
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

5-1999 

The multi-products EMQ model The multi-products EMQ model 

John Roy Gray 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

Recommended Citation Recommended Citation 
Gray, John Roy, "The multi-products EMQ model. " PhD diss., University of Tennessee, 1999. 
https://trace.tennessee.edu/utk_graddiss/8814 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8814&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by John Roy Gray entitled "The multi-products 

EMQ model." I have examined the final electronic copy of this dissertation for form and content 

and recommend that it be accepted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy, with a major in Management Science. 

M. M. Srinivasan, Major Professor 

We have read this dissertation and recommend its acceptance: 

M. R. Bowers, K. C. Gilbert, R. S. Sawhney 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



To the Graduate Council:

I am submitting herewith a dissertation written by John Roy Gray entitled "The Multi-
Products EMQ Model." I have examined the final copy of this dissertation for form and
content and recommend that it be accepted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, with a major in Management Science.

. Srinivasan, Major Professor

We have read this dissertation

and recommend its acceptance:

Dr. M. R. Bowers

Dr. K. C. Gilbert

)r. R. S. Sawhney

Accepted for the Council:

Associate Vice Chancellor and

Dean of the Graduate School



THE MULTI-PRODUCTS EMQ MODEL

A Dissertation

Presented for the

Doctor of Philosophy
Degree

The University of Tennessee, Knoxville

John Roy Gray
May 1999



Copyright © John Rev Gray. 1999

All rights reserved



DEDICATION

This dissertation is dedicated to my wife

Brenda Olhausen Gray

whose support, encouragement, and forbearance made this dissertation possible.

m



ACKNOWLEDGEMENTS

I owe a debt of gratitude to Dr. George H. Worm, my good friend and former roommate.

Without George's encouragement, moral support, advice and outright prodding I would not

have stayed the course to complete this dissertation. I doubt that I will ever be able to pay

this debt.

I am particularly grateful to Ms. Lisa A. Hurst of Drafting and More, Knoxville, Tennessee,

for doing the word processing and some of the graphics required to convert my almost

unreadable notes into a publishable document. Without Lisa's patience, superb drafting and

word processing skills, and outstanding work ethnic this dissertation would not have been

completed on time. Throughout this often difficult process Lisa has always remained a

conqjetent professional. I have been doubly rewarded because, in addition to receiving her

support, I have gained a new friend.

Finally, I am also grateflil to Dr. Kenneth C. Gilbert, University of Tennessee, Management

Science Program. Dr. Gilbert gave me a second chance. I very much appreciate his efforts

on my behalf.

IV



ABSTRACT

Since the introduction of the classical economic manufacturing quantities (EMQ) concept

early in the twentieth centuiy, many variants of the single-product EMQ model have been

solved. These single-product EMQ models usually suppose the product is produced cyclically

every T time units. This dissertation examines the general cyclical model (GCM), a

generalization of the single-product EMQ. In the GCM n>2 products are produced on a

single fecility according to cyclical schedules. The GCM, unlike some variants of the multi-

products, single-facility problem, permits each product i to be produced every T- time units

where it is not necessary that 7] = Tj i t j. However, a schedule of n products must

be feasible; that is, only one product may occupy the facility at a time. Thus, the objective

of the GCM is to find cycle times {TJ that rriitiiiriize the inventory and production costs

subject to the restriction that the schedule is feasible. To mathematically address this

feasibility problem, delay times {dj} are introduced where dj is the time at which the first use

period of product i begins. Then conditions are given that are both necessary and sufficient

to assure that a specified schedule {Tj, dj} of n products is feasible. These feasibility

conditions remove a major handicap suffered by previous researcher. Then delay-independent

necessary and sufficient feasibility conditions are derived for the two-products and the three-

products case of the GCM. Also, delay-independent necessary feasibility conditions are

derived for the four-products case. Finally, an efficient algorithm is developed that finds

feasible optimal schedules for the n-products model.



TABLE OF CONTENTS

1. INTRODUCTION 1

PROBLEM DEFINITION 1

MODEL ASSUMPTION 1

GRAPHICAL EXAMPLE 3

MODEL DESCRIPTION 5

NECESSARY CONDITIONS 8

HISTORY OF THE PROBLEM AND PREVIOUS

RESEARCH 12

2. SUMMARY 16

3. NECESSARY AND SUFFICIENT FEASIBILITY

CONDITIONS 21

BACKGROUND 21

THEOREM 1 - GENERAL THEOREM ON

FEASIBILITY 22

REMARKS CONCERNING THEOREM 1 23

PROOF OF GENERAL THEOREM 1 24

NUMERICAL EXAMPLE OF FEASIBILITY

CONDITIONS 36

VI



4. ALGORITHM TO OPTIMIZE THE BASIC PERIOD

MODEL 40

PURPOSE 40

BPM ALGORITHM 43

SUMMARY OF ALGORITHM 95

PROOF OF OPTIMALITY 102

5. TWO-PRODUCTS MODEL 105

PURPOSE 105

TWO-PRODUCT DELAY INDEPENDENT

CONDITION 106

6. N-PRODUCTS MODEL 113

PURPOSE 113

LEMMA 5 ON EXTENDED FEASIBILITY

CONDITIONS 115

PROOF OF LEMMA 5 116

DEFINITION OF COMPACT SCHEDULE 117

THEOREM 4 ON COMPACT SCHEDULES 118

PROOF OF THEOREM 4 118

DEFINITION OF PARTIAL SCHEDULES AND THEIR

ADDITION 123

THEOREM 5 ON PARTIAL SCHEDULE

FEASIBILITY 124

PROOF OF THEOREM 5 125

vii



LEMMA 6 ON TWO-PRODUCTS PARTIAL

SCHEDULE 127

PROOF OF LEMMA 6 127

LEMMA 7 ON SOLUTIONS TO AN INTEGER

EQUATION 128

PROOF OF LEMMA 7 129

7. THREE-PRODUCTS MODEL 133

PURPOSE 133

COUNTER-EXAMPLE TO GLASS' CONDITIONS .. 134

THREE-PRODUCTS DELAY INDEPENDENT

CONDITIONS 137

LEMMA 8 ON THREE-PRODUCTS PARTIAL

SCHEDULE 149

PROOF OF LEMMA 8 149

REMARKS ABOUT LEMMA 8 149

LEMMA 9 ON ENHANCED THREE-PRODUCTS

CONDITIONS 150

PROOF OF LEMMA 9 151

REMARKS ABOUT LEMMA 9 154

8. FOUR-PRODUCTS MODEL 155

PURPOSE 155

NOTATIONS AND DEFINITION 156

VUl



FOUR-PRODUCTS DELAY INDEPENDENT

CONDITIONS 161

LEMMA 10 ON FOUR-PRODUCTS PARTIAL

SCHEDULES 179

PROOF OF LEMMA 10 179

ENHANCED FOUR-PRODUCTS CONDITIONS 180

REMARKS ON LEMMA 10 180

9. OPTIMIZATION ALGORITHM 185

PURPOSE 185

SUMMARY OF OPTIMIZATION ALGORITHM 186

BASIC N-PRODUCTS ALGORITHM 188

IMPROVEMENTS TO THE ALGORITHM 201

10. NUMERICAL RESULTS 213

REFERENCES 226

VITA 239

IX



LIST OF FIGURES

1. Inventory Cycle for Product 1 4

2. Gantt Chart for Products 1 and 2 4

3. Inventory Cycle for Product 2 4

4. /-Leading Edge Conflict 27

5. /-Leading Edge Conflict 27

6. Gantt Chart of Example Problem 39

7. BPM Algorithm Plane Medium a 47

8. (t;., Plane 50

9. BPM Algorithm (j), Plane 53

10. Upper Bound on Fundamental Cycle a 60

11. Lower and Upper Cost Bounds on Cycle Times 63

12. BPM Algorithm ^7), 7;) Plane < 7), 67

13. BPM Algorithm 7], Plane < 7)^ 68

14. BPM Algorithm Plane Large b^. = 7, b^^ > 2 70



15. BPM Algorithm

16. BPM Algorithm

17. BPM Algorithm

18. BPM Algorithm

19. BPM Algorithm

b., Plane Large a, b^^ = 1 y b^^ = 1 71

b.y b^ Plane Small a, b^ Outside Constraints 76

b„ \) Plaae b„<b„ 78

b^, b,^ Plane Medium a 86

b., b,^ j Plane Advantages of Large a 89

20. Schedule Table of Counter-Example 136

21. Skip Values /y < ̂,- + 211

22. Model Parameter of Bomberger's Problem 1 214

23. Model Parameters of Bombei^er's Problem 2 215

24. Model Parameters of Bombei^er's Problem 3 216

25. Comparison of Average Hourly Cost 218

26. Comparison of Cycle Times for Problem 1 219

27. Comparison of Cycle Times for Problem 2 220

28. Comparison of Cycle Times for Problem 3 221

29. Computer Time Required to Find Optimal 222

XI



30. Stage Executions for Problem 1 223

31. Stage Executions for Problem 2 224

32. Stage Executions for Problem 3 225

Xll



GLOSSARY AND NOTATIONS

a  The fundamental cycle of Bomberger's BPM

where a = g = g„ = gcd[Tj,T2,- -yT„).

al Optimal value of a when {a,} is fixed at
bi = b^ all/.

a.j The greatest common divisor of cycle times 7j.

and Tj.

a I Present lower bound on a.

Present upper boimd on a.

b^ Optimal integer multiplier of Bomberger's BPM

when a = a^.

^  Unique real-value optimal multiplier when the ith

product is treated as an unconstrained, single-

product model with a = a^.

b^i Optimal integer multipUer when the ith product is

treated as a constrained, single-product model

with a = a^.

bi Multiplier for the ith product in the BPM, i.e. in

the BPM T = ab;.

XIU



h  T, / a,.

bli Present lower bound on the Hh multiplier of the

BPM.

Ki Present upper bound on the ith multiplier of the

BPM.

BPM Basic period model.

Setup cost of the ith item where c. > 0.

It

^  the setup cost of Hanssman's CCM.
i=l

CCM Common cycle model.

Delay time of the ith item, or the length of time

from time zero until the start of the first

production interval of the ith item,

r > d, > 0.
I  I

d  } , a vector of n delay times.

EMQ Economic manufacturing quantities.

gcd{jLjf---, Greatest common divisor of the integers
Lj,L2t--- ,L^ where u> 2.

S  Sn ~

XIV



Sk gcd[Tj,T2r-,Tk),k = 2,3, ,n.

GCM General cyclical model.

hi Inventory holding charge per unit time per unit of

the ith item.

n

tih ^ /^pthe inventory cost of Hanssman'sCCM.
i=l

Hi hiPi{pi - /;.) / 2.

n  Number of products to be scheduled on a single

facility.

Pi Production rate of the ith item where Pi > 0.

9i Length of a used period of the Uh item where

0 < qi = [s, + .

Demand rate of the ith item where /} > 0.

^i Setup time of the ith item where S. > 0.

Sum ̂  Si of the setup times of all items where
I

S > 0.

I, a vector of n cycle times.

XV



^' asi Optimal integer cycle time when the Uh product
is treated as a constrained, single-product model

with a = a^,i.e. ̂

Ty, Cycle times for the ith item, i = 1, 2, n, that

corresponds to the present best solution found by

an iterative procedure.

Cycle time in Hanssman's CCM.

Optimal cycle time of Hanssman's CCM.

Production cycle time of the ith item.

^'i Cycle time for the hh item, i = 1,2, «, that is

the present lower bound on 7) foimd by an

iterative procedure.

r* Real valued cycle time that is the unique optimal

cycle time when the ith item is treated as the only

item of a single-product model.

Cycle time that is the optimal integer cycle time

when the ith item is treated as the only item of a

single-product model. It is possible that can

equal either one of two values.

XVI



Cycle time for the ith item, / = 1,2, n, that is

the present upper bound on 7} found by an

iterative procedure.

{v;} Vector of« parameters or variables, e.g. |7]-| is
a vector of cycle times for the n products model.

X* Smallest integer greater than or equal the real

number x.

x~ Greatest integer less than or equal the real

number jc.

Z* Optimal value of Z{D).

Za Optimal cost of BPM when a = a^.

Z^i the optimal single product cost of the

ith cost component, when a -

Zh Optimal value of when j is fixed at
b; = A*, aUi.

zl Optimal value of Zi^{Ti^.

Z^ Lower boimd on optimal cost of the ith item.

Z^i Optimal cost when the ith item is treated as the

only item of a single-product integer model.

xvn



Z^ia) Objective fimction of modified CCM where

I A; I is fixed at all/.

Zi,{t^ Cost fimction in Hanssman's common cycle
model.

Average total cost per unit time for item i when

cycle time is 7j.

Present lower bound on cost found by an iterative

procedure.

Z^^ Present upper boimd on cost found by an iterative

procedure. This is also the present best cost.

z{n) Total average cost per unit time for schedule £2.

Pa Ti / In a set of three cycle times,
/3ii is the quotient of J) divided by

all factors common just to 7} and Tj by all

factors common just to J) and 7]^, and by all

factors common to all three.

Pij ^ij / gjfi ̂  y. In a set of three cycle times,
Pij i s t h e

gcd{T. / gj, Tj / Note that p,. and
T, / gs are relative prime.

(j) Null set.

xvni



A  r, / p.

C2 (r, </), a schedule of/i items. That is, is a
« by 2 matrix where the elements of the ith row

are the cycle time and delay time of the ith item.

Besides this list, notation will be introduced within the remainder of the dissertation. This

additional notation will be easier to understand if introduced within the context where it is

used.

XIX



CHAPTER 1

INTRODUCTION

PROBLEM DEFINITION

Since the introduction of the classical economic manufacturing quantities (EMQ) concept in

the early nineteen hvmdreds, researchers have found solutions for a variety of single product,

single facility EMQ models. But, as explained by Salvenson [76] in 1953, by Maxwell [63]

in 1964, and, somewhat more recently, by Elmaghraby [20] in 1978, these basic single

product models must be extended if the EMQ concept is to render solutions to practical

production-inventory problems. The subject of this paper is a logical extension of the

fundamental single-product EMQ models; namely, a miilti-product, single facility model

which is defined by the following assumptions.

MODEL ASSUMPTIONS

a. All model parameters are known with certainty.

b. A set of n products are produced on a single facility in accordance with a

cychcal schedule i.e., the production schedule of each product is repeated

every 7] time units where T. is the cycle time of the ith product,

I = 1, 2, •••,«.



c. There is a positive demand, per unit time for product / which

remains constant over an infinite planning horizon.

d. The facility produces product / at a constant rate Pi > during each

active production interval.

e. All demand must be satisfied and production of a product begins just when

the inventory of that product is exhausted. Thus, no surplus inventory or

safety stock is maintained for any of the products.

f. Each changeover fi-om producing product i to producing product

k, i k, requires a setup time, > 0, where 5^ is independent of /

and does not vary with time.

g. The facility may be occupied with only one product at a time.

h. The demand and production rates of the n products satisfy

(1)

otherwise, no feasible schedule exists. If there is at least one setup time such

that S- > 0, then (1) must be a strict inequality.

i. To remove the problems inherent in adjusting the production schedule to

reflect beginning inventories, it is assumed that production started at time

t => -00.



j. All parameters, except the cost parameters, are expressed as integers by

choosing an appropriate time unit.

k. Each changeover from producing product i to producing product

k,i ̂  ky causes a set-up cost, > 0, where is independent of/.

The only cost components are the setup cost C- and an inventory holding

cost, > 0, per unit of product i in inventory per unit time for each

product /. These costs do not vary with time.

GRAPHICAL EXAMPLE

The following graphical look at the model for the two-product case is presented to provide

insight into the problem Under the defining assumptions of the model, the inventory level

of each product goes through the classical triangular cycle as depicted by Figures 1 and 3.

Figure 2 shows the Gantt chart representation ofthe production schedule of products 1 and 2

on the facility. Note that the effect of the setup times, Sj and s^, is to shift the beginning

ofthe production cycle backwards in time with respect to the inventory cycle. The are

the delay times; or, in other words, the length of time between time zero and the beginning

of the first production interval. The production interval, is the length of time that the

fecility is occupied with the ith product. As shown, by figures 1, 2, and 3 this interval is the

sum of the setup time and the active product time. Note that df < 2} and q. < Tj. The

area of the triangle representing each inventory cycle is the total units of products per cycle.



Fi
gu
re
 1

In
ve

nt
or

y 
Cy
cl
e

f
o
r
 P
r
o
d
u
c
t
 1

Fi
gu
re
 2

G
a
n
t
t
 C
h
a
r
t
 f
o
r

P
r
o
d
u
c
t
s
 1
 a
n
d
 2

Fi
gu
re
s

In
ve
nt
or
y 
Cy
cl
e

f
o
r
 P
r
o
d
u
c
t
 2

y
;

(
P
r
l
)

T
,
-
w
,

W
i

*
7
7
*

m
i

w
,

fc
f
l
 !
■

■
■

w

1»

d
i

^
 = 

(r,
T,

)(P
r^V

i»,

!4
'

Ta
-W

,
w

.

T
IM

E
Z

E
R

O

d
Y

w,
 =

 r,
T/

p»
 W

j =
 ri

r/
p,

,Y
i =

 -
--

 ,Y
|*=

in
ax

iiiv
en

to
iy 

lev
el 

fis
r p

ro
du

ct 
i.

d
t



MODEL DESCRIPTION

The defining assumptions (a) through (k) imply there is an item schedule for each item which

is an infinite series of production cycles of fixed length 7). Each cycle of an item schedule

is composed of a facility use period, or simply use period, and a non-use period. The use

period is fiuther divided into a setup period and a production period. If we let q. be the

length of the use period for item i, it is easily shown that

<li = [s,- + (l- / Pi)T]

= Si + [piTiY (2)

where

[jc]^ = The smallest integer not less than x

and

A = 1 / Pr

The last form of (2) is valid when S., all i, are restricted to integer values.

Because of defining assumption (i) we may arbitrarily select time zero. But, once time zero

has been selected, the ith item schedule is fixed with respect to time zero by specifying a delay

time: dj, 0 < d. < 7]., where dj is the length of the time interval between time zero and



the start of the first use period of the ith item. Because of relationship (2), the ith item

schedule is completely determined by specifying values for all model parameters, time zero,

and values for the decision variable T. and d^.

If the facility produces only one item (i.e., n = 1), then the item schedule is also the facihtv

schedule, or simply schedule. But if « > 2, a schedule is determined by specifying n item

schedules and a sequence. Suppose the items are arbitrarily numbered fi-om 1 to n and

let A be a mapping of the indices of the items where is the ith item imder X ■ Then a

sequence is a mapping X such that

^ ̂X2 ^Xn'

Hence, a schedule £2 oin items produced on a single fecility is = {t ̂ d, X^ where
T, d , are n-element vectors of cycle times and delay times, respectively, and a is a

mapping which determines (3). Actually when values are specified for d a mapping is

implicitly determined by the element of d . Therefore, without loss of generality a schedule

£2 can be specified hy £2 = \t , j.

The objective of the model is to find a schedule £2 which minimizes the cost per unit time

of producing the n items, Z(£2) , subject to the restriction that £2 is feasible. As shown

by Figures 1 and 3 the graph of the inventory level of each item is an infinite series of

triangular curves. Thus, by using simple triangular relationships and remembering the setup

costs it is easily shown that:



Z(I2)= t k/T, + h,r,(p,/r,)T,/(jp,)} (4)
i=l

A schedule is feasible if

0 < < co; i = ly 2y • • •, n; (5)

and

jO is non-conflicting. (6)

A schedule jQ is non-conflictins if there is no time interval, having positive length, in the

time domain during which the use periods of two or more items overlap; otherwise, £2 is

said to be conflicting. Observe that the use periods of a feasible schedule may coincide at end

points. By defining a non-conflicting schedule in this manner, we achieve a more tractable

form of later mathematical developments.

Because of assumption (k) the cost function (4) is a sum of n strictly convex single product

cost functions. This objective function is somewhat limiting; however, it is the cost function

used by most researchers studying this EMQ model. Using this function permits an easy

comparison of the numerical results of this research with that by previous researchers.

Actually, most, if not all, of these results are equally applicable given any cost function that

is the sum of separable, strictly convex functions of the |.



The mathematical concept of the greatest common divisor of integers plays an important role

throughout this dissertation. Henceforth, gcd{xj, •••, vvill indicate the greatest

common divisor of the integers ̂ Xj, • • •,

NECESSARY CONDITIONS

Existence of Feasible Schedules

For a feasible schedule to exist condition (1) must be satisfied. Otherwise, the facility

capacity is clearly insufficient to meet the demands for all n items. The question of whether

or not there exist a feasible schedule for a specified set of model parameters is an important

one. The algorithms of chapters 4 and 9 implicitly presume that at least one solution exists

for the problem at hand. If this presumption is incorrect these algorithms may yield

meaningless results. Fortunately, in addition to being a necessary feasibility condition, (1) is

sufficient to assure that an infinite number of feasible schedules exist. To prove this assertion

two cases must be considered: when Sj = for all i and when there is at least one / such

that s. > 0,

In each case it is presumed that (1) is satisfied and, at first, the integer constraint is relaxed.

Then an infinite family of real-valued schedules is constructed. Finally, it is shown that this

family of real-valued schedule can be mapped to an infinite family of feasible integer

schedules. In both cases, the "trick" of the construction is to find a T where the 7) are all

large enough to accumulate enough slack time to make all required changeovers fi"om

producing one product to another.

8



Suppose s. = , all i, and let 7) = 7' > <? then from (1)

T, a Z?, = ZPJ. (7)
/•=/

Thus, each 7]- is greater than the sum of the n use periods, so it is easily shown that

£2= {f y where

dj = 0, and (8)

k-l k-I

= Z = Z Pi''' (9)
1=7 1=7

is a feasible real-valued schedule. Because /?,• = Yi / Pi setting T = J~JPi converts

this real-valued schedule to an integer-valued one.

On the other hand, suppose S,. > 0 for at least one item /. If (1) is an equality, all of the

facility capacity is required just to satisfy the demand for all items. This means there is no

time available for setups. Thus, a feasible schedule does not exist if any S,- > 0 when (1)

is an equahty. Now suppose that (1) is a strict inequality. Then it is easily show that

n = (f, rf) is a feasible real-valued schedule when

T, = T> , all i, (10)

Pi

dj = 0, (11)



k-1 k-I

dk = S^/= S(^/ +A-^)» (12)

and

5 = X
i=l

"

Setting T = m ±J Pi where m is large enough for T to satisfy (10) converts this

real-valued schedule to an integer-valued one. Thus, if (1) is satisfied there are an infinite

number of integers that satisfy either (7) or (10). Therefore, satisfying (1) is sufBcient to

assure that an infinite number of feasible integer-valued schedules exist.

Integer Necessary Conditions

When T and d are restricted to integers values it is possible to derive a necessary

condition that is somewhat more restrictive than (1). Suppose there are « .> 2 items and let:

a = gcd(T„T2, -,T„) (13)

b, = T,/a (14)

n

k, = n b; (15)

n  ̂

T=\nbj
;=/

a  (16)

sothatJisacommonmultipleofthe |7].|. The facility schedule during the time interval [0,T]

is identical to the schedule during [mT,{m -I- i)T\ for any integer m ̂  1. Thus, a

10



feasible schedule exists if and only if a feasible schedule exists during the interval [0,T]

Note that T is not necessarily the least common multiple {lent) of the {T. In general,

a period of length T will be a positive multiple of 7}^^ = lcm{^i The facility schedule
clearly repeats every 7)^^ time units. However, this means that, as stated above, the schedule

also repeats every T time units. The time period T is used here rather than 7)^^ because T

is more easily defined. Furthermore, the same integer feasibility condition is obtained whether

one uses T or T.
lent'

For a feasible schedule to exist, T must be greater than the sum of all use periods for all

products during the [0,T] interval. It is easily seen fi-om (15) and (16) that there are

use periods for item i, all /, during the \0y T ] interval. Clearly time period T must be long

enough to accommodate all the use periods of all the products that occur

during T j. These observations lead to the necessary conditions:

T>Y. + A n ?;■)"• (17)
/=/ iW

Inequality (17) immediately leads to an integer necessary condition on a:

or

f n \ n ( n \ n

T = nbj a>^ Tib. Si H-S
y MI 7 i=I \ i=I

^ n ^

Tjbj {pMy
\ MI J

a>Y,qi/bi.
1=^1

(18)

(19)

11



HISTORY OF THE PROBLEM AND PREVIOUS RESEARCH

The subject ofthis research is a restricted version ofthe general deterministic, multi-products

EMQ model. The model being studied differs from the general multi-products model with

regard to two characteristics:

1. Once a facihty schedule is set, each item is produced according to a

cychcal schedule of fixed length, and

2. Production is started only when inventory reaches zero.

Restriction 1 is equivalent to the equal-lot assumption because once the cycle time is fixed the

lot size is fixed via (2). In the literature restriction 2 is referred to as the zero-switch rule.

For reference purposes the subject ofthis research is called the general cychcal model (GCM).

The GCM label is used to distinguish the model defined by assumptions (a) through (k) from

the general multi-products EMQ model and from models with additional constraining

assumptions.

Rogers [73] gave the first formal computational statement of the GCM. As shown by the

list of references in the last chapter this model and several derivative models have been the

subject of much research over the intervening four decades. As Elmaghraby [20] explained

in 1978, the approaches of early research on the GCM could be divided into two categories:

developing analytical solutions to a restricted version of the GCM, e.g. Bomberger [4],

12



Hanssman [42], and Leachman, Xiong, Gascon, and Park [58], or developing heuristics that

yielded good solutions for the GCM, e.g. Davis [10] and [11], Ditt and Kuhn [13], and Geng

and Vickson [29]. More recently there are at least two additional categories of research:

estimating the complexity of the GCM, e.g. Gallego and Shaw [26] and Hsu [47], and

determining feasibility conditions, e.g. Glass [12], Gray [36], Park and Yun [69], and

Vermuganti [80].

Elmaghraby [20] and Narro Lopez and Kingsman [67] give good reviews of the GCM

research and the approaches used to simplify the model. Bourland and Yano [5] provide a

good discussion ofthe GCM and the effects of restrictions 1 and 2 and other restrictions that

are often imposed on the GCM in the introduction to their work on the general multi-products

model. Gallego and Shaw [26] show that the GCM and other restricted forms of the general

multi-products EMQ model are "NP-hard in the strong sense".

The restricted GCM's most often studied are the common cycle model (CCM) introduced by

Hanssman [42] and the basic period model (BPM) introduced by Bomberger [4]. Hanssman's

CCM greatly simplifies the GCM by imposing the additional restriction that T. = 7", all /.

He then uses standard techniques of calculus and a single feasibility condition to find an

optimal T.

To define the BPM Bomberger [4] imposes two additional restrictions on the GCM:

Ti = a. biy i= 1, 2y n (20)

13



and

i=l

< fl, (21)

where the are restricted to integer values but a, is not. Bomberger called the

fundamental cycle of the schedule. He did not restrict a,, to integer values. However, in the

BPM algorithm described in chapter 4 the fundamental cycle is not only restricted to integer

values it is also restricted to be the greatest common divisor of the cycle times, a. The

greatest common divisor restriction does not impose additional constraints on the algorithm

beyond that required by the integer restrictions. To see this, suppose there is an integer factor

Qj < a. Clearly, if satisfies (21) then neither on the other hand, if a does not satisfy

(21) then neither does any other common factor of the cycle times. Therefore, a common

factor of |7]. j satisfies (21) if and only if a does.

Note that Bomberger's multiples are not quite the same as the factors defined by (14).

However, one a is restricted to be the greatest common divisor ofthe cycle times in the BPM

algorithm, Bomberger's multiples and the factors defined by (14) become the same fectors.

Thus, Bomberger's multiples are denoted by to maintain consistence notation.

Hopefully, this wiU not be confusing to the reader.

Bomberger shows that, if (20) and (21) are satisfied, a feasible schedule exists. It can be

shown for both Hanssman's and Bomberger's models that, if T satisfies the conditions of

their models and if the elements of d are set to

14



dj = 0

j-i

i=l

then O = (T, d ) is a feasible schedule. Hence, in these models the problem of finding a

feasible schedule is reduced to finding feasible cycle times.

Bomberger proposes a straight-forward dynamic programming procedure for finding |

for a fixed a. The state variables of his formulation are restricted to the discrete values

0, 2Ai^, n • a, where A is arbitrarily chosen. Bomberger suggests that a, be

determined by trial and error. There is a major problem with this trial and error procedure.

To describe this problem let Z* be the optimal cost over the | foimd by Bomberger's

dynamic programming procedure when a is fixed at some specified value. In general, Z* wiU

change if a sufficiently large change is made to a. That is, Z* is a fimction of a. However,

Hodgson [43] shows that z^ is not an xinimodal function of a^. In fact, for the integer

model, used in chapter 4, Z* is best described as an erratic function of a. Hence, in general,

Bomberger's trial and error method of determining a^. does not guarantee that an optimal or

a near-optimal schedule -will be foimd for the BPM.

15



CHAPTER 2

SUMMARY

The motivation for this research concerning the «-product GCM comes from personal

experience in large, complex manufacturing plants and a chance reading of Bomberger's [4]

article that describes his BPM. Within a manufacturing plant there are usually a few critical

facilities. In large measure, these critical facilities determine the schedule and productivity of

the entire plant.

My archetype for the GCM is a large 7,500 ton forming and forging press located in a plant

where I worked. This press is three stories high, ejqjensive to operate and a huge capital

investment. Changing the setup of this press requires from a few hours to more than a day

to complete. There are several other critical facilities in this plant; however, most of the plant

moves to the rhythm of this large press. An algorithm that can be used to periodically find

optimal, or near optimal, schedule for this critical press should significantly reduce the

manufacturing costs of the entire plant.

The subject of the research of this dissertation is primarily the general cyclical model of a

single-facility producing w-products. Many would argue that the GCM is an artificial

restriction on the general multi-products, single-facility scheduling problem. On the other

hand, by considering the real world settings of most facilities, one can argue just as forcefully

that the general single-facility, multi-product problem is, in many cases, an unnatural

extension of the GCM. Many, if not most, activities within a manufacturing plant occur on

16



a more or less cyclical basis, e.g. parts are produced in "campaigns", machine maintenance

is performed every Monday, and stock is inventoried monthly.

Concisely stated, the goal ofthis research is to develop an algorithm that will find an optimal

cyclical schedule for actual multi-products, single-facility operations. Furthermore, to be of

practical value, this algorithm must be efficient. The algorithm should be capable of

scheduling a facility that is producing at least ten products with a reasonable expenditure of

computer resources.

To achieve this goal one must first develop a set of mathematically necessary and sufficient

conditions that identifies feasible schedules. This is a critically important task because without

such conditions it is not possible to determine whether or not a given schedule is feasible.

Without such conditions it is not possible to create an optimization algorithm The primary

results of chapter 3 fulfilled this need by providing conditions that are both necessary and

sufficient to assure that a given schedule is feasible. Bomberger [4] provides a partial solution

to the basic period model (BPM). The BPM is a restricted version of the GCM that restricts

all cycle times to multiples of a common basic period. Bomberger gives a dynamic

programming formulation that solves for optimal multipliers when the common basic cycle

is a specified value. However, his algorithm does not find a global optimal for the BPM over

all possible values ofthe basic period. The algorithm developed in chapter 4 finds an optimal

BPM schedule over all variables. The results of chapter 4 are quite important to the goal of

developing an efficient GCM. As shown by the numerical results of chapter 10, using the

optimal cost ofthe BPM as an initial upper bound for the GCM algorithm will, in most cases,

17



greatly reduce the computational effort required to find an optimal GCM schedule.

Furthermore, in some practical situations an optimal BPM will sufiSce.

Chapters 5,7, and 8 study the two-products, three-products, and four-products, respectively,

cases of the GCM. These chapters provide a simpler feasibility conditions for these limited

versions of the GCM. These limited models are academically interesting. For instance,

chapter 5 shows that when #i = 2 the BPM algorithm of chapter 4 will find optimal GCM

schedules. Furthermore, each of these limited models provides inqjortant mathematical

"filters" that allows the GCM algorithm to recognize many infeasible schedules early in the

schedule generation process. This greatly improves the eflSciency of the GCM algorithm.

The study of the ii-products model in chapter 6 provides a number of results that are used in

the proofs related to the three-products and four-products models of chapters 7 and 8,

respectively. In addition, theorem 5 on the feasibility of partial schedules in chapter 6, in

conjunction with the two-products, three-products and four-products results, provides the

theoretical foundation for the mathematical "filters" of the GCM. The GCM algorithm

presented in chapter 9 is the culmination of the results of the previous chapters. The GCM

algorithm is a customized «-stage implicit enumeration scheme. That is, the research in

chapter 9 takes advantage ofthe characteristics of the cost objective fimctions and the results

of the previous chapters to develop an efficient GCM algorithm.

IS



An abbreviated version of the GCM algorithm was coded in a compiled version of the basic

programming language. This computer program was used to solve three typical problems

taken from the literature. These numerical results are reported in chapter 10.

As expected, the cost of the optimal schedule generated by the GCM algorithm are lower

than that provided by Bomberger's BPM. The improvements over Bomberger's results are

significant in those cases where facility utilization is moderate to high.

As shown in chapter 10, the upper bounds obtained from the BPM of chapter 4 greatly

improves the efficiency ofthe GCM algorithm. It is expected that, as the number ofproducts

increases, the BPM upper bounds will, in most cases, be of even greater benefit to the

efficiency of the GCM. This expectation is supported by the result reported in chapter 10.

The results for Bomberger's problem 2 reported in chapter 10 is an extreme illustration ofthe

benefits obtained from having the BPM optimal cost as the initial upper bound for the GCM.

The GCM algorithm satisfies the primary goal of this research. As demonstrated by the

numerical results reported in chapter 10, the GCM algorithm will generate optimal schedules

for practical problems. Furthermore, it does so with a reasonable expenditure of computer

resources. Of course, the results of chapter 10 does not mean that the GCM algorithm will

efficiently solve every «-products problem. GaUego and Shaw [26] show that the GCM is

"NP-hard in the strong sense". Therefore, there will almost certainly be practical #i-products

problems that require exorbitant amormts of computer resources to solve. Nevertheless, a

polished computer program of the GCM algorithm that incorporates all the improvements

19



discussed in chapter 9 should solve many practical instances of the cyclical multi-products,

singe-fecility scheduling problem.

20



CHAPTER 3

NECESSARY AND SUFFICIENT FEASIBILITY CONDITIONS

BACKGROUND

As discussed in chapter 1 the GCM has been studied by many authors during the last four

decades. For the most part, these authors have directed their research either toward

developing heuristic solution procedures or toward finding optimal solutions to models

created by further restricting the GCM. The restricted scope of previous research is

understandable because the complexity of the inventory problem increases dramatically as one

moves firom the single product EMQ model to the scheduling of two or more items on a

single facility. Furthermore, the lack of conditions which are both necessary and sufficient

to assure schedule feasibility has been major handicap suffered by all previoits researchers.

That handicap is removed by the results of this chapter.

The principle result of this chapter is proof of a general theorem on schedule feasibility. This

theorem gives conditions which are both necessary and sufficient to assure that a schedule of

n items on a single facility is feasible when n> 2 n The theorem is quite general with

respect to the multi-products model defined in the introduction chapter. The hypotheses of

the general theorem is the defining assumptions (a) through (j). Assumption k is concerned

with costs and does not effect schedule feasibility. In particular, the hypotheses requires that

the necessary condition (1) given in chapter 1 be satisfied. As shown in the introduction, if

21



this condition is satisfied then there exists an infinite set of feasible solutions; otherwise, no

feasible solution exists.

In spite of the considerable research efforts cited in chapter 1, an algorithm which, in general,

yields optimal, feasible schedules for the model defined by assumptions (a) through (k) has

not been developed imtil now. The results of this chapter are an essential step toward that

end. Except for chapter 4, the necessary and sufficient conditions for schedule feasibility

given here are the foimdation for the results of the remaining chapters. These feasibility

conditions are in terms of {t ,d^. That is, for a given set of model parameters a given

schedule {t ,d^ is feasible if and only if these conditions are satisfied.

THEOREM 1 - GENERAL THEOREM ON FEASIBILITY

Let Q - {t y j be a schedule of/i items on a single facility. Further, define a^, by
and bji as the integers that satisfy

T;. = ttyby and Tj = (22)

where

= gcd(7;., Tj) (23)

and I, j = ly 2, •••, «, fV j.

Suppose the items are labeled so that d. > dj and let

22



d. - d- = k-a.. + /-. (24)

where

0<l„< a„ (25)

and Oy, bji, by, ky and ly are integers. Suppose that the defining assumptions (a) through

(j) as given in chapter 1 are valid. Then is feasible if, and only if for each pair of items /

and j.

I,, ̂  9j (26)

and

l,j ̂  «„ - ?/ (27)

where i, j = 1, 2, • • •, n, and i ̂  j.

REMARKS CONCERNING THEOREM I

Equations (22) and (23) imply that by and bj^ are relative prime or, equivalently, that

%Cd(by, bj)= 1. (28)

Because </,- - dj is a non-negative integer and Oy > 1 the division algorithm states that

this difference can always be expressed as shown by (24) and (25) with > 0 fiirthermore,

ky and ly are unique for a given rf,-, rfy, and Uy. Assumptions (a) through (j) assure

23



that^,- > 0 so Ijj > 0 if (26) is satisfied. ThepossibiKtyofequaIityin(26)and(27)allows

conflicts of non-zero lei^h to occur. Suppose that q., qj are not required to be integers,

but Oij and /,y are integers. If (26) and (27) are satisfied with non-integer q. then so are

h 2 (29)

and

i„ i (50)

Therefore, if|®,y | are required to be integers then requiring the to be
integers as done by (2) does not further constrain the GCM.

PROOF OF GENERAL THEOREM 1

The approach used to prove the general theorem is to first prove an intermediate theorem.

Then the proof of two ensuing lemmas quickly leads to the proof of the general theorem.

But, first an expression for an arbitrary production interval of any item i is needed. Referring

to Figure 2, it is clear that the facility is occupied with the ith product during all time intervals

mJi + < t < + df + qi,m = 0, 1, 2, •••. (31)

We also require the following definition.

24



Definition of IF(»)

The ftinction

IF(a / b) = a/ b -(a/ bY

where a and b are any real numbers such that a > 0 and b> 0.

Theorem 2

A schedule = {t , j for a facility producing n > 2 items is a feasible cyclical
schedule, if and only if, for each pair of items / and j, i ̂  y,

di > dj ordj > di (32)

and

+ d; - d) / 7}]7} > (33)

and

eM, + dj - </,) / > qi

where M, = |/«, such that m-T^ + d^ - dj>

(34)

25



Proof of Theorem 2

As shown by Figure 4, conflicts between products occur if and only if there are products /, j

such that for some iw,-, ntj > 0

ntjTj + dj < niiTi + J, (35)

and

ntjTj + dj + qj > ntiTj + d-,. (36)

Of course, (35) and (36) could hold for any number of products j at the same production

interval of product /, but we may treat each pair of products separately to show that if (32),

(33) and (34) hold for all pairs then no schedule conflicts exist.

Let i, j be any two of the n products to be scheduled. Suppose (32) does not hold, then

d^ = dj, but > 0 and qj > 0 so the first production intervals of the ith and jth

products conflict. Therefore, (32) must hold in a non-conflicting schedule. Without loss of

generality, assume that d^ > dj . Now that we have chosen a particular pair of products,

there are two forms of conflicts as shown by Figures 4 and 5. These have been labeled as

y-leading edge conflicts and /-leading edge conflicts.

Suppose (32) and (33) are satisfied. Considering the /-leading edge conflicts first. We know

+ di - dj> 0 for all m> 0 because //,. > dj. Thus,

Mj = I HI,, such that 0 < m. < oo |, so + d^ - is well defined

26



i-Leading Edge Conflict

niiTi + d;

To t = 0

mjTj + dj

^—qi
niiTi + dj + qi

To / = 00

nijTj + dj + qj

Figure 4

j-Leading Edge Conflict

Dljlj + dj

To t = 0

m|Ti + d|

—qj ^

Product jProduct

qi

mjTj + dj+qj

To / = 00

uiiTi + di + qi

Figure 5

27



for all nil, 0 < ^ ^ non-negative integer and let m'j be the

maximum ntj such that (35) holds when #m,. = mj.

Clearly m'j = + </,• - / Tj so consider the difference

B, = m/j;. + </j - [mJi + d)

= m^r, + d, -dj- [(m;?; + </, - </;) / 7}]>;

= |[(».,!7; + d, - d) / 7)] - [(«;r, + d, - d) / Tj
=  + rf, - d) / 7}]rj

s  rf [(mi?; + d, - dj) / Tf Tj-

But, because of (33)

A ̂

hence,

milTi + di > m'jTj -f dj + qj > + dj -f (37)

where 0 < ntj < m'j. Relation (37) shows that the ml production interval of the ith

product does not conflict with any production interval of the ith product which begins prior

28



to m,J]- + </;. Because m\ can take on any value 0 < ntj < this shows that no

/-leading edge conflicts can occur if (32) and (33) are true.

Now to consider the y-leading edge conflict. Suppose that (32) and (34) are satisfied. If

MjTj + dj < then + dj - j/ 7] j is ill-defined. But (37) shows that
no conflicts occur between the ith and jth products in the time interval 0 < t < d^.

Therefore, only those production intervals of the jth product such that

ntjTj + dj > di (38)

can be involved in a y-leading edge conflict. Noting that

Mj = |##iy such that ntjTj + dj > d}^,
we can repeat the argument that proved (37) to show that for any m'j satisfying (38)

m)Tj + dj > ntiTi + + q, (39)

for all nt; such that

nt'jTj + dj > ntiTi +

This shows that no y-leading edge conflicts occur if (32) and (34) hold. Hence, the schedules

of the ith and jth products do not conflict. Because i andj are any pair of the n products to

be scheduled such that i ̂  j, the preceding argument shows that (32), (33) and (34) are

suflScient conditions for schedule feasibility.

29



We have shown that (32) is a necessary condition for schedule feasibility, so suppose (33)

does not hold for all /, j. Then, there are some i, j and ml € Af,- such that

+ di - dj) / Tj Tj < q,.

Defining ml and D. in the same manner used to prove (37), we can show that

D, = ffij-j; + rf, - (m)Tj + </;)

= /F[(«;r, + rf, - d) / 7}]r^.
But by (40)

A <

so

mlTi + di > m'jTj + dj

and

m';r, + d ,<m]Tj + dj + qj

(40)

which is a /-leading edge conflict of non-zero length as defined by (35) and (36). Therefore,

(33) is a necessary condition for schedule feasibility. A parallel proof shows that (34) is also

a necessary condition to avoid y-leading edge conflicts. This completes the proof of

Theorem 1.

30



Integer Constraint on Theorem 1

Note that theorem 2 did not require the J)-, to be integers, but the next two lemmas do.

Because these lemmas are required to prove the general theorem, this imposes the integer

constraint on general theorem 1.

Lemma 1

If T. and df, 1 < i < n, are integers satisfying conditions (32), (33), and (34) of

theorem 2, then gcd^Ti,Tj^ 1 for any /, j such that / ̂  /. Furthermore, if
gcd{T.,Tj) = J for any 7], Tj then there are no d^, dj such that the three conditions
of theorem 2 are satisfied.

Proof of Lemma 1

Let T I, Tj be any pair of the n items and without loss of generality assume d^ > dp so

d^ - dj > 1. Suppose gcd{Ti,T^ = 1, then a well known result ofalgebra states that
there is a pair of integers x, y such that

xTi + yTj = gcd(Ti,Tj) = 1. (41)

Let w be any integer, then the addition of (41) to the equation

wT^Tj - WTiTj = Oy (42)

gives the sum

31



y'Tj = -x'Ti + 1 (43)

where x' = {x + and = (^^ - H'7]). Now 7) > 1, Tj > 1 so by the
proper choice of w, we have that JC' < -1 and j' > 1. Now multiplication of both sides

of (43) by gives

{d, - d,)y'Tj = -(d, - d)x'T, + (d, - d,). (44)

Dividing both sides of (44) by Tj gives

V = (m,7;. + d, - d^ / Tj (45)

where V,rh^ are integers such that V - ̂d^ - d^y' > 1 and
m,. = - {d., - d^x' > 1. This means that Tj divides the right hand side of (44) so

/f[(/ii,7;. + d, - d^/T^Tj < IF{V)Tj = 0 < q,.

Thus, by contradiction if (32), (33) and (34) hold then gcd{Ti,T^ 4- 1. Clearly, if
gcd{Ti, = 1 for some 7), Tj then either = dj or (33) and (34) are invalid for
that Tj, Tj thus, the proof of Lemma 1 is complete.

Observe that if gcd{Ti,T^ 4 1 then gcd{TifT^ > 2.

32



Lemma 2

IfTifdi, 1 < i < «, are integers satisfying the conditions oftheorem 2 and conditions (22)

through (25) of theorem 1 where a,y, by, k^, ky, and ly are integers then for any 7]., Tj

and dffdj such that dj > dj

- dj) / 7}] = /^. / Tj (46)

and

mm

Proof of Lemma 2

+ dj - d,) / r,] = [a, - /,) / 7].. (47)

Lemma 1 shows that ifconditions (22) and (23) oftheorem 1 and the conditions of theorem 2

are valid then a.y > 2. Furthermore, equations (22) and (23) imply that

gcd[by,bj) = 1. Considering condition (46) first, we have

(m,r, + rf, - rfj) / Tj = + k^.a„ + l^) / a^b,,

= [m,b, + A,) / b, + (/, / a,) / bj,. (48)

Note that ky > 0 and mjby > 0 for m^ e Af, so {miby + k^^ > 0 for m,. € Af,.
Because {m^by + A:,y^ > 0 sndgcd{by,bj^ = 1, by using the division algorithm it can
be shown that for all m,- e Af,-

[m^by + ̂,y) / bj, = V, + (w,. / Ay,) (49)
33



where Vf is a non-negative integer and Wj < and

^ Qi - {p, 1, 2, , bji - / Furthermore, if a: € |2i then Wj = JC for some
nti G Ml but X i Qi then there is no nti such that Wf = x. These last assertions

follow quickly once the division algorithm is applied to {ntibij + k.i)=ybj, + Wi and it
is remembered that b^j, b^ are relative prime so that there exists an x and>' such that

xbij - ybji = 1.

Noting that 0 < {j.^ / < i, we see from (49) that (48) has the form

[miTi + di - / Tj = Vi+ Wi + (/.. / a^.)] / A.,

where ranges over the members of Qf as /if,- ranges over M,. Hence,

IF^m,T, + d, - d,) / t\ = /fIIh-, + (/, / «,)] / A,,}.

Because H',. and ly are non-negative and ifif/f^H',-) = 0 if follows that

- d.) / 7}] = (/.. / a,^.) / bji = ly / Tj

which proves (46).

Considering (47), we have for ntj g Mj

34



[mjTj + dj - d,) /T, = [mjTj - [d, - / 7]-

= \fnja.ybj, - (v.7 + '(/)] /

=  - ky - /) / bij + [(fl,y - /^) / ttij
(50)

/by.

Suppose (nijbji - ky - 1^ < 0, then [fttjbji - ky - 7^ < but if condition (33)
of theorem 2 holds for i then (46) shows that ly > qj > 0 so ly > 1. Then

0 < {oy - ly^ / Oy < 1 SO tliut the right-hand side of (50) is less than zero because
by > 0. But this implies that + dj - dj^ < 0 for ntj e Mj, so by
contradiction ntibp - ky - 1 > 0 if (33) holds for i. Hence, it can be shown that

{mjbj, - k,j - l)/ b„ = V, + / bij)

where is a non-negative integer and Wj < by and

Wj eQ^ = {O, 1, 2, •' ',by - i). Furthermore, if x e Qj then Wj = x for some
ntj G Mj, but if X ̂  Qj then there is no ntj such that Wj = X. Hence, as for

condition (46),

+ dj - d) / t\ = /f{[h-, + (fl, - /,) / a,] / A,}

and, because min{w^ = 0,

'"'"mj.M, - <)^<] = {"ij - 'if) / "A = ("if - 'ii) ' '' '•

35



which proves (47) and completes the proof of Lemma 2.

Observe that it is possible a^j = a'^a'^ where 1 < y < fliy. Then the effects of

factoring T. and Tj such that 7] = a'^a'^bjj and Tj = aljaljbp needs consideration.

Applying the division algorithm, - dj = k^alj + ly where 0 < Ijj < a'^ < a^j. It

appears that this factorization may lead to a smaller value of

IF^m,T, + d, - dj) / 7-,] = IF[{m,T, + + /^) / T, .

But kijUgj + Ifj = di - dj = k\ja\j + //. so with either factorization, the /F(*) function

yields the same value. Hence, only the factorization 7} = a,y^,y where a,y = ̂c</^7),7^j
needs to be considered.

By comparing conditions (46) and (47) of Lemma 2 with conditions (33) and (34) oftheorem

2, one sees that if 7], 7 < f < n are integers then Lemmas 1 and 2 prove that the

conditions of the general theorem 1 are necessary and sufiBcient to assure the conditions of

theorem 2 are valid. Because theorem 2 conditions are necessary and sufficient to assure

schedule feasibility, this completes the proof of the general theorem 1.

NUMERICAL EXAMPLE OF FEASIBILITY CONDITIONS

Consider the two item inventory problem with parameters r , = 8, p ,= 32, s i = 8, h , = 10,

c, -122, 880, r 2=2, p 2=48, s 2=4, h 2=5, c 2=44,160. By the square room EMQ

formula the optimal single-product cycle time for each of the two items are:

36



T:, = r;, = [2c,/h,r,{l-r, / p,)\" = {4096)"' = 64

and

K: = K, = [2c, / h,r,{l -r,/ p,)]" = {9216)"' = 96.

Then T*j = 32{.2) and 1*^2 — ^12 — ^21 — ^12 — ^ and ^21 —

Set d2 = 0 then > d2' To check compliance with (26) and (27) of the general

theorem 1 observe that

/„ >q, = s, + {r, / p,)r;, = 4+ {2/ 48)96 = 8

In S "n -92 = 32-s,- {r, / p,)t;, = 32 - 8 - {8 / 32)64 = 8

SO lj2 must equal 8 to satisfy conditions (26) and (27). Then

dj - d2 = kj2aj2 + li2 = 32ki2 + 8 < T*^ = 64.

Thus if the variables of the model are set to T*^ = 64, T*2 = 96, d2 = 0, with either

dj = 8 or d] = 40 then all conditions of the general theorem 1 are satisfied. These

values also give an optimal schedule because there exist a feasible schedule

n = , d*i I when the cycle times are set to the optimal single-product EMQ cycle times.

From (4) the optimal cost is

37



Z- = (/ / 2)h,r,T:,{l -r,/ p) + c, / T,]

+{1 / 2)i,,r,r;,{i - r, / p,) + c,/ t;,

= 1,920 + 1,920 + 460 + 460

= 4,760 cos t per unit time.

A Gantt chart of the first few cycles of this production schedule is shown in Figure 6.

38



G
a
n
t
t
 C
h
a
r
t
 o
f 
E
x
a
m
p
l
e
 P
r
o
b
l
e
m

U
)

m
7.

q
i

T
,

T
i
m
e

Z
e
r
o

T
i
m
e
 (
F
o
u
r
 u
ni
ts
 p
er
 d
iv
is
io
n)

I
 I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I

Fi
gu
re
 6



CHAPTER 4

ALGORITHM TO OPTIMIZE THE BASIC PERIOD MODEL

PURPOSE

As described in the history section of the introduction chapter Bomberger defined the BPM

by imposing (20) and (21) on the GCM.

The purpose of this chapter is to present an algorithm that determines an optimal schedule,

over all decision variables, for Bomberger's restricted BPM. This effort is useful for several

reasons; namely,

1. Hodgson[43] shows that the minimum cost with respect to the multipliers

of the BP model for fixed a is not an unimodal function of a ; hence,

Bomberger's trial and error method of determining will not, in general,

produce an optimal a^. The algorithm presented here yields a global

optimum for Bomberger's model over all integer variables.

2. The accuracy ofBomberger's procedure is affected by the value of A used

to produce discrete dynamic programming state variables. In a

straightforward dynamic programming formulation, A must satisfy two

conflicting objectives. If too large a is chosen, the algorithm may yield

non-optimal results. On the other hand, it too small A is chosen, there wiU

be a large number of feasible values for each state variable. This in turn

40



increases the computational requirements ofthe algorithm. In the algorithm

presented here, the cycle times are restricted to integer values where the

time unit is determined by the required scheduling precision (e.g., lots are

scheduled for production to the nearest day or nearest quarter hour.) Then

a revised form of Bomberger's dynamic programming algorithm is

formulated. The A used to produce discrete state variables is then

determined by the desired scheduling precision. Selecting A is equivalent

to selecting a time unit for the scheduling problem. Basing this selection on

the desired scheduling precision ranther than on computational

considerations as required by Bomberger's procedure is a better defined

method that yields more practical schedule.

Unfortunately, there is a downside to this method of selecting A. The desired

scheduling precision may greatly increase the range of the state variables of the

dynamic programming procedure. This, in turn, will significantly increase the

computational effort required of the algorithm. To overcome this disadvantage

certain properties of the model and an iterative algorithm are used to limit the

number of feasible values of the state variables. In most cases, an optimal

solution with a specified accuracy is produced by this approach with reasonable

computational effort.

3. The procedure does not require intuitive judgement of the problem solver

as required by Bomberger's trial and error method for selecting the

41



fundamental cycle. The algorithm will always produce an optimal, feasible

solution for the BPM if model assumptions (a) through (k) and necessary

conditions (1) are satisfied. Furthermore, the entire procedure can be

programmed so that problems may be solved completely on a computer.

4. Lastly, as shown in the next chapter, when /i = 2, an optimal solution to

Bomberger's model is an optimal solution for the general model. Also,

Bomberger shows that the model often produces good solutions when

n > 2. Hence, the algorithm presented here finds optimal schedules when

n = 2 and produces a good upper boimd on the cost of an optimal

schedule when n > 2. This upper bound is used in the general

optimization algorithm for the n-product model presented in chapter 9.

Furthermore, many of the results of this chapter are adapted for use in the

general algorithm.

In the next section the details of the BPM algorithm are developed. This is followed by

a summary of the algorithm for the convenience of the reader and a proof that the

algorithm produces an optimal solution for the BPM within a finite number of steps.

42



BPM ALGORITHM

Model Definition

Formally, the objective is to develop an algorithm which minimizes Z^(/2)as given by (4)

for the model defined by assumptions (a) through (k) subject to Bomberger's BPM

constraints (20) and (21). That is, the objective is to find

Z* = min^f z(t) = min, /T, + H^t) (51)

subject to the restrictions of the integer forms of Bomberger's conditions

T, = a b,> 0, i= 1,2, . •,n (52)

and

+  = (53)

where

A = '} / Pi'

Hi = h.r{p, / r) / 2p, = h,p{p, - /;.) / 2,

and bj, all i, are integers. It is further assumed that a or in Bomberger's terminology the

fimdamental cycle, is integer which implies the 7], all /, are integers. Also, unlike

Bomberger's constraint (21), the length of the use periods, all i, are required to be

43



integers by (2). Inequality (52) is used to place initial lower bounds on the integer variables

a, Aj.,and 7^, namely, a,b.,T. > 1, for all/.

The objective function (51) is a continuous, strictly convex function of when the

fundamental cycle a is held constant. Likewise, it is a continuous, strictly convex function of

a when the are held constant. However, the optimal values of (51) over |A^.|,when

a is constant, varies erratically as a ranges over its possible values.

To find an optimal schedule for the BPM in the fece of this erratic behavior, the algorithm

presented here uses the following strategy:

1. Find lower and upper bounds on the optimal of (51) where the upper bound

is the cost of a known feasible schedule.

2. Use these boimds on cost and constraints (52) and (53) to place lower and

upper bounds on the fundamental cycle a.

3. Beginning with the fundamental cycle a set to its upper bound, find the

optimal of (51) over the multipliers for each value of a that lies

between its lower and upper bounds. When necessary, Bomberger's

dynamic programming routine is used to find the optimal multipliers.

4. At each new value of the fundamental cycle a, if a better schedule is foxmd

replace the previous best schedule with this one and update the upper bormd

on (51) to equal the cost of the new schedule.

44



5. To increase the efficiency of the algorithm:

a. Eliminate as many values of fl as possible as either non-optimal or

infeasible,

b. At each value of a use bounds on the to reduce their feasible

region,

c. Whenever possible, identify an optimal without performing

the dynamic prograniming routine, and

d. At the end of each iteration, find the optimal a when | is

held fixed at the optimal for that iteration. It is expected that

in many cases will differ fi-om the trial a used by the algorithm to find

Thus, this step should usually find a lower cost schedule

because

for all values of a.

It is possible to design an algorithm that begins at the lower bound on a and works upward

to its upper bound. However, it is conjectured that the opposite approach wiU be more

efficient for most problems. The rationale that supports this conjecture will be obvious fi"om

the step-by-step description of the algorithm.

45



Several charts similar to Figure 7 will be used to explain the rationale of the algorithm and to

facilitate the proofs in each step. These figures require some explanation. The chart in each

of these figures is a depiction ofthe j plane for a particular value of the fimdamental
cycle a. For each value of a there is a related plane for each possible

pair {bii where i ̂  k and /, k = 1, 2, •••, n. These charts represent the n-

dimensioned j hyperplaneinw-space.

The two dashed lines radiating from the origin are imaginary in the sense that they do not

actually appear in any j plane. To construct these lines imagine that the integer
constraint on a is relaxed, that a (a,-, j plane is drawn for each possible value of a, and
that this infinite set of charts are overlaid, ordered on a. One and only one point on each of

these lines will appear in the plane related to a particular value of a. These imaginary lines

are constant cost lines and are useful for showing how certain aspects of the {bf^ plane

changes as a is changed.

Except for the imaginary lines each b^ plane is the one-to-one mapping from
the ^7]., j plane given by (52) for each constant value of a. There are two major
advantages for using the hyperplane rather than the ̂ 7), hyperplane. Assuming
that a is a constant integer, each integer in the (M hyperplane maps to an integer in the |

hyperplane. The reverse is not true. Also, the constraint (53) in the |7)| hyperplane divides

the hyperplane into a "maybe" region and infeasible regions not into feasible and infeasible

regions as its image does in the hyperplane. More will be said about these hyperplanes

as the steps of the algorithm are described.

46



B
P
M
 A
lg
or
it
hm
 (
bj
, 
b^
) 
Pl

an
e

M
e
d
i
u
m
 a

In
fe

as
ib

le
 R
eg

io
n

C
C
M
 C
o
s
t

C
o
n
J
t
r
a
m
t

F
e
a
s
i
b
l
e

Re
gi

on

Si
ng

le
 P
ro

du
ct

Op
ti
ma
l 
Co
st

m
r
j
c

(
r
«

I
 I

0
 1 

2
1
0

1
5

Fi
gu

re
 7

bi



Another curious aspect of Figure 7 is the "sawtooth" curve depicting constraint (53) and the

two enclosing parallel lines. The two parallel lines divide the j plane into three
regions: a feasible region, an infeasible region, and a "maybe" region. This constraint

structure is another complication caused by the integer constraint on all model variables. To

ejqjlain, consider the upper parallel line first and let

I >,=«+I >,?;■)* (54)

and

"r = + P,T,) =s+ 'Z", P,T,- (55)

where is a real number and Uj is an integer.

Applying the division algorithm to 7]-, all i, let

7) = mjp. - ejpi (56)

where > 1 and 0< Pi < 1/p^. Then

a, = S+ e/)
=

where 0 <&;< 1. Thus, a^<aj. Suppose a vector yields an such

that a^> a for a particular value of a then

48



aj> a^> a.

Hence, all vectors |7) | such that a^> a do not satisfy (53) and are infeasible. Note that

= Oj only when = m.Jp., all i.

To consider the lower parallel line, note that (54) is actually an integer function of the vector

1^,. Thus, when Uj is fixed in (54) and the value of one changes then there must be

off-setting changes in another q,^^ k i. By examining the plot of Oj in the ̂ 7), 7]^ j
plane shown in Figure 8 one sees that a, is a continuous, "sawtooth" function

of 7]. and 7]^ except at the points m-J p,- p,^ or {m^ - l^jp^^nti^l p,^ where

j*k

These discontinuities are removable because

Urn qi = lim p^T^
€? / €? 7

= lim m,- e (57)
€t i '

= nil.

An important observation about Oj in Figure 8 is that over any continuous segment of Oj

Ti = nil I Pi '• Hence, at least one e,.= 0 so

49



(T
i,

 T
|J
 P
l
a
n
e

H

o

m
^
/
p
k

(n
ik
 -
1)
/ 
Pk

'
M
k
.

1

j
 mk

 / P
k

1 (

1
 1

(n
ii

 -
1)
/ 
Pi

it
ij

/p
i

T
i

Fi
gu
re
 8



(«-A

Now dejSne 7]. as shown in (56) and let

«; = 5 + X"a^ + («-^)

> Oj.

(58)

If a vector |7)| yields an such that a[< a for a particular value of a then

a> a\> Oj.

Hence, all such vectors | J] | satisfy (53) and are feasible. There is equality in (58) only as

a limit. This equahty occurs when one 7]. = and the other ("~-^) approach

= IJm mjp,- e.

The parallel lines defined by (55) and (58) when a= a^ = a[ are tight upper and lower

linear bounds, respectively, on constraint (53). These lines are useful approximate linear

constraints for the integer BPM.

To facilitate the description of the algorithm the range of a is divided into five partitions that

are labeled very large a, large a, medium a, small a, and very small a. These partitions are

defined relative to constraints (52) and (53). The characteristics of the scheduling problem

within each of these partitions differs significantly fi-om that within the other partitions.

51



Several charts similar to Figure 7 will be used to guide the explanation of these differences

as the steps of the algorithm are described.

Step 1

The actions of steps 1,2, and 3 take place in the (J), 7]^) plane as shown in Figure 9 where

the single-product optimal point is marked with an asterisk. The constraint and its

parallel lines shown in Figure 9 are described above. The other curve and the limit box wiU

be described in steps 3 and 4. When a> 0 all of Figure 9 is mapped one-to-one to

the {bi, ) plane shown in Figure 7. These first three steps are performed only once during

the execution of the algorithm.

Obtain an initial upper bound on z' fi"om Hanssman's CCM. Hanssman's [45] results can

be quickly extended to obtain an integer solution for his model because his assumption that

7]- = 7]^, all I, converts the w-item model to a single item model where

Ch = Zl^. and (59)

are the setup and inventory costs, respectively. To obtain this integer solution, let

Z.(r) =C,/T + HJ (60)

and

T/ir — / H. (61)

52



B
P
M
 A
lg
or
it
hm
 (
Tj
, T
^)
 Pl
an
e

U
)

N

C
C
M
 C
o
s
t
 C
u
r
v
e

C
o
n
s
 :
r
a
m
t

0
 1 

2
1
0

1
5

Fi
gu

re
 9



Then the optimal integer is

r; = max{T^j,T^2) (62)

where

(KJ, (r;)" = 0

(n,)", 2-.[(r.,r] < Z.[(r^r] and (r^)" > O (63)

and

T>, = Z>,(r..)=s+S;(Ar„)* > »
(64)

where

5 = Ev
i=l

A lower boimd on T^2 is provided by

T,,>\si{l-Y,",P^ >0. (65)

The cycle time Ti^2 is found by computing this lower boimd and then, if necessary, by

increasing it by 1 imtil (64) is satisfied.

54



Note that if there is a tie in (63) then the largest value for T^j is selected because if

is feasible then so is (t** ) but the reverse is not true. The optimum cost for a Hanssman
CCMis

Zl = (66)

Hanssman shows that schedule feasibility is assured by requiring 7]^ > 7]^^. By letting

b- = 1, aH i, and a = and observing that (64) is equivalent to (53) when 7) = 7", all

/, we see that T. = 7^', all/, is a feasible solution to Bomberger's model, so Z*,, is an initial

upper bound on Z*. Save this initial upper boimd solution by setting and

= 7/, all /, and go to step 2.

Step 2

Find optimal solutions to n single-products EMQ models and check these for schedule

feasibility. If the vector of these single-products cycle time are feasible then set

fWI* • ♦ ^ tt ^T. = , all /, and z = Z^i and terminate the algorithm.

a. Treat each item as if it is the only item of a single item model and let

= c, /T, + H,T,; i = I, n; (67)

suppose that T. is permitted to assume any positive real value. Then,

because assumption (k) requires that C,., b. > (/,, all /, it is easily shown

that Z^{Ti ) is strictly convex with the unique extreme point

55



(68)

If is not integer, then the optimal integer cycle time of the ith

single-product model must be one of the two (or both) integers which

bracket T*^. Thus, because ) is strictly convex, it is easily shown

that

fc)*. fc)"=»

(cf, z,[fc)"] < z,[(c)*] md (r,;)" i I (69)

fc)'. z,[fc)"]s ■?,[(!;;)*]
for < = 7,2, n. In case ofa tie, both and areused

in the feasibility test of step Lb and in other places in the algorithm.

Note that one or more of the single product optimal cycle times T* may not

satisfy constraint (53) even when product i is treated as a single-product

model. In this case

= [«/ + (70)

However, a greater lower bound on 7) than that given by (70) is obtained

when product i is treated as an item in the /i-products model. This greater

bound is derived by observing that 7) > o and 7]. > 7, all /, and applying

(53) to obtain

56



r. > a > S + 'EI,{p,T,) > ̂  + a + P.T,

SO

+  (71)

Thus T^i2 ^ minimum feasible integer T^i of the modified

single-product model. Increasing beyond T^i2 when < T^f2

increases the cost because the cost fimction is strictly convex. Thus,

T,^) (72)T* = max\

if there are ties in (69) is set to the maximum possible value. Of

course, if T^i = there are no ties in T*. This will simplify the

remaining steps somewhat. To derive (71) 7]-, i ̂  were all set to one.

This is the extreme lower boimd on 7]. As shown in step 4, a greater lower

boimd on is obtained when the lower boimd on any 7), i ̂  k.

increases.

Compute

z* = H,T:,;i= 1, ,n (73)

E" ¤ •j Zgi is a lower bound on Z over all

possible integer solutions because setting any 7]. to a feasible integer value

57



other than T'J, except for possible ties, causes a strict increase over

and

in ,

< t ̂ si'

b. Determine - gcd{T*i,all ij. An elementary result from number
theory states that, if there is an integer a' such that T'J = a'bl, all /,

where the b'. are integers, then > a'. Therefore, (^j) satisfies (52)

and (53), if, and only if, b' > 1 and

If there are two possible values for one or more of the this step is

repeated for every possible value of

If (74) is satisfied by any ofthe possible ^T*i | terminate the algorithm with

:■ = (75)

r: = r;, m

all i where | is the vector that satisfies (74). If the algorithm terminates here,
clearly z* is the optimal cost because it equals the lower bound on cost given by

(73) while ^T* | given by (72) is feasible. Proceed to step 3 if the algorithm is not
terminated.

58



Step 3

Obtain an initial upper bound on a. Suppose that 7]. = J", all /, and that T is set to the

maximum of the optimum single item cycle times {i. e.^T = moXi^T*/ and consider

Figure 10 which illustrates the situation when n = 2. (For clarity, it is assumed that

T* = T*^ in the illustration.)

Because the ) are strictly convex 7) = max,.(r,*), all/, has lower cost than any

other solution where maXi(T*^ < 7), aUi. Thus, ifthis solution is feasible, max.(T^'^

is an upper boimd on the minimum cycle time of an optimum solution

^/.^.,m//i,(7)*) < #fiax',(7'j)). Ifthis solution is not feasible, then max:,-(7^*) < T^2
as illustrated in Figure 10 where T^2 is given by (64). In this case, Ti^2 - min.{T*^. By

noting that 7). > a, all /, these observations lead to an initial upper bound on * ; namely,

a„ = max[T^29 maXi{T;i)) > mini{r;) > a .

Save this initial value of a„ and proceed to Step 4.

Step 4

Use the present upper bound on z and the lower bovmd on single item costs, to place

bounds on the optimal cycle times or to terminate the algorithm.

59



U
p
p
e
r
 B
o
u
n
d
 o
n
 F
un
da
me
nt
al
 C
yc

le
 a

$2
5,

00
0

$2
0,

00
0

O
S
o

(1
1 1 1

Z2
(T
2)

$
5
,
0
0
0
 -

 -

5
0

M
a
x
(
T
 ,
i)

 =
 T
 s
2

i/
25

0 
t
'

1

s
2

45
0 

65
0 

T
 h
2 

85
0

Cy
cl
e 
T
i
m
e

1
0
5
0

1
2
5
0

Fi
gu
re
 1
0



a. Ifthis is the first execution ofStep 4 let T^'. = 1 and = M where M

is a very large integer. Otherwise, set = T^^ and T\ = where Tj.

and are the present bounds on 7]-. Let

Tr < T-

7  - ̂ 7* T' <T* <T'^mi - 1 ^si> - -*5/ - ̂ui (77)

fcO' > K

Because Z^{t^ is a strictly convex function of T- the quantity is a

lower bound on overall 7]. such that 7)/ < 7) < 7]/^.. Thus,

(78)
i=l

is a lower bound on Z*. Clearly, if

n = z^-z^<o. (79)

the vector of cycle times | which yields is an optimal solution.

Hence, if (79) is satisfied, terminate the algorithm with Z* = Z^ and

7)* = Tj^i, all /; otherwise, proceed to Step 4.b.

b. If the algorithm is not terminated in Step 4.a, then new upper and lower

bounds can be placed on the optimal value of each 7] because

61



Z^>z

= SX(r).

Each item i must contribute at least Z„; to z* so the maximum cost contribution
ml

of any item j is

(80)

=

The points at which the two sides of (80) are equal can be found by solving a

quadratic in Tj. As illustrated in Figure 11, with IJ > 0 this quadratic always

has two real roots which bound Tj. Solving for these boimds, we have

(81)

where

'Tft _

^Ij - n+ Z^- ̂(j7+z^} -4HjC. / 2Hj (82)

and

T. = max
'v Tip' n+ + y(/7+ Z^)' - 4HjCj /2Hj (83)

62



O
n

U
>

Lo
we

r 
an
d 
Up
pe
r 
Co

st
 B
ou

nd
s 
on
 C
yc
le
 T
im

es

n
+
Z
.
:

Zs
j

/
"
-
p

r,
 "
 ̂
 
\

|.

Fi
gu

re
 1
1



Solve for these bounds on each Tj and go to Step 5.

The remaining attribute ofFigures 7 and 9 can be explained now. The box bordered

by dashed lines is defined by the hraits j, all j. All potentially optimal
|7).| where > are contained within this «-dimensional box. The

approximate ellipsoid contained within the limit box is the constant cost curve where

=  . Interior points of this approximate ellipsoid have cost lower than

the present upper bound on cost Z^, As shown in Figure 9 it is possible that part

of this ellipsoid may be outside the limit box. The algorithm is terminated if all of

the ellipsoid is outside the limit box in the ̂ 7]. •> plane.

Two constraints, each with its two enclosing parallel lines, appear in the ̂ 7), j
plane shown in Figure 9. The upper constraint is fixed by while the lower

constraint is fixed by a^. Only one constraint appears in the {b-^ j plane of
Figure 7. This constraint is related to a fixed a where < a <

Step 5

a. Use Bomberger's condition and the lower bounds on the cycle times to

determine a lower boimd for a.

From (53) and (81), we find that a lower bound on a is given by

64



>-

= a,.
(84)

b. Find a new lower bound on T.', all i. If the bounds on the cycle times T.

are inconsistent so that no feasible solutions | with

cost exist then terminate the algorithm. The lower bound

on a is also a lower boimd on all T* that is

7)* > min{T*^ = min{a'b*^ > a* > a, (85)

so set

Til = max{a„T;i,T;^ (86)

where 7),' and 7^' are defined in Step 4. If > T„i for any / then all

potentially optimum schedule have been eliminated so set T* = 7'^,- and

Z' = and terminate the algorithm. This situation is shown in

Figure 12 and Figure 13.

If T^ = T„i for all i go to step S.c. Otherwise, 7),. < T^i for all i

and Tji < T^i for at least one product L Determine if 7),., for any /,

increased during the previous iteration of Steps 4 and 5, i.e. check if

Tji > Th If so repeat Steps 4 and 5; otherwise, go to Step 6.

65



c. When 7)^- = for all / find the final fimdamental cycle used by the

algorithm; that is, find

'^12* ^/n)*

If Oj. and | satisfy (53) and < Z„ set T* = Tfi,

all I, and z* = otherwise, set 7]* = all i, and

Z* = Z^. In either case, terminate the algorithm.

Step 6

Set a'^ = the present upper boimd on the fimdamental cycle, and use the upper boimds

on the cycle times to determine a new upper bound on a.

Two additional upper boimds can now be placed on a. The first is simply

a^j = iw//f,.(r„,.) > #wi/i,.(7;.) > a . (87)

The second boimd is not as obvious. Remember that (52) and the integer constraint requires

that > 7, all /. Suppose that there is a solution with Z* < Z^ and with all b* = 1.

Then 7)* = a*, all/, which means our supposed solution is a solution to Hanssman'sCCM.

But the optimal solution to the Hanssman's CCM is the initial upper bound on Z* so

Z*!, > Z^. This contradiction shows that if Z* < Z^ then there must be at least one

b] > 2, which implies that

66



B
P
M
 A
lg

or
it

hm
 (
Tj

, 
T,
J 
Pl

an
e

T„
i 
<
 T
u

O
N

T
k

C
C
M
 C
o
s
t
 C
u
r
v
 ;

1
0

A
C
o
n
s
t
r
a
i
n
t

T

C

0
 1

1
0

1
5

T

Fi
gu

re
 1
2



B
P
M
 A
lg

or
it

hm
 (
Tj

, 
Ti

J 
Pl

an
e

Tu
k ̂
 T
u^

0
\

0
0

T
k

C
C
M
 C
o
s
t
 C
u
r
v
e

C
o
n
s
t
r
a
m
t

1
0
 •

T

u
k

y

0
 1

1
0

1
5

T
i

Fi
gu

re
 1
3



a' < [7;* / 2]'

< [max{T) / 2]
(88)

< [maXi[T^) / 2]
< a„^.

where b' > 2 for item i.

Finally, recall that a'^ is the previous best upper boimd on a*, the new upper bound is

"u = (89)

The situation where all < 7 is shown in Figure 13. This is representative of 1

plane when the fundamental cycle a is very large. Values of fl in the very large partition are

clearly infeasible because such values require that b. < /, all i.

Because of (87) the lower bound on all b^. is 1, that is,

1 < iiiin,(r„,)/a' = miii,(A^)< r„ /«•

for k = 1, 2, •••, n. Thus, when the integer constraint is relaxed and the potentially

optimal region of the (t), 7]^ j plane is mapped to the (a,., plane at most one = 1
unless T^. = This mapping is shown in Figure 14 where b^^ > However, it is

possible that with the integer constraint = 7, all/. This situation is shown in Figure 15.

69



B
P
M
 A
lg

or
it

hm
 (b

j,
 b
ij
 P
la

ne

L
a
r
g
e
 a
, 
b„

i=
 1
, 
b
„
k
>
2

o

lo
fe
as
ib
le
 R
eg

io
D

C
C
M
 C
o
s
t
 C
u
r
v
e

F
e
a
s
i
b
l
e

Re
gi

on

C
o
n
s
t
r
a
i
n
t

X
'

7^
:-

Fi
gu

re
 1
4



B
P
M
 A
lg

or
it

hm
 (
bj

, 
b^

) P
la

ne

L
a
r
g
e
 a
, 
b
u
i
=
l
,
b
u
k
=
l

bi

lo
fe
as
ib
te
 R
eg
io
n

C
C
M
 C
o
s
t
 C
u
r
v
e

F
e
a
s
i
b
l
e

Re
gi
on

C
o
n
s
t
r
a
i
n
t

/■

x
:

bk

Fi
gu

re
 1

5



Both Figures 14 and 15 illustrate the {bj, planes related to large values of a. The

fundamental cycle a is considered large if there is at least one i such that b^- = 1.

Step 7

Compare the bounds on a and either select a new candidate value for the fundamental cycle

or terminate the algorithm.

a. If > aI, then every a satisfying < a < is potentially an

optimum fundamental cycle. To assure that the algorithm produces an

optimal solution, each a, a, < a < , must be either elimmated by using

the bounds generated from the structure of the GCM, or used as the fixed

fundamental cycle in a procedure that determines an optimum set of \b^ |

for a given a.

If then all potentially optimum fundamental cycles have been

elirninated which implies that T' = 7^^^. and Z* = Z^, so terminate the

algorithm. Note that it is possible < 1; however, a, is always greater

than 1. Thus, the algorithm will terminate whenever < 1. Otherwise,

let

e=[i \T„ = r„} (90)

If ̂  the null set, select as the next candidate fundamental cycle

and proceed to step 8. It is conjectured that selecting as the next

72



candidate fundamental cycle reduces the computational requirements ofthe

algorithm. If 0^ (f) the dimensionality of the BPM is reduced by the

cardinality of 0 because for the remainder of the algorithm, the cycle

times T* = = T^. for all i e 0. Thus, the optimi2ations procedures

in steps 11 and 12 are performed only with respect to products i ̂  0.

If ̂  ^ go to step 7.b.

b. For each i g 0 the lower limit Tf. is the only possible value for 7] in a

schedule T where z{t^< Z^. This means that

t; = T, = by. (91)

Hence, a' must divide all T; such that i £ 0. Let

W = integer v V that divides each 7) where i e 0 and ai< v <

Suppose there are k cycle times 7] where T* = then the set y/ is

found by first finding

gk = gcd{Ti If G <9).

A theorem fi-om linear algebra states that v divides all 7]., / g if and

only if V divides g,^. Thus, if < a, then y/ - If > fl/ then

y/ = ̂nteger v \ v divides g^ and a, < v<

73



\i If/ = (/> then all potentially optimum fundamental cycles have been

eliminated so set T* = T^. and Z' = and terminate the algorithm.

Otherwise, set

= max^^iv) (92)

and go to step 8.

Step 8

Find upper and lower limits for the 1 when a = a^.

a. Because of (52), the limits on 7]. found in step 4.a also limit bj when a is

fixed. That is, 7) = when a = so

Tu ̂

or

=  a; (93)

and

= [r., / a.]' > a; (94)

for i = 1, 2, n.

74



b. When a = the lower bounds on the and (53) provide an

additional upper bound on each b^. Rearranging (53) gives

^ S ][pTi+5,r ̂  +S L A?;

i-S/a^>T,P^b,

^ Pfii + S,v/A^/.

or

(95)

fox i = 1,2, ,n. Let

Step 9

Compare with bH-. If there is an / such that b^. > b'Jf when a = then a feasible

schedule T with z{f) < does not exist when a = a^. This situation is illustrated

in Figure 16.

If bji > b^i for any i suppose a'^ 5^ is a replacement candidate fundamental cycle. To

satisfy < a'^ < with a'^ ^ clearly a'^ must be less than a^. However, an

inspection of(93) and (95) reveals that b^^ monotonically increases while b'J. monotonically

decreases as is decreased.

75



B
P
M
 A
lg

or
it

hm
 (
bi

, 
b^

) P
la

ne

S
m
a
l
l
 a
, 
bu
 O
ut
si
de
 C
on

st
ra

in
ts

O
s

iD
fe

as
ib

le
 R
eg

io
n

C
C
M
 C
o
s
t
 C
u
r
v
e

F
e
a
s
i
b
l
e

Re
gi

on

C
o
n
s
t
r
a
m
t

X

Fi
gu

re
 1
6



Hence, if > b'Ji then all candidate fundamental cycles have been eliminated, so the

algorithm can be terminated. In this case, set T* = and Z* - and terminate the

algorithm. Otherwise, go to step 10. Note that it is possible that < i; however, is

always greater than one. Thus, the algorithm will proceed to step 10 if and only if

1 < b, < b':,.

Step 10

Compare b^. from (93) with b^^ from (94) and let

y = \i \ > bl^J = /, (96)

If / = ̂  go to step 11; otherwise, revise the upper bound on a to

«« = (97)

and return to step 7.

If 7 9^ ^ relationship (97) provides a strictly smaller boimd on the optimal fundamental

cycle. However, if ̂  ^ then bounds of this form will not be less than the present value

of a„. To show this, assume that b^i > b'^g for some / . This situation is shown in

Figure 17.

Use the division algorithm to find

T,i = + V„.

Tui = ̂ ui^u + ̂ui

77



B
P
M
 A
lg

or
it

hm
 (
bj

, 
b|

J 
Pl

an
e

b
 „i

 <
 b
u

o
o

Z
'

C
C
M
 C
o
s
t
 C
u
r
v
e

C
o
n
s
t
r
a
m
t

i
Z

z
'

4

b.
.:

0
 1 

2
1
0 b
.

1
5

2
0

Fi
gu
re
 1
7



where > <? and <? < v^,v^. < a^. Suppose that w^. > then

Tu = W,:a.. + V,:

> {w„i + l)a„ + v„

>  + V„,. + Vfi

>

step 5 assumes that T^. < T^., all /, when step 10 is executed; thus by contradiction

- *^11/• Now suppose that < w^. then

h = [Tu / = [w,, + Vu / + 1< w„,. =

which contradicts > b'^^; hence, H',,. = Therefore > blf ifandonlyif

bu = ̂ui + J= Ki + 1.

Now let a^. be the bound from the ith item used in (97). Then

au^ = [TJK]

Tu.-aj[{w„, + i)aJ^
(98)

< a..

79



The strict inequality holds because > v^.. Thus, each bound in (97) is smaller than the

previous upper bound on a.

On the other hand, if b^■ < b'^. then b^. < with equality only if = 0; thus,

Oui = [Tui

^ [Tufiu + v„.)]

Therefore, bounds of the form found in (97) wiU not reduce the present upper bound on a

unless bfi > b^ for some for i = 1, 2, n.

Step 11

The advantages of beginning the algorithm with large values for the fundamental cycle a are

obtained primarily in step 11 and 12. There are four parts to step 11. The actions of these

parts will be described first then these advantages wiU be explained. The actions of step 10

assures that A,,- < b^., all i. This is necessary condition for actions of step 11 to be

consistent.

a. Relax the integer constraint on the and let be the unique, real valued

multiplier that minimizes Z^{a^b^ when the ith product is treated as
unconstrained single-product model with a = a^. It is easily shown that

80

an



Krsi = Ki / «« (99)

where T^i is given by (68) in step 2.

Let

bL =

{KrsiY^ (Ci) = 0 orZ^a^blrs) >

(C/) ' ^ I and Z,[a„(AV) < Z,.[a„(C,.)^].
(100)

Observe that in case of ties the smaller value is selected for b'^i because the smaller

value may be feasible when the larger value is not. Now that ̂  V has been defined

a useful lemma can be stated.

Lemma 3

For any value of a such that Oj < a <

b*. < max\br% b'.) (101)

for i = 1, 2, •", /Iwhere b^ is the optimal multipher for product /

when a = a^.

81



Proof of Lemma 3

One of the advantages of using the \b^ | hyperplane is that the left-hand side of

constraint (53) is fixed when a = a^. This is not true in the hyperplane.

Clearly the right-hand side of (53)

(«.*/)= s ('02)

decreases monotonically as ^pany i, is decreased while a is held fixed at a^.

Let be a fixed vector ofmultipUers such that (53) is satisfied. Suppose that

is reduced so that bf^ = a< Because of the monotonic behavior of (102)

Thus, if is a component of a feasible vector then so is or where

bjj^ < a < b/^ < b^^.

The cost fimction Z^ia^b^is a strictly convex fimction of ft- when a-a^.

Hence, if there is a vector |ft,-| that satisfies (53) where ft̂ ^ > mox^ft^p ftvj,any
A:, then can be reduced by setting ft̂  = /wax^ft^p ftV^ and
the revised vector will be feasible if |ft,.| is. Therefore, as stated by lemma 3,
ft* < /Max(ft,p ft;,.).

82



One of the implications of lemma 3 is an enhancement to one of the advantages

derived from beginning the algorithm with large values of a. This becomes clear in

part b.

b. As stated above, step 10 assures that , all L Clearly if there are one or more

products such that b^^ = b^. then the optimal multiplier b*^ = b^ = b^-. The

dimensionality of the optimization problem is reduced by one for each such product

i during the remaining steps of the algorithm. This simplification is enhanced by

lemma 3. If there are products / such that b^ > b'^j then < A,,-. However, bj.

is a lower bound on so that = b^-.

To formalize these observations let

K=\i h = Ki orbu > i=m+U «| (103)

where it is assumed the products are labeled so that the indices of the first m products

do not appear in Then the optimal multipliers for ' e \ are

A- = b, (104)

where i = m + 1, • • •, n and 0 < m< n. Note that 6 defined by (90) in step 7

is a subset of .

The actions of step 10 assure that b^ = b,i^ all/, is a feasible solution. Hence, ifthe

optimal values of all /i multipliers are determined by (102) and (103) set

83



and = b^^ all i, and go to step 13. In such cases the dynamic programming

procedure of step 12 is not needed. If all but one index is contained in go to 10.c;

otherwise, go to lO.d.

c. When this sub-step is executed there is only one product k such that and

^ik < ̂ Lk' ^Lk ^ satisfies (53); that is, if

^  +{Pk^u^LkT (105)

then = b'^^. Otherwise, b^ is the largest value of that satisfies (105)

because Zf^{a^b^ is a strictly convex fimction of b^ and all candidate values

for b^ are strictly less than the integer, single-product Let b'a^k = w where the

division algorithm is used to obtain

[PiauKX ̂  - Z )
= ̂Pi^^u + ̂

(106)

where w> 1 and 0 < v < pfl„' From (106) it follows that

= {[«, - ■S - (107)

84



is the maximum integer that satisfies (105). As stated above, the actions of previous

steps asstire that satisfies (53) so in (107) is well-defined. To summarize

set

=  (108)

and go to set 13. Again, the dynamic programming procedure of step 12 is not

required if the indices of all but one product is contained in •

d. When this sub-step is executed there aie m> 2 products such that bj/^ < b^^

and bj^ < . If A„jj < A^^ for k ̂  then clearly the optimal integer,

single-product multiplier for product k subject to the

constraint A,^ < b^< A„^ < A^^^ is A„^. Thus, set

b]si = min(b'^,, A„,) (109)

for i i X„.

The medium region of values of a is defined as those values of a where

This region is shown in Figure 18. Note that the regions of a may overlap.

85



B
P
M
 A
lg

or
it

hm
 (
hi

, 
bk

) P
la

ne

M
e
d
i
u
m
 a

0
0
0
\

In
fe

as
ib

le
 R
e
g
i
o
Q

C
C
M
 C
o
s
t
 C
u
r
v
e

1
5
 •

C
o
m
:t
r
a
m
t

F
e
a
s
i
b
l
e

Re
gi

on

^
.
 Si
ng
le
 P
ro
du
ct

Op
ti
ma
l 
Co

st

J
S
)

»
/

0
 1 

2
1
0 bi

1
5

2
0

Fi
gu

re
 1
8



Clearly,

4 = E + E (111)

is a lower bound on the optimal cost Z* where < b^., all L Thus, if is

in the medium region of a values; that is, if (110) is true, then z* = z'a where z'a is

given by (111). Thus, if (110) is satisfied set

Ki = K' and A* = i and go to step 13. Again,

the dynamic programming procedure is not required when is in the medium region

of a values.

The optimal multipliers b^, i G aie determined by (104); however, if (110) is

not valid then the optimal set of multipliers bj for / 0 , must be determined by

the dynamic programming procedure of step 12. The procedure of step 12 can be

simplified by applying lemma 3 to each bf where / <2 That is, the results of

lemma 3 mean that if b^ is first set to the present value of b^i, i ̂  then the

revised upper bounds

Ki = fnin{b'„.,,b'^) (112)

are improved upper boimds on the multiphers bi, i Hence, if (110) is not

valid then set b^^, i € Xg according to (112) and execute step 12 to solve

the #w > 2 dynamic programming problem to find for i i Xg.

87



Advantages of Beginning with Large

The advantages of beginning the algorithm with a equal to its maximum value a„ are

manifested in steps 11 and 12 over the regions of large a and medium a. These advantages

are:

1. Ifa is set to its maximum possibly optimal value then the range of potentially

optimal b-, aU 4 is at its smallest for a given cost upper bound Z^. This

effect is shown by Figure 19 where two limit boxes are shown - one for

large a and one for medium a. Hence, during the first iterations of the

algorithm the complexity of the dynamic programming problem of step 12

is minimized by starting the algorithm with the maximum value of a. Also,

the smaller ranges of ft,-, aU / means that the optimal |ft*.| will be found

more often by the simple decision rules of step 11.

2. The dimensionality of the optimization problem is more likely to be less than

n when a is large or medium value. To explain this second advantage, note

that the actions of the previous steps assure that ft,,- < ft„,-, all /, before

step 11 is executed. It is possible that ft,,- = ft,,,- for one or more i. In fact,

as shown by Figiure 14, during the first iteration of the algorithm there is at

least one I such that ft,, = ft„,-. In such cases the optimal multipliers are set

to

88



B
P
M
 A
lg

or
it

hm
 (b

j,
 b
ij
 P
la

ne

Ad
va

nt
ag

es
 o
f 
L
a
r
g
e
 a

0
0

b
k

in
fe

as
ib

le
 R
eg
io
n

S

C
C
M
 C
o
s
t
 C
u
r
v
e

^
^
C
o
n
s
t
r
a
i
n
t

F
e
a
s
i
b
l
e

Re
gi

on

Si
ng

le
 P
ro

du
ct

Op
ti

ma
l 
Co

st

L
a
r
g
e
 a

►

y'
%

M
e
d
iu

m
 a

0
 1 

2
10 bi

15
2

0

Fi
gu

re
 1

9



= bn = b^,

during the optimization procedures of steps 11,12, and 13. Of course, the

dimensionality of the optimization problem is reduced by one for each

product / such that This advantage is enhanced by the results of

lemma 3, because the dynamic programming procedure of step 12 is must

only find for i i

3. In the large and medium ranges of a where there is at most one i such that

i  sn. optimal set of multipliers is quickly determined is step 11. Thus,

for such cases, the dynamic problem procedure of step 12 does not have to

be executed.

Step 12

This step is executed only if there are m> 2 products indices i such that i €Xg. Use a

dynamic programming algorithm to find an optimal vector

for i € Xg, which miiiimizes (51) subject to (52), (53), a = Og, b^< b\ < b^j,

and b^ = b^ for i g Xg where all i are integers. Then go to step 13.

The actions of the previous steps provide the prerequisites for a coherent dynamic

programming procedure. That is, when step 12 is executed the previous steps give assurance

that

90



1  b'asi^ Ki>

'^' ■"' «> satisfies constraints (52) and (53),

3. bgi = b^i, i i Agi and = bj-y i e is not a feasible vector of

multipliers, and

4. n>m>2

where (« - m) is the cardinality of Xg. Because of the first assurance there are two or

more feasible values for each b., i € Xg. The second assurance means there is at least one

feasible solution to the dynamic programming problem. The third assurance, in conjunction

with the first, means that the optimal solution to the dynamic programming problem will be

"tightly" bound. Tightly bound means that if the integer constraints on A., i ̂  Xg, and

are relaxed then the optimal multipliers b^ wiU lie in the linear hyperplane defined by

=  Pfiuh + Z/e4 PfluK' (113)

This hyperplane iox m- 2 is shown in Figure 7 as the upper limit to the integer version of

constraint (53). The last assurance means that there will be at least two stages to the dynamic

programming procedure.

The dynamic programming formulation of the problem when is to find

z; = m/n,z({«.6,}) = »it«,^[c,/(o.6,)+ff,(a„A,)] (114)

subject to

91



Let

Ya = au-S-YjPi^ubii (116)
ieX^

then constraint (115) becomes

i; a I [««.*,r

where

l<b„<b,<b„,<a, (118)

for i

The dynamic programming formulation is completed by defining the state variables and return

fimctions in the usual way. The state variables are

a  nt

- [puauKY

Xj = X2- [p2a„b2Y

Xo = Xj-[pia^biY
Xq > 0.

92

(119)



where is given by (116).

The return functions are

f,{x,)= + (120)

and

f,{x) = min, {[(c, la,)lb, + (/r,«„)6,] + f,_,{x, - p,a,b)] (121)

subject to

A ̂  [x. /Pia„Y (122)

and

br < b. < b .
ll ~ Ul

for i = 1, 2, m.

When the dynamic programming procedure has determined the optimal for i ̂  \ set

^'ai = for ' ^ Za = 8° 1° ̂ tep 13.

Step 13

Reduce a„, the upper limit on a, by one. Then with b^ fixed at b'^, all /, inmimize the

objective function with respect to a. If this produces an improved upper bound on Z*,

93



replace the old best solution with this one and go to step 4. Otherwise, discard j and

go to step 7.

The algorithm is finite because the integer fundamental cycle a„ is reduced by one as the first

part of step 13. In the worst case, step 13 will be performed + i) times where Uj

and are the initial limits on the fundamental cycle a.

With bf = b^, all /, the minimum of (123) with respect to a is found by applying the

procedure of step 1 to the modified Hanssman model where

zl = min„ Z^(a) = min^[c^ / a + H^a) (123)

subject to

■S + EL[Ai,"r ('24)
and

A = / K, and /f, = (124)

Let be the optimum value of a found by these procedures. Then if set

~  ~ ■■■» go to Step 4. Otherwise discard and

I and go to step 7. Note that Z* > zl because both are values of the convex function
.Zj(a) with bi fixed at b^, all/.

94



SUMMARY OF ALGORITHM

The BPM algorithm has many details; however the overall concept is straightforward. The

primary tenet of the algorithm is a process of elimination based on the fundamental cycle

a =

The starting point of the algorithm is to find lower and upper bounds of the optimal cost z*.

These cost bounds are then used to determine lower and upper bounds on each cycle time

7}, on the fundamental cycle a, and on each multiplier b^. At each iteration of the algorithm

these bounds on the model variables must be satisfied by any schedule \T^ | that has a strictly

lower cost than the present upper bound Z„ on z*. Hence, if any of the these bounds are

inconsistent the algorithm is terminated because there is no feasible schedule with cost lower

than Z^.

Once the initial upper bound is computed in step 1 the upper boimd on cost is the cost

of a feasible schedule | throughout the algorithm. This best schedule | is saved by

the algorithm until another schedule is found with strictly lower cost. If an improved schedule

is found ITj; | is set to the improved schedule and the upper bound on the cost Z„ is

reduced to the cost of the improved schedule.

The driving force is the process of elimination on the fundamental cycle mentioned above.

During the first iteration of the algorithm initial lower and upper bounds and are

placed on the fundamental cycle a. The algorithm begins with a = the greatest possible

value of a and works downward. At each major iteration of the algorithm an optimal set of

95



multiplier is found by fixing a = where is the candidate fimdamental cycle of

that iteration. If this results in an improved schedule the best schedule is updated. In any

event, the present value of can be eliminated so the upper bound is reduced by 1

before beginning another iteration. This process continues imtil each value in the interval

[a/, a„ j is either eliminated by the algorithm as non-optimal or used as a candidate optimal
fimdamental cycle. To provide a more detail summary of the BPM algorithm the steps ofthe

algorithm are divided into the following four stages.

Stage 1

The first stage of the algorithm is to:

Step 1

Use Hanssman'sCCM to obtain an initial upper bound, on z*- Save the CCM optimal

schedule as the initial best schedule

Step 2

Use the single-product EMQ model to find an initial lower boimd on Z*, the optimal average

cost per unit time. If these optimal single-product cycle times are feasible the algorithm is

terminated with T' = FJ, all/.

96



Step 3

Use the results of steps 1 and 2 to find an initial upper bound on the fimdamental cycles a of

the BPM.

The CCM optimal schedule is an initial feasible schedule for the GCM as well as the BPM.

Throughout the remainder of the algorithm is changed only when another feasible

schedule is found such that < Z^ = Hence, at each step of the

algorithm after step 2 is the total average cost of the best feasible schedule, {T'w},

found so far. The algorithm terminates when it is shown that the present best schedule is

optimal.

The computations required for the first two steps are straightforward calculus problems that

are easily solved. Step 3 merely requires comparisons of previously computed values.

The stage 1 steps are executed only once for a given BPM problem. The remaining steps are

performed iteratively until there are no feasible schedules such that .Z^ >

When the algorithm terminates the optimal cost z* - Z^ and the optimal schedule is

STAGE 2

This stage of the algorithm places upper and lower bounds on certain model variables and

attributes. The steps of this stage are:

97



Step 4

Use the present lower bounds on to compute, 2',, a new lower bound on 2*.

This new lower bound on is used to either terminate the algorithm or to compute new

lower and upper bounds on the optimal cycle times

Step 5

Use the lower boimds on the cycle times found in step 4 to find a lower bound on the length

of the fundamental cycle a. This lower bound is used to find a new lower bound on the cycle

times. If the bounds found in steps 4 and 5 are inconsistent the algorithm is terminated

because the present best schedule is optimal. Otherwise, the stage 2 steps are repeated until

the algorithm terminates or there has been no increase in the lower bound of any

7], f = 1, 2, n. This iteration in stage 2 is repeated each time there is a decrease in the

upper bound on

Stage 3

This stage finds a revised upper bound on the length ofthe fundamental cycle a and upper and

lower bounds on the optimal multipliers The bounds on the | are functions of a.

The steps of stage 3 are steps 6 through 10.

98



Step 6

Uses the present upper bound on the cycle time jj] | to find two new upper boimds on the

fimdamental cycle a. If these new bounds are less than the present value of then is

set to the rniiiimvim of these new bounds.

Step 7

Check whether the bounds on a are inconsistent. If so the algorithm is terminated because

the present best solution is optimal.

If the algorithm is not terminated the algorithm checks whether there are cycle times 7) that

are restricted to just one possible value because Clearly the fimdamental cycle

of any schedule must be an integer factor v of all cycle times of that schedule. Hence, if

there is a set of cycle times where 7),- = then a must divide all such cycle times. These

fectors must also satisfy a, < v < If there are one or more 7) restricted to one value

and none of their common factors are between the lower and upper bounds on a then the

algorithm is terminated. Otherwise, the upper boimd on a is revised by setting a„ to the

maximum over the possible common fectors V. When 7^^- = T^- for some/this action of the

algorithm greatly reduces the number of possible values of a that must be exammed by the

algorithm

If the algorithm is not terminated by either of the two tests of this step the is selected as

the next candidate fimdamental cycle and the algorithm proceeds to the next step.

99



Step 8

Compute a lower bound and two potential upper bounds on the multipliers | given that

a = a„.

Step 9

Compare the lower bound b^- on each with the second upper bound b'^^ found in step 8.

If these boimds are inconsistent for any i the algorithm is terminated because the present best

solution is optimal.

Step 10

Conpare the lower bound A,,, with the first upper bound b^^ formd in step 8. If these

boxmds are inconsistent for any i the upper bound on the fundamental cycle a is revised and

the algorithm returns to step 7. If these bounds on aU b^ are consistent then the upper

boimds on | A,. | are revised and the algorithm proceeds to the next step.

The actions of steps 7 through 10 are repeated until either the algorithm is terminated or the

bounds on | A,. | found in step 8 are consistent.

Stage 4

In this final stage of the algorithm a set of multipliers } is found that is optimal when

a - a^. Then the multipliers are held fixed at = {€} while an optimal value of a

is found for that set of multipliers. Then a„ is reduced by 1 to prepare for the next iteration.

100



If these steps yield an improved schedule the present best solution is updated to equal this

improved schedule and the algorithm returns to step 4. Otherwise, the algorithm returns to

step 7. The steps of stage 4 are:

Step 11

For each / find an optimal integer multiplier AV for the constrained, single-product EMQ

model when the fundamental cycle is held fixed at If these 1 are feasible in the

/i-product BPM then it is not necessary to perform the dynamic programming routine of

step 12. In this case the algorithm skips directly to step 13. Otherwise, the upper bounds on

the multipliers are updated by setting before proceeding to step 12.

Step 12

Use a standard dynamic programming algorithm to find an optimal set of integer mult^liers | 1

for the BPM when a =

Step 13

First reduce a„byone. Then with {ft,.} fixed at {ft*} find the optimal fl for the resulting
constrained COM. If this residts in a lower cost schedule replace the old best solution with

this one and go to step 4. Otherwise, return to step 7.

The steps of stage 4 are the core of the algorithm Stage 4 must be repeated for every

possible value of the fundamental cycle a. Suppose that {oj, ) are the bounds on a after

101



steps 1 through 5 are performed for the first time. The worst case then is that the stage 4

steps will have to be performed a maximum of {a„ times.

PROOF OF OPTIMALITY

The assertion which must be proved is that the algorithm produces an optimal integer BPM

schedule. That is, that the algorithm finds an optimal schedule of integer cycle times, over

all schedules with integer cycle times, for the model defined by assumptions (a) through (k)

of chapter 1 where the optimization is subject to Bomberger's BPM constraints (52) and (53)

and bj, all /, are restricted to integer values. Furthermore, the algorithm only requires a

finite number of ntxmerical operations. The body of the proof is given under each step of the

algorithm so only a skeleton proof which fits the pieces together will be presented here.

Bomberger's formulation does not restrict the cycle times or the fimdamental cycle to integer

values. In most cases, the optimum solution over integer cycle times wiU be non-optimum

for the general model of non-integer cycle times. But, fi-om a practical point of view, there

is a limit to the precision with which items can be scheduled. Also, the model parameters can

be easily adjusted so that time is measured in any desired unit. Thus, it is not a practical

restriction to require integer cycle times. (Bomberger resorted to integer cycles when he

solved his example problems).

It may seem that restricting the fimdamental cycle to integer values will unnecessarily restrict

the BPM beyond that imposed by requiring and to be integers. If so this could

cause the algorithm to sometimes miss an optimum solution ofthe BPM. But, suppose there

102



is a solution with 7]. = ab^ where a is non-integer and 7]., are integers, all i. An

irrational a requires T. or b. to be irrational but both these variables are integers. Thus,

without loss of generality, assume a is rational so that a = x / y where x, y are relative

prime integers. If 7] = (a: / _y)A;,aU /, are integers, then j must divide each b^ so

Ti = xb'i, aU/, where each bj = ̂bj / and a are integers. Hence, requiring an integer

fundamental cycle does not further restrict the model defined in the assertion.

If the algorithm terminates at step 3, then clearly an optimal solution is produced within a

finite number of operations. For the remainder of the algorithm, optimality follows fi"om the

observations that:

a. The cost upper boimd, Z^, always corresponds to a known feasible schedule,

b. The bounds on the cycle times, the fundamental cycle, and A., all i, are designed

never to exclude a schedule with a lower cost than the current upper bound on

cost,

c. No value of the fundamental cycle a is eliminated unless it is shown that any

schedule where 7]- = ab^, all /, does not have smaller cost than the current

upper bound cost, and

d. Either the solution to the constrained, single-product models or the dynamic

programming algorithm produces an optimum set of for a fixed

fundamental cycle.

103



Thus, if the initial solution is not optimum and the algorithm is finite, eventually an optimum

vector 1^*1 must be found at stage 4 of the algorithm. Once these optimal vectors are
found the corresponding optimal a is found in the last step of the algorithm.

To prove that the algorithm is finite, observe that

a. The initial upper and lower boimds on the optimal cost and optimal cycle times

are finite,

b. The sequence of lower bounds on a* is monotonically increasing,

c. The sequence of upper bounds on a* is strictly monotonically decreasing,

d. There is at most a finite number of steps between each reduction of the upper

bound on a, and

e. Each step of the algorithm requires only a finite number of operations.

Thus, the algorithm will terminate after a finite number of operations.

104



CHAPTER 5

TWO-PRODUCTS MODEL

PURPOSE

The general GCM theorem 1 on feasibility leads to several important secondary results. For

instance, this chapter will provide the proof for a useful corollary to the general theorem for

the special two-products case. This two-products corollary shows that when w = 2 an optimal

solution to Bomberger's [4] more restricted BP model is an optimal solution to the GCM.

More importantly, the two product coroUary provides necessary and suflBcient conditions for

schedule feasibility that are independent of the delay times. That is, these conditions are

stated solely in terms of the cycle times }. This means that when n=2 whether or not

a given set of |7]. | is feasible can be determined independent of the delay times {</, }. In
chapter 7 and 8 the general theorem wiU be used to extend these two-products delay

independent feasibility conditions to delay independent conditions for models where /i = 5 and

n = 4.

As stated above the two-products corollary shows that the algorithm for the BPM given in

chapter 4 wiU find optimal schedules when two-products are produced on a common fecility.

The two-products model is rather limited in scope; however, the two-products corollary will

play an important role in the general optimization algorithm.

105



That is, the BPM algorithm will be applied to all possible two-products models to establish

lower bounds on cost in the general optimization algorithm for the «-products case of the

GCM.

TWO-PRODUCT DELAY INDEPENDENT CONDITION

This section will present theorem 3 that gives delay-independent necessary and sufficient

feasibility conditions for the two-products case of the GCM. Theorem 3 is actually a

corollary to the general theorem 1 discussed in chapter 3.

Theorem 3 on Conditions for Two-Products GCM

If «= 2 let T' = ̂7}, be a vector of given cycle times for the two-products
where T' is the transpose of J". If the hypothesis of theorem 1 is valid then a feasible

schedule = {t exists if and only if

a> qj + (126)

where

a = gcd{Tj,T,), (127)

Tj = abj, T, = ab,, (128)

bjfb^ > 1, and a,bj,b2 are integers. Furthermore, if (126) is satisfied then

106



dj = Oy d, = qj (129)

is a feasible schedixle.

Note that by definition qj,q2 are integers; thus, the results of (129) will be integer delay

times.

Proof of Theorem 3

There is only one pair ofproducts in the two-products case so conditions (22), (23), (26), and

(27) of the general theorem 1 can be translated to (127), (128), and

I a q, (130)

and

l<a-q, (131)

where

d^ - dj = ka + I (132)

k > 0, and 0 < I < a.

Because of assumption (/) of the GCM definition, time zero can be set at any point relative

to a schedule £2. In particular, time zero can be set to the start of any use period of either

107



product without loss of generality. Hence, to simplify the problem somewhat, time zero is

set to the start of a use period of product 1. This means that dj = 0 so (132) becomes

= ka+ /. (133)

Whether conditions of theorem 3 are sufiBcient to assure schedule feasibility will be examined

first. Suppose (126) is satisfied and let

d^ = qj < qj + q2 < a. (134)

this inequality shows that k = 0 in (133) so that

d, = /.

Thus, I = Qi and

I + q2 = qi + q2 ̂  a.

This shows that if the conditions (126), (127), and (128) of theorem 3 are satisfied then (130)

and (131) are satisfied when and Therefore, by theorem 1, this schedule

is feasible. Thus, the conditions of theorem 3 are suflScient to assure that a feasible schedule

exists. That these conditions are necessary follows immediately fi*om lemma 4.

108



Lemma 4 on Minimum Separation

Suppose that products 1 and 2 are any two products of a set of n > 2 products.

Furthermore, suppose that {Tj^T^ are given cycle times for these two products. Without

loss of generality assume that dj < d2 and let

D = + d^- {nijTj + dj) (135)

where > (? and ntj where

= |/«y D>0 and 012 = m'^. (136)

Then

min{D) = I (137)

where > 0 and ntjsM where I is given by (132).

Proof of Lemma 4

If fl is the gcd{Tj, T2) then bj,b2 are relative prime so there are integers Vj, such that

Vjbj - V2b2 = 1. (138)

If ̂  in (132) then multiplying both sides of (138) by -ka yields

V2kab2 - Vjkabj = -ka

109



or

- m\Tj = -ka

where m'. = v.k, i = l,2. Now consider the difference

D = {m'2T2 -

= {-ka) + {ka + /) (^^9)

= /.

Because I > 0 (139) shows that m'jd^2{*'^':^

min{D) < I (140)

when m2> 0 and m^sMj{m2^.

Now the question is whether or not there is an /' such that D = V < I. Consider the

difference

W = m2T2 - ntjTj (141)

where /w^ > 0 and mj£Mj{m2^. Dividing both sides of(141) by a yields

W ! a = m2b2 - ntjbj

no



which shows that W = wa for some integer w. The definition of and (135)

show that w > -k; otherwise, D<0. So (135) and (141) show that

D = wa + ka + I

> -ka + ka + I (142)

= /.

Inequalities (140) and (142) show that

min{^D) = I (143)

when m2> 0 and

This completes the proof and shows that I is the minimum separation between the starts of

any use periods of product 1 and 2 where the use period of product 1 begins before that of

product 2. Because the labeling of the products was arbitrary (143) is valid regardless of the

order of and d2-

Conclusion

The results of lemma 4 shows that the minimum separation between any two production

periods ofproductsl and 2 is /. Furthermore, for any schedule {t yd^ there exist m] and

such that D = l. Hence, without loss of generality, in the two-products GCM time zero may

be selected so that dj = 0 and Thus, if (126) is not satisfied so that

111



a < qj +

then either (130) or (131) is not satisfied. Theretore, the conditions of theorem 3 are

necessary to assure the feasibility of schedule of two-products. This completes the proof of

theorem 3.

112



CHAPTER 6

N-FRODUCTS MODEL

PURPOSE

In this chapter the necessary and sufficient conditions given by the general theorem 1 on

schedule feasibility in chapter 3 are modified somewhat. Then lemma 5 provides a small, but

useful, extension to these conditions. Next theorems 4 and 5 are proved. These theorems

play important roles in the n-products optimization algorithm in chapter 9. These theorems

are also used in chapters 7 and 8, where the results of chapter 5 are extended by developing

delay-independent necessary and sufficient conditions for the three-products and

four-products models, respectively.

The reader is cautioned that none of the variables in chapter 6 through 9 have exponents.

However, in several cases superscripts are used to denote variables that are related to or are

factors of similar variable. For example, kfj is used to denote a factor of k^j.

A straightforward modification of the necessary and sufficient feasibility conditions of

theorem 1 in chapter 3 sinqjlifies the presentations in chapters 6 through 9. That is, let

v.. - /.. - qj (144)

where /„ is defined in (24) of chapter 3. With this transformation conditions (24) and (25)

of chapter 3 become

113



<• -dj = kya,j + Qj + v.. (145)

where

0<Vy + q.<ay, (146)

Then constraints (26) and (27) become

V,J > 0 (147)

and

^ij ̂  «(,• - tij - q, (148)

where /, j = 1, 2, •••, n and d- > dj. This statement ofthe feasibility conditions wiU

be used for the remainder of chapter 6 and in chapters 7 through 9.

The optimization algorithm given in chapter 9 is primarily an implicit enumeration over

potentially optimal schedules /2=(j, rf, fl). Generally the efficiency of such
algorithms wiU be improved if some of the potentially optimal schedules can be eliminated

with a priori reasoning. Theorem 4 makes it possible to eliminate a priori a large portion of

the potentially feasible delay times d. Likewise, theorem 5 allows the a priori elimination

of a significant portion of the potentially feasible sequences fl • Before stating theorem 4

and 5, the feasibility conditions in chapter 3 are extended by lemma 5 and a definition is given

for compact schedules. Then statements and proofs for theorem 4 and 5 are given.

114



LEMMA 5 ON EXTENDED FEASIBILITY CONDITIONS

The proof of the general theorem 1 on schedule feasibility assumes that the products have

been labeled such that d- > dj in (24) and (145). The feasibility conditions can be extended

to remove the need for this assumption.

If df > dj then conditions (145), (146), (147), and (148) are valid if and only if there

are and such that

dj-d, = k^a,j + q,-\-vl

where

0<rl + q,<a^ (150)

and where v- satisfies the constraints

vl>0 (151)

and

^ «// - <lj - <li' (152)

115



PROOF OF LEMMA 5

The negative of (145) is

dj di — qj Vjj

= [kij + l)aij + qi + [a,j - qj - q, - v^ )

-  + 9i + ̂ij

where

and

V" = a- — a. — Q. — V...ij ^ij *ij ii ij'

If (151) and (152) are satisfied then

2

v.. = a- — a. — a. — v-> 0' ij fy fi ^ ij — ̂

SO that

^ ̂  «(/ - - fir

Also

v^- < a.. — a n — a.
ij ij

116



so that

v. > 0,

A similar argument shows that if satisfies (147) and (148) then vi satisfies (151) and

(152). Therefore, the feasibility conditions can be expressed by (145), (146), (147) and (148)

regardless ofthe relative magnitudes of and dj. This extension does require that ky be

permitted to take on negative values.

DEFINITION OF COMPACT SCHEDULE

A schedule , </, H ) of n-products is a compact schedule if

d^, = 0 (153)

^2 ~ ̂Yii (154)

and

^rs ~ ^ If ■*" (155)

for i = 3, 4 f n where / > J. This means that in a compact schedule the use period

of product T., X{i> 2, begins immediately after the completion of a use period of a

product Uj where product Ily occurs in the sequence before product 11/. Note that the

sequence n 1^ ̂  different meaning here than that of sequences of earlier chapters where

it is assumed that d^. > d^j if i > j. However, here the sequence n is defined by (153),

117



(154), and (155) so it is possible that d^. > dj^-. The extended feasibility conditions of

lemma 5 show that this definition of 77 is sound.

A comparison of equations (145) and (155) gives an alternate definition of a compact

schedule. That is, a schedule 7? is compact if (153) and (154) hold and if for

each i= 3, 4 f • • •, n there is at least one j such that i> j and

ny =

Thus, either (155) or (156) can be used to determine if a given schedule is compact.

THEOREM 4 ON COMPACT SCHEDULES

A schedule Q is feasible ifand only if there exists a series of (« - 7) linear transformations

that map to a feasible compact schedule 73".

PROOF OF THEOREM 4

Let Q={f,d,n) be a schedule of w-product. Without loss of generality it is assumed

that the products are labeled such that n/ = i and </. > dj when / > y, all /, j, i ̂  j.

First suppose that 73 is feasible. The proof must show that if (145) through (148) are

satisfied then a new feasible 73" can be constructed that satisfies (153), (154), and (155).

To construct a 73" where (153) is valid note that because of the defining assumption i in

chapter 1 time zero for 73 can be arbitrarily changed without effecting the feasibility of 73.

118



In particular, one can arbitrarily select time zero to coincide with the beginning of any use

period of any arbitrarily selected product/ This means that one can arbitrarily select any

producty and revise time zero so that dj = 0. The revised schedule ff is feasible if and

only if is feasible. Then (153) is satisfied by setting Y\.l= j and by redefining

d and H to agree with this new time zero. To find a product 112 that satisfies (154) find

product j such that

and let

df = d,- v' (158)

for / n /. In case of ties m (15 7) one of the products in the tie is arbitrarily selected as

product j. The linear transformation (158) is applied to all products except

product ni. This yield a new where d^j = d^j = 0 and

~  ~ ̂ui ~ ̂i,ni^i,ni 9ui ^i,ni (159)

for ni. Observe that the differences {d^ — d^ where j ̂ / and / ̂ Hi are not
effected by the linear transformation (158). Clearly, if satisfies (145) through (148)

then so does Thus, if one sets n2= y then becomes a feasible set of delay

times where d^j = 0 and

^n2 ~ ̂2,nj^nj,n2 9nr (160)

119



By lemma 4 on minimum separation there are ntj and such that

^i^ni ~ ̂2^n2 + ̂2,ni^ni,n2' (^61)

Now reset time zero again to coincide with the start of the use period of product

ni and redefine d and H to agree with this new time zero. This yields a

new j where d^j = 0 and

dn2 = m,Tu2 + " ̂iTni (^62)

~ ̂ni'

To summarize these first three steps, for each schedule f2 there exists a companion

where (153) and (154) are satisfied. This is true whether or not jQ is feasible;

however, is feasible if is feasible.

To simplify the notation for the remainder of the proof, assume that |<//| is revised to

reflect the shift in time zero given by (162) and the products are relabeled so that

d^j" = 0

^2 - 9l

and

d" > d"

for / = 5, ..., n; i > j.

120



The construction of a contact schedule is completed by performing (n — 2) additional

transformations. To see this, let

0' = / I 4 is fixed during the iWh transformation j

for M'= •••, n where = |ni, 11 = |7, 2^. That is, 0^ is the set of indices
of those products, identified by previous transformations, with delay times that satisfy

(155). The wth transformation is not applied to the products / where

Thus, df, i E 0^ ̂  not changed by the wth transformation. Suppose that products k and

j are the products such that

= min (163)

subject to y, iw G and A:, i ior w = 3, 4, • • •, n where d^ ̂ = df' when

w= 3. Set

- v" (164)

for i ̂  0^ and

dj" = d^-'

for / . Then

(165)

for m € ̂  and / ̂  0. After transformation (163) and (164) is performed

121



^1 = 0

and

Hence, (155) is satisfied by setting

Uw = k.

Clearly, is feasible, i.e. satisfies (145) through(148), if is feasible. Observe

that the diflferences for /, j ̂ 0^ are not effect by the M^h transformation.

Hence, construction of a compact schedule can be completed by starting with 3^^

0 ̂ 7, n 2^ and performing transformations defined by (163) and (164). After each
transformation, except the last, nw is added to the set to create the set

e" = {n/, U2, nx-}

that is used to perform the (wH- l^th transformation. By induction is feasible

if is feasible. Hence, the compact schedule Q" = is feasible if /2 is

feasible.

To complete the proof suppose that the compact schedule Q" = } created

by transforming 72 is not feasible; thus, one or more of the do not satisfy either (147)

or (148). Suppose there is a v," < <? so that (147) is violated. The transformation defined

122



by the pairs of equations (158), (159) and (161), (162) and (163), (164) assure that

if ^ij^O all /, j; i ̂  j then v," > 0. Thus, if there is a v"j such

that v"j < 0 then v-j = 0 so Vy violates (147) and is not feasible. By contradiction,

if is feasible then Vy > (?,all /,/

Finally, suppose there is a that violates (148) so that

Km > ̂ij - qj -qr

By construction, the series of transformations assure that

v.. > V" >•••> v"
V - '^IJ - -

for all /, j; / j. Thus, if any does not satisfy (148) then neither does Vy. Again

by contradiction, if is feasible then v," < tty - q. -q., all i, j. Therefore, a schedule

is feasible if and only if the n transformations described above results in a feasible

compact schedule

DEFINITION OF PARTIAL SCHEDULES AND THEIR ADDITION

Let 0^ be the set of #i-products produced on a single facility and let be a subset of

k, 1 < k < n, of the products contained in 0^. Further, let t'„ be the complement

of that is,

K - [^product i i e 0^ but i (166)

123



where m - n— k. Then a partial schedule of size k is the schedule

A(o=(W.k} I
That is, a partial schedule is a set of specified cycle times and delay times for the k products

contained in The sequence H is not germane in this context so it is not used in

definition (167).

Let be a subset of «-products contained in then the addition of partial schedules is

defined by

+  (168)

This definition of partial schedule addition requires that if / € x then / ̂  and vice

versa. One example of partial schedule addition is

THEOREM 5 ON PARTIAL SCHEDULE FEASIBILITY

Let 6^ be the set of«-products produced on a single facility and let be a specified subset

of k, 1 < k < n, products contained in 0^. Let t'„ be the complement of

where nt - n- k. Further, let w be any one of the products contained in and let

be the set of k + 1 products that is created by adding w to Let be a

124



specified partial schedule of the A^-products in Then there exists a partial

schedule of products in such that the full schedule

o=n,{T,)+n„{T:) (169)

is feasible only if is a feasible schedule of ̂-products and there exists a single

product schedule

Oj(w)={T„d^) (170)

such that

('71)

is a feasible schedule of (A: + 7) products.

PROOF OF THEOREM 5

Suppose that is an infeasible schedule of the A-product contain in Then by

theorem 1 on schedule feasibility there is at least one pair of products /, y 6 such that

either (147) or (148) is not satisfied. That is, either

Vy < 0 (172)

or

Vij>^ij-9j-qi (173)

125



where

d, - dj = kyUy + q. + Vy. (174)

Clearly, if either (172) or (173) are true in the partial schedule £2/^ ) it will be true in any

full schedule given by (169) that contains £2^ ( j as a partial schedule. This means that any

such full schedule will also be infeasible. Thus, the full schedule £2 given by (169) is feasible

only if £2^{Tf^ is feasible schedule of the A:-products contained in

Now consider the partial schedule of Ar + 7 products given by (171). The argument of the

previous paragraph can be repeated to show that a necessary condition for a full schedule

^ ~ ̂k+l{jk+l)

to be feasible is that 72;^+/ (T ) must be a feasible schedule ofthe k + 1 products in .

Any feasible full schedule containing £2^{t^^ as a partial schedule must also contain

^k+i{jk+i^ ̂  g^ven by (171) for some single product schedule £2j{wy. Therefore if
infeasible for every possible choice of 72) (w) = {t^, d^ then all full

schedules containing £2i^{t^ as a partial schedule are infeasible. This completes the proof

of theorem 5.

126



LEMMA 6 ON TWO-PRODUCTS PARTIAL SCHEDULES

Let 2< k< ttf be a subset of /i-products produced on a single facility and let

T = j/f / e I be a specified set of cycle times for the products / e Further, let

= gcd[t^, tj)

for I, ye and i ̂  j and let be any full schedule of the #i-products where

T. = /j. for i €T^. Then is not feasible if there is any pair /, j i ̂  j, such

that

aij<qi + qr

PROOF OF LEMMA 6

The proof of lemma 6 follows immediately fi"om theorem 3 in chapter 5 and theorem 5. The

optimization algorithm of chapter 9 searches for an optimal full schedule by generating a set

of partial schedules. Lemma 6 provides a method for greatly improving the efficiency of this

optimization algorithm. The test (175) when applied to all possible pairs i, j of products in

a partial schedule will eliminate many partial schedules fi"om further consideration at each

stage of the schedule generation process.

127



LEMMA 7 ON SOLUTIONS TO AN INTEGER EQUATION

Suppose T., Tj is any given pair of integer cycle times and let

«« = gc^(T„ 7}), (176)

b,j = T,/a^, (177)

and

078)

If an integer solution exists to the equation

(179)

for —00 < w < 00 where w is an integer then all such integer solutions are of the form

ky = (mbj. + (180)

kji = [mby^uaj) (181)

for — 00 < iw < 00 where

u=w/ay (182)

is an integer and where a^, aare integers such that

ayby - ajibj, = 1. (183)

128



PROOF OF LEMMA 7

To show that u given by (182) is integer if kj. are integer consider

A^j;. - kj,Tj = - k.,byfi.. = w

so that

k,jby-kyby=w/a,j=u. (184)

Given the definitions (177) and (178) the left hand side of (184) is integer of ky and ky are

integers. Thus, u must be integer if k^j and k^ are. If ua^ for some u then it is clear

from (184) that no integer solution exists to (179).

By using the defimtion of the greatest common divisor of two integers one can easily show

that b.j and by, as defined by (177) and (178), are relative prime. A well known result of

linear algebra states that if b^j and by are relative prime integers then there are integers

ay such that

aijb,j-ayby = 1. (185)

Multiplying both sides of (185) by ua^j yields

- f*cCjiTj = ua^j = w. (186)

129



Adding

mb,jbj,a,j - mb^jbj^ay = 0

to (186) yields

[mbj, + uai^T, - [mby + uaj^Tj = w

for — 00 < w, w < 00. Thus, there exists an infinite number of solutions to (179) of the

form given by (180) and (181) for any integers T-, Tj,u for -oo < « < oo.

Suppose there exists a solution

- yjiTj = ua,j = w (187)

to (179) that is not ofthe form given by (180) and (181). Subtracting (187) fi"om(186) yields

(««!/ - ynY, - {uaj, - yj,)Tj = 0

SO

{yij - uay)bij = (jr.. - ..)^... (188)

Because and bj- are relative prime bj^ must divide (j;„ - «cr» j and b^j must
divide ̂ y.. - so there are nty, ntj^ such that

and

130



^ji^ji = yij-uar (190)

By substituting the left hand side of (189) and (190) into (188) reveals

that niy = ntji = m. Thus,

yij = mbj, + ua^j

and

yp = mby + uaji

which are of the form given by (180) and (181). Hence, by contradiction, if an integer

solution to (179) exists then all such solutions are of the form given by (180) and (181).

Furthermore, an infinite number of integer solutions to (179) exist if and only

if w = ua.j where «is an integer such that -cao < u< ao.

To consider some special cases suppose that w = 0 then (179) yields

''oh = ''j-l'jl

so that

ky = mb. = mb. + uay

and

= mby = mby + uaji.

131



Thus, \£w= 0 then an infinite number of solutions to (179) exist that are of the form given

by (180) and (181).

From (180) and (183) it follows that ky = <? ifand only if «= u^bj^ and m = -u^a^

for U2 such that — oo < < 00. When ky = 0 (181) and (183) and the observations of

the previous sentence yields

kji = + u^bj^aj; =

so

k^;r, - k^T. = -kj^Uybj, = u^a^jbj^ = uuy

Of course, similar statements are true with respect to k... Thus, lemma 7 is valid for the

degenerate case of k.. = 0.
•j

Finally, if = bj. then = bj^ = 1. For this degenerate case cCij = y and

aji = y - 1 for any j such that -oo < 3; < 00.

132



CHAPTER 7

THREE-PRODUCTS MODEL

PURPOSE

In this chapter the general theorem 1 on schedule feasibility in chapter 3 and the results of

chapter 6 will be used to extend the results for the two-products model given in chapter 5 to

the three-products model. That is, the primary purpose of this chapter is to develop

delay-independent conditions that are necessary and sufficient to assure that a feasible

schedule of three-products exists given a specified set of cycle times ̂ 7^, 7^, 7^

In 1992 Glass [30] presented delay-independent conditions for the three-products GCM.

These conditions were proposed as both necessary and sufficient to assure schedule feasibility

for the three-products GCM. However, a counter-example showing a feasible schedule of

three products that does not satisfy Glass' conditions is given in the next section. This

counter-example provides interesting insight into the structure of the three-products model.

Such counter-examples are easily constructed once the conditions of theorem 6 are knowrt

Theorem 6 will be stated and proved in the two sections following the counter-example.

To corr^lete chapter 7 the two-products partial schedule feasibility test given by lemma 6 in

chapter 6 will be extended by developing similar tests for the three-products model. These

tests are presented as lemma 8.

133



COUNTER-EXAMPLE TO GLASS' CONDITIONS

When Glass' [30] three-products feasibility conditions are translated to the notation used here

they require that

a.j > q, + qj (191)

for /, j = 1, 2, 3 and / y, and

~ ^13 ^23 ~ ̂123} — 92 ^3 (192)

where

= g''d{r„ T„ T,] (193)

and, as before

«(,• = gcd^iy Tj^. (194)

Consider the three-products schedule 7) = 28, T2 = 20, and 7^ = 55 where the model

parameters are selected so that qj = 3, q2 = 1, and q^ = 4. Let

dj = 0 (195)

d2 — 9i — ̂

dj = 3» Ujij + qj = 24.

Thus, the proposed schedule is

134



n=[f,d) =
^ 28,0^
20,3

35, 24^

(196)

The two-products gcd are = 4, Uj^ = 7, and = 5; thus, (191) is satisfied

by £2 for all i,j. However, g = 1 so (192) is not satisfied by £2.

The least common multiplier of 7), and is 140. This means the schedule given by

(196) is composed of an infinite series of identical segments that are each 140 time units in

length. Clearly, conflicts exist in the schedule given by (106) if and only if there are conflicts

during the first 140 time units. The first 140 time units of the schedule in (196) is depicted

by the schedule table of Figure 20. The number in each row of the right most column of

figure 20 labeled "conflict" is the difference of the start time of the production cycle of that

row less the end of the production cycle of the previous row. One or more of these

differences will be negative if there are conflicts in the schedule depicted by the table. As can

be seen fi-om the table, there are no conflicts in the schedule of (196). Therefore, Glass'

condition (192) is not a necessary condition for schedule feasibility.

135



SCHEDULE TABLE OF COUNTER-EXAMPLE

ITEM CYCLE START END CONFLICT

1 1 0 3

2 1 3 4 0

2 2 23 24 19

3 1 24 28 0

1 2 28 31 0

2 3 43 44 12

1 3 56 59 12

3 2 59 63 0

2 4 63 64 0

2 5 83 84 19

1 4 84 87 0

3 3 94 98 7

2 6 103 104 5

1 5 112 115 8

2 7 123 124 8

3 4 129 133 5

1 6 140 143 7

Figure 20

136



THREE-PRODUCTS DELAY INDEPENDENT CONDITIONS

This section presents theorem 6 that gives delay-independent necessary and sufficient

feasibility conditions for the three-products case of the GCM. Theorem 6 supposes that the

cycle times , 7^, have been specified. Then the theorem provides a means for

testing whether or not a feasible schedule £2 = {t ,d ,77^ exists. The test is based solely
on the GCM parameters and the set ofspecified cycle times. That is, the test does not require

knowledge of the delay times d or the sequence U.

Theorem 6 on Conditions for Three-Products GCM

Suppose three products are produced on a single facility and that ^7^, 7^, 7^^ is a
proposed set of cycle times for these three products. Let

a.j = gcdij,, Tj)

for /, J = 1, 2, S and / ̂  j and let

"m = ' 2̂, T,) (197)

and apply the division algorithm to find and such that

Qk = '*'23^123+K3

for k= 1, 2, 3 where ^ and 0< < a,25- ^hen a feasible schedule exist

if and only if

137



for /, j = 1, 2, 3 and / ̂  j and there is at least one pair of products y j such that

> «/«{[?, + qj + (a„, - \q, + q. + h-;,,]} (200)

where /, y, k= ly 2, or 3 and / y, / A: and A -t- j. Furthermore, if (199) and

(200) are satisfied by ̂ 7), 7^, 7^^ then a feasible set of delay times |<//| and a feasible
77 can be constructed by the method used in the proof.

Proof of Theorem 6

To make a clear presentation of the proof of theorem 6 the proof will be organized into ten

major parts. Some of these parts have two sub-parts.

Part 1- Compact Schedules

The results of theorem 4 on compact schedules in chapter 6 allow the search for a feasible

schedule to be restricted to a search of compact schedule. Thus, the proof of theorem 6 is

restricted to proving that (199) and (200) are necessary and sufficient to assure the feasibility

of a compact schedule of the three products. Let 77 be any one of the six possible

sequences of the three products. Then by theorem 4 it can be assumed without loss of

generality that (153), (154), and (155), used to define a compact schedule in chapter 6, are

satisfied. To simplify the notation assume the products are labeled so that 77^. = /. With

this labeling (153) and (154) become

138



dj = 0 (201)

and

= qi. (202)

Part 2 - Feasibility of Products 1 and 2

Let

A = [(?}» T,), [d„ d,), 77] (203)
where Tj, T2 two of the cycle times specified by the hypothesis of theorem 6 and

dj, d2 are delay times given by (201) and (202). According to theorem 3 on conditions for

the two-products GCM given in chapter 5 the partial schedule is a feasible schedule of

products 1 and 2 if and only if satisfies (199). Furthermore, according to theorem 5 on

partial schedule feasibihty given in chapter 6, for any feasible three-products schedule

containing to exist it is necessary that t>e a feasible partial schedule of products 1

and 2. Thus, for the balance ofthe proof, it can be assumed that ^ + ̂2* otherwise,

a feasible full schedule of the three-products does not exist. This means that the remainder

of the proof only need to be concerned with possible conflicts between the schedules of

products 1 and 3 or the schedules of products 2 and 3.

139



Part 3 - Delay Time Dependent Feasibility Conditions

When applied to product 3 the revised delay time dependant feasibility condition (145) given

in chapter 6 yields

dj = dj + + 9i + ̂31 (204)

and

dj = d2 + ̂32^23 ^32' (205)

The feasibility constraints require that satisfy

0 < v^, < - qi - (206)

for i= ly 2. By substituting (201) and (202) into (204) and (205) and equating the right

hand sides of the results one obtains the three products feasibility equation

^31^13 ~ ̂32^23 ~ ̂2 ~ ̂31 ^32' (207)

For a feasible three product schedule to exist there must be kjj, k22f Vjif and

satisfy (207) where Vjj and satisfy (206).

Part 4 - Decomposition of Feasibility Equation

It follows from lemma 7 on solutions to an integer equation that solution to the left hand side

of (207) are given by

140



kjjUij kj2(l23 ~ ̂123 (208)

for some integer -co < 00. This result allows a decomposition of feasibility

equation (207) into two parts. It will be shown that these two parts can be independently

solved.

Part 5 - Solving for and

Let

b = •

that is, are those factors that are in but not in the other pairwise greatest common

divisors. Now let (f) be any integer, then lemma 7 asserts there are a^j, CC32 such that

^31 ~ i/^^231 ^^31) (209)

^32 ~ {p^kj22 + ̂CC3^ (210)

solves (208) for any w, — 00 < /w < 00. Therefore, ̂  can be set to any value dictated by

the right hand side of (207). Once the desired value of ̂  has be determined by part 6 then

equations (209) and (210) are used to determine kjj and

141



Part 6 - Solving for Vj^ and Vj,

Substituting (198) into the right hand side of the dissected (207) yields

(^J2S ~ ^123 ~ ̂31 ^32 ~ (^11)

Because it is possible to restrict the proof to considering only compact schedules theorem 4

given in chapter 6 can be used to assert that either = 0 or = 0. Thus, there are two

options to be considered.

Part 6A - = 0

The constraint (206) for is clearly satisfied if ^ ^23 - ̂2'^ ̂ 3' Thus, (199)

is necessary and sufficient to assure that there are no conflicts between the schedules of

products 2 and 3 when Vj2 = 0.

Now to examine the feasibility of the schedules for products 1 and 3 solve (211) for v^j to

find

^31 ~ {j*I23 ~ ̂^123 ^123' (212)

Because Q < < aj2s ^31 ̂  i^ i^ ^ ̂ "725• Thus, fi-om (212) it is

clear that constraint (206) on v^j can be satisfied if and only if

«75 ̂ ^1 + ̂3+ ̂123 (213)

where

142



v'jj = min Vjj = (214)
<p

subject to Vjj > 0. The minimum v^j occurs at ̂  Hence, when ^

proper kjj and can be obtained from (209) and (210) by setting Therefore,

condition (213) is necessary to prevent conflicts between schedules of products 1 and 3

when v^2 = 0.

Part 6B - = 0

By repeating the argument of the first paragraph of part 6A one finds that (199) is necessary

and sufficient to assure that there are no conflicts between the schedules of products 1 and

3 when Vjj = 0. To examine the feasibility of the schedules for products 2 and 3 solve (211)

for v^2

^32 ~ ^123 ~ ̂)^I23 (^72i ~ ̂12^' (^15)

Because Q < "^32 - from (215) that ̂  + /j. Thus,

when Vjj = 0 constraint (206) on ^ satisfied if and only if

^ ̂2 + + («722 - ̂m) (216)

where

v;2 = min Vj2 = (aj2s - (217)

143



subject to v^2 - The minimum occurs at ̂  + 7. Therefore, condition (216)

is necessary to prevent schedule conflicts between schedules of products 2 and 3

when Vji = 0.

Part 7 - Sequence Independent Feasibility Condition

As stated, the delay independent feasibility conditions (213) and (216) are dependent on the

scheduling sequence IJ. The sequence independent feasibility condition (200) is quickly

derived from (213) and (216) by observing that there must be at least one of she possible

sequence 77 under which either (213) or (216) is satisfied. Otherwise, there wiU be schedule

conflicts for every possible sequence 77. Therefore, (199) and (200) are sequence and delay

time independent feasibility necessary conditions for the three-products model of the GCM.

Part 8 - Sufficiency of the Feasibility Conditions

Now assume that (199) and (200) are satisfied for some pair The details of the

proof that these conditions are necessary given in parts 1 through 7 will be used to construct

a schedule that is feasible. This constructed feasible schedule proves that (199) and (200) are

also sufiBcient conditions for schedule feasibility.

Part 8A - Feasible Sequence

The first step of the schedule construction is to determine a feasible sequence 77. Suppose

(199) is satisfied and that satisfies (200). There are two possible values of (200)

obtained from (213) and (216). First, suppose that (216) is satisfied. Set Yi2= k and

144



arbitrarily set Hi = j ̂ k and 115 = /, k and i y as given in condition (200).

To simplify the notation assume that the products are labeled such

that n/= /. Set dj and to the values given by (201) and (202). According to theorem

3 on conditions for the two-products GCM condition (199) is sufficient to assure that the

schedules of products 1 and 2 are feasible.

Part 8B - Feasible Delay Times

To construct a feasible set v^j = 0 and - ̂j23

^3 ~ ^31^13 ^31

d3 — dj = k^jOjj + (ii

and

(218)

(219)
dj — d2 + k22(l-23 ^32

dj- d2= k22(l23 + ̂.2 + {^123 ~ ̂12^
where k^j and are given by (209) and (210) of part 5 and where a^j and a32 ^

pair of integers that satisfy

^31^13 ~ ̂32^23 ~ ̂123' (220)

A method for solving (220) for and a32 is a well known result of linear algebra. This

method is based on Euclid's algorithm for finding the greatest common divisor of the two

integers. The proof in parts 3 through 6 assure that if the multiplier (j) in (209) and (210) is

set to (11/25 + then the two values for d3 given by (218) and (219) are equal

when v„ = 0 and v„ = a,,, - wf,,. Therefore, if (199) and (216) are satisfied then the

145



constructed schedule /3= 7^, rfjj, ijj satisfies the feasibility
condition (149) through (152) in chapter 6.

Now suppose that (213) is satisfied. Set 112 = A: where k is the product index in (200).

Then arbitrarily set 117= k and 115, iV k, /V j. By repeating the above

argument it is easily shown that by setting the multiplier ^ the feasibility equation

(207) is valid when and = 0. Clearly, if (213) is satisfied, the feasibility

conditions (149) through (152) are also satisfied.

The above argument shows that the constructed schedule 73 is feasible if (199) and (200)

are valid. Therefore, (199) and (200) are both necessary and sufficient to assure the existence

of a feasible schedule of three products that contains a set of three specified cycle times.

Furthermore, conditions (199) and (200) depend only on the cycle times and do not require

knowledge of either or the sequence /7.

Part 9 - Well Defined

The constructed schedule 73 posed in part 8 must satisfy another condition to assure that

dj is well defined. To agree with the definition of d^ given in chapter 1 the delay time

dj must satisfy

d3<Ts- qs' (221)

146



Equations (209) and (210) reveal that there are an infmite number of pairs that

satisfy (218) and (219). Clearly, an iw in (209) and (210) can be selected such that either

0<k^j< (222)

or

0<k,,< bj,, (223)

where there is equality in (222) only if and in (223) only if mbj32 = ̂^32 •

Clearly an m can be selected such that (222) is valid. Then from (204)

^3 ~ ^ ̂31^13 ^31

= ̂31<^13 + ̂/ + ̂31

^231^13 ^123'

From conditions (213) qj + < Uj^ -

^3 ^231^13 ^13 ~ Q3 — ̂ 231^13 ~ ̂3 (224)

Now b23i and Uj^ are both factors of 7^ = ̂̂ 231^ 13 integer 0; so that,

ds<T2-qs. (225)

Thus, dj satisfies the definition of if m can be set to satisfy (222).

147



A similar argument shows that (225) can be satisfied by the proper choice of m when

k^2 satisfies (223). Therefore, a multiplier m in (209) and (210) can be selected that

assures satisfies the definition of a delay time.

Part 10 - Conclusion

In summary, theorem 6 provides necessary and suflBcient conditions that a feasible schedule

of three products exists when the cycle times are equal to some stipulated values. These

conditions are quite general in the sense that they only require knowledge ofthree cycle times

and the model parameters. The theorem provides a useful test of the feasibility of a set of

cycle times because it can be conducted without having to first determine a sequence and set

of delay times. The theorem provides a method for constructing a feasible schedule once it

has been determined that the set of cycle times is feasible.

One can make some interesting observations about the hypothesis of theorem 6. For instance,

if (199) is taken as the base requirement to assure a feasible schedule of two products then

(200) gives the "penalty" that must be paid to schedule three products. At least one pair of

the cycle times must pay this penalty by having a greatest common divisor that is greater than

the base requirement. The amount of this penalty is ~

There are two special cases worth noting. If 0^23 > max then = Qi for

i= 1, 2y 3. In this case the penalty is mir^aj23 - On the other hand,
if aj23 - Qi then = 0 for some/. Also, if = 1 then = 0 for all/. In either

148



case there is no penalty for scheduling three products. Thus, in these cases, the base

reqiiirement (199) is all that is needed to test the feasibility of the specified cycle times.

LEMMA 8 ON THREE-PRODUCTS PARTIAL SCHEDULES

Let 3 < k < n, bea subset of n products produced on a single facility and let

= I I be a specified set of cycle times for the products i£T,^. Let be any fiiU
schedule of the n products where 7) = for Then £2 is not feasible if there is at

least one group of three cycle times for products that does not satisfy the hypothesis

of theorem 6.

PROOF OF LEMMA 8

This lemma is an extension to lemma 6 on two-products partial schedule feasibility given in

chapter 6. The proof of lemma 8 follows immediately from theorem 5 and theorem 6.

Lemma 8 provides a useful "filter" that can be used by the optimization algorithm of chapter 9

to eliminate many partial schedules at each stage of the algorithm after the second. However,

the "filtering" capability of theorem 6 can be enhanced beyond the straightforward test of

lemma 8.

REMARKS ABOUT LEMMA 8

The hypothesis of theorem 6 only requires that (199) and (200) be true for some sequence

77 and some That is, it is supposed that one is free to construct a feasible

149



77 and when satisfies (199) and (200). However, the optimization algorithm

generates a series of partial schedules. Each of these partial schedules specifies the cycle

times, delay times, and sequence for a subset of the n products. New partial schedules are

generated by adding a new product and its schedule to an existing partial schedule 73. Then,

the question is when is the proposed new single-product schedule compatible with the existing

partial schedule Q ? The question is answered by lemma 9.

LEMMA 9 ON ENHANCED THREE-PRODUCTS CONDITIONS

Let S < k < n, be a subset of n products produced on a single facility and let

7^ = 1^,- be a specified set of cycle times for the products Let
be a feasible partial schedule of the products iST^. Suppose

product m is added to to create Let /3„ be a proposed schedule of product m

where T^ = t„. Further, let
m  fti ^

^k+l —

be the partial schedule for the products where T. = t. for isT^ and T^ = Let

/,y be any pair of products /, jsr,^ and suppose that dj > d.. Then let

+ ̂ij = (226)

and

(227)

150



where

dj - d, = + q, + v., (228)

and

<- d] = Tj- (dj - d)= k„a,j + «, + V, (229)

and where = gcd{T„ T,, 7-„), 0< w^, < 0<,v^, Vj, < o,jand
u'- .k-,k-> 0. Then a necessary condition that a feasible full schedule i2
ijtn^ ijnt' ij' ji ^

containing exists is that for all pairs /, jsXf^ at least one of the following four

constraints is satisfied:

aim ̂  ̂i + Qm-^^ipn (230)

ajm ̂  9j + 9m + (aijm - M'i,) (231)

aj„ ̂ 9j + 9m+ ̂\im (232)

^ 9i + + («(/„ - >vijm )• (233)

PROOF OF LEMMA 9

The proof of lemma 9 is the same as the theorem 6 except and dj do not necessarily

satisfy (201) and (202); thus, ky, kj^, v», and Vj^ may be strictly positive. Without loss

of generality assume that dj > d^. This means product i is like product 1 in theorem 6.

151



Two modifications to the proof of theorem 6 make it a valid proof of lemma 9. To see this,

rewrite the feasibility conditions (204) and (205) to obtain

dm - di = + v^. (234)

and

dm - di = + q, + v^, + k^aj„ + qj + (235)

where

dj - d, = k^a,j + q, + v^-. (236)

Equating the right hand sides of (234) and (235) yields the feasibility equation

k„^aim - k^a. - ki,ai. = q, + - v . + (237)110 i/ff try jrrt V U ' y y ^

where kfj and are specified values. By observing that one can divide

(237) into two parts where the left hand side is given by

^miOim - K^im = ̂ijm (238)

where (f) = + kyby^ This modification allows (238) to have the same form as (208)

in part 4 of the proof of theorem 6.

To examine the right hand side ofthe feasibility equation (237) express ̂ q^ + as shown
by (227) to yield

152



This second modification allows (238) to have the same form as (211) in part 6 of the proof

of theorem 6. With these two modifications one can repeat the proof of theorem 6 to assert

that \S. dj> </,. then (230) and (231) are necessary and sufScient to assure that a feasible

schedule exist for products i,y,m. This assertation assumes that the values of 7), T.,

and df, dj are set to previously specified values.

Now to examine the case when dl > d'j obtain a new sequence and new delay times

d'., dj. Do this by shifting time zero to the start of the use period of product j that is the

last such period before the first use period of product /. That is, subtract Tj from dj and

shift time zero to the resultant time. After this shift of time zero d! > d'j and is

given by (228). This means that product j is like product / in theorem 6. With this

modification the proof of lemma 9 when dl > d'j is the same as the proof given above

for dj > dj. Thus, if d! > d'j then (232) and (233) are necessary and sufficient to assure

that a feasible schedule exists for products /, j, m. As before, this assertation assumes that

the values of 7], Tj, and d!, d'j are set to previously specified values.

By theorem 5 on partial schedule feasibility, the partial schedule of products for aU

possible pairs must be feasible for to be feasible. Furthermore, must

be feasible for there to exist a feasible full schedule of n products that contains

Therefore, for a feasible full schedule containing to exist, at least one of the

153



constraints (230) through (233) must be satisfied by all pairs of products i,jsT^ and

product m.

REMARKS ABOUT LEMMA 9

Lemma 9 provides feasibility tests that are more robust than those of lemma 6 and lemma 8.

Furthermore, these tests can be applied to, and are affected by, the partial schedules generated

by the optimization algorithm of chapter 9.

154



CHAPTER 8

FOUR-PRODUCTS MODEL

PURPOSE

In this chapter the results of chapters 5 and 7 will be extended to the four-products model.

That is, the primary purpose of this chapter is to develop delay-independent feasibility

conditions for the four-products GrCM given a specified vector of cycle

times (t,. T, . T,. T I There are two sets of conditions. A necessary set must be
1 7" 2" 3' 4 9

satisfied by any feasible schedule of the four products. On the other hand, at least one feasible

schedule exists if the sufficient set of conditions are satisfied.

Some required notation is explained in the next section. Then the four-products delay-

independent feasibility conditions will be stated as theorem 7. After a proof for theorem 7 is

given, lemmas 10 and 11 will extend the results of lemmas 8 and 9 to apply the results of

theorem 7 to partial schedules.

Although the number of products only increases by one, the effort required to develop and

prove delay-independent conditions for the four-products model was at least two orders of

magnitude greater than that required for the three-products model. The primary cause ofthis

increased difficulty is that three integer feasibility equations are required by the four-models

model as opposed to the one feasibility equation of the three-products model. Furthermore,

these integer equations are highly intertwined. The computational effort required to apply the

155



four-products conditions to a given {T] | is also somewhat greater than that required by the

three-products conditions. Nevertheless, the nature ofthese computations is straightforward

so these delay-independent conditions are a reasonable test ofthe feasibility of a specified set

of four cycle times.

NOTATION AND DEFINITIONS

As defined in previous chapters, e.g. (194) of chapter 7, let

«iy = gcd[Ti, 7}).

The definition (193) of chapter 7 is generalized by letting

(240)

for any three products where / ̂  j, j ̂ k and / ̂  k. To simplify the notation somewhat

let

8 ~ ̂1234 ~ 8^d^j, T2, ^ (241)

The statement and proof of theorem 7 requires the following factorization of the cycle times:

Pijk = 8cd\V V V./8' /8' /8.
(242)

= 8cd
T

(^PijkPijmg^ / ̂'jkPijmg (243)

156



where i, y, k, m = 1, 2y 3y 4 and no two indices are equal. Finally, let

yfif., i = 1, 2, 3, 4 be the fectors such that

^ ~ P1P12P13P14P123P124P134S (244)

^ ~ P2P12P23P24P123P124P234S (245)

^" 3 ~ P3P13P23P34P123P134P234S (246)

and

^ ~ P4Pj4P24P34Pi24Pi34P234S' (247)

These factors play an important role in the statement and proof of theorem 7. Note that

P, Pip Py,, g>l, (248)

Pij = Pji (249)

and

P,j, = = Pm = Pm = Pm = (250

for all ̂  y, ̂  where no two indices are equal.

From their defimtion it is clear that all pairs of these fectors are relative prime except the

following:

157



1. A ̂ necessarily relative prime to p.., p.ji^, and g,

2. p.. is not necessarily relative prime to and ̂  and

Pijk is not necessarily relative prime to g

for all /, j, k where no two indices are equal. A useful interpretation that aids in

understanding these factors is that

1. p. are those factors in 7] that are not factors of any other T- where / ̂  j,

2. p.. are those factors in 7) and Tj that are not factors of any other 7]^ where i A:

and j ̂ ky

Pijk are those fectors in Tj, that are not factors of 7^ where

m iytn j, and /«5^ A, and

4. g is those factors common to all 7]..

Several greatest common divisors will appear in theorem 7. The proof will be easier to

understand if the divisors are expressed as products of the fectors defined by (241) through

(246). An examination of (244), (245), and (246) reveals that

^12 = Pi2PmPi24S (251)

^13 — P13P123PJ34S (252)

158



^14 — P14P124P134S (253)

^23 - P23P123P234S (254)

^24 — P24P124P234S (255)

^34 ~ P34P134P234S (256)

and

= PijkS (257)

for all i, 7, where / ̂  y, k, j ̂ k. These fectorizations of the greater common

divisors will be used repeatedly in the proof of theorem 7.

Suppose that

= [(r„ T„ r,), [d„ d„ d,), 77] (258)

is a compact schedule of three products where, to simplify the notation, it is assumed the

products are labeled so that 11/ = /. Then the delay times djJ satisfy (201),
(202), (204) and (205) of chapter 7.

Apply the division algorithm to express

92 ~ ̂124^124 + ̂124 (259)

159



^3 ^31 ~ ̂134^134
3

134
(260)

^3 ^32 ~ ̂234^234 ^234 (261)

where >0 sndO< < a,y^. Also, apply the division algorithm to

find

and

let

and

^8^234^124 ~ ̂2 (262)

^3^234^134 ~ ̂ 3 ^1 ^3 (263)

^42 ~
K > W,

P234^124 - (^B -

(264)

^43 ~
^B - >^B' ̂ B ̂

A34ai34-i^B-^B)> ̂ B< W,

(265)

where Ug, > 0, 0 < Wg < ̂234^^124 and (? <
134'

160



FOUR-PRODUCTS DELAY INDEPENDENT CONDITIONS

This section first states theorem 7 that gives delay-independent feasibility conditions for the

four-products case of the GCM. That is, theorem 7 supposes that the cycle times

{Tj, 7^, Tjy have been specified. The theorem then provides conditions that are

necessary for a feasible schedule of the four products to exist. The theorem also provides

conditions that are suflBcient to assure that a feasible schedule exist. The tests are based

solely on the GCM parameters and the vector of specified cycle times. Thus, these tests are

said to be delay-time independent.

Theorem 7 on Conditions for Four-Products GCM

Suppose four products are produced on a single facility and that ̂ 7), 7^, T^, isa
proposed set of cycle times for these four products. Then a feasible schedule

=  T„ T„ t;), [d,, d„ d„ d,), n

of the four products exists only if there is at least one feasible partial schedule Q of three

of the products where at least one of the following three sets of inequalities are satisfied for

the product not in Q ̂:

Setl: aj^>qj+q^ (266)

^24^^12 + 94 + i^I24 - (267)

161



^34 ̂ 93 + 94 + {^134 - (268)

Set 2: ^91 + 94 + yVj24 (269)

^24 ̂ 92 + 94 (220)

^34 ̂  93 + 94 + (^234 " (221)

Set 3: Oj^ > qj + (272)

^24^92 + 94^ (223)

as,>q, + q,. (274)

Furthermore, at least one feasible schedule of the foitr products will exist if there is a

with a such that at least one of the following three sets of inequalities are satisfied

for the product not in :

Setl: aj4>qj + q4 (275)

^24 — 92'^ 94 ̂  {_fi234^124 ~ *^5) (276)

^34 — 92"^ 94 ^^234^134 ~ (277)

Set 2: ^9i-^ 94 + (228)

a24 ̂  92 + 94 (229)

a34 ̂  93 + 94 + ̂43 (280)

162



Set 3: aj4 > qj + q4 + (281)

^24 ̂ q2 + 94 + ̂42 (282)

^34 ̂ q3 + 94. (283)

To simplify the notation this statement of the theorem assumes the products are labeled so

that n/ = /.

Proof of Theorem 7

To further explain theorem 7, consider the results of theorem 6 in chapter 7. If (213) is

satisfied then a compact partial schedule of three products exists with

v.; = < (284)

and

V,, = 0. (285)

On the other hand, if(216) is satisfied a compact partial schedule ofthree products exists with

V,, = 0 (286)

^32 = {"123 - ̂3)' (287)

The proper set of these values of v^j and ^ ® (260), (261), (264) and (265)

to test the inequalities of theorem 7. However, if both (213) and (216) are satisfied, the

163



inequalities must be tested for both sets of Except for this mild dependence, the

necessary conditions (266) through (274) are independent of the delay times. However, these

necessary conditions must be tested for every sequence D of the four products where a

feasible partial schedule of products 07, 02, and Hi exist. A vector of cycle

times ̂ 7}, 7^, 7^, 7^ ̂ is rejected only after all such tests with the necessary conditions
have failed.

The delay-independent form of the sufficient conditions (275) through (283) require more

tests. Like the necessary conditions the sufficient conditions must also be tested for every

feasible O related to each sub-group of three products. In addition, these sufficient

conditions must be tested at each value of that is feasible where = 0 or v^2 = 0-

Other feasible do not have to be considered because the search for a feasible schedule is

restricted to a search over compact schedules. Finally, the defining equations (262) through

(265) use the factor p234' Similar definitions are possible with ̂ ^^4 P134 that leads

to sufficient conditions similar to (275) through (283).

Observe that the necessary conditions (266) through (274) are equivalent to the sufficient

conditions (275) through (283) if

P2S4 = 1' (288)

This is also true for the sufficient conditions related to and when either

P124 = 7 or Pj.24 = 7.

164



As was done for the proof of theorem 6 this proof will be organized into nine major parts.

One of these parts has two sub-parts.

Part 1 - Compact Schedule

Because of theorem 4 on compact schedules iu chapter 6 the search for a feasible schedule

can be restricted to a search over compact schedules. For the remainder of the proof it will

be assumed that all schedules are compact.

Part 2 - Feasibility of Products 1, 2. and 3

Let T = ̂ni, n2, nij be the set of indices for any one of the four possible subsets of
three products taken from a set of four products. From lemma 8 it is known that a feasible

schedule of the four products with a specified vector of cycle times

{^nn ̂ n2* exists only if there is a feasible partial schedule of the three
products in r. Furthermore, this must be true for all four possible r.

The search for a feasible schedule is limited to compact schedules; thus, it can be assumed

that the delay times {d^j, d^2 > ^u3 ) given by (201), (202), (204) and (205) found in
chapter 7. For the remainder of the proof it is assumed that for any r the schedule

isT^ is feasible. Otherwise, the specified cycle times do not
satisfy the hypothesis of theorem 7 so no further proof is required.

To simplify the notation it is assumed that the three products ofthe schedule are labeled

so that n/ = L It is also assumed that T14 is labeled as product 4. This shows that

165



the remainder of the proofmust only be concerned with schedule conflicts between product 4

and each of the other three products. The feasibility of assures one that no other

schedule conflicts occurs.

Part 3 — Delay Time Dependent Feasibility Conditions

When applied to product 4 the revised delay time dependent feasibility conditions (145)

through (148) given in chapter 6 yield

=  k.jOj, + + (289)

+ v,2 (290)

and

d, = d3 + + q, + (291)

where

» s v„ < a„ - q, - q, (292)

for i, 1, 2, 3. By substituting (201) and (202) into (289) and (290) and equating the right

hand sides of each pair of the resulting equations one obtains the folloAving three feasibility

equations

^41^14 ~ ̂42^24 ~ 92 ~ ̂41 "f ̂ 42 (293)

K3^34 - ̂1^14 = -ds + qj-q3^v,j-V,, (294)

166



and

f^42^24 - K3O34 = ds-qi-q2 + q3- V42 + V43' (295)

Clearly, the conditions imposed on the schedule of product 4 by the general theorem 1 given

in chapter 3 are satisfied if and only if (293) through (295) are satisfied. These feasible

equations are three equations in the six unknowns and / = 1, 2, 3. The other

terms become fixed constants once one specifies a set offour cycle times | and a feasible

partial schedule of the first three products. Hence, a feasible schedule of the four

products exists if and only ifthere are k^. and v^,., / = 1, 2, 3 that satisfy (293) through

(295).

Determinmg the feasibility of four products requires solving three feasibility equations rather

that the one feasibility equation of the three products model. Furthermore, as (293) through

(295) show these integer equations are highly intertwined. Finding general solutions to the

feasibility equations ofthe four-products model is a much more challenging task than solving

the three-products feasibility equation.

Part 4 — DecomDosition of Feasibility Eauations

Lemma 7 on solutions to an integer equation asserts that all integer solutions to the left-hand

sides of (293), (294) and (295) are given by

^41^14 ~ ̂42^24 ~ ̂124^124 (296)

^43^34 ~ ̂41^14 ~ ̂134^134 (297)

167



^42^24 ^43^34 ~ ̂234^234 (298)

where all parameters and variables are integers. This result allows a decomposition of the

feasibility equations into left-hand and right-hand parts. It win be shown that these two parts

can be treated independently.

Of course, any one of the three feasibility equations is redundant. However, as wiU be seen

later, having the flexible to select which two equations to solve is not only convenient but

necessary to the proof. Also, the redundant equation places additional restraints on any

integer solution to the feasibility equations. In particular, by summing the left-hand equations

one finds that

^124^124 ^134^134 ^234 ̂234 ~ (299)

Thus, for a valid integer solution to exist there must be integers and X234 that

satisfy (299). To complete the decomposition of the feasibility equations the right-hand

feasibility equations are:

^124^124 ~ ̂2 ~ ̂41 ^42 (300)

^134^134 — ~ ̂3 ̂  ~ ̂3 ^41 ~ ̂43 (301)

^234*^234 = d3-qj-q2 + q3- ̂42 + ̂43' (^02)

168



Part 5 - Solving the Left-hand Equations

To find integer solutions for the left-hand equations, (296), (297) and (298) are initially

disconnected by rewriting the equations as

= A,j24aj24 (303)

k43f^34 - kiittj, = (304)

1^42^24 - 1^43^34 = ̂234^^234' (305)

Lemma 7 in chapter 6 shows that there are , i = 1, 2, 3, such that all solutions

to (303), (304), and (305) are of the form

^41 ~ {p^lP24P234 3" ̂ 124f^4^ (306)

^41 ~ {^^2^34^234 3" ̂ 134/^4l) (307)

^42 ~ {p^lPl4Pl34 ^1241^4^ (308)

^42 ~ {j^3P34Pl34 ^234^42^ (309)

k43 ~ {p^2Pl4Pl24 ^134f^43^ (310)

^43 ~ {j^3p24Pl24 3" ̂ 2341^4^' (311)

Thus, solutions for the left-hand equations exist if and only if there is an i = 1,2,3 such that

Ar^, = 4. (312)

169



Suppose that k^j = then

^1^24^234 ^I24f^41 ~ ̂2^34^234 ^134f^41

or

{ntiP24 ^2P34)P234 ~ ̂I34f^4I ^124^^41' (313)

By setting ntj = /«^ = 0 one obtains

f^4lPl4Pl34 " M42P24P234 ~ ̂  (314)

and

f^43P34P234 ~ l^4lPl4Pl24 ~ (315)

2

An examination of(314) and (315) reveals that P234 is relative prime to both and fi^j

Let

^41= gcd[^4iy f^4i)y

1^41 = 741 ̂ 41 (317)

and

di = 741 ̂ 41 (318)

Substituting (317) and (318) into (313) yields

170



{ntiP24 ^2^34) "^^41 (319)

and

[^134743 - ̂124741) = OP234 (^20)

for some integer 0. Lemma 8 asserts that there are ntj, /w^ that satisfy (319) for any

integer 0. Also lemma 8 shows that there are S^j, ^ solutions to (320) are

given by

^124 — y4l741 ^^234^41 (321)

and

^134 ~ y4l741 ^^234^41' (322)

As will be shown later solving the right-hand feasibility conditions requires a minimization

of v^j, v^2f 3nd with respect to Xj24, ̂ 134 ^234' In the general four-products

model this minimization is constrained by (321) and (322). No a priori solution to this

constrained minimization problem has been found except for special cases.

One such special case is defined by requiring that - yl2P234

7124 — 7124P234 (323)

and

^134 ~ ̂134P234' (324)

171



Substituting (323) and (324) into (320) yields

^134741 ~ ̂mY41 ~ (325)

These relationships are important because, for this special case, one can independently select

any integer values for and and be guaranteed by lemma 8 that there are

and m2 that satisfy (319). Thus, for this special case the minimization problems of part 6

are discormected to become two unconstrained minimization problems.

Of course, special cases analogous to (323) and (324) can be defined for the

factors Pi24 Pi34' The results for these other cases can be generated fi-om the

p234 case by merely re-labeling the first three products. If any = 1 then clearly the

sufficient conditions related to that are also necessary feasibility conditions.

Part 6 - Solving the Right-hand Equations

There are two major sub-parts to part 6. First a proof is provided for the necessary

conditions (266) through (274). Then a similar proof is given for the sufficient conditions

(275) through (283). The principal difference between these proofs is that in the proof of the

necessary conditions the variables of the right-hand feasibility equations (300) through (302)

are not required to simultaneously satisfy all three equations. This relaxation of equality

converts the feasibility equations into independent constraints that are not necessarily satisfied

by the same set of variable values.

172



Part 6.A -Necessary Conditions

The proof begins with new expressions of dj derived from (204) and (205) of chapter 7. By

applying the factorization given by (252) and (254) one obtains

^13 = ̂13^123^134 (326)

and

^23 — ̂ 23^123^234' (327)

Substituting (201), (202), (326), and (327) into (204) and (205) yields

^3 ~ ̂31^13^123^134 + ̂7 + ̂31 (328)

and

ds = ̂32^23^123^234 + «2 + "^32' (^29)

By substituting (257), (260), (261), (328) and (329) into (300), (301) and (302) one obtains

the following revised right-hand feasibility equations.

~^41 ^42 ~ {^^124 ~ ̂124^^124 ~ ̂124 (330)

^41 ~ ̂43 ~ (^134 ^3lPl3Pl23 ^134^^134 ^134

~^42 ^43 ~ (■^234 ~ ^32^23^123 ~ ^234^^234 ~ ^234' (332)

The revised feasibility conditions (145) through (148) in chapter 6 show that

173



> 0 (333)

and

^ fli + + ̂4i (334)

for i = 1, 2, 3. Thus, (330) through (334) are a set of five constraints in six unknowns.

As noted in part 5 no a priori solution to these five constraints has been found. However, by

treating each feasibility equation independently it is possible to place a lower boimd on

each v^j. This, in turn, provides a lower bound on each that must be satisfied by any

feasible schedule of the four products.

Because only compact schedules are being considered at least one = 0. Thus, there are

three cases to be considered. The lower bounds on a,.^ developed for each of these cases

is one set of the necessary conditions (266) through (274).

An examination of the feasibility equations (330), (331) and (332) reveals the usefulness of

the redimdant equations. When any = 0 and and X234 are specified two

ofthese feasibility equations become equations with only one unknown v^- each. Hence, one

can easily find lower bounds for the non-zero

To find the first set of necessary feasibility conditions suppose that v^j = 0 and set

1  (335)

and

174



^134 ~ ^134 (^^6)

in (330) and (331), respectively. With these values the feasibility constraints become

= 0 (337)

^ ̂124 - ̂124 (338)

V43 > ^134' (339)

These bound are vahd because any values for Sj24 or Sj34 other than (335) and (336) yields

either a greater value for or or negative values for ^43' relationships

(338) and (339) must be expressed as lower bounds. In general, it is not possible to

simultaneously set Xj24 aiid ^2^4 according to (335) and (336) because there may be no

solutions to the left-hand feasibility equations when and Xj24 are set to these values.

The lower bounds (337) through (339) prove that if v^j = 0 then the first set of necessary

conditions (266), (267) and (268) must be satisfied by any feasible schedule offour products.

One can prove that the other two sets of feasibility conditions (278) through (283) are valid

by repeating the above proof when = 0 and then when = 0.

Part 6.B - Sufficient Conditions

The proof in part 5 shows that when (323) and (324) are satisfied it is always possible to find

k^if i = 1, 2y 3, which solves the first two left-hand equations (296) and (297). This

means that the first two right-hand equations can be solved for any specified

175



integers and Hence, the third feasibility equation is dropped because it is

redundant and unnecessaiy.

By substituting (262), (263), (335) and (336) into (300) and (301) one obtains the two

right-hand feasibility equations

~ ̂41 ^42 ~ {^^124 ~ ̂^^234^ 124 ~ (^40)

^41 ~ ̂43 ~ {^^134 4" ̂ b)P234^134 4" ̂ B' (341)

When v^j = 0 using equations (340) and (341) to prove the validity of the first set of

suflBcient conditions (275), (276) and (277) is a straightforward task.

The other two cases have an additional complication. For instance, when = 0 then

min v^j = Wg (342)

and

^43 ~ ~(^134 3" ̂ ^^234^134 ̂  ̂41 ~ ̂ B (343)

observe that the minimum of occurs at the minimum of v^j. Thus, if Wg > Wg one

easily finds that

min = Wg - Wg (344)

occurs at The other case is also easily found by observing that when

^B>^B

176



P234f^l34 > M'i > H'i - (345)

SO that over positive values

min " ̂b) (^^6)

occurs at +/j. Thus, given by (265) is the minimum

of when immediately leads to the sufBcient conditions (278), (279) and

(280).

By setting = 0 and repeating the above argument one finds that

min = A42

where A42 is defined by (264). With this substitution the feasibility equations (340) and

(341) show that the third set of suflBcient conditions (281), (282) and (283) are valid.

Part 7 - Feasibility Conditions Independent of

As explained in the introduction to the proof of theorem 7, to reject a set of specified cycle

times ^7), 7^, T^y as infeasible one must use (266) through (274) to test every
potentially feasible sequence 77 of the four products. Once a sequence is specified the delay

times for the first three products are given by theorem 6 in chapter 7. The necessary

conditions are independent of these delay times except for the mild dependence that enters

through equations (260) and (261). The three-products variables v^j and are constants

in (260) and (261). This mild dependence is removed by repeating the feasibility tests for

177



each of the two possible values of v^j, that are feasible. These sets of values are given

by (284) through (287).

Part 8 - Constructing a Feasible Schedule

Suppose that , 7^, satisfy the suflBcient conditions for some sequence IJ and

some feasible d'^^. A feasible schedule can be constructed where

d^i - 0

^n2 ~

and

^n3 ~ ̂'ns'

To complete the construction one uses Euclid's algorithm to find

J^4iy P^41> t^42y f^43> ^2 in (314), (315) and (319). The integer Q is derived

from (325) where and 8^24 obtained from the solution of the right-hand sufficient

conditions. Then k^., i = 1, 2, 3 can be determined from (306), (308) or (310). Finally,

a feasible d^ can be derived from (289), (290) or (291).

Part 9 - Conclusion

In summary, theorem 7 provides a set of necessary conditions that must be satisfied by all

feasible schedules of a four-products GCM. These necessary conditions are used in the

optimization algorithm to quickly eliminate as many infeasible partial schedules as possible.

178



The theorem also provides a set of suflScient conditions. When satisfied these sufficient

conditions provide assurance that at least one feasible schedule exists for a specified vector

of four cycle times. One of the principal benefits of these sufficient conditions is that they

reveal the "penalty" that must be paid to schedule four products. As shown by the sufficient

conditions (275) through (283) in most cases two of the greatest common divisors

, i= 1, 2, 3 must "pay" this "penalty".

LEMMA 10 ON FOUR-PRODUCTS PARTIAL SCHEDULES

Let t^,4 ̂  k< n, be a subset of n products produced on a single facility and let

= |/,- isT,}^ be a specified set of cycle times for the products Suppose that
0^ = {tjf t„, tpy j is any set of four cycle times in Let Q be any full schedule
ofthew products where 7]- = for ieXj^. Then C2 is not feasible ifthere exist a 9^ such

that the do not satisfy the hypothesis of theorem 7.

PROOF OF LEMMA 10

This lemma is an extension to lemma 8 on three-products partial schedules given in chapter 7.

The proof of lemma 10 follows immediately fi-om theorem 5 on partial schedule feasibility

given in chapter 6 and theorem 7.

179



REMARKS ON LEMMA 10

Like lemmas 6 and 8, lemma 10 provides useful "filters" that could be used by the

optimization algorithm of chapter 9 to eliminate many infeasible partial schedules at each

stage of the algorithm after the third. However, lemma 11 provides tests that enhances the

"filtering" capability of theorem 7 beyond that of the straightforward tests provided by

lemma 10.

ENHANCED FOUR-PRODUCTS CONDITIONS

Purpose

The hypothesis of theorem 7 only requires that one set of the necessary conditions (266)

through (274) be valid for some sequence 77. That is, theorem 7 supposes that all possible

sequences 77 of the four products will be tested with the necessary conditions (266) through

(274). A set of four cycle times is not rejected unless all 77 fail these tests. The proof of

theorem 7 also supposes that the schedule of the first three products will be a compact

one. Thus, it is supposed that either

^ni ~ ̂ni, ni ~ ̂ns, ni ~ ̂  (347)

or

~ ̂n2, ni ~ ̂n3, ni — (348)

180



However, one is not free to make these choices as schedules are constructed by the

optimization algorithm in chapter 9. In this algorithm new partial schedules are generated at

each stage by adding another product and its schedule to an existing partial schedule

Thus, neither (347) nor (348) may be true for an arbitrarily selected set of three product from

those contained in Q. The purpose of lemma 11 is to determine when 7^^ is incompatible

with the existing partial schedule

Lemma 11 on Enhanced Four-Products Conditions

Let 4 < k< tty hez. subset of the indices of n products produced on a single facility

and let = |/. be a specified set of cycle times for the products iST^. Let
A = ({',}, {d,}, n) be a feasible partial schedule of the products l^r^. Suppose
product m is added to to create Let be any set of three products

isT^. Without loss of generality assumes that the products have been labeled such that

Tj = {ly 2, and m= 4 where dj < d2 < d^. Let be a proposed schedule of

product 4 where Further, let

^k-yl ~ ■*" ^4

be the partial schedule for the products where 7]. = for isT,^ and —

Apply the division algorithm to obtain

92 ^21 ~ y 124^124 ^124' (349)

181



Then a feasible lull schedule Q that contains where T^ = exists only if at least

one set of the necessary conditions (266) through (274) are satisfied when = x^j24'

Proof of Lemma 11

The principal difference between lemma 11 and theorem 7 is that, in general, dj and are

not given by the compact schedule values. Thus, in general, dj ̂  0, d2^ Qj, and

V21 0. By manipulating the transformed equation (145) for d^ — dj given in chapter 6

one obtains the foUovvdng general expressions regarding d^

d^-dj = + qi + V41 (350)

d^ - d, = d2- di + k^2^24 + + ̂42 (3^1)

d^ — dj = dj — dj k^jOj^ + ̂̂5 + (352)

where

d2 — dj = k2j(lj2 + 4^7 + ̂21 (353)

d^ — dj = kjjUjj + ̂2 ^31 (354)

and

dj- d2 = k22a23 + ̂2 + ̂32- (^^^)

182



Substitute the left-hand feasibility equations (296), (297) and (298) and (260), (261) and

(349) into (353), (354) and (355) and express and as given by the

factorization equations (251), (252) and (254) to obtain

~^41 ^42 ~ (■^124 ~ ^21P 12P 123 ~ y 124^^124 ~ ^124 (^^6)

V4I — V43 = {^^134 + ^SlPlsPnS ^134^^134 ^134 (357)

~ ^42 ■*" ^43 ~ (■^234 ~ ^34P23Pl23 ~ ^234^^234 ~ ^234' (358)

Comparing (356), (357) and (358) with the right-hand feasibility equations (330), (331) and

(332) in part 6.A of the proof of theorem 7 reveals three differences, all in equation (356)

versus (330). The first two difference is that the multiplier of has an extra term and

is replaced with Neither of these differences has an effect on the necessary

feasibility conditions because the development of these conditions assumes that can be

set to any desired value.

The last difference is that in (330) has been replaced with in (356). Thus, if one

sets

*^124 -^124

then the proof of the necessary conditions given in part 6.A of theorem 7 shows that

lemma 11 is valid.

183



After the third stage of the optimization algorithm given in chapter 9 three or more products

have been scheduled during previous stages. That is, the cycle times and delay times of these

scheduled products are specified during previous stages. Suppose at stage

tn, 4 < m< riy a product m is proposed as the mih product and a cycle time is

proposed for T^. Then all groups of three of the scheduled products, with their specified

cycle times and delay times, can be tested by lemma 11. Suppose there is a group of three

products such that none of the three sets of necessary conditions (266) through (274) are

satisfied. In this case can be rejected as a possible value of unless the partial schedule

developed in stages before the mth is changed.

184



CHAPTER 9

OPTIMIZATION ALGORITHM

PURPOSE

The purpose ofthis chapter is to present an algorithm that produces optimal schedules for the

«-products GCM. As shown by theorem 3 in chapter 5 the algorithm given in chapter 4 will

find optimal schedule for the two-products GCM. Thus, m this chapter it is assumed that

n> 3. The «-products algorithm is the culmination of the results given in the previous

chapters. The general necessary and sufficient conditions in chapter 3 are essential to the

creation of an optimization algorithm. Without these conditions it is not possible to

mathematically determine whether or not a schedule is feasible.

The results of chapters 4 through 8 improve the efficiency of the optimization algorithm.

These improvements are also essential to the success of the algorithm. Gallego and

Shaw [26] show that the GCM is "NP-hard in the strong sense". Thus, optimizing the GCM

will require some type of implicit enumeration scheme. Optimization algorithms based on

implicit enumeration schemes must be very efficient if they are to provide solutions to

practical problems within a reasonable time and with reasonable computer resources. The

efficiency of the algorithm presented here is enhanced in two major ways. Cost bovmds are

used to eliminate many non-optimal schedules and the results of chapters 3 through 8 are used

to eliminate many infeasible schedules.

185



SUMMARY OF OPTIMIZATION ALGORITHM

As noted above the algorithm is based on an implicit enumeration scheme. This scheme is

quite different from the usual branch and bound implicit enumeration method. The algorithm

begins by finding an optimal schedule for the BPM. The BPM is a restricted version of the

GCM so the cost of this schedule is used as the initial upper boimd on the optimal cost of the

GCM z . The BPM algorithm is used to establish a lower bound on z • The initial search

domain is defined by using these bounds on the optimal cost and the strict convexity of the

cost functions to place bound on each cycle time 7]..

The bulk of the algorithm is a /i-stage implicit enumeration scheme. This scheme, ifpossible,

generates a schedule for the /i-products that has a lower cost than the previous best schedule.

If a lower cost schedule is found it replaces the previous best schedule and its cost replaces

the previous cost upper bound. Then a new search domain is obtained by updating the limits

on the cycle times to reflect the revised upper bound. Eventually, the cost of aU remaining

schedules are greater than the previous best schedule. When this occurs the previous best

schedule is optimal. The algorithm produces a series of schedules with costs that are a

monotonically decreasing series. This series is forced to be strictly monotonicaUy decreasing

by subtracting an acceptable amount from each new cost upper bound. Because this series

is bounded below by the finite initial lower bound the algorithm will terminate within a finite

number of steps.

186



One is assured that the final schedide is optimal because the algorithm implicitly examines

every possible schedule of the n products and selects one with minimum cost. As the

algorithm searches over the domain of potentially optimal schedules, it eliminates many partial

schedules. This, of course, eliminates a greater number of full schedules. The design of the

algorithm prevents these schedules from being eliminated unless they are either non-optimal

or infeasible.

In several places m the description of the algorithm it is stated that the algorithm terminates.

Terminate here means that the current best schedule is output as the optimal schedule, the

current upper bound on the total cost of the n-products is output as the optimal cost and

the algorithm stops.

An important aspect of the algorithm has to do with the structure of the search region. The

beginning search region is defined by placing a lower and an upper bound on the cycle time

of each product. These boimds define a region of potentially optimal schedules. At each

stage the algorithm searches for an optimal, feasible cycle time for the products assigned to

that stage. It begins this search in the "middle" of the search region defined by the initial cycle

time bounds of the assigned product.

If this "middle" value is excluded fi-om further consideration it becomes the first cycle time

value in the exclusion zone of the search region. Thereafter, the search region is divided into

three mutually exclusive zones: a lower search zone, an exclusion zone, and an upper search

zone. Each trial cycle time is either the greatest integer less than the lower limit of the

exclusion zone or the smallest integer greater than the upper limit of the exclusion zone. If

187



a trial cycle time is rejected it is added to the exclusion zone before a new trial cycle time is

selected.

Thus, as the algorithm proceeds the exclusion zone grows while the lower and upper zones

shrink. At different times each of these zones may be the null set. In any case, each of the

zones of the search region for the assigned product remains contiguous throughout the

algorithm. The mechanics required to implement this partitioning of the search region is

explained as the steps of the algorithm are described below.

BASIC N-PRODUCTS ALGORITHM

To make a clear presentation the essential framework of the algorithm will be given in this

section. Several enhancements to the basic algorithm will be described in the following

section.

Stage 0

The algorithm actually has n + 1 stages where stage 0 consists of certain preliminary steps

that are only performed once for each scheduling problem. The results of stage 0 are used

throughout the remaining steps.

Step 1 - Obtain an Upper Bound on Schedule Cost

Use the algorithm ofchapter 4 to solve the BPM version of the current problenx The optimal

schedule of the BPM is a feasible schedule in the GCM. Thus, the cost of the optimal BPM

188



schedule is an upper bound on the optimal cost of the GCM. The BPM optimal schedule is

saved as the current best schedule. The cost of the optimal BPM schedule less a small

positive e is saved as the current cost upper bound Z„. This assures that the next cost

upper bound, if any, will be strictly less than the cost the BPM optimum schedule.

Step 2 - Obtain a Lower Bound on z*

For each pair of products use the BPM algorithm to find the optimal cost when these

products are considered the products of a two-products model. Denote the BPM optimal

cost related to product i,j as As shown by theorem 3 in chapter 5, /T is also the

minimum cost of products i and j in the two-products GCM. Clearly, /T is a lower bound

on the combined cost of products / and j in the w-products GCM. Thus, a lower bound

on z* is given by:

z; =
n—I n

i-1 j=i+l

/(n-l). (359)

If the cost upper bound equals the cost lower boimd then the optimal schedule of the BPM

found in step 1 is also an optimal schedule for the GCM. In this case terminate the algorithm.

Step 3 - Obtain Single Product Optimal Cycle Times

In this step the algorithm finds an optimal solution to the «-single-product EMQ models by

treating each product as if it is the only product of a single product model. That is, solve (68)

189



and (69) in chapter 4 to obtain the integer single-product optimal cycle times for each of the

n products.

Step 4 - Obtain Bounds on the Cycle Times

By rearranging (359) to extract the cost contribution of product k one obtains

7° -^Ik -

n-1

ISr:
i=l j=i+J

i^k

/(n-2). (360)

This is a lower bound on the sum of the costs of all products except product k. Clearly,

o=z„-z;. (361)

is an upper bound on the cost of product k in any schedule with a cost lower than the current

upper bound If the algorithm is not terminated in steps 2 then Z^ > Z°,. Also, it is

easily shown that

z; a 4 + Z,Ik (362)

where is the optimal cost of the kth single product model. Hence, the quadratic in

^k'^k ^k'^k ~ (363)

190



where is the setup cost and is defined by (51) in chapter 4, always has two positive

real roots. These two roots are lower and upper bounds on the cycle time of product k. The

bounds on the integer are

7;; = {[0- ̂ e-4H,c,\/2H,\< r. (364)

c = {[s + /2H,]'>T,. (365)

The number of potentially optimal cycle times for each product k is given by the range coimt

Rl = T:, - K + 1, (366)

If the range count is zero for one or more of the products there is no schedule of integer cycle

times that has a cost lower than the ciirrent upper bound so the algorithm is terminated.

Otherwise, the range count if° is a finite upper limit on the number of possible values

of 7]^ that must be examined by the algorithm This assures that the algorithm require

only a finite number of operations.

Step 5 - Assign Products to Stages

The products are sorted in ascending order of their range count if°. Then the products are

relabeled according to this order so that the product with the ith largest range coimt is labeled

as product i. Finally, product i is assigned to the ith stage of the algorithm This means that

the cycle time and delay time of the ith product will be determined during the ith stage of the

191



algorithm. In the basic algorithm this assignment of products to stages is performed once for

each problem so it is fixed for the remainder of the algorithm

Step 6 - Select dj

As observed several times in previous chapters, because of the defining assumption / in

chapter 1, without loss of generality, time zero can be selected so that the first production

period ofproduct 1 is set to zero. Thus the delay time for product! is set to zero. Setting dj = 0

simplifies the algorithm somewhat so the first delay time is set to zero for the remainder of

the algorithm.

Stage 1

Remarks

As discussed above at each of the stages 1 through « - i the algorithm attempts to build a

series of partial feasible schedules until a feasible full schedule is generated in stage n.

Because limits (364) and (365) and similar ones are imposed on the schedule generation at

each stage of the algorithm the cost of any full schedule generated in stage n will be less than

the cost of the previous best schedule.

The schedule generation process begins and ends in stage 1. The algorithm ends after all

possible values for the cycle time of product 1 have been eliminated. A value tj for cycle

time Tj is eliminated when

192



a. AH feasible, potentially optimum, schedules where Tj = tj have been

generated,

b. tj is identified as infeasible, or

c. tj is identified as not optimum.

When all in the range Tj] <Tj < T°j have been eliminated the algorithm is terminated.

Step 7 - Select

Stage 1 is entered fi-om stage 0, stage 2, or, perhaps, stage n. It is entered fi-om stage 0 only

once for each scheduling problem. Stage 1 may be entered fi-om stage n only after a new

feasible full schedule is generated. This will be explained when stage n is described below.

Suppose a feasible schedule £2^ exists where the cycle time of each product equals its

single-product optimal cycle time; that is, when = T*. Then is clearly an optimal

schedule. The search strategy ofeach stage ofthe algorithm is predicated on this observation

and the strict convexity of the cost functions

When step 7 is executed for the first time set the cycle time of the first product to its

single-product optimal; that is, set tj = T'j Then go to step 9 in stage 2.

Each time stage 1 is entered either fi-om stage 2 or stage n the current value of 7} is

eliminated and a new value tj is selected. In particular, the second time stage 1 is entered

the previous trial cycle time tj = T*j is rejected. Thus, the single-product optimal cycle time

193



is the "middle" value used above to describe the partitioning of the search region for each

product. As described above, once T*j is rejected the search region of the first cycle time

is partitioned into three zones. Let Lj be the upper limit ofthe lower search zone and Jj be

the lower limit of the upper search zone. Then the search region ofthe optimal cycle time for

product 1 is divided into a lower zone where

7), <t,<L,< T;, (367)

an upper zone where

t;, >t,>J,> n (368)

and an exclusion zone where

Lj<tj<Jj. (369)

The exclusion zone consists of those cycle times tj that have been excluded firom firrther

consideration. The mechanics required to implement this strategy are to set

t, = L, = J, = T;, (370)

the first time that step 7 is executed. Thereafter, terminate the algorithm ifboth the lower and

upper search zones are null. Otherwise, if the previous tj = then subtract one

from Lj If the previous = Jj then add one to Jj. Then use these updated values

of Lj , Jj to set

194



Zu = ̂

00 , Li < Til

Lj > Til

(371)

and

^ji

00, Ti < T^i

Ji ̂  T„i

(372)

and set the new trial value of Tj to

~

Tj) Zu ̂  Zji

T 1» Zi^i > Zji
(373)

Step 8 - Obtain New Bounds on 7].

If setting Ti to its new trial value increases the cost lower bound given by (360) for one or

more of the other products, then compute new cycle time boimds for each such product.

If for any k then terminate the algorithm. Tenninating the algorithm here is the

proper action because the present trial cycle time tj has the lowest cost among those cycle

times that have not been rejected. Thus, selecting any other possible trial value wUl not

decrease 7)^^ or increase 7^^ for any A. Hence, the cost ofall schedules in the current search

region are greater than the present upper bound.

195



If the algorithm is not terminated go to step 9 in stage 2.

Stage m, 2< m< n

Step 9 - Select

Stage m is entered from stage m-1, stage m + 1 ox, perhaps, stage n. During the course of

solving a given problem stage m may be entered many times from each of these other steps.

The mechanics of selecting the next trial value for T^, is the same as that given for

product 1. The appropriate relationships are obtained by changing the subscript 1 to m in

(367) through (373).

This step of stage m is entered either from step 8 of stage 1, if m = 2 or step 11 of stage

m- 1, ox from step 11 of stage m. When step 9 is entered from either step 8 or stage 1 or

step 11 of stage m - i the search regions for are re-initialized as shown by (370). This

is necessary because these regions for stage m are functions of the partial schedule

Qm-i ~ ly "> nt- 1^. Stage/w is entered from stage w-i only after
a new partial schedule has been generated. Thus, it is necessary to restart the search

for an optimal at the single product optimal cycle time.

When this step is entered from step 11 of stage m all possible values of the mth delay time

d^, given and the current trial cycle time have been eliminated. In this case,

a new trial is selected in a manner similar to that shown by (371) through (373) for

selecting a new tj. If the updated search regions for are both null then the algorithm

196



retumstostepllofstage i«-i, orifiw= 2,tostep7ofstageltoselectanew

Otherwise, the algorithm goes to step 10 of stage m to update the cycle time boimds for the

unscheduled products m + 1, • • •, n.

Step 10 - Update Cycle Time Bounds

This step is entered only from step 9 of stage w. This step is skipped if m= n. If setting T„

to its new trial value increases the cost lower bound given by (360) for one or more of the

unscheduled products m + 1, • • •, n, then compute new cycle time bounds for each such

product.

If any of the updated bounds are such that T,^ > for any k= m + 1, • • •, n then

return to either step 11 of stage m - 1 to select a new delay time for product iw - 7 or, if

m = 2 to step 7 of stage 1 to select a new cycle time tj. Otherwise, go to step 11 of stage m

to select a delay time for the mth product.

Step 11 - Select

This step is entered from step 10 of stage m, from step 9 of stage m + 7, or step 13.c of

stage #1. When this step is entered from step 10 of stage m a new trial cycle time has jiist

been selected in step 9. Hence, no previous value of delay time has been selected for this

It is easy to show that must satisfy

q„. (374)

197



Thus, with each new trial the algorithm initializes d„ by setting it to qj and then

searches upward to find the smallest that satisfies the necessary and sufficient conditions

of theorem 1, given in chapter 3, with respect to each ̂ 7]^, d^ contained in the partial
schedule If there are no feasible d^ given the present trial cycle time and the

partial schedule the algorithm returns to step 9 of stage m to select a new

Otherwise, go to step 9 of stage /#i + 7 or to step 12 if w = /i.

If the algorithm returns to this step fi-om either step 9 of stage m + 1 or step 13.c of stage n

the present trial delay time d^ can be eliminated because:

a. All feasible full schedules /2„ that contain the current partial schedule

have been generated,

b. The partial schedule is not feasible, or

c. The partial schedule is non-optimal.

After eliminating the previous d„ the algorithm starts at d^ + 1, where d„ is the previous

trial delay time, and searches upward to find the smallest d„ that satisfies theorem 1. If no

feasible delay time d„ is found the algorithm returns to step 9 of stage m to select a new

t  . Otherwise, the algorithm goes to step 9 of stage m + iifw</iorto step 12 if m = w.

198



Step 12 - Update the Best Schedule and Cost Upper Bound

The algorithm enters this step only from step 11 of stage n. It does so only after a feasible

cycle time and delay time are foimd for product n in steps 9 and 11. These steps assure one

that the first feasible cycle time found in stage n will be an optimum 7), given the partial

schedule Q„_i. Thus, there is no need to examine other possible values for T„ until

Q„_i is changed.

The cycle time bounds restrict the search region of the algorithm to those schedules with

costs that are strictly less than the current upper bound. Therefore, each time the algorithm

enters step 12 an improved schedule has been generated in the previous steps. This

is saved as the current best schedule and its cost is saved as the current cost upper bound

Z„. A small positive e is subtracted from Z„ to assure that the algorithm generates a

strictly monotonically decreasing series of upper bounds. Then the algorithm proceeds to

step 13.

Step 13 - Restarting the Algorithm

A. Use the revised upper bound on cost and the lower bounds (360) from stage 0 to

determine revised cycle time boimds for product 1. These new cycle time bounds lead

to revised search zones for product 1. If both the lower and the upper search zones

are now null; that is, if Lj <7^ and Jj> T^j, then terminate the algorithm

because all potentially optimal values of 7) have been eliminated; otherwise, go to

13.B.

199



B. Use the revised upper bound to update the cycle time bounds computed in step 8.

As before, if there are revised bounds such that > 7],^ then terminate the

algorithm. Otherwise, if both the revised lower and upper search zones of product 2

are now null restart the algorithm by returning to step 7 to select a new value for 7}.

Otherwise, go to 13.C.

C. Beginning with m = 2 use the revised upper bound to update the cycle time

boimds for products m + 1, •••, n computed in step 10 of stage m. If any of the

revised bounds are such that 7]^ > 7],^ for any A: = m + 1, •••, n then restart the

algorithm by returning to either step 11 of stage m - 7 to select a new delay time,

dm_i, for product m - 1, or, i£ m = 2, to step 7 of stage 1 to select a new cycle

time tj.

If T,^ < for all k= m-\-1, • • •, n and if both the revised lower and upper search

zones for product w + 7 are null then restart the algorithm by returning to step 11 of stage m

to select the next value of d^. Otherwise, repeat step 13.C until the algorithm is restarted.

As observed as the revised lower and upper search zones for product n with respect to the

partial schedule are nuD. Hence, the algorithm will restart in step 11 of stage « - 7 if

not before.

200



IMPROVEMENTS TO THE ALGORITHM

Purpose

The basic algorithm will solve the «-model GCM; however, the results of the previous

chapters can be used to improve the efficiency of the algorithm. These improvements are of

two basic forms: those that reduce the search region and those that reduce the search effort.

The first three improvements described below reduce the search region while the last one

reduces the effort required to search the remaining region for a feasible schedule.

Improvement 1: Two-Products Compatibility

Stage 1

As shown by lemma 6 in chapter 6 all pairs of cycle times in a feasible schedule must satisfy

(126) of theorem 3 in chapter 5. This result provides a powerful means for improving the

efficiency of the basic algorithm.

To explain the advantages of this improvement and how it is in^lemented suppose that tj

is a trial value of the cycle time of the first product. Further, suppose that is the

single-product optimal product w. Finally, suppose that tj and do not satisfy (126) of

theorem 3. Then, as shown by lemma 6 there are no feasible full schedules

where 7} = and = T^. The basic algorithm will discover this incompatibihty at

stage w after testing all possible values of </ , the delay time for product w. However,

201



lemma 6 provides a method for eliminating such values of at stage 1. This early

recognition of incompatible cycle times for product w will, in most cases, greatly improve the

efBciency of the algorithm.

The mechanics of implementing improvement 1 is to insert step 7.B into the basic algorithnL

After each new trial cycle time tj is selected, step 7.B conducts two searches over the search

region ofeach products for all w = 2, •••, n. The revised algorithm begins its first search

with and, if necessary, moves upward checking each value of until it finds the

minimum in the upper search zone that satisfies (126). The algorithm sets J'^, the lower

limit on the upper search zone of 7^, to this minimiim 7^. The second search of step 7.B

also begins at 7'^, but moves downward until it finds the maximum 7^ that satisfies (126).

The algorithm sets the upper limit on the lower search zone of 7^, to this

maximum T^.

Ifafter these searches both the lower and upper search zones ofany product w, w ̂  7, are

null, then, by lemma 6, tj is not a feasible value of 7). In this case the algorithm returns to

step 7 to eliminate the present trial value of Tj and to select another. Step 7 and 7.B are

repeated until a trial value tj is found that is compatible with at least one for all

w= 2, •••, n. The procedure will find two compatible for all w = 2, •••, n unless

the searches eliminate all values of in one of its search zones but finds a compatible value

in the other zone. If the iterative application of steps 7 and 7.B does not find a tj that is

compatible with at least one for all vf = 2, • • •, n then all feasible values of 7} will

202



have been eliminated. When this occurs the algorithm is terminated; otherwise, the algorithm

proceeds to step 8.

Improvement 1 also requires a revision to step 8. If any values of are eliminated by

step 7.B then the lower bounds on costs given by (360) may need to be increased. This is

because

Zi = (375)

is a lower bound on the cost of product w given that Tj = tj. These lower boimds on costs

may lead to greater lower bounds than those given by (360). Thus, step 8 is revised to

appropriately use the bounds given by (375) while determining the cycle time bounds on

for each 2, • • •, n.

If these revised cycle time boimds for any product w are less than the previous bounds, then

at least one of the revised search zones for product w= 2, n will be smaller than the

previous search zone. Ifthis eliminates both zones for any product w= 2y •••, then the

present trial value tj can be eliminated. In this case the algorithm returns to step 7 to select

another trial tj.

Stage m, 2 < m< n

Improvement 1 is also applied to stage m of the algorithm by adding a step 9.B that

determines ifthe trial cycle time is potentially feasible. The procedure for stage/w differs

from that of stage 1 in two ways.

203



The first difference is that the search procedure of step 9.B has a "look-forward" phase and

a "look-backward" phase. The look-forward phase is the same as the search procedure used

in step 7.B except the search is limited to the unscheduled products where

w = m-\-1 y , n. Of course, there is no look-forward phase to stage n.

The look-backward phase determines if and each w= ly •••, m— ly of the

scheduled products are compatible, that is, if these cycle times satisfy (126). If is not

compatible with any of a scheduled product then that trial is eliminated and the

algorithm returns to step 9 to select another trial value. The other difference in the procedure

of stage m versus that of stage 1 is the starting points of the searches during the look-ahead

phase. In stage 1 for each new tj the starting point for the search over the values of are

initialized to T'. However, once an exclusion zone, <t< J'"~^, is determined
sw ' ' w w ^ w '

for at stage m-1 there is no need to consider any in that exclusion zone unless the

partial schedule C2^_i is changed. Thus, the two searches over at stage m begin

at and for each new trial t .
W

As is done in stage 1, step 10 must be revised to take advantage of the cost lower bounds

zz = z,{j:)\ (376)

The revised cycle time bounds fi-om step 10 may lead to revised lower and upper search zones

for one or more products w = m + ly • ■y n. If there is an unscheduled product where

one, and only one, of its revised search zones is null but the previous version of that search

zone was not null, then the cost lower bounds given by (376) must be computed again. Ifthe

204



revised cost bounds for one or more of the unscheduled products is greater than the previous

cost bound then these revised cost bounds are used to compute new cycle time boimds for

each of the unscheduled products. This iterative procedure continues until there is no

increase in the cost lower bounds given by (376).

If there is at lease one of the unscheduled products where both of its search zones are nuU,

then the trial cycle time can be eliminated. In this case the algorithm returns to step 9 to

select another trial cycle time. Otherwise, the revised algorithm goes to step 11 to select a

delay time for product m.

Improvements 2: Three-Products Compatibility

Lemmas 8 and 9 in chapter 7 provide two sets of necessary conditions that any feasible full

schedule must satisfy. Both sets of these conditions are based on the results of theorem 6 on

conditions for the three-products GCM. These conditions require more effort to apply than

the two-products conditions used in improvement 1. Thus, the algorithm test whether the

three-products conditions are satisfied only after the actions of improvement 1 have been

completed.

The mechanics of improvement 2 is to insert a step lO.B into stage m of the algorithm to

implement the three-products tests. At this point the algorithm has generated the partial

schedule Q„_i = {ti, i= 1, •••, m- and has selected a trail t^. The algorithm
has also identified, for each unscheduled product i= m + 1, • • •, n, a lower search

205



zone < 7) < Xf or has shown that this lower search zone is null. A similar statement

is true for the upper search zone < 7] < T^. Let

={i|xr ̂  T^} and c{/|/r ̂  c}-

Observe that has not been selected at this point in the algorithm. The three-products

tests are performed before selecting to reduce the number of delay times that must be

generated by the algorithm.

The following test are performed by step lO.B:

1. If m> 3 then this step tests whether tj, d^, for each
/, j= 1, 2, •••, m- 1, jy satisfy the conditions of lemma 9.

Observe that both d^ and dj have been assigned values so lemma 9 is the

appropriate test. If there is a pair of products L j such that the conditions of

lemma 9 are not satisfied then is eliminated so the algorithm returns to

step 9 to select another trial

2. If m> 2 this step tests whether for each

i= ly 2y •••, m - 1 and each j e 0^y satisfythe conditions oflemma 8.

If there is a pair of products i, j such that t.y Xj j do not satisfy
lemma 8 then the current value of X" is eliminated.

J

3. If m> 2 this step tests whether t.y for each

/ = ly 2y ••• y ttt — 1 aud cach j G 0" y satisfy the conditions of lemma 8.

206



If there is a pair of products /, j such that i., /"j do not satisfy
lemma 8 then the current value of J"* is eliminated.

]

4. If ot>5 this step tests whether tj, for each pair

i,j = 1, 2, m- 1, j, and each k g 6" satisfies the conditions

of lemma 9. If there is a pair of products i, j such that the conditions of

lemma 9 are not satisfied then L" is eliminated.

5. If m> 3 this step tests whether tj, for each pair

i,j =1,2, m - 1, iV j, and each k ̂0^ , satisfy the conditions

of lemma 9. If there is a pair of products i, j such that the conditions of

lemma 9 are not satisfied then is eliminated.

After completmg these tests ifnone of the X", have been eliminated the algorithm goes

to step 11. On the other hand, if there is an unscheduled product w where both the lower and

upper search zones are now nuU then is eliminated and the algorithm returns to step 9 to

select another trial Otherwise, the algorithm returns to step 9.B to conduct the

two-products tests on the revised limits L", J".

Improvement 3: Four-Products Compatibility

Lemmas 10 and 11 in chapter 8 also provides two sets of necessary conditions that any

feasible full schedule must satisfy. Both sets of these conditions are based on the necessary

conditions of theorem 7 on conditions for the four-products GCM. These four-products

207



conditions require even more eflFort to apply than the three-products conditions of

improvement 2. Thus, the algorithm test whether the four-products conditions are satisfied

only after the algorithm leaves step lO.B for step 11 as described in improvement 2.

The mechanics of improvement 3 parallel those of improvement 2. The tests and resulting

actions required to implement the four-products condition are implemented by inserting a

step lO.C between step lO.B and step 11. Step lO.C is a straightforward adaptation of

step lO.B.

Improvement 4: Skipping with Euclid

Improvement 4 is a marvelous method for improving the efficiency of the searches for

compatible cycle times in steps 7,7.B, 9 and 9.B of improvement 1. Rather than check each

tj of an unscheduled product i for compatibility with that was specified at an earlier

stage m it is possible to skip many values of This skipping method is based on Euclid's

algorithm for finding the greatest common divisor of two integers.

To illustrate, suppose that a trial , A: = i, • • ■, w, has been selected at stage m and that

it is being tested against i < m to determine if these two cycle times satisfy the

necessary condition (126). Applying this test requires determining the greatest common

divisor of and t.. The first iteration ofEuclid's algorithm is an application of the division

algorithm that yields

t, = + Yi (377)

208



when t.> t. and
I — k

h = cik^i + Yk

when > /, where ;k,-, > 0, y, < and

If y. - 0 when /. > then gcd(t^, = t^; thus, to satisfy (126) > q. + q^.

Clearly, to be compatible, /. and must satisfy

tk^9k + s.- + [pdiY (379)

and

/, >q, + Si + [pdiY (380)

where is a previously specified value. Bounds (379) and (380) must be satisfied when the

cycle time bounds 7)" and JT, i = m+1 j •••, n are set at stage

m= 1, 2 f • • •, n — 1. Henceforth, it is assumed that steps 7,7.B, 9 and 9.B are modified

to enforce these bounds as each trial cycle times t is selected and when the
^  nt

limits L" and are determined. Thus, for the remainder of the discussion of

improvement 4, it is assumed that \'iy^ = 0 or yi^ = 0 then are compatible.

Now suppose that y^ is such that

0<yi<qi + q,' (381)

209



Let y/ be thejth residual ofEucIid's algorithm when finding gcd{Ti, A well known

result fi-om linear algorithm states that if any of the residuals, y /, of Euclid's algorithm are

greater than zero then

a« = gcd(r„r.)<y/. (382)

Hence, if (381) is true then t. is not compatible with so can be eliminated. This means

that the trial cycle time t. can be eliminated as soon as any residual of Euclid's algorithm is

found that is less than

The last observation improves the efficiency of the algorithm because, for many

incompatible , it will not be necessary to preform all steps ofEuclid's algorithm. However,

there is an even more powerful ramification of (381). Suppose that tj > and the

algorithm is searching upward in the upper search zone of product i when a

residual y. satisfying (381) is found. (Note that y . = y]. The superscript 1 is dropped to

simplify the notation.) Then fi-om (377) it is clear that aU values of T- fi"om t. to + zl)

where

^ = (<?/ + Qk-ri-^)

can be skipped. That is, all 7) in the range , t. + zl j are incompatible with As will
be explained next, Euclid's algorithm yields four different "skipping" values.

The searches of step 7, 7.B, 9 and 9.B all presume that cycle times

^2* ly 2f •••, n - 1, have been specified. The object of each search

210



is to find a value of 7]-, i> m, that is compatible vsdth all tf^y k — ly •••, m.

Improvement 4 divides each search into two phases.

The first phase is an iterative "skipping" procedure that starts at A: = i and at some initial

value of 7]. = . Then the first iteration of Euclid's algorithm yields the residual

y  j = i or k. If Yj > Qi + q„ then the algorithm repeats this step for product A + i if

k<m and for product 1 if /r = m. The algorithm continues this cyclical procedure until m

consecutive residuals y. satisfy y j > q. + It then goes to phase 2 of the search.

On the other hand, <y q^ + it is possible to skip one or more values of 7) by

adding a A to the current trial value The size of this A depends on whether the search

is being made downward in the lower search zone or upward in the upper search zone. It also

depends on whether or vice versa. The table in figure 20 gives the proper A for

each of the four combinations of these conditions.

Lower Search Zone

Searching Downward

Upper Search Zone

Searching Upward

h > h -Yi [{9k + Si - Yi + A)r

—'V
+

1 1
 1I

+

Figure 21 - Skip Values if Yj <

211



Of course, if this procedure causes f. to skip by T^ or T„. then the lower or upper search

zone, respectively, is null. As stated above the skipping procedure continues until it finds m

consecutive residuals > q. + j = i or j = k. Once this occurs the algorithm goes

to phase 2 of improvement 4.

Phase 2 is a straightforward application of Euclid's algorithm. This phase uses Euclid's

algorithm to find the greatest common of tf and for k= /, 2, If any positive

residual for any product k is found that is less than q^ + then tj is eliminated by setting

the next trial value of 7] = /,• + 7. The algorithm then returns to phase 1 of inprovement 4

with the new starting value for 7]-. If the greatest common divisor is found for all pairs

ti, k = ly 2, •••, m then all satisfy (126). In this case the algorithm returns

to step 7.B or 9.B.

212



CHAPTER 10

NUMERICAL RESULTS

The basic GCM algorithm in chapter 9 was coded in a compiled version of the Basic

programming language. To simplify the program the algorithm to solve Bomberger's BPM

given in chapter 4 was not coded. Likewise, improvements 2 and 3 to the GCM algorithm

were not included in the code.

This computer program was used to solve three example problems proposed by

Bomberger [4]. The model parameters for these three problems are given in Figures 22, 23

and 24. Bomberger constructed these data to have a facility utilization of 22 percent in

problem 1, 66 percent in problem 2, and 88 percent in problem 3.

To replace the upper bounds provided by the BPM algorithm, Bomberger's published results

were used as initial upper boimds for the problems. The two-products BPM lower bounds

were replaced with the sum of the single-product EMQ optimals. To measure the usefulness

of the BPM algorithm the problems were also solved with the initial upper bounds set to

Hanssman's [42] CCM results for each probleiiL

To simplify the execution ofhis algorithm Bomberger used an eight hour day as the basic time

unit. However, the setup times of all three problems are given in hours. Hence, it seems that

a time unit if an hour or a fraction of an hour is more natural. A time unit of one hour was

213



Part

No.

Setup
Cost

Inventory
Cost

Inventory
Cost per
Hour

Hourly
Production

Rate

Hourly
Demand

Rate

Setup
Time

$ per

set up

$ per
part per

br. times

10,000

$ per hr.
times 10,000

Parts per
hr.

Parts per
hr.

Hours

per

setup

i Ci h Pi fi

1 15 0.00339 0.02109 3,750.00 12.50 1

2 20 0.06120 0.37771 1,000.00 12.50 1

3 30 0.06641 0.81260 1,187.50 25.00 2

4 10 0.05208 1.23264 937.50 50.00 1

5 110 1.45052 1.79502 250.00 2.50 4

6 50 0.13932 0.17357 750.00 2.50 2

7 310 0.78125 0.29224 300.00 0.75 8

8 130 3.07292 15.25747 162.50 10.63 4

9 200 0.46875 2.38440 250.00 10.63 6

10 5 0.02083 0.12934 1,875.00 12.50 1

Figure 22 — Model Parameters of Bomberger's Problem 1

214



Part

No.

Setup
Cost

Inventory
Cost

Inventory
Cost per
Hour

Hourly
Production

Rate

Hourly
Demand

Rate

Setup
Time

$ per

set up

$ per
part per
hr. times

10,000

$ per hr.
times 10,000

Parts per
hr.

Parts per
hr.

Hours

per

setup

i h, Pi ^i Si

1 15 0.00339 0.06284 3,750.00 37.50 1

2 20 0.06120 1.10443 1,000.00 37.50 1

3 30 0.06641 2.33296 1,187.50 75.00 2

4 10 0.05208 3.28125 937.50 150.00 1

5 110 1.45052 5.27627 250.00 7.50 4

6 50 0.13932 0.51724 750.00 7.50 2

7 310 0.78125 0.87231 300.00 2.25 8

8 130 3.07292 39.36805 162.50 31.88 4

9 200 0.46875 6.51819 250.00 31.88 6

10 5 0.02083 0.38281 1,875.00 37.50 1

Figure 23 - Model Parameters of Bomberger's Problem 2

215



Part

No.

Setup
Cost

Inventory
Cost

Inventory
Cost per
Hour

Hourly
Production

Rate

Hourly
Demand

Rate

Setup
Time

$ per

set up

$ per
part per
hr. times

10,000

$ per hr.
times 10,000

Parts per
hr.

Parts per
hr.

Hours

per

setup

i h, Pi n

1 15 0.00000 0.00001 3,750.00 50.00 1

2 20 0.00001 0.00015 1,000.00 50.00 1

3 30 0.00001 0.00030 1,187.50 100.00 2

4 10 0.00001 0.00041 937.50 200.00 1

5 110 0.00015 0.00070 250.00 10.00 4

6 50 0.00001 0.00007 750.00 10.00 2

7 310 0.00008 0.00012 300.00 3.00 8

8 130 0.00031 0.00482 162.50 42.50 4

9 200 0.00005 0.00083 250.00 42.50 6

10 5 0.00000 0.00005 1,875.00 50.00 1

Figure 24 — Model Parameters of Bomberger's Problem 3

216



elected for all problems and Bomberger's model parameters were converted to the hourly

values shown in Figures 22, 23 and 24.

Reducing the time tinit will usually reduce the optimal cost fotmd by the GCM algorithm.

These improved results are expected because the smaller time unit gives the GCM more

flexibility. However, it is also expected that the computer efifort required to solve each

problem vvdll be significantly greater when time is measured on an hourly basis rather than a

daily basis. Where appropriate, Bomberger's and Hanssman's results are expressed in terms

of an hourly time unit in the figures below.

As explained in chapter 9 an acceptable small value must be subtracted from each new upper

bound found by the algorithm to assure these upper bounds are a strictly monotonically

decreasing series. This is implemented in the computer program by multiplying each new

upper bound by the fector A A oi 0.001 was used when solving all three

problems.

The optimal costs for each problem obtained from the computer program is shown in

Figure 25. These results are compared with Hanssman's and Bomberger's results. As

expected, the difference between Bomberger's results and these of the GCM algorithm

widens as the facility utilization increases. The GCM offers significantly better schedules than

the BPM for problems 2 and 3.

217



Problem Utilization Hanssman' Bomberger Results Improvement

Number sCCM 'sBPM from over

Algorithm Bomberger

( $ / hour )* ( $ / hour )* ( $ / hour )* (%)

1 0.22 2.8128 2.1180 2.1103 0.4

2 0.66 4.5848 3.7263 3.4994 6.1

3 0.88 5.1203 4.5618 3.9395 13.6

* There are eight hours per day.

Figure 25 - Comparison of Average Hourly Cost

The cycle times and delay times of the optimal schedules found for each problem are shown

in Figures 26, 27 and 28. The GCM cycle times are compared with those obtained by

Hanssman's and Bomberger's.

The times to solve each of Bomberger's problems on a personal computer is shown by

Figure 29. Each problem was solved twice: jSrst with Hanssman's and then with Bomberger's

optimal cost as the initial upper boimd. Figure 29 provides a measure of the benefits offered

by the BPM algorithm of chapter 4.

Another, perhaps better, measitre of the computational effort required by each case of each

problem is shown in figures 30, 31 and 32. As explained in chapter 9, a stage m, except

m = 1 ot m = n, can be entered only fi"om the previous stage m-1, the next stage m + l,ov

rarely, fi-om stage n after a new upper bound is found. Figures 30, 31 and 32 show the

number of times each stage is entered fi-om the immediately previous stage and fi-om the

218



Product Integer
Lower

Bound

Hanssman's

Integer
Solution

Bom belter
Results

Results from Algorithm

Cycle

Times

Delay

Times

(hours) (hours) (hours) (hours) (hours)

1 2,667 626 2,560 2,619 709

2 728 626 640 776 273

3 608 626 640 582 403

4 285 626 320 291 24

5 783 626 800 776 177

6 1,697 626 1,760 1,746 1,000

7 3,257 626 3,200 3,298 629

8 292 626 320 291 0

9 916 626 800 873 359

10 622 626 640 485 189

Figure 26 - Comparison of Cycle Times for Problem 1

219



Product Integer
Lower

Bound

Hanssman's

Integer
Solution

Bombeiger
Results

Results from Algorithm

Cycle

Times

Delay |
Times H

(hours) (hours) (hours) (hours) (hours) 1

1 1,545 384 1,680 1,086 964

2 426 384 280 1,629 403

3 359 384 280 362 328

4 175 384 280 362 41

5 457 384 280 181 337

6 983 384 280 543 434

7 1,885 384 1,400 1,810 456

8 182 384 280 181 0

9 554 384 560 543 117

10 361 384 280 543 509

Figure 27- Comparison of Cycle Times for Problem 2

220



Product Integer
Lower

Bound

Hanssman's

Integer
Solution

Bombetger
Results

Results from Algorithm

Cycle

Times

Delay

Times |

(hours) (hours) (hours) (hours) (hours)

1 1,545 344 320 1,494 48

2 426 344 320 332 289

3 359 344 320 332 123

4 175 344 320 166 86

5 457 344 320 332 104

6 983 344 320 747 153

7 1,885 344 320 1,660 971

8 182 344 960 166 0

9 554 344 320 498 381

10 361 344 320 332 225
1

Figure 28- Comparison of Cycle Times for Problem 3

221



Problem Initial Upper Bound

Hanssman (seconds) Bomberger (seconds) Improvement Ratio

1 11 6 1.8

2 1,996 35 57.0

3 1,451 297 4.9

Figure 29 - Computer Time Required to Find Optimal

higher number stages. The initial upper bound did not effect the number of times each stage

is executed to solve problem 1. This result is probably due to the low facility utilization of

problem 1. However, as shown by figures 31 and 32, the initial upper bound has a huge effect

on the number of stage executions required to solve Bomberger's problem 2 and 3 where

there is a moderate to high facility utilization.

Figures 30, 31 and 32 also show the assignment of Bomberger's products to stages of the

GCM algorithm. These assignments were determined off-line and included as input to the

computer program. These assignments were not changed during execution of the GCM

program.

222



Initial Up per Bound

Bomberger Hansmann

Stage Product Entered

From

Previous

Stage

Entered

From Next

Stage

Entered

From

Previous

Stage

Entered

From Next

Stage

1 8 0 1 0 1

2 4 1 251 1 251

3 9 251 387 251 387

4 5 387 76 387 76

5 3 76 148 76 148

6 2 148 42 148 42

7 10 42 2 42 2

8 6 2 420 2 420

9 7 420 274 420 274

10 1 274 0 274 0

Figure 30 - Stage Executions for Problem 1

223



Initial Up[)er Bound

Bomberger Hansmann

Stage Product Entered

From

Previous

Stage

Entered

From Next

Stage

Entered

From

Previous

Stage

Entered

From Next

Stage

1 8 0 19 0 19

2 9 19 198 19 198

3 5 198 35 198 42

4 4 35 26 42 26

5 3 26 1 26 42

6 2 1 300 42 17,261

7 7 300 216 17,261 1,092,0488

8 6 216 33 1,092,0488 635,523

9 10 33 75 635,523 86

10 1 75 0 86 0

Figure 31 - Stage Executions for Problem 2

224



Initial Up[)er Bound

Bomberger Hansmann

Stage Product Entered

From

Previous

Stage

Entered

From Next

Stage

Entered

From

Previous

Stage

Entered

From Next

Stage

1 8 0 11 0 12

2 9 11 249 12 84

3 5 249 23,097 84 7,879

4 4 23,097 108,555 7,879 23,102

5 3 108,555 35,482 23,102 17,194

6 2 35,482 23,973 17,194 20,089

7 7 23,973 7,969 20,089 331,622

8 6 7,969 294,369 331,622 387,581

9 10 294,369 2,275 387,581 322

10 1 2,275 0 322 0

Figure 32 - Stage Executions for Problem 3

225



REFERENCES

226



REFERENCES

1. Axsater, S., (Feb, 1987), Extension of the extended basic period approach for

economic lot scheduling problems, Journal Optimization Theory and Applications,

Vol. 52, No. 2, pp. 179-189.

2. Baker, K.R., (May, 1970), On Madigan's approach to deterministic multi-product

production and inventory problem. Management Science, Vol. 16, No. 9,

pp. 636-638.

3. Doctor, F. F., (Jul, 1982), The two-product, single-machine, static demand, infinite

horizon lot scheduling problem. Management Science, Vol. 28, No. 7, pp. 798-807.

4. Bomberger, E. E., (Jul, 1966), A dynamic programming approach to a lot size

scheduling problem. Management Science, Vol. 12, No. 11, pp. 778-784.

5. Bourland, K. E., and Yano, C. A., (Dec, 1994), The strategic use of slack capacity

in the economic lot scheduling problem with random demand. Management Science,

Vol. 40, No. 12, pp. 1690-1704.

6. Bourland, K. E., and Yano, C. A., (Feb, 1997), A comparison of solutiion

approaches for the fixed-sequence economic lot scheduling problem, HE

Transactions, Vol. 29, No. 2, pp. 103-108.

227



7. Carreno, J. J., (Mar, 1990), Economic lot scheduling for multiple products on parallel

identical processors, Management Science, Vol. 36, No. 3, pp. 348-358.

8. Cook, W. D., Saipe, A. L., and Seiford, L. M., (1983), Production runs for multiple

products: The full-capacity heuristic. Journal of the Operational Research Society,

Vol. 31, No. 5, pp. 405-412.

9. Crowston, N. B., Wagner, M., and Williams, J. F., (Jan, 1973), Economic lot size

determination in multi-stage assembly systems. Management Science, Vol. 19, No. 5,

pp. 517-527.

10. Davis, S. G., (Aug, 1990), Scheduling economic lot size (ELS) production runs.

Management Science, Vol. 36, No. 8, pp. 985-998.

11. Davis, S. G., (1995), An improved algorithm for solving the economic lot size

problem (ELSP), International Journal of Production Research, Vol. 33, No. 4,

pp. 1007-1026.

12. Delporte, C. M., and Thomas, L. J., (Jun, 1977), Lot sizing and sequencing for N

products on one facility. Management Science, Vol. 23, No. 10, pp. 1070-1079

13. Ditt, S., and Kuhn, H., (Jun, 1997), An improved algorithm for solving the economic

lot size problem (ELSP): A note. International Journal of Production Research,

Vol. 35, No. 6, pp. 1785-1787.

228



14. Dobson, G., (Sep-Oct, 1987), The economic lot scheduling problem: achieving

feasibility using time-varying lot sizes, Operations Research, Vol. 35, No. 5,

pp. 764-771.

15. Doll, C. L., and Whybark, D. C., (Sep, 1973), An iterative procedure for the

single-machine multi-product lot scheduling problem. Management Science, Vol. 20,

No. 1, pp. 50-55.

16. Eilon, S., (1959), Economic batch-size determination for multi-product scheduling.

Operations Research Quarterly, Vol. 10, No. 4, pp. 217-227.

17. El-Najdawi, M. K., (Apr, 1992), A compact heuristic for lot-size scheduling in

multi-stage, multi-product production processes, IntemationalJournal of Production

Economics, Vol. 27, No. 1, pp. 29-41.

18. El-Najdawi, M. K., and Kleindorfer, P. R., (Jul, 1993), Common cycle lot-size

scheduling for multi-product, multi-stage production. Management Science, Vol. 3 9,

No. 7, pp. 872-885.

19. El-Najdawi, M. K., (Jun, 1994), A job-sphtting heuristic for lot-size scheduling in

multi-stage, multi-product production processes, European Journal of Operational

Research, Vol. 75, No. 2, pp. 365-377.

20. Elmaghraby, S. E., (Feb, 1978), The economic lot scheduling problem (ELSP):

review and extensions. Management Science, Vol. 24, No. 6, pp. 587-598.

229



21. Elmaghraby, S., and Eliman, A., (Mar, 1980), Knapsack based approaches to the

makespan problem on multiple processors, AIEE Transactions, Vol. 12, No. 1,

pp. 87-99.

22. Fujita, S., (Dec, 1978), The application of marginal analysis to the economic lot

scheduling problem, AIEE Transactions, Vol. 10, No. 4, pp. 354-361.

23. Gallego, G., (Jun, 1990), An extension to the class of easy economic lot scheduling

problems, HE Transactions, Vol. 22, No. 2, pp. 189-190.

24. Gallego, G., and Moon, I., (1992), The effect ofexternalizing setups in the economic

lot scheduling problem. Operations Research, Vol. 40, No., pp. 614-619.

25. Gallego, G., and Roundy, R., (1992), The extended economic lot scheduling

problem. Naval Research Logistics Quarterly, Vol. 39, No., pp. 729-829.

26. Gallego, G., and Shaw, D. X., (Feb, 1997), Complexity of the ELSP with general

cyclic schedules, HE Transactions, Vol. 29, No. 2, pp. 109-113.

27. Galvin, T. M., (Jan-Mar, 1987), Economic lot scheduling problem with

sequence-dependent setup costs. Production and Inventory Management, Vol. 28,

No. 1, pp. 96-105.

28. Galvin, T. M., and Van Deusen, D. L., (Apr-Jun, 1988), Interactive economic lot

scheduling; A successful implementation. Production and Inventory Management,

Vol. 29, No. 2, pp. 1-5.

230



29. Geng, P. C., and Vickson, R. G., (1988), Two heuristics for the Economic Lot

Scheduling Problem: An experimental study. Naval Research Logistics Quarterly,

Vol. 35, No., pp. 605-617.

30. Glass, C. A., (Oct, 1992), Feasibility of scheduling lot sizes ofthree products on one

machine. Management Science, Vol. 38, No. 10, pp. 1482-1492.

31. Goyal, S. K., (1973), Scheduling a multi-product single-machine system. Operations

Research Quarterly, Vol. 24, No., pp. 261-266.

32. Goyal, S., (1975), Scheduling a multi-product single machine system - A new

approach. International Journal of Production Research, Vol. 13, No. 5,

pp. 487-493.

33. Goyal, S. K., (1984), Determination of economic production quantities for a

two-product single machine system. Operations Research Quarterly, Vol. 22, No.,

pp. 121-126.

34. Graves, S. C., (Mar, 1979), On the deterministic demand multi-product single

machine lot scheduling problem. Management Science, Vol. 25, No. 3, pp. 276-280.

35. Graves, S. C., (Sep, 1980), The multi-product production cycling problem, AIEE

Transactions, Vol. 12, No. 3, pp. 233-240.

231



36. Gray, J. R. (Oct. 1973), Economic Manufacturing Quantities for a Multi-product,

Single Facility System, Proceedings: Ninth Annual Meeting Southeastern Chapter,

The Institute ofManagement Sciences, Vol. 3, pp 285-297.

37. Gunasekaran, A., Goyal, S. K., Martikainen, T., and Yli, O.P., (Mar, 1993),

Multi-level lot-sizing in a rayon yam company: a case study, European Journal of

Operational Research, Vol. 65, No. 2, pp. 159-174.

38. Haessler, R. W., (Dec, 1971), A Note on Scheduling a Multi-Product Single

Machine System for an Infinite Planning Period, Management Science, Vol. 18,

No. 4, Part 1 of 2, pp. B240-B241.

39. Haessler, R, and Hogue, S., (Apr, 1976), A note on the single-machine,

multi-product lot scheduling problem. Management Science, Vol. 22, No. 8,

pp. 909-912.

40. Haessler, R. W., (Dec, 1979), An improved extended basic period procedure for

solving the economic lot scheduling problem, AIEE Transactions, Vol. 11, No. 4,

pp. 336-340.

41. Haji, R., and Mansuri, M., (Mar-Apr, 1995), Optimum common cycle for scheduling

a single-machine Multi-product system with a budgetary constraint. Production

Planning and Control, Vol. 6, No. 2, pp. 151-156.

232



42. Hanssman, F., (1962), Operations Research in Production and Inventory Control,

John Wiley and Sons Inc., New York, New York, pp. 155-160.

43. Hodgson, T. J., (Mar, 1970), Addendum to Stankard and Gupta's Note on Lot Size

Scheduling, Management Science, Vol. 16, No. 7, pp. 514-517.

44. Hodgson, T. J., and Nuttle, H. L. W., (1986), A note on linear progrartmiing and the

single machine lot size scheduling problem. International Journal of Production

Research, Vol. 24, No., pp. 939-943.

45. Hottenstein, editor, M. P., (1968), Models and Analysis for Production

Management, International Textbook Company, Scranton, Permsylvania, pp. 511 -549.

46. Houshyar, A., (Jun, 1991), Optimal cycle time in a multi-product single machine with

unit load, and storage space considerations. Computers in Industry, Vol. 16, No.,

pp. 197-208.

47. Hsu, W. L., (Jan, 1983), On the general feasibility of scheduling lot sizes on several

product on one machine, Management Science, Vol. 29, No. 1, pp. 93-105.

48. Hwang, H., and Moon, D. H., (1991), A production inventory model for producing

two-products at a single facility with deteriorating raw material. Computers and

Industrial Engineering, Vol. 20, No. 1, pp. 141-147.

49. Jones, P. C., and Inman, R. R., (Mar, 1989), When is the economic lot scheduling

problem easy?, HE Transactions, Vol. 21, No. 1, pp. 11-20.

233



50. Khouja, M., (Jan, 1997), The scheduling of economic lot sizes on volume flexible

production systems, InternationalJournal of Production Economics, Vol. 48, No. 1,

pp. 73-86.

51. Kim, K. M., and Hwang, H., (1991), Integrated production inventory model with a

powers-of-two restriction. Computers and Industrial Engineering, Vol. 20, No. 1,

pp. 149-153.

52. Kim, S. L., Hayya, J. C., and Hong, J., (1995), Setup reduction and machine

availability. Production Operations Management, Vol. 4, No., pp. 76-90.

53. Koulamas, C., (Get, 1995), Application of ELS? solution techniques to the

deterministic robotic scheduling problem. International Journal of Production

Research, Vol. 33, No. 10, pp. 2933-2944.

54. Krone, Jr., L. H., (Apr, 1964), A Note on Economic Lot Sizes for Multi-Purpose

Equipment, Management Science, Vol. 10, No. 3, pp. 461-464.

55. Larraneta, J., and Onieva, L., (Apr, 1988), The economic lot scheduling problem: a

sin:q)le approach. Journal of the Operational Research Society, Vol. 39, No. 4,

pp. 373-379.

56. Lasdon, L., and Terjung, R., (1971), An eflScient algorithm for multi-item scheduling.

Operations Research, Vol. 19, No., pp. 946-969.

234



57. Leachman, R. C., and Gascon, A., (Mar, 1988), A heuristic scheduling policy for

multi-item, single-machine production systems with time-varying stochastic demands.

Management Science, Vol. 34, No. 3, pp. 377-390.

58. Leachman, R. C., Xiong, Z. K., Gascon, A., and Park, K., (Sep, 1991), An

improvement to the dynamic cycle lengths heuristic for scheduling the multi-item,

single machine. Management Science, Vol. 37, No. 9, pp. 1201-1205.

59. Madigan, J. G., (Jul, 1968), Scheduling a Multi-Product Single Machine System for

an Infinite Planning Period, Management Science, Vol. 14, No. 11, pp. 713-719.

60. Marme, A., (Jan, 1958), Programming of economic lot sizes. Management Science,

Vol. 4, No. 2, pp. 115-135.

61. Matsuo, H., (Oct, 1990), Cyclic sequencing problems in the two-machine

permutation flow shop; complexity, worst-case, and average-case analysis. Naval

Research Logistics, Vol. 37, No. 5, pp. 679-694.

62. Matthews, J. P., (1988), The optimality of the zero-switch rule for a class of

economic lot-scheduling problems. Journal of the Operational Research Society,

Vol. 39, No. 12, pp. 1155-1161.

63. Maxwell, W. L., (Jun-Sep, 1964), The Scheduling of Economic Lot Sizes, Naval

Research Logistics Quarterly, Vol. 11, No., pp. 89-124.

235



64. Maxwell, W., and Singh, H., (Sep, 1983), The effect of restricting cycle times in the

economic lot scheduling problem, AIEE Transactions, Vol. 15, No. 3, pp. 235-241.

65. Maxwell, W. L., and Singh, H., (May-Jun, 1986), Scheduling cyclic production on

several identical machines, Operations Research, Vol. 34, No. 3, pp. 460-463.

66. Moon, I., Gallego, G., and Simchi-Levi, D., (Dec, 1991), Controllable production

rates in a family production context, InternationalJournal of Production Research,

Vol. 29, No. 12, pp. 2459-2470.

67. Narro Lopez, M. A., andKingsman, B. G., (Get, 1991), The economic lot scheduling

problem. International Journal of Production Economics, Vol. 23, No. 1,

pp. 147-164.

68. Park, K. S., and Yun, D. K., (Dec, 1984), A stepwise partial enumeration algorithm

for the economic lot scheduling problem, HE Transactions, Vol. 16, No. 4,

pp. 363-370.

69. Park, K. S., and Yun, D. K., (1985), Optimal scheduling of periodic activities.

Operations Research Quarterly, Vol. 33, No. 3, pp. 690-695.

70. Park, K. S., and Yun, D. K., (Jun, 1987), Feasibility test for multi-product lot size

scheduling on one fecility. International Journal of Policy and Information, Vol. 11,

No. l,pp. 101-108.

236



71. Parsons, R. J., (Jui, 1966), Multi-product lot size determination when certain

restrictions are active. Journal of Industrial Engineers, Vol. 17, No. 7, pp. 360-365.

72. Qiu, J., and Loulou, R., (Feb, 1995), Multi-product production/inventory control

imder random demands, IEEE Transactions on Automatic Control, Vol. 40, No. ,

pp. 350-356.

73. Rogers, J., (Apr, 1958), A Computational Approach to the Economic Lot

Scheduling Problem, Management Science, Vol. 4, No. 3, pp. 264-291.

74. Roundy, R., (Dec, 1989), Roimding off to powers of two in continuous relaxations

of capacitated lot sizing problems. Management Science, Vol. 35, No. 12,

pp. 1433-1442.

75. Saipe, A. L., (Aug, 1977), Production runs for multiple products: the two product

heuristic. Management Science, Vol. 23, No. 12, pp. 1321-1327.

76. Salveson, M. E., (Feb, 1953), Mathematical Theory of Production, Jotumal of

Industrial Engineering, Vol. 4, No. 1, pp. 35877.

77. Schweitzer, P. J., and Silver, E. A., (1983), Mathematical pitfalls in the one machine

multi-product economic lot scheduling problem. Operations Research, Vol. 31, No.,

pp. 401-405.

78. Schweitzer, P. J., and Seidmann, A., (Apr, 1991), Optimizing processing rates for

flexible manufacturing systems. Management Science, Vol. 37, No. 4, pp. 454-466.

231



79. Stankard, Jr, M. F., and Gupta, S. K., (Mar, 1969), A Note on Bomberger's

Approach to Lot Size Scheduling: Heuristic Proposed, Management Science, Vol. 15,

No. 7, pp. 449-452.

80. Vemuganti, R. R., (Nov, 1978), On the feasibility of scheduling lot sizes for two

products on one machine. Management Science, Vol. 24, No. 15, pp. 1668-1673.

81. Vemuganti, R. R., (Dec, 1987), The maximum value of inventoiy and storage in

production lot size systems, HE Transactions, Vol. 19, No. 4, pp. 404-411.

82. Vemuganti, R. R., Arsham, H., and Shao, Jr., S. P., (1989), An implementation of

Lagrangian decomposition in solving a multi-item production scheduling problem with

changeover cost and restrictions. Mathematical and Computer Modeling, Vol. 12,

No.

83. Ware, N., and Keown, B., (Jan-Mar, 1987), Common cycle scheduling: A successful

application. Production and Inventory Management, Vol. 28, No. 1, pp. 16-22.

84. Zipkin, P. H., (Jan-Feb, 1986), Models for design and control of stochastic

multi-item batch production systems. Operations Research, Vol. 34, No. 1,

pp. 91-104.

85. Zipkin, P. H., (Jan-Feb, 1991), Computing optimal lot sizes in the economic lot

scheduling problem. Operations Research, Vol. 39, No. 1, pp. 56-63.

238



VITA

John Roy Gray was bom in Obion, Tennessee on January 12, 1942. He attended school in

Obion where he graduated from Obion High School in May of 1960. He entered the

University of Tennessee at Martin in September of 1960 and two years later transferred to the

University of Tennessee at Knoxville where in Jime of 1964 he received a Bachelor of Science

in Electrical Engineering. After working for a year with Newport News Shipbuilding and Dry

Dock Company in Newport News, Virginia and for two years with the United States Air

Force in Mobile, Alabama he returned to the University of Tennessee at Knoxville to pursue

a graduate degree in Management Science. He received the Master of Science in

Management Science in August of 1969. In August of 1990 he re-entered the Graduate

School as a part-time student to pursue a Doctorate in Management Science. In December

of 1996, after working at the Department of Energy's Y-12 Plant for 27 years, he took early

retirement to return to the University of Tennessee full-time. He received the Doctor of

Philosophy in Management Science in May of 1999.

239


	The multi-products EMQ model
	Recommended Citation

	The multi-products EMQ model

