
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-1999

The algorithm designer project : a visual programming The algorithm designer project : a visual programming

environment for data structure demonstration environment for data structure demonstration

David Randall Brown

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Brown, David Randall, "The algorithm designer project : a visual programming environment for data
structure demonstration. " PhD diss., University of Tennessee, 1999.
https://trace.tennessee.edu/utk_graddiss/8768

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8768&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by David Randall Brown entitled "The algorithm

designer project : a visual programming environment for data structure demonstration." I have

examined the final electronic copy of this dissertation for form and content and recommend

that it be accepted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy, with a major in Computer Science.

Bradley Vander Zanden, Major Professor

We have read this dissertation and recommend its acceptance:

Michael Berry, Bruce MacLennan, John Ray

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council;

I am submitting herewith a dissertation written by David R. Brown entitled "The
Algorithm Designer Project: A Visual Programming Environment for Data Structure
Demonstration." I have examined the final copy of this dissertation for form and content
and recommend that it be accepted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy, with a major in Computer Science.

Bradley Vanfe Zanden, Major Professor

We have read this dissertation

and recommend its acceptance;

Accepted for the Council;

Associate Vice Chancellor and

Dean of the Graduate School

The Algorithm Designer
Project: A Visual

Programming Environment
for Data Structure
Demonstration

A Dissertation

Presented for the

Doctor of Philosophy Degree

The University of Tennessee, Knoxville

David R. Brown

May, 1999

Acknowledgments

I want to thank Dr. Brad Vander Zanden for his patience and support throughout the course

of my dissertation. I would also like to thank Dr. Michael Berry, Dr. Bruce MacLennan,

and Dr. John Ray for their support and service on my committee.

I sincerely wish to thank my wife Carol for her support and dedication. Her ceaseless

efforts on my behalf allowed me to complete this work. I would also like to thank Dr. Allen

Smith who inspired me to begin the Ph.D. program and for the journeys we've shared.

Thanks to Rick Philhps for going back to school with me and for always coming through

when I've needed help. Thanks also to Ron Parr for his support as my supervisor and for

all of the instruction that he has given me. Thanks to N^cy Getsi for helping me to get

through the Qualifying Exam and for her continuing friendship.

I would also like to thank my brother Danny for taking care of things over the past few

years and for undefst^ding me. Thanks to my mother Barbara, my father Aubrey, and my

step-mother Judy, for their understanding and support during this time.

This work is dedicated to memories of my grandmother June Brown, my grandfather Paul

Maxfield, and my grandfather Hayes Brown.

Abstract

Previous work on pedagogical tools for teaching students algorithms has focused on high-

level animations of the algorithms. This dissertation describes a tool that gives instructors

the ability to pictoiiaUy demonstrate the implementation of algorithms at the data structure

level.

The Algorithm Designer Project explores the use of a computer as an electronic whiteboard

for instruction of computer science. It improves upon the traditional physical blackboard

environment by providing syntactic and semantic support for data structure design and

algorithm demonstration. The ultimate goal of this project is to provide an attractive, easy to

use, system through which users can demonstrate simple algorithms and data strucmres,

such as those presented in data structures textbooks. The project consists of three

components: Data Structure Designer, Algorithm Designer, and Rule Designer. Data

Structure Designer allows users to design and customize the appearance of data structures

that they intend to use to create visual programs. Concrete examples of these data structures

can be placed into Algorithm Designer and directly manipulated to demonstrate algorithms.

Visual programs are programs written using pictures instead of, or in conjunction with,

text. Rule Designer allows the creation and manipulation of transition rules to define visual

program scripts to act upon Algorithm Designer objects. The project was implemented

using the Amulet toolkit and runs on Macintosh, Windows, and UNIX platforms.

iii

A key insight discovered during development of the Algorithm Designer Project was that

although textbooks employ a wide variety of data strucmre visualizations, the differences

between these visualizations can be grouped into a small number of categories. Two unique

interface items were developed during the course of the research: 1) a color mapping widget

interface item that provides an easy way for the user to associate a set of colors with a range

of values in a data structure visualization and 2) "seeds" and "holes," a mechanism for

visually identifying and supporting type-specific semantic behavior for edge-based data

structures. Finally, this dissertation describes a novel use of imperative programming

constructs within a pictorial rewrite rule-based scripting system and a novel use of these

rules for teaching conventional imperative programming.

IV

Contents

1. INTRODUCTION

2. DATA STRUCTURE DESIGNER

2.1 Introduction 7
2.2 Overview 10
2.3 Property Area 10
2.4 Visualization Area 12
2.5 Property Mapping Area 16
2.6 Example Visualization Area , 20
2.7 Conclusions 21

3. ALGORITHM DESIGNER ■ 22

3.1 Introduction 23
3.2 Overview 24
3.3 Data Structure Creation 25
3.4 Creating Example Data 26
3.5 Syntactic and Semantic Support 26
3.6 Annotation 28
3.7 Algorithm Designer Example 28
3.8 Conclusions 32

4. Rin.E DESIONER ^ 33

4.1 Introduction 33
4.2 Overview 39
4.3 User Interface 41
4.4 Algorithms 50
4.4.1 Pattern Matcher 50
4.4.2 Script Interpreter 54
Create Statements 5 5
DELETE Statements 55
Assignment Statements 55

Visual Property Modification Statements 56

Object Movement Statements 56

Swap Statement 57
Input Statements 57

Output Statements 57

Arithmetic Expressions in Values 58
Conditional Expressions in Patterns 58

4.5 Rule Designer Limitations 59

4.6 Conclusions 60

5. RELATED WORK 61

5.1 OVERVIEW 61
5.2 Drawing Tools 61
5.3 PEDAGOGICAL TOOLS 63
5.4 Data Structure Visualization 65
5.5 Visual Programming 66
SPECraCATION-BASED LANGUAGE SYSTEMS 66
Programming-by-Example Systems 67
Pictorial Rewrite Rule Systems 69
Term or Graph Rewrite Rule Systems 70

6. EXPERIENCE 71

7. CONCLUSIONS AND FUTURE WORK 74

7.1 Conclusions 74
7.2 Summary of Contributions to Computer Science 77
7.3 FUTURE WORK 77

BIBLIOGRAPHY 78

VITA 84

VI

List of Figures

Figure 1 - Search Algorithm Initial State 2
Figure 2 - Search Algorithm Final State 3
Figure 3 - Data Structure Designer Window. ; II
Figure 4 - Object Properties 12
Figure 5 - Linked List Object Creation 13
Figure 6 - Data Structure Styles 14
Figure 7 - Property Location Modification 16
Figure 8 - Numeric Color Mapping Widget 19
Figure 9 - Boolean Color Mapping Widget 19
Figure 10 - Dejining a Sub-range 19
Figure 11 - Algorithm Designer 24
Figure 12 - Prepending to a Linked List. 29
Figure 13 - List Traversal Using Pointers 30
Figure 14 - Inserting into a List 31
Figure 15 - Currency Pointer Initialization 35
Figure 16 - Begin Repeat Block 35
Figure 17 - Search Value Found 36
Figure 18 - End of List Condition 37
Figure 19 - Search Value Not in List 37
Figure 20 - Advancing List Currency 38
Figure 2l - End of Repeat Block 38
Figure 22 - Algorithm Designer and Rule Designer Environment ; 40
Figure 23 - Programming Buttons 41
Figure 24 - Rule Designer Execution Strip 42
Figure 25 - Use of Variables 44
Figure 26 - Keyword Strips 45
Figure 27 - Use ofX-mark Object 47
Figure 28 - Tag Options 47
Figure 29 - Condition Box 49
Figure 30 - Visual Script Input 49
Figure 31 - Visual Script Output. 50
Figure 32 - High-level Pattern Matching Algorithm. 52

VU

Chapter 1

Introduction

Most instructors describe algorithms to students using a blackboard or a whiteboard and

chalk or markers. To do this, the instructor typically draws pictures of the appropriate data

structures, fills in the data structures with example data, and then manipulates this data

according to the rules of the algorithm. The primary use of Rule Designer is to create

scripts that aid in describing algorithms and demonstrating the use of various data

structures. Additionally, Rule Designer can be used by students to replay a demonstration

at a later time in order to examine the workings of the algorithm in more detail.

A physical whiteboard is obviously a simple, low cost, and effective medium for

instruction. When used to describe a data structure or an algorithm, an instructor is free to

draw any type of shape and to provide annotations anywhere they feel would aid in student

comprehension of the material. Color can even be used to emphasize various points about a

data structure or algorithm description.

For example, assume that an instructor is attempting to illustrate a sorted linked list search

algorithm. They might begin by drawing the initial program state shown below in Figure 1.

The instructor would then talk through the algorithm, showing how the "current" pomter is

moved progressively through the nodes of the linked list. At each step in the algorithm,

there is a set of pattems that we are looking for. Each pattem requires a different response.

For example, if the "current" pointer is pointing to a node whose value is less than the

value that we are searching for, then the current pointer is moved to the next node in the list

(if we are not at the end of the list).

search

10

current

1 5 10 20•>

Figure 1 - Search Algprithm Initial State

The instructor may draw side diagrams to illustrate the various pattems and how they

would be handled. At each point in the discussion, the instmctor is required to erase and

redraw objects to throw light upon the important points in the discussion. Eventually the

program state shown in Figure 2 is reached and the algorithm ends with the searched for

value being located in the hst.

The drawback to this low-tech approach is primarily its generality. It can be used to

describe anything, but it provides no support for specific types of demonstrations.

Demonstrating an algorithm on a physical whiteboard.can be quite tedious as each object

that is used in the algorithm must be drawn, and then redrawn whenever it is moved.

2

search

10

current

\ t

1 ■V- 5 10 V- 20> >

Figure 2 - Search Algorithm Final State

Finally, there is no interactivity or support of any kind for data structure object behavior or

algorithm demonstration.

Computers can provide the interactivity and dynamic behavior that is lacking in a physical

whiteboard. In addition, the advent of relatively inexpensive projection equipment for

computers makes it feasible to economically project a computer's display in a classroom.

There has been previous work on pedagogical tools for teaching students algorithms, but

these tools have focused on high-level animations of the algorithms rather than on the data

structures required to implement the algorithms. Hence, previous systems have tried to give

students a general understanding of the algorithm. In contrast, this dissertation describes a

tool that gives instructors the ability to pictorially demonstrate the implementation of

algorithms at the data structure level.

There has also been research aimed at providing supplemental computer aided instruction,

some using simulation environments. This research, however, is aimed at enhancing the
primary learning prop used in most classrooms, namely the blackboard itself. In other

words, this is an attempt to reinvent the most fundamental teaching aid used in the

classroom.

This dissertation describes the Algorithm Designer Project. The ultimate goal of this project

is to develop the technology required for electronic instruction of computer science. It

provides an attractive, easy to use, system through which users can demonstrate simple

algorithms and data structures, such as those presented in data structures classes. The

visual programs are intended to look as much like the examples provided in data strucmres

textbooks as possible. The system also allows instructors to save examples in data files

which can be distributed to students before or after class for their review. It is the first

attempt that the author is aware of, to attempt to replace the classroom blackboard with an

intelligent, electronic whiteboard.

The Algorithm Designer Project consists of three components: Data Structure Designer,

Algorithm Designer, and Rule Designer. Data Structure Designer allows users to design

and customize the appearance of data structures that they intend to use to create visual

programs. Concrete examples of these data structures (i.e., objects with example values)

can be placed into Algorithm Designer and directly manipulated to demonstrate algorithms

or to visualize a program state. Rule Designer then allows the creation and manipulation of

transition rules to define visual program scripts to act upon Algorithm Designer objects.

The Algorithm Designer Project was implemented using the Amulet toolkit [Amu95] and

runs on Macintosh, Windows, and UNIX platforms.

Data Structure Designer is a direct manipulation, drag-and-drop graphical editor, similar to

a widget-editor that allows users to create attractive, customized data structure objects that

very closely resemble the picmres of data structures that appear in textbooks. Data

Structure Designer supports arrays, graphs, linked lists, queues, and trees in a variety of

styles. Most visual characteristics of the objects can be easily manipulated. A data

4

structure's properties (i.e., its fields) can be declared and then displayed by associating

properties with locations around or within an object visualization. Properties can also be

"mapped" such that a given range of property values correspond to a specific fill color or

line color for the node or edge of an object. Lastly, example values can be assigned to

properties so that the user can see how an actual, instantiated example of the data structure

object will look as it is being created.

Algorithm Designer provides a drawing area where data structures created in Data Structure

Designer can be interactively drawn, populated with example data, and then used in the

demonstration of algorithms. Algorithm Designer provides built-in syntactic and semantic

support for data structure design and algorithm demonstration. For example, assignment is

accomplished by dragging and dropping a variable onto another variable.

Rule Designer provides a simple visual script creation and execution engine for Algorithm

Designer. Using cartoon strips, an instructor can create a series of "pictorial rewrite rules"

that define actions to be taken upon Algorithm Designer objects. Pictorial rewrite rules

describe a pattern that is matched against objects and the actions that are to be taken upon

the instantiated Algorithm Designer objects. Visual strip constructs are also provided to

support the creation of loops and conditional execution blocks. The visual program

resulting from the set of cartoon strips can then be used to enhance the presentation of

algorithm descriptions and aid in data structure design discussions.

While other systems have made use of pictorial rewrite rules, this dissertation describes the

first one that the author is aware of, to integrate pictorial rewrite rules with imperative flow-

of-control constructs. Typically pictorial rewrite rules are a series of ordered "if condition

then action" rules. The rewrite rules are executed by starting with the first rule in an ordered,

hst and continuing until a condition is satisfied. The action is then executed and the search

is repeated, starting with the first rule. In contrast, the system described in this dissertation

5

organizes the execution of pictorial rewrite rules using case statements and loops. The

pictorial rewrite rules are like statements in an ordinary program. Pictorial rewrite rules are

executed sequentially until a case statement or loop is encountered. During sequential

execution, a pictorial rewrite rule's action is executed if its condition is true. Regardless of

whether the condition is true or false, control passes to the next pictorial rewrite rule. A

case statement selects which rules to execute based on conditional statements. A loop

repetitively executes rules until some condition causes control to break out of the loop.

Hence a program is a series of pictorial rewrite rules governed by flow-of-control

constructs.

The remainder of this dissertation is organized as follows. Chapter 2 describes the Data

Structure Designer, which allows data structure creation and customization. These objects

may be used in Algorithm Designer, which is described in the Chapter 3. Algorithm

Designer provides a whiteboard environment for data structure design and algorithm

demonstration. Chapter 4 describes Rule Designer, the pictorial rewrite rule visual scripting

environment. Chapter 5 describes previous work related to this research. Experienced

gained through informal testing is described in Chapter 6. Conclusions and ideas for future

work are summarized in Chapter 7.

Note that the Related Work chapter appears toward the end of the dissertation. Since this

dissertation describes a system that spans several different areas of research, the discussion

of related work is more meaningful after an in-depth discussion of what was accomplished

during the research.

Chapter 2

Data Structure Designer

2.1 Introduction

Traditionally data visualization research has been oriented toward generating attractive data

structure visualizations from user code for data examination and debugging purposes. This

research attempts to do just the opposite. It is intended to allow users to create attractive

data strucmre visuahzations, which are then used to create a visual computer program.

As stated previously, Data Structure Designer is one of three components of the Algorithm

Designer Project, the other two components being Algorithm Designer, and Rule Designer.

Data Structure Designer allows users to design and customize the appearance of data

structures that they intend to use to create visual programs. Concrete examples of these data

structures (i.e., objects with example values) can be placed into Algorithm Designer and

directly manipulated to demonstrate algorithms or to visualize a program state. The Rule

Designer allows the creation and manipulation of transition rules to define visual program

statements and program components.

One of the chief obstacles faced in Designer was the wide variety of data structure

visualizations that textbooks employ. For example, linked lists can be shown with a pointer

coming out of a pointer box, or simply with a pointer extending from the list node. .

Structures are sometimes shown vertically, and other times horizontally. Color and other

visual characteristics are often used to emphasize certain data structure elements or just to

make the picture more attractive. Different shapes, such as rectangles or ovals, may be used

to represent the data elements. Finally the location of the values associated with a data

structure vary widely. Values can appear within, above, below, or beside data structure

elements.

The goal of Designer was to allow a user to quickly duplicate this wide variety of styles. In

particular, it was felt that users should not have to create data structure visualizations from

scratch. After examining a number of data structures textbooks (e.g., [AT87, Sed90]), it

became clear that although there are many different visualizations of data structures, these

differences can be grouped into a small number of categories:

1. Style

Most data strucmres have a few stereotypic styles. For example, lists typically have

pointers coming out of the ends of the data element. The pointers may optionally be

set off with pointer boxes. Similarly, tree nodes typically have pointers coming out

the bottom or coming out the sides.

2. Shape

Most data elements are represented as either rectangles, circles, or ovals.

3. Orientation

Most data strucmres are oriented either vertically or horizontally.

4. Partitioning

Most data elements display a small number of fields by partitioning the data element

or by placing the fields aroimd the data element.

5. Color

Color is sometimes used to call attention to particular data elements. Specific colors

may also appear based upon the value of a data structure field.

Data Structure Designer allows users to customize data structures by selecting attributes

from each of these categories using a direct manipulation, drag-and-drop, graphical user

interface. Users select a data structure type and are provided a default template by the

system. Users then customize the template via palettes and through a color mapping widget

that allows ranges of values to be mapped to specific colors.

As the template is being customized, the user can provide example values for the fields of a

sample data element. The data structure editor instantiates the template with these values to

provide a constantly updated example visualization of how the data structure will appear

with actual data.

Currently, the Data Structure Designer supports five types of data structures: arrays, lists,

queues, trees, and graphs. As stated previously, it is written using the Amulet toolkit and

runs on Macintosh, Windows, and UNDC platforms.

The remainder of this chapter provides an overview of Data Structure Designer, followed

by an in-depth description of Designer components and features, and finally, presents

conclusions based upon the Data Structure Designer research.

2.2 Overview

The Data Structure Designer consists of four parts (see Figure 3):

1. Visualization Area

This area is used to define a customized, pictorial data structure.

2. Property Area

This area is used to specify the names of the data structure's fields, their types, and

their example values.

3. Example Area

This area combines the specification from the visuahzation area with the example

values from the property, area to show what an instance of the data structure will

look like in the Algorithm Designer.

4. Mapping Area

This area displays and allows modification of the color mapping information

associated with a particular data structure property.

Figure 3 shows the completed design of a hnked hst data structure. The next four sections

will describe the various parts of Data Structure Designer and will use the linked hst data

structure as a continuing illustration of how a user creates a visuahzation.

2.3 Property Area

The property area allows the user to defme the properties (fields) of a data strucmre. Since

trees, lists, and graphs typicaUy consist of two types of objects, a data element and an edge

or pointer, the property area allows properties to be defined for either a data element (called

a node) or an edge. To conserve screen space, only the node properties or the edge

properties are displayed at any given time. A title above the scrolling area indicates which
10

Onto structure Designer

Part 11 lonir-q

B[1][5]

r. i. FrrrxoTo? mqio
Fod^pasioi ==

. I n I nn 1 I

•eight

Th'okneaa

ESEia
gaaa

BBS

t<<Kig Ppgpcnt4^«s :

Type

integer 3F
i ntegen HF

ijtoepie tfi euol izdlJcm Eel or oapping ftif code

Increment; {illillE

HUHUllSlgjS

Figure 3 - Data Structure Designer Window

properties are currently displayed. The two buttons at the upper right of the property area

(see Figure 4) control which set of properties is currently displayed.

A property consists of a name, a type, and an optional example value. The example value is

used in creating the example object visualization that appears in the example area. The

example value also serves as the default value for the field when instances of the data

structure are created in the Algorithm Designer.

When an object is first created, an empty property list is created for it. A blank property

item is used to allow new properties to be created. The user creates a new property by

typing a property name on the blank line. Figure 4 shows the result of adding a value

property to the list of node properties for the current data structure. A new blank line

11

Node Properties

str I ng

nteq

boo I eon

n

a

Figure 4 - Object Properties

appears after the value line, thus allowing another property to be created. The user can

delete a property by dragging the property into the trash can located at the lower right-hand

comer of the Data Structure Designer window.

The user can change the name and value fields of existing properties by simply typing new

values into the fields. The user can change the property's type by selecting the desired type

from a pop-up menu. The data structure designer currently supports four atomic types:

string, integer, boolean, and real.

The values of properties can be displayed visually using the techniques described in the

next two sections.

2.4 Visualization Area

The visualization area is used to create a graphical picture of a data stmcture. Figure 5

shows a close-up of this area. In the figure, the user is creating a visualization of a linked

list element.

The user begins an editing session by either opening an existing object defmition, or by

creating a new one by selecting the desired data structure from the File menu. The Data

Ct-aflft uUuaf kfffc Eon

PPJ
PartHioftiog

Billll
am®

ES El

□ mm
u a a

Ltme Doti^n

a m□
n m

a s B
o a a □

□ □□

Figure 5 - Linked List Object Creation

Structure Designer places a default image of the data structure in the drawing window. This

default image can be altered by selecting options from one of the four palettes on the left

side of the drawing window:

1. Shape Palette

The shape palette controls the shape of the data structure node. Currently rectangles

and ovals are supported.

2. Orientation Palette

The orientation palette controls whether the elements of the data structure are to be

oriented horizontally or vertically.

3. Partitioning Palette

The partitioning palette controls the number of properties of the data structure

element that may be displayed within the node at any given time. Anywhere from

one to four properties may be simultaneously displayed. The icons on the palette

buttons show the positional formats that are available.

4. Style Palette

The style palette controls the overall appearance of a data structure. It is the only

palette which changes depending on the type of data structure selected. In the case

of a linked list, there are five possible styles, two representing a singly linked list,

two representing a doubly linked list, and one representing either a singly or doubly

linked list in which the pointers are not displayed. Pointers can be displayed either

with or without a pointer box. Figure 6 shows the styles selections available for the

various data structures.

Lists El CH
II'** AMMMfW*#

Arrays & Queues | A |
Trees & Graphs pj

Binary Trees |Bf S

Figure 6 - Data Structure Styles

By selecting options from these four palettes, the user can quickly customize the

appe^ance of the desired data structure. Data shnctures can be further customized using the

color and line palettes on the right side of the drawing window. The portions of the data

eleinent that may be customized are; 1) the object representing the data element, and 2) any

edge emanating from the data element. We experimented with allowing individual fields of

a data element to be colored differently (i.e., an object could have up to four different

colors if it had four different displayed fields) but decided in this case to simplify the

interface, rather than support what would most likely be a little used feature. Consequently,

the color of a data element is determined by its fill color and its line color. An edge may be

14

colored differently from the node, however. Colors may be chosen so that a color is always

displayed, or the color may be determined by the value of a field using the mapping widget

described in a later section.

The x's within and surrounding the data structure element are positions where object

properties may be attached to visualize the field's value. The partitioning palette controls the

number of properties (denoted by x's) that may appear within the node itself. In addition,

two other properties may be placed around the node. The positioning of x's around the

object is controlled by the orientation of the object. For example, in Figure 3 (p. 11), the

x's appear on the top and bottom of the horizontally oriented list node rather than on the left

and right. This is because a pointer arrow will normally be coming into the left side of the

node, and emanating from the right side, and hence would intersect the displayed values. If

the user changes the list element's orientation to vertical, the x's around the object are

repositioned so that they appear horizontally rather than vertically.

In addition to displaying the properties of a data element, the properties of an edge or

pointer may also be displayed. The three x's shown in a vertical line over the pointer in

Figure 3 (p. 11) represent the three positions at which pointer properties may be visualized.

The fields of a data structure can be visualized by dragging a property name from the

property area and dropping it on one of the x's inside or around a node or edge in the

visualization area. The editor ensures that fields can only be dropped on the appropriate x's

(e.g., a field of the data element cannot be dropped on an x belonging to an edge). Figure 3

(p. 11) shows the result of dropping the value field on the x above the list node. Notice that

the example visualization area (at the lower left of the window) shows how the field will

appear when the list object is ultimately used in the Algorithm Designer. The example value

from the property area is used to provide a concrete value for the field.

15

A property's location can be easily modified by simply dragging and dropping the circle

that appears at the end of the association line onto the desired location as shown in Figure

7. Property associations can also be easily deleted by dragging the association title into the

trash can at the lower right-hand comer of the window. If the property itself is deleted, all

of its associations are deleted as well. For example, if the value property shown in Figure 3

(p. 11) was dragged into the trash can, the value association shown in the visualization area

would also be removed.

code code codeuie I ght we Ight we Ight

3
a. c.

Figure 7 - Property Location Modification

A field's value can also be visualized via the fill color or line color of a data element or

edge. The next section describes how such color mappings can be established.

2.5 Property Mapping Area

A property mapping is a way to specify that a range of values for a property should

correspond to specific fill colors and line colors in the object visuahzation. When a mapped

property is set to a value within its mapped value range, a corresponding change takes place

in the fill or line color. For example, assume a property is mapped to the node, fill color as

follows: [1, 10] = red, [11, 19] = green, [20, 30] = blue. If the value property is set to 15,

the fill color of the node will be set to blue.

16

A property mapping is created by dragging a property name from the property area and

dropping it onto either the fill or line color button palette. The mapping constrains visual

features of either the node or its edges depending on whether a node or edge property is

used to establish the mapping. Figure 3 (p. 11) shows the code property mapped to the

node's fill color. When a mapping is created, an association is established in the

visuahzation area showing the field name and an arrow pointing to the mapped fill or line

color palette. The mapped field name is selected and a default color mapping is created and

displayed using a color mapping widget in the property mapping area located at the lower

right of the Data Structure Designer window. Property mappings are deleted by simply

dragging the property mapping name from the visualization area into the trash can.

The color mapping widget provides an easy way for the user to associate a set of colors

with a range of values. There are two types of color mapping widgets: boolean and

numeric. The type of widget displayed in the mapping area depends upon the type of the

mapped property. The color mapping widget is made up of the following parts:

1. Start Value

The start value specifies the first value of the range (numeric widget only).

2. End Value

The end value specifies the last value of the range (numeric widget only).

3. Increment

This value specifies the increments in which sub-ranges may be defined (numeric

widget only).

4. Color range strip

The color strip is a rectangular region that is divided into color strips. Each color

strip denotes a sub-range of values that should be mapped to the color of the strip.

17

Color strips are divided by tabs that display the boundary value of the sub-ranges.

The color of the tab denotes which sub-range includes the boundary value (i.e., the

boundary value is owned by whichever color strip matches the tab's color). Figure

8 denotes the color mapping: [0, 5] = green, (5, 10] = red. The boolean widget

works in a similar fashion to the numeric widget except that the color strip is

divided into two fixed regions, representing the values true and false. The boolean

widget in Figure 9 denotes the mapping: true = red, false = blue.

5. Color chips

The color chips appear on a button palette from which colors for ranges are

selected.

New sub-ranges can be defined by dragging and dropping a color chip onto the color range

strip as shown in Figure 10. The placement of the inserted sub-range depends upon the

mouse location at the time of the drop. If the color chip is dropped on the first half of an

existing color strip, the new sub-range is inserted before the color strip, and if dropped on

the second half, it is inserted after the color strip. As the chip is being positioned, an arrow

appears showing where the new sub-range would be created if the chip were dropped at

that location. In either case, the insertion is accomplished by dividing the range of the

original color strip in half and rounding to the nearest increment. One half of the strip is

assigned to the new color and the other half is assigned to the original color. The new color

range can then be adjusted by either entering a new value into the boundary tab which

divides the new. and old color strips, or by dragging the tab until it reaches the appropriate

value.

Colors for existing ranges are changed by selecting the associated color strip and then

chcking on the desired color chip. Color ranges are deleted by dragging them into the trash

can. A neighboring color range is extended to cover the range vacated by the discarded

color strip.

18

Coigp aoppinc- fopj code

I ncrement; p

I I. .. I ... I. ,

p m m Pi lili: m m p;

Figure 8 - Numeric Color Mapping Widget

TRUE FALSE

o' m -M i^^ M m M pi

Figure 9 - Boolean Color Mapping Widget

Co^pr' mapping for^j code

Increment:

o

Figure 10 - Defining a Sub-range

19

The next section describes the Example Visualization Area which ties together the various

pieces of a data structure visualization.

2.6 Example Visualization Area

The Example Visualization Area contains an example showing how the data structure object

being defined will appear when used in Algorithm Designer. The Example Visualization

Area is display-only. All of the interaction that takes place to produce the example

visualization is done in the visualization area, property area, and property mapping area.

The example visualization is the synthesis of the following components:

1. The data structure definition from the Visualization Area.

2. The example values from the Property Area.

3. The color mappings from the Mapping Area.

In the example shown in Figure 3 (p. 11), the example value of the value property is

displayed above the linked list node. Notice that, within the visualization area, the value

property has been associated with the location above the node and the example value of the

value property has been set equal to 5 in the node properties area. Likewise the weight edge

property value of 3.2 is displayed centered on the forward-pointing edge of the linked list

node.

Also note in Figure 3 (p. 11) that the fill color of the node has been mapped to the code

property. The color mapping area shows the color mapping: [0, 5] = green, (5,10] = red.

Since the value of the code property is currently 6, the fill color of the example object is

red. »

20

2.7 Conclusions

Data Structure Designer allows users to quickly create pictures of data structures that

resemble those used in textbooks. A key insight found during development of Data

Structure Designer was that although textbooks employ a wide variety of data structure

visualizations, the differences between these visualizations can be grouped into a small

number of categories. Tliese categories can be manipulated using palettes in the Data

Structure Designer. Some of the other features of the Data Structure Designer that make it

easy to create pictorial data structures include: 1) a drag-and-drop, graphical interface, 2) a

color mapping widget that allows the values of fields to be visualized using colors, 3) a

drag-and-drop technique for allowing the values of fields to be associated with various

locations in a data structure, and 4) a constantly updated example visualization of how the

data structure will appear with actual data.

The next chapter describes Algorithm Designer, an electronic whiteboard environment

where the data structure objects created by Data Structure Designer can be used to create

data structures and to demonstrate algorithms.

21

Chapter 3

Algorithm Designer

Most instructors describe algorithms and data structures to students using a physical

blackboard or a whiteboard and chalk or markers. This chapter describes Algorithm

Designer which provides an instructor with the functionality of a whiteboard. This

environment improves upon a whiteboard by providing interactivity and dynamic

capabilities that whiteboards lack. The Algorithm Designer screen can be projected onto a

classroom wall, thus providing a substitute for a whiteboard.

Algorithm Designer provides a drawing area where data structures created in the Data

Structure Designer can be interactively drawn, populated with example data, and then used

in the demonstration of algorithms. Built-in semantics facilitate common operations. For

example, assignment is accomplished by dragging and dropping a variable onto another

variable.

The remainder of this chapter describes the Algorithm Designer in detail.

22

3.1 Introduction

To describe an algorithm, an instractor typically draws pictures upon a physical whiteboard

of the appropriate data structures, fills the data structures with example data, and then

manipulates this data according to the rules of the algorithm.

A physical whiteboard has a number of features that are helpful to the instructor in this

regard:

1. It allows an instructor to draw any type of shape.

2. It allows an instructor to provide annotations wherever desired. For example an

instructor can draw arrows to denote the movement of data or write a small piece of

code, such as "x < y?", to illustrate a condition or operation.

3. It allows an instructor to use color to emphasize various points in a data strucmre or

algorithm description. For example, an instructor might assign different colors to

the visited and unvisited nodes in the depth-first search of a graph.

A physical whiteboard also has its limitations, however:

1. It provides no built-in objects, each must be drawn from scratch.

2. It does not allow an instructor to duplicate an object. If an instructor wants to

duplicate an object, it must be drawn again from scratch.

3. It requires the instructor to manually erase and then redraw parts of an object if an

operation moves the object, changes the color of the object, or changes any other

visual characteristics of the object.

4. It does not allow instructor to easily highlight parts of the data structure (e.g.,

highlight two array elements that are about to be swapped).

23

In short, whiteboards provide a good low-end solution due to their availabihty and low

cost, but they do not provide any interactive or dynamic capabilities. Algorithm Designer

takes advantage of the interactive capabilities of a computer to remedy these shortcomings.

3.2 Overview

Figure 11 shows the Algorithm Designer window, which looks much like a drawing

editor. On the left side are object palettes for creating primitive data types, data structures,

and custom data structures. In the middle of the screen is a drawing area. On the right side

are palettes for changing the color or line style of either a line or an object. Across the top

of the editor are a variety of pull-down menus that provide common drawing editor

File Objects

BOB

Figure 11 - Algorithm Designer

Algorithm Designer focuses upon direct manipulation and directness [Shn83]. This allows

people to quickly leam how to use, and feel comfortable with, the system. Objects are

created, selected, moved, and deleted just as they would be in an ordinary drawing editor.

Additionally, if a user can see a property, such as the name of a variable or the value of a

variable, then the user can edit that property directly. In the case of a name or a primitive

type, the value is changed by editing a text string. In the case of a pointer, the value is

changed by grasping the pointer's arrow and dragging it to a new object. In the case of a

color, the appropriate object is selected and the color is changed by selecting the desired

color from a color palette.

The remainder of this chapter describes several of the other features of the Algorithm

Designer environment that facilitate algorithm demonstration. These features include the

ability to easily create data structures, populate them with example data, provide syntactic

and semantic support for data structure operations, and supply annotations for the resulting

visualizations.

3.3 Data Structure Creation

Algorithm Designer allows users to easily create variables with common primitive types

(integers, strings, booleans, characters, real) and common data structures (records, hsts,

arrays, graphs, queues, trees, binary trees). Variables and data structures are created by

selecting the appropriate object from a data object palette, and then clicking on the

Algorithm Designer to create the selected object at the current mouse position. Customized

objects can be imported from the Data Structure Designer by pressing the "Customized

Structures" button and entering the name of the desired data structure file. The Algorithm

Designer environment creates an icon for the new data structure and adds the icon to the

object palette (Figure 11). The icon picture is automatically created based on the data

25

structure's properties, such as its type, its orientation (vertical or horizontal), and its

partitions.

3.4 Creating Example Data

The data structures and variables that are placed on the screen can be quickly populated

with example data by either 1) directly editing the individual fields in a data structure, or 2)

pulling up a property sheet for a data structure and entering values there. The property sheet

also allows a list of values to be entered for arrays. These values are mapped to the array

elements, with the array size being automatically adjusted to accommodate the number of

values in the list.

If a custom data structure from the Data Structure Designer is used, then the display of the

data elements will be computed by applying the property mappings established in Data

Structure Designer to the example data.

3.5 Syntactic and Semantic Support

The Algorithm Designer environment provides support for a number of common

operations, such as assignment, manipulating pointers, "wiring" up edge-based data

structures, such as lists, trees, and graphs, and swapping the elements of an array.

Assignment. Constant values can be assigned to a variable or to a field of a data element by

directly editing the appropriate value. A value from one object can be assigned to another

object by dragging and dropping the appropriate field of the source object onto the

appropriate field of the target object. Depending on the sequence of mouse keys and

auxiliary keys used, the contents of an entire object, or simply one field in the object can be

assigned to another object.

26

A user can also assign one pointer to another pointer using this drag-and-drop mechanism.

For example, pointer y can be assigned to pointer x by dragging pointer y to pointer x and

dropping pointer y over x. Both pointers will now point to the object pointed to by y.

Pointers can also be made to point to an object simply by grasping the pointer's arrow,

dragging it over the object, and dropping it. When the pointer is over a compatible object,

the object is highlighted, thus making it clear to both the instructor and student which object

will be pointed to if the arrow is released.

Wiring a Data Stmcture. Algorithm Designer provides a generic connectivity concept

through which pointers and data structure edges can be manipulated using one simple

technique. The Algorithm Designer's connectivity mechanism is based on a concept

borrowed from electrical circuits, which we refer to as "seeds" and "holes." Seeds are

smaU circles from which edges can be "sprouted." Holes are connection points into which

edges can be "planted." This concept, used in conjunction with the ability to drag edges

with the mouse, provides a universal mechanism for manipulating simple pointers, and for

inserting and removing edges from data structures that utilize edges. For example, a singly-

linked list node has a seed on the right of the node from which its next pointer can be

sprouted, and a hole to the left of the pointer into which a next pointer from another node

can be planted. Edge-based nodes can be easily connected and these connections can be

directly modified, or removed completely.

The seeds and holes concept provides a mechanism for visually identifying and supporting

data structure, type-specific semantic behavior. Some objects, like linked-lists, have a

specific number of incoming and outgoing connections. Other objects, like graphs, may

have any number of incoming or outgoing connections. To support these varying

capabilities, visual cues are given by seeds and holes associated with objects to provide

users with insight into the behavior of the associated data structure node.

27

The user can "grow" a pointer out of a seed by clicking over it with the mouse and then

dragging the mouse to the appropriate object As the mouse is dragged away from the dot,

an arrow appears and tracks the mouse. If the arrow is released over an object with a

compatible hole, then the pointer is made to point to. the object. This technique is very

simple to learn and can be used in a generic way with simple pointers or with edges that

emanate from data structures, such as lists, trees, and graphs.

Swapping Data Elements. One of the most common operations that an instructor performs

on an array or other data structure is to swap the contents of two elements. The Algorithm

Designer environment makes this operation easy by providing a swap operation. The

instructor selects the two objects whose content should be swapped and selects the swap

option. The Algorithm Designer swaps the contents of the two objects and ensures that the

corresponding object property visuahzations are updated properly.

3.6 Annotation

Oftentimes, a small bit of free-form text can help explain or at least remind students of an

important point in the design of a data structure or in the demonstration of an algorithm.

Annotations are also used to call attention to a particular object or area of the screen. The

Algorithm Designer environment provides an annotation mode (the "A" button on the

horizontal bar above the drawing window) whereby text annotations can be quickly and

easily created, moved about, modified, or removed, in the same manner as other data

objects.

3.7 Algorithm Designer Example

In this section, we will show how an instructor might demonstrate part of the algorithm for

inserting into a sorted, singly-linked list. We begin the demonstration with a list consisting

28

of a single list node (whose value equals 10), a traversal pointer {curr), and a variable that

holds the value to be inserted into the list {value). We will insert the values 5,15, and 7

into the list.

The algorithm we are demonstrating states that if a value of the list node to which curr

points is greater than value, then a new list node is created and inserted into the list before

the current node. Since the next number to insert is 5,5 is less than 10, and the current

node is the head of the list, then the value should be prepended into the list. This process is

shown in Figure 12.

valu« value value

03-H0a10 10

cum cuny cuny

Figure 12 - Preperiding to a Linked List

As discussed earlier in this paper, pointers and data structure edges are initialized by pulling

an edge out of the seed contained in the body of the pointer object. Figure 12a shows the

cursor positioned above the next seed of the newly created node and in Figure 12b an edge

has been dragged out of the seed and on top of the head of the list. The head node has

highlighted itself to indicate that the pointer may be dropped here. Figure 12c shows the

new node successfully prepended into the list.

Now that a value has been inserted, we must reinitialize curr to point to the beginning of the

list. We do this by simply dragging curr back to the beginning of the list (Figure 13). The

instructor also could have maintained a pointer to the head of the list and simply assigned

29

the head pointer to the curr pointer. Figure 13b shows how the list element containing the

value 5 highlights itself to show that the curr pointer can be made to point to it and Figure

13c shows the repositioning. Note that the pointer object moved itself so that it maintained

the same relati^ve position to the target object (i.e., it stays slightly to the left and bottom of

the object to which it points).

< 5

a. value

15

^10

7^

value

15

10

^urr

value

15

5 10 «

e^ ̂

Figure 13 - List Traversal Using Pointers

The instructor is now ready to demonstrate the insertion of the next value, 15. The

instructor ends up dragging the curr pointer to each of the two elements in the list. At this

, point the next rule of insertion comes into play: if the traversal pointer reaches the tail of the

list, and the number to insert is larger than the tail's value, the new value should be

appended to the end of the list. The steps required to create the new list node, initialize it,

and then connect it to the tail node, have already been described earlier in the example

description.

Finally the instructor inserts 7 into the linked hst. The instructor moves the curr pointer

through the elements of the list until the current pointer points to list node 10. At this point

the instructor explains that the curr pointer cannot be used to perform the insertion since it

has already moved past the insertion point. To handle this problem, a second pointer called

prev is introduced that holds the previous value of current. If desired, the instructor could

30,

back up to the beginning and reinitialize curr to the head of the list. Then the instructor

could move curr through the list, always taking care to assign curr to prev before moving

curr to the next element. Figure 14 shows the point at which current has reached node 10,

prev points to node 5, and the insertion is being made.

Figure 14a shows the next pointer for the new list node for 7 being made to point to list

node 10, while Figure 14b shows list node 5's next pointer being made to point to the new

list node.

a. value
o 7 ii

< 5

flUKf

1. new node->ne xt = eutr

I. value

< 5 10 •

1. new_n0ie->'&ext = cuir
2. pwv^>next = new_aode

Figure 14 - Inserting into a List

Annotations have been added at the bottom of the example to indicate that these

assignments should be accomplished by:

1. assigning curr to the next pointer of new node

(new_node->next = curr), and

2. set list node 5's next pointer to point to new node

(prev->next = new_node)

Note that we could have used drag-and-drop operations to make the assignments, but

pedagogically, it is clearer to change the arrows directly. We use the text annotations to

show what the code would actually look like.

31

These three insertions show the high-level details of the insertion algorithm. The instructor

could now proceed to provide more explicit coding details.

3.8 Conclusions

This chapter described Algorithm Designer, an electronic whiteboarding environment.

From the first use of the system by an instructor, the environment will feel familiar since it

strongly resembles and behaves like a traditional drawing program. It improves upon this

environment by providing syntactic and semantic support for data structure design and

algorithm demonstration. It provides this support through the use of built-in data structure

objects, and a small set of unique features that operate over the entire set of objects in a

consistent manner. One of these features is the "seed" and "hole" concept that is used to

initialize and assign pointer objects and to connect all types of edge-based strucmfes.

Another feature is the use of the swap tool that can be used to exchange two array elements,

or in fact, the contents of any two data structure nodes. This reutilization of ideas helps

minimize the number of features that must be leamed in order to effectively use the system

and helps to make the Algorithm Designer a very accessible environment for data structure

design and algorithm demonstration.

Algorithm Designer whiteboard snapshots can be saved to data files and distributed to

stadents before or after class. These files can be reloaded into Algorithm Designer to

recreate a specific data strucmre or algorithm state. This provides students with the ability '

to review and replay examples and demonstrations at their own pace.

The next chapter describes Rule Designer. Rule designer adds functionality to Algorithm

Designer by allowing the creation of visual language scripts to manipulate the data

strucmres created in Algorithm Designer's electronic whiteboarding environment.

32

Chapter 4

Rule Designer

4.1 Introduction

The Rule Designer component is intended to provide a simple visual script creation and

execution engine for the Algorithm Designer. Using cartoon strips, an instructor can create

a series of "pictorial rewrite rules" that define actions to be taken upon Algorithm Designer

objects. Pictorial rewrite rules provide a pattern that is matched against Algorithm Designer

objects and a set of actions that are to be taken upon the instantiated Algorithm Designer

objects. The visual program resulting from the set of cartoon strips can then be used to

enhance the presentation of algorithm descriptions and aid in data structure design

discussions.

Visual programming scripts are made up of a series of cartoon strips [Kur90]. The most

basic of these strips is an execution strip. Execution strips consist of pictorial rewrite rules

that define an action, or a series of actions, that are to be carried out on objects that appear

in the Algorithm Designer. Other strips allow an instructor to specify loops in the visual

script code, to create case-based conditional execution sequences, and to control execution

within these cartoon strip blocks.

33

The pictorial rewrite rules used in execution strips are made up of a "Pattern Frame," and a

"Result Frame." The Pattem Frame is used to specify a set of conditions which will be

matched against the current program state, as defined by the Algorithm Designer. The

Result Frame is used to define the actions which are to take place upon the Algorithm

Designer objects, should a match be found for the pattem.

Data structure and pattem matching objects are created and modified on the Pattem Frame

to create object pattems that are matched during visual script execution. Data stmcture

objects are matched ajgainst Algorithm Designer objects by comparing their types, property

values, and visual characteristics. Additional pattem matching objects are available that

enhance the capabilities of the pattem matching engine. These include a pattem that can be

used to specify the absence of a particular object, a text-based conditional expression

pattem, and a general-purpose object tag pattem that is a short-cut for many common

pattems (list head/tail, root, leaf, etc.).

During execution, Pattem Frame objects are instantiated with Algorithm Designer objects,

by a pattem matching engine. A visual language interpreter then executes the actions on

these objects that were specified by the Result Frame. The Interpreter performs these

actions upon the instantiated Algorithm Designer objects.

An example set of cartoon strips that specify the pictorial rewrite rules necessary to perform

a search of a sorted linked-hst are shown in the following figures.

Figure 15 shows how the current pointer is initialized to point to the head of the Hnked list

to be searched. The pattem shows a hnked hst node with an attached "Head" tag indicating.

that this node is the head of the list. It also shows a pointer called "current." Note that in the

pattem, current does not point anywhere. This type of pointer pattem will match any

pointer, regardless of where it points. In the result frame, the current pointer is initialized to

point to the head of the list.
34

Pattern IxHc

Head

current

current not set

Result

current

&iart ot list head

Break: Neuer

Figure 15 - Currency Pointer Initialization

Repeat Beg i n

Figure 16 - Begin Repeat Block

Figure 16 shows the next step of the linked list search algorithm. A loop must be begun to

search through the list until the search value is found, or it is determined that the sorted

linked list does not contain the value.

There are a variety of situations that may now be encoimtered as the search progresses

through the linked list. The first of these cases is shown in Figure 17 where the search

value is found in the list. The condition block is used to show that the value of the search

variable must be equal to the value of the current node in the list being searched. Notice that

this strip causes a break when the pattern matches, thereby leaving the current pointer

pointing to the linked list node having the same value as the search variable.

35

The next case (shown in Figure 18) handles the condition wherein the current pointer is

pointing to the tail of the hst, and it is not the searched for value. We know that it is not the

search value, since this is handled in the previous pattern (Figure 17). For this particular

case, the result frame shows the current pointer disassociated from the hnked list. The

break condition for this strip is also set such that a break is caused when the pattern

matches.

Pattern

search

Cond i t i on:

(x) = (y)

break uihen found

Break: Uhen pattern matches

Figure 17 - Search Value Found

The next case to be handled in the sorted linked list search algorithm is shown in Figure 19.

Here we see that the current hnked list node contains a value that is greater than the search

value. Therefore, the search value is not contained in the list. As in the previous case, the

result frame causes the current pointer to be disassociated from the linked hst and a break is

generated.

The last case is where the search value is greater than the hnked hst node value. This

indicates that if the sorted hnked hst contains the search value, it must be farther into the

hst. Therefore, we must move the current pointer, thereby traversing the hst. Nohce the use

curr-OiRtcurre

6r«S8K: : pattern Batches

corrcnc

Figure 18 - End of List Condition

3:eQrch search

m
'JM

Condi t ion

«smS I

Breoik! | f^hen pattern Botches 'r-j

c«jr>:r>ent

nods ii^alus > search i break * not found

Figure 19 - Search Value Not in List

i

Cofid U ̂ on •:

> <M> I

m

pa(ter-n sailj

Tin

gQEBS

if-sSvaw# ftifr-'ifrtiit

Figure 20 - Advancing List Currency

Figure 21 - End of Repeat Block

of the "Condition" object in the pattern shown in Figure 20. The result shows that the

current pointer has been advanced to the next node in the list.

Figure 21 shows the end statement that designates the end of the repeat loop. This

completes the Rule Designer visual program for linked list searching.

The rest of this chapter describes the Rule Designer application in detail. An overview of

the entire application is presented first, followed by a description of the Rule Designer user

interface, the visual code grammar, and the algorithms utilized by pattern matching engine

and the visual code interpreter.

4.2 Overview

Rule Designer introduces a picture-based visual language. Data structure objects can be

manipulated directly to form visual language statements. Objects created on the Pattern

Frame stand for collections of object instances that are expected to be encountered during

script execution. "Wildcard" matching capabilities are supported by allowing object names

or property values to be left empty. Any values that are not specified are assumed to be

unimportant in the pattern matching process. For example, no value is specified for the list

node in Figure 15 (p. 35) since this value is of no importance to the desired pattern.

Variables may also be specified for the names and values of objects, allowing more

extensive patterns to be specified, and to support indirect data assignment specifications.

Objects may be created on pattern and result frames by selecting a corresponding object

creation tool from a tool palette and clicking on a frame or by dragging objects from the

Algorithm Designer onto a frame. When objects are dragged from the Algorithm Designer,

copies are made of the object and it is added to the frame.

Once a pattern has been specified, the user may then specify the actions that are to take

place upon the objects in the pattern to create the desired results. The actions are performed

visually, for example, assigning one object to another is accomplished by simply dragging

and dropping the assignment source object onto the target object. Visual user actions are

translated and recorded into text statements which are stored for subsequent execution

during visual script interpretation.

The set of visual user actions available on the Result frame is the same set of actions

available on the Algorithm Designer. Therefore, a script writer may experiment with objects

on the Algorithm Designer, and once a specific sequence of actions are arrived at, these

actions may be repeated on the result frame. The sequence is then recorded and translated

into text statements that are interpreted during visual script execution.

39

File Obiects

BlailnIUtnt«boand Sly 11)4^

FHt Co!Of*

m □ m HI
Structu^^a □ m m

a :m o
Ltoe Co)OP

CuAlsii zed
siijiSidsypiiis

Prograiftiing

MPID Ru!{:eD^^ i gne;i^";PoRB:^Stanf-: Stepr Run Baa
Pattern

Bp:«afe5Hi;4 Uhcn patte n

■

I

Figure 22 - Algorithm Designer and Rule Designer Environment

Figure 22 shows the entire Algorithm Designer and Rule Designer environment. Notice the

buttons at the upper right of the Algorithm Designer Panel title bar. These buttons allow the

user to display the Algorithm Designer only, the split-screen Algorithm Designer and Rule

Designer environment shown, or the Rule Designer panel only. The buttons at the left of

the Rule Designer title bar control visual script execution. These scripts can be single-

stepped, or run until completion.

The Programming palette is that appears below the Customized Structures button at the left

of the window is used exclusively by Rule Designer.

Rule Designer, like Algorithm Designer, allows snapshots to be saved in data files and

distributed to students before or after class. These files can the be reloaded into Rule

Designer to recreate a specific whiteboard state and to reload visual script frames.

4.3 User Interface

This section briefly describes the Rule Designer user interface. In Figure 23, the

programming buttons are shown. These buttons create and support visual program creation

within Rule Designer.

E
This button allows users to create Rule Designer Execution Strips. These strips

contain pictorial rewrite rules that defme the actions that take place upon Algorithm

Designer objects during visual script execution. The initial format of this strip is shown in

Figure 24.

pictorial
strips

keyword
strips

absence

of

Frotorfifflirl ng

30

/mTlals \conditionals

input output

object
tags

Figure 23 - Programming Buttons

41

©

©

©

11

©©
Pattern ixho

® ©
unt i 11ed

BreakJ

©

Uhen pattern fai Is

Uhen pattern matches

Neuer

RI ways

5

Figure 24 - Rule Designer Execution Strip

The interactive parts of the strip are labeled by the numbered circles and are described

below:

1. The arrow is a currency indicator. When running a script, it points to the next strip

to be executed.

2. Clicking on the X-mark deletes the strip.

3. Clicking on the upward pointing arrow when creating a new strip causes it to be

inserted prior to this strip. Strips can be moved within the visual program by

dragging them above or below other program strips. The upward pointing arrow

highlights when another strip is dragged over the upper half of strip. This indicates

that dropping the dragged strip would cause it to be moved in front of the strip.

4. This icon minimizes or maximizes the size of the strip. Clicking on it while the strip

is normally sized causes it to be reduced to a small size that only shows the user-

defined title to save room on the screen.

42

5. Clicking here copies the current contents of the Pattern frame onto the Result frame.

The Result frame is only displayed once this copy occurs. The user may then define

the actions that are to take place upon the objects defined in the Pattern.

6. This popup menu allows the user to define when a break will occur for the current

strip. A break causes control to be retumed from inside the currently defined scope.

For example, if a strip is inside of a Repeat loop, a break would exit the loop. The

four break options are: on pattern failure, on pattern success, always, and never.

These define when a break takes place. A break normally occurs when a pattern

fails. We can force a break to occur on pattern success so that once the result is

executed a break is executed. We also have the option of always generating a break

whether the pattem succeeds or fails, or of never generating a break, again

regardless of the success or failure of a pattem match.

7. The black box at the bottom right of the Pattem frame is the resize box. It resizes

both the Pattem and Result frames.

8. This is a user-defined Frame title.

9. The downward pointing arrow functions exactly like #3 except it allows insertion

and movement of strips after the current strip.

When objects are created on the Pattem frame, any attributes that are left unspecified are

assumed to be irrelevant to the pattem. For example, if the pattem omits the name for an

integer, then the name property is assumed to be a wildcard that matches any name, and

hence is ignored by the pattem matcher.

Variables can also be specified within a pattem and utihzed to enhance pattem matching

capabihties and to provide a symbohc framework for result actions. Variables are specified

by placing a variable name within parentheses. An example of their use is shown in Figure

25. Once a variable successfully matches an Algorithm Designer object, the symbolic

43

variable is bound to a value. This bound value will persist through pattern matching and

visual script interpretation.

In this example, the Pattern matches when we find three variables on the Algorithm

Designer, one named current, having value x; one named next having value y; and some

other variable with value x (the same value as current). In the Result frame, we see that

the user has requested that the value of the unnamed variable be set to y (the value from

next).

Also note the button at the upper right of the Result frame. Clicking on this button will

display the visual program statements that have been created by the users actions on the

Result frame. The granimar for this language is described later in this section.

once instantiated, variables
are bound to a value

ttepri xHc

cut rent

X)
(x)

next

Cy)

unt i 11ed

Result

curnent

next

(y)

I

bound variables from pattern
can be used in result

Figure 25 - Use of Variables

44

This button creates keyword strips as shown in Figure 26.

phH Repeat Begi
Case Begin

Next Case

End

Break

ContInue

30

Figure 26 - Keyword Strips

Keyword strips allow users to create conditional blocks and loops. Repeat Begin starts a

loop block, and is ended simply with End. Case blocks begin with Case Begin followed

by the first case. Subsequent cases begin with Next Case. The case block is ended with

End. Break exits out of the currently enclosing block. Continue is used in repeat loops

to end processing of the current iteration and continue with the next iteration.

Looping conditions are specified using either a Break keyword strip, or break conditions

specified on the strips themselves. When a Break keyword strip is encountered inside a

Repeat block during visual script execution, the loop is exited and execution continues with

the strip following the Repeat block. Another way to break out of loops is using the break

conditions on the strip. For example, if the selected break condition is when the pattern

fails, then when the pattern fails during script execution, a break is generated with the same

results as if a Break keyword strip had been encountered.

45

Case statements have the following general format:

Case Begin
<Case 1 strips>

Next Case

<Case 2 strips>
Next Case

<Case 3 strips>
End

Break keyword strips and strip break conditions operate within Case blocks in the same

manner that they operate within Repeat blocks. Breaks always exit the most recently created

block scope.

The test condition for each case is the first pattern that appears within the case. If this

pattern matches objects on the Algorithm Designer, then the rest of the strips within the

case are attempted. If any of these strips has a break statement that is triggered, then control

will be passed to the first rule after the case statement. If no break statement is triggered,

then control will be passed to the first mle after the case statement once all the strips within

that case block are attempted. Note that this behavior is different from the behavior of the C

switch statement in which control wiU drop into the next case block unless a case block is

terminated by a break statement. If the first pattern for a case does not match objects on the

Algorithm Designer, then execution continues with the first pattern in the next case. If there

are no more cases, then the Case block is exited.

This button creates an X-mark on a Pattern frame. These marks are used to denote

the absence of either an object, or a pointer. They are primarily used to denote null

pointers. They are created on a Pattern frame, then dragged and dropped onto either "stand

alone" pointers (pointers that do not point to a particular object) or "stand-alone" objects

46

current

Figure 27 - Use of X-mark Object

Pattern xHd

Head

Tai I

Root

Leaf

First Edge

Last Edge

Nth

Nth + 1

Figure 28 - Tag Options

(objects with no other objects connected to it via pointers). Figure 27 shows an X-mark

used to indicated that the current pointer must be null.

This button creates tag objects on the Pattern frame. Tag objects allow the user to

specify information about edges or edge-based structures. Figure 28 shows the tags that

can be specified.

Tags are created on pattern frames and associated with objects by drawing out a hue from

the tag seed to the object to be tagged. The Head tag is used to indicate the beginning of a

47

linked list as Tail indicates the end of list. The Root and Leaf tags are used to indicate the

root nodes and leaf nodes of trees and graphs. First Edge and Last Edge tags can be

associated with edges and match the first or last edges of any edge based structure. The

suitability of such a match is based upon the relative position of the edge and the orientation

of the structure to which the edge belongs. For example, in a horizontally oriented structure

edges are numbered top-to-bottom, whereas a vertically oriented structure has edge

numbered from left-to-right. The Nth and Nth + 1 tags are used in tree or graph data

structures that have nodes containing more the two edges. The Nth and Nth + 1 tags are

used in conjunction with one another. The Nth tagged edge is first instantiated to an edge,

then the Nth + 1 tagged edge is matched against the edge which follows the edge

matching the Nth tag. This allows scripts to be created that sequence through the edges

emanating from a node.

An example of the use of tags appears in Figure 15 (p. 35) where the Head tag is used to

denote the head of a linked list. In this example, a currency pointer is being established to

point to the beginning of a list before a list traversal begins.

9
This button creates a conditional object on the Pattern frame. Simple conditions

such as (x) > (y) can be specified in these text objects. The operands for the conditions are

variables specified within the pattern objects. See the description of simple frames for a

discussion of object variables.

Figure 29 shows the condition box that appears in Figure 20 (p.38) of the linked list search

example described above. In Figure 20 (p. 38), the value of (x) is instantiated to the value

of the search variable and the value of (y) is instantiated to the value of the current linked

list node. The condition specified in Figure 29 is therefore that of a search value greater

than the value of the current list node. In the algorithm presented above, this indicates that

48

I
Cond i t i on:

(x) > (y)

Figure 29 - Condition Box

nput iialue

uaIue 0

00 I ue

OK
i>——t

Conce

Figure 30 - Visual Script Input

the lists search must continue on to the next node in the list, since the value, if it appears in

the list, is past the current node.

Li-I This button creates an Input object on the Result frame. When connected to an

object, it generates a statement that when executed by the script, causes a dialog box to

appear, prompting the user to enter data for its associated object.

Figure 30 part a shows an Input object associated with an object. The Input object is

associated with an object by simply dragging a line out of its seed and dropping the line

onto an object. Once associated, an input object may not be moved since the association

action generated a visual script statement. Figure 30 part b shows the dialog box that results

when an input statement is encountered during visual script execution. The values that the

user inputs for the object properties replaces those properties for the input object.

IL^ This button creates an output object on the Result frame. When connected to an

object, it generates a statement that when executed by the script, causes a dialog box to

appear, displaying the current data for its associated object.

Figure 31 part a shows an Output object associated with an object. The Output object is

associated with an object in the same manner as Input objects and tags, by simply dragging

a line out of its seed and dropping it onto an object. Output object associations generate a

visual script statement. Figure 31 part b shows the dialog box that results when this output

statement is encountered during visual script execution. The values of output object

properties are displayed to the user.

lutput
iialue

oalue: 5

oa I ue

Figure 31 - Visual Script Output

4,4 Algorithms

The heart of the Rule Designer program is its pattem matching engine and it Script

Interpreter. This section describes the algorithms used to implement these two components.

4.4.1 Pattern Matcher

The purpose of the Pattem Matcher is to attempt to instantiate the pattem defined on a

Pattem Frame, with actual object instances on the Algorithm Designer. When successful

object matches are found, an entry is made into a symbol table, and cross-references are

50

made between the pattern object and the Algorithm Designer object instance. These symbol

table entries consist of object references to the pattern and match objects. Entries are also

created for any variables defined for matched object properties. These entries contain the

variable name and its instantiated value.

Figure 32 shows a high-level view of the pattern matching algorithm. The pattern matching

process begins by creating two lists: a match hst and a pattern list. The match list consists

of Algorithm Designer objects ordered to facilitate pattern matching. To this end, the edges

appear first in the list and are followed by the node and variable objects.

Once the match hst is created, the pattern hst is created. The pattern hst consists of the

Pattern Frame objects that are used as templates to match Algorithm Designer object

instances. The edges appear first in this with any edges marked with an n-i-1 tag appearing

last. The edges are followed by the node and variable objects, and finally by conditional

expression objects.

While the hst is being created, the stand-alone node objects marked with an x are checked

to see if they exist anywhere on the Algorithm Designer. This marking is used to create a

pattern that means the absence of the associated object. If a matching object is found, there

is no need to continue with pattern matching.

A matching Algorithm Designer object instance must be found for each object in the pattern

hst for pattern matching to succeed. Pattern matching is driven by the pattern list. This list

is matched in order from head to tail. Matching takes place against the match hst. Each

pattern object keeps track of where it last matched an object in the match hst in case

backtracking is necessary. The backtracking scheme is described later in this section.

51

Frame_Match

create match_list from Algorithm Designer objects
create pattern_list from Pattern Frame objects
backtracking_possible = true

match_lis t.Start()

pattern_list.Start()
while (backtracking_possible)

p = pattern_list.Get()
if (p = NULL) // end of pattern list—matching has succeeded

return true

if (p.matched)

match_list.Start{)

pattern_list-Next{)

continue

m = match_list.Get_Next_Unmatched_Element{)

if (m != NULL) // not end of the match list

if Type_Match(p, m)

match_list.Start{)

pattern_list.Next{)

else // end of the match list

backtracking_possible = Backtracking(pattern_list, match_list)
endwhile

return false // backtracking has failed so matching has failed

end Frame_Match

Type_Match(pattern p, match m)

on failure of any match - return no match

match types of pattern p and. match object m

when object type of p is an edge

match from and to objects of p and m

match symbolic tags, edge properties and visual characteristics
when object type is a simple variable

match name if applicable

match edge properties and visual characteristics

when object type is a data structure

match names if applicable
match symbolic tags, edge properties and visual characteristics

end Type_Match

Backtracking(list pattern_list, list match_list)
pattern_list.Prev() // move to previous pattern
p = pattern_list.Get()

if (p = NULL) // if we were dealing with the first pattern in the list
return false //we cannot backtrack any further so return false

m = p.Get_Current_Match()

p.Uninstantiate_Match()

symbol_table.Reset(before_match(p, m))
match_list.Set_Cursor_After(m)

return true

Figure 32 - High-level Pattern Matching Algorithm
52

When doing name or property matching, an empty value in the pattem is treated as a

wildcard value, meaning it will match any value during pattem matching. Variables are

instantiated with the appropriate property value in a matched object.

Edges appear first in each list and serve to force the stracture of a pattem to be matched

before the nodes which are interconnected within the stmcture. An edge is matched by first

attempting to instantiate the objects connected by the edge. Once object instantiation is

completed, the edge is checked to see if it matches the characteristic denoted by any

attached symbolic tags. For example, if the "First Edge" symbolic tag was connected to an

edge, it would be checked to see if it was in fact the first edge emanating from its owning

object's instance. Edge ordering is based on an edge's location relative to the owning object

and horizontal or vertical orientation of the owner. Edges are ordered left-to-right or top-to-

bottom. Following tag checking, edge matching continues by checking edge properties and

visual characteristics.

Structure nodes are matched on name, associated symbolic tags, node properties, and

visual style. Simple variables also match on name, properties, and style.

The Pattem Matcher must backtrack when a pattem match fails to ensure that all possible

combinations have been attempted in the match of pattems to Algorithm Designer objects.

As stated previously, pattem matching is driven by the pattem list. Matching is attempted

upon each object in the pattem list, when a failure occurs, the previous match is

uninstantiated, and a search begins for a different match. If the first pattem fails, then the

entire match fails.

53

Each matched pattern object keeps track of the location of its matching Algorithm Designer

object in the match list. If it is called upon to find another match, it continues walking the

match list forward, beginning with the next object in the list following its current match.

In order to backtrack, the symbols in the symbol table that were based upon the pattern and

its matching object (object id correspondences and any variable instantiations), must be

removed. References stored directly within patterns and match objects that provide a cross-

reference must also be cleared.

After implementing this algorithm, it was realized that original problem is actually a

bipartite matching problem, a special case of a maximum matching problem and that the

augmenting path method could have been used to create a much more efficient pattern

matching engine [HU83]. This change was not made for three reasons: 1) the current

algorithm works fine, 2) performance was not a problem for a small number of match

items, and 3) since the applications are intended for research, not as commercial

apphcations, there will never be a large number of match items.

4.4.2 Script Interpreter

When an execution strip is encountered during visual program execution, the Pattern Frame

of the strip is checked by the Pattern Matcher to see if a set of matching Algorithm Designer

object instantiations can be found. Once pattem matching completes, the script interpreter

then uses the pattem object instantiations from the pattern matcher and the symbol table, to

execute the previously generated visual program script. Visual program scripts are

associated with the Result Frame on which the visual operations were performed.

The Script Interpreter uses a top-down, predictive parser to interpret visual language

statements. The grammar of this language is described below.

54

Create Statements

The create statement has two forms, one for node creation, and one for edge creation.

Nodes and edges are created on the Result Frame by selecting object buttons, and then

chcking in the frame to create them. This is the same way that objects are created on the

Algorithm Designer and on the Pattern Frame. The two forms of the create statement are

shown below:

create OBJECT_TYPE <id> at <x>,<y>
create EDGE_TYPE <id> from obj <id> to obj <id>

Delete Statements

The delete statement again has two forms, for nodes and for edges. Nodes are deleted by

either dragging them into the trash can or by selecting them and pressing the <delete> key.

Edges are deleted by selecting and pressing <delete>.

delete obj <id>
delete edge <id>

Assignment Statements

Assignment statements are of three basic types. The first type handles simple assignments

of hteral values to Result Frame objects. The second type of assignment involves variables

that have been instantiated in the pattem matching symbol table. Once the user defines a

name or property as a variable in the Pattem Frame, this variable may then be used in

assignment statement. The first two types of assignment statements are generated when the

user types a new value into an object property. The last assignment statement format is

used when one Result Frame object is assigned to another. The user requests this type of

assigmnent by dragging and dropping one object onto another.

55

set VARIABLE_REFERENCE = "<literal >"
set VARIABLE_REFERENCE = <variable>
set VARIABLE_REFERENCE = VARIABLE_REFERENCE

A variable reference will be in one of the following formats:

obj <id>
property <naine> of obj <id>
element <index> of obj <id>
property <name> of element <index> of obj <id>

These formats allow assignment source and targets to be complete objects, specific

properties of an object, an element of an array, or a specific property of an array element.

The name of an object is changed by simply typing a new name into the space provided for

the name within the object itself.

name of obj <id> = "<name>"

Visual Property Modification Statements

The visual properties of objects are edited directly by the user by selecting the object and

then clicking on the property button that corresponds to the change to be made. For

example to change the line color of an object to red, the user would click on the red icon in

the "Line Color" palette. Here are the statements generated by changes to an objects visual

characteristics:

line-color of obj <id> = <color>
fill-color of obj <id> = <color>
line-size of obj <id> = <width>
line-style of obj <id> = <style>

Object Movement Statements

Objects can be moved in the Result Frame. These movements are recorded and when

played back during visual code interpretation, cause the instantiated Algorithm Designer

56

objects to move. The incremental positional change made to a Algorithm Designer object is

the calculated difference between the starting and ending position of the pattern object.

move obj <id> to x, y

Edges are moved by dragging their end-points from one object to another. This visual

action causes the one of the following statements to be generated, depending on the type of

the target object of the edge:

move EDGE_TYPE <id> to obj <id>
move EDGE_TYPE <id> to element <index> of obj <id>

Swap Statement

Chcking on the "Swap" tool in the "Tools" palette swaps the values between the two

objects that are currently selected. This tool works with arbitrary objects of the same type,

and with array elements. The two formats of this statement are shown below:

swap obj <id> and obj <id> — swap object values
swap element <indexl> and element <index2> of obj <id>

Input Statements

The user can request that object property values be prompted for during visual script

execution by associating an input object tag with an object in the Result Frame. The user

first creates the input tag, then attaches it to the desired object. The resulting statement is

show below:

input VARIABLE_REFERENCE

Output Statements

The user can also request that object property values be displayed via a dialog during visual

script execution. This is accomplished by associating an output object tag with an object in

57

the Result Frame. As with input, the user first creates the output tag, then attaches it to the

desired object. The output statement created by this visual action is:

output VARIABLE_REFERENCE

Arithmetic Expressions in Values

Property values can be set to arithmetic expressions. These expressions are enclosed within

parentheses and may contain integers, real numbers, or variables that appear in the symbol

table. The following operators are supported: +, -, *, /. The multiphcation and division

operators have precedence over addition and subtraction. The associativity for all operators

is left-to-right. Parentheses may be nested. The following example shows a typical

arithmetic expression:

((x + 5) * y)

Figure 33 shows the grammar for arithmetic expressions:

Statement -> (Expression)

Expression -> Expression + Expression
Expression - Expression
Expression * Expression
Expression / Expression
Expression % Expression
(Expression)
Operand

Operand -> variable | constant

Figure 33 - Arithmetic Expression Grammar

Conditional Expressions in Patterns

The Pattem Frame allows users to enter a simple textual conditional expression that is

matched along with the visual pattem components. Conditional expressions are created by
58

firist selecting the conditional tool from the "Programming" palette, and then clicking on a

Pattern Frame. The comparison operators that are supported are: =, !=, >, <, >=, <=. The

format for this expression is as follows:

<variable> <conditional-operator> <variable or number>

The variable must be one that is defined with a property field. See Figure 19 (p. 37) for an

example using property variables. Boolean and, or, and not operators are not currently

supported.

4.5 Rule Designer Limitations

The Rule Designer is intended as a visual scripting system, not a complete programming

language, although it could be developed into one. The primary thrust of this project was to

provide support for the visual whiteboarding environment for instructors, and in this it

succeeds adrhirably.

Rule Designer does not support function definition or function caUs and therefore, also

does not support recursion. This is the primary reason that Rule Designer cannot be used as

a general purpose programming environment. Rule Designer has always been envisioned in

the context of an interactive Algorithm Designer system and the functionality of the visual

language was designed accordingly. The language is robust enough to aid in the graphical

design of data structures and in visual algorithm demonstration, and therefore succeeds in

its purpose in spite of these limitations.

Another current limitation of Rule Designer is that once visual code is created, it cannot be

edited either visually or as text statements. For this reason, objects appearing on the Result

Frame cannot be used in visual code, and then later deleted, since the deletion would cause

the reference before the delete to fail the next time the Result Frame script is executed. For

59

example, if during script creation you assign a value to an object on the Result Frame, then

delete the object, the object will not be there when the script actually runs and the

assignment is attempted. Editing of statements in the initial release of Rule Designer

basically involves replacement of the visual statements by recreating the Result Frame.

One other limitation of the initial version of Rule Designer is that the user cannot directly

edit hidden properties. Hidden properties are those that are not currently visualized. The

user can edit these properties by opening a property editing dialog, and entering desired

property modifications, however.

4.6 Conclusions

In summary. Rule Designer is a visual scripting language designed to assist in data

structure visualization and algorithm demonstration. Cartoon strips are created by

instructors embodying pictorial rewrite rules that act upon data structure objects in the

Algorithm Designer electronic whiteboarding environment. Objects in Algorithm Designer

are instantiated against script objects during visual script interpretation. The visual scripting

language also includes extensions to support conditional execution and looping.

60

Chapter 5

Related Work

5.1 Overview

Previous research efforts that relate to the work described in this document may be divided

into four main categories:

1. Tools for drawing data structures on a whiteboard

2. Pedagogical tools

3. Tools for visualizing data structures

4. Tools for visually specifying a computer program

The remainder of this chapter examines each of these areas and describes the work that has

taken place as it relates to the Algorithm Designer Project.

5.2 Drawing Tools

Although it is unlikely that an instructor would use a drawing editor to explain data

structures and algorithms, we will begin our discussion of related work here, since Data

Structure Designer and Algorithm Designer share many of a drawing editor's capabilities.

61

Computer drawing programs alleviate many of the difficulties encoimtered in using a

physical whiteboard for data structure and algorithm instruction. Objects can be drawn,

moved about, saved for later use, and easily modified without necessitating a complete

redrawing of the object. Complete data structure designs can also be prepared in advance

and loaded when needed.

To a certain extent, the use of computer drawing programs in teaching data structure design

and algorithm demonstration partakes of the main shortcoming of physical whiteboards -

generality. Although objects can be created and saved, the objects are not truly dynamic and

do not support behaviors that would be typical for objects of their specific type. For

example, if a drawing was intended to show two connected linked list nodes, moving one

of the nodes would most likely necessitate the reconnection of the arrowed-line connecting

them. The line would not reflect the semantics of a linked list edge, it is simply a line and

would be either grouped with one or the other of the nodes, or would be ungrouped. Either

case would require additional user interaction to put the linked list back in order.

Drawing packages such as the original SketchPad [Sut63], or modem drawing programs

such as CorelDraw [Cor99] and AppleWorks [App99] are designed as generic drawing

tools. They can neither effectively model an object's visual appearance nor the semantics of

the object's operations. Consequently, the user is rarely if ever, deceived into thinking that

they are working with the actual objects that are displayed, since they must continue to

work within the confines of the drawing package.

In short, computer drawing programs lack any type of syntactic or semantic support which

would simplify data stmcture design and aid in the instmction of algorithm demonstration.

This support is provided by the Algorithm Designer Project described in this document.

62

5.3 Pedagogical Tools

The research on computer aided instruction and learning basically focuses on multimedia

applications, simulations, web-based instructional pages, and collaborative conferencing

[Bal85 , Hod89, Mor86, Bar93, Sch93, Pea93, Rub93, Ste83. Can98, Kia98, Wat98,

Ded98]. These multimedia applications focus sequences of video and audio clips whose

order of presentation depends on a script or on actions performed by a user. The

simulations can either be web-based or shown in class. The student or the instructor can

manipulate the parameters in order to perform experiments. However, the simulations are

typically labor-intensive to prepare and are not meant to be the central prop used in the

classroom. Web-based instructional pages are meant to be used outside the classroom and

do not involve interaction with an instructor. The collaboration environments typically

involve some sort of video conferencing and the electronic whiteboard application could be

used in such an environment to replace a blackboard. These applications tend to be

supplemental to the learning process. Algorithm Designer differs from this previous

research in that it is an attempt to replace the main prop used in traditional classrooms, the

blackboard itself.

Algorithm Designer provides an electronic whiteboard for data structure and program state

visualization and manipulation. Algorithm animation systems such as Balsa [BS84] and

Tango [Sta90] provide mechanisms for visualizing the behavior of existing programs. They

do not provide the interactive data structure design and algorithm development capabilities

that are the focus of the Algorithm Designer environment.

The research on electronic whiteboards has focused on providing support for meetings,

usually distributed meetings [Ste87, Elr92, Min91, Tan91, Coo87, ManSS, Ish92, Str94,

Wol92, Mor98, Ped93]. The whiteboards typically are some type of projection device and

can be written on with a pen-like stylus. The electronic ink can be broadcast to other sites,

63

printed, or saved. Some radimentary semantics are built in that group the ink into objects,

such as shapes or handwriting, and allow the objects to be moved, deleted, cut, pasted, etc.

In other words, they are providing much of the functionality of a drawing editor, but via a

whiteboard rather than a mouse-based computer display.

The electronic whiteboard research conducted by Moran, van Melle, and Chiu [MVC98] is

closely related to the Algorithm Designer. During their research a set of tools was created

for specifying and laying out objects that could be used in a meeting. The specification

tools allow a person to define a property list for an object, define action rules that indicate

how the objects should respond to user actions, and to specify simple spreadsheet-like

constraints that compute the values of properties based upon the values of other properties.

This functionality provides semantic support for objects on a whiteboard. However, their

focus is semantic support for meetings whereas the focus of this research is semantic

support for data structure instruction. Their tools are more generic than Algorithm Designer

in that a user can create arbitrary objects. However, the user also has to be able to program

the semantic behavior. In contrast this research provides a set of pre-defined objects with

pre-defined semantics. The appearance of the objects can be easily edited by setting

attribute values but the user cannot define new graphical appearances for the objects. The

rule designer scripting language also provides a rudimentary facility for specifying

interactions between the objects (i.e., algorithms that act upon the objects).

CAT (Collaborative Active Textbooks) [BN96] is an algorithm animation system that

operates in conjunction with the World-Wide Web. It is related to Algorithm Designer in

that it also provides an electronic whiteboard environment. With CAT, the progress of the

same algorithm can be viewed from multiple machines. Unlike Algorithm Designer, CAT

algorithm animations are coded in a textual programming language, not in a visual rule-

based environment.

64

In 'Teaching Binary Tree Algorithms through Visual Programming," Michail [Mic96] has

shown how visual programming concepts such as those used throughout Algorithm

Designer, can be used to teach binary tree algorithms specifically, and also algorithmic

concepts in general. This study asserts that the manipulation of algorithmic objects allows a

student to concentrate on the higher-level aspects of the algorithm, hence increasing overall

comprehension.

5.4 Data Structure Visualization

A good deal of research has gone into providing attractive displays of data for debugging

purposes. The Algorithm Designer Project takes a different approach by first allowing the

design and customization of textbook-like data structure representations and then providing

an environment in which they can be manipulated, like the data structure objects they

represent. The three components of the Algorithm Designer Project represent three different

areas in which related work has taken place.

The Data Structure Designer component provides a data structure specification and

customization environment. Amethyst [Aut88], Incense [Mye83],

AlgorithmExplorer[McW96], and CERNO [Hos96] provide graphical displays for Pascal,

Mesa, C, and object-oriented Prolog data structures respectively. Each of these systems

allows the user to write code that customizes graphical data structure displays, but none of

them provides a graphical editor like the Data Structure Designer for customizing these

displays.

Program visualization systems graphically display some aspect of program execution, but

do not allow visual program specification. Amethyst is typical of this type of system. It

displays program data structures graphically as a program executes. The system is intended

to help programmers understand and debug their programs.

65

The Algorithm Designer Project includes the visualization of program data strucmres, but

also provides the ability to visually create and manipulate data strucmres and create program

scripts with them as well.

5.5 Visual Programming

The Rule Designer component provides a mle-based visual language script construction

environment. A number of approaches have been tried for visual program creation,

including dataflow methods, programming-by-example methods, pictorial or graphical

rewriting methods, and term or graph rewriting methods. The Rule Designer environment

is an example of the pictorial rewriting method.

Specification-based Language Systems

Specification-based (or dataflow) visual languages allow users to draw programs

graphically by placing and connecting individual program statements together to form a

computer program. These visual languages are really just graphical representations of a

textual program.

ProGraph [SC95] is typical of the specification-based visual languages. ProGraph provides

program statement tools that can be placed on a drawing surface. The individual statements

are then connected to form a data flow diagram. When completed, the diagram describes a

program specification.

ProGraph differs from Rule Designer in the fundamental means through which a program

is represented and manipulated graphically. Graphical objects in ProGraph merely stand for

texmal program statements. In Rule Designer, objects representing textbook-style high-

level data structures like arrays, lists, trees, and graphs are manipulated to create program

scripts.

66

Graphical Thinglab [BorSl, Bor86] is another representative dataflow system that provides

an interface to the Thinglab system and is intended to visually construct constraints for

simulations. It uses low-level operators, like plus and minus, and can only specify rather

simple numeric constraints. In contrast Rule Designer focuses on higher-level data

structures and operators, is procedural, and was developed for instructional purposes.

Programming-by-Example Systems

A number of programming-by-example projects allow programs to be visually specified by

manipulating pictures of common data structures. ALEX allows users to manipulate

pictorial images of arrays to specify matrix algorithms [Alx87]. DEAL provides a number

of data type icons, such as an array icon, and allows programs to be specified by a set of

action rules that modify a before-picture of the icon into an after-picture [Erw91].

These systems differ from Rule Designer in that custom data structures cannot be utilized

and in that they use variables rather than concrete data to populate data structures. ALEX

uses imperative programming constructs while DEAL uses functional programming. Rule

Designer uses a rule-based approach using before and after frames. Both systems also

differ from our environment in that they were designed to actually generate programs,

whereas Rule Designer is intended to provide a scripting environment to support algorithm

description and demonstration.

Another programming-by-example language is Forms3, which allows programs to be

created using spreadsheet-like programming[BA94]. The programmer provides actual data

as the program is being created and the formulas the programmer creates are immediately

executed, thus providing immediate feedback about the results of the computation. Rule

Designer differs from Forms3 in that it is an imperative rather than a functional language,

and in that it is based on pictorial rewrite rules rather than formulas.

67

Rule Designer cartoon strip result frames are created by recording imperative actions taken

upon a pictorial before pattem. A similar macro recording technique [Mau89] is used in

Maulsby's MetaMouse system [Met89], Cypher's EAGER system [Cyp91], and Myer's

text formatting system [Mye91].

Maulsby's system tries to guess what user action will be performed next in a drawing

editor. EAGER tries to guess what the user will do next in a HyperCard environment.

Myer's system tries to guess the formatting macros that should be applied to certain types

of text (e.g., section headers). All three of these systems try to infer a set of actions, a

macro, based on patterns they see in a user's behavior.

These systems differ from Rule Designer in a number of ways. First, they try to infer the

pattem whereas Rule Designer forces the user to provide the pattem. Second, they try to

infer the macros whereas Rule Designer forces the user to explicitly specify the actions.

Third, they are targeted toward desktop applications while Rule Designer is targeted toward

computer science instmction. Fourth, they do not provide an explicit graphical

representation whereas Rule Designer does. Fifth, they create single pattern/macro rales

whereas Rule Designer pattern/macro rules are like statements that are used to define a

larger program.

Kurlander's Editable Histories [Kur92] is like Rule Designer in that it saves a history of a

user's graphical editing operations in a cartoon strip and allows the operations in the

cartoon strips to be grouped into macros. Kurlander's work differs from Rule Designer in

that his macros are meant for a drawing editor whereas Rule Designer's are meant for

instructional purposes. Like MetaMouse, Eager, and Cypher, Kurlander's macros are a

single pattern/macro rale whereas Rule Designer pattern/macro rules are like statements that

are used to define a larger program.

68

Pictorial Rewrite Rule Systems

Cocoa [CS95], ChemTrains [BL93], Vampire [MG92], and AgentSheets [RS95] are

examples of pictorial rewrite rule-based systems.

Cocoa incorporates the use of pictorial rewrite rules to provide a children's toy simulation

environment for children. Cocoa programs consist of rules that are graphical patterns that

are matched against, the current drawing environment, and result frames which incorporate

graphical changes to the matched pattern. For example, to move a train down a straight

track, the pattern could show the train locomotive with a short section of open track in front

of it. The result frame could show the locomotive moved onto the previously empty track.

Pictorial rewrite rules in Cocoa are used to make visual changes to graphical images. In

Algorithm Designer, they are used to manipulate the program state through changes to

program data structure and variables.

ChemTrains is a visual rule-based visual language system. Like Rule Designer, patterns

and results are matched and executed semantically, as opposed to use of geometric

mappings based on relative object positions. ChemTrains is designed as a general purpose

rule-based system and lacks the data structure-specific syntactic and semantic support of

Algorithm Designer.

Vampire allows some textual program code in conjunction with its pictorial rewrite rules.

Rule Designer also uses text to allow the entry of simple conditional expressions in rule

patterns. The systems differ in their aim. Vampire supports the development of iconic

programming environments which use graphical elements as semantic building blocks upon

which visual languages are constructed (like the visual program scripts of Rule Designer).

Algorithm Designer aims to support data structure instruction with tools specifically

designed for this purpose.

69

AgentSheets is another tool for creating iconic programming environments. It uses a

metaphor of "communicating agents sharing a structured space." It is again targeted toward

the development of general purpose visual programs, not instructional programs. Since it is

a general purpose system, it lacks the rich, domain-specific data structures supported by

Rule Designer.

Term or Graph Rewrite Rule Systems

Superficially, term and graph rewriting rules appear to be similar to Rule Designer's

pictorial rewriting rules but that they really are quite different The superficial resemblance

is in that all three systems have a before pattem that gets matched and an after pattern that

replaces the before pattem [Lel88, Der90, Klo92, Wad71]. However, term rewriting

involves matching textual pattems and then replacing textual terms with other textual terms.

Graph rewriting involves matching subgraphs and then replacing one subgraph with

another subgraph. The pictorial rewriting of Rule Designer involves matching pictures and

then performing a series of imperative operations on the matched picture to achieve a result

picture. One important distinction between pictorial rewrite rules and term or graph

rewriting rules is that the pattems are different. Term or graph rewrite pattems are textual or

based upon graphs as opposed to being pictorial representations of a particular state.

Another distinction between term/graph rewrite systems and our pictorial rewrite system is

that in term or graph rewrite systems, the before and after (i.e., result) pattems are both

specified. An algorithm in the system then automatically figures out how to transform the

before pattem into the result pattem. Rule Designer uses an imperative approach. A before

pattem is first specified. The result pattem is created by performing a set of imperative

actions on the before pattem. Rule Designer does not attempt to figure out how to generate

the result pattem from the before pattem. Instead, it simply records the user's actions like a

macro facility.

70

Chapter 6

Experience

An informal test of the Algorithm Designer software was done in front of a class of second-

year Computer Science majors at Pellissippi State Technical Community College in

Knoxville, TN. The test consisted of a demonstration of basic list processing algorithms

(initialization, search, traversal, insertion) using first a physical whiteboard, and then using

the Algorithm Designer system. The purpose of the demonstration was to gather feedback

concerning the technology that had been developed. It was not intended to be, and was not

treated as a formal evaluation or study. The students were simply asked to list the

advantages and disadvantages of each approach.

The primary advantage listed by the students was the visual appeal of Algorithm Designer.

They said that the algorithm visualization made it more interesting to learn and required less

talk and therefore held their attention more readily. The Algorithm Designer data structure

visualizations were crisp and clear and could compensate for the poor handwriting or

drawing skills of the instructor. Also, since large examples could be produced in much less

time, it was easier for them to keep their attention focused on the concepts being

demonstrated not on the gestures required to erase and redraw the data structures on the

physical whiteboard.

Another advantage of Algorithm Designer described by the students was that it allows for

more efficient use of tinie, both for the instructor and for students. Examples can be created

in less time, and they can also be created in advance and saved for later review. While the
71

physical whiteboard most likely only contains the last step of the algorithm (since previous

steps are modified), the Algorithm Designer demonstration still contains all of the steps.

Instructors can save these demonstrations to data files that can be distributed to students.

The students can then review the example at their leisure, walking through the each step of

the algorithm watching its effect, as many times as needed.

The primary disadvantage of Algorithm Designer listed on the student's responses was that

it requires good projection equipment. This can make or break the usefulness of the system

as can any technical problems that manifest with the equipment. Of course, the instructor

could always fall back on the use of the physical whiteboard should these problems occur

during a demonstration.

Another disadvantage described in student responses arises from the inherent differences

between the physical whiteboard and Algorithm Designer. It was pointed out that in some

ways, the physical whiteboard is more flexible than Algorithm Designer. Graphical

annotations, lines, or other informational notations, can be made anywhere, at any time. In

addition, there is a learning curve for instructors to learn to use any computerized system,

whereas every instructor already knows how to use a whiteboard. Finally, it was noted that

students are quite accustomed to seeing demonstrations on physical whiteboards, and that

any change in media requires them to change the way they are accustomed to watching and

interacting with an instructor.

The results obtained from the students were overwhelmingly positive and implied that

Algorithm Designer can most definitely reinforce, if not replace, conventional means of

algorithm and data structure demonstration. Another conclusion drawn from the responses

was that the visual demonsUration of data structure algorithms using Algorithm Designer

allows concepts to be effectively presented in a language-neutral fashion. In other words,

students can focus on pictures of what is taking place, like they would in a textbook, in

72

order to gain an understanding of an algorithm. The mental juggling involved in translating

these pictures into text code can be delayed, since even large examples can still be easily

presented visually. This helps decrease the overall complexity of the demonstration and can

make it accessible to students who might otherwise become lost in low-level details.

73

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation describes the research done as a result of the Algorithm Designer Project.

This project consisted of three components; Data Structure Designer, Algorithm Designer,

and Rule Designer. The primary goal of the project was to develop the technology required

for electronic instruction of computer science.

Data Structure Designer is a direct manipulation, drag-and drop graphical editor that allows

users to create attractive, customized data structure objects that closely resemble the pictures

of data structures that appear in textbooks. A key insight discovered during development of

Data Structure Designer was that although textbooks employ a wide variety of data

sUucture visualizations, the differences between these visualizations can be grouped into a

small number of categories. Data Structure Designer provides an interface through which

instructors can quickly and easily design custom data structures for use in data strucmre

design or algorithm demonstrations by manipulating these visual characteristics.

74

In addition, a unique interface element was developed as part of Data Structure Designer.

The color mapping widget provides an easy way for the user to associate a set of colors

with a range of values in a data structure visualization. Data structure node and edge

properties (or fields) can be mapped using this widget such that a given range of values will

correspond to a specific fill color or line color.

Algorithm Designer explores the use of a computer as an electronic whiteboard. Algorithm

Designer improves upon the traditional physical blackboard environment by providing

syntactic and semantic support for data structure design and algorithm demonstration. It

provides this support through the use of built-in data structure objects, and a small set of

unique features that operate over the entire set of objects in a consistent manner.

One of the unique interface elements created for Algorithm Designer is the "seed" and

"hole" concept. This concept is used to initialize and assign pointer objects and to connect

all types of edge-based structures. The seeds and holes concept provides a mechanism for

visually identifying and supporting data structure, type-specific semantic behavior.

Rule Designer provides a simple visual script creation and execution engine for Algorithm

Designer. Using cartoon strips, an instructor can create a series of "pictorial rewrite rules"

that define actions to be taken upon Algorithm Designer objects. Rule Designer is novel in

that it uses imperative flow-of-control constructs to control which pictorial rewrite rules to

execute. In previous pictorial rewrite rule systems, a hst of pictorial rewrite rules was

scanned. The first rule on the list whose condition evaluated to true was fired. The hst of

pictorial rewrite rules was then iteratively rescanned from the top. The program terminated

execution when no rules could be fired. The only way to control which pictorial rewrite

rules were executed was to place one pictorial rewrite rule above another in the list. In

contrast. Rule Designer treats pictorial rewrite rules like statements in a program. Case

statements can be used to selectively execute pictorial rewrite rules and loops can be used to

75

repetitively execute pictorial rewrite rules. Sequential pictorial rewrite rules are executed

like sequential statements in an imperative program-Rule Designer tries to fire each rule in

the sequence. Hence Rule Designer gives much finer grained control over the execution of

pictorial rewrite rules than previous systems.

By providing integrated support for imperative programming constructs within a pictorial

rewrite rule-based scripting system, Rule Designer demonstrates a novel use of these rules

for teaching conventional imperative programming. Visual programs written with this

system can then be used to enhance the presentation of algorithm descriptions and to aid in

data structure design discussions.

In addition to its use in a traditional classroom setting, Algorithm Designer has potential

uses as part of a distance learning program. Students in classrooms could view a projected

demonstration that is being performed remotely by an instructor. Students could also walk

through pre-programmed examples along with an instructor, that is either present with the

students, or one that is broadcasting back to a classroom from a remote site. Recorded

voice-overs could also be prepared to allow students to walk through a scripted example

demonstration.

Finally, both Algorithm Designer and Rule Designer allow instructors to save examples in

data files which can be distributed to students before or after class for their review. These

files can be reloaded into the applications allowing students to review an instructors

presentation at their own pace. Example data files could be easily distributed to students via

a local area network, or via FTP (File Transfer Protocol) or the World Wide Web.

76

7.2 Summary of Contributions to Computer Science

To summarize, the primary contributions of this dissertation to the field of Computer

Science are as follows:

• Codification of the ways in which data structures are presented

• Development of pedagogical tools for CS Instructors

• Integration of pictorial rewrite rules with imperative constructs

7.3 Future Work

Currently, Algorithm Designer supports arrays, graphs, hnked lists, queues, and trees in a

variety of styles. Other data structures such as stacks and circular priority queues could be

added to make the system more versatile.

The Rule Designer scripting language could also be made more robust. The scripting

language could be extended to support function definitions and calls, and to support

boolean operators within conditional expressions.

Finally, the pictorial rewrite rules of the Rule Designer scripting language could be used to

generate C++-like code in order to help students see how visual operations could be

translated into textual code.

77

Bibliography

78

Bibliography

[Amu95] Myers, Brad A., McDaniel Rich, Ferrency Alan, Mickish Andy,
Khmovitsky Alex, and McGovem Amy. The Amulet Reference Manuals,
Carnegie Mellon University Computer Science Department, Technical
Report No. CMU-CS-95-166, June 1995. Also available as Technical
Report No. CMU-HCn-95-102.

[AT87] Augenstein, Moshe and Tenenbaum, Aaron. Data Structures and PL/I
Programming, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987.

[Sed90] Sedgewick, Robert. Algorithms in C, Addison-Wesley Publishing
Company, Inc., 1990.

[Shn83] Shneiderman, Ben. "Direct Manipulation: A Step Beyond Programming
Languages," IEEE Computer, August 1983, Vol. 16 No. 8, 57-69.

[HU83] Hopcroft, A. V. and Ullman, J. D. Data Structures and Algorithms,
Addison-Wesley Publishing Company, Inc., 1983.

[Sut63] Sutherland, Ivan E. "Sketchpad: A Man-Machine Graphical Communication
System," In 1963 AFIPS Spring Joint Computer Coriference Vol. 23, 329-
346.

[Cor99] CorelDraw by Corel. Web page at:
http://www.corel.com/products/graphicsandpublishing/draw8/main.html

[App99] AppleWorks by Apple Computer, Inc. Web page at:
http://www.apple.com/appleworks/

[Bal85] Balkovich, Ed, lerman, Steven and Parmelee, Richard. "Computing in
Higher Educatio^: The Athena Experience," In IEEE Computer, November
1985, Vol. 18, No. 11, 112-125.

[Cha90] Champine, George A., and Geer, Daniel E. "Project Athena as a Distributed
Computer System," In IEEE Computer, September 1990, Vol. 23, No. 9,
40-51.

79

[Hod89] Hodges, Matthew E., Sasnett, Russell M., and Ackerman, Mark S. "A
Construction Set for Multimedia Applications," In IEEE Software, January
1989, Vol. 6, No. 1, 37-43.

[Mor86] Morris, Satyanarayanan, Conner, Howard, Rosenthal, and Donelson.
"Andrew: A Distributed Personal Computing Environment," In
Communications of the ACM, March 1986, Vol. 29, No. 3,184-201.

[Bar93] Barron, Brigid and Kantor, Ronald J. "Tools to Enhance Math Education:
The Jasper Series," In Communications of the ACM, May 1983, Vol. 36,
No. 5, 52-54.

[Sch93] Schank, Roger C. "Learning via Multimedia Computers," In
Communications of the ACM, May 1983, Vol. 36, No. 5, 54-56.

[Pea93] Pea, Roy D. "The Collaborative Visualization Project," In Communications
of the ACM, May 1983, Vol. 36, No. 5, 60-63.

[Rub93] Rubin, Andee. "Video Laboratories: Tools for Scientific Investigation," In
Communications of the ACM, May 1983, Vol. 36, No. 5, 64-65.

[Ste83] Stevens, Albert, Roberts, Bruce, and Stead, Larry. "The Use of A
Sophisticated Graphics Interface in Computer-Assisted Instruction," In
IEEE Computer Graphics and Apphcations, March/April 1983, Vol. 3, No.
2, 25-31.

[Can98] Candiotti, Alan and Clarke, Neil. "Combining Universal Access with
Faculty Development and Academic Facilities," In Communications of the
ACM, January 1998, Vol. 41, No. 1, 36-41.

[Kia98] Kiaer, Lynn, Mutchler, David, and Froyd, Jeffrey. "Laptop Computers in
an Integrated First-Year Curriculum," In Communications of the ACM,
January 1998, Vol. 41, No. 1, 45-49.

[Wat98] Walters, Carolyn, Conley, Marshall, and Alexander, Cjmthia. "The Digital
Agora: Using Technology for Learning in the Social Sciences," In
Communications of the ACM, January 1998 Vol. 41, No. 1, 50-57.

[Ded98] Deden, Ann. "Computers and Systemic Change in Higher Education," In
"Communications of the ACM, January 1998, Vol. 41, No. 1, 58-63.
[BS84] Brown, M. H. and Sedgewick, R. "A System for Algorithm
Animation." Computer Graphics, July 1984, Vol. 18 No. 3, 177-186.

[Sta90] Stasko, J.T. "Tango: A Framework and System for Algorithm Animation."
Computer, September 1990, Vol. 23, No. 9, 27-39.

[Ste87] Stefik, Foster, Bobrow, Kahn, Lanning, and Suchman. "Beyond the
chalkboard: Computer support for collaboration and problem solving in
meetings," In Communications of the ACM, January 1987, Vol. 30, No. 1,
32-47.

80

[Eli92] Elrod, Bruce, Gold, Goldberg, Halasz, Janssen, Lee, McCall, Pedersen,
Pier, Tang, and Welch. "LiveBoard: A Large Interactive Display Supporting
Group Meetings, Presentaions and Remote Collaboration," from 1992
Proceedings of SIGCHI, In Human Factors in Computing Systems, p.
599-607.

[Min91] Minneman, S. L., and Bly, S. A. "Managing a Trois: A Study of a Multi-
User Drawing Tool in Distributed Design Work," from 1991 Proceedings
of SIGCHI, 5i Human Factors in Computing Systems, 217-224.

[Tan91] Tang, John C. and Minneman, Scott L. "VideoWhiteboard: Video Shadows
to Support Remote Collaboration," from 1991 Proceedings of SIGCHI, In
Human Factors in Computing Systems, 315-322.

[Coo87] Cook, Ellis, Graf, Rein, and Smith. "Project Nick: Meetings Augmentation
and Analysis," In ACM Transactions on Office Information Systems, April
1987, Vol. 5, No. 2, 132-146.

[Man88] Mantel, M. "Capturing the Capture Lab Concepts: A Case Study in the
Design of Computer Supported Meeting Environments," In 1988
Proceedings of the Conference on Computer-Supported Cooperative Work,
257-270.

[Ish92] Ishii, Hiroshi, and Kobayashi, Minoru. "ClearBoard: A Seamless Medium
for Shared Drawing and Conversation with Eye Contact," from 1992
Proceedings of SIGCHI, In Human Factors in Computing Systems, 525-
532.

[Str94] Streitz, Geissler, Haake, and Hoi. "Dolphin: Integrated Meeting Support
Across Local and Remote Desktop Environments and Liveboards," In 1994
Proceedings of the Conference on Computer-Supported Cooperative Work,
345-358.

[Wol92] Wolf, C., Rhyne, J., and Briggs, L. "Communication and Information
Retrieval with a Pen-based Meeting Support Tool," In 1992 Proceedings of
the Conference on Computer-Supported Cooperative Work, 322-329.

[Mor98] Moran, Thomas P., van MeUe, William, Chiu, Patrick. "Tailorable Domain
Objects as Meeting Tools for an Electronic Whiteboard," In 1998
Proceedings of the Conference on Computer-Supported Cooperative Work,
295-304.

[Ped93] Pedersen, McCall, Moran, and Halasz. "Tivoli: An Electronic Whiteboard
for Informal Workgroup Meetings," from 1993 Proceedings of SIGCHI, In
Human Factors in Computing Systems, 391-398.

[MVC98] Moran, Thomas P;, van Melle, William, and Chiu, Patrick. "Spatial
Interpretation of Domain Objects Integrated into a Freeform Electronic
Whiteboard," In Proceedings of 1998 ACM SIGGRAPH Symposium on
User Interface Software and Technology, 175-184.

81

[BN96] Brown, Marc H. and Najork, Marc A. "Collaborative Active Textbooks: A
Web-Based Algorithm Animation System for an Electronic Classroom," In
1996 IEEE Symposium on Visual Languages, 266-275.

[Mic96] Michail, Amir. "Teaching Binary Tree Algorithms through Visual
Programming," In 1996 IEEE Symposium on Visual Languages, 38-45.

[AutSS] Myers, Brad A., Chandhok, Ravinder, and Sareen, Atul. Automatic Data
Visualization for Novice Pascal Programmers, In Proceedings of 1988
IEEE Workshop on Visual Languages (Pittsburg, PA, Oct. 10-12), IEEE
Computer Society Press, 192-198.

[Mye83] Myers, Brad A. "Incense: A System for Display Data Structures," In
Proceedings of 1983 SIGGRAPH Conference (Detroit, MI, July), ACM
Computer Graphics Vol. 17 No. 3,115-125.

[MCW96] McWhirter, Jefferey D. "AlgorithmExplorer: A Student Centered Algorithm
Animation System," In Proceedings of 1996 IEEE Workshop on Visual
Languages (Boulder, CO, Sept. 3-6), IEEE Computer Society Press, 174-
181.

[Hos96] Hosking, John G. "Visuahzation of Object Oriented Program Execution,"
In Proceedings of 1996 IEEE Workshop on Visual Languages (Boulder,
CO, Sept. 3 6), IEEE Computer Society Press, 190-191.

[SC95] Steinman, Scott B., and Carver, Kevin G.Visual Programming with
Prograph CPX, Manning Publications Company, Greenwich, CN, 1995.

[Bor81] Boming, Alan. "The Programming Language Aspects of ThingLab; a
Constraint-Oriented Simulation Laboratory," In ACM Transactions on
Programming Languages and Systems, October 1981, Vol. 3, No. 4, 353-
387.

[Bor86] Boming, Alan. "Defining Constraints Graphically," from 1986 Proceedings
of SIGCHI, In Human Factors in Computing Systems, 137-143.

[Alx87] Kozen, Dexter, Teitelbaum, Tim, Chen, Wilfred, Field, John, Pugh,
Wilham, and Vander Zanden, Brad. "ALEX - an Alexical Programming
Language," In Proceedings of 1987 Workshop on Visual Languages
(Linkoping, Sweden, Aug. 19-21), 315-329.

[Erw91] Erwig, Martin. "DEAL - A Language for Depicting Algorithms," In
Proceedings of 1991 IEEE Workshop on Visual Languages (St. Louis,
MO, Oct. 4-7), IEEE Computer Society Press, 184-185.

[B A94] Bumett, M. and Ambler, A. Interactive Visual Data Abstraction in a
Declarative Visual Programming Language. Joumal of Visual Languages
and Computing, March 1994, 29-60.

[Mau89] Maulsby, David L. and Witten, Ian H. "Inducing Procedures in a Direct-
Manipulation Environment," from 1989 Proceedings of SIGCHI, In
Human Factors in Computing Systems, 57-62.

82

DVIet89] Maulsby, David L., Witten, Ian H., and Kittlitz, Kenneth A. "Metamouse:
Specifying Graphical Procedures by Example," In 1989 Proceedings
SIGGRAPH, Vol. 23, No. 3, 127-136.

[Cyp91] Cypher, Allen. "EAGER: Programming Repetitive Tasks by Example,"
from 1991 Proceedings of SIGCHI, In Human Factors in Computing
Systems, 33-39.

[Mye91] Myers, Brad A. "Text Formatting by Demonstration," from 1991
Proceedings of SIGCHI, In Human Factors in Computing Systems, 251-
256.

[Kur92] Kurlander, David and Feiner, Steven. "A History-Based Macro By
Example System," from 1992 Proceedings of UIST, In ACM SIGGRAPH
Symposium on User Interface Software and Technology, 99-106.

[CS95] Cypher, Allen and Smith, David C. "KidSim: End User Programming of
Simulations". In Proceedings of CHI, 1995 (Denver, May 7-11). ACM,
New York, 1995, 27-34.

[BL93] Bell, Brigham and Lewis, Clayton. "ChemTrains: A Language for Creating
Behaving Pictures," In 1993 IEEE Symposium on Visual Languages. TERR
Computer Society, Bergen, Norway, August 1993, 188-195.

[MG92] Mclntyre, David E. and Glinert, Ephraim P. "Visual Tools for Generating
Iconic Programming Environments." In Proceedings of IEEE Computer
Society Workshop on Visual Languages, 1992, 162-168.

[RS95] Repenning, A. and T. Sumner. "Agentsheets: A Medium for Creating
Domain-Oriented Visual Languages." IEEE Computer, January 1995, Vol.
28 No. 1, 17-25.

[Lel88] Leler, W. Constraint Programming Languages: Their Specification and
Generation, Addison-Wesley Publishing Company, Inc., 1988.

[Der90] Dershowitz, N. and Jouannaud, J. P. Handbook of Theoretical Computer
Science. Elsevier, Amsterdam, 1990.

[Klo92] Klop, J. W. Handbook of Logic in Computer Science, Vol. 2. Oxford
University Press, New York, NY, 1992.

[Wad71] Wadsworth, C. P. "Semantics and pragmatics of the lambda-calculus," PhD
dissertation. University of Oxford, Oxford, England, 1971.

83

VITA

David R. Brown was bom in Lee County, Virginia on January, 29,1961. He grew up in

Elizabethton and Bristol, Tennessee where he graduated from Tennessee High School in

1979.

David received his Bachelor of Science degree in Computer Science from East Tennessee

State University (ETSU) in Johnson City, TN in 1983. He then worked for North

American Phillips Consumer Electronics Corporation in Greeneville, TN and Knoxville,

TN until September, 1984 when he accepted a position with Martin-Marietta Energy

Systems Corporation in Oak Ridge, TN. David worked for Martin-Marietta (and later for

Lockheed-Martin) in Oak Ridge until January 1997. During this time he developed IBM

mainframe manufacturing applications at the Y-12 manufacturing facility, DEC VAX,

Macintosh and Windows applications at Oak Ridge National Laboratory, and HTML/CGI

Oracle applications for the K-25 plant.

David continued his education and in 1989, he completed his Master of Science degree in

Computer Science at the University of Tennessee. His thesis topic was "Computer Vims

Construction, Proliferation, and Control." He began work on his Doctor of Philosophy

degree in Computer Science in 1993, and this dissertation represents the conclusion of his

Ph.D. program.

David left Lockheed-Martin in 1997 and worked as a Teaching Assistant and later as a

Research Assistant at the University of Tennessee until August of 1998 when he accepted a

teaching position at Pellissippi State Technical Community College (P^TCC). He is now a

full-time Computer Science Technology Instractor at PSTCC.

84

	The algorithm designer project : a visual programming environment for data structure demonstration
	Recommended Citation

	The algorithm designer project : a visual programming environment for data structure demonstration

