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Abstract

This research project examines Hebbian learning in recurrent neural networks

for natural language processing and attempts to interpret language at the level

of a two and one half year old child. In this project five neural networks were

built to interpret natural language: a Simple Recurrent Network with Hebbian

learning, a Jordan network with Hebbian learning and one hidden layer, a Jordan

network with Hebbian learning and no hidden layers, a Simple Recurrent Network

with back propagation learning, and a nonrecurrent neural network with back

propagation learning. It is known that Hebbian learning works well when the

input vectors are orthogonal, but, as this project shows, it does not perform well in

recurrent neural networks for natural language processing when the input vectors

for the individual words are approximately orthogonal. This project shows that,

given approximately orthogonal vectors to represent each word in the vocabulary

the input vectors for a given command are not approximately orthogonal and the

internal representations that the neural network builds are similar for different

commands. As the data shows, the Hebbian learning neural networks were unable

to perform the natural language interpretation task while the back propagation

neural networks were much more successful. Therefore, Hebbian learning does not

work well in recurrent neural networks for natural language processing even when

the input vectors for the individual words are approximately orthogonal.
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Chapter 1

Introduction

The purpose of this project is to study Hebbian learning in recurrent neural net

works for natural language processing. The Hebb rule was the first and is the

best known learning method for neural networks. Natural language is a language

which is natural to humans as opposed to a language such as binary which is

natural to computers. Language is learned by humans at such an early age that it

has become a fascinating field of study for many, myself included, in the artificial

intelligence community.

There have been thousands of papers written on the subject of natural lan

guage processing. Even before the advent of computers, linguistics researchers

were studying natural language. According to Websters Dictionary, "Linguistics

is the study of human speech including the units, nature, structure, and modifi

cation of language, languages, or a language". Linguistics includes the study of



phonetics, phonology, morphology, syntax, semantics, and pragmatics. Initially,

linguistics' research focused on the syntax and grammar of a particular language,

as well as how different languages related to one another. However, "the study of

language from a pragmatics perspective has come to be the most recent movement

in linguistics" [88]. Computational linguistics is the study of computer processing

of human language. Computational linguistics is a very active area of research.

At the IBM Watson Research Center one of the major areas of research is Natural

Computing. Natural Computing attempts to allow users to issue commands to

the computer in a manner which is "natural", using speech and gesture, as op

posed to using keyboard and mouse. While linguistics researchers are doing work

with computers, the field of linguistics is much larger than the use of computers

for natural language processing.

From linguistics and many other fields of study came the study of artificial

intelligence. "How can we make the computer behave intelligently?" was the

question that researchers asked. One of the areas of artificial intelligence where

much attention was focused was natural language processing. In artificial intelli

gence the focus of natural language processing is on the knowledge necessary to

understand language rather than the language elements themselves. Researchers

in artificial intelligence were interested in making a computer behave intelligently,

they were not interested in how natural language was carried out in the brain, and

these systems were not fault tolerant nor did they generalize well. The traditional



artificial intelligence approach, as this is called, is interested in the outcome, not

the process. The goal is to get a computer to output what you would like it to

output, for example, natural language. The goal is not to get the computer to

process language in the same manner in which the brain processes natural lan

guage. This approach is the symbolic approach and is discussed in greater detail

later. ,

In the 1950's and 1960's some work was done toward neural modeling for ar

tificial intelligence. The goal in neural modeling was to get the computer to learn

without the use of explicit rules. In other words, to get the computer to learn the

way that our brain learns. The following comes from An Introduction to Neural Networks

by Anderson [3]:

The first person who seems explicitly to have phrased a learning rule

in terms of synaptic change was Donald Hebb (1949) in his influential

book. Organization of Behavior. Hebb said, in a much-quoted sentence,

that what is critical for synaptic learning is a coincidence between ex

citation in the presynaptic and postsynaptic cells:

When an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A's efficiency as one

of the cells firing B, is increased.



The study of neural networks was a new branch of artificial intelligence which

sought to improve on the performance of the symbolic approach by building mod

els which more closely resembled the brain. This is called the subsymbolic, or

connectionist, approach. During the 1970's and most of the 1980's little work was

done using neural networks for natural language processing, but this field has had

a dramatic resurgence in the past ten years, beginning mostly with the work of

McClelland and Rumelhart [133], [96], and [95]. This is due to the introduction

of back propagation methods to neural networks, as will be discussed in Chapter

5.

Most of the previous work that has been done in natural language processing

has been done using the symbolic approach. In the symbolic approach, for the

most part, rules and look-up tables are applied to syntactic language units. An al

ternative to the symbolic approach is the subsymbolic, or connectionist approach.

In the connectionist approach, language units emerge from a subsymbolic repre

sentation of the data which does not necessarily correspond to syntax. There are

no explicit rules, but the computer learns the language by recognizing patterns

it has seen before, much like we learn language. Language units are connected

to one another through the activations that they send to one another to "learn"

to interpret the language. There are no specified rules of behavior, but many

patterns are presented to the system so that over time it learns the appropriate

output for a given input and hopefully learns to generalize to similar inputs that it



has not seen before. Such a system is called a neural network. A neural network,

according to Rumelhart and McClelland [133], is described as follows:

• A set of processing units

• A state of activation

• An output function for each unit

• A pattern of connectivity among units

• A propagation rule for propagating patterns of activities through the network

of connectivities

• An activation rule for combining the inputs impinging on a unit with the

current state of that unit to produce a new level of activation for the unit

• A learning rule whereby patterns of connectivity are modified by experience

• An environment within which the system must operate

Neural networks are attractive because they have properties in common with

the brain, such as massive parallelism, neuron-like computing units, synapse-like

weights, fault tolerance and adaptability. [13] They have shown themselves to be

more fault tolerant, error correcting, generalizable, and to degrade more gracefully

than corresponding symbolic systems. It is for these reasons that the approach

taken in this project uses the connectionist method of learning language. In



this project I have used a constraint satisfaction neural network to implement

the robot control system (to be described in more detail in Chapter 3). I have

used a recurrent neural network with Hebbian learning to implement the natural

language processor (to be described in more detail in Chapter 5). I have also used

a recurrent neural network with back propagation learning and a nonrecurrent

neural network with back propagation learning to implement the natural language

processor (also to be described in more detail in Chapter 5).

As mentioned previously, much work has been done recently in the field of

natural language processing. The artificial intelligence research in natural lan

guage processing has been through the use of three methodologies: the symbolic

approach, the subsymbolic approach, and a combination of the symbolic and sub-

symbolic approaches. In the following paragraphs, I will discuss some of the most

notable research which has been done using each of the three methodologies. I

will then narrow the focus down to those works which have been most infiuential

to this research project.

Timothy Potts' [121] symbolic approach made use of frames to represent lin

guistic expressions. Potts' research is similar to mine in that he uses the rooms

of a house to show his point. Among other symbolic natural language processing

works are those of Cottrell [29] and Ng and Lee [115] for word sense disambigua

tion. Also on the symbolic side of research is NPtool [151] which is able to extract

noun phrases from English texts. Much of the symbolic natural language process-



ing research in recent years has centered around the MUC systems. These systems

are a collaboration of many researches, mostly at the University of Massachusetts,

including Lehnert, Cardie, Fisher, McCarthy, and Soderland [82]. This project

takes a copy of text, such as newspaper print, and searches for specific topics. The

project has been quite successful and is continuously being improved upon.

A number of researchers have concluded that a combination of the symbolic

and subsymbolic methodologies is the solution to computers being able to solve

the natural language processing problem. Among them are Kwasny and Faisal

and Lehnert. Kwasny and Faisal [76] have developed CD? (Connectionist De

terministic Parser). CDF uses a winner-take-all neural network and a parsing

stack to parse sentences. Lehnert [84] has developed CIRCUS which uses stack

control for syntactic analysis of sentences and a combination of marker passing

and numeric relaxation for semantic analysis of sentences.

Finally, as previously mentioned, the subsymbolic approach to natural lan

guage processing has had a dramatic resurgence in the past twelve years. This

approach has been the main focus of this research as it is the approach that I

am taking. The first major triumph of the subsymbolic approach to processing

natural language was by Rumelhart and McClelland [134]. They built a neural

network to form regular and irregular past tenses of English verbs. This triumph

set off an explosion of research in the area. Lawrence, Giles, and Fong [79] built

a neural network which could classify natural language sentences as grammati-



cal or ungrammatical. McClelland and Kawamoto [94] used semantic features to

build a knowledge driven sentence interpreter with constraints from the world and

not linguistic representations. This is similar to this research project in that I am

using microfeatures and knowledge from the world rather than linguistic represen

tation. Elman [40] used a simple recurrent neural network, as I have used in this

project, to predict the next word in script-based stories. Wermter and Lehnert

[154] built NOCON (NOun phrase analysis with CONnectionist networks) which

learns semantic relationships between nouns. Berwick [11] used constraints, as I

am using in the robot control system, to learn the meanings of verbs. Hinton [60]

developed BoltzCONs which creates and manipulates symbol structures. Ferrell

[42] used a recurrent neural network to perform grammatical inference. This is

just a sampling of the tremendous amount of research that has been carried out in

subsymbolic natural language processing. I will now focus on those works which

most strongly influenced this research project.

The most notable recent natural language processing work is Risto Miikku-

lainen's DISCERN [103]. DISCERN is a modular neural network system that

learns to process simple stereotypical narratives. He uses a script-processing sys

tem for natural language. He also uses hierarchical trace feature maps to recognize

and store the scripts.

In addition to DISCERN, other works contributed greatly to the the inception

of this particular project. The first is Winograd's "blocks world" SHRDLU [158].



SHRDLU was a system built upon a microworld where the world is a set of blocks

of different shapes and sizes. The user entered commands to a simulated robot

to move the blocks around. The system was built entirely within the symbolic

framework and as such did not generalize well nor was it shown that it could

be expanded to solve more complicated problems. It did, however, show the

usefulness of a microworld for learning natural language.

Another project that contributed to the ideas behind this project is McClelland

and Rumelhart's rooms problem [95]. They built a neural network system using

constraint satisfaction which would take certain features of a given room and would

then fill in other features that fit that room description. This system did not learn

what kind of room it was nor did it provide natural language to discuss the rooms.

It did, however, provide the concept that information about an environment such

as a room could best be learned by constraint satisfaction systems.

Finally, a project of significance in the recent history of natural language pro

cessing is the CLUES project by Robert Allen [2]. In CLUES a microworld was

introduced as part of the input and the neural networks were trained to generate

descriptions of the objects in that microworld. The system then gave one word

answers to questions about the objects in the microworld. The CLUES project

provides further evidence of how a microworld facilitates the learning of language.

However, this project had several problems: it was unstable, it did not generalize

well, and was shown not that it could be expanded to solve more complicated

9



problems, i.e. scale up. The author suggests that future projects in this area

should be built with a hierarchical or modular approach.

In this project I have used a real world environment in which knowledge of the

world is embedded. The purpose of this "world" is to show simulated situated

intelligence. I am showing that the robot not only can talk about the environment,

but has knowledge of the environment. It is by limiting the subject matter to a

small area that we are able to address how language is used. Having a suitably

confined environment upon which to build the language facilitates the learning of

language. Knowledge representation is difficult without such a world. It has not,

however, been shown that such a world is a necessity for building language. My

research helps to reinforce the notion that having a confined subject area in which

there is existing knowledge, i.e. a world, facilitates the learning of language.

I have developed a modular neural network system which has knowledge of the

real world environment in which it is situated, as in CLUES and SHRDLU. The

real world environment in this project is a house. The interaction with the user

is accomplished first by allowing the user to enter into the computer the items

that are present in a given house. Then the user is allowed to issue commands to

a simulated robot system which will move items about the house. The project is

described in much more detail in Chapter 3.

This project uses artificial intelligence in that it simulates the behavior of a

robot and, therefore, the program should respond to the user as a robot (or person)

10



would given the same amount of information. For example, if a robot were built

to move things about a house it would first need to see the items in the house and

classify each of the rooms in some manner. It would then be able to go from room

to room and carry out the commands that were issued by the user. Sometimes this

would require additional interaction with the user. By first learning the rooms

of the house, the simulated robot is building its knowledge base of the world. It

then has the ability to use that knowledge to carry out the commands that the

user enters. This is situated intelligence. The robot is showing intelligence in this

particular situation or environment.

The contribution that this project represents to the field of Computer Science,

in particular to the Neural Network and Natural Language Processing communi

ties, is in the study of Hebbian learning. It shows that Hebbian learning does not

work well in recurrent neural networks for natural language processing when the

input vectors for the words of the language are approximately orthogonal.

After making the decision to study natural language using the connectionist

approach, I turned my attention to the limitations of the current neural network

projects in natural language processing. I needed to pick a topic which would

improve upon the existing research. In order to do this, I had to determine the

shortcomings of the current projects in natural language processing. Chapter 2

presents a detailed description of those shortcomings.

11



Chapter 2

Background

Neural networks, which implement the connectionist approach to Artificial Intel

ligence, have been studied for some years now. However, we are still very far from

being able to represent anything close to human knowledge using neural networks.

If neural networks are to be the answer to representing human knowledge on a

computer, what are the issues that currently need to be addressed? There are

seven areas where improvement is needed in the use of neural networks for model

ing human behavior in the processing of natural language. These seven areas are:

neural network hardware and software availability, knowledge representation, abil

ity of neural nets to generalize or deal with exceptions, ability of neural networks

to scale up to solve real world problems, more knowledge of how the brain actu

ally works, ability to program and understand neural networks, and the amount of

prewiring necessary for neural networks to do anything significant. Aparicio and

12



Levine [86] alluded to several of these areas by saying "Many commentators view

the body of neural network theory as a monolithic architecture, the Multilayer

Perceptron (MLP), in its most simplistic form. MLPs have poor scaling proper

ties, are notoriously slow to learn, are sensitive to initial conditions, and require

'black arts' for proper network configuration." In the following paragraphs I will

discuss each of the seven areas where further work is necessary and in particular

how it relates to implementing natural language processing using neural networks.

In order for major advances to be made in connectionist models there have to

be major improvements in the hardware and software that is available to program

and implement neural networks. There are many software packages available

today to program neural networks, but most of those packages are only available

for PCs or Unix work stations, not for massively parallel architectures. Natural

language processing with neural networks has not been attempted to a large extent

on massively parallel processors. Implementing the connectionist approach in

parallel is very important because the brain, according to current knowledge,

does not operate as does a serial processor. Why then, if we are implementing

neural networks, which are obviously parallel, are we doing it on serial processors?

There are several reasons for this. One is the fact that few machines have been

built specifically for neural network implementation. A second reason is that

the generic parallel machines that are available have few, if any, software tools

available for programming neural networks. Finally, the size and cost of using

13



massively parallel processors has held many researchers back from utilizing their

potential power. In order to build neural networks which have large vocabularies

and solve real problems (i.e. show human understanding) we need to implement

them on hardware which is comparable to the concept of connectionism.

While the connectionist approach requires massively parallel processors, there

is also evidence that much of the activity in the brain is continuous, not discrete.

Therefore, if we wish to model the brain perhaps we should use processing that

is continuous, i.e. analog computers. So far, the research in this area has been

slow and approached by few in the neural network community. Carver Mead

(1989) is one of the few who have approached the topic. He is building hardware

devices with components which try to mimic the circuits of the brain. Another

researcher who is taking the continuous approach is Jonathan Mills. Jonathan

Mills has designed a chip which is a field computer. A field computer, as defined

by MacLennan [90], is a computer which deals with information processing in

terms of fields, i.e. continuous distributions of data. Mills' chip is a combination

of discrete and continuous processing but is a step in the continuous processing

direction.

The second area where improvement is needed in the future of neural networks

for natural language processing is in knowledge representation. This is possibly

the most vital area where improvements can be made. "...AI finally had to face

the problem of representing everyday knowledge— a difficult, decisive, and philo-

14



sophically fascinating task with which it is still struggling today." [38] We have

not had adequate data structures to use, possibly because we do not know how

data is structured in the brain. I will address this issue later. For now, I will

discuss problems with knowledge representation. In natural language processing,

it is difficult to determine how to represent the meaning. Sutcliffe [146] says:

Any program which is capable of processing natural language must in

corporate some scheme for representing meaning, yet, despite a great

deal of intensive research in this area, workers within artificial intelli

gence (AI) have failed to come up with any general method for captur

ing the underlying content of even simple passages of English.

We must first determine how the data is going to be presented to the neural

network. Miikkulainen describes how knowledge representation is an obstacle

to further progress in natural language processing. "Representing and learning

knowledge structures appears to be the most important research problem in our

way toward artificial neural network intelligence." [103] We must be able to

represent data in a form that will hold large amounts of information and yet have

them be retrievable in an acceptable amount of time without using tremendous

computer resources. MacLennan [89] says: "Our goal is to develop a theoretical

framework for connectionist knowledge representation that fills a role analogous

to the theory of formal systems in symbolic knowledge representations." This goal

15



is very important to the future of neural networks and is being sought after by

many in the field today.

Even though there are many methods being used to represent a word, such

as Miikkulainen's feature maps [98] and Plate's holographic memories [120], most

of the current research seems to have one thing in common— their method of

representing the structure of the input sequence. The methods generally used

are frames and case-role assignment. Since both methods operate on the same

principle, I will present only one of the two here. Frames are used by Plate [120],

Miikkulainen [103], and McClelland and Rumelhart [95]. The concept of frames is

derived from symbolic artificial intelligence where there are a set of rules and each

word fits into a corresponding slot in the rule. With frames, an input sequence is

scanned to find objects to fill each slot within the frame:

I I 1 1

1  agent | action | patient j recipient

Where an agent is a noun doing action, the action is the verb, the patient is the

thing being used to do the action (animate or not), and the recipient is the noun

receiving the action. The particular slots within the frame vary from application

16



to application, but the concept is the same. One of the reasons that frames and

scripts have crossed over to connectionist artificial intelligence is that many believe

that humans have thousands of scripts in their brain and apply them to everyday

situations without thinking. For example, our restaurant script might call to mind

being seated, looking at the menu, ordering, eating, and paying. Whether or not

our brains operate using scripts is a topic of debate.

Independent of this debate is that there are several problems with using the

frame representation; a lack of flexibility and a lack of appropriate meaning are

among those problems. First, frames do not allow for multiple agents, actions,

recipients, etc. Frames allow a sentence to only be represented in a very rigid

structured form with no embedded clauses, etc. Also, this method degrades (works

less effectively) when some of the slots within the frame are left unfilled. The

second problem with frames is a lack of appropriate meaning. When we as human

beings use language, it is for a purpose or to produce an effect. When we speak,

hear, or read words, we do not think of the meaning of each word and whether it

is a verb or not. We concentrate on the effect of the words on our behavior. It is a

matter of semantics versus pragmatics. "A case frame approach to meaning, based

as it is on list structures, cannot readily be adapted to capture subtle differences

in meaning." [146] Finally, it is very difficult to determine how many slots their

should be, how many possible different scripts will be allowed within the frames

so. as not to cause confusion, etc.

17



A second method used to represent the input sequences in recent research is

using features or microfeatures. Features and microfeatures may be used alone

or in conjunction with frames or case-role assignments, depending on the appli

cation. Features and microfeatures are alike in that both use a list of charac

teristics to classify each input item. Features and microfeatures are different in

their granularity. Features are usually things like big, small, winged, human, etc.

Microfeatures are characteristics on a smaller scale, for example, has edges, has

certain orientation, etc.

Features were used by Sutcliife [146] as well as McClelland and Kawamoto [94]

and others. With features, each input item is classified according to a certain

preset list of features. Features might be: big, small, commonly used, used at a

certain time of day, hard, soft, etc. There are two problems with this approach.

First, according to Sutcliffe, a representation based on features alone cannot cap

ture the structured aspects of language. Features lack the recursive or hierarchical

features necessary to build adequate language structures. [81] Recursion is needed

to build language structures so that embedded clauses can be used within sen

tences. A second problem with this approach is that each time a new feature is

added, all previously input items must be reevaluated based on that feature. This

is a very costly and time consuming process and shows that features do not hold

much promise in being used to solve large, real-world problems.
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The third area where there is room for improvement in the field of neural

networks is the inability of current neural networks to generalize well or to deal

with exceptions. Neural networks are capable of dealing with incomplete data

and perform well when filling in what is missing, provided that they have seen

the original object previously. However, when it comes to taking something they

have never seen before and generalizing to place it in an appropriate category,

they do not perform quite so well. Most of the networks today can only generalize

well when the regular class is much larger than the number of exceptions. Since

neural networks work on the concept of statistical regularities, they do not perform

very well when there are deviations from the norm. "Unless the class of possible

generalizations is restricted in an appropriate a priori manner, nothing resembling

human generalizations can be confidently expected." [38] Further study of how to

make neural networks better able to make generalizations and deal with exceptions

is needed.

The fact that no one has built a neural network for natural language processing

with a significant vocabulary is just a small indication of the problem that neural

networks do not scale up to solve real-world problems well. Most of the networks

that have shown any sort of human intelligence have been those built with a small

vocabulary (between 50 and 75 words), Miikkulainen's DISCERN for example. In

order for the connectionist approach to be taken seriously in the research commu

nity it is important that we start to build machines with a vocabulary on the order
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of 1000 words or more. "One needs a model with a realistically large vocabulary

and range of possible senses and interpretations, in order to convincingly argue

that the model is appropriate and adequate." [152] On this same note, we have

got to build neural networks that solve "real" problems. No natural language pro

cessing problem of any significance has been solved with neural networks. Many

connectionist proponents have said that neural network models scale up, but no

one has shown that neural network models can be built which can be expanded to

solve increasingly complicated problems. One possibility lies in building modular

networks, where each subnetwork has a specific function and the many subnet

works work together. "Adaptive control of cognitive processes cannot be done

by a single network with homogeneous structure. Rather it depends on a variety

of interacting subnetworks, each with definable functions." [86] This method has

been tried by Miikkulainen with DISCERN [102], Much more research in this area

is needed.

The fifth area where there is room for improvement in the building of neural

networks that demonstrate human knowledge is the study of the brain. This is

not a project that is recommended to be carried out by a Computer Scientist,

but it is important to the field nonetheless. We hope to be better able to build

computer programs which show human understanding when we are better able

to understand how the brain actually functions. We know very little of how the

brain actually performs natural language processing [13] [97] [139].
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The brain is proving very difficult to understand and may never be fully un

derstood. It is the same for neural networks: neural networks are very difficult

to program and to understand. It is very difficult to program a neural network

and much preprogramming must be done. Also, it is difficult to interpret the

output of a neural network and understand exactly what is going on while the

program is being run through many cycles. Better methods of programming must

be introduced and output generated that is more easily interpreted. Finally, much

of the "knowledge" shown by connectionist models must be preprogrammed into

the computer before the network ever starts to learn. The network architecture

must be designed and the weight matrices set up. Most of the information that

is going to be used later must be set up beforehand. If you add a new aspect to

your program, you have to retrain the neural network. "Much preprogramming

is needed to create successful neural network models today. A major direction

for future research is to find ways to develop more of the necessary structures

automatically." [103] When someone solves this problem, it will be a major leap

in the acceptance of neural networks for natural language processing as well as

for other problems.

The shortcomings, which were discussed above, being addressed by this project

are: lack of efficient knowledge representations, poor generalization, and inability

to scale up. The knowledge representation problem is dealt with by building the

system with emphasis on pragmatics, the study of how context impacts the use of
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language. I am more concerned with the effects of the words on the robot than with

whether a particular word is a noun or not. "Complex knowledge representation

is difficult without a microworld." [2] The "knowledge" is structured around

elements in the world and manipulation of those elements. This system is much

more flexible and scalable than the case frame system', where the user is severely

limited by the number and types of inputs allowed. The generalization problem

of neural networks is addressed by having a large vocabulary, a better method

of knowledge representation, and a simple network architecture which does not

require a large amount of preprogramming.

Through this project, the goal was to show that we can build modular neural

networks for natural language processing which will not only have a larger vo

cabulary than systems seen thus far, but which will also work with even larger

vocabularies. According to Guthrie [55],

A group of AI researchers of natural language processing (NLP) admit

ted in public how many words there really were in the vocabularies of

their systems. Of the answers, the average was 36.

The vocabulary problem is addressed in this project by having a large number of

items in the world, a number of actions that will be allowed on those items, and

a significant number of features which are associated with those items.
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The scaling up problem in neural networks is addressed in this project by the

simplicity of the algorithms used. The algorithm used is Hebbian Learning, which

is less complex therefore faster than other learning algorithms. Hebbian learning

works best with orthogonal input vectors, i.e. vectors whose sealer product is

zero, however, orthogonal inputs grow with the length of the input and could

be thousands of bits long. It is for that reason that I have used approximately

orthogonal input vectors, which will be described in Chapter 5.

Another aspect of this project that makes it possible to scale up is the use

of recurrent neural networks. These networks present the input to the neural

network one word at a time and, therefore, the input does not grow with the

size of the input sentence. Recurrent neural networks and Hebbian Learning are

described in more detail in Chapter 5.

It is true that we have a long way to go to prove to the world that neural

networks are capable of showing human understanding. However, I (and many

other connectionist researchers) think that it is possible to do so. "As far as I

can tell the most exciting thing happening in AI these days is the invasion of the

brain people (a.k.a. the connectionists)." [83] When the seven areas discussed

above have been addressed (many of them are being addressed as this is being

written) there is no doubt that the connectionist approach will prove to be a

useful approach for artificial intelligence in the future. Even with its flaws it

has been shown to generalize better than symbolic approaches, to be more fault
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tolerant, to show more promise of scaling up, and to be more robust against noise

than symbolic approaches. "It seems highly likely that the rationalist dream of

representationalist AI will be over by the end of the century." [38]
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Chapter 3

Project Environment

In this research project, I address three of the shortcomings which are discussed

in the previous chapter: lack of efficient knowledge representations, poor general

ization, and the inability of neural networks to scale up to solve larger problems.

1 implement an approach to natural language processing which uses a simulated

robot that attempts to show situated intelligence. The robot exists in a "world" of

which it is knowledgeable and in this case the "world" is a house. The robot learns

what is in each of the rooms of a house. This project is similar to the CLUES

project [2] except that the "world" is much larger, and it attempts to interpret

natural language in a much more sophisticated manner. The rooms which can

be included in a house are kitchen, dining room, office, bathroom, bedroom, and

living room. The number of rooms and what is in each room will depend on the

input.
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This "world" is based on the rooms example presented by Rumelhart, McClel-

land, et al. [133] which is built on the Schema model. In their model, a list of

input values representing the characteristics of a room are given, and constraint

satisfaction is used to determine the other characteristics. "The Schema model

has the ability to combine knowledge from different contexts, in this case rooms,

to produce novel interpretations of the input." [133] In other words, more infor

mation is given in the output than a simple restatement of the input. In this

research project, parallel constraint satisfaction is used to determine what items

classify a particular room. Parallel constraint satisfaction seeks to satisfy as many

constraints as possible concurrently. Parallel constraint satisfaction is a very effi

cient method for the schema model of processing because it has a goodness of fit

measure and produces the outcome that is maximally consistent with both the ex

ternal inputs and the internal knowledge. The words in the input for this project

are used as evidence for complete interpretations. [133] The neural network learns

what is in each of the rooms, then instructions are given to the robot as follows:

Input:

Move the coffee cup from the living room to the kitchen.

Input:

Where is the china?

26



Input:

Put the toothpaste in the bathroom.

This project is implemented using three separate modules. The modules are

the World Model, the Robot Control System, and the Natural Language Processor

The three modules of this research project are interconnected as shown in figure

3.1. The first two modules (the World Model and the Robot Control System) are

described in detail in the following sections of this chapter. The third module, the

Natural Language Processor, is the major focus of this research and is described in

Chapter 5. The vocabulary used for this project was a topic of much discussion. It

is important that the vocabulary go beyond any that has been interpreted by other

natural language processing systems. It is also important that the vocabulary not

be a set of hand-picked words, but have a sound foundation behind why it was

chosen. Therefore, the vocabulary warrants its own chapter (Chapter 4).

3.1 The World Model

The world model represents the virtual physical world in which the robot operates.

The reason for this module is to simulate the environment of the robot. I have

chosen this method because I would like to study natural language processing in

a realistic environment, but without having to build a robot. The world model
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reads the input from the initial state and stores it in an appropriate data structure.

This information includes: the number of rooms, the types of items in each of the

rooms, and the features for the items in each room. The features include: color,

texture, size (height, width, length), manufacturer or author, usability (length of

time), and location on a two dimensional map.

Therefore the world model provides information to the robot control system as

to where to find a particular item and the types of features associated with a par

ticular item. This information may be provided on demand, via data structures,

or one time only by use of an input file.

The world model is implemented in C-f-d-. There is a class called rooms which

holds the room type, the item names, and the features for each of the items (as

mentioned above). The actions allowed on this class are: list room types, add

item, delete item, list item, check if item is present in a particular room, list the

features of a particular item, and set up the output file for the middle (Robot

Control System) module.

3.2 The Robot Control System

The robot control system is the second module in this project. The robot control

system models, at a high level of abstraction, the robot's interaction with the

physical world, in this case the world model. The robot control system first
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takes input from the world model (items and features of the items) along with

the necessary weights between them and learns what each of the rooms are. The

weights between the items and features are predetermined by a survey as described

below and give general information as to what items are is typically found in a

particular room. These weights represent the background knowledge of the robot

about the "world" that it lives in. The specific items in each room (as determined

by the initial state and the user) will determine what type of room it is. No item

will be necessary nor sufficient for determining the type of room. For instance, I

have run tests which show that the program learns a bedroom even if it does not

have a bed, if the other items in it point to it being a bedroom.

The network weight matrix contains correlations measuring how well the indi

vidual items are associated within a "typical" house. The correlations are calcu

lated from the results of a poll of one hundred people as to what rooms they think

a particular item is found in. In the survey, which is shown in Appendix C, forty

of the participants were male and sixty were female. Fifty two of the participants

were single and forty eight were married. The oldest person who took the survey

was sixty three and the youngest nine. The average age for persons participating

in the survey was twenty nine. The point here is not to demonstrate that I have

produced a statistically accurate survey, but to show that the method in which

the weight matrix was produced was through the use of a survey in which some

statistics have been gathered. I am certain that a much more sophisticated survey
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could have been taken, but this one seems to serve the purpose, the purpose being

to determine, in general, what items people believe belong in what rooms of a

house.

The weight matrix is calculated using the following linear correlation coefficient

as found in [124]:

r = - ̂){yi - y)l y/ZK®'- - yZKyi - yf (3-i)

where the value r gives the measure of association between variables. The value

is a real number between -1 and 1, inclusive. The value is large and positive (i.e.

closer to 1) if the values have a high positive correlation. In our model this means

that the items or room and item are likely to be found together in a house. The

value is large and negative (i.e. closer to -1) if the values have a high negative

correlation. This means in our model that the items are not likely to be found

together in a house. The value is close to zero if the values are uncorrelated. This

means that there is no strong indication that they would or would not be found

together in a house. Each individual x or y value corresponds to one entry in the

survey. The mean values over x and y are the mean across that particular item for

every room. For example, with x being the value for sofa and y being the value

for easy chair, r represents how likely it is that sofas and easy chairs would be in

the same room of a house.
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The robot control system is implemented using C++. This choice was made

through an investigation which led in several different directions. I first attempted

to implement the model through building a Hopfield Network using the Stuttgart

Neural Network Simulator. However, since I have eighty three inputs and eighty

three outputs it had to build an eighty three by eighty three network, and given

six hours on a Sparc 5 it could not do so. I abandoned this idea. If the Stuttgart

Neural Network Similator could not even build an eighty three by eighty three

network in six hours, it was not going to solve the problem of neural networks not

scaling up well.

I next attempted to build the model using NevProp (Nevada Propagation)

which uses back propagation and quick propagation. After running several tests

and getting some but not all to work, I determined that supervised learning was

not appropriate for this module of this project.

Since I first got the idea for this project from the rooms example in the

PDP Explorations book [95], I decided that the solution to this portion of the

project was back in the PDP software. I first attempted to use the cs (constraint

satisfaction) program that is presented in Chapter 3 of the PDP Explorations

book [95]. I was successful at getting it to learn a particular room, but could

not find a method to extend it to learn and remember multiple rooms of a given

house.
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After determining that the PDP constraint satisfaction program was not pow

erful enough for this project, I moved to the Interactive Activation and Compe

tition (iac) program. It seemed to fit my model in some ways because there was

interaction between the features, items, and rooms. There is also competition

between the rooms. Once again I was successful at getting the iac model to learn

one room at a time, but like the cs program it was not powerful enough to learn

and remember all of the rooms. In Chapter 7 of the PDP Explorations book [95]

the authors present a program which is an expansion of the iac model. They call it

the Interactive Activation (ia) model. After studying the model and determining

that it did seem to parallel this module of my project in some ways, I attempted

to learn the C code that was used to implement it and to change it to fit this

project. Through this process, I learned that their model did not fit my model

as closely as I had thought. This lead to the realization that I was probably not

going to be able to use someone else's neural network code.

At this point, I made the decision to write my own neural network code.

The neural network in the program performs constraint satisfaction using the

schema model to classify each of the rooms of the given house. It is similar to the

model presented in Chapter 3 of the PDP Explorations book [95]. This model is

particularly appropriate for this project because what it attempts to do is to take

a set of constraints and simultaneously satisfy them. Typically there is no perfect

solution. The solution chosen is the one which satisfies as many of the constraints
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as possible. The model is well suited for the room classification problem since there

is no perfect answer and many times a number of the rooms will be activated, but

the one which is most highly activated is the one which is chosen. This is more

appropriate than, say, a supervised learning model in which a target output is

present and over hundreds of trials the neural network learns the type of room

based on past examples. We, as humans, typically learn to recognize a particular

room long before we have seen hundreds of them.

Therefore, constraint satisfaction was chosen and implemented. The reason

that this program was successful where the PDF cs program was not is that when

the program receives the initial state from the bottom (world) module, it receives

an entire house (not just one room) and learns each of the rooms in the house

concurrently. The formula used to update the activations on each item and room

from [95] is;

netinputi — Wij x Uj + inputi + hiasi (3.2)
j

if netinputi > 0

a,- = fli + netinputi{l — ai) (3.3)

else

di = di + netinputidi (3.4)
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for each unit i in the neural network. In these equations j represents all units

other than z, Wij represents the weight matrix value between units i and j, and

input represents the external input. The biasi is a constant input which is negative

if the unit is usually off and positive if the unit is usually on. In this program, the

bias{ was set to zero so it had no effect. The external input in this case shows the

absence or presence of a particular item in a given room. The goodness measure

(or measure of how well the necessary constraints are being met) is then calculated

by;

goodnessi = netinputiai (3-5)

When the program runs, the constraint satisfaction continues to run until the

goodness stablizes (reaches a peak) for each of the rooms in the house. This

method has been tested on eighty-three rooms in twelve different houses and the

neural network learned the appropriate room in all except one case. In that case,

the room was a dining room which had several items that are not typically found

in dining rooms, such as pantry, stereo, CDs, and tapes. The program incorrectly

classified the room as a kitchen. The tests run on the robot control system are

shown in Appendix 0.

The neural network written for this module is the knowledge base of this

project and manipulates the items in the house based on the user's requests passed
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down from the natural language processing module. The robot control module

does the following tasks: displays room activations, displays item activations,

resets the screen for new tests, displays the weight matrix, displays the items in

the house, adds an item to a room, deletes an item from a room, locates an item

in the house, checks if an item is present in a given room, learns the room types,

lists the items in a given room, determines what is near a specified location (x

and y coordinates given as features), and prints the names of the learned rooms.

The robot control system performs the operations listed above through interaction

with the world model as described earlier.

The robot control system is a vital part of this project and is the knowledge

base upon which the natural language is built. It is implemented with a neural

network which successfully classifies, remembers, and modifies the rooms as given

by the initial state in the world model. A diagram of the robot control system is

shown in figure 3.2.
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Chapter 4

The Vocabulary

The size and content of the vocabulary for this project was an area of much

concern. In order to show that this project can process natural language it was

important to have a representative vocabulary. How large? As mentioned previ

ously, the average size of the vocabulary for previous natural language systems

was thirty-five words [55]. DISCERN [103], which is considered by many to be

the state of the art in natural language systems with neural networks, was about

fifty-five words. It was important to have a vocabulary that was large enough to

be able to argue that this system actually processes natural language and is not

just another "toy" system. How many words are enough? After implementing

much of the project with a small, hand-picked vocabulary, it was determined that

a much larger vocabulary was needed. Several different numbers were discussed

as being large enough, but I had to choose vocabulary in an objective fashion.
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Finally, it was concluded that the input vocabulary would consist of the Dolch

Word List [31]. The Dolch Word List is a list of one thousand words which are

considered to be the first one thousand words for children's reading. These words

are used in many elementary schools to teach children to read. This list may

well be called "basic" because it includes the "service words" that are used in all

writing, no matter on what subject. [31] I determined that this was an appropri

ate input vocabulary because I must first be able to interpret natural language

at the level of a child before moving on to process language at the adult level.

In comparing the previously mentioned hand-picked list to the Dolch Word List,

there were a number of words which had previously been a part of the vocabulary

which were not in the Dolch Word List. These words were not removed from the

input vocabulary. Therefore, the input vocabulary consists of one thousand and

sixty words. A list of the words in the input vocabulary is shown in Appendix

D. These are the words that can be typed as commands to the system. In other

words, the system will not crash if given these words as input. However, the list

of words that the system is able to comprehend and process is a subset of these

words, as explained below. All words that are not in this subset, but which are

allowed as input to the system, will simply be ignored by the system.

The next task in dealing with the vocabulary was to determine which of the

words in the vocabulary would be understood by the system. As previously men

tioned, we must be able to understand language at the level of a child before we
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can understand language at the level of an adult. Children do not comprehend all

of the words that they hear and children understand language at many different

levels. For instance, there is a dramatic difference between the number and type

of words that a two year old child understands and the number and type of words

that a four year old child understands. It was determined for this project, that I

would interpret natural language at the level of a two and one-half year old child.
c

Based on the information that I have read, the vocabulary for a two and one-half

year old child is approximately four to five hundred words. More importantly,

though, is the type of language that a two and one-half year old understands.

Since this project focuses on natural language interpretation rather than natural

language generation, I am interested in the type of language that a two and one-

half year old child understands rather than the type of language that a two and

one-half year old speaks.

"There are two main points to notice here. First, expectably, production lags

behind comprehension for all children in all age ranges, and for both word classes

(nouns and verbs). Second, within either production or comprehension, verbs

lag well behind nouns." [74] It is commonly known that one of the first things

that children learn are nouns. In the beginning, they know many more nouns

than other parts of speech; they know only a few verbs. This fits perfectly into

the system that I have designed, since I have a large number of items that are

possible with the house and a much smaller number of actions that may be taken
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on the items. These items are nouns which a two and one-half year old would be

able to understand.

According to Brown [19], the first aspect of syntax that children are sensitive

to is word order. Therefore, I built a system that is particularly sensitive to the

order of the words. This will be well represented in this research project since

"Put the soap in the kitchen" and "Put the kitchen in the soap" have entirely

different meanings. In fact, the latter sentence is not legal within the system

because you are not allowed to place rooms within objects. The system simply

ignores commands that are not legal as long as the words are in the vocabulary. If

the words are not legal words within the vocabulary, the system will reject them.

I have built a system whose goal is to understand language at the Stage II

or Stage III level as identified by Brown [19]. Brown discusses the five stages of

language in terms of fourteen grammatical morphemes. The fourteen grammat

ical morphemes (in order of acquisition) are: present-progressive, preposition in,

preposition on, plural, past irregular, possessive, uncontractible copula, articles,

past regular, third person regular, third person irregular, uncontractible auxiliary,

contractible copula, and contractible auxiliary. I am focusing on Brown's study

because his study is used to analyze the language of children by many in the fields

of linguistics and psychology.

Brown states, "The sentences the child makes are like adult telegrams in that

they are largely made up of nouns and verbs (with a few adjectives and adverbs)
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and in that they generally do not use prepositions, conjunctions, articles, or aux

iliary verbs. Articles were not used at all during the first two years." [19] Of the

fourteen morphemes presented by Brown [19], the definite and indefinite articles

have the most semantic complexity. My system responds to commands which

have the article "the" before the object or room name and it also responds if the

article is omitted. The Stage II child uses generic verbs. I also try to model this

behavior by using only simple, generic verbs as commands. These are verbs that

a two and one-half year old child understands.

According to Brown's study, "Seventy percent of the children's speech was

of one of the following forms: agent and action, action and object, agent and

object, action and location, entity and location, possessor and possession, entity

and attribute, and demonstrative and entity." [19] The types of sentences that are

allowed within this project typically deal with commands to an agent to take some

type of action on objects within the house, so that the objects will be moved from

location to location; therefore, I am modeling the language of a Stage II child.

"Recognition, anticipation based on signs, the concept of the enduring object,

awareness of a single space that contains the self as well as other objects, are all

developed in the period of sensorimotor intelligence (birth to two years). During

this sensorimotor period the child learns to discriminate between herself and the

environment and between elements in the world. The fundamental knowledge that

the child acquires during this period concerns the location of objects, her power to
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act on them, and their effects on one another." [21] By having all language take

place in a confined environment where objects must be discerned and acted upon,

I am attempting to represent the sensorimotor intelligence of a two and one-half

year old child. Research in the last decade has shown the dramatic effect of context

on the way language is used and interpreted, making it clear that language cannot

be realistically assessed if it is isolated from what is going on with the speaker

and the listener. [88] Because more researchers are finding this to be true, I find

that providing a domain of discourse, such as a house in this project, provides an

appropriate environment in which to study language and how a neural network

can learn language.

During Stage II the prepositions "in" and "on" begin to appear. The com

mands in this project will use these words since most two and one-half year olds

understand them. Of the fourteen grammatical morphemes presented by Brown,

only present progressive, the preposition in, and the preposition on were acquired

by Stage III for all three children in his study. [19] The grammatical morphemes

tend to be unstressed forms of little phonetic substance and considerable gram

matical and semantic complexity. This is one reason that they are not learned as

early as nouns, verbs, and adjectives. [19]

According to Lund and Duchan [88], at 24 months old, the child studied could

answer "where" questions with place-naming answers. My system adequately

models this behavior since one of the actions is "Where is objectX?" Even though
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I am not generating language, this project was set up to interpret this type of

language as a two year old would.

After doing the above mentioned research to determine the type of language

that a two and one-half year old understands, I put it in the context of my input

vocabulary (Dolch words plus previously hand-picked words). Which of the 1060

input words would a two and one-half year old understand? I did not want to look

at the list and try to guess, but I did not feel that a formal statistically correct

survey was necessary either. So, I asked a childcare administrator/owner, Rachel

Hoffman, to tell me which of the words her two and one-half year olds understood.

She took the list of 1060 words and unscientifically determined which of them the

children could understand. The children she used were Tyler (23 months), Tate

(28 months), and Meagan (37 months). The answers from her informal survey

provided the list of words which are shown in Appendix E. I decided that I would

choose my vocabulary from the Dolch words that Tate and Meagan (the two older

children) both understood. This list contains 471 words.

Finally, once I had the Dolch Words which a two and one-half year old could

understand (471 words), I had to further break down the word list to fit the

environment of this research project. Not all of the words that a two and one-half

year old understands fit into the domain of discourse for this natural language

processing system. Remember that I am talking about the items in a house and

the manipulation of those items. Some of the words did not fit into that domain
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and therefore were omitted. I tried to be as flexible as possible in order to have a

large vocabulary. For example, I allowed words like car, truck, and airplane. Cars,

trucks, and airplanes are not typically seen in houses, but two and one-half year

olds often speak of them and play with toy cars, trucks, and airplanes. Therefore,

I allowed these items to be in the house. The final list of words contains 218 words.

These are the words that this research project will interpret, i.e. the system is

programmed to carry out commands which contain these words. These words are

shown in Appendix F.
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Chapter 5

The Natural Language Processor

5.1 Introduction

The natural language processing module is the final module of this research

project. The other modules are support modules for the language processing.

The natural language processing module is where the actual communication with

the user takes place and the language is interpreted for the rest of the system to

use.

The natural language processor takes the input from the user. It then inter

prets the input and determines the instructions to be sent to the robot control

system. The manner in which the interpretation takes place is as follows: the

input from the user is separated into individual words (where a word is a set of

characters with spaces on either side), the words from the user are converted into
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approximately orthogonal vectors, the vector stream (one vector per word of in

put) is entered, one vector at a time, into a neural network which converts it to

a single output vector. The output vector is then converted into a command for

the robot control system to execute. A diagram of the natural language processor

is shown in figure 5.1.

The goal of the natural language processing system is to be the interpreter

between the user and the robot control system. The system takes a command

such as:

Move the chair from the kitchen to the living room.

The natural language processor interprets this command and sends the ap

propriate message to the robot control system. The program takes as input this

series of input words and produces an output vector that corresponds to a com

mand that the simulated robot in the system can interpret. The input words

are approximately orthogonal bipolar, i.e. -1 or -f-l, vectors. Approximately or

thogonal means that their inner (dot) product is approximately zero. Therefore,

they have few or zero elements in common, or that the elements that they have

in common tend to cancel one another. Each unique word has a unique input

vector. A length of one hundred was chosen for the input word vectors because
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it is sufficiently large so that the randomly generated bipolar vectors are, indeed,

approximately orthogonal, and sufficiently small that it will allow the neural net

work model to scale up to solve larger problems. The binary output vector packet

has the following four fields:

I  Verb I Object I Source I Destination I

For example, if the program receives as input the command:

Get the book.

The command is represented as four independent bipolar input vectors of

length one hundred. One input vector represents the word "Get", one vector

represents the word "the", one vector represents the word "book", and one vector

represents the The program would interpret this command and produce a

binary output vector of length eighty-eight that is of the following format (Note:

this diagram shows the format of the vector and not the vector itself, since it is

not of length eighty-eight):
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IVerb 1  Obj ect 11  Source | Destination I

10000000001 11  000000000101 11  000000000000 1 000000000000 1

A length of eighty-eight was chosen because it is large enough to hold the necessary

information, i.e. verb, object, source, destination, and small enough to be scalable.

The natural language processor is implemented using a neural network. Sev

eral different neural networks were implemented. Three recurrent neural networks

were built using Hebbian learning, one recurrent neural network was built us

ing back propagation, and one nonrecurrent neural network was built using back

propagation. As mentioned previously, Hebbian learning is much faster than back

propagation. Since one of the initial premises of this research project is to show

that neural networks could scale up to solve large problems, I spent most of my

research effort implementing the three recurrent neural networks using Hebbian

learning. I will discuss in detail the implementation of each of the neural networks

and all of the variations that were used to interpret natural language. In Chapter

6 I will give the results of this research project.
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5.2 Neural Networks with Etebbian Learning

5.2.1 Introduction to Neural Networks with Hebbian Learning

The first neural networks implemented were recurrent neural networks with Heb

bian Learning. Neural networks were explained in Chapter 1. In a neural network,

a unit is an individual element which may take on an activation value and pass

that activation value on to other units. It corresponds to a single neuron in the

brain. A units activation value is how strongly it is being excited by other units.

We refer to each set of units which perform a given task as a layer. There is

an input layer, an output layer, possibly one or more hidden (between input and

output) layers, and possibly a context layer. A hidden layer is such because it is

invisible to the user of the neural network, only the input and output layers are

visible. This is the* layer where the neural network builds its internal representa

tion of the data, i.e. builds up its mapping of the input layer to the output layer.

A recurrent neural network is one in which cycles exist. In other words, certain

layers (output layer or hidden layer) are copied back into previous layers. The

context layer is the layer that is used to store the value of the output (or hidden)

layer on the previous input. Therefore, the output (or hidden) layer is copied back

to the context layer before a new input is received. The purpose of having cycles

in the network is to provide a sort of memory. The neural network can "remem

ber" what it has seen before by saving the representations created by the neural
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network from previous inputs. The manner in which this "remembering" occurs

is as follows. The neural network receives an input and updates the activations of

the hidden and output layer units based on this input. The neural network has

now build a representation of that input. This representation from the output (or

hidden) layer is copied to the context layer so that it may be remembered. The

neural network is then ready to receive a new input.

The first neural network with Hebbian learning investigated was the simple

recurrent network (SRN). A diagram of this network is shown in Appendix G. The

SRN network works as follows: The input units are connected to the hidden units.

Also connected to the hidden units are the context units (sometimes called state

units). The activation values of the context units are the same as the activation

values of the hidden units on the previous input. The network "remembers" what

it has seen before in this manner. This type of "recurrent" behavior is what

defines a recurrent neural network and allows the input to consist of multiple

input vectors to be associated with a single output vector. Finally, the hidden

units are connected to the output units. This neural network is NNl in Appendix

J. Appendix J shows a summary of the tests that were run on the different neural

networks in the form of a table.

The next neural network with Hebbian Learning investigated was the Jordan

[67] recurrent network with no hidden layers. A diagram of this network is shown

in Appendix H. The Jordan network with no hidden layers works as follows: The
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input units are connected to the output units, the context units are also connected

to the output units. For each input vector, the activation value of the context

units is the activation value of the output units on the previous input. This is also

a recurrent neural network, but the recurring connection is between the output

layer and the context layer as opposed to being between the hidden layer and the

context layer as seen in the SRN. This neural network is NN2 in Appendix J.

The final neural network with Hebbian learning investigated was the Jordan

network with one hidden layer. A diagram of this network is shown in Appendix

I. The input units are connected to the hidden units. The context units are also

connected to the hidden units. The hidden units are connected to the output

units. The activation value of the context units is the activation value of the

output units on the previous input. This neural network is NN3 in Appendix J.

Hebbian learning was used for each of the three neural networks described

above. The premise behind Hebbian learning is that if two connected neurons are

active simultaneously, then the strength of the connection (expressed in neural

network terms as the weight {wij)) between them should be increased. [41] The

Hebb rule is the first and best known method for learning in neural networks. The

weights are initialized to a small random number. The weights are then updated

using the following formula from [96]:

Awij = e X ai X ttj (5.1)
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where e is the learning rate, a,- is the activation value for unit i, and Oj is the

activation value for unit j. The initial activation values are described in Section

5.2.4. The activations are then updated using the following formula, also from

[96]:

Qi = ̂ (b'2)
3

Therefore, the activation of unit i is affected by the activations of all other units

by the amount of the weight connecting them.

Hebbian learning is also called correlation learning because, using the above

formulas, the weight is proportional to the correlation between the activations of

units i and j. In other words, if the two units are simultaneously active, i.e. have

high activation values at the same time, then the weight is large. Otherwise, the

weight is small or negative.

The following tests were run on each of the three recurrent neural networks

with Hebbian learning. However, since many of the results were the same, the

tests will each only be described once. Where the neural networks differed in their

results, it will be noted with the appropriate tests. Obviously, any of the tests

done with hidden layers were not done with the Jordan network with no hidden

layer. So that my explanations will be clear, I will discuss the neural network in

the singular even though the tests were performed on all three neural networks.
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When the term "neural network" is used it can be assumed that I am discussing

the one in which a particular test is being run.

All of the neural network programs were written in C++. Once the neural

network architecture (i.e. SRN or Jordan) was designed and the learning algorithm

(i.e. Hebb rule) implemented, many variations of parameters were used to produce

the appropriate response from the network. The following sections describe the

different parameters that were used.

5.2.2 Tests on Input Vectors

Several tests were run which pertained to having the correct set of input vector

values. As mentioned previously, the input vectors consist of a bipolar vector of

size one hundred for each word (Test A in Appendix J). For a given command

there may be as few as two or as many as nine of these words. It is because

of this method of input that a recurrent neural network was chosen. Otherwise,

it would have been necessary to have one input string that is the length of a

command, rather than the length of one word. Originally, I had decided that

the input vectors to the system would be bipolar (i.e. -1 or 1) vectors which

were randomly generated for each word. The reason being that sufficiently large

bipolar vectors which are randomly generated can be considered approximately

orthogonal because the elements that any two of them might have in common

can be cancelled out by the elements that they do not have in common. In order
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for the Hebb learning rule to work, the input vectors must be approximately

orthogonal. Therefore, large randomly generated bipolar vectors were used. After

having difficulty getting the neural network to learn, I used binary input vectors,

even though large randomly generated binary vectors are not orthogonal because

the elements that they have in common cannot be cancelled out by the elements

that they do have in common (Test B from Appendix J). The results achieved with

these input vectors were that the weights for the neural network never became

negative. Clearly, it happened because the only signed value going into the weight

update rule is the input vector value (as shown in Equation 5.1). With this value

always being zero or positive, the weight matrix values never became negative.

Since it is desirable in some cases for the weight matrix values to become negative,

I decided to stay with the bipolar input vectors instead of the binary input vectors.

A second test was run with the input vectors. Since the activation values

were getting out of the acceptable range (0 to 1) very quickly, I scaled down the

input vectors. I took the bipolar input vectors and normalized them (Test C from

Appendix J). The normalization value is a scaled down version of the original

value, but kept in the same proportion to the other values. The formula used to

normalize [41] the input vectors is as follows:

a,- = s,- X 1/ s] (5.3)
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where s,- is the element (unit) of the input vector and a,- is the value of the

initial activation for unit i. Normalizing the input vectors did not help the neural

network to learn the training patterns better, only more slowly. Therefore, the

input vectors were not normalized.

5.2.3 Tests on Target Vectors

Two tests were run pertaining to the target vectors. Since the neural network

learns using Hebbian learning, the appropriate weight matrix is built using the

input vectors along with their corresponding target vectors. This is called a su

pervised learning technique. With supervised learning, during the training phase

the neural network has knowledge of what the target output is, i.e. it knows the

correct answer and has to train to get the weight matrix values such that during

the testing phase, given an input it will produce the correct output without being

given the answer. The target vector in this system is a binary vector of length

eighty eight which represents the correct output of the neural network for a given

command. I investigated several options as to what the target vector should be,

but only the final version (described in Section 5.1) was used to run the tests on

the neural network.

The first test that was run pertaining to the target vectors was to determine

how often a target vector should be presented to the neural network in order

for it to learn the correct answer. Two options were studied; the target being
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presented to the system once per word (Test D from Appendix J) and the target

being presented once per command (Test E from Appendix J). The neural network

should not produce the target vector for the entire command after being given

only a portion of the input words, therefore, the target vector is presented only

once per command. Also, the target does not change as the input words are

entered.

A second test was to use binary (ranging from 0 to 1) target vectors versus

bipolar (ranging from -1 to 1) target vectors. When the neural network was given

bipolar target vectors (Test G from Appendix J), it did not learn the input pat

terns better than with binary target vectors (Test H from Appendix J). Therefore,

I used binary targets.

5.2.4 Tests on Initial Parameters

I ran tests on the neural networks with Hebbian learning by changing the setting

of initial parameters before training the neural network. I first initialized all of

the values in the weight matrix to zeros before training the neural network (Test I

from Appendix J). Due to the type of mathematics used to update the activations

and the weight matrix (see Equations 5.1 and 5.2), the weights remained at zero

for the entire duration of the training. The reason is that the activation function

is applied before the weight value is updated and becomes zero since one of the

factors is the weight. The weight then becomes zero because the activation is zero.

58



I then initialized the weight values using a priori knowledge of the network,

i.e. I set up a bias value to guide the weight matrix values toward the correct

answer (Test J from Appendix J). In some ways this helped the neural network

to keep from going too far astray, but it did not steer the neural network in the

right direction. So I initialized the weight matrix to small random values before

training the neural network (Test K from Appendix J). By small, in this instance,

I mean between -0.1 and 0.1, inclusive. This method of initialization received the

best results.

A second test involving the initialization of parameters before training of the

neural network was the initialization of the activation values for each of the units

in the neural network. Two different values were used as the initial activations,

0.0 (Test L from Appendix J) and 0.5 (Test M from Appendix J). The outcome

of the two were the same because the only activation values that are not changed

before being used are the activation values of the context units. Initializing the

input activation values is useless due to the fact that the input unit activation

values are set based on the input word with values of -1 or +1. Similarly, the

hidden unit activation values are calculated using the weight matrix and the input

unit activation values. The output unit activation values are calculated using the

weight matrix and the hidden unit activation values. The exception to the above

statement is the Jordan neural network with no hidden layer. In this network.
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there are no hidden unit activation values and the output activation values are

calculated using the weight matrix and the input unit activations.

I initialized the activation values to the mid-range value of the context units

for each particular network. In the SRN, the context units are copied from the

hidden layer and have the range -1 to -t-1, so they were initialized to 0.0. In the

two Jordan networks, the context units are "copied from the output layer and have

the range 0 to -fl, so they were initialized to 0.5.

5.2.5 Tests on Updating Weight Matrix

This test involved determining how often the weight matrix values would be up

dated. In recurrent networks there are three possible solutions to this problem:

update the weight matrix once per input word (Test N from Appendix J), update

the weight matrix once per input command (Test 0 from Appendix J), and up

date the weight matrix once per trial (i.e.. after all input commands have been

seen once) (Test P from Appendix J). When updating the weight matrix values

once per input word, the overall error would decrease initially and then increase

(as you will later see this seems to be the general tendency for the neural networks

in all of the tests that were run). The difference in this test and the others was

that updating the weights on every input word makes the neural network run very

slowly and the results obtained were very dependent on the particular commands

/

being tested.
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The next test which was run was to update the weight matrix values once

for every input command. This method of updating did not produce the correct

output, it runs slowly, and the results depend on the particular commands being

tested. In this case, the neural network cannot help but to learn later commands

in the sequence better.

The final test to determine when to update the weight matrix values was to

update the values once per trial. In other words, compute the change in the weight

matrix on each input word received, but actually change the weight matrix values

when all input commands had been seen once. Then reset the change in weight

matrix value to zero and compute it over all input commands again. This method

ran faster than the others but did not pirbduce significantly different results. It is

for these reasons the weight matrix was updated once per trial.

While running the above mentioned tests, it was difficult to determine the size

of the learning rate, given the number of input patterns. Each time that a new

test was executed, the learning rate would have to be updated a number of times

to get it to produce the correct results, based on the size of the input, i.e. the

number of commands for which the neural network was being trained (Test Q

from Appendix J). I produced a method for updating the learning rate through

a linear interpolation formula based on the number of input commands that are

being learned (Test R from Appendix J). This simplified the running of tests and

the mathematics is not complex enough to slow down the neural network.
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5.2.6 Tests to Solve Unlearning Problem

After running many tests I determined that regardless of the neural network used,

, the initial values, the learning rate, the method of updating the weight matrix,

the type of input vector, or the type of target vector, the Hebbian learning neural

networks produced the same results. The error rate over all input commands goes

down quickly at the beginning of training and then slowly moves upward for the

rest of the training. The output results are such that two of the three neural

networks, the two with hidden layers, will learn all commands given to them.

However, it should be noted that the tests run were on twenty or fewer input

commands. Even with this few commands, it seemed promising.

The problem being that the neural network will forget one or more commands

as it learns the others. It will never leafii more than a few commands at any given

time. When two similar commands are given as input, the neural network will

learn the first of the two commands. But then, as the neural network proceeds

to learn the other similar command, the weak activations from the first command

become so strong over many trials that they change the output of the neural

network for the first command, and so it now will learn the second command but

no longer "remembers" the first command. I will give an example. In this example,

specific inputs and outputs are not identical to those given to or produced by the

neural network. They have been simplified to make the explanation more clear.
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Assume that the neural network receives the two input commands:

Get the sofa.

Get the chair.

and assume that the desired output vectors for these two commands are very

similar, say

001001 Get the sofa.

001010 Get the chair.

The neural network will learn the first command, "Get the sofa.", i.e. it will

produce the desired output vector when given the input vectors corresponding

to the words of the command. However, as the neural network learns the second

command, "Get the chair.", the response that the neural network gives to the first

command becomes a combination of the two desired output vectors, i.e. 001011.

It should be noted that the order in which the input commands are presented

to the neural network is irrelevaiit. The neural network would perform the same

with learning "Get the chair." before learning "Get the sofa.".

From now on I will refer to the problem described above as the "unlearning"

or "forgetting" problem of the neural network. All three Hebbian learning neural

networks which were tested suffered from this problem. This problem is the reason

that three different recurrent neural networks with Hebbian learning were tested.

Later in this section, I will give conclusions as to why the neural networks were
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forgetting learned commands. First, I will describe the tests, that were run to

solve the problem.

A number of solutions were attempted to solve this problem. The first is the

scaling of the weight matrix values. As noted in many neural network books, the

smaller the weight matrix values, the better the generalization of the neural net

work. The method used was to multiply the weight matrix value by the reciprocal

of the number of units in the network (Test S from Appendix J). By scaling the

weight matrix values in this manner, they stay in a reasonable range, otherwise,

they get large (close to 1) very quickly (Test T from Appendix J). This did not

solve the unlearning problem.

The next method tested to solve the unlearning problem of the Hebbian neural

networks was the use of different output ranges for the hidden unit activation

functions. Since an activation function was used that was similar to a simple

linear threshold function, this was a simple task. The activation is computed as

in Equation 5.2. If the value computed stays within the range, then it is left

unchanged. If it does not stay within the range, it is simply brought back to

the boundary of the range. The ranges that were tested were the obvious ones:

binary (Test U from Appendix J) and bipolar (Test V from Appendix J). The

neural network learns more patterns and remembers them for a longer period of

time when bipolar values are used as the output of the hidden units. Therefore,

the threshold values are set for the bipolar range.
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5.2.7 Tests on Hidden Layer Size

Another set of tests that were run on the two neural networks with the hidden

layers and not on the neural network without the hidden layer was that of deter

mining what size the hidden layer should be (Test W from Appendix J). This is a

particularly important question for the SRN because the context layer is the same

size as the hidden layer, so the decision made here will greatly affect the overall

size and speed of the neural network. Since neural networks have a large amount

of mathematics associated with each unit in the network, it is desirable to have

as few units as possible in order to speed up the execution time of the network.

The two networks were tested with hidden unit layer sizes of from seventy to

three hundred and fifty units in increments of thirty. The sizes chosen to test

were simply through trial and error. A neural network with a hidden layer size

smaller than seventy did not learn any of the commands. A neural network with a

hidden layer size larger than three hundred and fifty did not learn more commands

than those with smaller hidden layers, but slower. The results obtained were not

drastically different from one end of the spectrum to the other. The best results

for the SRN were achieved with a hidden layer size of two hundred units. The

best results for the Jordan network were achieved with a hidden layer size of one

hundred and thirty units.
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5.2.8 Tests on Weight Update Rule

It was possible that the neural network was finding a local minimum (value of

lowest local error), and was not jumping out of it. In neural networks of this

type, you train until you reach the minimum error value for this training set. As

the neural network moves down the gradient curve of the error, it sometimes gets

stuck in an area where all of the values surrounding it are larger, so that it is

the lowest local error, but not the lowest overall error. This is a local minimum.

Neural networks will sometimes find these local minima and then move on to

find the global minimum, but often they are unable to "jump" out of these local

minima. To solve this problem a momentum term was added to the updating of

the weight matrix values (Test X from Appendix J). This term "remembers" the

previous value of the weight matrix and tries to keep the overall system moving

in the right direction by using this previous value to compute the new value. The

updated weight matrix formula is as follows:

Awij = e X Ui X Uj + momentum x Wij (5-4)

The last term uses a coefiicient [momentum) to determine how much the previous

value should affect the overall weight matrix value. I used coefficients from 0.1 to

1. For obvious reasons, adding the momentum term to the weight matrix update

added complexity and, therefore, training time to the neural network. However,
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once the neural network was moving in the right direction, it moved faster. This

made the neural network learn each of the input commands faster, but did not

solve the unlearning problem, i.e. the neural network still forgot commands that

it had learned before learning others.

The next possible solution to the unlearning problem was to send the weights

through a hyperbolic tangent function in order to keep them small (Test Z from

Appendix J). The formula used is from [41]:

h{x) = 1 — exp[—2x)l\ + exp(—2x) (5.5)

This caused the neural network to learn more slowly, in terms of computation

time as well as the number of trials needed to learn a given input command. This

addition of the hyperbolic tangent function to the update of the weight matrix

values did not solve the unlearning problem.

After considering the unlearning problem and the fact that weakly activated

values were making the neural network forget commands over time, I implemented

a method to keep these "weak" values from affecting the activations so strongly. I

first set to zero any weight that was close to zero (Test A A from Appendix J). The

problem that arises here is: What does it mean to be "close to zero"? Is 0.1 close

to zero or is 0.000001 close to zero? Many parameters go into this determination,

in particular the learning rate and the scaling of the weight matrix values. What
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it means to be close to zero is dependent on these as well as other factors. None

of the values used solved the unlearning problem of the neural network.

Another, similar solution was that of suppressing weak correlations (Test AB

from Appendix J). In other words, I drew an invisible line on either side of zero

on the x-y axis. All correlations within this boundary were subtracted from the

overall change in the weight matrix and all correlations outside of this boundary

were added to the overall change in the weight matrix. I name this boundary the

threshold.

The reasoning behind this test is that it is the weak correlations that are

causing the unlearning. Therefore, by taking the weak correlation values and

subtracting them rather than adding them, it may solve the problem. These weak

correlations will not be allowed to build up over time and cause the neural network

to produce ones where the output should be zeros. The problem is similar to the

previous problem: What is a weak correlation? Again, this depends on many

factors. Primary among these factors is the learning rate. It took five hours

of tweaking numbers to move from learning six input commands to seven input

commands. Finding the correct threshold to go with the correct learning rate to

get eighty thousand input commands learned was like searching for a needle in

a haystack. Solving the problem in this manner would also make it difficult to

argue that the solution was scalable to larger problems.
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All of the above mentioned tests were run in an effort to change the weight

matrix update rule to make the neural network learn more commands. Another

method to make the neural network learn more commands is to change some of

the parameters in the activation function. As previously mentioned, the activation

function used is similar to the linear threshold function. With this function, you

simply compute the new activation, based on the inputs to that unit and the

weight matrix values. After this computation is done, you check to make sure

that the activation values stay within a certain range. Therefore, you compute a

linear activation function and then do not let it go beyond a certain threshold on

each end of the range.

5.2.9 Tests on Activation Function

The first thing added to the activation function shown in Equation 5.2 (Test AC

from Appendix J) was a bias. With a bias, you look at the data and determine

a priori what bias values might help to move the network toward the correct

outputs. This is basically a guessing game. A certain set of bias values worked for

some input commands, but then they would not work for other input commands.

I determined that it is best to let the neural network train on its own.

The next change to the activation function in order to improve the learning of

the neural network was to send the activations, once computed, through a binary

sigmoid (logistic sigmoid) in order to keep them from getting too large, too quickly
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(Test AD from Appendix J). A binary sigmoid function is a function which scales

the values down while keeping them in the same proportion to the other values.

This might help the neural network to solve the unlearning problem by keeping

the weak activations even smaller. It only made the neural network train much

more slowly. This was not the solution to the unlearning problem.

Finally, in an attempt to keep the activations from growing too large as a

result of weak correlations, I applied a decay term to the activation values (Test

AE from Appendix J). This term is meant to make the values slowly get smaller

over time, i.e. decay. With this term added to the activation function, none of

the neural networks were able to learn a single input command.

Results from the running of these neural networks and the conclusions drawn

from the test data are presented in Chapter 6. The tests include learning rate

versus error rate and hidden layer size versus error rate.

5.3 Recurrent Neural Network with Back Propagation Learn

ing

After being unsuccessful with the Hebbian learning, I implemented back propaga

tion learning because it has been successful in solving a number of neural network

problems. Back propagation, in fact, is the reason behind the resurgence of neural

networks for solving artificial intelligence problems in the 1980's and 1990's [41].
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The following is an explanation of the recurrent neural network with back

propagation learning implemented for the natural language processing portion

of this research project. The network implemented is a SRN (Simple Recurrent

Network). As discussed previously, a SRN is a recurrent neural network where

the recurrence is between the hidden units and the context units. A diagram of

an SRN with back propagation learning is shown in Appendix K. As with the

SRN with Hebbian learning, the SRN with back propagation learning has a single

hidden layer.

The inputs to the neural network are bipolar vectors representing each of the

individual words within a given command. The vectors are of length one hundred,

therefore the input layer is of size one hundred. Even though orthogonal input

vectors are not necessary for back propagation learning as they are with Hebbian

learning, they were used because it was more consistent to stay with the same type

of input. The input vectors are not normalized before being sent to the neural

network.

The target values presented to the network are binary vectors of length eighty

eight. The outputs from the network are also binary vectors of length eighty eight.

The neural network has a single hidden layer. Experiments were done with the

hidden layer size, and thus the context layer size. The results of these experiments

are shown in Chapter 6.
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As with the recurrent neural networks with Hebbian learning, the target vector

is presented to the network once per input command, as opposed to once per

input word. The weight matrix is initialized to small random values (-0.1 to 0.1,

inclusive) before learning begins and the context units are initialized to 0.5 before

training begins for each input command. The weight matrix is updated once per

trial. A momentum value is used to update the weight matrix and the weights

are also scaled by the reciprocal of the number of units in the network each time

they are updated to keep them small. Now that I have presented the architectural

information about the neural network, I will present the details associated with

back propagation learning.

As mentioned previously, back propagation learning is much slower than Heb

bian learning. That is the reason a back propagation network was not chosen in

the first place. Back propagation learning works as follows: the activations for

all units are computed, the error measure for the output layer units is computed

(as shown in Equation 5.7), this error measure is then sent back to the hidden

layer units and used to compute the change in weight value for that layer, then

the hidden layer must be copied to the context layer. All of this must be done for

each input vector, i.e. word of input. Once an entire command has been entered,

the process begins again for the next command. It is easy to see why this method

of learning is slower than Hebbian learning as the error value has to be "back

propagated" to the other layers before their weights can be updated.
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Back propagation, according to [41], is a gradient descent method to minimize

the total squared error of the output computed by the neural network. Gradient

descent is where the algorithm continues to move along the error gradient to the

lowest point in the error field. "The basic idea of the back propagation method is

to combine a nonlinear perceptron-like system capable of making decisions with

the objective error function of least means squared and gradient descent." [96]

In other words, we are using an error measure to perform gradient descent. We

are moving along the gradient to the point where the error is least. The way

that the back propagation algorithm works is to move through the neural network

computing the new activation values for each unit in the network, as follows:

ct^ — cij X W-Ij (5.6j
j

where ai is the activation value for unit i, aj is the activation value for unit j, and

Wij is the weight between units i and j. Once the activations are computed, the

total of the least means squared error (tss) is computed for each output unit, as

follows:

(5-7)
V  i

where p is a given input pattern (or command), U is the target value for output

unit i, and Oi is the actual activation value for output unit i. Finally, the error
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values are passed back through the network in the opposite direction in order to

compute the change in the weight matrix values, as follows:

error,- = t,- — a,-Aio,j = error,- x a,- x (1 — o,-) x Cj (5.8)

where error,- is the error value for unit i, Wij is the weight between units i and

a,- is the activation value for unit i, and aj is the activation value for unit j. The

Awij computed above contains the partial derivative of the error with respect to

a change in the net input of the unit.

The above process continues for all input patterns and then the weight matrix

values are updated for each trial, as follows:

Wij = e X Awij + momentum x lOjj (5.9)

where e is the learning rate, Wij is the weight between units i and j, and momentum

is the term which remembers the previous value of the weight and helps the neural

network to move in the right direction. Momentum was discussed in more detail

in section 5.2.

Several tests were run with the SRN with back propagation learning. The tests

include learning rate values versus error rate and hidden layer size versus error

rate. The results of these tests and the conclusions drawn from those results are

presented in Chapter 6.
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5.4 Nonrecurrent Neural Network with Back Propagation

Learning

The final neural network that was implemented for natural language processing

was a nonrecurrent neural network with back propagation learning. A diagram

of this network is shown in Appendix L. The neural network has a single hidden

layer. The input vector is of length eight hundred. It is made up of bipolar values.

The input vector is simply a concatenation of the vectors for each of the words of

the command. For example, if the command is "Where is the book?" The input

vector will have five hundred meaningful values, with the first one hundred being

the vector for the word "Where", and the last being the vector for the "?". Since

the commands are of different lengths, the rest of the input vector is filled with

-1 values since it is a bipolar vector (which corresponds to 0 values in a binary

vector). It is possible to use 0 values, but -1 values made the statistics which are

presented in Chapter 6 easier to understand and to explain.

The output vector is of length eighty eight. It is made up of binary values.

It is organized as described in Section 5.1 and is the same as the output vectors

for the other neural networks. The target vectors are also of length eighty eight.

Since this is not a recurrent network, there was no decision to be made as to how

often to present the target vector. It was presented to the neural network once

for each command.
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The weight matrix is initialized to small random values (-0.1 to 0.1, inclusive).

As this is not a recurrent neural network there are no context units. The weight

matrix is updated once per trial which means that as each input command is

presented the change in the weight matrix is computed, but the weights are not

updated until all commands have been presented. A momentum value is used to

update the weight matrix. The weights are also scaled by the reciprocal of the

number of units in the network in order to keep them small. A bipolar sigmoid

is used to scale the activation values to the appropriate range (-1 to -fl). The

formula used is from [41] and is as follows:

ai = 2/(1 + e-""') - 1 (5.10)

where cr is a steepness parameter which is set to one.

Learning in this neural network occurs just as it does in the recurrent back

propagation network described in Section 5.3. The only difference being at the

end of each step in the learning process, the output value of the hidden layer units

is not copied back onto context layer units because this is not a recurrent neural

network. Equation 5.6 is used to update the activation unit values, this is used in

combination with the bipolar sigmoid in Equation 5.10. Equation 5.7 is used to

compute the total sum of squares error value. Equation 5.8 is used to compute

76



the change in the weight matrix value for each command entered. Finally,

Equation 5.9 is used to update the weight matrix on each trial.

Several tests were run with the nonrecurrent back propagation network. The

tests include learning rate versus error rate and hidden layer size versus error

rate. The results of these tests and the conclusions drawn from those results are

presented in Chapter 6. As you will notice, the best results were achieved with

this network.
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Chapter 6

Results and Conclusions

6.1 Introduction

Four of the five neural networks implemented were not performing the natural

language processing task that I had originally set out to perform. Regardless of

the Hebbian neural network used, the initial values, the learning rate, the method

of updating the weight matrix, or the type of target vector the neural networks

will forget one or more similar commands as they learn new ones. When two

similar commands are given as input, the neural networks will learn one of them

and as it learns the other similar command, it will unlearn the previous one. This

problem was discussed in greater detail in Section 5.2.6.

1 focused on three questions that arose as to why this was the case. The

questions focus on Hebbian learning. The reason for this is that the goal of
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this research project was to solve the natural language interpretation problem

with Hebbian learning. Therefore, since the neural networks did not successfully

interpret natural language, I use the results of the tests performed in Chapter 5,

along with the following data, to show that Hebbian learning does not work in

recurrent neural networks for natural language processing even when the input

vectors for the words of the language are approximately orthogonal.

In the tests done in the following sections, I calculate the covariance matrix

for vectors as well as the Euclidean distance between vectors in order to measure

their similarity. Therefore, I will define those terms here so that I do not have to

revisit them in each section.

The covariance matrix is computed by calculating the inner product of each

two vectors to produce the corresponding element of the covariance matrix. For

example, the inner product of the 17th vector with the 22nd vector will produce

element [17,22] in the covariance matrix. The covariance matrix value for two

identical, bipolar vectors should be the length of the vector. The covariance

matrix value for two orthogonal, bipolar vectors should be zero. Therefore, the

number computed should be between zero and the length of the vector. The closer

to zero, the more different the two vectors. The closer to the length of the vector,

the more alike the two vectors.

The Euclidean distance is the distance between two points (vectors) in a Carte

sian space. The Euclidean distance was computed using the following formula:
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where Xi is the value of the element of vector x and j/,- is the value of the

element of vector y. The Euclidean distance between two identical, bipolar

vectors is zero. The Euclidean distance between two orthogonal, bipolar vectors

is 1.4 times the square root of the length of the vector, based on the following

derivation.

= {x- yf = ||a;||^ - 2xy + \\y\f = \\x\f + ||y||^ = 2 ||a:||^ (6.2)

and since

l l^l l = (6-3)
y n

then

D = V2\\x\ \ (6.4)

D = V2^/n (6.5)

Therefore, when these distances are computed for a pair of vectors the values

should be between zero and 1.4 times the square root of the length of the vector.

The closer to zero, the more alike the two vectors. The closer to the 1.4 times the

square root of the length of the vector, the more different the two vectors.
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6.2 First Question

The first question was "Are the input vectors for the individual words strongly

correlated?" If so, then Hebbian learning will not work well. "If the input vectors

are uncorrelated (orthogonal), then the weight matrix found by the Hebb rule will

give perfect results for each of the training input vectors." [41]

In order to determine if the input vectors for the individual words are strongly

correlated, I built the covariance matrix for the input vectors. The covariance

matrix, as previously mentioned, was computed by calculating the inner product

of each two vectors to produce the corresponding element of the covariance matrix.

The covariance matrix included all 1060 words (input vectors) in the vocabulary,

which are listed in Appendix D.

I anticipated that the answer to the question would be "no". The reason

for this is that I used large, randomly generated bipolar vectors as the input

vectors for the individual words in the language. Large, randomly generated

bipolar vectors are approximately orthogonal, therefore, for any two chosen words

in the language, the input vectors are approximately orthogonal. For two vectors

to be orthogonal, their inner (scalar) product must be zero. Below I will show

that the inner products of any two vectors are approximately zero and, therefore,

approximately orthogonal. This means that they are not strongly correlated.
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After creating the covariance matrix, I took the average across several regions.

The average value of the covariance matrix (all elements) was 0.0897. As the

inner product of any two "different" vectors should be approximately zero, but

the inner product of a single bipolar vector with itself should be the length of the

vector, I computed the values for the covariance matrix for the diagonal elements

(a vector with itself) and the nondiagonal elements (a vector with another vector)

separately. The values of the covariance matrix diagonal elements were all 100, i.e.

the length of the vector, as they should be. The average value of the covariance

matrix nondiagonal elements was 0.0046. The value of the covariance relative to

the length of the vector is, therefore, 4.6 x 10"^. With this value I can conclude

that the input vectors for the individual words are approximately orthogonal and

not strongly correlated.

If the input vectors for the individual words of the vocabulary are not strongly

correlated, then Hebbian learning should work. The results discussed above were

encouraging as they showed that Hebbian learning could solve the natural lan

guage processing problem.

6.3 Second Question

The second question was "Are the input vectors for a given command strongly

correlated?" If so, then Hebbian learning will not work. This is simply an exten-
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sion of the first question as it pertains to nonrecurrent networks since recurrent

neural networks have multiple input vectors for a single input.

In order to run this test I could not use the input vectors that I used for

the recurrent neural networks. The reason being that the input vectors for the

recurrent neural networks only represent a single word in the command, not the

entire command. However, I still needed to determine if the input for a given

command was strongly correlated with the input for another command. I created

large vectors which were made up the concatenation of the vectors for each of the

words in the command. You will notice that the content of this vector is exactly

the content of the vectors for the individual words of the command. However, the

meaning (and use) is much different. Because the commands may have one (or

usually more) words in common, these vectors are no longer orthogonal.

The tests done in this section involve the input vectors used for the nonrecur

rent back propagation network described in Section 5.4. In this section, the input

vectors are the long input vectors (size eight hundred). The input vector looks

like the following:

wordl...word2...word3...wordn

where the words are the individual words of a given command.

As mentioned previously, with the number of items in the input vocabulary and

the number of actions allowed on those items, I am able to come up with eighty
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eight thousand commands that the natural language processor should understand.

However, it has taken approximately five days to train one of the neural networks

on one hundred commands using a 166 MHz machine. I determined that the test

results that I would realistically be able to obtain would have to involve far fewer

than eighty eight thousand commands. Therefore, I chose one thousand and thirty

six commands randomly and ran all of the following tests on those commands in

order to have consistent results.

Given the above information, I had to answer the question, "Are the input

vectors for a given command strongly correlated?" In order to do so I took

the information in Section 6.2 about how to determine if vectors are strongly

correlated and used it on the vectors which were input to the nonrecurrent back

propagation neural network. I computed the covariance matrix for the vectors.

The average value of the covariance matrix for all elements 501.6059. As the

inner product of any two "different" vectors should be approximately zero, but the

inner product of a single vector with itself should be more than zero, I computed

the average values of the covariance matrix for the diagonal elements (a vector with

itself) and the nondiagonal elements (a vector with another vector) separately. In

this case the average value for the diagonal elements should be eight hundred.

The reason being that there are eight hundred elements in the vectors and the

vectors have bipolar values.
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The average value of the covariance matrix diagonal elements was 800. This is

as it should be for the diagonal values. The average value of the covariance matrix

nondiagonal elements was 501.3144. This is not close to zero and, therefore,

the input vectors are not approximately orthogonal. In other words, they are

strongly correlated. This suggests that Hebbian learning will not work to solve

this problem.

The point is that even though the input vectors for the individual words are not

strongly correlated (as shown in Section 6.2), the input vectors for the commands

are strongly correlated. This gives evidence that Hebbian learning should not

be able to solve this natural language processing problem well. However, this

type of input was not used for the Hebbian neural network. It is significant

due to the idea that if the representation that we are able to build from the

approximately orthogonal word vectors are strongly correlated, chances are that

the representation that the recurrent neural network with Hebbian learning builds

is going to be strongly correlated.

6.4 Third Question

The third question was "Are the internal representations similar for different com

mands?" Neural networks cannot learn well for patterns that have similar internal

representations for different input patterns, therefore, if the internal representa-
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tions are similar then neural networks cannot solve this problem. Internal rep

resentations are a result of the training of the neural network. Therefore, if the

training of the neural network is successful, we expect that the internal represen

tations for the input patterns would be different. However, the training of these

neural networks has not been successful so I tested whether or not the internal

representations were similar.

The test used to determine whether or not the internal representations were

similar is described below. It should be noted that neural network used in this test

was the Simple Recurrent Network with Hebbian learning. Before describing the

test it is necessary to describe how the inputs to the tests were generated, i.e. what

an internal representation is. The internal representation is the representation

of the input that the neural network builds through Hebbian learning. In this

case, the internal representation is the set of values for the hidden unit activation

vectors.

The neural network was trained on a set of one thousand and thirty six com

mands. The neural network was trained for one thousand trials (one thousand

presentations of the set of inputs to the network). Every one hundred trials the

values for the hidden unit activation vectors for each command was saved to an

output file. These hidden unit activation vectors were then used to calculate the

covariance matrix and the Euclidean distance between all of them. Here, I am

considering the hidden unit activation values for the neural network as the internal
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representations for the commands. All of the vectors used to produce this data

are bipolar vectors. The vectors are of length 200.

The average values for the covariance matrix of the different vectors grew larger

with more trials and moved closer to the size of the vectors being compared. This

could mean that the internal representations for the commands chosen are very

similar. This gives evidence as to the reason that the neural network was unable

to learn the commands given to it.

The Euclidean distance between the different vectors continued to decrease

with more trials. It moved closer and closer to zero. This gives evidence that with

more trials the internal representations for the vectors became more similar. This

too suggests that the neural network should not be able to learn the commands.

Appendix M shows a table of the Euclidean distance average values computed

as well as the covariance matrix average values for the simple recurrent network

with Hebbian learning.

6.5 Other Results

Different types of information were calculated for each of the neural networks

which were implemented. This was done in order to compare the Hebbian learning

SRN with the two back propagation neural networks. Each of the neural networks

was given the randomly chosen 1036 commands as input and trained for one
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thousand trials. The data was collected every one hundred trials. The results of

these tests are shown in Appendix N.

For the SRN with Hebbian learning the following tests were conducted: learn

ing rate versus error rate and hidden layer size versus error rate. As the data

shows, this neural network performed the worst of the three tested. It did, how

ever, perform faster. The speed with which this algorithm runs is the major

reason for choosing it. The most commands that this neural network learned

during training was 8.

For the SRN with back propagation learning the following tests were con

ducted: learning rate versus error rate and hidden layer size versus error rate. As

the data shows this neural network performed much better than the neural net

work with Hebbian learning, but not as well as the nonrecurrent neural network.

It did, however, perform the slowest of the three neural networks tested. The

most commands that this neural network learned during training was 121. This

took 630 trials.

For the nonrecurrent neural network with back propagation learning the fol

lowing tests were conducted: learning rate versus error rate and hidden layer size

versus error rate. As the data shows, this neural network performed the best of

the three neural networks tested on the chosen commands. It also learned them

faster than the recurrent neural network with back propagation. The most com

mands that this neural network learned during training was 710. This took 55,000
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trials. It should be noted that at the time of the writing of this dissertation, this

neural network was still learning new commands. I have no evidence to support

a claim that this nonrecurrent back propagation neural network could not solve

this natural language processing task. Further study must be done, as discussed

in Chapter 7.

6.6 Conclusion

The data presented in this and the previous chapter gives evidence that Hebbian

learning does not work well in recurrent neural networks for natural language pro

cessing even when the input vectors to the network are approximately orthogonal.

There are three reasons for this conclusion.

The first and foremost reason for this conclusion is the empirical data pre

sented in Chapter 5. Three different Hebbian learning neural networks were im

plemented. Different types of input and output vectors were used. All available

activation functions were implemented. A number of different methods of ini

tializing, changing, and updating the weight matrix were implemented. A large

range of hidden layer sizes were used. With all of these diverse approaches, none

of the three Hebbian learning neural networks was able to interpret the natural

language.
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The second reason for this conclusion is that the input vectors for any two

given commands are strongly correlated. In other words, if you randomly pick

two commands and look at the input vectors which correspond to the command,

you will see that they have many elements in common. This makes it difficult for

the Hebbian learning rule to distinguish between them.

The third reason for this conclusion is that the internal representations are

similar for different commands. If the internal representations, i.e. the represen

tation that the neural network builds to distinguish the patterns, are similar then

the neural network will have difficulty distinguishing the patterns.

So it is that I have found that the Hebb learning rule does not work well in

recurrent neural networks for natural language processing even when the input

vectors are approximately orthogonal. In Chapter 7 I will discuss ways that we

may use this research to move forward in solving the natural language processing

task.
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Chapter 7

Future Work

Hinton states, "Most connectionist researchers are aware of the gulf in representa

tional power between a typical connectionist network and a set of statements in a

language. They continue to develop the connectionist framework not because they

are blind to its limitations, but because they aim to eventually bridge the gulf by

building outwards from a foundation that includes automatic learning procedures

and/or massively parallel computation as essential ingredients. Subject to these

hard constraints, they aim to progressively improve representational power." [60]

This project has sought to bring the application of automatic learning proce

dures to natural language closer to fruition. While the Hebbian neural networks

of this research project were not able to interpret natural language at the level

that was expected, this project has made a contribution to connectionist research.

This project has shown that Hebbian learning does not work in recurrent neural
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networks for natural language processing even when the input vectors are ap

proximately orthogonal. Now we should take this information and go on to build

better neural networks. This project in no way implies that the task cannot be

done with neural networks, as is shown by the nonrecurrent back propagation

neural network.

In determining how the research community can learn from this project and

go on to build neural networks that can process natural language, I believe there

are three areas. The first is in choosing the input vocabulary. The second is in

using orthogonal input vectors instead of approximately orthogonal if the Hebb

learning rule is used. The third is in the use of learning algorithms other than

the Hebb rule in conjunction with massively parallel machines for implementing

neural networks. I will address each of those in more detail.

Considering that the most successful connectionist approach to natural lan

guage processing has had a vocabulary of fifty-five words, this project may have

been slightly on the ambitious side. The input vocabulary to the natural lan

guage processor was one thousand and sixty words. It would be worthwhile to

start with a subset of the input vocabulary and get it to work and then build up

from there. An interesting project would be to take the same set of actions (verbs)

and a small subset of the number of items (nouns) and build a neural network to

interpret them.
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It is my conclusion that the neural networks would perform better if the input

commands were not so similar to each other. I could have chosen commands that

were not as much alike as those that I presented to the neural networks. Consider

that "Put the dish on the table." and "Put the apple on the refrigerator." are

both commands of the type that occur often in the commands given to the neural

network. These commands have four of their six words in common. It would be

very difficult to get a neural network to distinguish between them because of the

fact that they are very similar, but also very dissimilar. Changing the type of

input commands to the system presents two problems: a small scale problem and

a large scale problem.

The small scale problem is that it was necessary for me to have a small number

of verbs and a large number of items (nouns) that the verbs operate on in order

to stay with the two and one half year old child framework of language. If I had

changed the type of input, it would have defeated that goal. Having such an large

number of items (nouns) emphasized the small number of verbs and made the

commands more difficult to learn.

The large scale problem is that in natural language many of the same words

are used in many different sentences. This means that even if I changed the

input commands, it might make the neural networks perform better, but would it

bring us closer to being able to perform natural language processing with neural

networks? It is true that natural language is not as repetitive as the commands
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used in this project are, but count how many times in one day you use the word

"the", or "a", or "I".

In spite of the two problems discussed above, it would be interesting to take

an input vocabulary of roughly the same size and the same type of language, but

with a different type of statement. In other words, get rid of the entire "robot

moving about a house" concept and make a set of statements as input that are not

all commands. Make them different types of statements, but keep with the two

and one half year old concept. For example, the following might be statements

that are interpreted by the system:

I see the dog.

What is your name?

The cup is blue.

It is probable that the neural networks can learn this language more success

fully than a language in which the statements are too similar, as in this project.

Sometimes the similarity of the input commands is the problem and sometimes

the dissimilarity (orthogonality) is the problem. They might have many words

in common so that the neural network thinks that they are the same, but at the

same time they have several key distinguishing words that the neural network is

unable to pick up on. I think that this combination was one of the key reasons

that the neural networks were unable to interpret the language in this project.
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It is possible that this natural language processing problem could be solved

using Hebbian learning if the input vectors were orthogonal. As this project shows,

approximately orthogonal input patterns cannot be learned well with Hebbian

learning, but nothing in the data collected for this project has shown that leaving

everything the same and changing the inputs to orthogonal vectors will not work.

There are two ways to create orthogonal vectors.

The first way to create orthogonal vectors is to create binary input vectors

with only a single element (unit) being one. All of the other values would be zero.

This is a unary vector. For example, the input vector for "get" might be:

000000000001

and the input vector for porch might be

000001000000

Another method of creating orthogonal input vectors is to use Walsh functions,

as described by [3]. Every element is either 1 or -1, but the vectors are not unary,

i.e. more than one unit is "on" at a given time. The values for the elements of the

vectors are chosen such that there is always a method of distinguishing between

any two vectors, i.e. a pattern exists. Since there is a pattern to the input, it

would now be possible to do a mapping between the input and output units.

Therefore, a neural network could possibly be built such that a strong correlation

between these inputs and a given set of outputs would exist. In other words, since
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there is no "cross-talk" between the input vectors, the neural network can now

learn, for example, that if there is a 1 in position 7 in the input vector and a -1

in positions 12 and 22, then the output should be 1100.

A problem with using orthogonal input vectors is that "in a system of n di

mensions, there can be at most n mutually orthogonal vectors" [3]. Also, the

dimensionality of the system must be a power of two. To create either unary in

put vectors or input vectors using Walsh functions, the vector length would have

to be the size of the input vocabulary (or possibly larger for Walsh functions if

the vocabulary size is not a power of two). In this case the vector length would

be one thousand and sixty. This would increase the size of the input vectors more

than ten times. It would also dramatically increase the amount of time necessary

for the neural network to learn the commands. However, it could allow Hebbian

neural networks to learn natural language.

In a different direction there is the use of learning algorithms other than the

Hebb rule in conjunction with massively parallel hardware. As discussed in Section

6.6, the nonrecurrent back propagation neural network which was implemented

for this project looks promising. The problem occurs in that it took the neural

network 55,000 trials to learn 710 commands. These 55,000 trials took 110 days

of training on a Sparc 5. Therefore, it is important to combine this approach with

the use of massively parallel machines.
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As mentioned in Chapter 2, one of the keys to solving large "real world"

natural language processing tasks is going to be the use of massively parallel

hardware. The training time for neural networks is just so large on a problem

of any magnitude that it is not productive to try to get them to work on serial

machines. They are just too slow. I believe that I could have made much more

progress toward trying to build a neural network to solve this problem if I had

not had to spend so much time running each of the tests. It would have made

the decision to use Hebbian learning a much less significant one. If we ever hope

to solve large problems in real time, we are going to have to execute them on

massively parallel machines. This is becoming less of a pipe dream as parallel

machines become more available and hardware costs go down.

Many different aspects of natural language processing were addressed in this

project: including some of the recent work; how two and one-half year olds inter

pret language; how the connectionist approach differs from the symbolic approach;

and how five different neural networks perform on a natural language interpreta

tion task. Also, many of the shortcomings of current neural network technologies

were presented, including knowledge representation, poor generalization, and the

inability of neural networks to scale up to solve larger problems. This research

project gives evidence to show that Hebbian learning does not work well in recur

rent neural networks for natural language processing, even when the input vectors

are approximately orthogonal. This in no way should discourage those of us who
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believe in the connectionist approach. The ideas presented in this chapter, along

with other ideas generated by this research, can be investigated as we continue to

move closer to finding the right combination of architecture and algorithm to get

computers to understand natural language at a two and one half year old level

and beyond.
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Appendix A

Items Allowed in House

sofa

desk chair

desk

end table

refrigerator

stove

sink

toilet

bathtub

bed

lajnp

bookshelf
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china cabinet

television

chest

dresser

pantry

coffee table

dining table

work table

computer

easy chair

table chair

filing cabinet

dishwasher

kitchen cabinet

loveseat

fireplace

stereo

rocking chair

swing

books

china
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tooth paste

soda

clothes

towel

washclothe

cds

tapes

diskettes

printer

printer paper

files

dishes

tooth brush

hair brush

soap

magazine

telephone

scale

clock

coffee cup

picture
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ashtray-

clothes hcinger

toaster

pillow

curtains

walls

ceiling

trashcan

stapler

nightstand

laundry basket

washer

dryer

mirror

hair dryer

hutch

stool

oven

microwave

grill

shower
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piano
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Appendix B

Actions Allowed on Items

Get objectX.

Put objectX in LocationA.

Move objectX from locationA to locationB.

Where is objectX?

Is objectX present?

What is in roomQ?

What is near- objectX?

Put objectX on objectY.

Put objectX in objectY.
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Appendix C

Survey used to compute weights
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ROOMS SURVEY

I am currently working on my dissertation for my PhD in

Computer Science at the University of Tennessee at

Knoxville. My project involves Artificial Intelligence.

I am creating a simulated robot who will move about

the rooms of a house and perform the actions asked of it

by the user. In order to do so, I have to have some

idea of what belongs in each room of a house. In creating

these rooms, I would like to be as accurate as possible.

Therefore, I am asking one hundred people to fill out

this survey of what > items they think belong in what rooms.

I appreciate your time and energy in filling out this

survey to the best of your ability. This will greatly

help me to continue with the rest of my research project.
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Survey Instructions

To fill out the survey, simply place a check in each box

of the table if you think that the item on that row

typically is seen in the room listed at the top of that

column. Note that one particular item may be seen in

more than one room.
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Item Office Bedroom Dining Living Kitchen Bathroom Porch

sofa

desk-chair

desk

end-table

refrigerator
stove

sink

toilet

bathtub

bed

lamp

book

bookshelf

china-cabinet

television

chest

dresser

pantry

coffee-table

dining-table ,

work-table

computer

easy-chair

table-chair

filing-cabinet
dishwasher

kitchen-cabinet

loveseat

fireplace
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Item Office Bedroom Dining Living Kitchen Bathroom Porch

stereo

rocking-chair
swing
books

china

toothpaste
soda

clothes

towel

washcloth

cds

tapes

diskettes

printer

printer-paper

files

dishes

toothbrush

hair-brush

mirror

soap

magazine
telephone

scale

clock

cofFee-cup
picture
ashtray

clothes-hanger
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Item Office Bedroom Dining Living Kitchen Bathroom Porch

toaster

pillow
curtains

walls

ceiling
trashcan

stapler

nightstand
laundry-basket

washer

dryer
mirror

hair-dryer
hutch

stool

oven

microwave

grill
shower

piano
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Appendix D

Words in Input Vocabulary

The following list is the Dolch Word List plus the words that were previously in the

vocabulary. This is the input vocabulary to the natural language processor, i.e. the set

of words that are legal as input.
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office bedroom dining living kitchen bathroom

porch sofa desk refrigerator stove sink

toilet bathtub bed lamp book bookshelf

cabinet television chest dresser pantry coffee

work computer filing dishwasher loveseat fireplace
stereo rocking swing china toothpaste soda

clothes towel washclothe cds tapes diskettes

printer files dish toothbrush hairbrush mirror

soap magazine telephone scale clock picture
ashtray hanger toaster pillow curtain wall

ceiling trash stapler laundry washer dryer
hutch stool oven microwave grill shower

piano get put in move from

to where is what near find

return by big small white yellow
orange red blue green brown black

soft hard on the one a

about above across accident ache act

address afraid after afternoon again ago

ahead air airplane all almost alone

along already also always am an

and angry animal another answer ant

any anywhere apple are arm around

as ask at ate aunt automobile

awake away baby back bad bag
bake ball balloon banana band bandage
bank bark barn basket bath bathe

be beans bear beat beautiful because

become bee been before began begin
begun believe bell belong bend beside

best better between bicycle bill bird

birthday bit bite blackboard bleed bless

blew blind blood blow board boat

body bone born both bottle bottom

bow bowl box boy branch brave

bread break breakfast brick bridge bright
bring broke broom brother brought bug
build built bump burn bus busy
but butcher butterfly butter button buy
cake calf call came camp can

candy cap captain car card care

careful careless carry case cat catch
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caught cause cent center chain chair

chalk chance change cheek chicken chief

child chimney chin chocolate choose church

circle circus city class clean clear

climb close cloth cloud clown close

cloth cloud clown coal coat cocoa

cold color come company cook cookie

cool copy corn corner cost cough
could count country course cousin cover

cow . crackers crayons cream creek cross

crowd crown cry cup cupboard cut

dance danger dark date day dead

dear deep deer dentist did die

different dig dime dine dinner dirt

do doctor dog doll dollar done

door double down draw drawer dream

dress drink drive drop drug dry
duck dust each ear early earth

easy eat edge egg eight either

elephant eleven else empty end engine
enough eraser even evening ever every

except expect eye face fair fall

family far farm fast fat father

feather feed feel feet fell fellow

felt fence few field fight fill

find " finger finish fire first fish

fit five fix flag flew floor

flower fly follow food foot for

forget forgot fork forth found four

fresh friend frog front fruit full

fun fur furniture game garage garden
gate gave gift girl give glad
glass go gold gone good goodbye
got grade grain grandfather grandmother grass

gray great grew grocery ground grow

guess had hair half hall hammer

hand handkerchief hang happen happy has

hat have he head hear heard

heart heavy held hello help hen

her here hid hide high hill

him - his hit hold hole home

hope horse hot hour house how
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hundred hung hungry hunt hurry hurt ,

i ice if indoors inside instead

into iron it juice jump just
keep kept kick kill kind kiss

kitten knee knew knife knock know

lady laid lake lamb land lap
large last late laugh lay lead

leaf learn leather leave leaves led

left leg lemonade lesson let letter

lettuce lie life lift light like

line lion lip listen little live

load long look lost lot loud

love low lunch maid magic mail

make man many march mark market

matter may maybe me mean measure

meat medicine meet men mend met

middle might mile milk mill mind

minute miss money monkey month moon

more morning most mother mountain mouse

mouth much music must my nails

name nap napkin miss money monkey
month moon more morning most mother

mountain mouse mouth much music must

my nails name nap napkin neck

need neighbor neither nest never new

next nice nickel night nine no

noise none noon nor north nose

not note nothing now number nurse

nut oak ocean of oif often

oh old once only onto open

or other • ought our out outdoors

outside over overalls own page pail
pain paint pair pan pants paper

parade part party pass past paste
path pay peach peas pen pencil
penny people pet pick picnic pie
piece pig place plain plant plate
play please pocket point policeman pond
pony poor post pot potatoes pound

present press pretty pull puppy push
puzzle quarter queen question quick quite
quiet rabbit race radio rag rain
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ran rather reach read ready real

reason remember rest rich ride right
ring river road robin rock roll

roof room rooster root rope rose

round row rub rubber rug ruler

run sad said sail salt same

sand sandwich sang sat save saw

say school scissors scooter sea season

seat second see seed seem seen

self sell send sent serve set

seven several shadow shake shell shape
she sheep ,  shine ship shirt shoe

shook shop short should shoulder show

shut sick side sign silk silver

sing sir sister sit six size

skates skin skirt sky sleep slip
slow smart smell smile smoke snow

so socks sold soldier some song

soon sore sorry sound soup south

space speak spoken spoon spot spread
spring square squirrel stairs stand star

start station stay step stick still

sting stocking stomach stone stood stop

store storm story straight street strike

string strong such sudden sugar suit

summer sun supper suppose sure surprise
sweater sweep sweet swim table tale

take talk tall taste teach tear

teeth tell ten tent than thank

that their them then there these

they thick thin thing think third

thirsty this those though thought thousand

three threw throat through throw thumb

ticket tie till time tire tired

today toe together told tomatoes tomorrow

tongue tonight too took tooth top

touch toward town toys trade train

tree trick trip truck true try
tub turn turtle twelve twenty two

ugly umbrella uncle under until up

upon us use valley very visit

wagon wait wake walk want war
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warm was wash waste watch water

wave way we wear weather week

well went were west wet wheat

wheel when whenever whether which while

whisper who whole whom whose why
wide wife wild will win wind

window wing winter wise wish with

without woman women wonder wood wool

word wore work world would wrap

write wrong yard year yes yesterday
yet you young your zipper
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Appendix E

Words Two and one half year old

child understands

The following is the list of words which two of the three children surveyed understood

out of the input vocabulary.
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a above across accident afraid after

again airplane all almost already am

and angry animal another ant any

apple arm ask at ate awake

away baby back bad bag ball

balloon banana band bandage bark barn

basket bath beans bear beat beautiful

bed bee been bell bicycle big
bird bite black bleed blood blow

blue boat book both bottle bow

bowl bread break brick bridge bring
broke broom brought brown bug bump
bus butterfly butter button by cake

calf call came can candy cap

car card careful carry cat catch

caught chair chalk chicken chin chocolate

clean clear climb clock close clothes

cloud clown coat cold color come

cool corn cough count cover cow

crackers crayons cry cup cut dance

danger dark deer desk did dig
dinner dirt do doctor dog doll

done door down draw drink drive

drop dry duck ear easy eat

egg elephant empty eye face fall

fast father feed feel feet fell

fence fight fill find finger finish

fire fish fit fix flag floor

flower fly food foot for fork

found friend frog fruit full fun

game gate gave get give go

gone good goodbye got grass great
green ground had hair hammer hand

hang happen happy hard has hat

have head hear heard heavy hello

help here hide high hill his

hit hold hole home horse hot

house hungry hunt hurry hurt I

ice in inside instead juice jump
kick kiss kitchen kitten knee knife

know laid lamp lap laugh lay
leaf leave
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leaves leg let lift light like

lion lip listen little look lost

loud lunch made mail make man

maybe me mean medicine men might
milk mirror miss monkey moon more

mother mouse mouth move much music

my name nap napkin neck need

next nice night no noise nose

now nut ocean of off oh

on one open orange out outside

over own pain paint pants paper

party peach peas pen pencil people
pet pick picnic picture pig pillow
plate play please pocket point policeman
pony present pull puppy push put
quiet rabbit radio rain reach read

ready red rest ribbon ride river

road rock roll room rooster run

sad salt sand sat say school

scissors seat see shadow shake sheep
ship shirt shoe show shut sick

sing sister sit skin skirt sky
sleep slow small smell smile smoke

snow soap socks soft song sore

sorry soup spoon squirrel stairs stand

star stay step stick still stomach

stop store storm story stove string
strong sun supper surprise sweep sweet

swim table take talk taste teeth

tell tent that the there these

thirsty this throat throw thumb tired

to toe tomatoes tongue tooth touch

towel toys train tree truck tub

turtle umbrella under up wait wake

walk wall want warm wash watch

water wave wear wet whisper white

who wind window work write yellow
yes you
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Appendix F

Words Natural Language

Processor Understands

The following is the list of words from the input vocabulary and the words which two

of the three children understood that fit into the domain of discourse for this project.

These are the words which the natural language processor is able to understand, i.e.

comprehend commands from. The words are alphabetized within part of speech.

ARTICLES

the
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NOUNS

airplane animal ant apple ashtray bag
ball balloon banana bandage barn basket

bathroom bathtub beans bear bed bedroom

bee bell bicycle bird boat book

bookshelf bottle bow bowl bread broom

bug bus butter butterfly button cabinet

cake can candy cap car card

cat cds , ceiling chalk chest chicken

china chocolate clock clothes clown coat

colfee computer corn cow crackers crayons

cup curtain deer desk dish dishwasher

diskettes dog doll door dresser dryer
duck egg elephant files fireplace fish

flag floor flower food fork frog
fruit game gate grill hairbrush hammer

hanger hat horse hutch ice juice
kitchen kitten knife lamp light lion

loveseat magazine mail microwave milk mirror

monkey mouse napkin nut ofiice oven

pantry pants paper peach peas pen

pencil piano picture pig pillow plate
pony porch printer puppy rabbit radio

refrigerator ribbon rock room rooster salt

scale scissors sheep ship shirt shoe

shower sink skirt soap socks soda

sofa soup spoon squirrel stairs stapler
star stereo stool stove string swing
tapes telephone television tent toaster toilet

tomatoes toothbrush toothpaste towel toys train

truck tub turtle umbrella wall washcloth

washer water

VERBS

bring find get is move put

what where

PREPOSITIONS

by in near on from to
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ADJECTIVES

big black blue brown china coffee

desk dining filing green hard laundry
living orange printer red rocking small

soft trash white work yellow
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Appendix G

SRN with One Hidden Layer
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Appendix H

Jordan Network with No Hidden

Layer
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Appendix I

Jordan Network with One

Hidden Layer
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Appendix J

Tests on Neural Networks with

Hebbian Learning
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TEST NNl NN2 NN3 TEST CONDITION

A Y Y Y Bipolar Input Vectors
B Y Y Y Binary Input Vectors
C Y Y Y Normalized Input Vectors
D Y Y Y Target presented once per word
E Y Y Y Target presented once per command
F Y Y Y Target presented once per trial
G Y Y Y Binary target vectors
H Y Y Y Bipolar target vectors
I Y Y Y Weight matrix initialized to all zeros
J Y Y Y Weight matrix initialized to biased values
K Y Y Y Weight matrix initialized to small random values
L Y Y Y Activations initialized to all zeros

M Y Y Y Activations initialized to midrange value
N Y Y Y Update weight matrix once per word
0 Y Y Y Update weight matrix once per command
P Y Y Y Update weight matrix once per trial

Q Y Y Y Change learning rate by hand
R Y Y Y Change learning rate automatically
S Y Y Y Scaled weight matrix vlaues
T Y Y Y Nopscaled weight matrix values
U Y N Y Binary output range for hidden units
V Y N Y Bipolar output range for hidden units
W Y N Y Tests on hidden layer size
X Y Y Y Momentum term added to weight matrix update
Y Y Y Y No momentum term added to weight matrix update
Z Y Y Y Hyperbolic tangent function added to weight matrix update
AA Y Y Y Set weight matrix values close to zero to zero
AB Y Y Y Suppress weak correlations
AC Y Y Y Bias term added to activation function

AD Y Y Y Binary sigmoid added to activation function
AE Y Y Y Decay term added to activation function
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Appendix K

Simple Recurrent Network with

Back Propagation Learning
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Appendix L

Nonrecurrent Neural Network

with Back Propagation Learning
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Appendix M

SRN with Hebbian Learning

M.l Euclidean Distance for Question Four

TRIALS AVERAGE DIAGONAL AVERAGE NONDIAGONAL AVERAGE

100 10.106 0 10.1158

200 9.1272 0 9.136

300 7.7667 0 7.7742

400 6.2544 0 6.2604

500 5.043 0 5.0479

600 3.9376 0 3.9414

700 3.1163 0 3.1193

800 2.431 0 2.4334

900 2.2205 0 2.2227

1000 2.0011 0 2.0031
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TRIALS AVERAGE DIAGONAL AVERAGE NONDIAGONAL AVERAGE

100 41.8441 93.5154 41.7941

200 69.1875 111.4797 69.1476

300 103.3038 134.2125 103.2738

400 135.4843 - 156.0621 135.4667

500 158.3203 172.3418 158.3075

600 174.2166 183.9779 174.2068

700 184.7063 190.8994 184.6974

800 188.9453 194.7085 188.9413

900 189.5657 195.8763 189.5615

1000 190.4398 196.7095 190.4375

M.2 Covariance Matrix for Question Four
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Appendix N

Other Results

N.l SRN with Hebbian Learning - Learning rate vs. Error

rate

Learning Rate Error Rate Trials

0.00001 1829.6483 1000

0.0001 1871.3375 1000

0.001 846715 1000

0.01 846715 1000

0.1 846715 1000
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Hidden Layer Size Error Rate Trials

100 812734 1000

150 813653 1000

200 1829.6483 1000

250 847238 1000

300 847223 1000

N.2 SRN with Hebbian Learning - Hidden layer size vs.

Error rate
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Learning Rate Error Rate Trials

0.00001 32.3417 1000

0.0001 25.6418 1000

0.001 23.7506 1000

0.01 21.8184 1000

0.1 20.7133 1000

N.3 SRN with Back Propagation Learning - Learning rate

vs. Error rate
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Hidden Layer Size Error Rate Trials

100 23.3789 1000

150 22.3838 1000

200 21.8185 1000

250 20.9296 1000

300 20.3114 1000

350 19.4908 1000

400 19.2844 1000

500 18.5072 1000

N.4 SRN with Back Propagation Learning - Hidden layer

size vs. Error rate
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Learning Rate Error Rate Trials

0.00001 3.5882 1000

0.0001 2.1392 1000

0.001 1.6213 1000

0.01 7.4997 1000

0.1 8.4023 1000

N.5 Nonrecurrent Net with Back Propagation Lecirning

Learning rate vs. Error rate
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Hidden Layer Size Error Rate Trials

300 1.7926 1000

400 1.8412 1000

500 1.7240 1000

600 3.5882 1000

700 1.9866 1000

800 2.1306 1000

N.6 Nonrecurrent Net with Back Propagation Learning

Hidden layer size vs. Error rate
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Appendix O

Robot Control System Data

O.l House 1
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ROOM = living room
sofa loveseat easy chair coffee table

television ashtray lamp telephone
curtains walls ceiling fireplace
ROOM - - dining

dining table table chair hutch china cabinet

china lamp curtains walls

ROOM -- porch
rocking chair rocking chair grill swing
ROOM — office

desk desk chair work table printer
printer printer paper cornputer book

telephone walls curtains ceiling
files filing cabinet
ROOM = bedroom

bed nightstand clothes ceiling
walls curtains hair brush pillow

dresser chest

ROOM = kitchen

refrigerator stove sink ceiling
curtains pantry soda dishes

coffee cup clock telephone microwave

washer dryer
ROOM — bathroom

sink bathtub toothpaste toothbrush

scale toilet ceiling walls

curtains mirror
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ROOM - living room
sofa loveseat television coffee table

end table end table lamp telephone

curtains walls ceiling
ROOM = kitchen

refrigerator sink stove dishes

microwave ceiling walls

ROOM = living room
sofa easy chair easy chair coffee table

fireplace mirror lamp walls

ceiling curtains

ROOM : bedroom

bed chest lamp nightstand
mirror curtains ceiling walls

ROOM bedroom

bed liiitrri rocking chair lamp
chest clothes curtains ceiling
walls

ROOM = bedroom

bed nightstand nightstand chest

mirror hair brush clothes

ROOM — bathroom

bathtub sink toilet toothpaste
towel walls ceiling washcloth

ROOM porch
rocking chair rocking chair grill

0.2 House 2
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ROOM — bedroom

bed lamp book chest

clothes nightstand
ROOM — living room
sofa end table book bookshelf

coffee table easy chair stereo cds

ashtray

ROOM : - kitchen

refrigerator stove sink kitchen cabinet

soda

ROOM bathroom

sink toilet bathtub toothpaste
towel washcloth toothbrush hair brush

mirror soap shower

ROOM = bedroom

bed chest dresser clothes

mirror clothes hanger laundry basket

0.3 House 3

170



ROOM — kitchen

refrigerator stove sink dining table
table chair dishwasher kitchen cabinet soda

dishes clock coffee cup microwave

ROOM = dining
china cabinet dining table table chair picture

hutch

ROOM : living room
sofa end table lamp easy chair

fireplace stereo curtains walls

ceiling hutch

ROOM - living room
sofa end table lamp book

bookshelf television easy chair loveseat

fireplace clock curtains walls

ceiling

ROOM — porch
rocking chair swing grill
ROOM = bathroom

sink toilet bathtub toothpaste
towel washcloth mirror soap

hair dryer
ROOM = bedroom

lamp chest dresser bed

mirror pillow curtains walls

ceiling

0.4 House 4
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0.5 House 5
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ROOM — living room
sofa end table lamp television

coffee table loveseat curtains walls

ceiling
ROOM = dining

china cabinet dining table table chair stereo

clock picture curtains walls

ceiling hutch

ROOM = office

desk chair desk book bookshelf

computer filing cabinet diskettes printer

printer paper files telephone curtains

walls ceiling trashcan stapler
ROOM -- bathroom

sink toilet bathtub toothpaste
towel mirror soap scale

walls ceiling shower

ROOM = bedroom

bed lamp picture pillow

curtains walls ceiling nightstand
ROOM - bedroom

bed lamp chest dresser

hair brush mirror curtains walls

ceiling nightstand
ROOM — bathroom

sink toilet toothpaste towel

soap walls ceiling shower

ROOM : living room
sofa end table lamp television

coffee table magazine telephone clock

picture ashtray pillow curtains

walls ceiling
ROOM = kitchen

refrigerator stove sink pantry

dishwasher kitchen cabinet dishes curtains

walls ceiling oven microwave
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0.6 House 6
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ROOM = kitchen

refrigerator stove sink dining table
table chair dishwasher kitchen cabinet soda

dishes scale clock coflFee cup
ashtray curtains walls ceiling
oven microwave

ROOM = dining
china cabinet dining table table chair china

picture curtains walls ceiling
ROOM = living room

sofa end table lamp television

easy chair telephone curtains walls

ceiling piano

ROOM = office

desk chair desk lamp bookshelf

work table telephone walls ceiling
ROOM - : bathroom

sink toilet bathtub toothpaste
towel washcloth mirror soap

walls ceiling shower

ROOM = bedroom

sofa bed lamp book

chest dresser clothes mirror

pillow curtains walls ceiling
ROOM = bedroom

bed chest clothes hair brush

mirror picture curtains walls

ceiling laundry basket
ROOM = bedroom

bed chest dresser clothes

pillow curtains walls ceiling
nightstand
ROOM — bathroom

sink toilet toothpaste towel

washcloth soap magazine scale

walls ceiling
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ROOM = living room
sofa end table lamp bookshelf

television coffee table loveseat stereo

picture curtains walls ceiling
ROOM = kitchen

refrigerator stove sink china cabinet

dining table table chair dishwasher kitchen cabinet

soda dishes clock coffee cup
curtains walls ceiling trashcan

washer dryer oven microwave

ROOM = bathroom

sink toilet bathtub toothpaste
towel washcloth mirror soap

walls ceiling shower

ROOM = bedroom

bed lamp chest rocking chair
pillow curtains walls ceiling
ROOM — bedroom

bed lamp chest dresser

stereo clothes mirror pillow
curtains walls ceiling nightstand
ROOM bathroom

sink toilet toothpaste towel

washcloth toothbrush hair brush mirror

soap scale walls ceiling
shower

0.7 House 7
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ROOM = living room
sofa lamp television coffee table

curtains walls ceiling
ROOM = dining

dining table table chair walls ceiling
table chair table chair table chair

ROOM - kitchen

refrigerator stove sink dishwasher

kitchen cabinet dishes walls ceiling
ROOM bedroom

bed i;i III I) chest clothes

clothes hanger curtains walls ceiling
nightstand
ROOM - bathroom

sink toilet bathtub toothpaste
towel toothbrush mirror soap

walls ceiling

0.8 House 8
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0.9 House 9
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ROOM — living room
sofa end table lamp television

coffee table dining table table chair loveseat

stereo clock picture curtains

walls ceiling hutch

ROOM — office

desk chair desk book bookshelf

computer filing cabinet cds diskettes

printer printer paper files telephone
picture curtains walls ceiling
trashcan

ROOM = bathroom

sink toilet bathtub toothpaste
towel toothbrush hair brush mirror

soap scale walls ceiling
trashcan shower

ROOM -  - bedroom

bed lamp work table picture
curtains walls ceiling nightstand
ROOM — bathroom

sink toilet toothpaste towel

toothbrush mirror soap walls

ceiling trashcan laundry basket washer

dryer shower

ROOM = bedroom

bed chest dresser clothes

hair brush mirror picture clothes hanger
pillow curtains walls ceiling

nightstand hair dryer stool

ROOM = porch
work table table chair swing grill
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O.IO House 10
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ROOM = porch
rocking chair swing trashcan grill
ROOM = office

desk chair desk book bookshelf

work table computer soda diskettes

printer printer paper files magazine
telephone clock coffee cup curtains

walls ceiling trashcan stapler
microwave

ROOM : bedroom

end table bed lamp book

television chest dresser coffee table

easy chair fireplace stereo clothes

cds hair brush mirror magazine
telephone picture ashtray pillow
curtains walls ceiling nightstand
hair dryer
ROOM - kitchen

china cabinet pantry dining table stereo

china cds tapes dishes

telephone picture curtains walls

ceiling hutch stool

ROOM - living room
sofa end table lamp book

bookshelf television coffee table easy chair
fireplace stereo rocking chair cds

tapes diskettes magazine telephone
clock coffee cup picture ashtray

curtains walls ceiling
ROOM kitchen

refrigerator stove sink pantry

dishwasher kitchen cabinet china towel

washcloth soap telephone clock

coffee cup toaster curtains walls

ceiling trashcan stool oven

microwave

ROOM = bathroom

sink toilet bathtub toothpaste
towel washcloth toothbrush hair brush

mirror magazine scale picture
curtains walls ceiling trashcan
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ROOM = office

desk chair desk lamp book

bookshelf computer diskettes printer
printer paper files magazine telephone

clock walls ceiling
ROOM = bedroom

lamp television bed stereo

cds tapes mirror clock

pillow curtains walls ceiling
nightstand
ROOM = dining room

china cabinet dining table table chair walls

ceiling hutch

ROOM = living room
sofa end table lamp television

loveseat telephone walls ceiling
piano

ROOM = kitchen

refrigerator stove sink pantry

coffee table dishwasher kitchen cabinet towel

dishes coffee cup toaster curtains

walls ceiling trashcan oven

microwave

ROOM = bathroom

toilet bathtub washcloth toothbrush

hair brush mirror soap curtains

walls ceiling laundry basket hair dryer
shower

O.ll House 11
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0.12 House 12
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ROOM = bedroom

lamp television bed chest

dresser clothes hair brush mirror

telephone clock picture ashtray
clothes hanger pillow curtains walls

trashcan nightstand laundry basket hair dryer
ROOM = office

desk desk chair lamp book

bookshelf work table computer filing cabinet
diskettes printer printer paper files

magazine telephone clock picture
ashtray curtains walls trashcan

stapler
ROOM — dining room

china cabinet dining table table chair china

telephone clock picture ashtray
curtains walls hutch piano
ROOM = living room
sofa end table coffee table easy chair

fireplace rocking chair cds tapes

magazine telephone clock picture
ashtray curtains walls piano
ROOM - kitchen

refrigerator stove sink pantry

dishwasher kitchen cabinet soda telephone
clock coffee cup ashtray toaster

curtains walls trashcan washer

dryer oven microwave

ROOM - bathroom

sink toilet bathtub book

toothpaste clothes towel washcloth

toothbrush hair brush mirror soap

magazine telephone scale clock

walls trashcan laundry basket hair dryer
shower

ROOM = porch
ashtray grill
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