area of batch process monitoring

which apply techniques from chemometrics. Historical batch data is usually 3

dimensional vrith batches, measurements and their time profiles forming the three

dimensions. These methods unfold the 3-way data into a matrix and perform regular

PCA or PLS on the huge unfolded matrix. Even though some applications have been

reported which demonstrate the monitoring ability of the techniques, applications

where the techniques are able to predict the batch quality well are scarce. Further, the

'black box' treatment to the data makes interpretation of the results cumbersome and

therefore provides little insight for process understanding and subsequent

improvement. Interpretation is further confoimded by the standardization of the

unfolded matrix so that all the variables and their time trajectories are on the same

scale before analyzing the data. The issue of time scaling, a major source of



variability in batch profiles is also not considered. It is therefore felt that a framework

oriented specifically towards meaningfully analyzing the variability in the batch

profiles is needed. This work is an attempt in that direction.

The body of the dissertation consists of nine chapters. A detailed review on

the relevant literature in the area of batch process monitoring is presented in chapter

2. In chapter 3, the philosophy for partitioning the variability in the empirical

approach is discussed. Chapter 4 develops techniques for characterizing the time scale

variability while Chapter 5 does the same for measurement scale variability. Chapter

6 is devoted to the development of control charts for the scale parameters and the

residuals remaining. Chapter 7 describes a polymethyl methacrylate batch process

simulation that is used for generating profiles in order to demonstrate the

methodology. The demonstration forms the core of chapter 8. Results are compared

with recently proposed multivariate techniques for monitoring batch processes. The

dissertation concludes with a summary of the developed technique, conclusions

drawn on the basis of experience with simulated and industrial data sets, unresolved

issues and directions for further research in chapter 9.



Chapter 2

Literature Review

This chapter briefly reviews the existing literature on batch processes and the

techniques that will be used in empirically modeling the batch profiles. The chapter is

divided into five distinct sections. The first section reviews past work in the area of

batch processes. Literature on relevant multivariate techniques such as Principal

Component Analysis (PCA) and Partial Least Squares (PLS) is reviewed in the second

section. The third section reviews techniques for time scaling. The fourth section

briefly touches upon clustering analysis. The final section lists references for modeling

the methyl methacrylate polymerization reactor, which is simulated to demonstrate the

application of our developed methodology on a realistic process.

2.1 Batch Processes

Batch processes are very important to the chemical and manufacturing

industries and are used for a variety of purposes. Shaw defines a batch process as

consisting of a sequence of one or more steps (or phases) that must be performed in a

defined order producing a finite quantity of finished product [1]. As pointed out by

Fisher, batch operations are used when product quantities are small, reaction times are

long, feedstock supplies and market demand are uncertain, manufacturing procedures

are likely to change, and/or a large variety of small volume products are to be produced

[2]. Thus batch processes are used in the production of specialty chemicals, e.g.

pharamceuticals, for separations, e.g. batch distillation and for the processing of



materials, e.g. the injection molding of plastics. Industrialized nations are now seeing a

change in emphasis from continuous to batch processes reflecting a movement towards

flexible specialty chemicals and biochemicals [2, 3].

Batch processes are different from the continuous and the discrete processes.

Staples provides a comparison of the three types of processes from a control

perspective [4]. Some key differences between a batch and a continuous process, are

noted by Martin [5]. These processes are dynamic by nature and involve a sequence of

phases carried out on a discrete recipe of material [2]. The control and monitoring

issues involved are thus very different from those of continuous processes, which

usually operate arotmd a steady state. The unique nature of batch processes leads to a

variety of automation, scheduling, monitoring and control issues. Industry has therefore

moved towards a standard for batch processes [6]. The challenge lies in adjusting

production schedules due to their dynamic nature and unpredictable market situation.

References [7-9] are a few articles that study frameworks for scheduling batch

processes. The various control issues involved in batch processes are elucidated in

references [1-5,10-13].

For the monitoring part, traditionally, the process industry has applied statistical

process control (SPC) techniques to detect statistically significant deviations on simple

control charts and the batch industry is no exception. Mamzic provides an overview of

SPC techniques as applied in the process industry [14]. Oakland covers the subject of

SPC in a basic but comprehensive manner, with emphasis on practical industrial

applications [15]. Traditional SPC monitoring approaches focus on detecting



deviations on measurements of important variables from a target. Control charts

initially proposed by Shewhart are used to monitor the variation in a measurement and

detect any statistically significant deviations from the target [16]. Upper and lower

control limits are computed with measurements lying outside these limits being

deemed out of control and therefore requiring investigation to determine a cause.

These techniques are well suited for monitoring measurements in the

continuous industry, which operate about a steady state or target. The dynamic or

unsteady nature of batch processes severely limits their applicability. Traditional SPG

has thus been used to monitor quality measurements on the final batch product in the

batch. Vander Wiel et al report an application of SPG on quality measurements on a

polymer resin produced in a commercial scale reactor [17]. On-line measurements on

quality are usually not available so that these SPG methods serve only to monitor

batch-to-batch variability in the quality variables. The possibility of detecting abnormal

operation and taking some corrective action as the batch progresses in time is

precluded. Hahn and Gockrum have studied a case where some on-line quality

measurements are available [18].

Typically, on-line measurements are usually taken on several easily measured

variables such as pressures, temperatures and flows. These measurements then provide

an indirect means for monitoring the batch and studying the effect of deviations on the

final product quality. Marsh and Tucker realized that such measurements do follow a

certain dynamic pattem and proposed a simple Shewhart type SPG technique for

monitoring the profiles [19]. The main criticism lies in their univariate orientation and



the lack of statistical reasoning. Pattern recognition has also been applied to batch

profiles for qualitative monitoring purposes [20].

The Shewhart type control charts suffice for monitoring single quality or

process variable measurements; however, chemical processes are typically multivariate

in that several measurements on different process or quality variables are taken. Such

multivariate measurements are handled by using traditional control charts based on the

and Hotelling's statistics [21-28]. Recently, Tracy et al have developed

multivariate control charts for individual observations [24]. These multivariate

methods, work well when the measurement space is not too large or ill-conditioned.

Chemical process or quality measurements are usually highly correlated to one

another as the measurements are reflections of the same imderlying physical

phenomena. This causes the data to be ill-conditioned and therefore traditional

multivariate techniques have limited application. Newer approaches based on Principal

Component Analysis (PCA) and Partial Least Squares (PLS) are able to handle large

ill-conditioned measurement spaces by projecting the data onto better conditioned

subspaces and then applying traditional multivariate statistical methods on the

subspace. PCA and PLS have their origin in chemometric research and are treated in a

subsequent section. Wise et al gave a theoretical basis for using principal components

for monitoring multivariate processes by drawing comparisons between state space and

principal component models [29].

The SPC monitoring technique using projection methods is data driven and

basically finds latent vectors that explain the significant systematic variation in the



data. The data is thus divided into two orthogonal subspaces, the projection onto the

latent vector space and the residuals. The latent vectors have some nice orthogonality

properties so that traditional T^ statistic based SPC charts are used to monitor the

variation in the latent vector subspace. The residuals are deemed as due to noise and

common cause variability in the process. SPC charts based on the squared sum of the

residuals are used to monitor the variation in this subspace. Both the charts together

monitor the variability in the whole measurement space and are thus complementary to

each other. Multivariate process monitoring using PGA and PLS is treated in detail in

references [30-34].

There has been a significant amoimt of work done on monitoring continuous

processes using these projection methods. Several industrial applications in the

continuous process industry have been reported [36-39]. Some simulation studies have

also been reported [34,35].

The multivariate SPC charts based on PCA and PLS for the continuous process

industries operating about a target have been extended to handle batch profile data [40,

41, 42]. Batch data is inherently 3-way in nature with the batches, the different

measured variables and their time profiles forming the three dimensions. The approach

basically unfolds the three dimensional data array into a 2 dimensional matrix and

applies regular PCA or PLS to the huge unfolded data matrix with or T^ based

statistics for control charting, as in the continuous industries. The approach is called

Multiway PCA (MPCA) or Multiway PLS (MPLS). An overview of the multivariate

SPC techniques can be found in references [43,44].
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The monitoring capability of the approach has been demonstrated on both

simulated and industrial data sets. Nomikos demonstrates the application of MPCA on

a simulated styrene butadiene latex reactor and also on an industrial batch

polymerization process [40, 41]. Kourti et al report a couple of industrial applications

[45]. Gallagher et al have applied MPCA to monitor a nuclear waste storage tank [46].

Debashis and Schlags study the application of MPCA and MPLS methodologies for

monitoring emulsion batch polymerization processes [47]. The linear MPCA technique

has been extended by Dong and McAvoy to non-linear principal components [48].

As such, the MPCA approach and its non-linear extension remain data

compression techniques that have aided in the analysis of vast amount of historical

batch data. Their main criticisms lie in the 'black box' approach with little emphasis on

understanding and interpreting the principal components. The scaling used to

standardize the different measurements across the different phases also is questionable.

The issue of time scaling, a major soxirce of variability is also not given due

consideration. The SPC charts, though few in number, are therefore difficult to

interpret and subsequently diagnose, thus limiting their applicability in the real world.

Miller has proposed the use of contribution plots for assigning a 'numerical' cause for

abnormalities detected on such control charts [49]. Nomikos applies contribution plots

for diagnosing abnormal batches based on such contribution plots [50].

Addressing the issues listed in the previous paragraph forms the core of this

research. Literature on regression techniques and projection methods such as PC A and

11



PLS, which form the basis of the empirical modeling approach for batch process

monitoring and quality predictions, is now reviewed.

2.2 Multivariate Regression and Projection Methods

In this section, a brief overview of the various projection methods for

characterizing the variability along the measurement scale in the batch profiles is

given. Regression techniques used for predicting an output from a set of input variables

are also reviewed as these techniques are used for making predictions on the final batch

quality from the profile data.

2.2.1 Multivariate Regression

Multivariate regression is a subject in itself and is treated exhaustively

elsewhere [51, 52, 70, 71]. Consider the prediction of an output y from a set of

measurements x that are assumed to have an effect on the output. Both x and y are row

vectors. Typically, as a first pass, a linear model is built to fit the available data,

historical or from designed experiments, so that a 'best fit' model is obtained. Usually

'best fit' is understood in the least squares sense.

In matrix notation, consider the linear regression equation

Y = XB (2.1)

where

Y: n by m output matrix (n samples y of m output variables)

X: n by p input matrix (n samples x of p input variables)

B: p by m regression coefficient matrix

12



The regression coefficients B are found by inverting the X matrix. Typically,

the X matrix is tall and skinny, since several samples are available, i.e., n»p. Thus,

even though a theoretical inversion is not possible, the pseudo inverse of X is taken,

which involves the projection of Y onto the column space of X and subsequent

regression of X onto the projected Y. The solution thus obtained is

B = (X'^X)-'X^Y (2.2)

X  -1 T •(X X)" X is known as the pseudo inverse of X and minimizes the squared sum of

error in prediction of Y [52]. Any new sample x can be used for prediction using the

regression coffecients B as

ypred = xB (2.3)

The above method works fine as long as the X matrix is tall and skinny, ie there

are more samples than the number of measurements so that X^X is not rank deficient

and hence invertible. Even though a rank deficiency may not exist, an ill conditioned or

almost singular X^X matrix upon inversion would give unstable estimates of the

regression coefficients with high variance [55], This high variance would render SPC

control charts useless.

Process data, as noted before, can be highly ill conditioned. Further, in the case

of batches, the profile matrices are fat and short (p»n). Thus techniques are needed

that retain most of the significant information in the profiles in a few parameters. These

few parameters can then be regressed with the output by traditional pseudo inverse type

methods. Projection methods such as PCA and PLS are able to handle such ill-

13



conditioned problems without significant loss in information and are reviewed in the

following paragraphs.

2.2.2 Projection methods

PCA and PLS are projection methods that have been extensively used in

chemometric research for the calibration of spectra to predict the concentrations of the

various species [54-76]. The analogy between spectra and time aligned batch profiles

makes these projection methods an ideal choice for quantifying the variability in the

batch profiles and predicting the batch quality outcomes. The techniques are briefly

reviewed below.

2.2.2.1 Principal Component Analysis (PCA)

PCA is a linear exploratory data analysis technique that finds the directions of

maximum variance in a data set [53-56]. These directions are known as the principal

component loadings and the projections of the data samples onto the principal loadings

are known as the sample scores. Specifically, consider a data matrix X, which is n by m

with the various samples along the rows. Each sample consists of measurements on m

different variables. PCA decomposes the X matrix as a product of scores and loading

matrices and residuals

X = TV^ (2.4)

where

T: Sample scores matrix
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V: Loading matrix

The loading matrix, V, is orthonormal and its columns span the row space of X.

Each column of V represents a linear combination of the original variables and the

sample scores are the projections onto these loadings. The loadings or principal

components (PCs) are calculated so that the first PC is in the direction of maximum

variance in the row space of X, the second PC is in the direction of maximum variance

of the residual remaining and so forth. These loadings turn out to be orthonormal to

each other since the covariance matrix X^X is symmetric, leading to orthogonal

eigenvectors, which form the PCs [55]. The scores are therefore decorrelated. PCA

thus represents a rotation of the original laboratory frame of reference to a newer one,

comprising of the PCs as the basis vectors, so that in the rotated fi*ame, the data appears

uncorrelated.

PCA is based on the singular value decomposition (SVD) of a matrix X which

is explained in [52]. Wang gives a geometric interpretation of SVD and its relation to

PCA [56]. SVD decomposes a matrix as follows

X = Ui:v'^ (2.5)

where

U: n by n orthogonal matrix. Columns of U span the column space of X

L: n by m diagonal matrix of singular values in descending order

V: m by m orthogonal matrix. Columns of V span the row space of X

From the PCA perspective, V is the loadings matrix while UL forms the scores

matrix. The singular values measure the variance of the data along the corresponding
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PC. Ill conditioned X matrices therefore result in very small singular values towards

the end indicating that variation along the corresponding PCs is probably due to noise.

Such PCs can then be ignored and only the first few significant ones are kept.

Rejection of the last few 'insignificant' PCs removes the near singularity in the X

matrix thus improving its conditioning. Assuming r out of m PCs are retained, the PCA

decomposition thus becomes

X = T,V/ + E (.2.6)

where

Tri n by r matrix of retained scores

V,; m by r matrix of retained PC loadings

E: n by m matrix of residuals remaining (Not explained by the PCs)

The method thus compresses the significant systematic variation in the data into a few

scores. In the PC subspace, the projected data is well conditioned so that traditional

multivariate regression techniques can be readily applied. The regression of the

retained scores Tr with output Y is possible and is called Principal Component

Regression (PCR). The rejection of insignificant PCs leads to robust matrix inversion.

The regression equations in section 2.2.1 can be used with the retained scores matrix

replacing the X matrix. Dong extends the method to non-linear PCA [57].

The power of PCA lies in detecting and rejecting non-significant directions,

thus improving the conditioning of the matrix. It is an unsupervised method that takes

into consideration only the X data. It is therefore quite possible that information that is

predictive of outcomes Y but is insignificant in terms of its variance may be lost in the
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higher PCs that are rejected. This problem is partially taken care of by PLS which is

the subject of the following subsection.

2.2.2.2 Partial Least Squares (PLS)

Partial Least Squares or Projection to Latent Structures is an supervised

technique that takes into consideration the variation in the Y space along with that in

the X space to extract latent vectors (similar to principal components) that are more

predictive of Y. PLS is based on the NIPALS algorithm [58] and decomposes the X

and Y matrices as follows

X = T,V/ + E (2.7a)

Y = UpW/+F (2.7b)

where Tr and Ur are the retained scores matrices, V, and are the retained loadings

and E and F are the residuals remaining for the X and Y matrices respectively. For

understanding purposes, PLS rotates the X and Y spaces so that the scores in the two

spaces line up which improves the predictions. The regression is done between the

retained scores by means of a linear inner relation

U, = T3 (2.7c)

In subsequent chapters, the subscript 'r', indicating the number of retained PCs or

latent vectors on the loading and score matrices is dropped for ease of notation and it is

imderstood that the first few significant PCs are retained.

While PCA calculates PCs so as to maximize the variance (X^X) explained in

X, PLS calculates the loadings by maximizing the covariance X^Y explained. Geladi
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and Kowalski give a tutorial on PLS which should be a good starting point for

understanding PLS [59]. Hoskuldsson explains the geometric properties such as

orthogonality of the scores etc of PLS and is probably the best reference for a

geometric understanding [61]. Interpretations from various other viewpoints such as

maximizing a covariance, rotation of the subspaces and so forth are also given. Other

references are also available [60, 62, 63]. Modifications to the original NIPALS

algorithm have been proposed for computationally more efficient latent vector

extraction [64,65,66]. Haaland and Thomas relate PLS to other quantitative regression

methods such as PGR [67]. Similarities between the basic framework of PGA and PLS

are explained by Hoskuldsson [68]. Thomas and Haaland contrast the various

multivariate methods such as PGR, PLS and multiple linear stepwise regression

(MLSR) [69]. The subject of multivariate analysis has received much attention in

chemometric literature and the reader is referred to [70, 71] for a comprehensive

treatment of the subject.

The method of PGA and PLS has been extended to handle 3 or higher

dimensional data arrays and is called Multiway PGA (MPGA) or Multiway PLS

(MPLS) [72, 74]. MPGA and MPLS form the basis of monitoring schemes for batch

data, which as discussed earlier, are three dimensional. Wangen and Kowalski have

extended PLS to multi-block PLS to handle physically distinct blocks of data [73].

Wold extends the PLS algorithm to a non-linear inner relation [75, 76].

The above projection techniques taken from chemometric research are used to

compress the variability in the batch profiles along the measurement scale. These
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techniques are meaningful only when the various profiles are aligned along the time

axis. Relevant past work in the area of time alignment is listed in the next section.

2.3 Time Alignment

Batches have variability along the time axis in that different batches may not

progress at the same rate due to physical reasons. Examples would include slower heat

transfer due to reactor fouling, slower kinetics due to impurities in the raw materials

etc. The rate of progress of the batch may vary from batch to batch so that different

batches have different lengths. Inconsistencies in operator intervention also cause

variability in the time development of batch profiles. Before any meaningful statistical

analysis can be made, the timing differences in the batches need to be reconciled [40].

Darnell showed that the variability along the time scale needs to be treated before any

attempt can be made at meaningfully explaining the variability along the measurement

scale [78]. A simple profile scaling model was also developed.

Konstantinov and Yoshida recognized that various profiles do follow a certain

dynamic pattern and applied qualitative reasoning based on the occurrence of distinct

events in the profiles [77]. The methodology is applied to an industrial fermentation

process. The approach is however very qualitative and lacks statistical reasoning.

Debashis and Schlags have used reaction extent as an indicator variable for

aligning the profiles onto the same time scale [47]. Other methodologies rely on simple

linear interpolation, padding the profiles with zeros and so on. These are however ad

hoc and do not lead to alignment of the features in the profiles since batch processes
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are highly non-linear and therefore may need local compression and expansion of the

time axes of the profile for a good alignment. Dynamic Time Warping (DTW), a

technique from speech recognition is capable of such local compression and expansion

of the time axes [80-84].

DTW is a distance based optimization that uses the principle of optimality [79]

to search a non-linear warping of the time axis of two profiles so that a time

normalized distance is minimized. The basic technique and minor modifications can be

found in references [80-83]. The theory of time warping is explained in a later chapter.

For present purposes, suffices to say that it shifts some feature vectors in time,

compresses some and/or expands others so that a minimum distance is achieved. It is

therefore well suited to handle the alignment problem in batch profiles and a recent

application to batch profiles has been reported [84].

2.4. Cluster Analysis

Batch profiles can have different shapes depending on the recipe being

operated. Before a monitoring model can be built, these different shapes need to be

classified. Fiirther more, v^dthin a monitoring model, the various scale parameters may

form separate clusters depending on the kind of fault occurring, say a heat transfer

problem or excessive impurities in the raw materials, for example. Automatic

clustering and classification techniques are therefore needed.

Clustering is a field in itself and the reader is referred to references [85, 86] for

an exhaustive treatment if the subject. For our purposes, it is sufficient to note that

20



most clustering algorithms are distance based methods. The clustering can be done in

two ways - by specifying the number of cluster centers to be identified or by giving a

distance tolerance. In the former, the cluster centers are initialized and iteratively

updated while in the latter, a new cluster center is formed whenever a sample

exceeding the distance tolerance from the cluster centers is encountered.

The various techniques briefly reviewed in the last few sections are adapted for

application to batch profiles. The application of the adapted techniques on batch

profiles must be demonstrated on a realistic batch process. A simulated batch reactor

for polymerizing methyl methacrylate to polymethyl methacrylate is used to generate

profiles for the purpose. Literature on the methyl methacrylate polymerization for

modeling the batch reactor is now listed.

2.5 PolyMethI Methacrylate (PMMA) Polymerization Model

The techniques developed for SPC monitoring of batch processes are

demonstrated using a simulation of a polymethyl methacrylate batch reactor. The

polymerization reaction occurs in toluene solvent with AIBN as the initiator. The

polymerization occurs through free radical polymerization with initiation, propagation,

chain transfer and termination as the steps [87-90]. The reaction is characterized by a

particularly strong gel effect, which causes autoacceleration in the overall rate of

polymerization [91]. The kinetics of the free radical polymerization are highly non

linear and are modeled by using the quasi steady state hypothesis (QSSA) on the

intermediate species [88]. Baillagou et al have developed a computer simulation model
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that does not incorporate the QSSA approximation [89-90]. The gel effect has been

modeled by using the constitutive equations of Chiu et al [91]. The molecular weight

distribution and polydispersity of the produced polymer are modeled by using the

method of moments [90]. Soroush and Kravaris use the model to implement non-linear

control on an experimental batch polymerization reactor [92]. The authors have also

elaborated on the framework for batch process in another publication design [93].

2.6 Summary

In this chapter, a brief outline of the relevant work in the area of batch process

monitoring has been given. Literature on multivariate empirical modeling techniques

such as PCA and PLS has also been listed. References for the batch process simulation

model and time scaling techniques are also enumerated.

The next few chapters are devoted to the development of a framework for

analyzing the variability in the batch profiles in a meaningful way that enhances

process understanding. The modeling philosophy is described in the next chapter. The

subsequent chapters deal with the tools that must be used in order to implement the

philosophy.
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Chapter 3

Modeling Philosophy

3.1 Motivation

Today's batch processes are well automated with several online measurements

available on easily measured variables such as pressures, temperatures and flows.

These profiles contain information on the operation of the batch and are typically

available in a historical database. Variability exists in these profiles and the database

on past successful operation can be used to model it in the 'normal' batch profiles for

statistical process control (SPC), the assumption of course being that 'abnormal'

operation would cause high variability in the profiles thus causing statistical control

limit violations. Further, the online measurements can provide indirect clues about the

final batch quality, typically measured offline after the completion of the batch.

Finally, a model of past normal batch operation would lead to deeper process

understanding.

An empirical model of the normal batch operation is therefore desirable for

(a) SPC monitoring of new batches against the model of past successful batches.

(b) Using the model for understanding the correlation with final batch quality.

(c) Helping develop deeper process understanding and subsequent process

improvement.

It may be pointed out that the historical database on batch profiles is huge. A

data set on 100 batches with 10 measured variables with each batch lasting about 5

hours with a sampling rate of 1 per minute would consist of 100x10x5x60 = 300,000
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points. Any model should therefore try to model the variability in the batch profiles in

terms of simple numbers (scale parameters) that meaningfully capture the variability

in the batch profiles. This leads to the idea of partitioning the variability in the batch

profiles, which is dwelled upon in the next section.

3.2 Partitioning of Variability

First of all, variability in a batch profile must be defined. Figure 3.1 plots

profiles for several batches on a particular measured variable. As can be seen from

the plot, all the profiles are transient in nature with a similar underlying shape. An

average of the 'normal' profiles characterizes the normal operation and is known as

the reference profile. It captures the typical transients in the profile, the major

nonlinear component in batch profiles. Given a reference profile, the difference

between a raw profile and the reference profile is an indication of the variability in

the raw profile and measures by how much the new profile is different from the

normal operation reference profile. This variability about the reference is to be

partitioned in a systematic manner.

Variability in batch profiles is broadly classified as occurring because of two

sources, consistent and inconsistent. These two sources are best explained by an

example. Consider a batch reactor on which the reactor level is measured. Sensor

measurement noise would always be present in the profile and is an example of

inconsistent variability.
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FIGURE 3.1: An example batch profile

In order to explain the consistent part, let us say that there is some variability

in the initial charge to the reactor. Assuming constant reaction mixture density, the

level profiles would be flat so that the difference between a profile and the reference

profile would be a constant across time. Here the term reference profile refers to the

mean of all the 'normal' operation level profiles and would again be flat with its

value indicating the average amount charged to the reactor. The constant difference

between a raw profile and the reference profile can be attributed to the variability in

the initial charge, a distinct physical cause. Assuming that variability in the initial

charge to the reactor always occurs, this shift would always be present in the level

profiles i.e. the shift occurs consistently in all batches. The variability is thus due to a

source that is consistently present in all the batches and is therefore ealled consistent

variability.
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Looked at in another way, consistent sources of variability cause the profiles

to differ from the reference in a particular way. In the above example, all the profiles

differ consistently from the reference by a shift. A scale parameter can be proposed in

order to quantify such consistent sources of variability about the reference profile. In

the example, the scale parameter would be the shift (above or below) from the

reference. Subtracting this shift from the profiles would lead to projected profiles that

are very close to the reference and the difference of the projected profile from the

reference would be an indication of the remaining inconsistent variability.

The above paragraphs simunarize the modeling philosophy in simple terms.

The objective is to partition the 'normal' variability about the reference profile into

two parts, consistent and inconsistent. The consistent variability in a raw profile is

captured in scale parameters leading to a projected profile that is very close to the

reference. The consistent part is thus captured in the scale parameters while the

inconsistent part remains in the residuals remaining. The algebra for obtaining the

projected profile by scaling is dealt with in a later section. The next section dwells on

the partitioning of consistent variability in batch profiles.

3.2.1 Consistent Variability

The consistent variability in batch profiles can further be partitioned into two

parts, along the time scale and along the magnitude scale. Time scale variability is

again best explained by means of an example.
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Consider the case where an operator has to open a valve in order to let the

reactor product out. The product flow profile would show a sudden jump from zeros

to a high value when the valve is opened. The time at which this is done may vary

from batch to batch depending on the reaction rates. Thus if the reaction rate is slow,

the time taken to achieve a particular conversion would be large while for fast rates,

less time would be taken. Clearly, variability exists along the time axis and the time

axis of a profile has to be adjusted so as to match up with that of the reference, before

any comparison can be made between the reference profile and the new profile. This

adjustment of the time axis is known as time scaling. Its need is further amplified

when we consider that a batch typically consists of various phases with variability

existing in the duration of each of the phases. The variability along the time scale can

be extracted in terms of the times of occurrence of any consistently identifiable

checkpoints that occur as a batch progresses in time. The duration of each of the

phases would be simple examples of such time scale parameters quantifying the time

scale variability.

Once the batches are time scaled, consistent variability along the measurement

axis of the batch profiles can be accounted for in terms of scale parameters and this is

referred to as magnitude scaling. The parameters so obtained are known as magnitude

scale parameters. The profile shift parameter as explained in the previous section is an

example of magnitude scaling.

The consistent variability in the batch profiles is thus quantified by the time

scale and magnitude scale parameters. Note that the model building exercise leads to

27



a better understanding of the process and the scale parameters provide vital clues

about the physical sources of variability in the profiles.

3.2.2 Inconsistent Variability

The discussion on the consistent variability in the last subsection indicates that

variability in batch profiles does not always occur in the profiles and therefore cannot

be captured in terms of scale parameters, forms the 'inconsistent' part. Special causes

that do not occur consistently from batch to batch but are of interest for detection are

an example of 'inconsistent' sources. Given that the consistent variability in a raw

profile has mostly been extracted in terms of scale parameters to give the projected

profile, the residuals remaining between the reference profile and the projected profile

provide an indication of inconsistent variability. These residuals can be lumped in a

squared sum of error (SSE) type statistic thus giving a parameter quantifying the

inconsistent variability.

The variability in the batch profiles is thus quantified in terms of simple

numbers, the scale parameters and the SSE type statistic. Control charts on the scale

parameters and the SSE type statistic can be proposed with statistical limits being

obtained fi-om the 'normal' batches. These control charts can then be used for SPG

monitoring. Also, the scale parameters, that contain information on most of the

consistent variability in the profiles, can be correlated with the final batch quality and

used to build a model for predicting the batch quality, if high correlation exists. The
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whole exercise leads to a better understanding of the variability in the process, which

may lead to subsequent process improvement. This, in short, forms the gist of our

modeling philosophy. A brief mathematical formulation of the profile scaling follows

in the next section.

3.3 Mathematical Formulation

This section briefly describes the scaling technique (profile projection method)

used for characterizing the consistent variability in the profiles to obtain the scale

parameters. As explained previously, the scale parameters capture the consistent

variability in the profiles along the time scale and along the magnitude scale. These

scale parameters are proposed so as to capture the consistent common cause

variability in the batch profiles.

Darnell showed that variability along the time scale needs to be handled

independent of the magnitude scale variability. Also all the profiles need to be put on

a common time axis for studying the magnitude scale variability. For time alignment,

any consistently occurring checkpoints as the batch develops in time can be used.

These times would vary from batch to batch and serve as indicators of similar

underlying dynamic phenomena, thus justifying their use for time alignment. Simple

linear interpolation can be used between these checkpoints. The use of indicator

variables such as reaction conversion is also possible. However, such indicator

variables are often not available and one has to rely on the consistent checkpoints for

time scaling.
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Once the batches are put on a common time axis, consistent variability along

the magnitude scale can be extracted by using physical models or from empirical

techniques such as Principal Component Analysis (PGA). Darnell proposed a simple

two parameter model based on considerations on the type of variability that is usually

seen in batch profiles. The model is basically a simple linear regression with intercept

between the time scaled profile (p) and the reference profile (r). The two magnitude

scale parameters are the slope and the intercept. Recently, data driven techniques,

such as PGA and PLS, have been used by many researchers, to extract the most

significant directions of variations in the profiles from the normal batch data. The

scale parameters are the projections on these significant directions and are also called

scores.

Not withstanding how these directions are obtained, from physical

considerations or from empirical techniques, given the projection directions, the

projection methodology remains simple matrix algebra. Let pi denote the i"* time

scaled batch profile and r the reference profile where r is obtained as the mean of

normal batch profiles. Both Pi and r are row vectors. The consistent variability in X; =

Pi - r, is to be scaled by projecting on the columns of H, where the columns of H

contain the directions of projection. Note that H may be obtained from PGA in which

case H = V, the PG loadings matrix, or from other methods like evolving factors

analysis. The directions for projection may also be proposed based on the operator's

judgement about the typical variability seen in the profiles.
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If mSi denotes the scale parameter vector, then the projection directions in the

columns of H are to be scaled by ms so that

Xi = mSiH^ + ei (3.1a)

or

ei = Xi-mSiH^ (3.1b)

so that the least square error is minimum. The 'best' solution is obtained as

mSi = Xi(H^)'^ (3.1c)

where (H^)"^ denotes the pseudoinverse of the H^. If H is full column rank, then

(hY is obtained as In case of batch profiles, H would typically be

column full rank. Rank deficiency would indicate the presence of a redimdant

direction for the scaling which implies meaningless scale parameter and should

necessarily be avoided. Also, in case PCA is used to obtain the projection directions,

the H matrix is the same as the loadings matrix V is orthogonal so that H^H = =

I. Thus the projection equations for PCA become

mSi = ti = XiV (3.2a)

and

ei = Xi-tiV'^ = Xi(I-VV'^) (3.2b)

Note that if all the consistent common cause variability is extracted in the

scale factors, the SSE eiC^ would be small in case the profile is normal. Special

causes that have an effect on the profile (observable) would usually not be accounted

for by the scaling and would give abnormally high eiCj^. Extreme common cause

variability in the form of abnormal scale parameters is also possible which can be

31



interpreted as along the time scale and/or the magnitude scale. Profiles may be termed

as abnormal based on statistical control limit violations on SPC charts for the scale

parameters and charts based on The control limits can be obtained from the

normal operation batches. The detailed formulation of the control charts and the

derivation of the control limits is given in chapter 6.

Qualitatively, it is worth noting that since the consistent variability is

extracted in the scale parameters, (after scaling) would be quite small when

compared with XixJ (no scaling) for the normal operation batches. This gives tighter

control limits on control charts based on than if the charts were based on XjX^.

This makes the monitoring charts sensitive to subtle special cause deviations not

accounted for by the scale parameters, a very desirable feature.

In summary, the modeling philosophy attempts to explain the systematic

variability in the batch profile in terms of simple time and magnitude scale

parameters. These scale parameters and the SSE statistic on the residuals remaining

after projection are used for SPC monitoring of new batches with control limits

obtained from past 'normal' batch operation. Correlation of the scale parameters with

the final batch quality may also be studied and high correlation can be used to build a

regression model from the scale parameters giving online predictions of the batch

quality. The complete exercise leads to a better understanding of the variability in the

batch process. Figure 3.2 depicts the above philosophy.
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FIGURE 3.2: Schematic of the modeling philosophy
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The next two chapters explain the tools to be used for scaling the profiles for

consistent variability. Chapter 4 details the time scaling tools while chapter 5 explains

the methodology for extracting the magnitude scale directions to be used for

projection.
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Chapter 4

Time Scaling Tools

4.1 Introduction

Variability along the time axis forms the major component of the overall

variability in batch profiles and the time axes of all the batches must be synchronized

before any reasonable analysis of the variability along the measurement axis can be

done. This is known as time scaling. Reasons such as varying reaction rates due to

variations in the raw materials, seasonal variations in the heat transfer characteristics

of the equipment or inconsistent operator intervention can be cited for such time scale

variability.

Various tools can be used for synchronization of the trajectories. These vary

in complexity from simple linear interpolation of the time axis to a complex non

linear warp of the time axis using dynamic time warping. Extraction of the times of

occurrence of various events within a batch is the intermediate case in terms of

complexity. This chapter briefly describes these tools with example applications

along with a discussion of issues involved in their application to real industrial batch

processes. A simple methodology for the extraction of consistent events that can be

used for time scaling is also presented.

4.2 Time Scaling Tools

In this section, tools for alignment of the time axis of a batch profile with that

of the reference profile are briefly discussed. Time scaling is necessary since all the
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batches should have the same number of points before any empirical techniques such

as PCA can be applied for analyzing the profiles. Further, significant variation in the

duration of batches exists. Examples where the typical batch duration may vary from

say six to ten hours are not imcommon. The need for time scaling is therefore

imperative. A brief description of the tools for time scaling follows.

4.2.1 Linear Interpolation

A simple technique for time alignment is to linearly interpolate all the profiles

to be of the same length as the reference profile. This would suffice in case the

variation in the duration of a batch is not much and is illustrated in figure 4.1.

Typically, since batches usually consist of various phases, linear interpolation can be

used within a phase so that all the profiles are of equal length for that particular

phase.

Interpolation for Time Scaling
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FIGURE 4.1: Linear interpolation for time scaling
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Interpolation may not work for all the phases since in the same batch, some phases

may be longer while others shorter than in the reference implying the need for

simultaneous compression and expansion of the respective phases. It is thus suitable

for time scaling phases in a batch.

When significant variation exists in the duration of a phase, linear

interpolation can introduce some spurious misalignment as can be seen in figure 4.2

(a). In such cases, points can be added or removed from the profile depending on its

duration. The padding could be by the last available value or by the values in the

reference profile. This is also shown in figure 4.2 (b) where the reference profile

values are padded for unavailable data so that the profile and the reference are of

equal length.

4.2.2 Indicator Variable

Non-linear time scaling is also possible in case an indicator variable is

available [40, 47]. An indicator variable is one which monotonically increases (or

decreases) with time. Its value should be consistent at the beginning and the end of

the batch (or phase). An example would be the reaction conversion as the batch (or

phase) progresses in time. The time of a profile can be mapped to that of the reference

by finding the time in the reference closest to the indicator variable value in the

present batch. The method is illustrated in figure 4.3.
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FIGURE 4.3: Time scaling using indicator variable
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Typically, such indicator variables would be reactor levels where the product

density is significantly different from the reactant density. For example in free radical

polymerizations, when the density of the polymer formed is more (or less) than that

of the monomer and the solvent, the formation of polymer leads to a decrease (or

increase) in the reactor level thus giving a direct indication of the reaction conversion.

Advances in analytic measurement technology such as near infrared, Raman and mass

spectroscopy has made the online measurement of concentration possible in several

systems of practical interest. Such measurements can also be used as indicator

variables that monitor the reaction conversion. The approach is capable of local

compression and expansion of the time axis of a profile. For cases where an indicator

variable is not available, dynamic time warping, a speech recognition technique

capable of nonlinear time scaling, may be used and is described in the next section.

4.2.3 Dynamic Time Warping

Dynamic time warping (DTW), a distance based technique from speech

recognition, is a method capable of local compression and expansion of the time axis

of the profile so that a time normalized distance from the reference is minimized [80-

84]. DTW has recently been applied for the synchronization of batch trajectories [84].

A brief mathematical formulation follows.

4.2.3.1 Mathematical Formulation

Let R denote a reference trajectory and P denote a new trajectory where
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R=r,, r2, Fi, (4.1a)

P = Pi,P2, ...,Pj, ...,Pj (4.1b)

Note that both R and P could be multivariate and that usually, I J. DTW finds a

mapping F of K points on the I x J time grid

F = {0(1), 0(2),..., o(k),...,o(K)}, max(I,J) < K < I + J ...(4.2a)

where o(k) is an ordered pair

o(k)=[i(k),j(k)] (4.2b)

that maps time i(k) on trajectory R to time j(k) on P. F can thus be viewed as a path

on the time grid so that a normalized distance between R and P is minimized and is

also known as the warp function.

For physically meaningful warping, certain constraints are imposed on the

warp function. In order to ensure that events are compared in their natural time order,

F should be continuous and monotonous. This is expressed as

i(k+l)>i(k)

j(k+l)>j(k)

Excessive warping is avoided by imposing upper and lower boimds on the slope of F.

This is illustrated in figure 4.4 which indicates that the k*^ path point can only be

reached from a specified set of predecessors. Note from the figure that the

predecessors chosen are such that two consecutive steps cannot be one along the

horizontal and the other along the vertical. In other words, the slope is constrained to

have a continuous derivative.
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Another way of imposing the slope constraint is to allow a maximum number

of consecutive horizontal or vertical transitions m on the path so that the slope is

constrained between m and 1/m. To avoid excessive warping, the search space is

limited to within a band about the i = j line on the IxJ time grid. This is shown in

figure 4.5.

Finally, constraints on the end point are imposed. If the end points are known

with certainty,

c(l) = (l,l)

c(K) = (I, J)

Relaxed end-point constraints which specify an allowable region for the first

and last path points are also possible [82].

The various DTW algorithms can be classified as symmetric or asymmetric

based on the weight given to R and P. Symmetric algorithms give equal weight to

both R and P while asymmetric algorithms give more weight to R. Thus, symmetric

algorithms give the same warp function F if the roles of R and P are interchanged

while asymmetric algorithms may give a different warp function. Nevertheless, both

can be formulated within a common framework using dynamic programming.

The time normalized distance between two trajectories is defined as [80]

J]d(k).w(k)
D = ̂  (4.3)

N(w) ^ ^

where d(k) is a distance measure between R(i(k)) and P(j(k)) and is usually the

Euclidean distance. N(w) is a normalization factor that makes D independent of the

43



M

3

2

1

i-J

i=J +

1 2 3 M . .

R

FIGURE 4.5: Global search constraint in DTW
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number of points on the path and its value depends on the type of weighting function

w(k) used. The optimum is obtained as

D*(I,J) = min[D(I,J)] (4.4a)
F

and the optimum path is obtained as

F* = argmin[D(I, J)] (4.4b)
F

Since N(w) is chosen to be independent of the path, the minimization problem is

^ d(k)w(k) (4.5)N(w) F ^

where N(w) has been taken out because of path independence. The optimization is

now possible recursively by dynamic programming, which uses the principle of

optimality [79]. At any point [i, j] on the time grid, the accumulated distance is found

using the following simple rule

DA(i-l,j) + Whd(i,j)

0^(1,]) = min- DA(i-l,j-l) + Wjd(i,j) (4.6)

PA(i,j-l) + w,d(i,j)

In the above equation, the subscripted w's indicate the weight used for horizontal,

vertical and diagonal transitions on the time grid. These weights can be chosen so that

the diagonal transition is favoured (wj < [wh, Wy]). The algorithm is symmetric in case

Wh = Wy and is imsymmetric otherwise. The optimum path is not known till the

recursion is complete and the decision about the optimal predecessor must be stored

at each of the grid points in the search space. The path is then backed out after the

recursion is complete. A complete flowchart of the algorithm is given in figure 4.6.
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FIGURE 4.6: DTW algorithm flowchart
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4.2.3.2 Example Application

The application of DTW is demonstrated in figure 4.7, which plots the raw

and the warped profiles. The warping function is also plotted. The multivariate

profiles are scaled between 0 and 1 so that measurement units do not affect the

distance measure. As seen from the figure, the significant events in the batch - the

initial ramp up in the blue and red profiles, the step down in the yellow profile along

with the simultaneous step up in the purple and cyan profiles, the saturation in the

yellow profile along with the step down in the cyan and purple profiles, and finally

the step up in the green profile, are all aligned by DTW. The warp function is similar

to the indicator variable and is obtained based on the trajectory followed by P. DTW

is thus suitable for time alignment of distinct events in batch trajectories. However,

physically unreasonable warping can also occur due to the extreme oscillations in the

measurements. This aspect shall be fiarther clarified in the discussion section later.

One way to avoid such unrealistic warping would be to use weight w that

favor diagonal transitions (wa » [wh, Wy]). In the example presented, Wh and Wy are

set to 4 while wa is set to 1. Also, tighter limits on the slope of the warp function may

be used. Another way to avoid such unreasonable warping is to apply a weighting

factor to the various measurements so that the most consistent variable is given the

highest weight as reported in a recent application [84]. The approach however is

iterative, computationally intensive and in the example presented in the reference,

gives almost complete weight to a variable that is similar to an indicator variable.
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FIGURE 4.7; Application of DTW for time alignment
(a) R and P before DTW
(b) Rand? after DTW
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FIGURE 4.7 (continued): Application of DTW for time alignment
(c) The warp function F
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Such indicator variables are usually not available in batch processes, which severely

limits the application of DTW in a physically reasonable manner.

Typically, batch processes consist of various phases, which are characterized

by distinct physical events such as a step change or sharp peaks and valleys etc. These

can be easily identified and used for alignment. Methods like linear interpolation or

padding can be used between these distinct events for time scaling. This would lead

to the alignment of the various important shapes and features in the profiles in a

physically reasonable maimer. The idea is discussed in detail in the next section.

4.2.4 Shapes and Features

Batch profiles consist of several distinct shapes and features such as step

changes, peaks, valleys, inflection points etc. These distinct featiues that occur

consistently from batch to batch are indicative of similar underlying dynamic

phenomena and can be used for time alignment. Konstantinov and Yoshida used a

technique based on fuzzy logic for extracting such features and using an expert

system for qualitative reasoning based on the time of occurrence of such events [77].

Derivatives on the profiles are used for matching a snapshot of the profile with a

template shape. The method is applied to a batch fermentation process. However,

since the first and second derivatives are used for pattern matching, the technique can

only handle reasonably continuous and noise free profiles. Here a simpler distance

based technique for extracting the times of occurrence of features in a profile is
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developed. The technique, since it is distance based, is well suited for handling

profiles containing distinct features such as step changes.

Consider a profile p consisting of a distinct feature vector f where both p and f

are a row vectors. Feature extraction using a distance measure is based on the fact that

when the feature f is translated across the profile p, and a normalized SSE calculated

for each of the times, the times at which a feature f occurs in p would show a very

small SSE. Minima on the SSE curve thus indicate the times of occurrence of the

feature f in the profile p. The concept is similar to that of convolution of two vectors

(f and p) except that instead of the overlap between the vectors, the MSE is

calculated.

More formally, if p and f consist of I and J points respectively, then the

translation results in a vector d of length K = I+J-l where the element d(k) is

obtained as

d(k) = [Pk - fk] [Pk - fk]^/nk (4.8)

where Pk and fk denote the overlapping parts of the profile and the feature respectively

and are obtained as

p(l:k) ifk<J
Pk = p(k-J+l:k) ifl^Jandk<I (4.9a)

p(k-J+l:I) k>I

f(l:k) ifk<J
fk - f(l:J) ifk>Jandk<I (4.9b)

f(k-I+l:J) k>I

In equation 4.8, nk is a normalization factor and equals the number of points used in

the calculation of d(k) and is obtained as
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k  ifk<J

nk= J ifl^Jandk<I (4.9c)
J-(k-I) ifk>I

riic is thus less than J towards the beginning and the end of the translation, since the

number of points of overlap between p and f is less than J. Note than in the above

expressions, it is assumed that J<I, or the feature template vector f is shorter than the

whole profile p.

The above technique gives a simple means of extracting the times of

occurrence of a distinct feature in a profile. A profile may consist of more than one

consistent featme. The same translation technique can then be applied to all such

features. The feature times are extracted as the minima on the respective d vectors.

Having obtained the feature times, techniques such as padding and linear

interpolation may be used between the times so that the length of the profiles equals

that of the reference.

As an example, consider the profiles used in the DTW example. The concept

is demonstrated on a particular variable as plotted in figure 4.8 (a), which shows the

reference r and the profile p before and after time scaling. Figure 4.8 (b) shows the

profile p, the feature vector f and the d that is calculated by translation. Note the

minimum in d which corresponds to the occurrence of the feature in profile p. Once

the time of occurrence of the feature is obtained, time alignment with the reference r

is accomplished by either adding or removing points from p or by interpolation as

described earlier. In the present example, since p is longer in duration than r,

additional points are removed. The time alignment is clearly evident from the figure.
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FIGURE 4.8: Example of translation for extracting feature time
(a) Reference profile R and raw and time scaled profile P
(b) Profile P, feature f and d resulting after feature translation
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All the other profiles are treated in a similar manner and the features used for time

alignment in the various profiles are plotted in figure 4.9. Extra points at the

beginning and the end of the profiles are removed. Interpolation is done bet\veen

features. The resulting time scaled and the ravv^ profiles are plotted in figure 4.10. The

method gives reasonable time alignment with minimal computational effort when

compared with DTW. Also, the aligrunent seems physically reasonable.

Thus, in the absence of an indicator variable, it may be a simpler method of

time scaling. It must also be pointed out that even when an indicator variable is

available, its use for time scaling may not align all the significant events even though

such events do occur consistently fi-om batch to batch. Such events occur independent

of the rate at which a batch progresses and the methodology then provides a direct

means of extracting their times of occurrence. This is demonstrated in figure 4.11,

which plots the reaction conversion and the heater power profile for a polymethyl

methacrylate batch polymerization reactor simulation. Details of the simulation can

be found in chapter 7. For present purposes, it is sufficient to note that the reaction

consists of a significant gel effect towards the end of the batch (at high conversion)

when the reaction rate increases. Due to the high reaction rates, the heating needs to

be turned off and coolant fed into the cooling jacket to keep the reactor temperature at

its set point. The heater switching off, thus is a consistent event that occurs fi"om

batch to batch as can be seen in the figure. However, the use of reaction conversion

for time scaling does not lead to the alignment of the heater switch off time as is seen

in figure 4.11 (b). These times may be important in that they could have a significant
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FIGURE 4.10: Time scaling using feature alignment.
(a) R and P before time scaling
(b) R and P after time scaling
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correlation with the final batch quality. The methodology presented above can be

used to extract the time of occurrence of such a consistent event.

4.2.5 Discussion

In the last few subsections, various tools for time scaling have been described

and some general comments are in order. An important issue is, no matter what tool is

used, some information is lost when a batch is longer in duration than the reference.

One way to avoid such information loss would be take the batch with the longest

duration as the reference. In case a batch consists of several phases, a reference can

be constructed such that each phase in the reference is the batch with the longest

duration for that phase. Different phases in the reference may then be from different

batches. This would minimize the information loss due to time scaling. For shorter

duration reference profiles, the amount of information lost due to time scaling can be

quantified in terms of a sum of squared error type statistic. Very high values on such

a statistic would indicate excessive information loss.

Another issue is the decision on the method to use for time scaling.

Unfortunately, there is no definite answer to question and judgement must be used.

As a general guideline, an indicator variable should be used whenever available.

Typically, if a batch consists of various phases, say reactor charging, preheating,

reaction, cooling and product discharge, an indicator variable would at best be

available for the reaction phase. The other phases are characterized by distinct events

and feature extraction would be a good way of extracting their times of occurrence.
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Once the feature times are extracted, interpolation may be used for time scaling

between the features. However, in case the variation in the phase duration is high,

padding or removal of data points may be needed.

As for dynamic time warping, it is a computationally intensive tool and can

lead to spurious features due to excessive warping, as was shown in the example.

Also, being a distance-based technique, it is sensitive to the type of scaling used to

preprocess the profiles. Further, since the time scaled profiles are to be subsequently

analyzed for magnitude scale variability, only noise free variables can be used to

avoid physically unreasonable warps due to noise. Also, in case significant variation

exists in the duration of a phase, spurious features may occur since such phases are

characterized by sharp features that affect the distance measure severely so that the

warping must align these features leading to misalignments elsewhere in the profile.

This is illustrated in figure 4.12, which zooms into the initial part for the blue profile

in figure 4.7. Note the spurious misalignment in the profile that occurs early in the

batch as evident fi:om the figure. For comparison, the time scaled profile using feature

extraction is also plotted. The problem lies in limited control over the warp function

because of the constraints imposed. Applicability of DTW to batch profiles is thus

limited to cases where severe variability in the phase lengths does not occur. For such

cases, feature extraction in combination with linear interpolation would suffice.
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4.3 Extraction of Feature Vectors

In the previous section, it is assumed that the feature vector f is known so that

the translation method gives the time of occurrence of the featiue vector in a profile.

The extraction of suitable features f for time scaling forms the subject of this section.

Feature vectors to be used should be extracted, primarily based on a physical

understanding of the process. Batch processes usually consist of various distinct

phases, eg: a batch reactor with reactor loading, preheating, catalyst addition for

reaction, cooling and finally product discharge as its distinct phases. In most

processes, the beginning (or end) of each of the phases is usually characterized by a

distinct feature. In the reactor example, a flow valve opening to let the reactants into

the vessel would indicate the beginning of the loading phase. Similarly the opening of

the product valve would indicate the beginning of the product discharge phase. A

large step increase in the reactor temperature set point would indicate the beginning

of the preheating phase while a large decrease in the set point would imply the

beginning of the cooling phase. Since each batch follows the same operating

procedure, the distinct features would occur consistently from batch to batch

indicating the possibility of using them for the extraction of time scale parameters. A

physical understanding of the process along with a simple look at the profiles make

such consistent features obvious.

As a further aid to examining the consistency of such features, translating the

candidate features in a specified snapshot (time window) of each the batches would

lead to a minima on the d vectors for the snapshot of each batch that contains the
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feature. For features that occur consistently from batch to batch, such minima should

be seen in the d vectors for all the batches. This property can be exploited to check

for the consistent occurrence of a feature. It also suggests that the data itself can be

analyzed for the occurrence of consistent features by taking all possible features in

the profile serially and translating on a snapshot of the profiles and looking for the

occurrence of minima. Consistent features can then be identified as the ones that lead

to a valley shaped minima and give the least magnitude minima in the valley. Such a

data driven methodology especially suited to detecting consistent sharp features in

batch profiles is developed in the next subsection.

4.3.1 Evolving Factor Analysis

Consider a set of batch profiles from which consistently occurring features are

to be extracted. The consistent features may be misaligned in time in the various

profiles. Given a reference profile r, the approach consists of taking a moving

window of candidate features of a fixed length J+1 and translating the feature across a

snapshot of the profiles to obtain d for all the profiles. The best candidates for

consistent features are the ones that show the least MSB on the d vectors for all the

profiles. A formal description follows.

4.3.2 Mathematical Formulation

Consider a set of N batch profiles

P= {Pl, P2, • •.,Pn, •• ,Pn}
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of durations

L  {ll, I2, •••, Inj •••5 In}

The duration 1„ of each profile p„ may be of different. A representative profile is

chosen to serve as the reference r containing I points. Each candidate feature is

constrained to be of length J+1 so that in all, there are at most I-J members in the set

of candidate feature vectors. Of these features, only the ones that have a large enough

range (max-min) are meaningful for using as candidate features to be tested for

consistent occurrence in the profiles. Suppose that we then have M such candidates

where M<I-J. The candidate feature set is thus

F = {fi, {2, ..., fm, ..., fi,)}

with the beginning time index for the m^ feature given by im so that

fm = r(in,:im+J)

Each candidate feature is translated across a snapshot Sm of the profiles P with

Sm ~ {Si, S2, ..., Sn, ...Sn}

The members of are the snapshots s„ of each profile p„ (n = 1 to N) centered

aroimd the feature beginning time index i™ so that

Sn = Pn(b„i:e„i)

where

b„i = max(l, im-K); n = 1 :N

e„i = min(i+K, 1„); n=l :N
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The starting and end points of the snapshot s„ are denoted by b„i and e„i respectively.

Translating the candidate feature £„ along the snapshot S™, the d„m vector is obtained

for each batch using equation 4.8 in

"{dimj d2nij ..*? dmn, ...9

Repeating this process of translation for all the candidate features (i = 1 to M) results

in the array

D = {Di, D2, ..., Dm, ..., Dm}

In order to ease implementation, all the d vectors can be pre or post padded to

be of equal length. The padding may be done by -1 since negative sum of squares are

not possible. Consider the m"^ feature vector which is J+1 element long. Also

consider a snapshot s„ that is full length, ie, it does not hit the beginning or the end of

the profile. Then

bpi im"R

®ni ~ im"'"K-

The dp vector for such a snapshot would contain 2K+J+1 elements. Also, the J+K+l*^

point in the dp vector then corresponds to an overlap of fp, with p„(im:im+J)- This

correspondence can be maintained in all the snapshots that are not full length by

padding with —1. Thus in case the end of the profile is reached in the snapshot, -Is are

post padded while pre-padding is done if the beginning of the profile is reached. This

allows for putting D in a 3 dimensional array form with easy visualization and book

keeping of the time indices. Assume that the 3D array contains 2D matrices with each

matrix being composed of the d vectors for the N batches. There are thus M such
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matrices for each of the candidate features. D is therefore a [(2K+J+1) by N by M]

array.

The huge D array must be characterized for consistently occurring valleys that

indicate consistent features. Since in batch processes, it is typically the sharp features

that characterize the beginning or end of a phase, a simple way is to extract the

minima of the valleys in the d vectors around a reasonable vicinity of the J+K+1

point. Consistent features would then show small magnitude minima for all the

profiles. The best features can then be extracted as the ones that show the least

magnitude minima. Inconsistent features would not show valley like minima for all

the batches.

Some times, the features in the batch profiles may be occurring consistently,

in that the inherent shape is the same but some variability exists in the magnitude of

features. A distinct step with a different magnitude in the steps would be an example.

In such cases, even though the valley would be consistently observed from profile to

profile, some residual error shall always remain owing to the magnitude scale

variability. A simple way to extract this variability is to use a shape factor SF to

project the overlapped portion of snapshot onto the feature in a least squares sense

and then obtaining the MSB for d„. The shape factor can be constrained between a

minimum and a maximum, to avoid meaningless scaling when the overlapped portion

is not in the image of the feature.

Also since this is a distance based technique, valleys from consistently

occurring but subtle features would generally be masked in the D array by the not-so-
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subtle features. The d„,„ vectors must therefore be scaled by a suitable normalization

so that the whole array can be observed on a common basis. Dividing d„m by the range

of the feature f^, can serve such a purpose and is used in the example study. Thus, for

each candidate feature f„, is normalized as

DN™ = D„/(max(f„)-min(f„))

Note that in the above expression, is a matrix the columns d^,, adequately pre

and/or post padded with -Is to make them of length 2K+J+1. Using such a

normalization, we obtain DN as the 3D array containing the normalized d^,. Features

that show minima of a small magnitude for all the profiles can be considered as

consistent. Of these, the ones that show the least magnitude minima are considered

the 'best' features. This completes a brief formulation of the methodology. An

example demonstration follows.

4.3.3 Example Application

As an example, consider a set of profiles as shown in figure 4.13(a). These

profiles are for the heating rate of an electrical heater and have been generated by

using the PMMA batch reactor simulation described in chapter 7. Three consistent

features are obvious from the figure. The initial peak in the response at about time 20,

the settling to a value of zero aroimd time 220 and finally the sharp rise at about time

250. These features shall be referred to as features 1,2 and 3 respectively.
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FIGURE 4.13: Heater power profiles
(a) Example profiles
(b) Reference profile
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Of the three features, feature 2 is subtle while features 1 and 3 are not so

subtle. Also, some variability in the magnitudes of all the features is seen. A shape

factor must therefore be used. It is constrained to lie between 0.75 and l.S.The data

set consists of 30 profiles. The first batch is used as the reference r and is plotted in

figure 4.13(b). It contains 301 elements. Using a feature size of J = 15, in all 286

features are possible of which any feature whose range is below 0.2 is deemed imfit.

The number of candidate features is thus reduced to 132. Note that physical

considerations based on an understanding of the process can also be used to select the

candidate features.

The DN array is now obtained for the 29 batch profiles using K = 60 for the

snapshots. Its size is therefore 136 by 29 by 132. In order to extract the most

consistent features, the minima along the columns within a window of 30 to 100 for

the column indices in DN^ are obtained. The first and last few points in the

normalized d„m are not used to avoid edge effects due to incomplete overlap in the

beginning and end of the translation. The maximum magnitude of the minima over all

the batches for each of the candidate features is now obtained and for lack of a better

word, is referred to as maxminD. It is a vector of length 132 and is used to ascertain

the consistency of a candidate feature. Figure 4.14(a) is a bar plot that shows the

candidate features. A value of 1 indicates that the feature has a large enough range to

be considered a candidate while 0 indicates a small range. Three time zones are

evident in the plot. Figure 4.14(b) plots maxminD for the features. It is set to -1 for

features that do not qualify as candidates.
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Three separate zones of candidate features are seen from the figure and for

present purposes, it is assumed that each zone has a single consistent feature. The

minimum value for maxminD in a particular zone therefore qualifies as the most

consistent feature in that zone. These are indicated as in the plot. The candidate

features so obtained for each of the zones are plotted in figure 4.15(a). Additionally, it

may be pointed out that the features corresponding to points marked '+' are also of

interest and are plotted in figure 4.15(b).

Figure 4.16 takes a closer look at the initial part of the profile. Another

consistently occurring feature in the form of the heater power turning back up is seen.

It is referred to as feature 4. The featmes in figure 4.15(b) correspond to this

consistent event in the heater profiles. Since the two extracted features are very close

to each other in time, only the first one (time 25 to 40) is used. The technique is thus

able to identify the consistently occurring features in a profile. The times of

occurrence of the four consistent features are now extracted by finding the minima on

the respective translation d„„ for all the batches. Figure 4.17 plots the vectors for a

few representative profiles for the 4 consistent features. Figure 4.18 shows example

profiles along with the event times extracted by using the proposed translation with

shape factors.

70



Extracted features superimposed on R
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FIGURE 4.15: Extracted consistent features

(a) Best features in zones 1,2 and 3
(b) Additional features in zone 1
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Closer look at the profiles
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FIGURE 4.16: A closer look at the initial part of the profiles
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Note that the technique is able to identify the times for features 1, 2 and 3 accurately.

These features are sharp enough so that the times extracted coincide with the

discontinuity in the features. This is not the case with feature 4 as it is not so sharp.

The shape factor is thus not able to adequately compensate for the magnitude scale

variability. Better results may be expected in case a smaller feature size is used.

In order to emphasize the effect of using the shape factor, figure 4.19

compares the extracted times with and without using SF for feature 2, which is sharp

but subtle. Note that the exact time at which the heater profile settled to a zero value

is not as accurately determined when SF is not used. The reason is that when the rate

of settling of the heater profile is not the same as that in the feature, the minima

obtained contains in part the effect of the magnitude scale variability (different

settling slopes) and in part the effect of time misalignment.

Effect of using shape factor (SF) on feature#2 times

4- 4. With SF
4. 4. Without SF
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FIGURE 4.19; Effect of shape factor on feature time extraction
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The use of the shape factor compensates for the magnitude scale variability and

therefore the minima is primarily due to the effect of time misalignment alone,

resulting in accurate event detection. The example application thus demonstrates the

applicability of the simple translation technique for sharp event detection in batch

profiles.

4.3.4 Discussion

The translation technique demonstrated above is based on a simple underlying

concept, that on translating a sharp feature, a small SSE vdll result when the feature

matches with a snapshot of the profile. Its simplicity makes it easy to implement and

computationally less expensive than say DTW. The ability of the technique to extract

consistent features that are sharp enough has clearly been demonstrated in the last

section. However, when the features are not so sharp and contain significant

magnitude scale variability (features 2 and 4), the accuracy of determining the time of

an event is reduced.

One way to partially overcome the problem is to use a shape factor as was

demonstrated to work well for feature 2. The shape factor however was not able to

compensate for the magnitude scale variability in feature 4 well enough so that the

event determination accuracy was not as good. The reason is that the feature itself is

too long and a smaller size feature template would contain much less of the

magnitude scale variability improving the accuracy to time extraction. This suggests

that variable size templates should be used and the one that gives the best recognition
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should be used. The idea, even though appealing at first sight, is practically

impossible considering the tremendous computational load that it would entail to

make it solely data driven. Specifically, the implementation would involve an

additional step that involves varying the feature length so that now, a 4D DN array

would be obtained with the 4''' dimension being the variable feature length. Usually, a

profile consists of only a few features that are obvious to naked eye. It is therefore felt

that rather than computing for all the possible candidates, only phycically meaningful

features be used as the candidates. For such features, the best length feature can easily

be obtained by varying the feature length between a maximum and a minimum limit.

This would ease the computational burden a lot and also do away with any reasoning

that needs to be applied in order to identify the 'best' features since that reasoning is

implied in the initial candidates that are used.

Lastly, a few words on the scaling used before calculating the MSB in d are in

order. In the example presented, a least squares projection was used to filter out

simple magnitude scale variability effects in order to improve the accuracy of event

time extraction. Another type of variability that occurs frequently in batch processes

is of the 'dilation' kind. Thus even though an event occurs consistently, it takes place

at a variable rate. As an example, consider a peak that may be dilated or constricted in

the profiles. For accurate time extraction, a dilation factor must therefore be used.

This leads to the idea of 'translation + dilation' which is similar to wavelets. In case

variability of the dilation type occurs in a physically meaningful feature, the use of a

dilation factor before calculating MSB in order to remove the effect of dilation on the
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MSE would enhance the accuracy of the feature time extraction. Indeed, it is

anticipated that the use of a dilation factor coupled with a smaller size template for

feature 4 in the demonstration example of the last subsection would lead to much

better accuracy in the extraction of the feature times.

This concludes a comprehensive treatment of the tools to be used for time

scaling. The various issues have also been discussed. The next chapter focuses on the

tools for magnitude scaling.
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Chapter 5

Magnitude Scaling Tools

5.1 Introduction

This chapter briefly describes the tools that are used in order to extract

consistent magnitude scale parameters. As discussed previously, after time scaling the

batch profiles, variability along the measurement axis about the reference batch

trajectory that consistently occurs in a particular way can be characterized using

magnitude scale parameters. A simple example would be a flat profile that settles to a

different value from batch to batch. In this case, the reference is a flat profile and the

magnitude scale parameter is the shift above (or below) the reference that would

bring the profile closest to the reference. PCA remains the primary tool for extracting

such consistent sources of variability. The chapter is divided into two sections. The

first section critically evaluates the application of PCA to batch profiles. In the second

section, an evolving factor type approach based on PCA is developed that is ideally

suited for extraction of variability that occurs in a particular way in batch profiles.

The approach is applied to example batch profiles and its utility in extracting

physically meaningful scale parameters is demonstrated.

5.2 Principal Component Analysis (PCA)

The purpose of this section is to show the relevance of Principal Component

Analysis (PCA) as applied to batch profiles and imderscoring the need for

modifications to handle batch profiles. Throughout the section, example profiles are
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used to illustrate the various issues that are raised. PCA remains the backbone of

exploratory data analysis techniques and has already been described in reasonable

detail earlier and the reader is referred to chapter 2 for the mathematical details. For

present purposes, it is sufficient to note that PCA of a matrix X, results in principal

component loadings V such that in the rotated space with columns of V as the basis

vectors, the sample data points (rows of X) appear decorrelated. The principal

components (PCs) are obtained so that the variance explained by the successive PCs

is in descending order. The first PC is thus in the direction of maximum variance in

X, the second PC in the direction of maximum variance of the residuals remaining

after projecting X onto the first PC and so forth. In the simple 2 D case, where each

sample is only 2 element long (X has 2 columns), if the X matrix is mean centered

and the data appears as an ellipse about the origin, the first PC is in the direction of

the major axis of the ellipse while the second PC is in the direction of the minor axis

of the ellipse. Extension to higher dimensions can now be easily understood.

More formally, as in equation 2.6, the PCA decomposition of X is

X = TV^ + E (5.1)

In case high correlation exists between the PCs, the first few PCs explain most of the

significant variation in the X matrix so that the higher PCs can be rejected as noise or

'insignificant'. This leads to the residual matrix E, which contains the 'insignificant'

variation in the higher PCs. Note that if all the PCs are retained, E = 0. PCA is thus

an effective technique for data compression of highly ill-conditioned matrices with

large redundancy. In such cases, only the first few significant PCs need only be
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retained.

It must be noted that PC A is a scaling dependent technique and results that use

different ways to scale the columns in X may be very different and must be

interpreted in accordance with the initial matrix scaling used. Typically, in literature,

two methods for scaling the X matrix are prevalent. The first method mean centers

the columns of X so that the scaled matrix has 0 mean. Such a scaling is mostly used

when the units on each of the columns in X are the same. A simple example would be

calibration spectra from say a near infrared spectroscope. In other cases, typically

when the units on the various measurements are different, the scaling is done so that

the columns of the scaled matrix have zero mean and unit variance. This is known as

autoscaling and gives a convenient way to put all the measurements (columns of X)

on a common unit variance basis.

In batch profiles, the rows of the X matrix are the profiles from the historical

database. Each column represents a time point in the batch. High correlation is

expected between the various columns of X because of autocorrelation in time.

Correlation is also expected between the trajectories from batch to batch due to the

recipe based operation of batch processes. PGA should thus serve as an effective tool

in compressing most of the measurement axis variability in the profiles into a few

numbers.

Any new profile Xi can be projected on the retained PCs to obtain the scores t

and the residuals Cj as follows from equation 3.2

t, = XiV (5.2)
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ei = Xi-XiW^ (5.3)

The scores on the retained PCs then form the scale parameters.

As an example application of PGA on batch profiles, consider again the heater

power profiles generated from the PMMA batch reactor simulation. The simulation

details can be found in chapter 7. The profiles are plotted in figure 5.1. The data set

contains 30 batch profiles that have been time scaled. Zones containing a particular

type of variability are obvious from the figure. The first zone contains the initial

smooth oscillations from time 20 to about 60. This is followed by oscillations of large

amplitude from time 60 to about 100 (zone2) after which the profiles settle to a value

and subsequently reduce to 0 at about time 384 (zone 3). The heater is off from 385 to

415 (zone 4). Finally the heater again comes on at time 416 and after a few

oscillations, settles to a constant value (zone 5). PGA is performed on the X matrix

using the two scaling techniques - mean-centering and autoscaling. X,„ refers to the

mean centered matrix while X. refers to the autoscaled matrix.

Heater Power Profile
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FIGURE 5.1: Heater power profiles after time scaling
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The mean centered matrix X™ is studied first. Figure 5.2 contains the scree

plot that plots the cumulative explained variance with respect to the number of PCs.

The fact that only 2 PCs are needed to explain more than 80% of the variance in the

profiles indicates the high degree of redundancy in the profiles. The two PC loadings

are plotted in figure 5.3(a). Note that all the PCs have high loadings in zone 2 that

contains oscillations of high amplitude. These oscillations are not systematic but since

PCA is a variance based technique, high loadings are given to this zone as a

significant amount of variance in the profiles exists in here.

Zones 1, 2 and 5 contain systematic variation in the form of smooth

oscillations and profiles settling to a value. The PCs also have loadings in these zones

so that after projection, the residuals remaining should be almost zeros. These

residuals (E) are plotted in figure 5.3(b). The mean centered profiles (X„) are also

plotted in the figure. Indeed, all of the systematic variability is explained in the two

PCs. However, the interpretation of the three retained PCs is not a trivial task since

very high weight is given to zone 2 in all the PCs which somewhat obscures the

systematic variability in zones 1, 3 and 5.

This disadvantage can be partially overcome by autoscaling, which gives high

weight to time points that have low variance so that the division in the autoscaling is

by a small standard deviation. In other words, the time zones that are the most

consistent, ie, low variance are given greater weightage.
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FIGURE 5.2: Scree plot for PC A of mean centered profiles
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FIGURE 5.3: PC A on mean centered heater power profiles
(a) Retained PC loadings
(b) Residuals remaining after PCA
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Figure 5.4 plots the standard deviation of the profiles. Zone 2 has a high

standard deviation so that it is given the least weight while the other zones that

contain the systematic variability are given higher weight in the matrix preprocessing.

The scree plot for the autoscaled profiles (x,) is plotted in figure 5.5. It is seen that a

single PC explains more than 80% of the variability in the autoscaled profiles again

indicating the high degree of redundancy in the data.

A single PC is retained and the PC loading is plotted in figure 5.6(a). Note

that the PC loadings give high weight to the systematic variability zones. The

residuals (E) after projection are plotted in figure 5.6(b). The autoscaled profiles (X,)

are also plotted. Note the correspondence between the PC loadings and the zones in

which the residuals are very small.
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FIGURE 5.4: Standard Deviation of the heater power profile across time
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FIGURE 5.5: Scree plot for PCA on autoscaled heater power profiles
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FIGURE 5.6: PCA on autoscaled heater power profiles
(a) Retained PC loading
(b) Residuals remaining after projection
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The approach, even though appealing at first sight has its own disadvantages.

Firstly, the interpretation of the PCs is obscured by the autoscaling, which involves

division by the column standard deviation. The profiles themselves are thus

hypothetical. Secondly, in case there are zones that contain systematic variability that

is also high variance along with zones that are of low variance, the high variance

systematic variability is given lower weight so that it may not be adequately

explained in the first few retained PCs.

This is illustrated again by an example. Consider the profiles plotted in figure

5.7. These are profiles for the reactor temperature for the PMMA batch reactor

simulation. The variability in the temperature profile exists initially from time 1 to

about 40. This zone corresponds to the initial loading and heating of the reactor so

that a single PC should suffice for the mean centered profiles in X^.

Reactor Temperature Profiles
325

320

315

310

305

^ 300

295

290

285

280
100 200 300 400

Time (mins)
500 600 700

FIGURE 5.7: Reactor temperature profiles
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As before PCA is applied to the mean centered profiles. A single PC explains

more than 90% of the variability in the profiles. The PC loading is plotted in figure

5.8(a) while the projected profiles are plotted in 5.8(b). The mean centered profiles

are also plotted in figure 5.8(b). Note that almost all of the variability in the initial

start up phase is explained by the first PC.

The autoscaling case (X,) is studied next. Due to the matrix preprocessing, the

unsystematic part of the in the flat part of the profile is given very high weight so that

autoscaling makes the data somewhat spherical (better conditioned) and the first four

PCs explain <50% of the variability in the profiles. A single PC is retained and the

PC loading is plotted in figure 5.9(a). The projected profiles are plotted in figure

5.9(b). The autoscaled profiles are also plotted in the figure. Note that autoscaling

obscures the variability in the initial preheat phase. Thus even though the variation in

the startup phase is systematic, a significant amount remains xmexplained. Even with

three PCs retained, very little increase in the amount of systematic variability in the

preheat zone is observed (data not shown). This is because the autoscaling tends to

give high weight to the flat zones vdth negligible variability so that the first PC is able

to explain only a part of the variability in the preheat zone. A significant portion of

the variability is thus washed down to higher PCs as a result of the autoscaling. This

is not desirable.
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FIGURE 5.8: PCA on mean centered reactor temperature profiles
(a) Retained PC loadings
(b) Residuals remaining after projection
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FIGURE 5.9: PCA on autoscaled reactor temperature profiles
(a) Retained PC loadings
(b) Residuals remaining after projection
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Finally the residuals are multiplied by the profile standard deviation so that a

comparison can be made with the residuals for the mean centering case. Figure 5.10

plots these residuals. Note that PCA using autoscaling is unable to explain the

systematic variability in the startup period. Our experience has shown that industrial

examples of such batch profiles are quite common.

From the above few examples, it is obvious that PCA by itself is not a very

good way for analyzing the variability in the profiles. The basic problem lies in the

fact that in batch profiles, the correlation structure of the profiles changes from phase

to phase so that a single scaling technique (mean centering or autoscaling) for all the

phases is unable to extract the systematic variability in all the phases.
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FIGURE 5.10: Comparison between mean centered and autoscaled profile residuals
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In the next section, the division of profiles into zones for extracting the

systematic variability in a particular zone to give easily interpretable factors is

demonstrated. A simple methodology based on an evolving factor analysis type

approach to extract such systematic variability in batch profiles is also developed.

5.3 Extraction of Meaningful Magnitude Scale Parameters

Consistent variability along the measurement axis in batch profiles typically

occurs 'in a particular way'. A very simple example has been discussed earlier in

chapter 3. In the example, variability exists in the level of a batch reactor due to initial

charging variation. The level profiles in the various batch profiles are thus shifted

above or below the reference by a constant amount. Variability thus occurs in a

particular way, ie a shift, so that a parameter can be proposed to quantify the effect. In

most batch profiles, variability occurs in a particular way so that 'custom' scale

parameters can be proposed for the profiles.

Having said this, it is necessary to point out that a batch consists of various

phases and the underlying physical phenomena occurring between the various phases

are very different. We thus have as an example, a reactor loading phase, a preheating

phase, a reaction phase, a product-curing phase and finally a product discharge phase.

It is therefore reasonable to expect that since the underlying physical phenomena are

different from phase to phase, each phase should have its own characteristic

measurement axis variability. Extending the reactor level example fixrther, it is

expected that in the loading phase, the variability would mostly be in the form of
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varying slopes (rates of addition) of the level profile. The shift parameter is therefore

not well suited for the loading phase. Thus, variability is expected to occur 'in a

particular way' only in zones or phases of the profile so that each such zone should

have its own scale parameter. In fact, this is the problem that was faced in the heater

profile PCA example earlier - it takes more than one PC to explain the variability in a

particular zone (zone 3) since each PC also contains information from other zones.

The PCs are thus difficult to interpret and make little physical sense even though

maximum amount of variance is explained.

A more direct approach is to divide the profile into zones that have variability

of a particular kind and use the PCs for that zone. This would lead to factors that

make physical sense and are therefore easy to interpret. The word 'factors' has been

deliberately used since PCs imply orthogonality of the scores. The fact that the whole

profile has been divided into zones implies that the scores from zone to zone may be

correlated and therefore non-orthogonal. This is the price that one has to pay in order

to enhance the interpretability of the factors. The above points are illustrated below

by means of an example which uses 'custom' scale parameters.

5.3.1 Custom Scale Parameters Example

The heater power profile example is again used as a demonstration. Five

zones are obvious from the profile (see figure 5.1). Zone 1 extends from time 0 to 60

where the profile picks up from 0, decays and oscillates smoothly. Zone 2 contains

the wild oscillations from time 61 to 110 and is therefore not subjected to PCA. Zone
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3 extends from time 111 to 384 where the profile settles to a value and subsequently

goes to 0. Zone 4 extends from time 385 to 415 where the heater is off (value is 0)

and is not subjected to PC A. Zone 5 extends from time 416 to the end of the batch.

Zones 1, 3 and 5 are subjected to PGA and the factors and the projected profiles are

plotted in figure 5.11.

Note that zeros are padded so that each factor extends for the whole duration

of the batch. Also notice that a single factor is able to explain most of the variability

in zone 3. In the corresponding PGA example in section 5.1, it took 2 PCs to explain

similar variability in zone 3. For comparison purposes, figure 5.12 plots the E

matrices for zone 3 using the present approach and also using the 2 PCs from PGA on

Xm in section 5.1.

From the figure, it is seen that information from other zones causes the single

factor systematic variability in zone 3 to be partitioned between the 2 PCs even

though a single factor is enough for the zone. Note using the factor approach, almost

all of the variability is explained in zone 3 as evident from the near zero residuals.

The residuals remaining in the PGA case are somewhat higher. This implies that the

factor approach would be much better suited for extremely subtle special cause

detection in zone 3. Also, the proposed approach of dividing the batch into zones and

then obtaining the factors significantly enhances the interpretability of the factors.

This is very desirable since, in the global picture, the idea is to enhance process

understanding by looking at systematic sources of variation.
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FIGURE 5.11: Use of factors obtained by division into zones
(a) Factor loadings
(b) Residuals remaining after projection
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Residuals using PCA
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FIGURE 5.12: Comparison between projections using PCA and factors

PCA is the primary tool that has been used by various researchers for

analyzing batch data [41-48]. The basic approach has been to perform PCA and then

subsequently interpret the results that are obtained. The emphasis thus is on post

analysis result interpretation. The method that has been described in this section is

proactive in the sense that care is taken in proposing the scale parameters so that

minimal effort is needed in interpreting the scale parameters that are well understood.

Each approach has its own advantages and disadvantages.

In the next subsection, a simple algorithm is proposed to extract the

systematic sources of variability from the profiles. The algorithm is based on an

evolving factors type approach.
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5.3.2 Evolving Factors Analysis

This subsection develops an algorithm that can be used to extract the zones

containing systematic variability that occurs in a particular way in the profiles. An

example is used to illustrate its application to batch profiles. The basic approach

consists of taking a moving window and performing PCA on the windowed profiles.

In case variability in the windowed portion is of a particular type, a single PC would

explain more than a pre-specified tolerance (e.g. 90%) of the overall variance. In such

a case, a factor is considered to have been found. The window is now extended to

include more points and the first PC obtained for the extended window till the

tolerance limit is violated. Upon violation of the tolerance, the factor is stored and

search is begun for a new factor from the point of tolerance violation. A simple

flowchart of the algorithm is given in figme 5.13.

The flowchart indicates that finding a factor and extending the window are the

key to the algorithm and criteria for each need to be carefully formulated for general

applicability. Criteria for finding a factor are first described. First and foremost, in

order for a snapshot to qualify as a factor, the amoimt of variance explained by the

first PC of the snapshot should be a significant fraction of the overall variability in the

snapshot. In other words, the ratio of the MSE after and before projection should be

much smaller than 1.
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More formally, let denote the windowed profiles where the snapshot

extends from time s to s+K. The MSE before projection is

MSE, = trace(X„ X/)/(K+l)I (5.4)

I denotes the number of profiles. It is assumed that the profiles are column mean

centered. A PCA on X„ with projection using the only the first PC leads to the

residual error remaining E,, as

E« = X,,-X„ v« (5.5)

where denotes the first PC of the snapshot. The MSE after projection is obtained as

MSE. = trace(E„ eJ)/(K+1)I (5.6)

The criteria for finding a factor then boils down to the ratio MSE. / MSE, being much

much less than 1. A reasonable tolerance like 0.2 may be used. In some cases, an

optional criteria may additionally be used for avoiding snapshots that contain high

variance features that last for a very short duration. A statistic such as the number of

points in the snapshot that contain more than a prespecified threshold (say 10%) of

the MSE in the whole snapshot can be used. In case the number of points is less than

a prespecified tolerance, the snapshot need not be considered.

Once a snapshot qualifies as a factor, it must be extended. The criteria for

extension are simple. The ratio MSE. / MSE* of the extended snapshot should still

meet the tolerance criteria described earlier. In all, the algorithm has two parameters -

the minimum length of the window and the ratio tolerance. An optional parameter for

avoiding sharp features may also be used.

Let H denote the matrix containing the factors in the columns with adequate

100



zero padding. Since PCA is used to obtain the factors in a zone, each column of the

matrix is unit length as zero padding does not alter the magnitude. Also, since the

zones are assumed to be non-overlapping, the columns are orthogonal so that H is an

orthogonal matrix. The projection equations therefore are the same as for PCA and

the scale parameters are obtained asis obtained from equation 3.2 as

MS = XH (5.6a)

while the residuals after projection are obtained as

E = X(I-HH'^) (5.6b)

The above equations are the matrix versions of equations 3.2. The scale parameters in

MS may not however be decorrelated as opposed to the decorrelated scores in PCA.

In fact high correlation is expected due to autocorrelation between the various zones.

As an example, the algorithm is applied to the heater power profile. The

minimum window size used is 50 and the ratio tolerance is taken as 0.2. To avoid

sharp features, the number of points that contribute to the snapshot MSB should be

greater than 10. The factors thus obtained are plotted in figure 5.14(a). Note that the

algorithm successfully identifies the principal factors in the various zones. The mean

centered profiles (X) and residuals (E) are plotted in figure 5.14(b). The residuals

compare very well with the residuals using PCA as was described in section 5.1 (see

figure 5.3). Also, the factors are very easy to interpret, a very desirable feature. The

approach thus retains the power of projection methods in special cause detection with

the additional benefit of meaningful factors.
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FIGURE 5.14:Use of factors obtained by proposed EFA approach
(a) Factor loadings
(b) Residuals remaining after projection
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The proposed algorithm in its present form is able to extract the sources of

variability of a particular type as the factors. Depending on the profiles, these factors

may need to be further fine tuned for profile projection. As an example, it may be the

case that two factors are obtained for zones that are adjacent to each other. In such a

case, it may be desirable to combine the two zones into one and obtain as factors the

first two PCs. Exercising such an option would however be case specific and no

general guidelines can be proposed as such. Suffices to say here that a physical

understanding of the process would help a lot resolving such cases. Even so, the

obtained factors do provide valuable insight about the predominant type of variability

in a zone that is useful from the process understanding standpoint.

5.4 Discussion

In this chapter, the issue of characterizing the variability along the

measurement axis has been addressed. From the various illustrations, it is clear that

PCA as such is unable to cope with the change in the correlation structure from phase

to phase so that the profiles must be divided systematically into time zones that

contain a particular type of variability. The division into time zones should be done

based on a physical understanding of the process. Usually, a look at the profiles

makes such a division obvious so that 'custom' scale parameters can be proposed for

the time zones. As an automated technique, an evolving factor type approach was

developed to extract the consistent sources of measurement axis variability. The

example showed the applicability of the algorithm to batch profiles.
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Factors so extracted are very easy to interpret resulting in meaningful scale

parameters. The real benefit of the technique lies in these well understood scale

parameters. Such an understanding is critical for process improvement. The technique

also retains the power of using projection methods for subtle special cause deviations.

The only compromise is the resulting scale parameters with correlation between them.

This fact can be utilized in detecting abnormal batch operation in case the correlation

structure is violated. The batch would then show up as an outlier in the scale

parameter subspace. Multivariate control charts can be proposed for the scale

parameter space. Further, since the projection methods extract most of the consistent

sources of variability in the scale parameters, profiles with special causes would show

high residuals (E) after projection. Therefore, formal control charts on the residuals

are also needed. The formulation of these control charts forms the subject matter of

the next chapter.
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Chapter 6

SPC Charts

6.1 Introduction

Statistical process control (SPC) charts are used extensively in the process

industry for monitoring purposes. The SPC charts are usually on measurements or

parameters that are considered important for the health of a process. These charts use

control limits for discriminating between normal and aberrant samples. For process

monitoring, the control limits are usually obtained from nominal data from past

operation. Normal samples lie vvdthin the control limits while aberrant samples show

excessive deviation from the nominal operation causing control limit violation. A

statistically significant deviation is said to have occurred in case such a violation

occurs indicating a significant deviation from the nominal operation.

In batch processes, the consistent variability in the nominal profiles is

characterized by the scale parameters. Specifically, the use of time and magnitude

scale parameters has been proposed for quantifying the consistent variability in this

work. These scale parameters are important indicators of the amount of variability of

a particular type in a batch and are therefore important indicators of the state of a

batch. SPC charts on the scale parameters are therefore needed. As an illustration,

consider again the reactor level example where the profiles are shifted above or below

the reference by a fixed amoimt due to variability in the initial reactor charging. The

shift scale parameter for the profile is denoted by S. For nominal operation, S is

expected to lie within a bound say ±Sm„, about S. In the case where too much (or too
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little) material is added to the reactor, the shift parameter would violate the maximum

bound for nominal operation. The simple example highlights the application of

control charts on the scale parameters for abnormal operation detection.

The variability that is not accotmted for by the scale parameters, remains in

the residuals after projection. Normal profiles are therefore expected to show small

residuals. On the other hand, profiles that contain special causes not accounted for by

the scale parameters, would typically show large residuals. SPC charts are therefore

also needed on the residuals remaining after projection.

The two types of SPC charts, on the scale parameters and the residuals,

complement each other. Violations on the scale parameter charts indicate excessive

variability of the scale parameter type while SPC violations on the residuals indicate

special causes unaccoimted for by the scale parameters.

Typically, batch processes contain measurements on several variables that are

correlated to each other. The profile data is therefore inherently 3 way in nature with

the various batches, the measurements and time forming the 3 dimensions. In chapters

4 and 5, the focus was on single profile data ie a 2D matrix. In order to avoid

confusion, the projection methodology is restated with a consistent nomenclature in

section 6.1. It may be considered as a review of the methodology with an extension to

handling the 3D data due to the multiple on-line measurements in a batch. The section

is also necessary since the control charts would use the various quantities proposed.

In section 6.2, control charts on the scale parameters are formulated while section 6.3

proposes control charts for the residuals remaining after projection.
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6.2 Profile Projection Review

Consider a set of I 'normal' operation batches from the historical database as

the reference set. Each batch contains profiles on K measurements such as

temperatures, pressure and flows etc. The first step in the scaling methodology is to

time scale the batches using consistently occurring features for time alignment. The

time scale parameters so obtained are denoted by TS, which is a matrix with each row

containing the scale parameters for a batch. The batches after time scaling are the

same duration with J points. The complete data set thus has three dimensions -

batches (I), time (J) and measurements (K). Subscripts i, j and k are used to refer to

these dimensions respectively. The 3 way array containing the batch profiles is

denoted by P^ and is shown in figure 6.1. The k* slice of the 3 way array is the time

scaled profiles for the k* measurement variable with each profile being along the I

rows.

Pk

Pk

B

A  ...

PadT  i

C  ...

H  I

K

1/
k  VARIABLE

1... ...J ... ...J
1

TIME

FIGURE 6.1: Organization of batch data array
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The first step in magnitude scaling consists of mean centering the columns of

the K slices. Let denote the array resulting after subtracting the mean (also called

reference) from the columns of the Pjj array. The magnitude scaling methodology

consists of obtaining factors for consistent variability seen in each of the K

measurement profiles and projecting onto the factors to obtain the scale parameters.

The projection equations in 5.4 and 5.5 in chapter 5 must be applied to the factors for

each of the K measurements. Let (k = 1 to K) denote the factors for the

measurement. As indicated in chapter 5, Hk is orthogonal so that the projection of the

various profiles that are also called the magnitude scale parameters for the k"^ profile

is

MSk = Xk Hk (b.l)

The residuals remaining after projection are obtained as

Ek ~ Xk — MSk Hk (6.2a)

Or substituting for MSk

Ek = Xk(I-HkHk'') (6.2b)

In the above equations, Xk denotes the k* slice along the third dimension in

the Xsd array and is a matrix that contains the mean centered batch profiles for the k"*

measurement. The equations given above are directly obtained from the projection

equations 3.2 in chapter 3. The above process is repeated for all the measurements, k

= 1 to K, to obtain the magnitude scale parameters and the residuals. The residuals

can again be put in a 3 way array form similar to Pj,, and is called Esd. The time scale
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and magnitude scale parameters for all the profiles can be combined into a scale

parameter matrix SP as

SP = [TS MS, MS^ ... MS,, ... MSk] (6.3)

The projection methodology is pictorially described in figure 6.2. The

methodology leads to the scale parameters SP and the residuals Ejj. The next two

sections are devoted to the development of SPC charts on the scale parameters and

the residuals.

6.3 SPC Charts on Scale Parameters

The scale parameters for the reference set of normal operating batches are

obtained in SP. The simplest SPC charts are imivariate control charts vvdth

approximate ±3a as the 99% confidence limits. All the scale parameters can be put on

a common basis using autoscaling so that the upper and lower control limits are ±3

since after autoscaling, the standard deviation of each column is 1. More formally, if

SP, denotes the autoscaled parameter matrix, the 1-a limits on the rth scale parameter

would be

SPs.r,a~ ^ti.]a/2 (6.4)

Where I is the number of samples (rows) and t,.i,a/2 corresponds to the probability

point on the single sided t-distribution with I-l degrees of freedom and area a/2. The

limits can also be proposed based on engineering judgement. Such charts should

suffice for gross error detection and are used in the present work for demonstration

purposes.
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FIGURE 6.2: Pictorial schematic for magnitude scaling
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For subtler error detection, multivariate control charts based on the

Hotelling's statistic can be used [21], The statistic is a quadratic form with inverse

of the covariance matrix as the defining matrix. Collinearity between the columns of

SPs is possible causing matrix inversion problems. PCA can be used in order to avoid

such problems in calculating the relevant statistics. PCA has already been described

earlier in chapter 2. If r PCs are retained in the PCA model, then the multivariate

statistics used to characterize the samples are - the Hotelling's V and the Q statistic.

Figure 6.3 tabulates the equations for the PCA model and the multivariate statistics

and the confidence limits on the statistics. The limits on the Q statistic were proposed

first by Jackson [25].

In the equations, the matrix Xr for PCA is diagonal and denotes the covariance

of the scores. The diagonality results due to the decorrelated scores in PCA. From the

theory of PCA, the diagonal elements of kr can also be obtained as the eigenvalues of

the matrix cov(X). Note that both the T^ and the Q statistic are quadratic forms. The

T^ statistic is a weighted distance of the projection of the samples on the PC

hyperplane from the origin and measures the variability in the PC subspace. The Q

statistic on the other hand, measures the perpendicular distance of the samples from

the PC hyperplane.

In the case of SPC charts for the scale parameters, the autoscaled matrix SP,,

serves as the X matrix. When collinearity exists between the scale parameters, the Q

statistic is of primary importance since abnormal operation where the correlation

structiire breaks down would result in out of control Q statistic.
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PCA Model

PC Equation (r retained PCs)

x=T,v,+e = u,2:,v7 +e

Sample Scores

ti=Xi V,

Sample Residuals

e,='',-<,V7=x,(l-V,V7)
Multivariate Sample Statistics

Hotelling's

=t,cov(t)-'t^ =t,k:hj

where )i, =——
'  I-l

Q statistic

Q,=e,e^=x,(l-V,V7)i^
Confidence Limits

Hotelling's

T' =£fc:l)Fr,I,a T ^ r,I-r,a
I -r

Q Statistic

Qa=0,

1

0, 0f

where 0: = trace
I-l

for i = 1,2,3

Variable Descriptions

X  Data Matrix (1 by J)

Retained PC loadings (J by r)

Scores on retained PCs (1 by r)

,  E Residuals remaining (1 by J)

X j i "■ sample row vector (1 by J)
t i i * sample scores (1 by r)
F  Critical value of F distribution

c „ standard normal deviate
FIGURE 6.3: PCA model equations and statistics
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Note that in case high correlation does not exist between the various scale

parameters, matrix inversion problems are non existent so that the statistic alone

can be used to monitor the complete scale parameter space since all the PCs are

retained. Alternately, the univariate control charts on the scale parameters would

suffice for monitoring purposes. The chart is however convenient since it is a

single chart with information on all the scale parameters. The real utility of the

multivariate charts for subtle error detection exists only when high correlation exists

between the scale parameters.

A word of caution on the use of confidence limits on the scale parameters is

perhaps in order. The scale parameters contain the deterministic information in the

profiles so that the assiunption of normality of the retained scores is questionable. The

confidence limits, univariate or multivariate T^ are therefore only rough guidelines

and may be altered based on process knowledge. The next section proposes

multivariate charts on the residuals remaining (Em) after projection.

6.4 SPC Charts on Residuals

The projection methodology extracts the consistent sources of variability in

the scale parameters to result in the residual array Em. SSE type statistics can be

proposed on the residuals. The task is simplified since most of the systematic

variability is extracted in the scale parameters so that the residuals remaining are

stochastic in the sense that there is no structure remaining in the residuals. These

residuals for the K different measurements per batch can therefore be combined

113



together to give a single SSE type statistic rather than K different statistics for each

measured variable, thus simplifying the picture.

In order to combine the residuals for the various measurements, some type of

scaling must be used since the units may be different on the various measurements.

Autoscaling is ideal in this case since the residuals are assumed non-systematic. Thus,

every time point for each variable is put on a unit variance basis. Let Esd, denote the

autoscaled array where each column of the array is obtained from Eja by mean

centering and dividing by the column standard deviation. Referring to figure 6.4, the

autoscaled residuals of the i"' batch for all the measurements are therefore along the i^

horizontal slice of the array. The combined residual statistic for the i*^ batch may be

obtained as

J  K

Qi (6.6)
j=l k=l

Approximate confidence limits on the statistic can be obtained using Jackson's

expression as indicated in section 6.2. This simple statistic can be conveniently used

for detecting special causes not accounted for by the scale parameters.

A few comments are in order. Since the systematic variability is already

extracted in the scale parameters, the residuals in the zones containing the systematic

variability are expected to be very small. The autoscaling would then punish very

small deviations heavily in these zones making subtle special causes easily detectable.
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Batch 1

Batch i

Batch I

FIGURE 6.4: Each batch as a slice in the 3D data array

Note that since the autoscaling is done after the extraction of the systematic

variability, the SPC charts are more sensistive to special causes than traditional

methods that use autoscaling before applying PCA. The inadequacy of autoscaling in

extracting meaningful scale parameters has already been demonstrated is chapter 5.

The proposed SPC methodology thus combines the extraction of meaningful scale

parameters along with the ability to detect extreme subtle causes. These points shall

be illustrated in chapter 8 with a demonstration on a realistic batch process

simulation. The description of the simulation forms the subject matter of the next

chapter.
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Chapter 7

Batch Process Simulation

7.1 Introduction

This chapter describes a batch polymerization reactor simulation. The

simulation is used to generate realistic batch profiles to demonstrate the application of

the methodology for profile characterization outlined in earlier chapters. The system

modeled is a batch reactor polymerizing methyl methacrylate monomer in toluene

solvent to produce polymethyl methacrylate (PMMA). Azoisobutonitrile (AIBN) is

used as the initiator. The system is chosen due to the highly non-linear modeling

equations, a typical characteristic of industrial batch processes. Also, research work in

the past have proposed modeling equations for the polymer quality which gives a

convenient means for obtaining quantitative quality parameters. Such quantitative

measures can be used by regression techniques such as multiple linear regression

(MLR), Principal component Regression (PGR) and partial least squares (PLS) for

predicting the quality fi"om the scale parameters that characterize the batch operation.

Study of the correlation of the scale parameters with the polymer quality also forms

an important part of the overall profile characterization framework and the quality

data generated from the simulation is again used for demonstration purposes. The

batch reactor system and the modeling equations are briefly described in the

following sections.
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12 Process Description

The batch process is based on the experimental set up used by Souroush and

Kravaris for the application of nonlinear control techniques and a schematic is drawn

in figure 7.1 [92]. The set up consists of a reactor with a cooling system to remove the

heat released during the polymerization. The heat removal occurs by heat transfer

between the coolant circulating in the jacket arotmd the reactor. Water is used as the

cooling fluid and is recirculated in the cooling circuit using a centrifugal pump.

The control system consists of a FID controller to manipulate the heat input to

the cooling system to track the reactor temperature to the set point. A split range at

the controller output is used to manipulate the heat input to the circulating coolant.

Thus, in case the controller output is positive ie heat must be input, the electric heater

is switched on while if the output is negative ie heat must be removed, the coolant

flow valve is opened to let in coolant.

The operating procedure consists of 3 distinct phases - reactor charging,

preheating to the reaction set point and finally AIBN addition indicating the

beginning of the reaction. The reactor is charged with the monomer and the solvent

using the two inlets provided for the purpose. The flow profiles for the two

components are pre-specfied. The charging step begins at time tmi = 1 min after the

simulation is started when the monomer flow inlet is opened. The monomer inlet is

closed at t,„f = 16 mins. The solvent inlet is opened at tsi = 10 min and closed at t5f= 20

min. The charging phase therefore lasts till 20 mins after the beginning of the

simulation.

117



Monomer

Solvent

Initiator

Inlet

Coolant

Wi

© Controller

©

Spilt
Range

Q

Jacketed

Heater

CWJ I

FIGURE 7.1: PMMA batch process schematic
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The way the simulation is setup, no variability exists in the times at which the valves

are opened or closed. Variability can however exist in the flows of the monomer and

solvent, denoted by and F, respectively.

The preheat phase begins after the charging is complete at th = 30 mins when

the controller is enabled. Upon controller enabling, the reactor temperature set point

is a constant at 320 K, the reaction temperature. In order to avoid reset windup, the

integral mode is enabled only after the temperature rises to within 5K of the set point.

It thus takes about half an hour for the reactor temperature to rise to the set point. No

variability exists in the time at which the control system is enabled.

Finally, the initiator AIBN is added to the reactor indicating the beginning of

the reaction at about 1 hour (60 mins) after the beginning of the simulation. Nominal

variability exists in the time tjj at which the initiator is added. The time thus varies

randomly between 55 to 65 mins from batch to batch. Variability is also possible in

the amount of initiator charged (Wj). The variability in fi simulates an operator

mediated task. The previous phases of charging and preheating, where no variability

exists in the times, simulate automated tasks. The batch is considered complete when

the conversion reaches around 0.995 (about 6 hours after AIBN addition for nominal

operation).

The measurements include the reactor temperature (T), the jacket temperature

(Tj), the coolant flow (F^w), the electric heater power (P), the monomer (F^) and

solvent (Fs) flows and the weight (Wj) of initiator added. The polymer quality is

characterized using the number average molecular weight (MW„), the weight average
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molecular weight (MW„) and the polydispersity index (PDI). MW„ measures the

average chain length while PDI is a measure of the spread in the molecular weight

distribution of the polymer. For many industrial applications, these quality parameters

are considered sufficient for characterizing the polymer product.

This completes a brief overview of the PMMA batch reactor process

description. The next section describes in brief, the mathematical equations that are

used to model the batch polymerization process.

7.3 Model Equations

The process is modeled using dynamic material and energy balance equations

on the reactor and the cooling system. In the modeling equations, the physical

properties such as density and specific heat are considered constant. The values used

are calculated at the reactor set point temperature. Thus since the reactor temperature

is controlled, the assumption is good once the set point is reached or in other words,

once the reaction begins. The model is therefore reasonable in the reaction phase

where most of the non-linearity occurs due to the kinetics of the reaction.

The kinetics of methyl methacrylate polymerization reaction in toluene

solvent is modeled using the free radical polymerization mechanism [87-92]. The

reaction mechanism is given in figure 7.2 [89, 90]. The steps in the polymerization

include initiation, propagation, chain transfer and chain termination.
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FIGURE 7.2: Free radical polymerization reaction mechanism
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In the initiation step, the initiator forms a free radical, which in turn causes the

monomer to form an alkyl free radical. Polymerization occurs primarily through the

propagation step where monomer molecules are added to existing alkyl free radicals

leading to higher chain length radicals. These radicals are called live chains since they

can propagate by addition of more and more monomers. Dead chains or dead polymer

molecules that cannot propagate, are produced by chain transfer and chain

termination. It is evident from the mechanism that the competition between the

propagation and dead chain producing steps, determines the quality of the polymer.

Indeed, in practical free radical polymerizations, impurities in small concentrations

that significantly enhance the dead chain production by chain transfer are known to

have a drastic impact on the polymer quality [94]. A hypothetical impurity capable of

such chain transfer is therefore included in the reaction mechanism.

The most rigorous kinetic model for the reaction should be based on all the

reacting species including P„ and D„ for n = 1 to oo. This is however impractical and

the method of moments using only the first few moments on the live or dead chain

distribution is used as a good approximation [90]. The live and dead chain

distributions are characterized by their 0*^, 1®' and 2"^* moments. The moments are

defined as

A. = ̂«'[PJ for i = 0,1 and 2 (7.1a)
n

for the live chains and as

fij = fori = 0,1 and2 (7.1b)
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for the dead chains. These moments that partially describe the chain distribution can

be used to obtain the polymer quality parameters as

AW,=A±ffL (7,2a)
■^0

and

(7.2b)

The polydispersity index (PDI) is obtained as

MWPDI = ^ (7.2c)MW„ ^ '

The reaction rate equations on the various species and the moments are tabulated in

figure 7.3. The kinetic parameter values are tabulated in table 7.1 [89].

The PMMA polymerization reaction is characterized by a strong gel-effect

when the reaction rates increase at high monomer conversions. The gel effect is a

highly nonlinear process and is modeled by using the constitutive equations of Chiu

et al that uses the free volume concept as in figure 7.4 [91 ].

The gel-effect occurs primarily since the polymer density is significantly

higher than the monomer density leading to a volume contraction. So at high

conversions, the reaction rates significantly increase owing to low reaction mixture

volume causing an increase in the reactant concentrations. Such an automatic increase

in the reaction rates is therefore also known as autoacceleration. Using the kinetic

model, the dynamic equations for modeling the batch reactor system are obtained as

in figure 7.5.
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M= (kp+kfi„)[M]^o

= -m

„ =2fkJI]-k.^^
^ = 2fki [I] + kp [MJtio + (kfi„ [M] + kf, [S])(^o - - k.^o^,

^ = 2fk,[I] + kp[M](2n, + tio) + (k^ [M] + k JS])(^o - ̂2) - k.^to^i2

= (k^[M] + kJS])Ho +(k., +0.5kJn^

= (kfi„[M] + kfJS])^, +k,^o^ll

= (kfi„[M] + kfJS])n2 +k,^o^i2 +k,c^f

where the rate constants are as follows

kj = initiator decomposition

kp = propagation

kjj„ = chain transfer to monomer

kfj = chain transfer to solvent

k^ = chain transfer to impurities in the monomer

k,j = termination by disproportionation

k,^ = termination by chain combination

k, = k,j +k,^ = overall termination

FIGURE 7.3: Kinetic rate equations for the reaction mechanism
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TABLE 7.1: Kinetic parameters used in the model

Rate Constant Arrhenius Frequency (A) Activation Energy Equation
(k) (E)
ki 1.0533-10*' s"* 1.2877-10'* kJ-kmor* k = Aexp^-"""^
kpo 4.9167-10^ m^-kmof'-s-^ 1.8283 -10" kJ-kmor' do

kfm 4.6610-10^ m^ kmor'-s"' 7.4479-10" kJ-kmol"' do

kfs 4.9658 -10^ m^-kmoF^ s-' 6.6150-10" kJ-kmof' do

kfu - - kfu=l-10"'kp
kto 9.8000-10^ m^-kmor'-s"' 2.9442-10^ kJ-kmof' k = Aexp^-^'^)

ktd/ ktc 2.5278-10^ m^-kmof'-s-' 1.7178-10" kJ-kmor' do

kep 3.0233-10'^ s"' 1.1700-10^ kJ-kmof' do

ket 1.4540-10^° S-' 1.4584-10^ kJ-kmof' k = [IJoAexp^-™
Initiator Efficiency f = 0.58

k. =■
1 +

K =

Dk.

"pO

1 + MpL
Dkep

with

D = exp
' 2.303(1-cpp) ^
A(T) + B(l-9p)^

A = 0.168-8.21xl0"®(T-Tgp)^
B = 0.03

where

Tgp is the glass transition temperature of PMMA
(pp is the volume fraction of the polymer

FIGURE 7.4: Gel effect constitutive equation and parameters
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Reactor Material Balance

d[M]V_
dt

^^ = r V fori=0,land2
dt

= Tj V for i = 0,1 and 2
dt

Reactor Energy Balance

dTV
pCp —= r„V-U,A,(T-T3)

Jacket Energy Balance

m.Cp, ̂  = U,A,(T -T.) + (T. -TJ + [P,, - (T^ - T,J]
with

instantaneous jacket heat transfer coefficient = U^ = Uo[a + (l - a)exp(-px )]

instantaneous jacket heat transfer area = A^ = Ao(l + ex^)

volume expansion factor = e = cp^o Pm _ j

v^p y

N p
initial monomer volume fraction =

EN|.P,
isni,s,i

N„
monomer conversion = x„ = 1 -

N
mO

rate of heat generation = r^ = (-Hp jkpPg

heat actually input by the heater to the jacket = 7^,^?

where P is the controller output

FIGURE 7.5: Dynamic process model equations
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In addition to the material balance equations, the reactor and jacket energy

balance equations are also given in the figure. Note that the quasi steady state

approximation (QSSA) is not used in the simulation equations since the

approximation breaks down in the gel effect due to accumulation of free radicals.

The physical properties and the equipment parameters for use in the equations

are tabulated in table 7.2 [92]. The PID controller tuning constants and the split range

implementation equations are tabulated in figure 7.6. Note that gain scheduling is

used so that the controller is tuned to be aggressive in the reaction phase as indicated

by the high gain. This is necessitated to remove the high reaction heats in the gel

effect phase to avoid significant temperature overshoots.

TABLE 7.2; Physical properties and other parameters for the process

MWm= 100.12 kg-kmor MWs = 92.14 kg-kmol' MWi = 164.21 kg-kmor*

pm = 915.1 kg- m'^ Ps = 842.0 kg-m'^ Pi = 915.0 kg-m"^

o
II

a

o

II

OQ

7 = 3.0

U«Aoo= 5.57-10-^ kJ-s"'-K-' Pn,ax = 3.13kJ-S-' Fcwmax = 3.0-10"* m^- s'*

mw=4.0 kg Cpw = 4.2 kJ-kg-^-K-' Pw = 1000 kg-m'"*

Cp=2.2kJ-kg'-K-' Hp =-5.78-10'* kJ-kmol"' d = 8 -10'^ m (reactor dia)
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PID Controller

Controller output u =
I f , de

e + — edt + Xn —
X, J dt

Controller Tuning

Before Reaction Begins

K, =0.04 kJ K"' X, =200$ Td=Os
After Reaction Begins

K, =lkJ-K-' x,= 2000s Xd=Os

Split Range Coordination

u  if 0 < u < ?„

Heater Power P = s P-„„ if u > P.

0  ifu<0

-u
if-FcwmaxC'^w(Tj-T,,,)<U<0

C p (T.-T )pw rwv j cw-'

Coolant Flow F^,^ = n F
cwmax

0 if u > 0

FIGURE 7.6: Controller equations and parameters
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Finally, autocorrelated noise is added to the various measurements and also

some of the model parameters to simulate stochastic distturbances in the process.

Specifically, autocorrelated noise is added to the jacket heat transfer coefficient U and

the heater power efficiency riha-.

This completes a brief description of the simulation. SIMULINK is used to

implement the batch reactor system. The next section briefly describes the nominal

operation set generated from the simulation and the various abnormal operation

scenarios.

7.4 Simulated Historical Database

A total of 100 batches are simulated with 96 batches forming the nominal

reference set and the remaining 4 simulating special cause disturbance scenarios.

Variability in the process is introduced by varying the following parameters

1. Monomer and Solvent Flow Rates (F^ and F^)

2. Initiator addition time (tji)

3. Weight of initiator charged (Wi)

4. Mole fraction of impurities in the monomer

These parameters are specified at the beginning of each simulation and do not change

through the course of the simulation. Negligible variability is kept in the amounts

charged to the reactor, as is expected in recipe based industrial batch operation. These

measurements are therefore not subject to analysis.
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Variability is also introduced as the simulation proceeds in time by pre-

specifying the following profiles

1. The jacket heat transfer coefficient

2. The heater efficiency

3. The coolant temperature temperature

4. The oxygen concentration in the reaction mixture

The above profiles allow for abnormalities that develop as the batch progresses in

time. For example the heat transfer coefficient may go down significantly during a

batch due to a loss in the agitator power. Similarly, an increase in the concentration of

oxygen in the reaction mixture would slow down the reaction rate as oxygen is a

known reaction inhibitor. The decrease in the reaction rate is simulated as the initiator

efficiency f reducing linearly with oxygen concentration.

Several disturbance scenarios are possible by abnormally varying any of the

above parameters. Of all the possibilities, four particular ones of interest used in this

research are

1. The oxygen concentration ramps up during a batch. This is possible in case

nitrogen bubbling fails so that the dissolved oxygen content increases and

would slow down the reaction.

2. The coolant temperature increases midway through the batch.

3. The heater efficiency ramps down during a batch. In an industrial setting

where saturated steam is used as the heating fluid, such a decrease in

efficiency is seen during boiler pressure surges.
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4. The agitator power goes down as the batch progresses in time causing a

decrease in the jacket heat transfer coefficient.

One batch simulating each of the above cases is simulated so that four special cause

batches are also a part of the complete historical database. Table 7.3 tabulates the

nominal ranges of the various parameters used for generating the 96 batches in the

reference set. Ranges for the paramaters in case of a disturbance scenario are also

given in the table. The profiles generated for the nominal set are plotted in figure 7.7.

This completes a description of the historical database that is generated using

the simulation. The next chapter applies the scaling methodology proposed previously

to the simulated data set consisting of nominal and abnormal batches. It is hoped that

it demonstrates the coming together of all the concepts illustrated in bits and pieces in

the past few chapters.

TABLE 7.3: Nominal and abnormal operation ranges for some process parameters

Parameter Type Nominal Range Abnormal Operation

Fm(10^kmol-s'') S 1.0021 - 1.0023 NA

Fs (lO^kmols"') S 0.6853 - 0.6855 NA

Tii (min) S 55-65 NA

Wj (grams) S 32.00-32.02 NA

Monomer purity (%) S 96-100

Tcw(K) P 275 -285 300

Uo (J-m^-s-'-K-*) P 195-205 150

Tlhtr P 0.98-1.02 0.9

O2 content (ppm) P 0 10
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Reactor Temperature Profile
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FIGURE 7.7: Nominal profiles generated from the simulation
(a) Reactor temperature
(b) Jacket temperature
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Heater Power Profile
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FIGURE 7.7 (continued): Nominal profiles generated from the simulation
(c) Heater Power
(d) Coolant Flow
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Chapter 8

Example Application

8.1 Introduction

In this chapter, the framework for SPC on batch profiles is applied to the data

generated from the PMMA simirlation described in the last chapter. The chapter

represents the coming together of all the concepts described earlier into a coherent

whole. The first section is devoted to the empirical model development exercise.

Specifically, the time scale and magnitude scale parameters for the profiles are

obtained along with a demonstration of batch monitoring using SPC charts. Results

are also compared with the existing MPCA technique. Finally, a few words on the

importance of manipulated variables for monitoring purposes are given. In the second

section, correlation of the scale parameters with the final batch quality is studied.

Throughout the chapter, the various issues are discussed at the appropriate place.

8.2 Profile Analysis

The complete data set consists of 100 batches with 96 nominal operation

batches and 4 special cause batches. From the simulation description in the last

chapter, profiles of the four measured variables - reactor temperature (T), cooling

jacket temperature (Tj), heater power (P) and coolant flow (Few) are studied. These

profiles have already been plotted in figure 7.8. The nominal operation data set is

used to formulate an empirical model using time and magnitude scaling and obtain
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the control limits for the control charts for SPC monitoring in the next few

subsections.

8.2.1 Time Scaling

The time axes of the various batches can be put on a common scale by the

alignment of various events/features that occur consistently from batch to batch. A

simple technique for the extraction of such consistent events has been described in

chapter 5. From the process description in the last chapter, it is known that no time

scale variability exists in the loading and preheat phase of the process as the operation

is automated so that the valves are opened and closed at fixed times after the

beginning of the simulation. Similarly, the time at which the control system tums on

for preheating is also fixed. Variability however exists in the time at which the

catalyst is added so that the time of addition of catalyst can be used as a checkpoint.

Assume that the DCS records the time so that it is available even though the exact

time is not very obvious from the profiles.

Once the catalyst is added, reaction begins and time scale variability occurs

since the reaction rates vary from batch to batch. However, since a measure of the

reaction conversion is not available (a typical industrial scenario), the indicator

variable approach is ruled out so that consistent events must be used for time scaling.

PMMA polymerization is characterized by a strong gel effect at high polymer

conversion and results in high reaction rates. This is signified in the profiles by the

jacket heater turning off and coolant flow turning on to remove the high heats of
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reaction in the gel effect. Since the gel effect is a characteristic of the process, this

heater shutting off event occurs consistently in all the profiles. The heater shut off

time can thus be used as a consistent checkpoint for time scaling.

Once the gel effect sets in, the monomer is consumed at a faster rate so that at

very high conversion when almost all of the monomer has polymerized, the reaction

rate reduces. The heater power now turns on in order to keep the reactor at the

reaction temperature set point. This is again a characteristic of the process so that the

heater turn on event occurs consistently in all the profiles. It can therefore be used for

time scaling.

The two checkpoints for time scaling are thus the heater shut off and

subsequent heater turn on. Heater shut off indicates the beginning of autoacceleration

while heater turn on indicates almost complete monomer conversion. In chapter 5,

these two events were obtained using an automated algorithm. In this chapter

therefore, the physical understanding aspect is emphasized.

The time of occurrence of these events can be easily obtained using the

feature translation technique described in chapter 5. Of the several possible features

that can be used for the purpose, the one that gives the least SSE upon translation

gives the best recognition accuracy and is therefore used. The reader is referred to

chapter 5 for the details. It must be pointed that by focussing only on the candidate

features in the vicinity of the heater shut off and turn on events, the computational

burden is considerably reduced since only a few relevant candidate features that are

physically meaningful, are used from all the possible features.
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As for events in the other profiles, suffices to say that the alignment of the

features in the heater power profile results in the alignment of features in other

profiles too. As an example, the heater turning on causes the jacket temperature to

rise again so that aligning the heater turn on should result in the jacket temperature

valleys to be aligned. The heater profile events are used for time alignment since they

are sharp and therefore can be obtained accurately using the translation technique of

chapter 5.

Three events are therefore used for time scaling - 1. Initiator addition, 2.

Heater shut off and 3. Heater turning on. There are thus four (3+1) distinct phases

from the starting to the end of a batch. Once the times of occurrence of the time scale

events is known, linear interpolation or padding must be used so that each phase in

the various batches is of the same length. The various phases and the method used for

time scaling each of the phases are tabulated in table 8.1. The raw and time scaled

profiles for each of the measurements are plotted in figure 8.1.

TABLE 8.1: Time scaling zones and the method for each zone

TIME ZONE TIME SCALING TECHNIQUE

1-60 min Pad Mean value

61 - 390 min Linear Interpolation

391 -426 min Linear interpolation

427 - 601 min Pad Last Available Value
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FIGURE 8.1: Effect of time scaling. Raw and time scaled profiles
(a) Reactor temperature
(b) Jacket temperature
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From the figure, it is seen that time scaling explains a significant amount of the total

variability in the profiles. As a quantitative measure, the MSB of the profiles before

and after time scaling is plotted in figure 8.2 for each of the measured variables. In

the figure, the MSB is obtained after mean centering the profiles. Thus if Xk denotes

the mean centered profile matrix, raw or time scaled, where each row is a profile, the

MSB is obtained as

MSB = trace(diag(XkXk^))/(I. J) (8.1)

where I is the number of rows and J is the number of time points in the batches. In

order to view the results on the same plot, the variance explained by time scaling is

expressed as a percentage of the total variance. The amount of data that is lost due to

time scaling is assumed negligible in comparison to the overall MSB of the profiles.
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FIGURB 8.2: Percentage variance explained by time scaling
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The bar plot shows that more than 40% of the variance in the jacket

temperature and coolant flow profiles is accounted for by time scaling. Also about

25% of the overall variability in the heater profile is explained by time scaling. It is

therefore clear that time scaling accoimts for a significant amount of variability in the

batch profiles underscoring its importance in the analysis of any batch process

historical database.

8.2.2 Magnitude Scaling

Once the profiles are time scaled, the consistent variability along the

measurement axis is modeled by magnitude scaling. In chapter 6, a simple evolving

factor analysis (EFA) type algorithm was developed in order to extract the factors for

magnitude scaling. In this chapter, for the sake of completeness, the use of 'custom'

scale parameters is demonstrated. The factors so obtained are very similar to those

obtained by the EFA approach referred to earlier. This again demonstrates the fact

that a simple look at the profiles coupled with a physical understanding of the process

can provide valuable insight about the type of variability in the profiles, thus

simplifying the extraction of the scale factors.

The basic approach for extracting the magnitude scale factors remains the

same as was described in chapter 5 - that of finding time zones (or phases) that show

a particular type of variability occurring consistently across all profiles, e.g. a shift. In

case the variability is of a particular type, a single PC would explain most of the

variability in the zone. In this section, rather than using the EFA approach to extract
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such zones, the profiles are directly divided into zones that contain variability of a

particular type and the factors are directly obtained using the singular value

decomposition (SVD) to extract the factors. The division into zones is based on the

user's judgement. In most cases, such a division is obvious from the data itself so that

the subjectivity is not a major disadvantage. The significant reduction in the

computational burden when compared with the EFA approach makes the use of such

'custom' factors very attractive in most cases. The factors obtained for each of the

measured variables are plotted in figure 8.3. Table 8.2 tabulates the number of factors

for each variable along with the time zones used. A physical description of the factor

is also provided. Note that each of the factors is very easy to interpret.
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FIGURE 8.3: Factors used for magnitude scaling for all the measured variables
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TABLE 8.2: Factors for each of the profiles

Variable # of Factors Factor Time Zones Factor Description

Reactor

Temperature
1 0 - 60min Startup Dynamics

Jacket

Temperature
4

0 - 60min

110-300min

310 -426min

427 - 600min

Startup Dynamics
Slope
Valley

Oscillations

Heater Power 3

1 - 60min

110-400min

426 - 600min

Startup Dynamics
Level & Slope

Oscillations & Level

Coolant Flow 1 390 - 430min Flow Overshoot

The projection methodology discussed in chapter 6 is now applied to extract

the scale parameters. The mean centered profiles and the residuals remaining after

projection for a few representative batches is plotted in figure 8.4. The reduction in

the variability in the time zones corresponds directly to the factors in figure 8.3. As

with time scaling, a significant amount of variability is explained by magnitude

scaling. Figure 8.5 plots the percentage of variance explained by both time and

magnitude scaling. Let MSEo, MSE^ and MSE^ms denote the mean square errors for

the raw, time scaled and both time and magnitude scaled profiles, respectively as

given by equation 7.1. Then the percentage variance explained by time scaling is

obtained as

= 100.(MSEo - MSE«)/MSE„ (8.2a)

while the percentage variance explained by magnitude scaling is obtained as

%.s = 100.(MSE« - MSE^„3)/MSE„ (8.2b)
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FIGURE 8.4: Effect of magnitude scaling. Mean centered profiles and
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FIGURE 8.4 (continued): Effect of magnitude scaling. Mean centered profiles
and residuals remaining.
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From the figure, it is seen that magnitude scaling explains almost 90% of the

variability in the reactor temperature profile. The approximate figures for the jacket

temperature, heater power and coolant flow profiles are 50, 30 and 20 percent

respectively. Thus magnitude scaling accounts for a significant amount of the total

variability in the profiles. The variance explained by time scaling and magnitude

sealing for each of the measured variables is plotted in figure 8.5. For the reactor

temperature and jacket temperature profiles, the total variance explained is more than

90%. For the other profiles, the unexplained variance consists mostly of the

oscillations. In the next section, the use of SPC charts on the scale parameters and the

residuals remaining for monitoring purposes is studied.
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FIGURE 8.5: Percentage variance explained by time and magnitude scaling
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8.2.3 SPC Monitoring Charts

SPC charts on the scale parameters and the residuals remaining after scaling

were proposed in chapter 6. These charts can be used for monitoring the batch

profiles for any abnormal operation. Four special cause disturbance scenarios are used

to study the monitoring capabilities - 1. The dissolved oxygen concentration

increases (batch 97), 2. The cooling water temperature increases (hatch 98), 3. The

heater efficiency decreases (batch 99) and 4. The jacket heat transfer coefficient

decreases (batch 100). These scenarios were described in chapter 7. Each disturbance

is simulated to occur at time 170min after the start of the simulation as a ramp that

saturates to a final value.

First of all SPC charts for the time scale parameters are studied. Figure 8.6

plots the duration of each of the four phases for the nominal batches and the four

special cause batches. The special cause batches are plotted as a different color. Note

that all the time scale parameters appear to be within the 3a limits except for batch 97

that has excessively long second and third phases. This is understandable since in the

batch, the dissolved oxygen content in the reaction mixture increases midway so that

the overall reaction rate slows down resulting in the longer phase lengths. The

abnormal time scale parameters point to this slowing down and provide vital clues for

assigning a physical cause for the abnormality. In the present case, the excessively

long phase duration points to stoichiometric problems.

147



TS Pmt# 1: Initiator Addition Time

I  I I

'  '

IS Pmt# 2; Heater Shut Off

I^T I * ^

_l L

TS PmW 3: Heater Tum On

_l L

10 20 30 40 50 60

Batch Number

70 80 90 100

FIGURE 8.6; Univariate SPC charts on the time scale parameters with 3a limits
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Univariate SPC charts on the magnitude scale parameters are studied next. These are

plotted in figure 8.7 for each of the scale parameters. SPC charts for the 2"^, 3^'^ and

4'*' factors on the jacket temperature show violations for batch 100 which simulates an

abnormally low heat transfer coefficient that occurs midway through the batch. This

is again easily interpreted as the jacket temperatme decreases abnormally to remove

the same amount of heat so that abnormally negative values are observed for the 2"''

and 3^^ scale parameters. The 4"^ scale parameter captures the excessive oscillations

that occur due to the aggressive controller action. Thus, each of the SPC violations is

easily interpretable. Batch 98 shows a violation on the 4*'' factor of the jacket

temperature profile and is interpreted again as capturing the excessive oscillations

occurring towards the end of the batch. These oscillations occur since the coolant

temperature increases midway through the batch causing the aggressive controller to

be oscillatory in the post gel-effect phase.

The SPC charts on the magnitude scale parameters for the heater profile show

no violations. The SPC chart on the MS parameter for the coolant flow profile shows

that batch 98 that simulates abnormally high cooling water temperature midway

through the batch shows a control limit violation. This is again interpreted very easily

since more coolant needs to be added in order to decrease the jacket temperature. This

shows that the magnitude and time scale parameters that are proposed with a distinct

interpretation provide vital physical clues for diagnosing an abnormal operation in a

batch.
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FIGURE 8.7: Univariate SPC charts on the magnitude scale parameters with
3a limits.
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FIGURE 8.7 (continued): Univariate SPC charts on the magnitude scale
parameters with 3o limits.
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FIGURE 8.7 (continued): Univariate SPC charts on the magnitude scale
parameters with 3 a limits
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Even though an exact cause may not be assignable, distinct classes of

problems such as stoichiometry problems or heat transfer problems can nevertheless

be distinguished from the sets of scale parameters which show a violation on the SPC

chart. Typically, in the industry, it is usually a single problem that causes operational

or quality problems. The methodology then provides a direct means for boiling down

the particular area of concern. Subsequent process improvement would then be based

on a physical understanding of the process.

Finally, SPC charts on the Q statistic that indicates the lack of fit from the

empirical model are plotted in figure 8.8. Note that all of the special cause batches

show distinct violations of the 99.7% confidence limits.
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FIGURE 8.8: Q statistic bar plot for all the batches with 99.7% confidence limit
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These violations must now be interrogated as to why the Q statistic is out of

control. In order to do so, figure 8.9 plots the scaled residuals for the special cause

batches. A few nominal operation residuals are also plotted for comparison purposes.

Note that for all the special cause batches, the disturbance is introduced at 170min.

From the figure, severe residuals are seen after 170min for batches 97, 99 and 100,

which cause the Q statistic to be out of control. Note that batch 99, which simulates

heater efficiency decrease also shows control limit violations. No violations were

seen in the scale parameter charts for the batch. Batch 98 that simulates abnormally

high coolant temperature also shows a control limit violation. However, the violation

is seen occurring only in the post gel effect phase when coolant is pumped into the

jacket. Earlier on, no coolant is pumped into the system and the coolant is simply

recirculating so that the disturbance does not enter the system till the coolant flow

starts.

The SPC charts show that the Q statistic complements the scale parameter

charts in detecting abnormal operation. All the variability that is not detected in the

scale parameters remains in the residuals and shows up in the Q statistic. They are

thus complimentary to each other and together monitor the complete profile space. A

summary of all the SPC charts for the abnormal batches is provided in table 8.3.

Notice from the table that all the batches show an abnormally high Q statistic

implying high residuals remaining after scaling. This completes the demonstration of

the SPC monitoring methodology. The next section applies MPCA to the batch data

set for comparison purposes.
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TABLE 8.3: SPC chart violations for the time and magnitude scale
parameters and the Q statistic

Parameters Batch 97 Batch 98 Batch99 Batch 100

TS Pmts

Initiator

HtrOff +

Htr On +

MS Pmts

Trxr

Tji
Tj2 +

Tj3 +

Tj4 + +

P.

P2

P3
Few +

Residuals (Q) + + + +

8.2.4 Comparison with MPCA

MPCA is applied to the batch data set as described in references [40, 41]. The

3D historical batch data array is imfolded into a 2D matrix and the nominal operation

batches are autoscaled. Upon unfolding, the 2D matrix X consists of I batches as the

rows. The total number of columns is J.K where K is the number of measured

variables while J is the total number of time points. For the present case J = 601 while

K = 4. In order to reduce the computation load in calculating the principal

components, altemate time points are taken to form the X matrix so that in all, the X

matrix is 96 by 1204 (301x4). Note that the time scaled profiles are used in order to

form the X matrix.
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The scree plot for the PCA is plotted in figure 8.10. The first two 2 PCs are

considered significant since they explain about 50% of the total variability and also

since the 'knee' in the scree plot seems to occur at 2 PCs. The two PC loadings are

plotted in figure 8.12. Demarcation lines between the loadings for the four measured

variables are also plotted. Note the difficulty in correctly interpreting the meaning of

the loadings.

The magnitude scale parameters consist of the projections on the PCs and are

also known as scores. SPC charts on the two scores for all the batches are plotted in

figure 8.12. Note from the figure that the scores on the first PC for all the normal

batches are within the control limits. The scores on the second PC are also within

limits for all the batches except for the low heat transfer coefficient case (last batch).

However, an interpretation of the abnormally low score is not very straightforward

from the PC loadings. Indeed, considerable effort is needed in correctly interpreting

the abnormal scores. Researchers have proposed the contribution plot method to point

out the variables that 'numerically' contribute to the out of control scores and Q

statistic [50]. Not withstanding such 'numerical' techniques, the difficulty in

interpreting the scores in MPCA based techniques always exists thus limiting its use.

On the other hand, the approach as has been proposed in this article, is geared

towards giving factor loadings that are easy to interpret and connect to the actual

process variability.
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SPC charts on the Q statistic are plotted in figure 8.13. violations of the 99.7%

confidence limits are observed for the Q statistic for all the abnormal batches as seen

in figure 8.13. As in the previous subsection, figtire 8.14 plots the residuals for all the

special cause batches along with the residuals of a nominal batch for comparison.

Note that for the same disturbance scenario, the control limit violations on the Q plot

are not as severe as was seen in the earlier study especially for batches 97 and 99.

Batch 99 that simulates abnormally low heater efficiency, is worth further

discussion. Note that most of the contribution to the high Q statistic comes due to the

oscillations towards the end of the batch as seen from figure 8.14 (third subplot). A

comparison with figure 8.9 that plots the residuals remaining for the scaling

methodology proposed in this work, shows that a significant contribution to the Q

statistic comes from time points much earlier in the batch, especially from the heater

power profiles. In the simulation, the heater efficiency was reduced midway through

the batch at about 170min so that significant residuals remain after scaling around

time 170min in the heater power profiles which is not seen in the MPCA case. This

shows the enhanced sensitivity of our proposed scaling methodology in detecting

extremely subtle deviations from nominal operation.

The trick lies in autoscaling the residuals after the consistent variability is

extracted in the scale parameters. MPCA, on the other hand, relies on autoscaling

before extracting the systematic variability. Autoscaling after extraction of the

consistent variability implies that the residuals for the scaled profiles would be

smaller than the original imscaled profiles.
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MPCA Residuals: Oxygen Concentration Increase
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Thus, autoscaling would punish any high residuals much more severely than if the

consistent variability was not extracted. This leads to higher sensitivity in the

detection of special causes as seen in batch 99.

Scaling the profiles is thus of paramoimt importance for monitoring

purposes.As a corroboration of the fact, an MPCA was performed on the unfolded X

matrix by standardizing the four measured profiles with the overall mean standard

deviation of the complete profile rather than standardizing each time point as in

autoscaling. Results showed that none of the special cause batches were detected on

the SPC charts.

Critics may feel that the above discussion on scaling is of minor significance

for practical industrial monitoring applications. However, the real crunch comes in

the well-understood scale parameters in our approach implying very easy

interpretation of the results characterizing the batch. Thus diagnosing an abnormal

batch for a physical reason is much easier since the abnormal scale parameters

provide vital physical clues.

As an example, consider batch 98 and 100. Batch 98 has an abnormally high

coolant temperature while batch 100 has an abnormally low heat transfer coefficient.

The magnitude scale parameters for both the batches along with the 3 a limits are

plotted in figure 8.15. Note that batch 98 shows a scale parameter violation for the

coolant flow in addition to a scale parameter violation on the 4"^ magnitude scale

parameter on the jacket temperature while batch 100 shows scale parameter violations

for factors 2, 3 and 4, associated with the jacket temperature profile.
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For batch 98, more than usual coolant flow is needed to remove the reaction

heat as in normal operation indicating that the coolant may be hotter than usual. For

batch 100, the SPC violations on the jacket temperature indicate that the jacket

temperature is lower than usual so that either less than usual heat is being generated

in the reaction or the heat transfer characteristics of the equipment may have changed.

The former option is ruled out since the time scale parameters are within statistical

control limits indicating usual reaction rate. The well understood scale parameters

coupled with physical reasoning facilitates distinguishing and isolating the different

special causes for the two batches. This is a very desirable feature and is a vital

advantage since the approach enhances process imderstanding, the main goal of

undertaking the analysis of the historical database. Note that a simple interpretation is

not very easily possible from MPCA results that analyzes all the profiles together.

Indeed, our approach retains the power of projection methods for the detection of

subtle special causes along with giving simple and physically meaningful scale

parameters.

8.2.5 Manipulated Variables

In the last few subsections, the application of the SPC framework for

monitoring purposes has been demonstrated. Various distiubance scenarios were

studied and a special mention must be made of manipulated variables. In any process,

the manipulated variables are used for rejecting disturbances that enter the process in

order to keep the controlled variable at its set point. Thus any disturbance (special
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cause in SPC jargon) that enters the process, is compensated for by the control system

by making adequate adjustments to the manipulated variables. From the

transformation of variability standpoint, almost all of the variability in the form of

disturbances is transformed to the manipulated variables by a good control system.

Thus for the characterization of variability in a process, manipulated variables are

very important since they contain most of the information about the disturbances or

special causes. This fact is true of all controlled processes - batch or continuous.

In the present batch example, the reactor temperature is the controlled

variable, while the heater power and coolant flow, are the manipulated variables. The

jacket temperature is also a manipulated variable in the traditional cascade control

sense. It is seen in all the disturbance scenarios that only the scale parameters on the

manipulated variables show SPC violations. Also the main contribution to the Q

statistic for the residuals comes from the residuals on these manipulated variables

only. The contribution of the residuals for the controlled variable (reactor

temperature) is minimal in all the cases. This is amply clear from figure 8.9 for the

residuals of the abnormal batches. It can also be verified for the MPCA case from

figure 8.14 for the abnormal batches. Thus, no matter what technique is used for

magnitude scaling, manipulated variables are of paramount importance for

characterizing the variability in the process.

Considering the above, for most processes with a reasonably good control

system, the characterization of the variability in the manipulated variables would lead

to a characterization of the variability in the process. It is with this forethought that it
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was felt that MPCA may not be a good way of analyzing the variability in batch

processes since all the variables are analyzed together. Further, autoscaling would

unnecessarily complicate matters by giving more weight to the controlled variable

since variability in the controlled variable is less while less weight is given to the

manipulated variables. The proposed approach thus analyzes each of the variables

separately. The resulting ease in interpreting the results due to the simplified

approach has already been demonstrated earlier.

This completes the demonstration of the proposed SPC methodology with

comparison vrith the existing MPCA monitoring technique. The next section

demonstrates the study of the correlation of the scale parameters with the final batch

quality.

8.3 Quality Correlations

The goal of a historical database analysis of any industrial process is to

enhance process understanding and then use the enhanced imderstanding for

improvements in the process. By improvement, it is usually meant tighter control on

the product quality, increased energy efficiency, reduced cycle time and so on. Thus

'quality' is a very generic term and should be understood as encompassing not only

the product quality parameters, but also the process efficiency parameters.

Having defined 'quality' in a generic sense, it is noted that in the batch profile

SPC framework, the scale parameters characterize the various types of systematic

variability in the process. It is therefore reasonable to expect some correlation of these
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scale parameters with the quality parameters. Physically meaningful correlation can

be utilized to build a regression model for predicting the quality from the scale

parameters.

In the PMMA batch reactor simulation example, the correlation of the scale

parameters with the product polymer quality - MW„, MW^ and PDI is studied. The

physically meaningful scale parameters for studying the correlation consist of

parameters after the reaction phase begins (post initiator addition). As was pointed

out in chapter 7, the polymer quality is determined by the competition between dead

chain formation and live chain propagation. The time scale parameters after the

reaction begins quantify the rate of progress of the batch and should therefore be

studied for correlation with the final batch quality. Also, the reactor temperature

effects the kinetics of the reaction so that any magnitude scale parameters for the

reactor temperature can be used for studying the correlation. In the present case, there

is no significant variability in the reactor temperature after the reaction begins so that

only the time scale parameters need to be considered.

The time scale parameters of interest are proposed as follows. The first time

scale parameter is the duration between the initiator addition and the heater shut off

indicating the beginning of the gel effect. The second time scale parameter is taken as

the duration between initiator addition and the heater turning on again indicating

almost complete conversion of the monomer. The third time scale parameter is taken

as the duration between the heater turn on and the end of the batch and indicates the

time scale variability towards the end of the batch.
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Before building a regression model, the complete data set is divided into 2

parts - 1. The training set for building the regression model and 2. The test set for

validating the model on data not seen by the model. The training set consists of 60

randomly chosen batches from the nominal data set while the test set consists of the

rest. The correlation coefficient of the three time scale parameters with the final batch

quality parameters is tabulated in table 8.4. Note that very high correlation exists

between the second time scale parameter and the polymer quality parameters. High

correlation exists for the third time scale parameter while mild correlation exists for

the first time scale parameter.

The correlation structure can be explained from a physical rmderstanding of

the process. The variability in the reactor loading is minimal so that almost all of the

variability in the polymer quality is due to the impurities in the monomer. From past

studies, it is known that the most nonlinear phase in the polymerization is the gel

effect so that the monomer impurities effect the reaction kinetics most severely in the

gel effect phase

TABLE 8.4: Correlation coefficient of time scale parameters with quality

TS 1 TS2 TS3

MW„ 0.4126 -0.9734 0.7467

MW« -0.3916 -0.9786 0.7574

PDI -0.3805 -0.9804 0.7623
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Thus high correlation is obtained with the second time scale parameter which

signifies the end of the gel effect phase. The effect of the impurities is not as

significant before the gel effect phase begins so that mild correlation is obtained for

the first time scale parameter due to the small variability in the initial reactor

charging. High correlation with the third scale parameter is due to the fact that the

third time scale parameter itself is highly correlated with the second time scale

parameter with a correlation coefficient ~ 0.7. For regression purposes, all the time

scale parameters represent reasonably independent information since the highest

correlation coefficient of ~0.7 is not ill conditioned.

A simple linear regression model is therefore built to predict the product

quality using all time scale parameters. The regression equations in chapter 2 are

used. The predicted and actual values are plotted for the training set in figure 8.16(a).

Note that both the X and Y matrices are autoscaled before regression so that the units

on the plot are not the actual quality imits. The model is validated by predictions on

unseen data in the test set. The predicted and actual values for the test set are plotted

in figure 8.16(b). Note from the plot that the points are almost about the 45 degree

line for both the training and test set indicating that the model is good. Also, the

predictions for the special cause batches 98 to 100 are plotted in the figure showing

the good predictions. Batch 97 is not plotted since due to the increases amoimt of

oxygen, the reaction kinetics is severely affected causing out of range product quality.
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To quantify the predictions, the root mean square error of prediction (RMSEP)

for both the test and the training sets are plotted in figure 8.17. Since both the X and

Y matrices in the regression are autoscaled, a RMSEP«1 indicates a good model.

Such small RMSEP is observed in figure 8.17. Also note that the RMSEP for both the

test and the training set are comparable, thus validating the model.

This completes a demonstration of the correlation of scale parameters with the

batch quality. In the example study, a very high correlation of one of the time scale

parameters with the product quality enables building a good regression model. Such a

model can be used for predicting the batch quality on-line and corrective action can

be taken in case it is felt that the quality is not within specification. The corrective

action must however be based on a physical understanding of the process.
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FIGURE 8.17: Mean square error of prediction for all the quality varaibles
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In the present case, the second time scale parameter is not available till the gel

effect phase is almost complete. Nevertheless, once the time scale event has occurred,

a good prediction of the batch quality is possible. On-line corrective action may then

be taken, for example by adding a suitable additive such as a reaction inhibitor, to

have the desired effect on the product quality. Such corrective steps are however

possible only through a physical understanding of the process. Indeed, the empirical

modeling approach is only a correlational study and not a cause and effect study so

that observed high correlation must be backed by physical reasoning about the cause.

Also, the corrective action to be taken needs process understanding. This highlights

the fact that statistical tools must always work in tandem vvdth good engineering

judgement for realizing the possibility of process improvement.

8.4 Discussion

This chapter demonstrates the application of SPC tools for the characterization

of the variability in batch profiles in terms of simple scale parameters and the study of

the correlation of the scale parameters with the batch quality. The technique as was

demonstrated is an offline analysis. It can however be easily adapted for on-line

monitoring by using on-line SPC charts on the scale parameters and the Q statistic as

was proposed earlier in references [40, 41]. Briefly, SPC charts are proposed on the

scale parameters and the Q statistic based on data available till the current time in a

new batch. Other modifications such as filling up the future with zeros or an

exponential decay to 0 and then applying the projection techniques on the
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'anticipated' complete profiles can also be used. Control limits are obtained for each

time point in the batch for the scale parameters and the Q statistic. The nominal

operation data set is used for obtaining the limits.

The example study clearly brings out the importance of time scaling the

profiles for a meaningful analysis. Time scaling explains a major portion of the

variability in the profiles so that it is important for profile monitoring. High

correlation of the time scale parameters with the final batch quality was also seen. It

also gives a means for distinguishing one special cause from another, e.g.

stoichiometry problems from other process problems. In the past work on the analysis

of batch profiles, the aspect of time scaling was not given due attention. From our

experience on industrial batch data and also the simulation example, it is felt that time

scaling is probably the most crucial step, both for monitoring and quality correlation

purposes.

To better appreciate the importance of time scaling, consider the coolant flow

profiles from time 351 to 450 where the significant events in the gel effect are not

aligned in time. A PCA on the mean centered profiles for both the time aligned and

raw profiles is performed. It takes 3 PCs to explain about 93% of the overall

variability in the raw profiles while a single PC for the time scaled profiles explains

>95% of the variability. The PC loadings for both the cases are plotted in figure 8.18.

Note that for the raw profiles, three PCs are needed in order to account for the time

misalignment while for the time scaled profiles, only a single PC is needed since

there is no time misalignment. Also, the interpretation of the PC is quite
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straightforward when compared to the raw profiles. This illustrates the importance of

time scaling in enhancing the interpretability of the results. Secondly, to emphasize

the importance of time scaling for quality predictions, MPLS on the autoscaled raw

profiles is performed using cross validation on the test set. The best RMSEP for the

test set is 0.3 for any of the three quality variables which is higher than the worst

RMSEP of 0.16 obtained for linear regression using only the time scale parameters in

the previous section. Time scaling is thus important for both monitoring and quality

correlation purposes.
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FIGURE 8.18: PC loadings for raw and time scaled profiles
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In all the work, the emphasis has been on proposing physically meaningful

scale parameters that facilitate process imderstanding. The various disturbance

scenarios studied in the example study show that such meaningful scale parameters

go a long way in giving vital clues that distinguish one fault from another.

As far as modeling the product quality is concerned, a high correlation of

scale parameters with the product quality may not always be obtained. One principal

reason for such an occurrence is the highly non-linear nature of the process rendering

linear modeling techniques inadequate. Nonlinear techniques such as non-linear PLS

(NLPLS) can be used in case such nonlinearities are detected. The other more

important reason is the lack of adequate process measurements that are indirectly

related to the process quality. Such cases call for better measurements that are

reflective of the product quality. The technique can nevertheless be used for

monitoring the process and characterizing the variability in the profiles. It may also

be pointed out that only those special causes that are 'observable' or in other words

are reflected in some or all the measurements can be detected by the monitoring

technique. For example, suppose that in the PMMA simulation example, only the

reactor temperature was measured, then all of the disturbance scenarios would have

gone imdetected. The reason is that all the SPC violations in the control charts

occurred due to the manipulated variables. Manipulated variables are therefore

important since they increase the 'observability' of various disturbance scenarios.

Lastly, it is again emphasized that the modeling technique is an empirical one

with suitable modifications to handle the variability typically seen in batch profiles.
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All empirical modeling techniques study the correlation structure of the data and in

no way provide any cause and effect relationship. The cause and effect relationship

comes only from a physical imderstanding of the process. Such an understanding

must be used to assign reasons for violations on the SPC charts. Note that an SPC

violation does not necessarily mean that the product would be of poor quality. It only

means that a special cause not seen earlier in the empirical model has been

encountered. In case it is felt that the quality would be poor, corrective action must

again be taken based on engineering judgement. Thus a physical understanding is

necessary for any process improvement/adjustments to be possible.

This completes a comprehensive demonstration of the proposed SPC

monitoring technique along with a discussion of the various engineering issues. The

next chapter summarizes the conclusions from this work and provides suggestions for

further investigation.
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Chapter 9

Conclusions and Future Work

This research work has focussed on the development of a generic SPC

framework for characterizing the variability in batch profiles in a meaningful way.

Useful tools for implementing the framework are also developed. Based on the

various examples presented, several conclusions can be drawn. The preliminary work

also points to some obvious and some not-so-obvious directions for future work. The

summary of the work, conclusions and suggestions for future work are discussed in

this chapter.

9.1 Summary

This work has developed an SPC framework for empirically modeling

nominal operation batch profiles in a historical database to give easily interpretable

scale parameters. The overall variability in the profiles is partitioned as along the time

axis and the measurement axis with scaling being proposed to capture the consistent

(characterizable) part in the time and magnitude scale parameters. The work studies

existing tools (DTW and PGA) for implementing the profile scaling. Simple new

techniques especially applicable to industrial batch profiles are also developed. The

use of shapes and features is thus proposed for the extraction of consistent event times

while PCA is modified to a moving window type approach to give easily interpretable

factor loadings. SPC charts (univariate and multivariate) on the scale parameters and
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the residuals remaining after scaling are proposed for monitoring batches against a

baseline of past nominal operation. The application of the framework is demonstrated

on profiles generated from a simulated PMMA reactor. The tentative conclusions or

inferences that can be drawn based on this work are listed in the next section.

9.2 Conclusions

A systematic study of a historical database of profiles from past successful

batch operation provides useful information for process improvement and monitoring.

The historical database provides a convenient reference (or baseline) against which a

new batch can be compared and monitored in the SPC sense. The partitioning of the

variability along the time axis and the measurement axis is generic and leads to

simple scale parameters (time and magnitude) for profile characterization that can be

readily interpreted. Scale parameters that are highly correlated with the final batch

quality can be used to build a regression model of the batch quality. The simulated

example application clearly demonstrated all of the above aspects.

In general, the demonstration clearly establishes the importance of time

scaling. Not only is it important for the meaningful application of multivariate

techniques such as MPCA, the phase durations can be significantly correlated to the

final batch quality parameters, and therefore useful for quality predictions. Time

scaling is thus of paramount importance in the characterization of batch profiles. This

aspect has hitherto been neglected in the recent publications with their sole emphasis
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being on the application of multivariate techniques for only the measurement axis

variability.

The application of the template based translation technique for feature time

extraction for time scaling, showed that sharp features such as a valve shut off or a

valve turn on are determined accurately. In cases where some variability occurs along

the measurement axis, the use of a shape factor to scale the windowed profile before

calculating the SSE statistic significantly increases the accuracy of the event time

extraction as demonstrated in the example application.

The application of DTW for time synchronization, on an industrial example

profile indicates that DTW is sensitive to noise and profiles that contain distinct

smooth events but are noisy elsewhere can lead to spurious features. Its use should

therefore be limited to smooth profiles containing little noise. The computational

efficiency of the shapes and features technique makes it the preferred choice over

DTW for time alignment. Further, DTW results in the warp function F, which in itself

is a profile that requires characterization, another disadvantage limiting its

application.

The example application on the PMMA simulation profiles shows that the

time scale parameters also help in distinguishing between the various types of faults

that can occur in a process — eg stoichiometry problems from other process problems.

As far as magnitude scaling is concerned, the division of the complete profile

into time zones containing 'consistent' measurement axis variability results in easily

interpretable factors that characterize most of the measurement axis variability. The
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interpretability of the factors makes them very useful in enhancing process

imderstanding and diagnosing abnormal operation. As demonstrated in the PMMA

example, this is a distinct advantage over the MPCA technique that handles all the

data as a single entity.

The application of the developed moving windovs? PCA algorithm for the extraction of

such zones shows much promise.

The PMMA example showed the monitoring capabilities of the technique for

special cause detection using the proposed SPC charts. The scale parameters quantify

the variability of a particular type and violations on a scale parameter SPC chart are

easily interpretable and therefore diagnosed for possible physical reasons for the

upset.

The residuals remaining after scaling are useful in detecting any special

causes not explained by the scale parameters. These residuals can be autoscaled to

give high sensitivity to subtle special causes. The PMMA simulation example showed

that all the special cause batches are detected by the Q statistic, which combines the

residuals into a single number.

Scaling the profile matrix seems to play a crucial role in special cause

detection. The results on the PMMA simulation show that MPCA using

standardization by the overall mean profile standard deviation does not detect any of

the special causes in any of the SPC charts. On the other hand, MPCA using

autoscaling and the methodology proposed in this work using autoscaling the

residuals, detect all of the special cause batches on the Q statistic. The proposed
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methodology of autoscaling the residuals after the consistent variability has been

extracted in the scale parameters seems to give better sensitivity to special cause

detection than MPCA using autoscaling.

The PMMA demonstration also shows that manipulated variables are the key

to detecting special cause batches. This is intuitively imderstood by the fact that a

good control system transforms almost all of the process variability to the

manipulated variables in order to track the controlled variable. Thus, special attention

must be paid when analyzing the manipulated variables.

In summary, the research work demonstrates the various benefits of

tmdertaking a systematic study of historical batch databases for characterizing the

variability in the batch operation for enhancing process understanding. This initial

work is based on a sound modeling philosophy of partitioning the typical variability

seen in batch profiles as along the time axis and the measurement axis. From the

experience on various industrial data sets, it is felt that this basic underlying

philosophy is applicable to all batch processes in a generic way. The tools to

implement the philosophy can however be improved upon and some suggestions in

that direction are the subject of the next section. Certain issues that merit further

attention are also pointed out.

9.3 Future Work

This research work has primarily focussed on the offline analysis of batch

profiles. The proposed framework can be readily adapted to be implemented online.
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Future work should focus on formalizing the online analysis framework. The issue of

time scaling a batch that is still developing in time needs to be addressed. In this

direction, it is felt that a logic based scheme that takes into consideration the temporal

order of the events to decide the present time of the batch can be implemented.

Time scaling may lead to information loss in case the profile is longer in

duration than the reference. Future work should develop simple SSE type statistics in

order to quantify the information loss.

Time scaling is based on the occurrence of consistent checkpoints. In this

work, the use of feature templates in order to extract times of occurrence of consistent

events has been demonstrated. Variability in the profiles causes a reduction in the

recognition accuracy. The use of a shape factor to extract such variability enhances

the recognition accuracy as was shown in chapter 5. Additionally, a dilation factor

can also be used that dilates (or constricts) the feature so that 'best' overlap with the

windowed profile occurs. Such dilation variability is usually seen in batch profiles

due to the variability in the rate at which a batch progresses. Thus, the use of a

dilation factor in addition to a shape factor would significantly enhance the

recognition accuracy of the technique.

In recent years, the wavelet transform has been used for feature identification

and is based on the 'translation + dilation' technique. The use of the wavelet

transform for event detection merits further research.

As for magnitude scaling, there is scope for improving the preliminary

algorithm that was developed for the automatic extraction of time zones that show
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measurement axis variability of a particular kind. Any improvement on the present

algorithm would be incumbent upon the criteria that are used in order to determine if

a zone has been detected and also the criteria for extending the zone. Also, faster

algorithms such as successive bisection of future time zones can be used to

implement extension of a time zone.

Work can also be done in the direction of using clustering algorithms for

automatically finding batches that are clustered together in the scale parameter space.

Abnormal batches belonging to different clusters may be due to different physical

reasons. This concept of clustering of scale parameters was demonstrated, albeit in a

qualitative manner, in the PMMA simulation example. Clustering techniques may

also be needed to sort out the historical batch database into batches that belong to say,

different modes of operation or different product grades. Note that a separate SPG

monitoring model needs to be built for each such cluster.

The proper analysis of manipulated variables forms the key to the success of

the SPG monitoring technique. Sometimes, the manipulated variables are very noisy

due to extremely aggressive controller tuning coupled with measurement noise. PGA

is not very effective in filtering out such noise leading to meaningless control limits

such as a 150% valve opening. Traditional filtering techniques may therefore be

needed as a preprocessing step to get filtered profiles, which can readily be subjected

to a meaningful analysis. Future work should focus on simulating such examples and

studying the effect of such profile filtering on the results.
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9.4 Industrial Data Acknowledgement

The primary motivation for this work has been the development of an SPC

framework that can provide useful engineering information to the operators and

process improvement groups in an industrial setting. The tools as proposed in this

work have been developed after the analysis of industrial batch datasets provided by

MCEC member companies. MCEC (Measurement Control and Engineering Center)

is an Industry University Cooperative Research Center (lUCRC). The PMMA

simulation has been used as a demonstration of the concept on an industrially relevant

process since proprietary concerns limit the publishing of results on industrial

datasets. The simulation has been implemented in SIMULINK. The code for

implementing the profile scaling tools has been written in Matlab 5.1 and the various

functions are listed in the appendix A. The code may be requested from MCEC,

University of Tennessee, Knoxville TN 37996.
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MATRIX SCALING FUNCTIONS

AUTOSCALE: scales cols of X to 0 mean and unit variance.

Cols with 0 std dev are only mean centered
Call Syntax: pCs, mx, sx] = autoscale(X);
Input: X: input matrix
Output: Xs: Scaled matrix

mx: Mean of cols of X (row vector)
sx: std dev of cols of X (row vector)

Calls: mncn

MNCN: Mean centers the columns of X

Call Syntax: pCm, mx] = mncn(X);
Input: X: Input X matrix
Output: Xm: Mean Centered Matrix

mx: mean of cols of X (row vector)

OVERALLSTD: Standardizes X by its overall mean row std dev
Call Syntax: pCs, mx, sx] = overaIlstd(X);
Input: X: Matrix to be standardized
Output: Xs: Scaled X matrix

mx: Mean of cols of X

sx: overall mean std dev

Calls: mncn

PRETREAT: Scales X matrix according to input option
Call Syntax: pCs, mx, sx] = pretreat(X, opt);
Input: X: Matrix to be standardized

opt: option for scaling the X Matrix
0: No data scaling,
1: mncn only
2: autoscale

3: overall std scaling
Output: Xs: Scaled X matrix

mx: Mean of cols of X

sx: std dev

Calls: mncn, autoscale, overallstd

RESCALE: Rescales X by input mean and std dev
Call Syntax: Xs = rescale(Xs, ms, sx);
Input: X: Matrix to be rescaled

mx: mean to be subtracted (row vector)
sx: std dev to be divided (row vector) [optional]

Output: Xs: rescaled matrix
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UNSCALE: Unscales X by input mean and std dev
Call Syntax: Xu = Unscale(X, mx, sx);
Input: X: Matrix to be unsealed

mx: mean to be added (row vector)
sx: std dev to be multiplied (row vector) [optional]

Output: Xu: unsealed matrix

DYNAMIC TIME WARPING FUNCTIONS

DTW: Dynamic time warping of? onto R
Call Syntax: [g, pth] = dtw(R, P, nstp, M, W, E, sopt, dopt);
Input: R: Reference

P: New profile
nstp: number of consective horizontal steps in the warp function
M: Global constraint search window about the diagonal line
E: Endpoint constraint (optional; 0 for fully known end points)
sopt: symmetric option (optional; 0-Asymmetric, 1-symmetric)
dopt: 1 - displays every 10 time points warped (optional [1])

Output: g: recursive distance
pth: index of path followed on the time grid

Calls: InWindow, Feasible, SlopeConstraintl, DP

INWINDOW: Checks if time indices i j for DTW are within the global search space
Call Syntax: flag = InWindow(i,j,M)

FEASIBLE: Finds the feasible predecessors of I,J on the time grid
subject to global constraint M and relaxed end pt E

Call Syntax: [pth, stat] = Feasible(I, J, M, E)
pth is a symbolic representation for the feasible predecessors

1: J-1 approach
2: J-1,1-l approach
3:1-1 approach
4: starting point approach

stat is empty if no feasible predecessors

SLOPECONSTRAINT: Applies the slope constraint to feasible search points in
prev to give Previous which satisfy the local slope
constaints also

Call Syntax: Previous = SlopeConstraint(i, j, prev, nstp)

DP: Dynamic programming equation. Finds the predecessor that gives the least
g_new and also returns the path followd in pth
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Call Syntax: [g_new,pth] = DP(R, P, I, J, path, W, sopt);

GETF: Extracts the optimum warp function F for DTW
Call Syntax: F = GetF(pth,g);
Calls: GetPrevIdx

FWARP: Apply warping F to P and R
Call Syntax: [Pw, Rw]=Fwarp(P,R,F,opt);

When opt = 0, only P is warped. Otherwise both P and R are warped to an
imaginary axis

TIME SCALING FUNCTIONS

ICMSTSALL: Translates ftr template (with dilation) x over profiles Y
Call Syntax: [MSE, IC, MS] = icmstsall(Y, x, cnstr);
Input: Y: Profile matrix (time along rows)

x: ftr template (J by 1)
cnstr: Constraint on IC and MS (2 by 3)

first row-maximum (IC,MS,TS)
second row-minimum (IC,MS,TS)
use TS=1 for no dilation

Output: MSE: MSE after translation (3rd dimension for dilation)
IC: initial condition (intercept)
MS: magnitude scale (slope)

Calls: icmstms

ICMSTRNS: Translates ftr template x over profiles Y using shape factors
Call Syntax: [MSE, sf]=icmstms(Y, x, cnstr);
Input: Y: Profile column vector (K by 1)

x: ftr template (J by 1)
cnstr: Constraint on sf (2 by 2) [opt]

first row-minimum

second row-maximum

Output: MSE: MSE on translation
sf: shape factors (IC, MS; 2 by J+K-1)

FTRTIME: calculates the absolute ftr and event time

Call Syntax: [tf, te] = fitrtime(MSE, fe, K, h, clip);
Input: MSE: MSE of translation for a batch (m, n)

fe: Time of event in the feature (>0 <K-i-l)
K: ftr template length
h: time index of snapshot beginning that was translated
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clip: initial and final index of MSB to be studied (clip edges)
Output: tf: feature time (n,l)

te: event time (n,l)

TIMESCALE: Time scales the input array according to given options
Call Syntax: Pts = timescale(P, R, t, tr, opt)
Input: P: Ixl cell array of batch profiles (Each cell (batch) is Ki (time) by J)

R: Reference profile matrix (K by J)
t: Event time matrix excluding beginning and end time (I by M)
tr: Corresponding event times in R
opt: Options for time scaling (M+1 by J)

0: Linear interpolation between events
1.1: Pad/chop end with R
1.2: Pad/chop beginning with R
2.1: Pad/chop end with last available value
2.2: Pad/chop beginning vdth last available value

Output: Pts: Time scaled batch data array (K by J by I)
Calls: interpolate and padchop

INTERPOLATE: Linearly interpolates cols of an input matrix to a
length of npts

Call Syntax: PI = interpolate(P, npts)
Input: P: Input matrix to be interpolated

npts: Length to which P is to be interpolated (>1)
Output: P1: interpolated matrix with length npts

PADCHOP: Pads/chops cols of a matrix according to option
Call Syntax: Pts = padchop(P, 1, opt, R);
Input: P: Input profile matrix (K by J)

I: number of rows (time points) in Pts
opt: option for padding/chopping (optional)

'end': pad/chop at end
'beg': pad/chop at beginning
defaulted to 'end'

R: optional. If input, values in R are used for padding,
otherwise the last/initial value in P is used

Output: Pts: Padded/chopped profile (1 by J)

MAGNITUDE SCALING FUNCTIONS

EFA: Moving window PCA for extraction of zones of systematic variability
Call Syntax: fctrs = efa(X, mini, tol);
Input: X: Profile matrix (batches along rows)
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mini: minimum window length
tol: three element vector of tolerances.

tol(l) 1 -the min variance that must be explained in a snapshot
tol(2) min standard deviation in the snapshot
tol(3) max standard deviation in the snapshot

Output: fctrs: Sytematic variability directions
Calls: extend

EXTEND: Tests if a snapshot contains systematic variability and if so extends the
snapshot

Call Syntax: [load, endpt] = extend(X, h, mini, tol3);
Input: X: Profile matrix (batches along rows)

h: Snapshot start time index
mini: minimum length of the snapshot from the hinge
tol3: Three element tolerance criteria for extraction of zones

tol3(l) 1-the min variance that must be explained in a snapshot
tol3(2) min standard deviation in the snapshot
tol3(3) max standard deviation in the snapshot

Output: load: snapshot factor loading (empty if factor not found)
endpt: end point index of snapshot. (-1 if factor not found)

Calls: loadcalc

LOADCALC: Uses svd to calculate the factor loadings
Call Syntax: [load, Xpp, mse, msepp] = loadcalc(X, npcs);
Input: X: Profile matrix (samples along rows)

npcs: Number of PCs to calculate
Output: load: PC loadings

Xpp: Residuals after projection on the PC
mse: mean square error of X
msepp: mean square error of Xpp

Calls: svds (built in matlab function)

PCA: Performs PCA on input data matrix using SVD.
Call Syntax: [T, P, S, vexp] = pca(X, n)
Input: X: Input matrix

n: Number ofPCs to retain (optional)
opt: output optins (optional)

Output: T: sample scores
P: sample loadings
S: eigenvalues of retained PCs
vexp: %age variance explained by each PC
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SPC FUNCTIONS

SPE: Calculates SSE of the residuals in E (rows)
Call Syntax: Q = spe(E);

SPECL: Calculates 95% and 99% confidence limits on the Qstatistic (SSE)
Call Syntax: Qcl = specl(E);

HOTELLING: Calculates the Hotelling's statistic of T using the cov matrix (Sinv)
Call Syntax: D = hotelling(T, Sinv);

HOTELCL: Calculates the 95% and 99% confidence limits on the Hotelling's
statistic

Call Syntax: Del = hotelcl(T);

MISCELLANEOUS FUNCTIONS

D3T0MAT: Unfolds the 3rd dimension of input 3d array
Call Syntax: X = d3tomat(X3d);
Input: X3d: 3d array to be unfolded (I,J,K)
Output: X: 2d unfolded matrix (IJ.K)

UNIQUE2: Extracts the unique elements in index. Output is sorted.
Call Syntax: ndx=unique2(index)

FINDNOT: Finds elements of x that do not equal any element in y
Call Syntax: X = findnot(x, y)
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APPENDIX B
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<5LOSSARY

AIBN azo iso butyro nitrile

DTW dynamic time warping

EFA evolving factor analysis

LV latent variable

MLR multiple linear regression

MPCA multiway principal component analysis

MPLS multiway partial least squares

MS magnitude scale

MSE mean square error

MSEP mean square error of prediction

MWn number average molecular weight

MWw weight average molecukar weight

NIPALS non-linear iterative partial least squares

PC principal component

PGA principal component analysis

PGR principal component regression

PDI poly dispersity index

PID proportional integral derivative

PLS partial least squares

PMMA polymethyl methacrylate

QSSA quasi steady state approximation

RMSEP root mean square error of prediction

SPG statistical process control

SSE sum of squared error

SVD singular value decomposition

TS time scale

204



VITA

Nitin Kaistha was bom in Pune, India on November 29, 1974. He graduated

from Central School #1, Kanpur in 1992. He entered the Indian Institute of

Technology, Kanpur that same year and graduated with a Bachelor of Technology

with a major in Chemical Engineering in 1996. He then entered the graduate program

at the University of Tennessee, Knoxville that same year and received a Doctor of

Philosophy degree with a Major in Chemical Engineering and Minor in Statistics in

1999. He is a member of Phi Kappa Phi and the Instrument Society of America.

205


	A generic SPC framework for the characterization of batch profiles
	Recommended Citation

	A generic SPC framework for the characterization of batch profiles

