
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Masters Theses Graduate School 

12-1999 

Level search schemes for scalable information retrieval Level search schemes for scalable information retrieval 

Xiaoyan Zhang 

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes 

Recommended Citation Recommended Citation 
Zhang, Xiaoyan, "Level search schemes for scalable information retrieval. " Master's Thesis, University of 
Tennessee, 1999. 
https://trace.tennessee.edu/utk_gradthes/10062 

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: 
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F10062&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a thesis written by Xiaoyan Zhang entitled "Level search schemes for 

scalable information retrieval." I have examined the final electronic copy of this thesis for form 

and content and recommend that it be accepted in partial fulfillment of the requirements for the 

degree of Master of Science, with a major in Computer Science. 

Michael W. Berry, Major Professor 

We have read this thesis and recommend its acceptance: 

Padma Raghavan, Peiling Wang 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



To the Graduate Council:

I  am submitting herewith a thesis written by Xiaoyan Zhang entitled "Level
Search Schemes for Scalable Information Retrieval". I have examined the final

copy of this thesis for form and content and recommended that it be accepted in
partial fulfillment of the requirements for the degree of Master of Science, with a
major in Computer Science.

yyucAu ij-
Michael W. Berry} MajonProfessor

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Associate Vice Chancellor and

Dean of the Graduate School



Level Search Schemes

For Scalable Information Retrieval

A Thesis

Presented For

The Master of Science

Degree

The University of Tennessee, Knoxville

Xiaoyan Zhang

December, 1999



Acknowledgement

I would like to thank my major professor Dr. Michael Berry for his support and

guidance throughout this research. I would also like to thank Dr. Padma

Raghavan and Dr. Railing Wang for being my committee members and their

insightful comments and suggestions.

Support for this research was provided by the National Automotive Center under

subcontract number 99732-PA-T60 with Lockheed Martin Energy Systems.



Abstract

Latent Semantic Indexing (LSI) has been demonstrated to outperform lexical

matching in information retrieval. However, the enormous cost associated with

the Singular Value Decomposition (SVD) of the large term-by-document matrix

becomes a barrier for its application to scalable information retrieval. This thesis

shows that information filtering using level search techniques can reduce the

SVD computation cost for LSI. For each query, level search extracts a much

smaller subset of the original term-by-document matrix with an average of 25% of

the original non-zero entries. When LSI is applied to such subsets, the average

precision only degrades by 5% due to level search filtering; however, for some

document collections an increase in precision has been observed. Level search

techniques are enhanced by a pruning scheme that deletes terms connected to

only one document from the query-specific submatrix. An average 65% reduction

in the number of non-zeros has been observed with a precision loss of 5% for

most collections.
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Chapter 1

Introduction

Latent Semantic Indexing (LSI) is a concept-based textual retrieval method

initially developed by Deenwester et at. in 1991 [1][2][3]. It tries to overcome the

problems of lexical matching by using statistically derived conceptual indices

instead of individual words for retrieval. The bulk of LSI processing time is spent

in computing the truncated SVD of the large sparse term-by-document matrices

[4]. This thesis demonstrates a graph-based approach (level search) as an

information filtering step for LSI. Level search greatly reduces the cost of SVD for

LSI by extracting much smaller subsets from the initial term-by-document matrix

for each query. The rest of this chapter will provide an overview of LSI,

information filtering technology, and some basics of graph theory.

1.1 LatentSemanticlndexing (LSI)

In the traditional vector space model of information retrieval [5], both terms and

documents are encoded as the vectors in a /r-dimensional space. The choice of k

can be based on the number of unique terms or concepts associated with the

collection [6]. Normally, a value (weighting) is assigned to a component reflecting

the importance of a term or concept in representing the semantics of the

corresponding document. Efficiency in indexing via vector space modeling

requires special encodings for terms and documents in a text collection. The



encoding of term-by-document matrices for lower dimensional vector spaces

using either continuous or discrete matrix decompositions are required for LSI-

based indexing [6]. Different from lexical matching, LSI uses the Singular Value

Decomposition (SVD) from linear algebra to uncover underlying associations

among terms and documents for a semantic or conceptual subspace. LSI has

been demonstrated to be 30% more effective than popular word-matching

methods in producing a high number of relevant documents (recall) [3]. It is

especially beneficial when: a) text descriptions are short; b) user queries or text

are noisy (spanning across multiple semantic spaces) or c) cross language

retrieval without the need for direct translation [5]. The LSI procedure can be

categorized into 3 steps: matrix construction, SVD, and query matching.

1.1.1 Matrix Construction

A document collection is first processed using a stoplist to remove common

words. From a data compression viewpoint, the stoplist eliminates the need to

handle unnecessary words and thereby reduces the amount of time and space

required to build searchable data structures [6]. A document collection with n

documents and m indexable terms can be represented as an m x /? term-by-

document matrix M. Each column of the matrix M can be considered as a

document vector and similarly each row can be considered as a term vector. The

matrix element Mg denotes the frequency in which term / occurs in document j [1].

The matrix M is usually sparse since each term does not appear in every

document. In practice, local and global weightings are applied [8] to each matrix

element in order to model the importance of terms both within and across the

documents. Hence, the element Mij can be written as

Mij = L{i,j)xG{i), (1-1)



where L (/, j) is the local weighting for term / in document j, and G (/) is the global

weighting for term /. Note that local weighting applies to a term in a specific

document, and is therefore document specific. However, the global weighting of

a term is constant for all documents. For simplicity, the global weighting can be

set to 1.0 so that only the local frequency is used to define each matrix element.

The matrix construction technique discussed in Section 2.1 is based on this

simplicity.

Since a term-by-document matrix is typically large and sparse, only non-zero

values are stored using formats such as compressed Row Storage (CRS) and

Compressed Column Storage (CCS) [9]. The CCS format, also known as the

Harwell-Boeing format [10], uses a row index array, a column pointer array and a

value array to record the location and value of each non-zero element. All sparse

matrices used in this study are stored in the Hanvell-Boeing format.

1.1.2 Singular Value Decomposition (SVD)

The dominant computational step of LSI is to factor the term-by-document matrix

into a product of 3 matrices using the SVD. As shown in Figure 1.1, the SVD

breaks down the original matrix into the orthogonal matrices U and V containing

left and right singular vectors of M, and the diagonal matrix 2" of singular values of

M. Note each column (vector) of U and V is linearly independent. Let Mk denote

the best rank-/f approximation to matrix M. Then, the use of k factors (or the k-

largest triplets) of M is equivalent to approximating the original term-by-document

matrix by Mk. In Figure 1-1, singular vectors defined by the columns of U and V

are considered as term and document vectors, respectively. The shaded regions

in U (Ui^ and V (Vk) and the diagonal elements in 2 C2y represent the low rank

approximation of M by Mk.

Although the SVD is an essential part of the LSI process, it does incur a



Mk - Best rank-/f approximation to M

(y = {Ui, U2 Urn} (Term Vectors)
1= diag{ai, 02,..., on} (Singular Values)
V= {Vi, V2,.... Vn} (Document Vectors)

m = number of terms

n = number of documents

k = number of factors

r= rank of M

Term

Vectors

Document

Vectors

U

mx n mxr rxr rx n

Figure 1-1: Mathematical representation of the matrix Mk [1].

significant computational cost [11][12]. In general, the cost of computing the SVD

of a sparse matrix M can be expressed as

/X cost {M^Mx) + kx cost {Mx), (1-2)

where / is the number of iterations required by a Lanczos-type procedure [10] to

approximate the eigensystem of and k is the number of computed singular

values and their corresponding left and right singular vectors. In general, the cost

of the SVD is directly proportional to the number of non-zero entries in the sparse

matrix M.

1.1.3 Query Matching

A user's query must be represented in the k-dimensional semantic space and

compared to documents for the purpose of information retrieval. Like any

document, a query is composed of a set of words. After removing common words



(stoplist, see Section 1.1.1) such as "a", "the" and "or" from the query, a vector q

= {cfi, q2, Qm) can be defined, where each element q,- is the frequency of the

/-th term in the query. The projected query q can then be represented in a k-

dimensional space by

q=q^ak2k-^ (1-3)

The sum of the corresponding /c-dimensional term vectors is reflected in the q^Uk

term so that right multiplication by 2k'^ differentially weights each dimension.
A

Thus, the projected query vector q is located at the weighted sum of its

constituent term vectors, and can then be compared to all document vectors

using some similarity measure. The cosine between the query vector and the

document vectors is certainly one common similarity measure that can be used

to rank all documents with respect to the query. Typically, documents with cosine

values greater than a certain threshold are returned to the user [3]:

Having described the mechanics of LSI modeling, the following section

introduces the concept of information filtering which can be used to reduce the

computational burden of LSI.

1.2 Information Filtering

According to Korfhage [13], one problem associated with large, full-text database

searching is that most searches are more likely to return a large volume of

documents, some of which are irrelevant. The primary reason is that when full

text documents are used instead of much shorter document surrogates, there is

an increased chance of word co-occurrence in a non-relevant document.



Information filtering is one possible remedy for this problem. It relies on relatively

inexpensive techniques to quickly eliminate large segments of a collection from

consideration. Then, a relatively more expensive method can be applied to

further process the filtered database and achieve satisfactory performance

[14][15]. Although filtering is closely related to information retrieval [17], the goal

is not to determine a specific document set to be retrieved. Rather, the goal is to

produce a relatively small set containing a high portion of relevant documents.

Thus, either a more precise method could be applied to identify the relevant

documents, or the user can browse through the set to locate interesting

documents. In both ways, the amount of effort required for filtering can be

significantly less than that required for retrieval directly from the original large

document collection [13]. For example, suppose that retrieval from a set of n

documents requires steps and filtering requires only n steps for a collection of

10,000 documents. While direct retrieval from this set would require 10,000^

steps, filtering down to a set of 1000 documents (10% of the original collection)

followed by retrieval from this smaller set would only require 10,000 + 1000^ =

1,010,000 steps. The next sections will discuss two common information filtering

techniques.

1.2.1 User Profiling

User-based information can be exploited to assist effective filtering. One popular

method is to maintain user's profile and use it for document routing and delivery.

A user's profile [13] typically contains information specific to each user, such as

the user's profession, age, education, personal interests, etc. Since this type of

information is relatively stable, the new documents are constantly received and

matched against the standing interests.

LSI has shown promising results with user's profiles in information filtering. An

initial sample of documents can be analyzed using standard LSI/SVD tools as will



be discussed in Chapter 2 [18]. A user's interest is represented as one (or more)

vector(s) in the reduced dimension LSI subspace so that each new document

can be matched against the profile vector(s). Documents that are judged similar

to the profile are recommended to the user. Different methods of representing a

user's profile have been reported [18][19] and the results are quite promising.

1.2.2 Passage Retrieval

The concept of passage retrieval is closely related to information filtering. Here,

the goal is not to quickly eliminate a large portion of a collection, but to identify

those passages (or documents) closely related to a given query within a broad

document such as encyclopedia [13]. Research efforts have been made in this

particular area. Hearst and Flaunt [20] have developed a method called "Text

tiling" with a visual interface called "TileBars". This method displays the finer

levels (section, paragraph) of each document the extent to which the document

relates to the query. Salton and Allan [21] have developed a different display that

arranges documents as arcs around an ellipse, with lines joining the documents

to show use of the query terms. Much of passage retrieval research is based on

the differential analysis of the key terms in a document. If term A appears in the

query and frequently occurs in a portion Di within document D, then Di is

returned instead of document D. The remainder of the document D is either

discarded or held until the user decides to view it.

In summary, various approaches can be used to implement information filtering.

The approach taken in this thesis (level search) applies graph theoretic

techniques for information filtering. The following section will introduce some

basic concepts of graph theory.



1.3 Graph Theory

An undirected graph G = (V, E) consists of a set of vertices V and a set of edges

E. Each edge in E is an unordered pair of vertices, while in a directed graph it is

an ordered pair. Hereafter an undirected graph will be referred as a graph.

Vertices v and w are adjacent if {v, w) is an edge. A path is a sequence of

vertices v^, V2,..., Vn such that (Vj, Vi+i) is an edge for 1 < / < n [22]. A path is

simple, if all vertices on the path are distinct, with the exception that v^ and Vn

may be the same. The length of a path is n-1, the number of edges along the

path. A subgraph of G = {V, E) is a graph G ' = {V, E ') where V is a subset of

V, and E' consists of edges (v, w) in E such that both v and w are in V '. Figure

1-3 illustrates a subgraph of the graph G shown in Figure 1-2.

Figure 1-2: A graph G = {V, E).



Figure 1-3: A subgraph G'= {V, E') of graph G.

Two systematic traversal patterns referred to as depth-first search and breadth-

first search are used to visit the vertices of a graph. Breadth first search, also

known as level search, is used in this thesis to implement information filtering

strategies.

In breadth first search, searches are conducted as broadly as possible by visiting

all the vertices adjacent to an arbitrary vertex v. The algorithm for breadth-first

search (bfs) can be illustrated as follows:

List = V, an arbitrary vertex.

Repeat bfs(list)

S 6 head (list)

Mark S as visited

For each x adjacent to S

Mark x as visited

Append x to list, until the list is empty.

Figure 1-4 shows the breadth-first search for the graph G in Figure 1-2. The dash

lines in Figure 1-4 represent the edges connecting two vertices neither of which

is an ancestor of the other.



How level search applies graph theory as an information filtering tool for LSI is

explained in the following chapter. In Chapter 3, level search is applied as a

filtering method for Latent Semantic Indexing (LSI) and the results are compared

to traditional LSI. Finally, a case study on a large text collection is presented

before conclusions and suggestions for future work are presented in Chapter 4.

b r

Figure 1-4: Breadth-first search for graph G=(V, E) in Figure 1-2.
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Chapter 2

Level Search Technique

Level search is a graph-based IR model, where each query term and each

document is represented as the vertices of an undirected graph. Weightings are

assigned to the edges of the graph so that documents with higher weighting

values (than a certain threshold) are selected as relevant documents to the

query. Through the use of weighting schemes, level search can be categorized

into simple level search and advanced level search.

2.1 Simple Level Search

To illustrate the simple level search algorithm, consider a small document title

collection composed of 5 documents and 10 terms (see Figure 2-1). Although

not necessary for this example, a stemming technique [13] could be used when

parsing terms for each document. Words with the same root could be considered

as the same term.

A transposed 10x5 term-by-document matrix A - [a,y] can be constructed as

follows, where each element a,y is the number of times term / appears in

document titley:

11



Terms Documents

T1: Infant

T2: Toddler

T3: Food

74; Recipes

75: Healthy

76: Cookbooks

77: Baby

78: Diet

79: Vegetarian

710: Italian

D1: Infant/Toddler Food, Cookbooks & Recipes

D2: Vegetarian Recipes

D3: Italian Food

D4: Healthy Diet

□5: Super Baby Food

Figure 2-1: Document and term listing for a sample document title
collection.

71 72 73 74 75 76 77 78 79 710

D1 1 1 1 1 0 1 0 0 0 0

D2 0 0 0 1 0 0 0 0 1 0

D3 0 0 1 0 0 0 0 0 0 1

D4 0 0 0 0 1 0 0 1 0 0

D5 0 0 1 0 0 0 1 0 0 0

Since this term-by-document matrix is constructed directly from the document

collection, it is denoted as the "initial matrix" throughout the following chapters.

Given the query "infant food", a vector q (not the projected query vector q as in

Equation 1-3) can be formed based on the terms:

q= [1 0 1 0 0 0 0 0 0],

12



where each element q,- denotes the frequency of the i-Xh term in the query. As

Figure 2-2 illustrates, level search builds a graph from the query vector using

breadth-first search (Section 1.3).

Leve =1

Query

T1

Level=2

Documents

Leve =3

Terms

Level=4

Documents

D2D1 T2

T3 D3 T4

T6
D5

TlO

T7

Figure 2-2: Graph construction for query "infant food" in a sample

document title collection using simple level search.

As illustrated in Figure 2-2, the query "infant food" (composed of terms T1 and

73) defines level 1. The second level is composed of all the documents that

contain terms T1 and T3, which are 01, 03, and 05. The third level is formed by

a list of terms that appear in documents D1, D3, and D5. Each term can only

appear in the level it is first visited (searched). Likewise, the fourth level contains

all the documents that have the terms listed in level 3, which have not previously

been selected. In a global sense, level search exploits the path from a query to

its related documents as a process to categorize the documents and terms from

the initial matrix into level clusters. Each odd level is a group of terms and each

even level is a group of documents. Three documents are found to be relevant to

13



the query at level 2 while at level 4 a total of four documents (D2 plus documents

at level 2) are found. A new term-by-document matrix can be constructed for this

query at any document level. At level 2, for example, terms T1 and T3 are only

associated with three documents D1, D3 and D5, hence a term-by-document

matrix A = [a,j] for the query "infant food' at level 2 can be constructed as:

D1 D3 D5

T1 1 0 0

A = T3 1 1 1.

This 2 by 3 query-specific term-by-document matrix is a subset of the initial 10 by

5 term-by-document matrix. In other words, a new query such as "healthy food"

would produce a different submatrix:

D1 D3 D4 D5

T3 1 1 0 1

B = T5 0 0 1 0.

Since the cost of SVD computation is closely related to the non-zero entries in

the sparse matrix (Section 1.1.2, Equation 1-2), the ratio of non-zero entries in

the submatrix to the original term-by-document matrix can be used to estimate

the SVD cost reduction. The row and column reduction will also be calculated.

For simplicity, the term submatrix size will be used as a general reference to the

number of rows, columns and non-zero entries of a submatrix. Before presenting

the results, the experimental methodology will be discussed.

2.2 Experimental Methodology

The document collections used in this thesis constitute standard benchmark

collections. Each test collection consists of a document set, a collection of

14



queries, and the "correct answers", that is, a list of relevant documents for each

query. MEDLINE is a collection of medical abstracts; CISI is a collection of library

science abstracts; TIME is a collection of news abstracts from TIME magazine.

The FBIS collection is a subcollection of the TREC-5 [25] FBIS (Foreign Bureau

Information Service) test set, which is obtained by exploiting available relevance

judgements so that each selected document in the subcollection is relevant to at

least one query. Note that relevance judgement in this research is provided by

the same human being. Some of the characteristics of the collections are

presented in Table 2-1.

Table 2-1: Some characteristics of the document collections.

Parameter MEDLINE CISI TIME FBIS

Number of Documents 1033 1460 425 4625

Number of Terms 5831 5609 10804 42500

Number of Non-zeros (matrix) 52009 68240 83602 1573306

Number of Queries 30 112 82 43

Avg. No of Documents/Term 8.92 12.17 7.74 37.02

Avg. No of Terms/Document 50.35 46.74 196.71 316.31

Density (%) 0.86 0.83 1.82 0.74

Avg. No of Terms/Query 10.27 21.76 7.80 39

Avg. Weighting/Term 0.58 0.46 0.50 0.40

Density (%): the percentage of non-zero entries in the matrix.

As shown in Table 2-1, all the term-by-document matrices are quite sparse

(around 1% dense). Both MEDLINE and CISI collections have approximately 50

terms per document, while TIME and FBIS collections have over 200 terms per

document (an indication of heterogeneity). Most queries are reasonably specific

as they each contain approximately 20 terms [23]. The FBIS queries contain a

higher number of terms because they are chosen from TREC routing topics (as

opposed to adhoc topics) for that collection.

15



The complete testing procedure for level search and LSI is described in Appendix

A. The performance measures used to evaluate document retrieval are

discussed in the following sections.

Performance Measures

Recall and precision are two standard IR performance measures [7]. The recall

(or recall ratio) R for the level search method is defined as

(2-2)

where Dr is the number of relevant documents retrieved and Nr is the total

number of relevant documents in the collection for a certain query.

The precision (or precision ratio) of level search method is defined as

P-.°L
Of

where Dr is the same numerator from Equation (2-2) and Dt is the total number of

documents retrieved.

Average Precision

The 11-point interpolated precision is also used in the IR community to assess

retrieval performance [24]. However, the use of this measure requires a proper

document-ranking scheme. Since level search does not provide such ranking,

the 11-point interpolated average precision is only used for LSI performance

measurements.

16



Assume that for each query there is an ordered document list based on how

closely each document relates to the query. Let a) denote the number of relevant

documents up to and including position / in the ordered list. A pair of values

(recall and precision) are computed for each document in the list. The recall of

the /-th document is the proportion of relevant documents returned so far, that is,

R — —

Here, rn is the total number of relevant documents returned so far. The precision

of the /-th document, P,, is the proportion of documents returned so far that are

relevant and is defined by

P=^
^ r

where / is the number of documents returned. If the pseudo-precision at recall

level X (x e [0, 1]) is defined as

P (x) = max {Pi I Ri > (x ♦ r„), i=1 n),

then the N-point interpolated average precision for a single query is defined as

W-1

p =—Yp[-^]-
NU A/-1

The 11-point interpolated average precision is used for LSI performance

assessment at several recall levels (0, 0.1, 0.2, 0.3,...,1.0). For each data

collection, the mean 11-point average precision is computed by averaging the

precision across all queries.

17



Precision Improvement

When evaluating the precision obtained by LSI (with and without level search), a

relative criterion is needed. Here, precision improvement (PI) is defined as the

average precision increase obtained by LSI due to filtering, i.e.,

(Precision of LSI with level search / pruning) - (precision of LSI)

(Precision of LSI)

Therefore, a precision improvement of "-0.20" suggests the precision of LSI

decreases by 20% after applying level search or pruning. A precision

improvement of "+0.20" suggests the precision of LSI increases by 20% after

applying level search or pruning.

2.3 Simple Level Search Results

Simple level search has been applied to the MEDLINE, CISI and TIME data sets.

Table 2-2 shows the average submatrix size, recall, and precision across all

queries at level 2 and level 4. Generally speaking, all three data collections show

a high recall at near 80% but relatively low precision (less than 20%) at level 2.

At level 4, level search simply retrieves the whole document set (ratio of non-zero

entries at 100%) with precision less than 3%. This behavior can be explained by

taking a further look at the level search algorithm. At any document level, a group

of documents related to the query can be collected. As level search traverses

more levels, additional documents will be added. Since each document contains

at least one term and each term can be found in at least one document,

eventually level search will return all documents in the collection. In these

experiments, level search reaches its saturation point at level 4, which suggests

a rich connectivity among the documents. As presented in Section 2.2, the

average document size (number of terms per document) for MEDLINE, CISI and

TIME are 50, 47, and 197, respectively. Documents containing a higher number
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of teims tend to have more common terms with other documents, and therefore

have a better chance of being retrieved at lower numbered levels.

For comparison purposes, tests on the same data sets using LSI produced the

average precisions of 65.68%, 24.33%, 39.79% for MEDLINE, CISI, and TIME,

respectively.

Table 2-2: The average submatrix size, recall, and precision obtained by

simple level search at levels 2 and 4 for the MEDLINE, CISI and TIME data

sets.

Parameter MEDLINE CISI TIME

Level=2 Level=4 Level=2 Level=4 Level=2 Level=4

No. of Docs 256 1033 827 1460 183 425

(% of original) 24.78 100 56.64 100 43.06 100

No. of Terms 3685 5831 4967 5609 9239 10804

(% of original) 63.20 100 88.55 100 85.51 100

No. of Non-zeros 14472 52009 41077 68240 43197 83602

(% of original) 27.83 100 60.19 100 51.67 100

Recall (%) 85.74 100 81.81 100 81 100

Precision (%) 13.31 2.25 4.71 2.78 2.18 0.92

The best precision values obtained for MEDLINE, CISI and TIME using simple

level search are 13.31%, 4.71% and 2.18%, respectively. Obviously, they are

significantly lower than the 11-point interpolated average precision values

obtained through LSI. This observation indicates that simple level search alone

offers no improvement in retrieval precision. However, there are still various

parameters to be tested in level search. Based on data in Table 2-2, it appears

that the submatrix size, recall, and precision are somewhat inter-correlated. As

the submatrix increases to the original matrix size, the recall also increments

towards 100%. Unfortunately, it is not desirable to sacrifice the submatrix size to

gain recall. In this case, weightings are added to terms or documents to further
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identify relevant documents in a relatively small subset. This simple level search

plus weighting technique is denoted as advanced level search and will be

discussed in the next section.

2.4 Advanced Level Search

In this section, the average submatrix size, recall, and precision results for the

MEDLINE, CISI and TIME collections after applying four different weighting

strategies will be presented. In general, weightings are applied to either the term

levels or the document levels. For each weighting strategy, a threshold value is

chosen as the mean, median of the document/term weightings at the same level,

or a fixed constant such as 0.5 and 0.75. Only documents/terms with weightings

greater than the threshold will be used to generate the next level. In other words,

those with weightings less than the threshold will be deleted from the submatrix.

2.4.1 Method 1: Using the Term Global Weightings

A global weighting {G(i) in Equation 1-1) is assigned to each term in any term

level. Term deletion at the term level may occur since the global weighting is only

applied to terms (rather than documents).

The average submatrix size, recall, and precision using the term global

weightings are listed in Table 2-3 and Table 2-4. In general, a factor of 50

reduction in the number of non-zero entries is obtained compared to simple level

search. At level 4, a subset with the ratio of non-zero entries ranging from 40% to

78% of the initial matrix can be obtained while the recall maintains at 100%. The

typical example is the MEDLINE data set, where 0.5 is used as the term

weighting threshold. Compared to the simple level search results for MEDLINE in

Table 2-2, the ratio of non-zero entries is further reduced from 27.8% to 0.18%

with recall decreasing from 85.74% to 69.87%. In other words, each query can
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Table 2-3: The average submatrix size, recall, and precision obtained by

advanced level search with term global weightings at level 2 for the

MEDLINE, CISI and TIME data sets.

N^reshold MEDLINE CISI TIME

(%^V Mean Median 0.5 0.75 Mean Median 0.5 Mean median 0.5

ParameteN

# of Docs - 44 81 77 9 157 304 146 38 79 25

(% of original) 4.26 7.84 7.45 0.87 10.75 20.82 10 8.94 18.59 5.88

# of Terms 5 6 6 3 9 11 10 4 5 3531

(% of original) 0.08 0.10 0.10 0.05 0.16 0.20 0.18 0.04 0.05 32.68

# of Non-zeros 54 99 95 9 176 355 167 50 104 6529

(% of original) 0.10 0.19 0.18 0.02 0.26 0.52 0.24 0.06 0.12 7.81

Recall 51.21 48.47 69.87 15.56 32.09 50.64 32.01 56.22 69.28 29.92

Precision 33.09 21.26 2.25 32.42 9.7 7.08 9.33 6.71 4.5 4.31

Table 2-4: The average submatrix size, recall, and precision obtained by

advanced level search with term global weightings at level 4 for the

MEDLINE, CISI and TIME data sets.

N;^reshold MEDLINE CISI TIME

(%)\. Mean Median 0.5 0.75 Mean Median 0.5 Mean median 0.5

ParameteK

# of Docs 1033 1033 1033 1033 1459 1458 1460 425 425 246

(% of original) 100 100 ■  100 100 99.94 99.86 100 100 100 57.88

# of Terms 2744 2415 4569 3077 2423 2095 3864 5503 5442 9282

(% of original) 47.06 41.42 78.36 52.77 43.20 37.35 68.89 50.93 50.37 85.91

# of Non-zeros 24433 21573 40500 27357 29427 25930 45095 43171 42814 43661

(% of original) 46.98 41.48 77.87 52.60 43.12 38.00 66.08 51.64 51.21 52.22

Recall 100 60.96 100 100 99.97 99.87 100 100 100 47.21

Precision 2.25 1.83 2.25 2.25 2.80 2.84 2.83 0.92 0.92 0.57
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be used to extract 0.18% of the non-zero entries from the initial term-by-

document matrix and maintain 69.87% of the relevant documents. Such a result

indicates that the threshold usage in submatrix control is promising in terms of

further document extraction. Finally, no precision improvement is observed at

level 4. In fact, when the submatrix size is further reduced, both precision and

recall degrade.

2.4.2 Method 2: Using the Product of Local Frequency and Global

Weighting

Unlike Method 1, Method 2 uses the product of the local term frequency L(i, j)

and the global term weight G(i) as the weighting (see Equation 1-1). Therefore,

they are assigned to the edges of the graph illustrated in Figure 2-3. Deletion in

this case occurs at the document level. For multiple terms referring to the same

document as 01 at level 2, the norm of the two weightings are assigned to 01,

/.e, (0.872+0.472)°® = 0.76.

Term level =1 Doc level -2 Term level =3 Doc level =4

87 54
D1T1 D4T3

76 54

0.47

T4D2
T2 D5

6969
76

0.51
T5D3 D6

o;5i 85

0.66

D7

0.66

Figure 2-3: Level search structure using the product of local frequency and

global weighting as weighting in advanced level search.

Note: circles with shadows are documents that are deleted from the submatrix.
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The statistical results are presented in Table 2-5 and Table 2-6. For three

document collections tested, this method tends to produce a consistent recall

and precision across collections. At level 2, a high recall (~50%) is obtained for

both of the CISI and TIME collections compared to Method 1 (~30%), where only

term global weightings are used. However, the submatrix size is significantly

larger than that generated by Method 1. Also notice that as level search goes

deeper to level 4, the recall decreases. Such recall loss might be explained by

the fact that when a more stringent criterion is applied to remove the irrelevant

documents, some relevant documents are also deleted. There's a tradeoff

between the submatrix size reduction and the recall loss. These two parameters

are not independent of each other.

2.4.3 Method 3: Using Weightings in the Query Vector only

Method 3 is relatively simple. Weightings are only assigned to the terms in the

query vector. The documents and terms in levels 2, 3, 4, ... are considered to be

the family members of a term in the query vector as long as there is a path to

such a term. Thus, those documents/terms inherit the same original weighting

with such term. However, the document weighting does accumulate as more

than, one term appears in the same document. For example, assuming the query

vector contains two terms with global weightings of 0.87 and 0.47, respectively, a

document at level 2 which contains both of the two terms will have a weighting of

0.87+0.47 = 1.34.

Deletion occurs at each document level, and the threshold used is the mean and

median weighting. The statistical results are listed in Table 2-7 and Table 2-8.

Compared to Method 2, this method produces almost the same submatrix size

and recall for each collection.
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Table 2-5: The average submatrix size, recall and precision at level 2 for the

MEDLINE, CISI and TIME data sets using the product of global weighting

and local frequency as weighting in advanced level search.

—^Chreshold MEDLINE CISI TIME

ParameteipS)--^,^^^^ Mean Median mean Median Mean Median

# of Docs 79 128 460 412 72 91

(% of original) 7.65 12.39 31.51 28.21 16.94 21.41

# of Terms 2033 2664 3687 4047 6650 7569

(% of original) 34.87 45.69 65.74 72.15 61.55 70.06

# of Non-zeros 4601 7348 23846 21778 20780 24812

(% of original) 8.84 14.12 34.94 31.91 24.85 29.68

Recall 55.38 68.5 57.74 59.08 72.43 74.44

Precision 22.25 18.3 8.61 6.16 6.96 4.04

Table 2-6: The average submatrix size, recall and precision at level 4 for the

MEDLINE, CISI and TIME data sets using the product of global weighting

and local frequency in advanced level search technique.

"^^Tlireshold MEDLINE CISI TIME

Parameter(?S)^^^ Mean Median mean Median Mean Median

# of Docs 474 517 66 61 188 202

(% of original) 45.88 50.04 45.1 41.1 100 47.53

# of Terms 5416 5500 5119 5002 9442 9521

(% of original) 92.88 94.32 91.27 89.18 87.23 87.97

# of Non-zeros 30581 32799 41829 40980 46566 47100

(% of original) 58.80 63.06 61.3 60.05 55.70 56.34

Recall 43.13 46.23 45.44 54.29 49.13 54.22

Precision 2.11 2.06 2.99 2.99 1.08 1.05
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Table 2-7: The average submatrix size, recall, and precision obtained by

advanced level search with weightings in the query vector only at level 2

for the MEDLINE, CISI and TIME data sets.

"■"■'^CjTreshold MEDLINE CISI TIME

Parameter(?S7^^^ Mean Median Mean Median Mean Median

# of Docs 76 155 313 493 65 115

(% of original) 7.36 15.00 21.44 33.77 15.29 27.06

# of Terms 1893 2900 3595 4370 6683 8139

(% of original) 32.46 49.74 64.09 77.91 61.86 75.33

# of Non-zeros 4485 8791 17166 25982 19006 29685

(% of original) 8.62 16.90 25.15 38.07 22.74 35.51

Recall 64.59 81.9 55.11 68.84 69.43 76.92

Precision 27.25 18.7 7.4 5.83 5.92 3.22

Table 2-8: The average submatrix size, recall, and precision obtained by
advanced level search with weightings in the query vector only at level 4

for the MEDLINE, CISI and TIME data sets.

^-Hjreshold MEDLINE CISI TIME

Parameter Mean Median Mean Median Mean Median

# of Docs 461 519 666 733 167 215

(% of original) 44.63 50.24 45.62 50.20 39.29 50.59

# of Terms 5348 5473 5106 5212 10111 10444

(% of original) 91.72 93.86 91.03 92.92 93.58 96.67

# of Non-zeros 30703 33584 39564 42629 50295 59030

(% of original) 59.03 64.57 57.98 62.47 60.16 70.61

Recall 59 63.26 55.91 59.84 54.03 65.59

Precision 3.0 2.83 3.47 3.40 1.38 1.28
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2.4.4 Method 4: Using Local Frequency Only

In this approach, only the local frequency of each term-document association

(L(/, J), see Equation 1-1) is assigned to the edges of the graph. Deletion occurs

at the document levels and for documents containing more than one term from

the previous level, the norm of the weightings is assigned as described in Method

2. Here, only results for the MEDLINE data set (Table 2-9) are presented since

no significant change has been observed for the other data collections.

Table 2-9: The average submatrix size, recall, and precision obtained by

advanced level search using local frequencies as weighting at level 2 and

level 4 for MEDLINE.

■^-..^/Threshold Level = 2 Level = 4

Pararnefei^^„^_^ Mean Median Mean Median

# of Docs 75 211 519 1023

(% of original) 7.26 20.42 50.24 99.03

# of Terms 1795 3410 5473 5829

(% of original) 30.78 58.48 93.86 99.97

# of Non-zeros 4440 12027 33584 51711

(% of original) 8.54 23.12 64.57 99.43

Recall 60.84 83.11 63.26 100

Precision 29.14 15.68 2.83 2.27

2.4.5 Summary of Advanced Level Search

By using thresholds combined with various weighting schemes in advanced level

search, a smaller subset of the relevant documents can be extracted from the

initial matrix with a slight loss in the recall. The precision of all tests seems

relatively low compared to the LSI results. Different weighting schemes seem to
have a significant impact on the submatrix size and the recall. The choice of
thresholds, (/.e, whether to use mean, median, or a constant) also has an

important effect. However, there is no general conclusion on which weighting
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scheme and which threshold value would produce the best result for a specific

document collection. Instead, the answer is quite collection specific. Further, it's

observed that the submatrix size, recall, and precision are, to some extent,

correlated to each other. Further reduction in the submatrix size would cause a

corresponding decrease in recall.

2.5 Discussion

Simple level search and advanced level search are both simple IR techniques

compared to vector space models such as LSI. They are both able to selectively

extract a smaller document set with a relatively high recall. The best precision

obtained is relatively low compared to LSI. Such precision performance properly

indicates that level search alone, as an information retrieval technique is not

satisfactory. The difficulties might lie in the fact that the terms and the documents

are so fully connected (in a graph sense) that the further isolation of the relevant

documents becomes harder. Using the proper weighting threshold is a fair

method to differentiate the relevant documents, but it does not provide a

quantitative document-ranking scheme such as the cosine between the query

vector and the document vector used in LSI.

Although the precision is not promising, the fact that level search produces high

recall values (~80%) while being able to reduce the ratio of the non-zero entries

to as low as 0.1% suggests its possible use in information filtering for large

document collections. As discussed early in Section 1.1, LSI involves

complicated matrix SVD computations, which for large data sets could impose a

tremendous cost. Therefore, simple techniques can be applied to reduce the

large collection into a smaller set of potentially retrievable documents. The more

advanced algorithms could then be applied to the smaller subset. The

preprocessing step is intended for high recalls while the second step targets high

precision (see Section 1.2). In the following chapter, the use of level search as an

information filtering technique for LSI is discussed.
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Chapter 3

Level Search for Information Filtering

As previously discussed in Section 1.1.2, the SVD computation for LSI could

impose a high computational cost. The focus of this chapter is to demonstrate the

viability of level search as a filter for LSI and thereby produce a more scalable

indexing method.

Table 3-1 summarizes the submatrix size and recall obtained for level search

applied to the MEDLINE, CISI and TIME collections from Chapter 2. it indicates

that level search is capable of extracting 68% of the relevant documents for a

specific query using as few as 27% of the non-zero entries from the initial term-

by-document matrix. Level search certainly exhibits great potential as an

information filtering technique. However, to determine whether level search

works well as a filter for LSI, further experiments need to be conducted to collect

quantitative data. In the following section, the performance of LSI with level

search filtering will be presented and compared to traditional LSI. For testing

level search with LSI, the best weighting scheme and threshold (see Appendix B)

for each data collection is first chosen based on the results obtained in Chapter

2. Level search then uses those weighting schemes and threshold to generate

the submatrix for each query, which is later qsed as input for LSI. Finally, the 11-

point interpolated average precision, previously defined in Section 2.2, is used for

LSI performance evaluation.
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Table 3-1: The average recall and submatrix size for MEDLINE, TIME and
CISI after level search filtering.

Collection Matrix Size

(Documents x Terms
X Non-zeros)

Average
Recall (%)

% Docs of

original
% Terms of

original
% of Non-zeros

of original

MEDLINE 1033x5831 X 52009 85.74 24.78 63.20 27.83

TIME 425 X 10804 X 68240 69.42 15.29 61.86 22.74

CISI 1469x5609 x 83602 55.11 21.44 64.09 25.16

FBIS 4974X42500X 1573306 82.05 28.52 55.01 52.92

Mean - 67.79 18.15 53.36 27.00

3.1 LSI with Level Search Filtering

LSI with and without level search filtering has been applied to the same data

collections for comparisons in retrieval performance. The precision-recall graphs

for MEDLINE, CISI, TIME, and FBIS obtained by LSI with and without level
/

search are presented in Figures 3-1, 3-2, 3-3, and 3-4, respectively. A summary

of precision-recall data is also available in Table 3-2.

Based on Figures 3-1 and 3-2, some precision loss is observed for MEDLINE

(23%) and CISI (19.5%) at all levels of recall. For the TIME and FBIS collections,

however, the average precision obtained by LSI after level search is significantly

higher (11% higher for TIME, 60% higher for FBIS). The precision-recall graph

for TIME (Figure 3-3) illustrates that the precision increase is consistent at all

recall levels. For the FBIS collection (Figure 3-4), the precision improves more at

lower recall levels than at higher levels, which suggests LSI with level search is

able to retrieve more relevant documents earlier on. The fact that level search

sometimes improves LSI precision might suggest that level search can filter out

poorly relevant documents from the term-by-document matrix relative to a

specified query. Certainly this phenomenon is collection specific as results has

been obtained are different for the other two data sets. From the collection

parameters listed in Table 2-1 (Section 2.2), only the document size, that is, the
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Table 3-2: The average precision obtained by LSI with/without level search
for MEDLINE, CISI, TIME and FBIS.

Data

Recall

(%)

90.9762

78.2460

74.1397

MEDLINE

Level

OII^BI

65:6800

search +

LSI

93.6611

80.6942

77.7925

62.9686

53.9041

40.1698

33.0229

15.6465

7.0652

52.9000

CISI

Level

searc

+ LSI

52.6793 50.3852

17.0897

19.1486 12.3355

15.7981 10.3691

49.5531

49.5531

49.0712

47.4355

44.9857

44.1491

TIME

Level

searc

+ LSI

52.8894

52.8894

52.8894

50.8872

FBIS

Level

searc

+ LSI

45.5038 73.6172

35.4190 59.6553

32.0679 56.9082

EEEaEBEE

8.8735

7.1635

5.0341

4.3468

1.3098 30.6504

47.4862

38.4783

37.3873

36.6801

24.9107

23.2034

20.9865

18.6286

15.1053

7.5532

25;4600

50.7824

46.0793

35.6658

29.6718

21.9396

16.5892

1.1020

average number of terms per document, shows possible correlation to such

retrieval precision. Table 3-3 lists the average document size and the precision

improvement for each data set. The MEDLINE and CISI collections have

relatively low document size and LSI precision does not improve. The FBIS and

TIME collections contain relatively large documents (about 4 times larger) and

their precision by LSI improves by 12% and 60%, respectively. Empirically, this

suggests that the document size might be one indicator of potential LSI precision

improvement due to level search. Larger documents tend to have a higher

percent of redundant terms which can be filtered out by level search.

The submatrix generated by level search is specific to each query for a data set.

Since LSI will be applied to a much smaller submatrix as opposed to the larger

term-by-document matrix, it is not clear if direct manipulation of the submatrix

would help with either further reducing the submatrix size or improving precision.

Therefore, a pruning technique has been applied to each query-specific

submatrix for subsequent LSI modeling. The average precision measurement is

taken and the results are presented in the following sections.



Table 3-3: The average document size and precision improvement for each
document collection.

Collection MEDLINE CISI TIME FBIS

Mean 50.35 46.74 196.71 316.31

Median 47.00 45.00 158.00 187.50

Min 6.00 6.00 30.00 30.00

Max 181.00 171.00 1356.00 5243.00

Precision

Improvement* (%)
-19.50 -23.00 12.00 60.00

* Precision improvement as defined in Section 2.2.

3.2 Level Search with Pruning

Pruning refers to the technique of selectively deleting some edges of a graph. In

this context, pruning deletes terms associated with only one document in the

submatrix obtained by level search. Query terms are not susceptible to such

deletion since they are considered important to the original information need. It is

important to note that pruning does not affect the documents in the submatrix.

Therefore, level search with pruning should produce the same recall but with a

reduced size of submatrix for each query as compared to level search alone. LSI

can then be applied to each query-specific submatrix after pruning and the

average precision can be calculated and compared.

By design, pruning should reduce the size of each query-specific submatrix by

deletion of poorly connected terrns. Table 3-4 illustrates the submatrix size

obtained from level search with and without pruning. It indicates that level search

filtering with pruning further reduces the number of submatrix non-zero entries by

20% for most of the collections. It eliminates the poorly connected terms from the

submatrix obtained by level search. The expectation here is to render level

search as a more cost-effective filtering technique for LSI without significant

precision loss. Table 3-5 presents the average precision obtained by LSI using
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Table 3-4: The average submatrix size obtained by level search (LS)

with/without pruning (P) for MEDLINE, CISI, TIME, and FBIS.

Submatrix MEDLINE CISI TIME FBIS

Size (%)
Symbol LS+P LS LS+P LS LS+P LS LS+P LS
# of Docs 256 256 313 313 64 64 1319 1319

(% of original) 24.78 24.78 21.44 21.44 15.06 15.06 28.52 28.52

# of Terms 1419 3686 1497 3595 2131 6683 23381 37700

(% of original) 24.34 63.21 36.69 64.09 19.72 61.86 55.01 88.70

# of non-zeros 11377 14472 14334 17166 12963 19006 809754 832678

(% of original) 21.88 27.83 21.00 25.15 15.51 22.74 51.47 52.92

Table 3-5: The average precision obtained by LSI with level search and

optional pruning.

Data 1  MEDLINE CISI 1  TIME 1 FBIS

Recall Level Level Level Level Level Level Level Level

search + search + search + search + search + search + search + search +

pruning +
LSI

LSI pruning
+ LSI

LSI pruning
+ LSI

LSI pruning
+ LSI

LSI

0 93.2367 93.6611 51.1761 50.3852 51.8923 73.6172

10 50.6716 59.6553

20 74.0408 77.7925 24.4439 23.8619 ■rf»gkyZlB.-VJ;l;bgl 37.0992 56.9082
30 68.0738 71.3966 17.4823 17.0897 34.6361 54.4102
40 60.6240 62.9686 31.2246 50.7824
50 53.8128 53.9041 10.8110 10.3691 46.7259 47.4862 28.0838 46.0793
60 42.9452 45.5724 6.9562 6.6405 37.8213 ■c!:EW:klK.I.-lcb» 35.6658
70 36.8453 40.1698 3.7395 3.7699 36.7248 29.6718
80 28.1039 33.0229 1.6112 1.3098 12.7787 21.9396
90 16.4562 15.6465 0.8944 0.5169 33.3596 33.9889 8.4002 16.5892

100 6.4178 7.0652 0.5777 0.3252 33.2605 33.9811 1.4476 1.1020
14.78 42.85 |^j,425.82



the pruned submatrix on input. Based on Table 3-5, a slight precision loss (less

than 5%) is observed for the MEDLINE, CISI and TIME. However, for FBIS there

is nearly a 40% average precision loss due to submatrix pruning. Also, pruning

only reduces the number of submatrix non-zeros for FBIS by 3% (far less than

20% obtained by other collections). The reason why pruning affects the FBIS

collection so differently may be related to the heavy usage of common terms. As

previous mentioned, pruning only reduces the terms connected to one document

in the submatrix. Obviously, the FBIS collection has fewer terms in this category

since pruning only reduces the number of terms in the submatrix from 88% to

55%. In summary, pruning further reduces the submatrix non-zero entries by

approximately 20% with an approximate precision loss of 17% across all

collections.

3.3 A Case Study

LATIMES [25] is a large and heterogeneous collection of newspaper articles from

the Los Angeles Times. The specific subcollection of articles used in this study

was obtained by applying a relevance feedback technique described in Section

2.2. Table 3-6 lists some of the characteristics of this collection. LATIMES has an

average of 230 terms per document and an average of 29 terms per query, which

is larger than the average of MEDLINE, CISI and TIME, yet smaller than those of

the FBIS collection.

The same level search filtering and pruning experiments described above were

conducted on LATIMES. The average ratio of non-zero entries obtained by level

search at level 2 is 36.08%. Pruning further reduces it to 31.8% (Table 3-7). Both

level search with/without pruning produces the same average recall at 85.24%

across all queries. Table 3-8 presents the average precision obtained by LSI

with/without level search filtering and optional pruning. It is observed that the LSI

precision increases slightly after pruning.
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Table 3-6: Characteristics of the LATIMES collection.

Number

Number

Number

Number

Avg. No
Avg. No
Density i
Avg. No
Average

of Documents
of Terms
of non-zeros (matrix)
of Queries
of Documents/Term

of Terms/Documents

of Terms/Query
Weighting/Term

1086

17903

250241

48

13.97

230.42

1.28

28.85

0.52

Table 3-7: The average submatrix size for level search with
optional pruning for LATIMES.

Method
Level search

(% of original)
Level search with

pruning (% of original)

# of Rows

227

20.90

227

20.90

# of Columns

14734

92.30

7257

40.54

# of Non-zeros

90280

36.08

79573

31.80

Table 3-8: The average precision (%) obtained by LSI with/without level

search filtering or pruning for LATIMES.

Recall

0

10

20

30

40

50_
60

70

80

90

100

.Mean

78.1077

75.2234

69.1141

66.1056

58.3200

56.687

50.8539

46.9282

42.5049

34.9114

29.5024

55.2500

Level search

+ LSI

76.1847

74.2576

68.4560

63.8817

60.0478

55.7065

48.5353

44.1532

38.6960

28.6483

22.2882

:  .52.8100

Level search +

pruning + LSI
78.6740

77.8439

72.1236

66,8088

61.6757

58.6169

51.7005

47.2156

41.1634

31.8591

25.1615

55:7100.3



Chapter 4

Conclusions

Figure 4-1 presents the average ratio of non-zero entries after level search

filtering or pruning for all the collections including LATIMES. Figure 4-2 illustrates

the average precision obtained by LSI with/without level search or pruning

accordingly. Based on these two figures, level search can reduce the average

number of non-zero entries of the term-by-document matrices (for LSI

processing) by almost 65%. At the same time, it's capable of achieving an

average recall near 80% for selected collections. Subsequent LSI based query

matching can produce an average precision of over 80% of traditional LSI. For

some collections, level search filtering can improve the precision somewhere

between 10% and 60%. Pruning further reduces the ratio of non-zero entries by

20% with a slight precision loss of 17% across collections. In summary, level

search with optional pruning provides a cost-effective filter for LSI in scalable

information retrieval.

In Chapter 2, it was observed that for some collections level search improves the

precision performance of LSI. Although the average document size might be one

of the properties triggering such precision improvement, more quantitative testing

is needed to further predict the correlation. Finally, the pruning technique deletes

terms connected to one document in the submatrix. Actually this criterion could

be expanded to 2, 3, 4, ... documents. In Chapter 1, term local frequency (L(/, j)

in Equation 1-1) has been defined as the number of times a term appears in
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distinct documents. Here, considering each term has a global weighting

indicating its importance to the indexing, such weighting could be combined with

the local frequency as a new criterion for pruning. This approach could produce

significantly different results by further selectively deleting poorly connected

terms, especially for the FBIS collection.
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Appendix

A. Test Procedures

The testing procedure used In this research consists of 3 major steps: key/matrix

generation, query vector generation and subsequent level search or LSI

implementation.

Key/Matrix Generation

Each test suite consists of a collection of documents {document file) to be

searched on, a set of queries {query file), and a list of answers of relevant

documents to each query {answer file). The first step in level search and LSI is

document collection parsing and generation of the term-by-document matrix. As

Figure A-1 shows, the parsing program takes the document file as input, deletes

the common words defined in the stoplist (Section 1.1), generates the term-by-

document matrix in Hanwell-Boeing format and writes the keywords to a term list

file. Weightings can be applied to each element of the term-by-document matrix.

The matrix and the term list will be used as input for query vector generation.

Query Vector Generation

Natural language queries need to be transformed to vector representations. A

program will take the query file as input and match each word to the terms in the

term list. The output is a separate query vector file containing a list of indexing

terms with assigned term numbers and proper term weightings.
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Stoplist ^^

Document

File

Term-by-
Doc Matrix

Term List

"► Text Parser

Figure A-1: The process flowchart for key/matrix generation during level
search and LSI.

Level Search Driver Program

The level search code (written in C) takes the term-by-document matrix in
Hanwell-Boeing format and each query vector as input and constructs the level
graph. The output consists of query-specific submatrices in MATLAB format.

LSI Driver Program

The LSI driver program (written in MATLAB 5.1) will take exactly the same input

file as the level search driver. However, it only reports the average precision (see

Section 2.2) across all queries to each text collection. The number of factors k
(Section 1.1) used for all LSI testing is set at 100.
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B. Testing Parameters for Level Search Filtering

Collection Best Weighting Best

Threshold

Average
Recall (%)

% of Non-zeros

of original
MEDLINE None None 85.74 27.83

CISI Weighting in
query vector

Mean 69.42 22.74

TIME Weighting in
query vector

Mean 55.11 25.16

FBIS Weighting in
query vector

Mean 82.05 52.92

LATIMES Weighting in
query vector

Mean 85.24 36.08
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