
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-1999

A spatial decision support system for designing solid waste A spatial decision support system for designing solid waste

collection routes in rural counties collection routes in rural counties

Xiaohong Xin

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Xin, Xiaohong, "A spatial decision support system for designing solid waste collection routes in rural
counties. " Master's Thesis, University of Tennessee, 1999.
https://trace.tennessee.edu/utk_gradthes/10056

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F10056&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Xiaohong Xin entitled "A spatial decision support

system for designing solid waste collection routes in rural counties." I have examined the final

electronic copy of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Master of Science, with a major in Geography.

Bruce Ralston, Major Professor

We have read this thesis and recommend its acceptance:

Thomas Bell, John Rehder

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Xiaohong Xin entitled "A Spatial Decision
Support System for Designing Solid Waste Collection Routes in Rural Counties." I have
examined the final copy of the thesis for form and content and recommend that it be
accepted in partial fulfillment of the requirement for the degree Master of Science, with a
major in Geography.

/Bruce Ralston, Major Professor

We have read this thesis

and recommend its acceptance:

Thomas Bell

Johi Rehder

Accepted for the Council:

\S.
Associate Vice Chancellor and

Dean of The Graduate School

A SPATIAL DECISION SUPPORT SYSTEM FOR

DESIGNING SOLID WASTE COLLECTON ROUTES

IN RURAL COUNTIES

A Thesis

Presented for the

Master of Science Degree
The University of Tennessee, Knoxville

Xiaohong Xin
May, 1999

ACKNOWLEDGEMENTS

I can not remember how many times, when I walked breathlessly to the

Geography Building on the hill, I blamed for these endless stairs. At the moment when I

finally finish this thesis, I realize that I have owned much debt to that path leading to the

top of the hill. Many colleagues, family members, and friends have been helping me and

walking along with me no matter what I experience.

I would like to express my deepest gratitude to Dr. Bruce Ralston as a wonderful

advisor and caring person. His vision and wisdom can lead me to go very far away

whenever I stand at a dead end, which creates pleasurable moments associated with

learning that will always be a sweet memories. His humor and appreciation always

reminds me of finding solutions quickly if I just turn around to look at the other side of

things. I would like to thank the other members of my Thesis Committee - Dr. Thomas

Bell and Dr. John Rehder, for acceptance, guidance, and sharing their knowledge. I must

also offer my thanks to Dr. Cheng Liu and his family. They have given me so much help

and encouragement dmring these years. Of course, my appreciation is for Chris

Garkovich, my boss in County Technology Assistance Service of UTK, for her

confidence in me and her financial support, which makes the whole thesis research

possible.

My family members have been my example and strong support. My parents

instilled hardworking spirit to me when I was a child. My sisters and sister-in-laws keeps

on telling me to go wherever I can go and do not look back, but I know they keep eyes on

me forever and they will sacrifice everything for me.

II

Most importantly, my thanks go to my fiiends in Knoxville Chinese Christian

Campus Fellowship, for their prayers to help me be faithful, loving, and humble and for

the promise that I am not alone on my way to the hardest and the highest.

Ill

ABSTRACT

Because of the increasing need to develop optimized routes for solid waste

collection in rural coimties, there has been a lot of research on exploring arc routing

problems and their efficient solutions. The complex nature of solving arc routing

problems lends itself to a GIS-based spatial decision support system. Such a system could

combine user knowledge of a problem with heuristic algorithms to obtain arc routing

solutions. This thesis presents SWRoute, which is such a system.

Developing SWRoute requires three major steps: building a suitable geographic

data base, determining and implementing the necessary heuristic algorithmic techniques,

and setting up a GIS framework that allows users to manipulate the data inputs and the

algorithm outputs. Taken together, these three components form a spatial decision

support system for designing solid waste collection routes.

The area of study is Hamblen County in East Tennessee. A database of roads in

the county was developed using TIGER and other map sources. The demands for solid

waste collection were obtained from the Hamblen County solid waste region.

SWRoute also uses two modeling algorithms. The first is a heuristic algorithm for

generating solutions to the rural arc routing problem. The second algorithm is used to

develop lower bounds on candidate solutions. The lower bounds help determine the

quality of the heuristic solutions.

The SWRoute interface has tools which allow the user to partition a base road

network into subnetworks and create a seed node set. The GIS interface is also useful for

IV

generating and reporting routes. With the aid of these tools, the user can study and

manipulate solutions generated from the algorithms.

The results derived from the Hamblen County example indicate how a GIS-based

spatial decision support system can help solve complex problems facing rural U.S.

counties.

TABLE OF CONTENTS

PAGECHAPTER

1. STATEMENT OF THE PROBLEM

1.1 Introduction

1.2 Arc Routing Problems
1.3 SWRoute: a GIS-based Spatial Decision Support System for Designing Solid

Waste Collection Routes....

1.4 Scope of the Research
1.5 Inspiration for the Research
1.6 Concluding Remarks

.4

5

7

1

1

2

3

2. METHODOLOGIES OF DEVELOPING SWROUTE

2.1 Introduction

2.2 Spatial Decision Support System (SDSS)
2.3 CTAS’s Requirements for Developing SWRoute

2.3.1 System Requirements
2.3.2 Database Requirements
2.3.3 Modeling Requirements
2.3.5 Interface Requirements

2.4 Characteristics and Assumptions of the Hamblen Cormty SWRoute
2.4.1 Definition of the Hamblen Coimty SWRoute Region
2.4.2 SWRoute Solid Waste Generation Characteristics

2.4.3 Crew Working Time Assumptions
2.4.4 Collection and Vehicle Assumptions
2.4.5 Collection and Transportation Regional Facilities

2.5 Concluding Remarks

.9

9

,9

11

12

12

14

15

15

15

16

19

19

,20

20

3. MODELING SWROUTE: A CAPACITATED ARC ROUTING PROBLEMS...

3.1 Introduction

3.2 Capacitated Arc Routing Problems (CARP)
3.2.1 Augment-merge Algorithm Notation and Assumptions
3.2.2 Algorithm Statement and Implementation
3.2.3 An Example of Augment-merge Algorithm

3.3 CARP Lower Bound Computation
3.3.1 Algorithm Statement and Implementation
3.3.2 An Example of Lower Boimd Computation for Figure 3.2
Network

3.4 Data Structures and Their Implementation for Solving CARP and
NMCPMP

3.4.1 Doubly Linked Lists and CARP’s Augment-merge Algorithm..
3.4.2 Disjoint Sets and NMCPMP’s Primal-dual Blossom Algorithm

3.6 Concluding Remarks

.22

22

,25

.27

.27

.32

.40

40

,42

.49

.49

,50

55

VI

4. SWROUTE INTERFACE DESIGN AND SYSTEM INTEGRATION 56

4.1 Introduction 56

4.2 SWRoute Base Road Network 58

4.2.1 Generating a SWRoute Base Road Network for Hamblen County..58
4.2.2 SWRoute Base Road Network Data Attributes 63

4.3 SWRoute Subnetworks 63

4.3.1 Generating the Hamblen County SWRoute Subnetworks 63
4.3.2 Data Attributes for a SWRoute Target Network and '

Subnetworks .78

4.4 SWRoute Seed Node Set 80

4.4.1 Creating a Seed Node Set for the Hamblen County SWRoute 80
4.4.2 Data Attributes for a SWRoute Seed Node Set 83

4.5 SWRoute routes and Routing Reports 83
4.5.1 Generating SWRoute Routes and Reporting Routes 83
4.5.2 Data Attributes for SWRoute Routes 90

4.6 Concluding Remarks 91

5. Discussion and Recommendations 92

5.1 Summary of Research Results 92
5.2 Recommendations for Future Research 95

Bibliography 99

Appendices 105
Appendix A CARP Mathematical Formulation 106
Appendix B Undirected Matching Network and Nonbipartite Minimum Cost

Perfect Matching Problem (NMCPMP) 111
Appendix C AVENUE Pseudocodes for SWRoute Interface Design 138
Appendix D C Source Codes for Solving Capacitated Arc Routing Problems... 162

VITA 198

VII

LIST OF FIGURES

FIGURE PAGE

Figure 2.1 The Hamblen County SWRoute Region and its Transportation Network 17

Figure 3.1 A Flow Diagram of the Augment-Merge Algorithm 31

Figure 3.2 A CARP Network 32

Figure 3.3 A Flow Diagram of Computating CARP Lower Bound 43

Figure 3.4 A Network when P = 0 , 44

Figure 3.5 A Network when P = 2 in Case 1 46

Figure 3.6 A Network when P = 2 in Case 2 47

Figure 3.7 A Network when P = 4 48

Figure 3.8 A Schematic Description of a Doubly Linked List for SWRoute 51

Figure 3.9 A Schematic Description of Doubly Linked Lists for all Routes in a Network
52

Figme 3.10 A Schematic Description of Disjoint Sets and their Related Structure
Components 54

Figure 4.1 SWRoute Interface Overview 57

Figme 4.2 A Descriptive Flow Diagram for SWRoute Objects (Black Letters) and then-
Interface Representation 57

Figure 4.3 Flow Diagram of Generating a SWRoute Base Road Network 61

Figure 4.4 A SWRoute Base Road Network Interface 62

Figure 4.5 A Menu for Generating SWRoute Base Road Networks 62

Figure 4.6 A Menu for Generating SWRoute Subnetworks 67

Figure 4.7 Flow Diagram of Generating SWRoute Subnetworks 68

VIII

FIGURE PAGE

Figure 4.8 A Driver Partition Interface after Set up 70

Figiire 4.9 A Driver Partition Report Written in a MSOffice Docmnent 71

Figure 4.10 A Driver Partition Interface with Links being Partitioned 72

Figure 4.11 An Interface for Driver-Weekday Partititon 74

Figure 4.12 A Driver-Weekday Partition Report Generated in a Notepad 75

Figure 4.13 A Scaled Map for Driver 272 Subnetworks 76

Figure 4.14 A Driver-Weekday Partition Interface with Subnetworks 77

Figure 4.15 A Menu for Building SWRoute Seed Node Sets 81

Figure 4.16 Menus and Tools for Generating SWRoute Seed Node Sets 81

Figure 4.17 A Dialog Box Used for Adding a Garage 82

Figure 4.18 A Dialog Box Used for Editing a Depot 82

Figure 4.19 Menus and a Tool for Generating and Reporting SWRoute 84

Figure 4.20 A Route Configuration Dialog Box 84

Figure 4.21 A Message Box for Checking Seed Nodes and their Associated Routes 84

Figure 4.22 A Dialog Box for Showing/Hiding Routes 86

Figure 4.23 Routes for Driver 272 on Monday, Tuesday, and Wednesday 87

Figure 4.24 A Notepad Route Report for Driver 272 on Wednesday 88

Figure 4.25 A Graphic Route Report for Driver 272 on Wednesday 89

Figure B.l A Matching Network with Thick Matching Edges 113

Figure B.2 A Simple Blossom 114

Figure B.3 A Flow Diagram of Primal-Dual Blossom Algorithm 126

Figure B.4 A Derived Matching Network without Blossoms 127

IX

FIGURE PAGE

Figure B.5 A Matching Network with Blossoms 131

Figme B.6 A Matching Network with a Shrunk Blossom and A Pseudonode 135

LIST OF TABLES

TABLE PAGE

Table 4.1 Data Attributes in a Base Road Network 64

XI

CHAPTER 1

Statement of the Problem

1.1 Introduction

Population growth in rural areas, along with the increased generation of solid-waste

by Americans, has caused waste management to become a major expense for local

govemments. The collection and transportation of solid-waste from sources to landfills is

a costly budget item for most rural counties. Therefore, efficient routing of solid-waste

collection is an important part of a solid-waste management system. The Office of Solid-

Waste Management Program in the U.S. Environmental Protection Agency is

increasingly requiring counties to develop planning models to assess the efficiency of

solid-waste collection crews and evaluate their routes. Several counties, primarily those

with dense populations, have already initiated such evaluation plans for routing, but they

are not scientifically rigorous and their methods are not transferable between different

counties (Institute for Solid-waste of the American Public Works Association, 1975).

The theoretical structure of optimizing solid-waste collection routes is called an arc

routing problem. Although many algorithms have been developed for arc routing

problems, they do not in general provide strictly optimal answers (Keenan, 1996). This

fact reflects the difficulty of the problem involved and implies that generated routes must

be frequently improved using skilled intervention by experienced decision makers. That

is, routing should be part of a decision support system. This thesis presents a Geographic

Information System (GIS) based on spatial decision support system (SDSS) for use in

counties planning a solid-waste routing system.

1

1.2 Arc Routing Problems

The routing of vehicles is one of the most developed areas of Operations

Research. Bodin and Golden (1981) developed a taxonomy for various vehicle routing

problems composed of two major classes: node routing problems and arc routing

problems. One of the important differences between these classes is that node routing

problems are concemed with demands located at nodes and arc routing problems are

concerned with demands located along arcs. Node routing problems include shortest path

problems and traveling salesman problems. In reality, many problems belong to arc

routing problems. Besides solid-waste collection, these also include many problems as

postal delivery, meter reading, street sweeping, and snow clearance. Although arc routing

probleihs are of practical interest, there has been less research done in this area than in

node routing problems. Consequently, algorithmic techniques in this area are not

considered to be as well-developed as node routing problems (Eiselt, Gendreau and

Laporte 1995a, 1995b). This reflects the complexity of these problems and the difficulty

of taking into consideration many practical issues that can not always be captured in a

purely mathematical model. As a result, while many operations research algorithms have

been developed for arc routing problems, those do not in general provide strictly optimal

solutions (Keenan, 1996). There are several aspects of arc routing problems which need

to be considered.

First, arc based problems by definition require attention to the details of road

networks. Supposedly, arc routing problems often take place in a small area, usually an

urban one. In such an area, a variety of characteristics of the road network become

relevant, such as one-way streets and left or right turn prohibitions. An effective decision

2

support system for such a problem must accommodate all relevant information. A

mathematical model is built on the basis of a number of assumptions and it is very

difficult for one model to handle all of the above road information (Keenan, et al. 1996).

Secondly, arc routing problems are static in nature (Keenan, et al. 1996). When a

route is designed, it may not need to be changed for a given period of time. In the solid-

waste case, the collection routes will only be changed in response to changes in road

topology or changes in population distribution in an area. Although there may be day-to

day variation in the addresses visited, the same set of streets must be traversed.

The necessity of accessing large amounts of information and the stability of routes

over time reflect the distinctive characteristics of arc routing problems. Arc routing

problems can not simply borrow classic modeling methods designed for node routing

problems. A GIS-based routing system facilitates the design of a spatial decision support

system (SDSS) for finding solutions to arc routing problems.

1.3 SWRoute: a GIS-Based Spatial Decision Support System for Designing Solid-

waste Collection Routes

Geographic Information Svstem (GIS) is not just a software system, but a

sophisticated science. Its development "tackles the scientific questions that geographic

information handling raises and pursues scientific goals using the technology that the

system provides" (Worboys, 1995). Accordingly, a decision support svstem (DSS),

combined with a GIS system, not only provides tools to handle information but also

addresses theoretical issues about how real world problems are abstracted in order to take

advantage of DSS's analytical ability.

A decision support system with spatial analytical abilities is called spatial

decision support system (SDSS). When it is integrated with GIS, a system built with

spatial decision making support functions is thought of as a GIS-assisted spatial decision

support system. The system is usually defined to consist of a database component,

modeling components, and a user interface component. It is usually assumed that the

system should allow the use of modeling techniques with a facility for user intervention.

A strong link between GIS and SDSS requires an ongoing process that could take

many years to complete (Sieg, 1988). There are three benefits associated with this

linkage. The first benefit is efficiency, i.e., the time and labor saved due to the automation

of processes. The second is effectiveness, which can be defined as the enhancements

made to decision making based on the availability of information to the user. The third

aspect concerns unexpected intangible benefits, which are related to the improvement of

other associated systems. Designing solid-waste collection routes can be regarded as a

GIS-assisted SDSS application (Peenan, 1996), which should achieve these benefits.

1.4 Scope of the Research

This thesis deals with a methodology of integrating GIS and SDSS. Concepts and

algorithms of arc routing problems are explored.

A major question addressed in this thesis is:

Can a prototype GIS-assisted system be built with decision support

functions, which can be used to develop, apply, and evaluate a wide ranae of solid-

waste collection route systems in U.S. rural counties?

This main question leads to several other questions to be answered in this thesis .

research:

Question 1: What are the advantages and the disadvantages of a methodology of

linking GIS and SDSS for designing solid-waste collection routes?

Question 2: Can we classify the algorithms currently used for solving arc routing

problems into useful sets of approaches and processes?

Question 3: What kinds of heuristic algorithms present a reasonable solution to the

solid-waste collection routes?

Question 4: Can we build general-purpose tools to match those algorithms?

The remainder of the thesis has the following sections. In the first section, a

discussion of the problem facing Hamblen County, Tennessee is presented. The county

serves as a test case for SWRoute, so a thorough understanding of its routing system is

required. Next, the thesis specifies the requirements and assumptions for building a

prototype SDSS. The second section concentrates on the theoretical models and

algorithms of SWRoute. Data stractures and their contributions to improve the algorithms

are also discussed. The third section presents a detailed description of the interface design

for SWRoute.

1.5 Inspiration for the Research

The County Technology Assistance Service (CTAS) at the University of

Tennessee intends to build a well-equipped GIS in its three regional offices (Knoxville,

Nashville, and Jackson). Designing a GIS-based SDSS for solid-waste collection routes

in several counties of Tennessee is CTAS's first project. This thesis is part of a prototype

study, which should be developed to be transferable between different counties.

Once largely ignored, arc routing problems are increasingly being recognized as

important components of vehicle routing problems.

Many practical problems can be modeled as arc routing problems, so there is

renewed interest in designing add-in modules or specialized software to obtain arc

routing solutions. As early as 1993, WastePlan, a microcomputer-based solid-waste

planning model originally developed by the Tellus Institute in Boston for the Office of

Technology Assessment, included one interactive program for solid-waste collection

systems. However, its functions are so limited that only specific factors such as physical

and financial characteristics of different trucks and containers, crew size, average miles

from the route to processing facilities are defined. In that system, no real routings along

streets are modeled and mentioning "the routes" just refers to a situation that waste

streams are moved from sources to any number of potential processing facilities. As a

matter of fact, the problem addressed in WastePlan is a node routing problem.

In 1989, an authentic vehicle routing and scheduling software product,

RouteSmart, was released under the auspices of RouteSmart Technologies and four

University of Maryland professors, Aijang Assad, Michael Ball, Lawrence Bodin and

Bruce Golden. Widely used by city and county public works departments, applications of

RouteSmart include sanitation collection routing, utility meter reading, newspaper

distribution and other local pickup, and delivery services. RouteSmart has two modules, a

workload estimation and route partitioning module and a travel path generation module,

which is used for neighborhood vehicle routing. Depending on the nature of the routing

6

scenario, either one or both modules may be needed. The market price of one license of

RouteSmart software is $77,000 plus costs for computers and mapping data. Thus, cost

prevents solid-waste management departments in small-to-medium counties from

purchasing a whole system for a simple routing ran. Designing an arc routing system

within a reasonable cost range is my endeavor and a goal for CTAS solid-waste routing

projects.

In University College at Dublin in Ireland, P. Keenan, a Management Information

System (MIS) professor has studied arc routing for rural Irish networks and developed a

decision support system for arc routing. Some meaningful results were achieved by his

efforts of integrating GIS and SDSS with arc routing. We contacted each other by email

one year ago. He kindly sent two papers to me. Those papers influenced my own

research. The idea of building a GIS-assisted SDSS solid-waste routing system has

benefited from his work and encouragement.

1.6 Concluding Remarks

This chapter is a general introduction for SWRoute. It began with the clarification

of the difference between node routing problems and arc routing problems. As an arc

routing problem, SWRoute is considered as a system to be built without mature

algorithmic support, at least compared to node routing problems. A GIS-based arc routing

system with spatial decision support functions, therefore, is proposed for generating

solutions to arc routing problems. Definitions of a decision support system (DSS) and a

spatial decision support system (SDSS) are then briefly introduced to confine the thesis

research scope and associated questions to be answered at the end of the thesis research.

The next chapter will discuss the methodology of developing a system with GIS-assisted

SDSS functions for designing solid-waste collection routes.

CHAPTER 2

Methodologies of Developing SWRoute

2.1 Introduction

This chapter presents some principles for GIS-based Solid-waste Routing SDSS

(SWRoute) design methodologies. Since SDSS is introduced as a framework of

developing SWRoute, the chapter first identifies the characteristics of SDSS, the

component of SDSS, various levels of SDSS technology and the different organizational

roles associated with SDSS. Then, the process of designing SWRoute in Hamblen County

Tennessee is presented in order to address requirements and characteristics for a solid-

waste collection system.

2.2 Spatial Decision Support System (SDSS)

Complex spatial problems often have to meet multiple criteria with more than one

objective or goal. Classical methods assume that the problem is sufficiently precise such

that the goal and objectives can be defined. However, many problems are Hi-structured in

the sense that the goals and objectives are not completely defined. Decision Support

Systems (DSS) provide formal procedure for the application of well-structured models to

poorly structured decision problems (Batty, 1990). Particularly, DSS is an interactive

system that provides users with easy access to decision models and data in order to

support poorly stmctured decision-making tasks (Sprague, 1989). The range of decision

problems to which these models might be applied is considerable. Difficulties arise over

how to identify principles for good model design and application. Also, these principles

should be consistent with methods for analyzing and visualizing geographic data.

GIS imposes quite severe constraints on the way that geographic data can be

represented, analyzed, and displayed (Batty, 1990). Although it might be possible to

loosely-couple GIS with appropriate DSS based on some spatial model applications, GISs

fall short of the goals of DSS for a number of reasons (Densham, 1990):

1. analytical modeling capabilities often are not part of a GIS;

2. many GIS databases have been designed solely for cartographic display of results, but

DSS goals require flexibility in the way information is communicated to the user;

3. the set of variables or layers in the database may be insufficient for complex

modeling;

4. data may be at insufficient scale or resolution;

5. GIS designs may not be flexible enough to accommodate variations in either the

context or the process of spatial decision-making.

Spatial DSS (SDSS) are often designed virtually from scratch in order to provide a

flexible problem-solving environment for complex spatial problems.

Several authors (Craig and Moyer, 1991; Goodchild and Densham, 1990; Moon,

1992; NCGIA, 1992; Ralston, 1993) have extensively covered similar descriptions of

characteristics for SDSS. Their works define SDSS as an interactive computer-based

information system, which helps decision-makers utilize geographic data and spatial

models to solve unstructured problems. The unique contribution of SDSS results from the

above key words. The definition is quite demanding, and few existing systems

completely satisfy its requirements. The definition of SDSS has recently been extended to

10

include any system with "intuitive validity" that makes some contributions to spatial

decision making. Accordingly, a broader definition of SDSS, described by Donald

Cooke(1992), is a "canned software that is intuitively obvious to use, solves problems

efficiently and delivers immediate results". In other words, in Cooke's view, SDSS

becomes off-the-shelf software for carefully selected functions with bug-free point-and-

shoot capabilities on very specific spatially oriented needs. In this way, SDSS doesn't

require in-depth commands to operate, yet allows users to negotiate very sophisticated

geographic analysis.

A SDSS about solid-waste collection routes is often complex and difficult to

design because many factors must be considered and a wide range of routing options is

available. Solid-waste collection routes in different areas vary greatly depending on the

waste t5^e collected, the characteristics of the area, and the preference of its residents.

Often, different solid-waste collection equipment, methods, or service providers are

required in the same area to serve different customers or to collect different materials

from the same customers. To simplify the system design and modification, the following

sections address requirements and assumptions for developing SWRoute to best meet a

specific area's need.

2.3 CTAS' Requirements for Developing SWRoute

From the start of this research, CTAS was concerned about what a SWRoute

system should look like. However, no documentation exists which described the specific

requirements for such a system. Since this was the first use of a GIS system in CTAS,

the concepts of GIS and its application to SWRoute did challenge people in CTAS to

11

)
J

think about their GIS requirements. Therefore, the requirements addressed in the

following section are not only for the SWRoute project but also for building a GIS

system served for other county-wide projects in a Solid-waste Department. In general,

they are categorized with respect to system requirements, database requirements,

modeling requirements, and interface requirements.

2.3.1 System Requirements

SWRoute was designed to operate on a stand-alone personal computer running

Microsoft Windows 95. The Windows 95 operating system should allow integration of

ESRI GIS software and other window-based software, for example Borland C-h-

compiler, Borland Delphi, and Microsoft Word. UNIX ARC/INFO in a Xterminal UNIX

window is needed to edit network coverages. Although the faster CPU is desired for

calculation speed, the system can operate using a standard Intel Pentium microcomputer

running at 200 Mhz and 32 Mb of RAM. Scanners, digitizers, and color printers are

required for preparing data, and printing route reports for drivers.

2.3.2 Database Requirements

Since a database is the foundation of any GIS-based SDSS, CTAS developed a

detailed description about the information to be included in its GIS database. The

database not only serves the SWRoute project but also other projects. In general, CTAS

has following requirements with respect to database design:

1. A long-term methodolo^ is formulated to build and improve the SWRoute GIS

database;

12

2. Constructing the database should foster cooperation among county agency GIS

activities;

3. Database building should eliminate duplication of effort in digitizing information

among county agencies;

4. SWRoute project enhances data sharing between county agencies by identifying and

adopting standards for use in digitizing information.

Technically, the SWRoute database consists of several independent layers of data,

all linked to the same coordinate system. Data should be maintained at the lowest level of

disaggregation and then readily aggregated as the need arises.

A digital database with information on a road network should be obtained to

determine street configuration. A digital database of the road network should contain two

types of information, coordinate data and attribute data. The former indicates the

geographic location of nodes or street intersections, and the latter describes

characteristics of links and the system. The set of attribute data in the database can

include a multitude of variables needed to support the intended applications. For

geocoding, address ranges must be stored as attributes. The length of the link does not

have to be explicitly stored in the database because it can be measured by the GIS.

Data concerning solid-waste generator types and volumes of waste generated

should be gathered so that area collection needs can be determined. Estimates of solid-

waste generation can usually be developed through a combination of historical data, data

from similar areas, and typical published values.

13

2.3.3 Modeling Requirements

There are three levels of integration of model and GIS-based SDSS. The lowest

level of integration, called loose coupling, is characterized by the use of conversion

programs and procedures, and data exchanges between models and GIS-based SDSS,

using ASCn files in most cases. The medium level of integration is characterized by an

automated and transparent procedure for exchanging data, mainly through the use of a

common database, and allowing the model to address this database directly. In the high

level of integration, the distinction between model and GIS-based SDSS becomes

blurred. Powerful toolboxes are used for storing, retrieving and analyzing geographic

data and an experienced user can build solutions from these tools to solve many spatial

problems.

Modeling arc routing problem in this thesis uses the lowest level of integration of

models and GIS. This loose coupling uses separate models and GIS, connecting their data

and exchange files. This approach will implement the following procedures:

1. inputting of geographic distributed data through GIS;

2. exporting of GIS-data and converting them into the variables and parameters used

into the model;

3. running the routing model;

4. importing the results of the arc routing models;

5. developing interactive analysis of the model-results and creating final maps and

reports.

14

2.3.5 Interface Requirements

The SWRoute graphic user interface was designed using an object oriented

principles. SWRoute objects refer to entities with attributes and functions that are applied

and implemented for designing solid-waste collection routes. The highest level of

SWRoute objects is composed of nodes and links of a base road network. The lowest

level of SWRoute objects is a solid-waste collection route generated for SWRoute.

Objects at the lower level inherit properties and methods from those at the higher level.

Tool boxes are developed for accessing and manipulating these objects, meaning that the

ultimate users may not be GIS professionals.

2.4 Characteristics and Assumptions of the Hamblen County SWRoute

Designing optimized solid-waste collection routes is often complex because it

must be addressed within the environment of a solid-waste management system in which

many system factors must be considered. In this section, the salient aspects of solid-waste

management in the study area, Hamblen County, are discussed.

2.4.1 Definition of the Hamblen County SWRoute Region

Hamblen County is located in the eastem part of the East Tennessee Development

District. Its land area is 161 square miles, making it the smallest sized county in the East

Tennessee Development District. Population density averages 313.5 persons per square

mile, making Hamblen County the second most densely populated county in the

Development District, ranking behind only Knox County (East Tennessee Development

District, 1995). There are three census county divisions and one incorporated area

15

(Morristown) in Hamblen County. They are Alpha Division, which contains a part of the

City of Morristown; the Morristown Division, which contains most of the City of

Morristown; and the Whiteshurg Division.

The Hamblen County SWRoute Region consists of all of the rural areas of

Hamblen County beyond the boundary of the City of Morristown. The region is bounded

on the north by Cherokee Lake and on the southeast by the Nolichucky River and

Douglas Lake. The dominant land use within the region is residential, ranging from low

density rural to medium and higher density in the semi-urban areas. The majority region

is developed with paved roads and public water.

The SWRoute Region is not contained within a Metropolitan Statistics Area

(M.S.A.), but it is contiguous to the Knoxville M.S.A. The region contains 9.92 miles of

interstate highway and 36.96 miles of U.S. primary highway. It also contains 42.33 miles

of U.S. secondary and 4322.9 miles of state, county, and other highway and roads

("Hamblen County Solid-waste Regional Plan", 1995). Figure 2.1 illustrates the major

road systems, waterways and political boundaries.

2.4.2 SWRoute Solid-waste Generation Characteristics

1. The amount of solid-waste generated from residential sources in Hamblen County is

influenced by the population distribution and economic activities in the county.

According to the U.S. Census Bureau, the 1993 population of the Hamblen County

was 29,095. The region contained 19,429 households and they resided in

predominantly single family detached owner occupied units. Mobile homes and

multi-family dwelling units share the remainder in almost equal proportions. Multi-

16

Hamblen

County
litefbivg

r

113
Ruaeeilville

■itr Morristown ^fc:U*, '<1

100313
100

113100 06

3(2
81 f

^Douglas
LAKE

Miles 10

HOLICHUCKY RIVER

Figure 2.1 The Hamblen County SWRoute Region and its Transportation Network

17

family dwelling units are predominantly renter occupied and mobile homes are

predominantly owner occupied.

Several economic factors will affect population growth and solid-waste

generation in the next ten years ("Hamblen County Solid-waste Regional Plan",

1995). The development of a third industrial park during the next ten years combined

with the expansion of the two existing industrial parks should result in approximately

3,000 new jobs. These new jobs will create expansion in both the commercial and

service industries. All of these new jobs will increase the need for expansion of new

residential development. In addition, industrial, commercial and service expansion

will increase the production of solid-waste.

2. The next ten years will see the extension of public sewer into approximately 25% of

the county area which is not presently served. This will result in an increase in

population and density in these areas. This could also allow a population expansion of

approximately 10,000 persons over the 10-year time span.

3. The completion of the new southem by-pass, which connects the western MAID

Industrial Park with Davy Crockett Parkway and the East Tennessee Valley Industrial

District will make commuting between the eastern and westem parts of the county

much quicker. This connector will open up the southem section of the county for

residential development

It is estimated in the "Hamblen County Solid-waste Regional Plan" (1995) that^

based on the above factors, the population within the next ten years should increase

23.2%. This increase will result in a corresponding increase of the solid-waste generated

in the region.

18

If only residential solid-waste is considered, it is assumed that the solid-waste

generating rate for one household per day was about 22.1 pounds in 1991 ("Hamblen

County Solid-waste Needs Assessment"). It is assumed that the generation rate will not

change during the next ten years.

2.4.3 Crew Working Time Assumptions

1 now consider the elements of the solid-waste management system. That system

is composed of crews, vehicles, facilities, and routes. The total time for which a crew is

paid is usually 8 hours. According to federal law, a crew can not exceed 10 hours of

driving without a rest period that allows time to sleep. In addition to driving time, the

crew can not work more than 4 additional hours in a shift performing other duties.

Therefore, it is assumed to assign a crew to finish his work within 14 hours per day.

These facts act as constraints in the routing model.

2.4.4 Collection and Vehicle Assumptions

Hamblen County provides curbside pickup weekly to every citizen within the

SWRoute region. Rear loading trucks are used as a major form of collection vehicles. The

capacity of the trucks is 17,800 pounds.

The existing collection system will be maintained and increased to meet

population increases. Hamblen County will evaluate the incorporation of totally

automated loading system to reduce the manpower required and increase efficiency.

Presently, the entire SWRoute region is served by four truck drivers. According to the

19

"Solid-waste Plan By Hamblen County" (1995), the number of drivers will not change

within next ten years.

2.4.5 Collection and Transportation Regional Facilities

Every day, the drivers start from a garage, collect solid-waste along their routes,

transport solid-waste to either a recycling center or the regional bailing/landfill operation

center, and then drive back to the garage.

The garage is located at 125 E. Economy Road. The single waste processing

facility within SWRoute region is Lakeway Recycling Center, which is located in Roe

Jimction or Sublett Road. This facility is presently the only provider of both separation

and sale of recyclable materials within the region. It is operated by a private company

which accepts recycling materials from their own private collection and from Hamblen

County collection. The Hamblen County-Morristown Solid-waste System is the only

public landfill facility shared in both management and funding by Morristown and

Hamblen County. This facility is also located on Sublett Road. The landfill has a

projected capacity of approximately 20 years and will be upgraded to meet all existing

and new regulations.

2.5 Concluding Remarks

This chapter presented the principles used in designing SWRoute, a GIS-based

SDSS. The design principles focused on how the system should allow users to negotiate

very sophisticated geographic analysis, not on the in-depth models and their details.

According to some special requirements for a solid-waste collection system proposed by

20

CTAS, the SDSS for SWRoute should be a PC-based software module, which is

embedded in an ArcView interface. Its database should be constructed to be durable and

efficient and meet different needs within CTAS. SWRoute adopts a low level of

integration of models and GIS, and data exchanges are in the form of ASCII files.

Toolboxes are designed with basic operations for manipulating the modeling objects. The

final sections of the chapter focus on the study area: Hamblen County, Tennessee. The

next chapter makes an in-depth study about the theoretical firamework of SWRoute ~

capaciated arc routing problems.

21

CHAPTER 3

Modeling SWRoute: a Capacitated Arc Routing Problem

3.1 Introduction

Uncapacitated routing problems can be classified as node routing problems, arc

routing problems, or general routing problems (Bodin, 1975). The traveling salesman

problem (TSP) is a node routing problem which solves the problem of visiting all nodes

in a network and returning to the starting point. The problem of covering all arcs in a

network while minimizing the total distance is the Chinese postman problem (CPP),

which belongs to the class of arc routing problems. The general routing problem on

network is a generalization which includes the TSP and CPP as special cases. In each

case, we assume that all arcs are undirected and that there is a vehicle of unlimited

capacity.

Capacitated variations of routing problems include capacitated node routing

problems and capacitated arc routing problems. The capacitated node routing problem,

known as the vehicle routing problem, has been the focus of much research attention

(Beltrami and Bodin, 1974; Boden and Golden, 1981; Christofides et al., 1981; Magnanti,

1981; Golden et al., 1977; and Russell, 1977).

Capacitated Arc Routing Problem (CARP), first introduced by Golden and

Wang (1981), was formulated on a directed network. Belenguer and Benavent (1991)

then introduced it on an imdirected network. In both cases, given G (N, A, Q', the CARP

is defined as a problem that for all arcs (/, j) e A, which must be satisfied by one of a

22

fleet of vehicles of capacity fF, find a set of cycles, each of which passes through the

depot node and satisfies demands at a minimal total distance.

If we assume all arcs with demands > 0, CARP reduces to Capacitated Chinese

Postman Problem (CCPP). If the total demand of all arcs serviced by any particular

vehicle does not exceed its vehicle capacity W, i.e. W > 1.,'Ljqij, then the Chinese

Postman Problem (CPP) is obtained from CARP. With one vehicle of capacity W >

, and qy > 0 for all arcs {i,j) e R qA, we have the Rural Postman Problem (RPP)

which only requires traversing a subset RcA. Thus, CCPP, CPP, and the RPP are all

special cases of the CARP.

SWRoute is generally considered to belong to the capacitated arc routing problem

(CARP). One of the first authors who studied the waste collection problem with CARP

was Strieker (1970). He developed a computerized arc routing algorithm for the urban

waste collection problem. This method was tested on real data from the city of

Cambridge, Massachusetts. Beltrami and Bodin (1974) used a similar method for New

York City, and Negreiros (1974) studied the solid-waste collection system in Rio de

Janerio, Brazil.

Exact algorithms of the CARP have been investigated by Assad, Peam, and

Golden (1987) and by Busch (1991). Their studies showed that if G is a connected and

acyclic network, the vehicle capacity W is the same for all vehicles and all arcs have the

same demand qy = 1, then the CARP can be solved in O (|iVl)^ time. Assad, Peam, and

' G is a network, N is the set of all nodes, A is the set of all arcs, C is the matrix of distance impedance.
^ The network contains no directed cycle.
^ lA'l is the absolute value of the number of nodes N,N is a measure of how large of the problem is. 0(|A']) is
a positive valued function g(N) of the nonnegative variables is said to be O(IA'l) if there exists a constant
g(|iVl)<=0(|7Vl)forall|iV].

23

Golden further addressed that the CCPP with identical demands and defined on a network

with cycles is also solvable in O (|A^) time. They also foimd that the CCPP defined on a

strongly connected'* network can be solved in polynomial time if all ̂ j,s are no greater

than W l\N\ when |A^ is odd, and no greater than WI(\N\ -1) when lA/] is even.

However, the CARP is very difiBcult to solve on its a-approximation^ version.

Golden and Wong (1981) showed that if C = (Cy) satisfies the triangle inequality^ CCPP

is attempted to find a solution with a cost less than 1.5 times the value of the optimal

solution, which is termed as 0.5-approximate CCPP. They also proved that the 0.5-

approximate CCPP is WP-complete^. Lenstra and Rinooy Kan (1976) proved that the

undirected and directed versions of the RPP are iVP-hard problems. Since the CCPP is a

special case of the CARP, a 0.5-approximation version of CARP must be also WP-hard.

Due to the computational complexity of the CARP, a standard algorithmic

strategy can be used for developing and testing heuristic algorithms. Christofides (1973)

presented an algorithm for the CCPP based on an optimal algorithm for the CPP which

obtained near-optimal solution to the CCPP. Referred to as the construct-strike algorithm,

it significantly outperforms many other existing algorithms on dense networks with small

arc demands. The complexity of this algorithm is 0(mn^f. A modified construct-strike

^ TTie netwoik contains at least one path from every node i to every node j
^ The a-approximation version of a problem is defined as a problem of finding a solution whose cost is at
most (1 + a) times that of the optimal solution.

® In a network, the cost matrix satisfies the triangle inequality if and only if + c^j < Cy for all ij, k. In
arc routing problems, a minimum cost circuit is to the find the optimized routes.
^ If any of the problems can be solved in polynomial time on a deterministic machine, then all the problems
can be solved in polynomial non-deterministic machine (JP = NP). If the collective failure of all researchers
to find efficient algorithms for all of these problems is viewed as a collective failure to prove P = NP, such
problems are said to be IVP-complete. The opposite case is called AP-hard. A AP-completeness proof is a
strong indication that the problem is intractable. A AP-hard problem implies a possible existence of a
polj^omially bounded algorithm.
m is the number of arcs and n is the number of nodes

24

algorithm (Peam, 1989) combined minimal spanning tree and matching procedures with

the construct-strike method to improve the construct-strike algorithms. The complexity of

this algorithm is O (mn'). Golden, et al. (1983) presented two other algorithms called the

path-scanning algorithm and the augment-merge algorithm, and Peam (1989) presented a

variation version of the path-scanning algorithm. The complexity of these three

algorithms is O (n^). Finally, in order to implement a heuristic algorithm to handle sparse

networks with large arc demands, Peam (1991) presented the augment-insert algorithm,

which combines the merits of the augment-merge algorithm and parallel-insert algorithm

(Chapleau, et al. 1984). The complexity of the algorithm is still O (n^).

Although heuristic algorithms solve the CARP problems approximately, they only

provide upper boimds of optimal solutions. In order to assess the deviation of the

heuristic solutions from optimality, tight lower bounds need to be computed. Golden and

Wong (1981) proposed a lower bounding procedure, which was referred as Matching

Lower Bound (MLB). It was based on the associated minimal cost 1-matching problem^

for obtaining lower bounds for the CARP. Assad, Peam, and Golden (1987) presented

another bormding procedure called the Node Scanning Lower Bound (NSLB), which

essentially involved methods of allocating a set of shortest paths that must be added to

the original graph for generating the optimal CARP. Peam (1988) also introduced a

bounding method that was based both on the matching lower bormd procedure and the

node scanning procedure. Peam (1989) further suggested that the NSLB is expected to

perform well on sparse networks. E. Benavent, et al. (1992) proposed new lower bounds

computed by using a dynamic programming algorithm. Benavent's lower bound is

' The nonbipartite minimum cost perfect matching problem is discussed in Appendix B
25

theoretically superior to the MLB and NSLB for not only considering the number of

vehicles in a fleet needed to cover the whole network but also the number of vehicles

required to cover certain sub-networks so that the bounds may be tightened.

The algorithmic aspects of the thesis are primarily concemed with the heuristic

algorithm implementation of CARP and the calibration of its lower bound. Since

computing lower bounds of a network is based on a matching network, an algorithm

about solving a nonbipartite minimum cost matching problem is designed to find pairs of

matching nodes in the matching network and the result is further used for lower bound

problems. Appendix A provides mathematical programming formulations for CARP and

the notation of an undirected matching network. The following sections will firstly

present an algorithmic implementation of CARP. Then, an algorithm about solving the

non-bipartite minimum cost matching problem along with a method of building a

matching network are addressed. Finally, procedures of obtaining lower bounds of CARP

are discussed.

3.2 Capacitated Arc Routing Problems (CARP)

There are several heuristic algorithms which have been suggested in the literature

for solving CARP. This thesis implements the augment-merge algorithm. The algorithm^

originally introduced by Golden and Wong (1981), is modified and introduced in the

thesis research. The following sections 3.2.1 and 3.2.2 present the formal statement of the

algorithm. Section 3.2.3 uses an example problem to clarify the implementation of the

algorithm.

26

3.2.1 Augment-merge Algorithm Notation and Assumptions

Let G* = (,N(R) u {Xq }, i?) = Gf be the subgraph of G = (N, A, Q induced

by a node-set N, a route R composed of arc-set A, and a depot node Xo. Every route R

must start and end at depot node .Gf = iN(R,^)KjXQ,R,^),k = l,...,K are connected

cycles of G* with depot node jSTp.

Let X^„ be a head-merging node of R^, where there is a node / e N(R^) such

that there may be a y e (iV' \ N(R,^)) \ {X^} with (y, I) gA\R^ and j eN{R^) with

(y ,l)eR^. Let X^ be a tail-merging node of R^, where there may be a node

/ e) such that there is a je(N\ N(R,^)) \ {Xq } with (/, j)eE\ R,^ and j g N(R^)

with (/, j)eR^. Depot node Xo should not be counted as a head-merging node or a tail-

merging node. For example, in a cycle with 178^6^31, the underlined parts are

non-zero demand arcs that need to be traversed. Node 1 is a depot node. Node 6 is

located between two underlined, which can not be assigned as a merge node. Therefore,

node 7, node 8, and node 3 are head-merging nodes and node 2 and node 3 are tail-

merging nodes.

3.2.2 Algorithm Statement and Implementation

Augment-merge algorithm can be stated as below. Figure 3.1 shows a flow

diagram of the iterative procedure.

Phase I: Augment

Step 1: Check Constraints

27

For every arc ii,j), check vehicle capacity constraints. If there are arcs with

demands dy > W, it is necessary to split the arcs so that no arc with dy > W.

Step 2: Initialize Cycles

For every arc (i,j) with non-zero demand, initial connected cycles are

constructed by finding two shortest paths from each endpoint of the arc (i,j) to depot

node Xq so that each cycle services exactly one non-zero arc.

Step 3: Order Cycles

Generated cycles are ordered from longest to shortest according to the length of

these routes. Let the longest route be and the shortest route heR^ (K= 1, .If

every arc (/,,Zy) on a cycle with a shorter length can be served on cycle R^ with a

longer length, the shorter cycle R^^^ is discarded. The step is continued until all pairs of

cycles have been considered and compared.

Step 4: Label

Starting from the longest cycle R^, check every arc (i,J) on the cycle and label

those arcs to be traversed. If the demand for arc (i,j) on cycle R/^^ can be serviced by the

same arc (i,j) on cycle R^, the demand for arc (i,j) on cycle R^ is not to be serviced by

the cycle Rj_^^. The demand for arc (/,/) on cycle becomes zero. Also, the demand

on its reversed arc (j, i) on cycle becomes zero. All arcs with non-zero demand are to

be traversed. If cycle Rj reaches vehicle capacity or daily time constraints, stop labeling

and begin the next cycle . This step is continued until all cycles have been

considered. Finally, check every cycle i?,. (z = 1,..., K) to discard zero-demand cycles,

28

where:

Sy is the savings attributabie to merging.

/; and Ij are the length of cycle and R..

niy is the length of the cycle resulting from merging cycle i?, and R..

Once all possible pairs of (, X,,„j) and (X^f, X^j) are considered, the

merged cycle R] with the largest savings is selected to replace original cycle R^ and Rj.

Rj is assigned as the same index as R^. If there are more than one merged cycle R] with

the largest savings, arbitrarily select one cycle as J?,'. But, if the capacity of the merged

cycle Rj exceeds the vehicle capacity, original cycle Rj and Rj are kept and no merged

cycle are generated.

Step 7: Iterate /

Set j =7 + 1, go to step 6 until j is greater than the number of cycles.

Step 8: Iterate i

Make a copy of original cycle (A:= 1,..., set / = / + 1 and keep i <j, repeat

step 6 and 7 until / is equal to the number of cycles.

Step 8: Reorder Cycles

Return to step 3. Reorder original cycles (A: = 1,..., K). The original cycles

{Ri ,...,R, ,—Rjf} become {R,- ,R^ ,...,...Rj^}. Repeat step 3 through 8 until the cycles

{R,, R, Rjf} with the minimum total distance are found.

30

where e i?,. is satisfied by dy = 0. This procedure needs to guarantee that the sum

of demand of all cycle does not exceed the vehicle capacity. Once this situation happens,

the next cycle is labeled instead of continuing the same cycle.

Phase II; Merge

Step 5: Set up Merge Node Subset

For the cycles with at least one non-zero demand arcs, reset cycle indexes as ,

..., Rf, Rj,..., R^ (i <f). Starting from cycle R^, determine the subset of head-merging

nodes and the subset of tail-merging nodes

{ X,„iX,^2,—'-^i>>m} ̂ • Then for cycle R^, determine the subset of head-merging

nodes { ,X^„2 ^ -^(-'^2) sn'l f^e subset of tail-merging nodes

{X,„^,X^2'—>^imn} ̂ -^(^2) • The step continues until merge node subsets for all cycles

are created.

Step 6: Merge Cycles

Starting with cycle R. and Rj, compare every tail-merging

node^^^ 6 { X,^^,X,„2,...,X^„} (p = 1,..., n) foxR. with every head-merging

nodeX^„^ ̂ {Xl„^,X'^2 (^= U ...,«)for . Then compare every tail-

merging node X^pe{ X,„^, X^2 »•••> X,„„} (p = 1,..., n) for /?, with every tail-merging

node G { X'^^,X',„2,-,X',„„} iq = 1, n) for R..lf X^^ = X\„^ or X,^^ =

X\„g, the savings associated with a pairwise merging of the cycle and Rj is evaluated

as the expression:

Sy =li+lj-my
29

Check vehicle capacity
constraints and split
overcapacity arcs

Initialize Cycles

Order Cycles from the
longest to the shortest

Label arcs and check

capacity

Set up merge node sets

Check capacity first and
then merge a pair of cycles

indexed by
i and i

Yes

SWRoute (a cycle set with
minimum totai length)

j=j + 1 ^
Is j greater than the
■number of cycles?.

Yes

Ma copy es

il to the numb
f cycles?-^

equal

Yes

Finish reorder cycles?

Figure 3.1 A Flow Diagram of the Augment-Merge Algorithm

31

3.2.3 An Example of the Augment-Merge Algorithm

Consider a CARP network depicted in Figure 3.2 with all arc length and demand

as indicated^". It is assumed that the depot is node 1 and vehicle capacity is 12

Depot

32 5(4)
4(2) 73

1(3 1(3)

5(2) 2(1)

3(2) 6(3)

Figure 3.2 A CARP Network

Step 1: No arcs are found to violate the vehicle capacity constraint.

Step 2 and Step 3: For the undirected network in Figure 3.2, ten cycles are

constructed by finding two shortest paths from each endpoint of each link to depot node 1

plus the link itself. The cycle for link (5,6) is composed of a shortest path from node 1 to

node 5 and the other shortest path from 6 to 1. So, that cycle is 1 ̂ 2 1 and (5,6) is the

key link, which is tmderlined. Ten cycles are ordered by length in the following table.

Since no two cycles are same, no cycles are discarded in this network.

10 3(2): 3 indicates the length of the arc and 2 indicates the demand on the same arc.
32

Cycle Number Cycle Length Cycle Demand Cycle

1 17 3 1 5 6 2 1

2 15 2 1 2 6 3 1

3 15 2 1 3 6 2 1

4 14 1 1 5 4 6 2 1

5 13 3 i_4 5 1

6 12 3 1 5 4 5 1

7 10 4 1_1 1

8 8 2 1_3 1

9 8 3 1 2 3 1

10 6 2 1_2 1

Total 118 25

Step 4. First, label cycles from the longest cycle 1 to the shortest cycle 10 and

underline those arcs to be traversed. Arcs included in a longer cycle always have a high

priority to be traversed when the cycle is compared with a shorter cycle. In the example,

the sum of demands on all links in cycle 1 does not exceed the capacity, so all links on

cycle 1 can be serviced. The same principle is applied to other cycles. However, since

link (1,5), (5, 6), (6,2), and (2,1) are served by cycle 1, they are not to be served by

other cycles and their reversed link (5,1), (6,5), (2, 6), and (1,2) are not to be served by

other cycles either.

33

Cycle Number Cycle Length Cycle Demand Cycle

1 17 11 1 5 6 2 1

2 15 4 1 2 6 3 1

3 15 0 1 3 6 2 1

4 14 4 1 5 4 6 2

5 13 3 1 4 5 1

7 10 0 1 5 1

8 8 0 1 3 1

9 8 3 1 22 1

10 6 0 12 1

Total 118 25

Next, discard those cycles not vmderlined. They are cycle 3, cycle 6, cycle 7, cycle

8, and cycle 10. The result is as below.

Cycle Number Cycle Length Cycle Demand Cycle

1 17 11 1 5 6 2 1

2 15 4 12 6 3 1

4 14 4 154621

5 13 3 1 4 5 1

9 8 3 1 2 3 1

Total 67 25

34

Step 5. Identify head-merging nodes and tail-merging nodes. They are nodes on

arcs without imderlined parts, i.e., the arcs with zero demand. The depot node is not

courited as a head-merging node or a tail-merging node. As a result, the network in

Figure 3.2 has following head-merging and tail-merging node sets.

Cycle Cycle Cycle Cycle Head-Merge Tail-Merge

Number Length Demand Nodes Nodes

1 17 11 1 5 6 2 1 No No

2 15 4 1 2 6 3 1 2,6 No

4 14 4 1 5 4 6 2 1 5 6,2

5 13 3 1_A 5 1 No 4,5

9 8 3 1 2 3 1 2 3

Total 67 25

Step 6, Step 7 and Step 8: Omit cycle 1 because it has no head-merging nodes nor

tail-merging nodes. Also, omit cycle 2 because it has no tail-merging nodes. Consider

cycle 4 and cycle 5, then cycle 4 and reversed cycle 5 (Cycle 1 5 4J_ with head-merging

nodes 5,4 and no tail-merging nodes). Always compare head-merging nodes from cycle

4 and tail-merging nodes from cycle 5 and its reverse cycle. Since no common nodes are

found, continue to compare cycle 4 and cycle 9 and merge cycle 4 and cycle 9 at node 2.

35

Cycle Cycle Cycle Cycle Head-Merge Tail-Merge

Number Length Demand Nodes Nodes

1 17 11 1 5 6 2 1 No No

2 15 4 1 2 6 3 1 2,6 No

5 13 3 14 5 1 No 4,5

4-9 16 7 1 546231 5 3

Total 61 25

Furthermore, compare cycle 5 and cycle 4-9 and merge them at node 5. The

merged cycle has demand 10, which is lower than the vehicle capacity 12, so the merging

can be implemented.

Cycle Cycle Cycle Cycle Head-Merge Tail-Merge

Number Length Demand Nodes Nodes

1 17 11 1 5 6 2 1 No No

2 15 4 1 2 6 3 1 2,6 No

4-5-9 19 10 1 4 5 4 6 2 3 1 No 3

Total 51 25

Step 9: On the base of cycles in Step 4, change the order of cycle 1 and cycle 2,

repeat Step 6-Step8. It is found that there does not exist cycles for merging.

36

Cycle Cycle Cycle Cycle Head-Merge Tail-Merge

Number Length Demand Nodes Nodes

2 15 4 1 2 6 3 1 2,6 No

1 17 11 1 5 6 2 1 No No

4 14 4 1 5 4 6 2 1 5 6,2

5 13 3 1__4 5 1 No 4,5

9 8 3 1 2 3 1 2 3

Total 67 25

Continuously, based on the generated cycles in Step 5, change the order of cycle 1

and cycle 4, cycle 1 and cycle 5, repeat Step 6-Step 8.

When it comes to the order change between cycle 1 and cycle 4, the following

merging result is formd.

Cycle Cycle Cycle Cycle Head-Merge Tail-Merge

Number Length Demand Nodes Nodes

4 14 4 1 5 4 6 2 1 5 6,2

1 17 11 1 5 6 2 1 No No

2 15 4 1 2 6 3 1 2,6 No

5 13 3 1_4 5 1 No 4,5

9 8 3 1 2 3 1 2 3

Total 67 25

37

Merging could happen between cycle 4 and cycle 2 at node 2 and node 6 and

between cycle 4 and cycle 9 at nbdb 2.

Cycles with the longest savings by merging cycle 4 and cycle 2 at node 6 are

shown as below:

Cycle Cycle Cycle Cycle Head-Merge Tail-Merge

Number Length Demand Nodes Nodes

4-2 17 8 1 5 4 6 3 1 5 No

1 17 11 1 5 6 2 1 No No

5 13 3 1 4 5 1 No 4,5

9 8 3 1 2_3 1 2 3

Total 55 25

The order change of cycle 1 and cycle 5 shows that a merging node 5 is found

between cycle 4 and cycle 5.

Cycle Cycle Cycle Cycle Head-Merge Tail-Merge

Number Length Demand Nodes Nodes

5 13 3 14 5 1 No 4,5

1 17 11 1 5 6 2 1 No No

2 15 4 1 2 6 3 1 2,6 No

4 14 4 1 5 4 6 2 1 5 6,2

9 8 3 1 22 1 2 3

Total 67 25

38

Two continuous mergings are shown as below.

Cycle Cycle Cycle Cycle Head-Merge Tail-Merge

Number Length Demand Nodes Nodes

5-4 17 3 1454621 No 6,2

1 17 11 1 5 6 2 1 No No

2 15 4 1 2 6 3 1 2,6 No

9 8 3 1 lA 1 2 3

Total 57 25

Cycle Cycle Cycle Cycle Head-Merge Tail-Merge

Number Length Demand Nodes Nodes

5-4-2 20 7 1454631 No No

1 17 11 1 5 6 2 1 No No

9 8 3 1 ̂ 1 2 3

Total 45* 25

When cycle 1 and cycle 9 finish changing the order and no merging cycles are

found, the CARP network solution can be obtained by choosing the cycles with the

minimum total length, which is 45 as indicated. The solution shows that there are no

cycles with its sum of demands exceeding the vehicle capacity.

39

3.3 CARP Lower Bound Computation

We now need to assess the quality of the heuristic solution. To do that, a lower

bound optimal solution is computed. The CARP lower boimd computation is based on a

method proposed by Peam (1988). The method solves the associated nonbipartite

minimum cost perfect matching problem (minimal cost 1-matching problem) and uses the

resulting matching to compute the lower bounds. Appendix B presents the definition and

terms about an undirected matching network, nonbipartite miTiimiim cost perfect

matching problem and its primal-dual blossom algorithm. Section 3.3.1 describes Peam's

algorithm and section 3.3.2 presents an example to clarify the procedures of

implementing the algorithm.

3.3.1 Algorithm Statement and Implementation

Computing the CARP lower bound includes two phases. Figure 3.3 shows

iterating steps of computing lower bounds in a flow diagram.

Phase I: Matching

Step 1: Calculate M = \Q,IW'\

Mis the minimum number of cycles required in the CARP solution. It is derived

from simply dividing the total arc demand by the vehicle capacity.

Step 2: Solve the NMCPMP Problem

Define a new set of nodes N\P)={n {\),n {2),...,ri {P)}, where P = 0, 2,4, ..., r

an even number no greater than r (the number of odd-degree nodes from N'. i^'(O),

N (2), ..., and N {P-2), N (P) are sets of pairs of matching nodes in G\N' ,E' ,C').

40

N (2) = {«'(!), 77'(2)} and N (2) includes one pair of matching nodes, which are

n (l)and« (2).

Step 3: Order a Set of New Edges

For every node n(i) in the original network node set N and the depot node Xq , the

shortest path links between n(i) and Xo, SPL(n(i), Xo), are formed. DiR, i) is the number

of links incident to node n(i) and R is a. set of links with nonzero demand. According to

the length of the shortest path, order SPL(n(i),Xo) and list D(R, i) for all nodes.

Phase II Node Scanning

Step 4: Add New Edges and Calculate Artificial Incident Link Set I(P)

Define E (P) as new edge sets represented by the matching solution. Its edge costs

are defined as follows: For n(i),n'(j) in N', e (n (i),n'(j)) = SPL(n (i),n (j)) and

e(n(i),n\j)) gE'(P); For n\i) in N' and the depot node Xq, e'(«'(/),X(,) =

SPL(n (i),Xo) and e (n (i),Xo) e E'(P).

Initialize P = 0, meaning that no new edges E (P) between pairs of matching

nodes pass through depot node Xo but there are new edges added along shortest paths

along matching nodes. More clearly, if P = 2, there are one pair of matching nodes

passing through depot node Xq and new edges E'(P) includes links along SPL(n(i), Xo).

Let i?(P) = RuE\P), which is formed by addingP'(P) to R, so I(P) = 2M- D(R(P),

Xq) is generated and defined as artificial paths incident to the depot.

Step 5: Calculate L(P) and D(R, L(P))

41

Let L{F) = Min{Ar|SL)(i2,0»^ = lv,^} and guarantee I{F) = JI.D(R, i), i =

Step 6: Calculate Possible Lower Bounds LB(P)

Let LB(P) = |i?| + I £ (P)| + \ T,SPL(XQ,i)D(R,i),i = l,...,L(P), which is the sum

of edges between matching nodes and all possible routes coming through the depot node.

Step 7: Iterate P

Repeat Step 3-6 for P = 0,2 r.

Step 8: Obtaining an Optimal Lower Bound

Compute Min {LB(P)}, for P = 0, 2,..., r. In other words, the value of the CARP

lower bound is computed as the minimum of all possible lower bounds LB(P), which is

Min { LB(jP)} over P.

3.3.2 An Example of Lower Bound Computation for Figure 3.2 Network

Appendix B discusses the procedures of deriving a matching network jfrom Figure

3.2 network. The matching network is shown as Figure B.l in Appendix B. The result of

the primal-dual blossom algorithm shows that nodes(2, 3) and nodes(4, 5) (see Appendix

B) are two pairs of matching nodes. These two pairs of matching nodes are used for

lower bound computation.

Step 1: The total demand on the network Q = 25 units. Also, it is supposed that

the vehicle capacity W = 12. Therefore, M= 3.

Step 2: r = 4 and P = 0,2,4. N (4) = (node 2, node 3, node 4, node 5}.

Step 3: Shortest paths between all nodes and depot node 1 is calculated and

ordered as below, i = 2,3,4, 5,6.
42

Calculate /W(the minimum
number of cycles for

CARP)

Solve NMCPMP problem

Add and order a new set of

edges

Calculate I (P)

I
Calculate L (P) and reset

D(R. HP))

Let P = 0,2 r.
Calculate lower bounds

LB(P)

Optimal Lower Bound

No

Is P greater than /?

Yes

Figure 3.3 A Flow Diagram of Computating CARP Lower Bound

43

Node i 2 3 5 6 4

&PZ(U) 3 4 5 6 6

D(R, 0 3 3 3 4 3

Step 4: Let P = 0. The network becomes Figure 3.4 and two new edges between

matching nodes 2 and 3 and nodes 4 and 5 are added.

3(2) 54
4(2) 7(3)

13) 1(3

5(2) 2(1)

32) 6(3)

Figure 3.4 A Network when P = 0

R(0)= i2ue'(23)ue'(4,5).

Dm), 1) = 4.

7(0) = 2M-Dm), 1) = 2 * 3 - 4 = 2

Step 5. Z(0) = Min. {k \ D(R, 2) (k=l),

D(R,2) + D(R, 3)(k=2),

D(R, 2) + D(R, 3) + D(R, 5) (k = 3),

44

D(R, 2) + D{R, 3) + D{R, 5) + D{R, 6) {k = 4),

D{R, 2) + D{R, 3) + D{R, 5) + D{R, 6) + D{R, 4) = 5)}

= Mm. (1,2, 3,4,5}

= 1

Node i 2 3 5 6 4

SPL(i, 1) 3 4 5 6 6

D{R, i) 2 3 3 4 3

Step 6. The total edge length with nonzero demand |i2| = 37.

LB(0) = |i?| + C23 + C45 + DiR, 2) * SPL(2,1)

= 37+1 + 1+2*3

= 45

Step 7. Similarly, let P = 2, the network will be changed in two ways. Figure 3.5

and Figure 3.6 reflect these two changes.

Case 1.

45

3(2)
5(4)4(2) 7(3)

13 1(3)

5(2) 2(1)

3(2)
6(3)

Figure 3.5 A Network when P = 2 in Case 1

i2(2)= J?ue'(l,2)ue'(U)

D{RC1),\) = 6

1(2) = 2M-D(R(2), l) = 2*3-6 = 0

L(2) = 0

LB(2) = |i?| + Ci2 + Ci3 + C45

= 37 + 3+4+1

= 45

Case 2.

46

32 5(4)
4(2 7(3)

1(3) 1(3)

5(2) 2(1)

32) 6(3)

Figure 3.6 A Network when P = 2 in Case 2

i2(2)= /?ue'(l,4)ug'(l,5)

7(2) = 2M- D(R(2), 1) = 2 * 3 - 6 = 0

L(2) = 0

i5(2) = |i?| + C23 + Ci4 + C,5

= 37 + 1+7 + 5

= 50

Let P = 4, the network becomes Figure 3.7:

47

32) 5(4)
4(2) 7(3T

1(3) 1(3)

52 2(1)

3(2) 6(3)

Figure 3.7 A Network when P = 4

P(4)= i?ue'(l,4)ue'(l,5) ue'(l,2)ue (l,3)

DiR(4), 1) = 8

7(4) = 2M- D(R(4), 1) = 2 * 3 - 8 = -2

Z(4) = 0

LB(4) = |P| + Ci2 + Ci3 + Ci4 + Ci5

= 37 + 3 + 4 + 7 + 5

= 56

Step 8. LB = Min. {IP(0), 15(2), LB(4)} = {45,45,50, 56} = 45

Therefore, the lower bound for the CARP network is 45 units. The CARP result is

also shown as 45.

48

3.4 Data Structures and Their Implementation for Solving CARP and NMCPMP

The algorithms applied for solving CARP and NMCPMP require the

manipulation of data, particularly data sets representing arc and node information, or

representing trees or other network structures. Data structures are built outside of the GIS

system. This points out the need for different representation of spatial objects for

different purposes in an SDSS. The use of data structures has a considerable effect on the

algorithmic performance of SWRoute models. Major data structures implemented for the

thesis are doubly linked lists, disjoint sets, i/-heaps, and queues. The augment-merge

algorithm mainly makes use of doubly linked lists, and the primal-dual blossom

algorithm is implemented by using disjoint sets. The following sections will concentrate

on the doubly linked list and disjoint sets, mainly discussing how these data structures

store and manipulate network information and how they are fit into the algorithms.

3.4.1 Doubly Linked Lists and CARP's Augment-Merge Algorithm

Based on a forward star network, which stores arc and node sets of network as

dynamic arrays, a doubly linked list is designed as a data structure to implement

operations on a list of arcs for the augment-merge algorithm. All arcs and their associated

nodes in a doubly linked list take unique index numbers from the forward star network.

More specifically, the list is organized with following three components.

1. three pointers to a cell indicating locations of the head, the current, and the tail of the

list.

49

2. a pointer to another two structures which store dynamic arrays containing merging

attributes, such as a list of reachable head nodes and tail nodes and then-

corresponding number.

3. linked list information with respect of its length, the total distance and demand of the

list covered. A cell of a doubly linked list consists of three fields, data, a pointer to the

previous cell, and a pointer to the next cell. A simple doubly linked list is depicted in

Figure 3.8.

According to concepts of the augment-merge algorithm, the list in Figure 3.8 only

includes one route. Routes of traversing all arcs in a specific network are stored in

another doubly linked list. Data components of its cells are pointed to the structure of the

linked list in Figure 3.9.

Doubly linked lists store the next pointer of the last cell to the first cell and the

previous pointer of the first cell to the next cell. The wraparound fashion of the list makes

the operation of a single network route convenient since the route starts and ends at the

same depot node. Advantages of using doubly linked lists are: they allow us to traverse

the list in either direction and perform insertion, and they delete and merge two lists in

0(1) linear running time, which is superior to singly linked lists and arrays.

3.4.2 Disjoint Sets and NWPMP's Primal-Dual Blossom Algorithm

The primal-dual blossom algorithm for solving NWPMP needs a special data

structure to handle blossom shrinkings and unshrinkings. Disjoint sets are a simple and

elegant data structure to implement this kind of operation and its running time is O (1).

Initially, all nodes in a matching network are created as root nodes in individual new sets.

50

link link

•pre

/j

•pre

data data

•next •next

link

int headnodelD

float savingDistance

headlinkdata

A cfynamic array of
headnodes available

for merging

A

link * cuirent

link * head

link * tail

int length

int traversed

float time

float distance

float demand

head-tail* nodes

int heads

int tails

* mergeheads

' mergetails

'pre

•next

r\

A doubly linked list
(the data is a
component ofas a
cfynamic array which
stores network arc

attributesfor one
arc)

A structure of
attributes of doubly
linked lists for one
route

A Structure of a
list of nodes
available for
merging

int tailnodelD

float savingDistance

* taillinkdata

A cfynamic array of
tailnodes available

for merging

Figure 3.8 A Schematic Description of a Doubly Linked List for SWRoute

51

link link

'pre 'pre

data data

'next 'next

link

A

link * current

link * head

link * tail

int length

int traversed

float time

float distance

float demand

head-tail* nodes

'pre

data

•next

A doubly linked list
(the data is a
component of a
doubly linked list in
Figure3.8)

A structure of
attributes of all
routes in a network

■> NULL

Figure 3.9 A Schematic Description of Doubly Linked Lists for all Routes in a Network

52

Each new set is stored as a structure that includes one pointer to its parent, the other

pointer to its son in the tree, and the size of the set. All pointers from the root nodes point

to themselves. The union of two sets needs to retum the root node and append a smaller-

size set to a larger-size set. The set attributes for all nodes within the two sets are updated

and a new set is generated.

Let X, y be two nodes in the network and x ̂ y. Three set operations are

formulated as below.

1. makeset(x) creates a new set containing the single element jc, which previously is in

no set.

2. find(x) returns a root element of the set containing node x.

3. link(x, y) form a new set that is the union of the two sets whose root elements are x

andy after comparing with the size of the ;c andy sets.

In the primal-dual blossom algorithm, a dynamic array stores all matching nodes

with their associated structures. One of the stmcture's components is the disjoint set data

structure. Other components include the node index, its matching node index, its previous

node index on a path, pseudonode attributes, and primal-dual variables. The disjoint set

operations rely on the pointers of the previous path nodes to find a pseudonode for

shrinking. Nodes and arcs in a union set become attributes of the pseudonode. The

dynamic array including a disjoint set is shown in Figure 3.10.

53

A dynamic array

int no. of elements

matchnodes

A structure of an array
element

mt nodelD

mt matelD

int previous nodelD

* dual variables

pseudonode

disjoint set

A structure of
dual variables

Queue * T

Float a

list * shrunk nodes int parentID

list * shrunk links int sonID

int a int size

A structure of a A structure of a
pseudonode disjoint set

Figure 3.10 A Schematic Description of Disjoint Sets and their Related Structure

Components

54

3.6 Concluding Remarks

This chapter has reviewed the literatures of capacitated arc routing problems and

concluded that CARP belongs to the class of AT^-hard problems. The augment-merge

algorithm proposed by Golden, et. ah (1983) is used as an approximate heuristic solution

for a class of CARP. The CARP lower bound computation is based on a method proposed

by Peam (1988). His algorithm requires building a nonbipartite weighted matching

network, which can be solved by the primal-dual blossom algorithm (Edmonds 1965,

Galow 1983). The latter two algorithms have polynomial running time with less

computing complexity than the augment-merge algorithm. The last part of the chapter

dealt with an important aspect of SDSS. It is necessary to store, maintain, and manipulate

information by using two types of data structures: those structures which facilitate

mathematical modeling and algorithm implementation, and those which are used by the

GIS for data maintenance and cartographic display. In this chapter, we have concentrated

on the former. In the next chapter, we will discuss how these algorithms are applied for a

practical use and embedded into a SWRoute GIS interface.

55

CHAPTER 4

SWRoute Interface Design and System Integration

4.1 Introduction

In addition to the algorithms described in the previous chapter, SWRoute is also

designed to contain functions to answer What-If?" questions about designing solid-waste

collection routes. Accordingly, the SWRoute interface should integrate such functions as

algorithmic solutions, database management, and user interventions into a single system

with toolboxes. Generally, SWRoute consists of three sets of toolboxes: one set for

partitioning a base road network into subnetworks, a second set for creating a seed node

set'', and a third set for generating and reporting routes. These toolboxes are accessed

through menus and buttons (Figure 4.1).

As discussed in Chapter 2, the toolboxes for SWRoute are based on an object-

oriented design. Figure 4.2 presents the relationships between SWRoute objects and how

the toolboxes are linked with these objects. SWRoute objects and the inheritance of the

objects are arranged hierarchically. The object at the highest level is SWRoute base

network, whose data sources include enough information for SWRoute subnetwork

generation, which can not be edited. The object at the next level is SWRoute partition

network. It is derived j&om the SWRoute base network but with editable data sources.

Along with seed node sets, SWRoute partition network serves as a template for SWRoute

subnetworks. In other words, subnetworks are objects generated from a SWRoute

Nodes where garages, landfills, and depots are located.
56

AfcView UIS Veision 3 Oa HIiilQ

£fa Edit ^iew Iheme Rnaffr.q Help

g IB HBUi flin m

m

SWRoute Menus

SWRoute Buttons

Figure 4.1 SWRoute Interface Overview

SWRoute Base Road

Network

Select Base Network

Build Base Network

Seed Node Sets SWRoute Partition Network
Create a Partition Network Space
Open a Partition Network Space
Detete a Partition Network Space

Create Stop Workspace
Open Stop Workspace
Delete Stop Workspace

Add Garage/Landfili/Depot
Edit Stop Attnbutes
Delete Stops
Move Stops

Driver Subnetworks

(1 4)

Driver-Weekday
Subnetworks

(1 20)

SWRoute Routes

Setting Up Dover Partition interface
Show Last/Base Driver Partition

Write Drivers to Partition Netvwrk
Driver Reference On

Setting Up Weekday Partition interface
Show Last/Base Weekday Partition
Write Weekday Partition Network
Weekday Reference On

Buiid Subnetworks

Build New Routes

Show/Hide New Routes

Report Current Routes

Figure 4.2 A Descriptive Flow Diagram for SWRoute Objects (Black Letters) and Their
Interface Representation (Red Letters)

57

partition network and its seed node set. The first level of subnetwork objects is for driver

partition (driver subnetworks) and the second level is for driver partitions on weekdays

(driver-day subnetworks). The latter relies on the result of the former. The augment-

merge algorithm and the method of computing lower bound are associated with SWRoute

routes objects, the lowest level of network for achieving objects used for optimal routes.

The object at the lowest level is called SWRoute route objects, which are directly linked

with driver-day subnetworks. It is observed from the above discussion that all SWRoute

objects are associated with inherited and unique data attributes. The following

sections will discuss data attributes and operations of these objects in detail.

4.2 SWRoute Base road Network

4.2.1 Generating a SWRoute Base road Network for Hamblen County

The Hamblen county SWRoute base road network is built from four different data

sources. The first is 1995 U.S. Census Bureau TIGER^^ files. They are translated into

ArcView shape file format through a TIGER-to-SHAPE translator. The second is a

transportation network file from Tennessee Transportation department. The source file

format is MicroStation DGN file format and was created in 1997 using 1996 road

network data. The third is a street map for Hamblen Coimty. It is a paper map using 1997

road network data. The fourth is a driver survey file in DBF file format, whose data were

collected by drivers who serve for Hamblen SWRoute. Based on these various data

Topologically Integrated Geographic Encoding and Referencing (TIGER) is a set of line coverage files
released by U.S. Census Bureau.
A file format used by Bentley Systems, Incorporated. Files with the file format keep GIS and AutoCAD

properties.
58

sources, a base road network used for Hamblen SWRoute is generated with following

guidelines.

1. Shape file format: SWRoute interface is implemented in ArcView. Its shape file can

be joined or linked with DBF files. Its graphic attributes and corresponding database

attributes can be edited according to changes fi-om other digital or non-digital data

sources, such as paper maps and database files. MicroStation DGN files can be

imported into ArcView and overlaid with shape files if they are transformed with a

same projection system.

2. Approximate geographical locations: the DGN file obtained firom Tennessee

Transportation Department keeps more accurate road locations than the TIGER shape

file. Road locations on the TIGER shape file can be modified to more closely match

DGN file.

3. Accurate road names: the TIGER shape file, Hamblen 1997 street map, and driver

survey file all keep one data item about road or street names. But only Hamblen 1997

street map has the most accurate street and road names, which could be used as a

reference to change a name item in the TIGER shape file and the driver survey DBF

file. These names are used to update the TIGER street names.

4. Connected road network: the TIGER shape file needs to be rebuilt to keep all roads

and nodes of a base road network with topological relationship.

5. Attached driver information: the driver survey DBF file has items showing the road

name and the amount of solid-waste collected from households on the road by a

certain driver on a certain weekday. The information could be used for building initial

SWRoute.

59

Figure 4.3 presents a process of generating a base road network and the relationship of

the original TIGER shape file with other files. Figure 4.4 shows a SWRoute interface

with a base road network and Figure 4.5 are menu items used for generating base

networks. The original road network shape file used for Hamblen SWRoute is translated

from 1995 TIGER files. The base road network is generated from it and includes road

shape nodes and lines with a topological relationship and correct and useful attributes.

Detailed steps for processing the road shape lines and attributes are as follows.

Step 1: Check road name

The street map and driver DBF file are compared to make sure all streets listed in

the driver DBF file can be found on the 1997 street map. If not, the street name is

changed to a closest one existing on the street map.

Step 2: Check road location

ArcView road shape file and MicroStation DGN files were transformed into

Arclnfo coverages so that it is possible to project them to the state plane coordinate

system. In ArcView, two coverages are changed back to ArcView shape files. After two

shape files are overlaid, ArcView editing tools are used to add, delete, and move nodes

and links in order to make sure that every road appearing as a data item in driver DBF file

exists in the road shape file.

Step 3: Attach SWRoute field survey information

In ArcView, the road network shape file was permanently joined with the driver

DBF file.

Step 4: Build Topological Coverage for SWRoute

In Arclnfo, the road network shape file is changed to an Arclnfo coverage again

60

7
TIGER Zipped Files

TIGER2SHAPE Translator

A

Are Road Names

Right?
Driver Data

Street Map

Yes

Are Road Locatons OGN File

Driver Data

Street Map
Right?

Yes

Does an SWRoute

Demand Data Exist? DnverData

Yes

(ljUnspIrt and Build
Tolological Relationships for

Road Network Lines.

(2)Generate Node Coverage

Is the Road Network

Topologically Related?

Yes

Base Road Network

Figure 4.3 A Flow Diagram of Generating a SWRoute Base road Network

61

j - ArcVlow 01!: Version It (Ja RlilES

£il0 Edit yiew Iheme firaphics Network Buflding Stofis Boutin g aSndow Help

u 3 ss:® ffius mm^m ^ (Mlm 1
-.1 m EixiA- M El « t

l j Roryio HEslESi

id Road Nodes
•

id Roads
A/

^ Atlribm 8 of Roads
\ fiB

— IdI .x{ j

3fktat remte WexiAf i IMveii) Dm>€ Memo

Grassy Vail

TTfeeSpnfi !sT3o5B!
0.90!

TTOI
0.00] 0!

li

UUOj

i TTi

Base Road Network in a Shape File Format

Attributes of a Base Road Network

Figure 4.4 A SWRoute Base Road Network Interface

Net./'/otk Buildinq

oeleLt Base riKtwuik.

Build Base Network
.T - r '

StoDS Routing Window

1
Figure 4.5 A Menu for Generating SWRoute Base road Networks

62

Then, topological relationships are built and a node coverage is generated from the

link coverage. Finally, the "unsplit" command is used to merge all links on the same road

(i.e., with the same street road name) so that the total number of links and nodes on the

base road network can be reduced. The base road network is transformed from Arclnfo

coverage into ArcView shape line file and a node file.

4.2.2 SWRoute Base road Network Data Attributes

The attribute table for a base road network should keep data attributes with

specific data field names, which are used for building subnetworks and seed node sets.

Table 4.1 lists these data attributes.

Interface functions for generating SWRoute base road networks are listed in

Appendix C.

4.3 SWRoute Subnetworks

4.3.1 Generating the Hamblen County SWRoute Subnetworks

SWRoute subnetworks are defined as a set of networks for a specific driver who

works on a specific weekday. Each subnetwork keeps links with non-zero demands if the

links are to be traversed. If demands on links from the base road network are partitioned

properly, each subnetwork should have approximately balanced total demand. In

Hamblen County, there are four drivers who work five days a week. Therefore, the

Hamblen County SWRoute partitions the Hamblen Coimty into 20 subnetworks, each for

one driver on one weekday.

63

Table 4.1 Data Attributes in a Base road Network

Data Attribute

Name

/

Data Attribute

Source

Data Attribute

Function

Fnode

Tnode

Length
Link Index

Fromlong
Fromlat

Tolong
Tolat

Two-way

Arclnfo coverages

Build fonvard

star network

data structure

Build target
network

weight

One link length divided
by the total length of all
links with the same

name

A weight used for
calculating the fraction of
demand along one road

Re

Co
Driver DBF file

The total number of

residential and

commercial stops along
one road

Demand

(pounds collected per
crew per household * Re
pounds collected per

crew per business * Co)
* weight

The amount of solid

wastes generated from
residential and

commercial stops on one
link

DriverO Driver DBF file
The driver code

representing an original
driver partition

DayO Driver DBF file

The weekday
representing an original
driver-weekday partition

Roadname Fdpre + Fname + Ftype - Use as a full road name

64

In SWRoute, partitioning a base road network is not designed as an algorithm

based approach but as GIS-based toolboxes. The toolboxes are embedded within the

ArcView interface. A partitioning process can always be changed in order to achieve

better partition results. Links of subnetworks from partition can be swapped between

subnetworks. The following is a list of guidelines for designing the toolboxes for

partitioning a base road network.

1. Intact base road network attributes: As shown in Figure 4.1, SWRoute subnetworks

are directly derived from a partition network. The partition network is actually a

template and a temporary work space for SWRoute subnetworks. It is generated from

the SWRoute base road network. It keeps all base road network characteristics,

including such attributes as topological relationships and demand.

2. Reference to other subnetworks: A partition network is used for storing subnetwork

information, which are built from demand data and collected by drivers and an

SWRoute subnetworks defined by a user. The drivers' SWRoute subnetworks are

generated from the field survey data. The user's subnetwork is generated from the

result of a network partition. Therefore, the original and the latest subnetworks are

two references for generating SWRoute subnetworks. For a base road network with

more than 2000 links, it is difficult to assign each link to subnetworks manually.

However, it is easy to adapt and modify partitioning attributes of some links from

other subnetworks in the same region and form new subnetworks.

3. Create subnetwork workspace: Generating a new partition network also creates a new

workspace for storing all other files associated with a partition network and its

65

subnetworks. Similarly, removing a current partition network from SWRoute

interface will remove everything in its directory and all associated files.

4. Stepwise partition: SWRoute first generates a set of driver subnetworks first and then

driver-day subnetworks next.

5. Graphic representation of subnetworks: Different subnetworks are displayed with

graphic color symbols and line weight. Legends within a view display area are used

to recognize which color and line weight belongs to different subnetworks. Reference

subnetworks are displayed with thematic color symbols and line weight. Thematic

legends show the type of subnetworks.

6. Updated current partition status: A goal of partitioning a base road network is to

obtain a set of subnetworks with approximately balanced workloads. A report

function in a SWRoute interface helps keep track of the amount of workloads for

driver subnetworks and driver-day subnetworks.

Figure 4.6 shows SWRoute menus for generating subnetworks. Figure 4.7 is a flow

chart listing all necessary steps and their relationships for subnetwork generation.

A detailed description of generating subnetworks is as follows:

Step 1: Building a Partition Network from a Base Road Network

With one active base road network in a SWRoute interface, it is possible to either

create a new partition network or open an old partition network or delete an existing

partition network in SWTloute interface. There must be at least one partition network in

the SWRoute interface before proceeding to the next step.

Step 2: Driver Partition

"Setting Up Driver Partition Interface" activates a group of tools with driver code

66

.}' Create A Partiton Network Workspace
Open A Partition Network Workspace
Delete A Partition Network

Setting Up Driver Partition Interface
Show Last/Base Driver Partition
Write Drivers To Partition Network

Driver Ref. On

Setting Up l^eekly Partition Interface
Show Last/Base Weekly Partition
Wnte Weekly Partititon Network
D^ Ref. On

Build Subnetworks

Figure 4.6 A Menu for Generating SWRoute Subnetworks

A Base Road Networic

(Link and Node Coverages)

Create a New Parutlon

Network
Partibon Network Existing?

Yel

No

eep Current Partltio
Network?

Delete Current Partiton

Nework

Yes

nver Partition Inte

_ Set up?
Set Up Dnver Partition

Interface
No

Yes

ow Reference Dnv

Partition?

Yes

Show Preference Driver

Partition

No

Dnver Partition

NoFinish Dnver Partition?

Yes

Vwite to Partition?

Yes

nver Weekday Par
Jnterface Set up?

Set Up Driver Weekday
Partition Interface

No

Yes

ow Reference Dnv

Veekday Partition?

Yes

NoShow Preference Dnver

Weekday Partition

Dnver Weekday Partition 4

inish Driver Weekda

Partition?
No

Yes

Write to Partition?

Yes

Build Subnetworks

Figure 4.7 A Flow Diagram of Generating SWRoute Subnetworks

68

numbers along with an erase tool in the project toolbar. Three buttons labeled as

"Driver Reference On/Off', "Legend On/OfF', and "Report" are also shown in the

project view area. They are used to display for driver partitions, driver partition line

styles, and current partition status (Figure 4.8). A report is written as a MSOffice Word

file format. It is a list of status of the current partition (Figvure 4.9).

2. "Show Last/Base Driver Partition" toggles SWRoute interface menu to set up a

template for SWRoute driver partition, which can be a partition result from an

original base road network or the latest partition network. The partition tools are then

used to either remove a partition on a link or reassign the link to a driver partition. A

run-time message box shows how many links are selected for a certain driver. The

report button in the project view area shows an overview partition status for all

drivers (Figure 4.8).

3. Once all links with non-zero demand have been assigned to drivers, then "Write to

Partition" menu choice is used to write the new partition to the attribute table of a

partition network. An example for such a partition network is shown in Figure 4.10.

Step 2: Weekday Partition

1. "Setting Up Weekday Partition Interface" sets up a group of tools representing

"Monday, Tuesday, Wednesday, Tuesday, and Friday" along with an erase tool in the

project toolbar region. Three buttons labeled as "Day Reference On/OfF', "Legend

On/OfF', "Report", and a dropdown box listing "All Drivers, Driver272, Driver275,

Driver277, Driver279" are also set up within the project view area. These buttons

provide another set of tools for displaying a reference for weekday partition, driver

69

- Afr.Vji.'W Glo Vp. r-^ion ! (hi

Ble Edit UianiB fitaphics NeHiraiisaiading Stons Bduting iMndow

lil m [KIIIII^
CJClGliiIi:QTC«ir#l&3rj[g3E3fiBI

J Partition Netwotkl ^
m

Partition N«w«)rtt1*l

/V
_i Road Nodes

i£ toads
^Driver 272
'^Driver 275
..w. ■ Driver277

Driver 279

Selectilie nets irk partiton for driver 272

^ rcViBW GIS Vers- ytvCcrosoltWord-lranx,!

T| 1: ?fWiTxl*

S«rvto« LinkLagand

Mtrnm 0 _
Mcrs

Mcsn

Mem

li
Legend Off jj ReportDriver Ref. Oil

I*® 11:19^

Showing driver
subnetwork as

a reference

A group of Buttons in
tools for the view

driver area

partitioning

Showing
legends in a
view area

Figure 4.8 A Driver Partition Interface after Setup

70

Microsoft Word NewKeport

5 ̂ ^ jMndow jjilp
□"^B ■■.i%,t I.
Title CcxrierNew 16 » |B / D

I e a ■ 111' S! 1172% I®
||=s=^»

c»
A Report ot JJriv»r Partition

A Hfol —twit vf wmU^ Hwh it 784545 fw*. IV twaWr rl Arihwn aV t^w
Hsate 4)9t8««s •» 4.

Aa gwwof atft af ircuh ctVcftd by tM drivtr it 196136.15 ywNiA*.

TV trUri Vk MMVr (t 2125, At tttt vtty. 1212 ■«!« Vv« Vm t«l«<rtV. TV
pwwtft tf tV ttVdiM it 57.04%.^

TV 272 Artvor trowN'ta* 678 iaV tVv tr««i AtwA ft 205115
TV 275 Arivvr nu-mtms 318 iaV,, tV** tatal AtwiA ^ 128181 p««»At^
TV 277 Arivtr tro«»r«t« 132 IIrV.. tVir tatoi AtwtaA it 60191.6 fm6t.
TV 279 Ariwar tratarttt 84 W tVir tatd Atw—A n 249333 H«Vt.

;i Ocaw" li»J jArfoShapes* \ ^ * S» — S H
Page 1 Sec 1 1/1 {At r in 1 cd 1

■"oenrcrenmmffTSBOoimBmresrmDmDr

lUStttrtl \B0\ at

: Is;: n" jilt' ovi pT nsr

WvtewGIS Veision _j|y Microeott Wonl~

-lalxj

A.

mit

Zy

Sarvloa lidk lafland
0 __

MtwTTS

Qrtrvrt 0 ___

indOII I Report |

[•©it: JllTm "

Figure 4.9 A Driver Partition Report Written in a MSOffice Document

71

Bis Edit ^jisw Dnms graphics NsMoilsBiiMing Stojits BoUing Sifndow Uelp

m m Hpgg ma m
lHniliSlLQlCe1&lEagJi3BliBP

J PartitianNetwDrkl

id Partition Nelworkl*!

/V
_i Road Nodes

id Roads

/V-

wiE ixw IP m

9«rvto« i.inK

Cr*« rs

Erta 3T9

Driver Ref. Oft | LogsndOff) Repoft |

SeledlhB network oartrton for driver 275

yMicfosoftWard-infro^||'<8^Arc^flBwGIS Vere— jl9 4:19 PM

Figure 4.10 A Driver Partition Interface with Links being Partitioned

72

partition line styles, and current partition status (Figure 4.11). The reports about the

driver-day partition are written into a notepad file format, which presents the status of the

current driver-day partition (Figure 4.12). The dropdown box with a list of the driver

codes is used to scale and fit maps into project view areas. Figure 4.13 presents an

example how map scale and the legend change when Driver 272 is selected.

"Show Last/Base Weekday Partition" toggles SWRoute interface menu to set up a

template for SWRoute driver-day partition, which can be a partition result from an

original base road network partition or a latest network partition. The partition tools are

then used to either remove a partition, reassign a link to a weekday partition, or directly

assign a link to a weekday partition after a driver partition is finished. A run-time

message box shows how many links are selected for a certain driver. The report button

in the project view region shows an overview partition status for all drivers and then-

weekdays (Figure 4.12).

2. Once all Imks with non-zero demand have been assigned to driver-day combination,

"Write to Partition" is used to take the above partition result as a new latest driver-day

partition result, which is implemented by writing partition results to the attribute table

of a partition network. An example for such a partition network is shown in Figure

4.14.

Step 3. Build Subnetworks

After all links with non-zero demand are assigned to driver and weekday, "Build

Subnetworks" is applied to generate 20 forward star network files for SWRoute on the

Hamblen County.

73

6le Edit yiew Uieme Graphics Neiwcil&Suilding Stoes Bouting Window Uelp

fa! m pmm

.-' Demi' View

Partition Netvwjrki A Group of Tools for
Weekday Partition« Partition Networkl*!

A/
J Road Nodes

raads
^FRIDAY
Y MONDAY

r^' THURSDAY
l'4tY?/TUES0AY

:: WEDNESDAY

iV«M«« -3«rwo« t-as

"w ® —

r,

DayRet Og |l Legend Off | Repoit jlAJiPrvefs ^

SalaGtlhani ivofkoaidtontiorTusideM

Showing driver-
weekday
subnetwork as a

reference

Buttons in the

view area

Showing
legends in
the view

area

Figure 4.11 An Interface for Driver-Weekday Partition

74

HCIES

Be Edt Sfisw Ifietne SiapHa Netwoik Biidhg Stoos BoutiRg Window Help

m m aaffl miM
oi»1 i-bignQiniai f i \m E

Cufient Hepriit

i i

For driver 272,
His daily collecting trash on average is 42490.84 bs.
For diver 275,
His daily collecting trash on average is 36801.80 bs.
For drivw 277,
His daily collecting tiash on average is 36658.44 bs.
For diver 279,
His daily collecting trash on average is 40957.84 bs.

The total link number is 2125.2125 links have been selected. The percentage of
selection is100.XS£.

As to different divers' v>«eek^ schedule,
Tlw 1 th driver traverses 406 links, its total demand is 212454.20 bs.
More specific^.
On Monday, The 1 th driver traver^ 64 links. Is total demand is 36793.40 bs.
OnTuesday, Thel th diver traverses 73 Bnks, its total demand is ̂ 91580 lbs.
On Wednes^, The 1 th diver traverses 90 Snks, its total demand is 48371.40 lbs.
On Thursday, The 1 th driver traverses 114 links, its total demand is 32017.40 bs.
On Frid^, The 1 th driver traverses 65 links, its total demand is 27558.20 bs.

The 2 th driver traverses 450 links, its tdal demarxl is 184009.fW lbs.
More specifidy.
On Monday, The 2 th driver traverses 78 links, its total demand is 30080.^ bs.
On Tuesday, The 2 th diver baverses 101 inks, its total demand is 37671.90 bs.
On Wednes^, The 2 th driver traverses 96 inks, its total demand is 48458.30 lbs.
On ThLtfsdv, The 2 th driver traverses 105 links, its total demand is 48015.80 bs.
On Frkjay, The 2 th diver traverses 72 links, its total demand is 21802.20 bs.

The 3 th driw traverses 408 links, its total demand is 183292.20 bs.
More specifidy.
On Mond^, The 3 th diver traverses 70 links, its total d«iw)d is 36127.70 bs.
On Tuesday, The 3 th diver traverses 88 inks, its total demand is 47708.40 lbs.

nmttm

Weekly Service Legend

D^Rof.On I Legenddff] Rtyort flABDtivefi jd

Figure 4.12 A Driver-Weekday Partition Report Generated in a Notepad

75

• ArcView Gl'> VofMon Un nnE3|

5le £dtt ^ew Jhema jifaphics Netvvorls Building Stops Bouting iMndow yelp

m m Hraiii lOEisi iiIID] ®
icanraEsiLQrLoir^irt^rjiriBirinHuiJbiiiiaiJilH lii ?

fji.'tnu Vii-'w

Partition Networki ^

Partition Networkl'l
/\- Driver 272

-I F%iad Nodes
•

-i l%ads

A/

4-

7^ WaaMy Sarvioa Lagand

D^Ret.On IdUgMg* ll Report 11 272 3

Figure 4.13 A Scaled Map for Driver 272 Subnetworks

76

, Ari.Vti:*w i.jil/ Vt.'j'.tion J Um
«(i]K|

fde Edit yiew Dteme jSropNcs Netwoi^Bulldlng Stt^s Br»<<ii<3 SS^dow tialp
m m larara mwm bo m

.. Dwrnu Vu.'w

J Partition Netuwtrkl

aS Partition Netvwjricl'l
/\/ All Drivers

J Road Nodes

J Roads

A/

" 0^1^ On I Legend Rsport

Figure 4.14 A Driver-Weekday Partition Interface with Subnetworks

77

4.3.2 Data Attributes for a Partition Network and its Subnetworks

It was discussed previously that a partition network is inherited from a base road

network. In a partition network attribute table, two new data items are added to those

from the base road network. They are "Driver" and "Day", which are designed to store a

tabular expression of the latest partition network. As a matter of fact, a partition network

is a template for generating subnetworks. Shape lines are graphic objects associated

with no attribute tables but with object tags. These objects are used to carry data

attributes of a base network to the attribute table of a partition network. Through the

partition network, subnetworks are generated. Since a base road network is partitioned

for driver partition for the first time and for driver-day combination partition for the

second time, two kinds of objects and their object attributes needed to be addressed.

1. Object Tag Format for Driver Partition

driver DC TpID featurelD demand new

"driver" is a flag for recognizing the object for driver partition. It refers to driver

partition and its interface.

"DC" is an abbreviation of "Driver Code", which is an ID to identify drivers. For the

Hamblen County SWRoute, driver codes for four drivers are "272", "275", "277",

and "279" respectively.

"tpID" is from the attribute table of a partition network link file and shown as a

tabular item. It is the umque ID of topological relationships among line shapes in the

partition network and the partition node shape file uses tpID as its ArcID*'*.

''' A field name in a node coverage, which is topologically cleaned in Arclnfo
78

"featurelD" is a hidden field in the attribute table of a partition network. It is

accessed when spatial shapes are retrieved from the partition network through a

bitmap. The index number of the bitmap is equivalent to "featurelD". The usefulness

of "featurelD" is for graphic shapes to directly fetch spatial objects and their

attributes from their attribute table.

"demand" is a field in the attribute table of a partition network. It represents an

approximate amount of solid-waste collected per crew on the road'^ per collection

week.

"new" is optional. It is a flag for objects created by tools.

2. Object Tag Format for Drivers-Weekday Partition

day DC DW featurelD demand new

• "day" is a flag for recognizing the object for drivers-weekday partition.

• "DC" is an abbreviation of "Driver Code", which is an ID to identify drivers. Driver

codes for the Hamblen County SWRoute are "272", "275", "277", and "279".

• "DW" is an abbreviation of "Driver-Weekday", which represents weekdays when

drivers work. DA for the Hamblen County SWRoute can be "Monday", "Tuesday",

"Wednesday", "Thursday", and "Friday".

• "tpID", "featurelD", and "demand" all have the same meaning as their counterpart

in driver partition tag format. They are reused for driver-day partitioning

• "new" is optional. It is a flag for objects created by tools.

15 In a partition network, a road is represented by a link with two end nodes.

79

Interface flmctions for generating subnetworks are listed in Appendix C.

4.4 SWRoute Seed Node Set

4.4.1 Creating a Seed Node Set for the Hamblen County SWRoute

It is assumed that all seed nodes are located on the nodes of a SWRoute partition

node coverage with unique ID number associated with the links in the SWRoute partition

node coverage. The Hamblen County SWRoute seed node set is a collection of garages,

landfills, and depots. The garage is a location where the Hamblen County SWRoute

drivers start and end their daily tasks. The landfill is where SWRoute drivers dump

trashes. The depot is a node from and to which drivers traverse links within driver-day

subnetworks. A garage, a depot, and a landfill are required when a driver-day subnetwork

is generated. In Hamblen Coimty, there is only one garage and one landfill. The

following section presents procedures of generating the seed node set for the Hamblen

County by using tools available from SWRoute.

Step 1. Build a stop workspace for a seed node set

As shown in Figure 4.15, a workspace can be built from scratch by "Create A

Stop Workspace" or from existing workspace "Open A Stop Workspace". A stop

workspace is represented by a seed node set. A stop workspace can be removed by the

"Delete a Stop Workspace" menu option. There must be at least one seed node set

existing in the SWRoute interface before the user proceeds to the next step. If more than

one stop set is opened, the latest built one is considered as the active stop workspace.

Step 2. Populate a stop workspace with a seed node set

80

As shown in Figure 4.16, four menu items and their corresponding tool buttons

exist for building a seed node set. Among them, "Add Garage/Landfill/Depots" is for

creating a new seed at a location of a partition network and a dialog box is brought up for

collecting information about the seed node. In Figure 4.17, "Unique Node ID", "Stop

Name", and "Stop Address" are all read-only items. "Stop Type" can be chosen as either

a garage, a landfill, or a depot. For a depot node, extra dialog items are available about

the driver code and weekday, which are necessary for identifying a specific depot. After

finishing adding a seed node, a new node appears on the map and its associated record is

added to the seed node attribute table. An existing node can be edited with "Edit Stop

Attributes" tool(Figure 4.18). All edited attributes are kept in the seed node attribute

table. The "Delete Stops" tool is used for removing a node from the map and the seed

node attribute table. "Move Stops" is a tool for moving a selected stop from one node

location to another existing node location.

BBBHI Houting Help

Cteafe Slop Vvork space

Open Slip Work^ce

Delete Stop Coverage

Figure 4.15 A Menu for Building SWRoute Seed Node Sets

Add Garage/LahdfilL'Depols ^ .*IT E X

nEdft 5 top Attributes

Delete Stojos

Move Stops

Figure 4.16 Menus and Tools for Generating SWRoute Seed Node Sets

81

Add a Nev# Seed Node and Enler Node InfoimaOon E3

Unicpje Node ID; j

Stop Name: | Garage
Stop Address:

Slop Tjipe:—
rSaiiqeLocatloni

C LandSi Location

C Depot Location

' / :-s

Figure 4.17 A Dialog Box Used for Adding a Garage

Q Edit and Enter Node Information

Unique Node ID: j

Stop Name: j 11272
Stop Address:

S. Davji Crockett Pky
Hamblen, TN

—— Stnn Tun^- — —

C Garaqe Location 'ii t

C Landfffl Location

C Depot Location j
For a weekly starting drrvnig prmt. ̂irtliei|y
1. select day for the depot:

OK I CenodI Mai*! Hrt. I to'^edep*

Figure 4.18 A Dialog Box Used for Editing a Depot

4.4.2 Data Attributes for a SWRoute Seed Node Set

The database for seed node attributes consists of the following fields.

tpID userlD name Address Type driver weekday

1. "^ID" is a topological node ID for a partition node network and a partition link

network.

2. "userlD" is another unique ID incremented by the number of added nodes.

3. "name", "address", and "type" are information about a stop name, a stop address, and

a stop type, which is a choice of garages, landfills, and depots.

4. "driver" and "weekday" are flags for recognizing the object for driver-day partition.

4.5 SWRoute Routes and Routing Reports

4.5.1 Generating SWRoute Routes and Reporting Routes

After subnetworks and a seed node set are created, SWRoute routes are generated.

It is in this step that data from the GIS are passed to the algorithms discussed in Chapter

3. Report functions are designed to display route information in text and graphic format.

Figure 4.19 shows the menu items and a report tool for routes. Procedures for generating

and reporting routes are addressed in following steps.

Step 1: Build New Routes

Choosing "Build New Routes" will cause a route collection dialog box to be

displayed. In Figure 4.20, a driver, his vehicle type, and his working weekdays can be

selected. Since time scheduling is beyond the scope of the thesis, the time configuration

is ignored and the default values are kept.

SWRoute has functions showing route generating messages (Figure 4.21). For one

83

WindowEci'-jIidq

Build New Route

pni iteo

Report Current Routed ►

Figure 4.19 Menus and a Tool for Generating and Reporting SWRoute

Houling ljenei<i(iun Settings

Select A Driver j272 3
13275

Select Working Dajis:
!>7 Mondajr

F Tuesdaiy

F Wednesc^y

F Thursday

F Ffid^r
e--

Seiect A Vehicle Typec

Rear Loader

C Front Loader (Tandem]

Front Loader (Triaxle)

r RoliT]ff(TandanJ

r Roll-Off (TriaKlel

^ TractorTrailer

•Time Conf^atiorr

! Maxnnum Da%» Time{hrsJ: j 10

AddMonalDa%i TimePirs): [4

Start Time{hh:mml, |9;00

I Average Travel Speed(m4i); [45

Cancel | Defauft | Help

Figure 4.20 A Route Configuration Dialog Box

o The Routes For Driver 272 On Monday, Tuesday, Weckiesday
Will Be Generated

I OK

Figure 4.21 A Message Box for Checking Seed Nodes and their Associated Routes

84

driver on one weekday, one route based on a depot and two shortest paths from a garage

to a depot and from a depot to a landfill are generated.

Step 2. Show/Hide New Routes

A dialog box (Figure 4.22) is used for showing or hiding new routes. Items listed

in the dialog box are all routes newly generated and available for showing. If an item is

selected, a route with that item name is shown or refreshed on the map. Not selected

means the route will be removed from the map. For example, all three routes in Figure

4.22 are selected and they are shown as new routes on the map. If the three routes have

already been in the view, the old ones are removed and new ones with the same names

are added. They might be different since they are generated for a new route for a same

driver on a same weekday. Figure 4.23 shows the routes generated and shortest paths

between seed nodes. Links with thicker line weight are links to be traversed. Arrows on

the links indicate traversing directions.

Step 3. Report Routes

The menu item "Report Routes" and its associated tool are used to report which

route a link relates to, the workload of the route, the nodes traversed by the route, and the

route traversing direction. Report results are shown in a notepad (Figure 4.24) and

graphics on the map (Figure 4.25).

85

Mulhple Selechon

Select Rojtes To Show

C'nvvr Uri Mundd', E^cd

Driver 27_' iJr'i Tueidey

Driver 2."2 Ur'i v/edr-iesdav

Figure 4.22 A Dialog Box for Showing/Hiding Routes

86

AicrViifW lalS Veisiou J IIji

£ile Edit View Iheme Hraphics Networi Buidng Sbwis ' Houting Help

mi It i b. f il-fflh^ilTI • J l*1fi E ;IX!.<4»[® fit
n < Demo View — — n HHCf

|V^ Diwei 272 On Wednesday ̂

IVj Drjwei 272 On Tuesday

J;:.;
Oriyei272 On Mondjy

■*5 stopi
v.,

J PartlionKetw«rl(1

^ PaitlionNeMorkl"!
/\/

_} RoadNodei

:R04dS.

/V

-ti

Figure 4.23 Routes for Driver 272 on Monday, Tuesday, and Wednesday

87

C- Diivei Mnnd<jv Route Rept»i(

The total route IS 13
The total traversed link number is 44
This route has traversed 63.S% links.

This route starts from
1465 to 1426 (A T o-Be-T raversed Link)
1426 to 1403 (A T o-Be-T raversed Link)
1403 to 1372 (A T o-Be-T raversed Link)
1372 to 1346 (A T o-Be-T raversed Link)
1346 to 1381 (A T o-Be-T raversed Link)
1381 to 1346
1346 to 1372
1372 to 1355 (A T o-Be-T raversed Link)
1355 to 1363 (A T o-Be-T raversed Link)
1363 to 1369 (A T o-B e-T raversed Link)
1369 to 1382 (A T o-Be-T raversed Link)
1382 to 1422
1422 to 1413
1413 to 1401 (A T o-Be-T raversed Link)
1401 to 1393 (A T o-Be-T raversed Link)
1393 to 1383 (A T o-Be-T raversed Link)
1383 to 1342 (A To-Be-T raversed Link)
1342 to 1347
1347 to 1370
1370 to 1382
1382 to 1422
1422 to 1413 (A To-Be-Traversed Link)
1413 to 1400 (A T o-Be-T raversed Link)
1400 to 1391 (A T o-Be-T raversed Link)
1391 to 1384 (A T o-Be-T raversed Link)
1384 to 1323 (A To-Be-T reversed Link)
1323 to 1342
1342 to 1347
1347 to 1370
1370 to 1393 (A To-Be-T raversed Link)
1393 to 1383
1383 to 1391 (A To-Be-T raversed Link)

Figure 4.24 A Notepad Route Report for Driver 272 on Wednesday

AirVi«'w UIS Vtjjsion '.i IKj

Ete £di yew Iheme fiiaphics Nehwufe BulcSTg Stan® Booting iiflndow Help

w BBS
3.S «
Ss tlmZ3 i%:i EIXirrMi a*

^^-xJ
m Ut*tet272 Onwednesdj^

•jji^ ^,1''

I>rM'ei272 On Tuesday

t>fff tzrz On Monday

w

m

Stool

ie

,J pjftlion Netuvorkl

m
Fartlion Neoworki"!

A/
Boad Nodes

m

m Boads

A/ i«i

sa

I
Aieat aooOiigh:I-8a37.

Figure 4.25 A Graphic Route Report for Driver 272 on Wednesday

89

4.5.2 Data Attributes for a Route Object

A route object consists of graphic shapes with object tags. Its object tag carries

information about the route, which is derived from route attribute tables. The object tag is

composed of following items.

driver-daylD tpID FeaturelD demand routelD

OrderlD routeFnode RouteTnode traverseBool distance

1. "driver-daylD" is a combination of driver code and weekday and they are linked by

". daylD is an index number for weekdays. They are 1,2,3,4, 5 for Monday,

Tuesday, Wednesday, Thursday, and Friday. Therefore, driver-daylD can be written

as 272-3, which means driver 272 on Monday. "driver-daylD" is useftil for

identifying a series of route file names. All files associated with a driver-daylD are

about that driver on a weekday. For example, r272-3.txt is an ASCII file of generated

routes for driver 272 on Wednesday and sht2722-3.txt is also an ASCII file generated

for shortest paths for the same driver on the same day.

2. "tplD" and "featurelD" are two unique ID for representing graphic shapes' tabular

attribute and their graphic attributes.

3. "demand" is the amount of trash collected by the driver on a weekday.

4. "routelD" is an index number for routes. It is generated from writing an ASCII route

and shortest path ouqiut files to a route shape file:

5. "orderlD" is another index number for links belonging to one route. It is also

generated from writing an ASCII route and shortest path output files to a route shape

file. It is significant for identifying the order links to be traversed for a route.

90

6. "routeFnode" and "routeTnode" are Ids of from nodes and to nodes.

7. "traverseBool" is a Boolean variable and represented by -30 and -10. -30 means yes

and a link is to be traversed. -10 means no and a link is not to be traversed.

8. "distance" is an alternative of link length.

Interface functions for route generating and reporting are listed in Appendix C.

4.6 Concluding Remarks

In the Hamblen Coimty SWRoute, a base road network is partitioned into 20

subnetworks because there are four crews working on five weekdays each week. The

algorithms presented in chapter 3 are used for generating routes for these 20 subnetworks

respectively. This chapter presents principles for designing SWRoute GIS interface and

its toolboxes. These toolboxes have functions for 1) partitioning a base road network into

subnetworks, 2) creating seed node set, and 3) generating and reporting routes. The first

two toolboxes collect user inputs about SWRoute liaitition and stops. The third integrate

the route generating algorithms and shows the result in the GIS interface.

91

CHAPTER 5

Discussion and Recommendations

5.1 Summary of research results

In the light of the results presented in the previous chapters, this chapter answers

the research questions that were posed in chapter 1. The questions raised in Chapter 1

were:

Can a prototype GIS-assisted system be built with decision support

functions, which can be used to develop, apply, and evaluate a wide range of solid-

waste collection route systems in rural U.S. counties?

Its related questions were:

Question 1: What are the advantages and the disadvantages of a methodology of

linking GIS and SDSS for designing solid-waste collection routes?

Question 2: Can we classify the algorithms currently used for solving arc routing

problems into useful sets of approaches and processes?

Questions: What kinds of heuristic algorithms present a reasonable solution to the

solid-waste collection routes?

Question 4: Can we build tools with general purposes to match those algorithms?

The linkage between GIS and SDSS for implementing SWRoute is not loosely

coupled. There is a full integration of GIS functionality for manipulation of input, results,

and formulation of the models required by SWRoute.

In general, the advantages of integrating GIS and SDSS are listed below:

92

1. The GIS and SDSS integration allows for a compact expression of the problem by

hiding SWRoute implementation details. The Hamblen County SWRoute interface

was designed within GIS software for formatting, solving, and studying solutions to

solid-waste routing modeling problems. Users have full access to the information

concerning the solution without having to know the details of the mathematical

problem that is solved.

2. In a GIS-based SDSS, there are convenient tools designed for conversion between

GIS and modeling system and between individual submodels. The development of the

GIS-based SDSS begins with a classification of approaches for a specific type of

problem into a limited number of categories, and subdivides each approach into

separate generic tasks. For the Hamblen county SWRoute, this yields a fiiamework of

three submodels including partitioning subnetworks, adding a seed node set, and

running arc routings for subnetworks. The GIS-based SDSS has fimctions for

integrating data communication and conversion between these three submodels.

The disadvantages of the integration of GIS and SDSS for SWRoute are:

1. The current generation of commercial GIS software does not support GIS-based

SDSS for SWRoute and its modeling implementation - arc routing problems. Popular

GIS companies, such as ESRI and Intergraph, are developing network modules to

solve vehicle routing problems and other location-allocation problems. However, no

modules are currently available for arc routing problems by these vendors. This fact

showed that a GIS-based SDSS SWRoute had to be built from scratch, which

increases the difficulties and lengthens the time of designing an arc routing system.

93

2. Investment in developing tools and fimctions is high. Besides the difficulties

mentioned above, much effort is needed to find an approximate algorithm, to

implement arc routing models, and to design tools and functions in order to combine

models with a GIS interface to show the result from the algorithm. Although GIS

software provides some basic tools to use, in their native state they do not meet the

needs of arc routing problems.

The next step in the development of a GIS-based SDSS for SWRoute is the

implementation of the generic concepts derived from the analysis of specific individual

models into functions and submodels. The submodules are capable of performing the

generic tasks from which the total model can be constructed. The main module for

SWRoute is to implement algorithms for arc routing problems. As discussed in Chapter

three, the augment-merge algorithm is developed for computing SWRoute candidate

solutions and Peam's algorithm (1988) for computing its corresponding lower bounds.

Other supporting algorithms are needed for shortest path searching and the nonbipartite

minimum cost perfect matching problem. In this thesis, these algorithms are all regarded

as modules, and are implemented as DLLs called from the GIS.

To solve the CARP, this thesis applied the augment-merge algorithm. This algorithm

is applicable to the circumstances of the Hamblen County. First, it is an algorithm used

for a transportation network with sparsely distributed arcs with non-zero demand for

solid-waste collection, which describes the Hamblen County situation. Second, the

augment-merge algorithm is based on the shortest path algorithms, which are well

developed. Thirdly, by computing lower bounds of available routes, we can determine the

quality of the solutions from the augment-merge algorithm.

94

As a heuristic algorithm, the augment-merge algorithm can not guarantee optimal

solutions for SWRoute. However, it provides an opportunity to develop good solutions

which can be evaluated by local experts on a GIS. The GIS interface developed for

SWRoute contains tools to implement all the functionality for creating a transportation

network, constructing SWRoute, and evaluate its solutions. This raises questions about

the robustness of the tools in the hands of non-technical persons. The tools are helpful in

designing and structuring SWRoute, and shield the user from the details of the

implementation of the algorithm and model. This enables the user to focus on the

geographic nature of the problem and its solution. Since SWRoute is integrated in a GIS

environment, all conunon GIS tools for data extraction and mapping are available. The

SWRoute tools are integrated with the standard GIS tools in a seamless way.

5.2 Recommendations for Future Research

According to Aijang A. Assad, et al. (1988), "the major advance in vehicle

routing has been to capture enough characteristics of the real-world distribution

environment to enable the solution procedures to obtain a useful answer, without thereby

precluding their computational tractability". They further claim that this desirable state of

affairs has resulted from a combination of "careful modeling, the design of clever

heuristics, and an interactive user interface". This thesis provides for a set of tools to

make the solution of arc routing problem in a GIS-based SDSS as easy and as flexible as

possible. SWRoute allows for the formulation of arc routing problems suitable for

different regional environments: The Hamblen Coimty SWRoute illustrates how

SWRoute can be tailored to a real world problem. In the future, more research needs to be

95

done to improve SWRoute to achieve goals regarding the characteristics of the routing

environment constraints on route design, altemative routing algorithms, and

implementations to the SWRoute user interface.

1. Modeling Extensions

Future research should consider possible complexities of arc routing problems with

respect to solid-waste generating characteristics and operational routes.

• Solid-waste can be distinguished by the imcertainty in the amoimt and types

generated from different counties. In some cases, the amount actually collected may

vary from predicted levels. SWRoute classifies all solid-waste as residential and uses

one fixed generated rate for the entire county during all seasons of a year. This

simplification might not apply.

• SWRoute takes the start and end locations of a route as the same depot. However, the

problem becomes more complicated when certain vehicles have full loads and can

exit from a node which is not a starting point.

• SWRoute ignores the scheduling of drivers' routes (service time window) and the

additional constraints that reflect driver safety regulations. In service activities such

as solid-waste collection routing problems, the timing of services generally assumes a

larger importance. This fact requires combining routing and scheduling to seek for

good spatial and temporal configurations for routes.

2. Algorithm Extensions

The current objective of SWRoute is to minimize distance-related costs over

the fleet of vehicles or just the number of vehicles used. The objective function can be

expanded to ensirre that balanced routes are generated and penalize large imbalances.

96

Similar consideration applies to guaranteeing a certain minimum number of hours of

work each day. Moreover, additional constraints might be added to reflect the scheduling

of crews.

In the vehicle routing research literature, the augment-merge algorithm

belongs to a category of heuristic problems termed as "sequential heuristics", which

means the problem is decomposed into a sequence of subproblems that are sequentially

solved with different algorithms. SWRoute uses a "cluster first-route second" approach to

obtain acceptable solutions and with the aid of nonbipartite minimum cost matching

problems, a lower bound is computed to evaluate the approximation of the solution.

Using lower bounds indicate how good or how bad the solution is, but it can not tell how

to achieve a better solution.

3. GIS Interface Extensions

SWRoute is built on a topological road network. Although ArcView provides some

tools for editing the tabular attributes of the network, no special tools are designed for

SWRoute so that it is impossible for a person who does not know ArcView to edit

SWRoute attributes.

The current interface is used for preparing input data (constructing "what-if?"

scenarios) and displaying model outputs. There is no ability to allow user intervention

with the algorithmic operations, such as swapping routes or sections of routes between

driver-day partitions.

The goal of future SWRoute is to improve the ability of planners to design solid-

waste routes. This perspective requires that we learn from the experiences of the users of

SWRoute in order to create a more useful spatial decision support system. Research

97

needs to be conducted on how to improve SWRoute. Individuals involved in routing

solid-waste vehicles are the best judges of the need for new tools, model extensions, and

user interface improvements.

98

BIBLIOGRAPHY

99

Bibliography

Adam, Nabil R. and Aryya Gangopadhyay (1997) Database Issues in Geographic
Information Systems, Kluwer Academic Publishers, Boston.

Assad, A., W. L. Peam, and B. L. Golden (1978)" The Capacitated Chinese Postman
Problem: Lower Bounds and Solvable Cases", American Journal of Mathematics and
Management Science, 7, 63-88.

Belenguer, E. Benavent (1991) " Polyhedral Results on the Capacitated Arc Routing
Problems", Working Paper, 55 and 57, Department De Extadistrica e Investigacion
Operativa. Universidad de Valencia, Spain.

Beltrami, E. and L. Bodin (1974) "Networks and Vehicle Routing for Municipal Waste
Collection", Networks, 4,65-94.

Benavent, E., V. Campos, A. Corberan, and E. Mota. (1992) "The Capacitated Arc
Routing Problem: Lower Boxmds", Networks, 22,669-690.

Berge (1957) "Two Theorems in Graph Theory", Proceedings of the National Academy
of Sciences USA, 43, 842-844.

Bodin, L. and Samuel J. Kursh (1978) "A Computer-Assisted System for the Routing and
Scheduling of Street Sweepers", Operations Research, 26(4), 525-537.

Bodin, L. and Samuel J. Kursh (1979) "A Detailed Description of a Computer System for
the Routing and Scheduling of Street Sweepers", Comput. & Ops Res., 6,181-198.

Bodin, L. and B. Golden (1981) "Classification in Vehicle Routing and Scheduling",
Networks, 11(2), 97-108.

Bodin, L. and Laurence Levy (1991) "The Arc Partitioning Problem", European Journal
of Operational Research, 54, 391-401.

Bumpus, Lewis D. Solid-waste: Transportation and Other Costs, County Technical
Assistance Service, The University of Tennessee, Knoxville.

Busch, K. (1991) Vehicle Routing on Acyclic Networks, Ph.D. Dissertation, The Johns
Hopkins University, Baltimore, MD.

Christofides, N. (1979) "The Optimal Traversal of a Graph", Omega, 1, 719-732.

100

Christofides, N., A. Mingozzi, and P. Toch (1981) "Exact Algorithms for the Vehicle
Routing Problem, Based on Spanning Tree and Shortest Path Relaxations", Math. Prog.,
20(3), 255-282.

Clark, Roberts and John C. H. Lee. Jr. (1976) "Systems Planning for Solid-waste
Collection", Comput. & Ops Res., 3,157-173.

County Technical Assistance Service (1992) Hamblen County Solid-waste Needs
Assesment, East Tennessee Development District, The University of Tennessee,
Knoxville.

Corry, Chris (1994) Killer Borland C++ 4, QUE Corporation, NH.

Crossland, M.D., B.E. Wynne, and W.C. Perkins (1995) "Spatial Decision Support
Systems: An Overview of Technology and a Test of Efficiency", Decision Support
System, 14,219-235.

Dallaire, Gene (1996) "How Cities Are Using GIS for Route Optimization", MSW
Management, May/June, 74-79.

Daniel, Larry (1992) "SDSS for Location Planning, or The Seat of the Pants is Out",
Geolnfo Systems.

"Decision Support System, Environmental Models, Visualisation Systems and GIS",
http:/^amboo.mluri.sari.ac.uk/~jo/litrev/chap5.html

Edmonds, J. (1965) "Path, Trees, and Flowers", Canadian Journal of Mathematics, 17,
449-467.

Edmonds, J. (1965) "Matching and a Polyhedron with 0-1 vertices", J. Res. Nat. Bur.
Standards Sect. B., 69, 125-130.

Eiselt, H. A., Michel Gendreau, and Gilbert Laporte (1995a) "Arc Routing Problems, Part
I: The Chinese Postman Problem", Operations Research, 43(2), 231 -242.

Eiselt, H. A., Michel Gendreau, and Gilbert Laporte (1995b) "Arc Routing Problems,
Part II: The Rural Postman Problem", Operations Research, 43(3), 399-414.

Enache, Mircea (1994) "Integrating GIS with DSS: A Research Agenda", URISA, 154-
166.

Gabow, H. N. (1973) Implementation of Algorithms for Maximum Matching on
Nonbipartite Graphs, Ph.D. dissertation. Dept. Electrical Engineering, Stanford Univ.,
Stanford, CA.

101

Gabow, H. N. and R. E. Taijan (1983) "A Linear-time Algorithm for a Special Case of
Disjoint Set Union.", Proc. Fifteenth Annual ACM Symposium on Theory of Computing,
246-251.

Galil, Z., S. Micali, and H. Gabow (1983) "Maximal Weighted Matching on General
Grap
261.

Graphs", Proc. 23'^'' Annual ACM Symposium on Foundation of Computer Science, 255-

Golden, B. L. and A. A. Assad (1988) Vehicle Routing: Methods and Studies, Elsevier
Science Publishers B. V., The Netherlands.

Golden, B., T. Maganti, and H. Nguyen (1977) "Implementing Vehicle Routing
Algorithms", Networks, 7,113-148.

Golden, B. and R. Wong (1981) "Capacitated Arc Routing Problems", Networks, 11,
305-318.

Golden, J. DeArmon and E. K. Baker (1983) "Computational Experiments with
Algorithms for a Class of Routing Problems", Computers Operations Research, 10,47-
69.

Haagsma, Ijsbrand G. and Remco D. Johanns "Decision Support Systems, an Integrated
and Distributed Approach", http://cci.ct.tudelft.nl/Remco/SanFransisco.htm

Hamblen County (1994) Hamblen County Regional Solid-waste Plan.
Ji, Wei and James Johnson (1994) "A GIS-Based Decision Support System for Wetland
Permit Analysis", GIS/LIS, 471-476.

Keenan, P. and M. Naugnton (1995) "Arc Routing for Rural Irish Networks", In J.
Dolezal & J. Fildler (Eds.), System Modelling and Optimization, Chapman Hall, London.

Keenan, P., Harold C. Harrison, and Andrew J. Deegan (1996) "A Decision Support
System for Arc Routing", Working Paper, University of College Dublin, Ireland.

Koenig, Andrew (1989) C Traps and Pitfalls, AT&T Bell Laboratories, Addison-Wesley
Publishing Company.

Lawler, L. (1976) Combinatorial Optimization: Networks and Matriods, Holt, Rinehart
and Winston, New York.

Lenstra, J.K. and A.H.G. Rinooy Kan (1976) "On General Routing Problems", Networks,
6,273-280.

Magnanti, T. (1981) "Combinational Optimization and Vehicle Fleeting Planning:
Perspective and Prospects", Networks, 11(2), 279-213.

102

McBride, Richard (1982) "Controlling Left and U-Tums in the Routing of Refuse
Collection Vehicles", Comput. & Ops Res., 2, 145-152.

Moon, George and Mark Ashworth "Capacities Needed in Spatial Decision Support
Systems".

Mullaseril, Paul Abraham (1997) Capacitated Rural Postman Problem with Time
Windows and Split Delivery, Ph.D dissertation. The University of Arizona.

Murty, Katta G. Network Programming, Prentice Hall, Englewood Cliffs, New Jersey

Nagel, Stuart S. (1992) Applications of Decision-Aiding Software, St. Martin's Press,
N.Y.

Negreiros, M. O Problem de Palnejamento e Percuso de Veiculos na Coleta do Lixo
Urbano Domiciliar, M.Sc. Dissertation, Sistemas/COPPE, Federal University of Rio de
Janerio, Brazil.

Peam, W. (1988) "New Lower Bounds for the Capacitated Arc Routing Problem",
Networks, 18,181-191.

Peam, W. (1989) "Approximate Solutions for the Capacitated Arc Routing Problems",
Computers Operations Research, 16, 589-600.

Peam, W. (1991) "Augment-Insert Algorithms for the Capacitated Arc Routing
Problem", Computers Operations Research, 18(2), 189-198.

Ralston, Bmce (1994) "Object-Oriented Spatial Analysis", in Spatial Analysis and GIS,
S. Fotheringham and V. Rogerson (Eds.), Taylor & Francis Ltd., London, 165-185.

Ralston, Bmce, George Tharakan, and Cheng Liu "A Spatial Support System for
Transportation Policy Analysis", Journal of Transportation Geography, 2(2), 101-110.

Ray, Julian J. (1990) The Flow-Resource Facility Location Problem, Ph.D dissertation.
The University of Tennessee, Knoxville.

Russell, R. (1977)" An Effective Heiiristic for the M-Tour Travelling Saleman Problem
with Some Side Conditions", Operation Research, 25, 517-524.

Smelcer, John B. and Erran Carmel (1994) Do Geographic Information Systems Improve
Decision Making? An Experiment Comparing Maps and Tables,
http://lattanze.loyola.edu/lattanze/research/wpl094.023.htm

103

Sprague, Ralph H. Jr. and Hugh J. Watson (1989) Decision Support Systems: Putting
Theory into Practice, Edited, Prentice Hall, Englewood Cliffs, New Jersey.

Sticker, R. (1970) Public Sector Vehicle Routing: The Chinese Postman Problem, M.Sc.
Dissertation, Department of Electrical Engineering, Massachusetts Institute of
Technology, Cambridge, Mass.

Swan, Tom Mastering Borland C++, SAMS, A Division of Prentice Computer
Publishing, Indiana.

Taijan, Robert Endre (1983) Data Structures and Network Algorithms, Bell Labratories,
Murray Hill, New Jersey.

Worboys, Michael F. (1995) "GIS: A Computing Perspective", Taylor & Francis Ltd,
London.

104

APPENDICES

105

APPENDIX A - A CARP MATHEMATICAL

FORMULATION

Two integer linear programming formulations have been proposed for the CARP

on the basis of directed and undirected networks, respectively. Though the thesis defines

a directed network for SWRoute with all arcs with two-way links, it is necessary to

clarify the difference between the mathematical formulations for directed and undirected

networks in order to understand its undirected network nature.

In the directed CARP formulation (Golden and Wang, 1981), a mathematical

programming formulation for the CARP is given as follows:

n n k

;=1 >1 p=l
(1)

subject to:

= 0
k=l A:=l

p=\

1±
W

X?. >U^1/ —'/j

Vz = 1,...,n

yp=\,...,K

V {i,j) e A

V (ij) e A

Vp=l,...,K

(2)

(3)

(4)

1=1 j=i

Vp=\,...,K (5)

106

'■eg JeQ
Q -1

leg yeg

yfc +725^1

^^^,y e {0,1}

V/7 = 1,...,K
V ^ = l,...,2"-^-l
'^Q^N\{0,l},Q:^^

where:

(6)

(7)

(8)

(9)

« = the number of nodes.

AT = the number of available vehicles.

qij = the demand on arc (i,j).

IF = the vehicle capacity (W > max qij).

Cjj = the length of arc

xfj =\, if arc {i,j) is traversed by vehicle p, 0 otherwise.

/^ = 1 if a vehicle traverses and services arc 0 otherwise,

fz] = the smallest integer greater than or equal to z.

yj~ and y^g are two variables to eliminate illegal subtours'®; each combination

index q corresponds to the set Q.

The objective function (1) seeks to minimize total distance traveled. Constraints

(2) are conservation of flow constraints, which guarantee there are equal number of

vehicles coming into and out the node i. Constraints (3) state that each arc with positive

demand is serviced exactly once because there exists the assumption W > max qy.

107

Constraints (4) guarantee that arc (i,j) must be serviced by vehicle p if the vehicle

traverses arc (i,j). Constraints (5) make sure that vehicle capacity W is not violated.

Constraints (6), (7), and (8) are subtour breaking constraints. Constraints (6) ensure that

the solution must contain no cycle using the nodes 2,3,... ,n (i.e., contain any subtours

on these nodes). Constraints (7) make sure there exists a linkage between a subtour and

its complement subtour if = 0. Constraints (8) are for and y^^, which are

variables for balancing constraints (6) and constraints (7). In other words, if y(^ = 1 and

^25 ~ 0, constraints (7) is not binding and constraints (6) independently address there are

no illegal subtours. Constraints (8) are integer constriants.

In the formulation proposed by Belenguer and Benavent for the undirected

unicursal'^ network, the mathematical formulation is expressed as follows:

n n k

Min (I)
'=1 >• P=1

subject to:

£/^ = l Vi,j=l,...,n (2)
p=i

Vp=l,...,K

V/.= l K (3)
i=l ;=1

ieE{S) jeE(S) ieE* {S) JeE* (S)

A tour which passes through only a subset of the nodes in a network is called a subtour. An illegal
subtour is a tour stating from a depot node but never coming back to the depot node.
" A unicursal or Eulerian network refers to a connected graph where there exists a closed walk in G
containing each arc exactly once and each vertex at least once.

108

V A(S) - {(/,/): ieS and j eVXSorj eS and ieV\S. where S cN}

A'(S)=A(S)n{(iJ)eA;d,^>0}

Vp=l,...,K

\f h eS,l eSand gi,,>0 (4)

I I I =
ieE(S)JeE(S) ieE* (S) JeE* (S)

Zt >0 and integer
Vp = 1,..., k (5)

Xy > 0 and integer (6)

Is ^{0,1} (7)

where:

is defined only as a deadheading arcs, representing the number of times arc (/,

j) is traversed by vehicle p without being serviced by that vehicle.

S is a subset of node set N.

A(S) is a set of deadheading arcs starting from one cycle and ending to different

cycle.

A"^ (S) is a subset of..4(5) including arcs with positive demand,

The objective function (1) intends to minimize the total distance of deadheading

and serviced arcs. Constraints (2) state that every arc with a positive demand is serviced

exactly once by a vehicle. Constraints (3) are capacity constraints, making sure that the

total demand for a route will not surpass the vehicle capacity. Constraints (4) play a role

to clarify that once an arc (/,/) in ̂ (5) is serviced by a vehicle, the arc (i,j) is also

traversed by the same vehicle, which forms a continuous route. Constraints (5) address a

109

unicursal network for the undirected case, which means that any node A(S) must be

connected to traversed and serviced arcs an even number of times for any vehicle.

Constraints (6) and constraints (7) are integer constraints for and .

110

APPENDIX B - A UNDIRECTED MATCHING NETWORK
AND NONBIPARTITE MINIMUM COST PERFECT
MATCHING PROBLEM (NMCPMP)

As defined in CARP, let G (N, A, C) still be a given directed network. Let R be

the set of arcs with nonzero demand. Let D(R, i) be the number of arcs from R incident to

node i(ieN). Let SPL(i,j) be the cost of the shortest path from / to j. Let Q be the total

arc demands in the network G.

Let G (N ,E ,C) be a derived undirected network from G. Its node set N'

consists of all odd-degree nodes in N and its arc set E consists of arcs traversed through

the shortest path between every pair of nodes in iV^'. C' is the cost matrix for the shortest

path distance between any two nodes. Besides these, there are other terms to be

introduced for better understanding matching algorithms in the setting of matching

theory.

Nonbipartite Minimum Cost Perfect Matching Problem

A matching M of a graph G' is a subset of arcs M <zE' that contains at most one

matching arc incident at node i, for each ieN'. The perfect matching of the graph G' is

a matching Mthat contains exactly one edge incident to the node ieN'. The size \M\of

M is the number of edges it contains. If a perfect matching M exists in G ', | iV' | must be

even, and \M\ = \N | / 2. The cost of Mis the sum of its arc costs, which is defined as

: over (i,j) e M). A nonbipartite network refers to a G which can not be

partitioned its node set into two subsets and so that for each edge (i;j) in E either
111

i e iV, and j s iVj or i e N2 and 7 e jV,. The nonbipartite minimiim cost perfect matching

problem (NMCPMP) is that of finding a matching of perfect matching with minimum

weight in a nonbipartite network. Augmentation and blossoms are two terms associated

with solving NMCPMP and are defined as follows.

Alternating Path and Au^entation

According to Edmonds (1965), let Mbe a matching of a graph G . An arc in Mis

a matching arc and every arc not in Mis unmatched. A node is matched if it is incident to

a matching arc and unmatched otherwise. An altemating path is a simple path whose arcs

are alternatively matching and unmatched. The length of an altemating path is the

number of arcs it contains. An altemating path is augmenting if both its ends are

unmatched nodes. If Mis an augmenting path then Mis not of maximum size, its size

becomes |Af| + 1 by interchanging matching and unmatched arcs along the path.

Moreover, all the matched nodes in M remain matched and two additional nodes from the

both ends of the path are matched. A well-known theorem by Berge (1957) states that a

matching Mhas a maximum matching if and only if G contains no augmenting path with

respect to matching M.

As an example, consider the paths = 2, (2, 5), 5, (5, 8), 8, (8,9), 9; Pj = (1»

2), 2, (2, 5), 5; P3 = 1, (1,3), 3, (3,4), 4, (4,6), 6 in the network in Figure B.l. All these

are altemating paths with the matching arcs drawn as thick lines. Rematching the thick

matching using P,, Pj» ̂ 3 leads to the matchings: M, = {(5, 8), (7,10), (3,4)}, =

{(1,2), (8,9), (7,10), (3,4)}, M3 = {(1,3), (4,6), (7,10), (8, 9), (2, 5)} respectively. It

112

can be verified that among these three altemating paths, only is an augmenting path

because rematching using it increases the length of the matching from 4 to 5.

10

Figure B, 1. A Matching Network with Thick Matching Edges

Flowers and Blossoms

One umque property of nonbipartite matching problem is the presence of certain

subgraphs composed of particular types of paths and odd cycles, which add more

difficulties for solving nonbipartite matching problems than bipartite matching problems.

Flowers and blossoms are such subgraphs. A flower, defined with respect to a matching

Mand a root node p, is a subgraph with two components. One is a stem that is an even

length altemating path that starts at the root node p and terminates at some node w. Ifp =

w, the stem is empty. The other is a blossom that is an odd length alternating cycle that

starts and terminates at the terminal node w of a stem and has no other node in common

with the stem, w is the base of the blossom.

113

Figure B.2 is a simple blossom with base 5 in red and black solid lines and the

stem in dotted lines. The black solid thick lines are matching edges.

O 0
10

Figure B.2. A Simple Blossom

Integer Primal-Dual Programminff Formulation for NMCPMP

A primal formulation for NMCPMP is considered as follows:

UmY,c\jXy

subject to:

x{i) = 1 Vi €iV

Y;{x) <(|7J-1)/2 a = ltoZ

> 0 and integer V {ij) e E'

where:

(1)

(2)

(3)

(4)

x(/) = overj such that {i,j) e E'. Let Y cz A with |r| odd and |F| ̂ 3.

7^'(x) = ̂Xy over i,j both e Y and (iJ) eE'.

Let {7i,..., 7^} be the set of all distinct subsets of iV' of | iV' | > 3.

114

The objective function (1) attempts to minimize the total distance of all matching

pairs. Constraints (2) are perfect matching constraints. Constraints (3) are known as the

matching blossom inequality constraints corresponding to .

A dual formulation for NMCPMP is considered as follows:

Max = (4)
ieN (T=l

subject to:

dy(7r,ju)<Cy V(i,j)eE' (5)

M^O (6)

where:

TTj is a dual variable associated with the primal constraints (2) corresponding to

node i.

is another dual variable associated with the primal constraints (3)

corresponding to the odd subset (cr = 1 to L).

The dual variables n-, are also called original node prices. The dual variables

are known as pseudonode prices.

Let It = (;r,.) and // =), given the dual solution {7t,/i), define for each (i,j)

eN, there is

= (over crand contains both i and j)

dy{7t,pi) = 7t,+7tj-^-{i,j)

115

The objective function (4) for the dual formulation is expressed as a maximum

solution for the number of matching arc pairs. The complementary slackness conditions

for optimality are given as:

Xy > 0 implies dij(7r,ju) = Cy, for each (i,j) e E' (6)

//„ > 0 implies Y; (x) =([7^ | -1) / 2, for cr = 1 to Z (7)

Furthermore, Xy = 0 implies the equality subnetwork with respect to (^,//) and

> 0 always implies that the associated Y^. is the set of original nodes inside an

existing pseudonode. This also guarantees that there are all but at most (n/2) of the dual

variable // = (//q) be 0 at every steps.

Primal-Dual Blossom Algorithm and its Solution for NMCPMP

The algorithm for NMCPMP was firstly put forward by Edmonds (1965). With

his method, an algorithm can be obtained in O («"*) time. Gabow (1973) and Lawler

(1976) independently discovered how to implement Edmonds's algorithm so it would nin

in) time. Galil, Micali, and Gabow (1982) reduced it to run in 0(n m log ri) time.

The concept of disjoint-set operation proposed by Gabow and Taijan (1983) fiarther

reduced the running time to be 0(min{ ,nm log n)), which is the best known time

bound for NMCPMP.

Briefly, the primal-dual blossom algorithm discussed in the section is based on

Edmonds's (1965) and Gabow's (1983) methods with disjoint-set operations. The

116

algorithm starts with using a search algorithm, which grows a spanning tree'® rooted at

root node p. The nodes in the spanning tree are labeled nodes and unlabeled nodes. The

labeled nodes are even or odd nodes'^. As the search procedure proceeds, the algorithm

reassigns even and odd labels to the nodes and identifies an augmentation starting at root

node p. If a labeled node is reassigned and its label is different firom what it already has,

an even and odd alternating path with a blossom is found. The search step is suspended

and replaced by a blossom shrinking and pseudonode unshrinking steps. The blossom is

shrunk into a pseudonode at the base of the blossom. After the data structure is updated,

the search step continues until another blossom is found out or all nodes are run out.

Once we succeed in identifying an altemating path from node p to some unmatched node

q, we expand the blossom represented by those pseudonodes one by one until the

alternating path contains no pseudonodes. If a current equality subnetwork^® contains a

Hungarian forest^', the algorithm then goes to the dual change phase to reach another

new equality subnetwork condition where at least one of the augmentation, blossom

shrinking, or pseudonode unshrinking steps can be carried out.

In detail, let a,{K,ju) and subsets of original edges T,i7r,p) and A„,(;r,/r) be

defmed for each current node t and current edge (v; t) with respect to the present dual

solution . More specifically.

A tree 7" is a spanning tree of G if T is a subgraph of G. Every spanning tree of a connected «-node graph
G has (n - 1) arcs.
" Node i is even or odd depending on whether the number of arcs in the unique path from the root node to
this node is even or odd.

As to the Primal-dual algorithms, if the dual variable for all arcs are met with Cy = Cy — Pj —Vj = 0,
an equality subnetwork is obtained with respect to the dual feasible solution //, v .
No altemating tree can grow any further (i.e., the list of labeled nodes is empty). There are no

augmenting paths in the current equality subnetwork with respect to the current matching. There are no

117

a,(;r,//) = Min. {cy-dij{7i:,fi):(y,j) e£",y inside/,/inside an EVEN node 56/},

which is the minimum node price from adjacent edges of node /.

a, is comparable with equation (6). If a, {n,^) = 0, xy > 0; otherwise, also

true.

r,(;r,//)= {(/;7): (/;7) eE' attains the min. in the definition of }»which

is the edge of obtaining a, .

= {0";7) : 0;y) e jE' attains the min. in min. {cpg- dp^n,iS) : {p\ q)

e£, pe E ,q s E }}, which is a set of edges between v and its adjacent node t by

obtaining the minimirai node price.

Algorithm Statement and Implementation

The following procedures and Figure B.3 present the steps of implementing the

primal-dual blossom algorithm.

Step 1: Initialize Matching

This step includes the imtiali2ation for dual variables and for an alternating forest.

First, set every node / in network G with two alternating paths, original node

prices Ttjii&N), and a pseudonode variable represented by pseudonode prices p. of

certain pseudonodes. An initial feasible solution is set as ((;r° = (;r°),//°) where //" = 0

and = (l/2)(min. {cy: (i,j) e A}) for each ie N . Choose an initial matching in the

equality subnetwork G',(7r°,p°). Initialize dy(;r°,p°) for every (i;j) e E'.

blossoms which can be shrunk. There are no odd labeled pseudonodes associated with pseudonode price

118

Secondly, root an alternating tree at each unmatched node i to form a alternating

forest. The nodes of the tree are nodes of network G . Each node i has pointers to its

father of the tree and its son, which are all initialized to point to a value of -1.

Step 2. Initialize Node Mating

There are two methods as choices for scanning and searching mates for all

unmated nodes. One is called as ''^greedy method^ and the other as ̂""heuristic method\

The greedy method requires the ordering of all undirected edges (/,/) (/ e iV ,

j^N \{/}) as { ,^2 where Cj ̂ C2,...Cj^ ̂ A heap is

built to store all edges. Heap operations are used to pick up one arc with a smallest

distance Ck among all arcs in the heap. The two end nodes i and j become mates, i.e., the

mate of i is j and the mate of j is /. The arc is deleted from the heap and the above

steps repeat until the heap becomes empty.

Heuristic method is an improvement of the greedy method and attempts to find

augmenting paths of length < 3 instead of these of length < 1 for the greedy method. For

V z € iV", a heap is built to store unmatched end nodes of a set of edges (z) which are

incident in/out node z. Similarly, if the heap is not empty, the heap operations are used to

find an edge {i;j) e E (z) and j is the end node for the edge (z; j). Therefore, z and j

become mates each other. If the heap is empty, it means that all edges j incident to/out z

have been matched by other nodes butj. Then, the mate w for nodej is found out when w

^ i and an incident edge (w, v) for node w is also found out when v and v has not

been matched yet. Finally, an augmenting path with a length of 3 is scanned and two

0- 119

pairs of matching nodes are generated, they are i and j, and w and v. The above process

continues until all nodes in N' have been scanned for finding almost all such augmenting

paths.

Step 3: Scan Node

A queue Q is built to store all unmatched nodes. The nodes in the queue Q are

labeled as even and those not in the queue Q as unreached. If the queue Q is empty, the

solution for the matching of the network G has been obtained. If not, alternating paths

and blossoms exist for the existing matching solution and the solution can be improved.

Enqueue one EVEN node v from the queue Q, iterate its incident edges from an adjacent

set (v'), and find out its mate w .

Case 1. w is OfsW, do nothing.

Case 2. w is unreached. \f = 0 and contains an edge

incident to v , label w' as odd and its mate even. If its mate becomes labeled as an EVEN

node from an unlabeled node, for every other current node w such that (v ; w) e £ the

following needs to be done:

Find =Cy-dyi7r\f/') for some (z;/) € If

,no change in or

replace by u

,H^') > , change value of to and replace r^.(;r°,/z°)

by A . .(;z-°,/).

120

Moreover, define v' as the father of w . If 0, continue to scan next

node w'.

Case 3. -w is even. If (;r° = 0, look for current node w containing an

original v incident to an edge in . Meanwhile, if one of these yv is rooted in

different trees from v . There exists an augmenting path from the root of the tree

containing v' to the root of the tree of containing w . Go to Step 4,

Case 4. w is even. If a^. = 0, look for current node w containing an

original v incident to an edge in Meanwhile, v and w are rooted in the

same tree. Edge (v , w) forms a blossom. Go to Step 5.

Step 4: Augmentation

Let ;*(V) and /*(w) be two root nodes for a pair of adjacent nodes v and w .

Accordingly, r(v) K ̂). Trace the predecessor paths of v and w together with edge

(V , w) and lead to the path P , which is augmenting path between r(v') and r(w) by

unshrinking all pseudonodes on the path P in the current equality subnetwork. Update

the matching on the base of the augmenting path P . Repeat the procedure until the

queue Q is empty. Then, go to step 7.

Step 5: Shrink Blossom

Let r(v) and r(w) be two root nodes for a pair of adjacent nodes v and w .

Accordingly, r{v) = r{ w). Trace the predecessor paths of v' and w and identify a

blossom B. Create a new pseudonode b at root node r(v') or r(w), define

E" (b) = Ujgg E'^ (k). Give an even label to node b and add it to the Q. Update adjacent

121

links sets E'{j) = E^^j) u {Z>} for each j € E'{b). Label the nodes and adjacent links

for these nodes in blossom b as tmpassed blossom. The resulting network is expressed as

G' ={N\A\a).

Let 6 be a new even labeled node formed as a pseudonode. Let D be the set of

nodes b on the blossom corresponding b such that (6; 6) is a current edge before b is

formed. For each b eDlet =Cy -djj{7c° for any (/;y)e A^^.(;r'',//®).Let

= min. { :t e £)}. Let = union of over r' e D satisfying .

If

no change in or rj(;r°,//°)

= A, replace T^.{7u\pi'') by u

, change value of to and replace T^{7u^,/i'')

by X,.

Also define the original base node b^ with following values:

<^Ao ^ { Pbb^ • EVEN nodes b such that (Z>; fig) is a current edge}

= union of X^ over b abtaining the minimum in the definition of

abS7t\M')

Repeat the procedure until the queue Q is empty. Then, go to step 7.

Step 6: Unshrunk Pseudonode

122

Unshrink a pseudonode b that is odd labeled with the associated pseudonode

price //^ = 0 in the present dual solution. Revise the set of current matching edges and

the set of current nodes accordingly. Also, revise adjacent link set E'{j) = E'{j) \ {6}

for each j ̂E'(p). Add new even labeled nodes in the blossoms corresponding to the

unshrunk pseudonodes to the queue Q.

Let 6 be a pseudonode which has been unshrunk into v . Let node w on the

blossom corresponding to v and edges (v ; vf) incident at it after the unshrinking.

Compute , and A^. using their definitions. Also,

define v^,^, =Cy for any >9^, =min. w is a

EVEN labeled node on the blossom corresponding to h }, X^. = union of v^.^. over all

w' attaining the minimum in the definition w . If

< >9^.,nochangein or

= >9^.,replace by u X^.

change value of to and replace F^.(;r°,//®)

by X^..

Repeat this procedure until there are no pseudonodes that are ODD labeled

associated -with = 0. Go back to step 3.

Step 7: Change Dual Solutions

If there are no alternating paths that can grow any further, no blossoms which can

be shrunk, and no odd labeled pseudonodes associated with pseudonode price = 0, it

123

implies that the present matching is a maximum number matching in the current equality

subnetwork but may not be a minimum cost matching.

^1 = min. {a, ,//"):/ is an unlabeled current node}

1
S2 = min.{—or, : / an even labeled cmrent node}

52 = niin.{— : (j s.t. is the set of original nodes inside a current odd
2

labeled pseudonodes}

5 = min.{^,,<J2»<^3}

A

If ̂ = + 00, go to step 8. If 5 is finite, define the new dual variable to be ;r =

K). = (i"a)-Then

a,{n,H)= '

a,{7C ,/I)-S if t is an unlabeled node

a,in^ -25 if t is an even unlabeled node
or, (;r °) if t is an odd unlabeled node

r, (TV, //) = r, (;r°, //"), (TV, //) = (;r°, //°)

+ 25 if Y,, is the set of original nodes in an even labeled pseudonode

5 if Y„ is the set of original nodes in an odd labeled pseudonode

u„ otherwise

A

=

Rebuild queue Q and add all even labeled nodes to it. If 5 = 5^, go to step 6. If

^ < ̂3, go to step 3. If queue Q is empty and finite minimum cost for matching nodes is

achieved, go to step 8 or step 9.

124

Step 8: Unfeasibility

There exists no minimum cost perfect matching for G .

Step 9: Optimality

There exists a minimum cost perfect matching for G , stop.

125

Yes

Unfeasibility -Yes

Initialize dual variables and

alternating paths

Buiid a queue Q for
unmatched nodes.

Choose greedy method or
heuristic method to find

mating nodes.

Scan nodes and update
dual variables

oes an augmentin
^ path exist? ^

No

oes an a blosso

Yes

queue Q em^^2>

No

Find the base of a biossom

and shrink a blossom at the

base as a pseudonode

Yes
exist?

No

Update node matchings by
augmenting paths

Is queue Q empty?

No

Unshnnk pseudonodes

Are there

seudonodes?

No

Yes

Yes

Change dual solution to
achieve a minimum cost

matching

minimum co

infinite? .
Optimality

Figure B.3. A Flow Diagram of Primal-Dual Blossom Algorithm

126

Two Examples of Primal-Dual Blossom Algorithms

Case 1: A Simple Derived Matching Network without Blossoms

The CARP network in Figure B.4 includes four odd-degree nodes. Let

G (N ,E ,C) be a derived matching network. Its node set iV' is {Wj,«3,W4,Kj}, which

is a set of the odd-degree nodes. Its edge node set E' is { , £34 5 ̂ 25 > ̂ 34 > ®3s»^45 which

is a new set of edges whose cost set C is defined a set of shortest paths as { £33,

C24,C35,C34,C3S ,^45}. Figure B.4 shows the derived matching work G (N' ,E' ,C') from

Figure 3.2.

Figure B.4. A Derived Matching Network^^ without Blossoms

Step I: Initialize values associated with the edges of G\N' ,E' ,€'). =

(I/2)(min. (ij) e A}). andAy are all initialized as 0 and I respectively.

22The number on the edge indicates the length.
127

Edge(/,/) jc. ji. ^ Dij

2,3 0.5 0.5 0 1

2,4 0.5 0.5 0 1

2,5 0.5 0.5 0 1

3,4 0.5 0.5 0 1

3,5 0.5 0.5 0 1

4,5 0.5 0.5 0 1

Then, values associated with the nodes of G\N',E',C') are initialized. Since no

labeled nodes and pseudonodes exist in this step, initialize as+00. r,(;r,//) for

all / € and A„.(;r,//) for all ((v;z) eE are ignored. An alternating forest composed of

alternating trees is formed as below.

Nodez Alternating Trees

Father Node Son Node Tree Size

ID ID

2 +00 -1 -1 1

3 +00 -1 -1 1

4 +00 -1 -1 1

5 +00 -1 -1 1

128

Step 2: When applying "greedy method" and "heuristic method", edges and nodes

have the following attributes.

Edge (i,j) Length c(i,j)

2.3 1

4,5 1

2.4 5

2.5 6

3.4 7

3.5 8

Node / Mate(0

2 INVALID

3 INVALID

4 INVALID

5 INVALID

For the "greedy method\ the heap operation firstly picks up edge(2, 3) with the

shortest distance between node 2 and 3 become mates, i.e, mate(2) = 3, mate(3) = 2.

Similarly, edge (4, 5) is selected and mate(4) = 5, mate(5) = 4.

Different fi"om the "greedy method\ the "heuristic method^ chooses a node 2 at

first and uses heap operation to pick an edge starting firom 2 with smallest length and

129

ending to a node without a mate, which is edge (2,3). Therefore, mate(2) = 3 and mate(3)

= 2. Next node is 4 and edge(4, 5) is found with mate (4) = 5, mate(5) = 4.

Once all nodes have found mates, the two methods stop and show the following

result.

Node i Mate(z)

2 3

3 2

4 5

5 4

Total Distance 2

Since all nodes have mates, no further steps are needed and the matching solution

is found. The computation of the resulting lower bounds are presented in Section 3.3. A

second example is given to clarify the procedures of dealing with flowers in a matching

network.

Case 2: A Complicated Matching Network with Blossoms

Figure B.5 shows another G\N ,E ,C) as a matching network with blossoms.

130

Figure B.5 A Matching Network with Blossoms

Step 1: First, initialize values associated with the edges of G'(N',E',C),

Edge(/,y) , ju~(i,j) dy

1,2 0.5 0.5 0 1

1,3 0.5 0.5 0 1

2,3 0.5 0.5 0 1

3,4 0.5 0.5 0 1

4,6 0.5 0.5 0 1

5,6 1.5 0.5 0 2

Then, values associated with the nodes in G' {N ,E' ,C') are initialized.

131

Node/ a;{n,n) pre(/) Alternating Trees

Father Node ID Son Node Tree Size

ID

1

2

3

4

5

6

+ 00

+ 00

+ 00

+ 00

+ 00

+ 00

INVALID

INVALID

INVALID

INVALID

INVALID

INVALID

Step 2: When applying the ̂ ^greedy method", edges and nodes have following

attributes.

Edge (i,j) Length c(i,j)

1.2

1.3

2.3

3.4

4,6

5,6

1

2

1

4

1

3

132

Node / Mate(/) Pre(0

1 INVALID INVALID

2 INVALID INVALID

3 INVALID INVALID

4 INVALID INVALID

5 INVALID INVALID

6 INVALID INVALID -

The result shows that mate(l)= 2, mate(2) = 1 and mate(4) = 6, mate(6) = 4,

which is not the maximum number of matching. Continue Step 3.

Node z Mate(z) Pre(z-) Label(0 «, r, A,..

1 2 INVALID UNREACHED 0 Edge(l,2) Edge(l,2)

2 1 INVALID UNREACHED 0 Edge(l,2) Edge(l,2)

3 INVALID INVALID INVALID +00 No No

4 6 INVALID UNREACHED 0 Edge(4,6) Edge(4,6)

5 INVALID INVALID INVALID +00 No No

6 4 INVALID UNREACHED 0 Edge(4,6) Edge(4,6)

Step 3. A new queue Q = {node 3, node 5}

Dequeue(0 = node 3.

Case 2. For edge (3, 4), = C34 - i/34 = 4 - 1 = 3. Set Pre(4) = 3 and g = {node

5, node 6}. No change is for node 4.

133

Node I Mate(/) Pre(/) Label(/) r, A,.,

1 2 INVALID UNREACHED 0 Edge(l,2) Edge(l,2)

2 1 INVALID UNREACHED 0 Edge(l,2) Edge(l, 2)

3 INVALID INVALID EVEN +00 No No

4 6 3 ODD 0 Edge(4,6) Edge(4,6)

5 INVALID INVALID INVALID + 00 No No

6 4 INVALID EVEN 0 Edge(4,6) Edge(4,6)

Case 2. For edge (2,3), = C23 - ̂23 = 1 - 1 = 0. Set Pre(2) = 3 and Q = {node 5,

node 4, node 1}. There are changes for node 2.

Node i Mate(/) Pre(/) Label(/) a r, A.

1 2 INVALID EVEN 0 Edge(l,2) Edge(l,2)

2 1 3 ODD 0 Edge(l,2) uEdge(2,3) Edge(l,2)

3 INVALID INVALID EVEN +00 No No

4 6 3 ODD 0 Edge(4,6) Edge(4,6)

5 INVALID INVALID INVALID +00 No No

6 4 INVALID EVEN 0 Edge(4,6) Edge(4,6)

Case 3. for edge (1, 3), a blossom composed of node 1, node 2 and node 3 is

found since two paths (node 3 - node 2 - node 1, node 3 - node 2) share with the same

base node 3. Go to Step 5 for blossom shrinking with node 7 as a pseudonode. The

134

network is changed as follows:

(node 1, node 2 and node 3)

Figure B.6. A Matching Network with a Shrunk Blossom and a Pseudonode

= Min. {yffj, yffj} =Min. {cb-<ii3,C23-^23} = Min. {2-1,1 -1} =0

X, = {Edge (2,3)}

Q = {node 5, node 4, node 1, node 2}

Y;{1) =xn= I

(|7,|-l)/2=(3-l)/2 = l,foro- =1.

Because Yf (7) = (| 7, | -l)/2, >0 for pseudonode 7.

Values of node 3 are changed and a new pseudonode 7 is added with even label.

135

Node i Mate(z) Pre(/) Label(/) or, r, A,.,

1 2 INVALID EVEN 0 Edge(l,2) Edge(l, 2)

2 1 3 ODD 0 Edge(l,2) UEdge(2,3) Edge(l,2)

3 INVALID INVALID EVEN 0 Edge (2,3) Edge (2, 3)

4 6 3 ODD 0 Edge(4,6) Edge(4,6)

5 INVALID INVALID INVALID + 00 No No

6 4 INVALID EVEN 0 Edge(4,6) Edge(4,6)

7 INVALID INVALID EVEN + 00 No No

Again, return to Step 3. Dequeue g{node 5, node 4, node 1, node 2} = node 5.

Case 3. For Edge (5, 6), node 6 is labeled as EVEN and node 5 and node 6 are on

the different trees. An augmentation path is found, which is node 5 - node 6 - node 4 -

node 3. The labels are changed for these nodes. Readjust the mates for nodes 5, 6, 4, 3

according to the augmentation path.

136

Node i Mate(z) Pre(/) Label(0 r, A,,

1 2 INVALID EVEN 0 Edge(l,2) Edge(l,2)

2 1 3 ODD 0 Edge(l,2)uEdge(2,3) Edge(l,2)

3 4 5 ODD 0 Edge (2,3) Edge (2,3)

4 3 5 EVEN 0 Edge(4,6) Edge(4, 6)

5 6 5 EVEN + 00 No No

6 5 5 ODD 0 Edge(4, 6) Edge(4, 6)

7 INVALID 5 ODD + 00 No No

Step 6. Since pseudonode 7 is ODD labeled but with //j > 0, there is no need of

pseudonode unshrinking.

Dequeue Q {node 4, node 1, node 2} = node 4.

Case 1. Node 3 on Edge (3, 4) and node 6 on Edge (4, 6) are ODD labeled. The

network does not change.

Dequeue Q {node 1, node 2} = node 1.

Case 1. Node 3 on Edge (1, 3) and node 2 on Edge (1, 2) are ODD labeled. The

network does not change.

Dequeue Q {node 2} = node 2.

Case 1. Node 3 on Edge (2, 3) is ODD labeled. The network does not change.

Case 4. Node 1 on Edge (1, 2) is EVEN labeled and node 1 and node 2 are the

same tree. An augmentation path node 3 - node 2 - node 1 is found. Readjust mates for

nodes 1,2, 3 according to the augmentation path.

137

Node i Mate(z) Pre(z) Label(/) or,. r, A.

1 2 3 ODD 0 Edge(l,2) Edge(l,2)

2 1 3 EVEN 0 Edge(l,2) UEdge(2,3) Edge(l,2)

3 4 5 ODD 0 Edge (2, 3) Edge (2,3)

4 3 5 EVEN 0 Edge(4,6) Edge(4,6)

5 6 5 EVEN + 00 No No

6 5 5 ODD 0 Edge(4,6) Edge(4,6)

7 INVALID INVALID ODD + 00 No No

Queue Q becomes empty, go to Step 7 for dual solution check and change.

Step 7. Without consideration of pseudonode 7, or,- = 0 and //, > 0, which meet the dual

condition. Also, all x{i) = 1 (/ = 1, 2, 3, 4, 5, 6) and Y{(J) = (| | -l)/2 for <t = 1,

which meet the primal condition. Moreover, the complementary condition is met. Go to

Step 9 and an optimum solution is foimd.

138

APPENDIX C - AVENUE Pseudocodes for SWRoute

Interface Design

Interface Functions for Generating Base road Network

Select Base Network

Event SelectBaseNet.ClickO

Begin

If name of a node theme nTheme = name of a line theme ITheme then

Add nTheme to nLIST;

Add ITheme to ILIST;

End

Set _BASE NETWORK^ = a e nTheme-,

Set _BASENODE = b e IThem-,

Set a symbol type for _BASENETWORK and _BASENODE shapes;

End;

139

Build Base Network

Event BuildBaseNetwork.ClickO

Begin

S^ifriLIST = {"Vehicle", "Date", "Two_way", "roadname", "weight"}'.

Compare each field/in _BASENETWORK attribute table with JhList

Set the name of f "Vehicle"= "DriverO";

Set the name off ̂^Date"= "DcryO";

Set the name off "Two_wcry'^= "Two-way"',

Add field "roadname" and Set field "roadname" =

"Fdpre "+ "Fname "+ "Ftype"',

Add field "weighf and Set field "weight = field "Length" divided

by the total length of the same road;

End;

140

Interface Functions for Generating Subnetworks

Create A Partition Network Workspace

Event CreateTargetNetwork.ClickO

Begin

Set tw = a Target Network and its directory;

If (t«'s directory Is Existing) = True then

Delete every folder and file in that directory;

Else

Create a new directory;

End;

Copy _BASENETWORK to _TARGETLN and add empty fields

{''driver", "day")-,

Copy _BASENODE to _TARGETPT and add empty fields ̂ 'driver",

"day"}-.

Add _TARGETLN and _TARGETPT to the project interface;

Set a symbol type for _TARGETLN and _TARGETPT shapes;

End;

141

Open A Partition Network Workspace

Event OpenTargetNetwork.ClickO

Begin

Remove _TARGETLN and _TARGETPT from the project inteface;

Go to another partition network workspace and set it as _TARGETLN and

_TARGETPT workspace;

Add _TARGETLN and _TARGETPT to the project interface;

Set a symbol type for TARGETLN and TARGETPT shapes;

End;

Delete A Partition Network

Event spacedelete.CIickO

Begin

Remove _TARGETLN and TARGETPT from the project interface;

Delete everything in their workspace;

End;

142

Set Driver Partition Interface

Event PartitionDriverNetworkO

Begin

Display a summary report about the information "DirverO" in the

_TARGETNET attribute table;

If the toolbar for weekday partition existing then

Set invisible = true;

If the toolbar for driver partition existing then

Remove the toolbar;

If the number of drivers >= 10 ' then

Retum;

Set driver Index = 1;

Add a driverpartition toolgroup at the right end of the toolbar;

For each driver i do

Begin

Add a tool for driver i to the driver partiton toolgroup;

Set ToolJcon = driver Index number;

Set Tool.Help = driver code number;

Set Tool-Apply.Script = "driverAdd.Apply";

Set Tool.Tag = "driver";

Set Tool.ObjectTag '= driverlndex + driver code;

End;

143

(continued)

driver Index = driver Index + 1;

End;

Add a driver partition deletion tool to the toolgroup;

With the deletion tool

Begin

Set Tool.Click.Script = "View.SelectTool";

Set Tool.Apply.Script = "driverDelete.Apply";

Set Tool.Update.Script = "View.HasDataUpdate";

Set Tool.Tag = "driver";

End;

End;

Add buttons "Driver Reference On/Off", "Legend On/Off, and "Report"

to the view;

End;

144

Show(Hide) Last/Base Driver Partition

Event DriverBasePartition.ClickO

Begin

If Menu Label = "Hide Last/Base Driver Partition" then

Delete all graphics within the project view area;

End;

If select last driver partition then

Set driver field = "Driver";

Else If select base driver partition then

Set driver field = "DriverO";

End;

For each link with non-zero demand do

Begin

Make a graphic shape G for the link;

Set G.ObjectTag = "driver,"+^ID+featureID+demand;

Set G.Symbol;

Add G to _TARGETLN;

End;

End;

145

(continued)

Event DriverBasePartition.UpdateO

Begin

If _TARGETLN o NULL then

Set _TARGETLN.Enabled = True;

End;

End;

146

Write Drivers To Partition Network

Event WriteDriver.ClickO

Begin

For each graphic shape do

Begin

Get its featurelD in _TARGETLN attribute table;

Get driver code number from its object tag;

Set field "Driver" with the driver code number;

End;

End;

End;

147

Driver Reference On(Ofi)

Event DriverReference.ClickO

Begin

Set legends for _BASENETWORK by field "DriverO";

End;

End;

148

Set Driver-Weekday Partition Interface

Event PartitionDayNetworkO

Begin

Display a summary report about the information jfrom "DirverO" and

"DayO" in the _TARGETNET attribute table;

If the toolbar for driver partition existing then

Set invisible = true;

If the toolbar for day partition existing then

Remove the toolbar;

Set daylndex = 1;

Add a daypartition toolgroup at the right end of the toolbar;

For each weekday i do

Begin

Add a tool for i to the day partiton toolgroup;

Set ToolJcon = Weekday;

Set TooLApply.Script = "dayAdd.Apply";

Set Tool.Tag = "day";

Set Tool.ObjectTag = daylndex + weekday;

End;

149

(continued)

Day Index = day Index + 1;

End;

Add a day partition deletion tool to the toolgroup;

With the deletion tool

Begin

Set Tool.Click.Script = "View.SelectTool";

Set Tool.Apply.Script = "dayDelete.Apply";

Set Tool.Update. Script = "View.HasDataUpdate";

SetTooLTag = "day";

End;

End;

Add buttons "Day Reference On/Off', "Legend On/Off', "Report", and a

dropdown box to the view;

End;

150

Show(Hide) Last/Base Day Partition

Event DayBasePartition.ClickO

Begin

If Menu Label = "Hide Last/Base Day Partition" then

Delete all graphics within the project view area;

End;

If select last day partition then

Set driver field = "Driver";

Set day field = "Day";

Else If select base driver partition then

Set driver field = "DriverO";

Set day field = "DayO";

End;

For each link with non-zero demand do

Begin

Make a graphic shape G for the link;

Set G.ObjectTag = "day,"+tpID+featureID+demand;

Set G. Symbol;

AddGto_TARGETLN;

End;

End;

151

(continued)

Event DayBasePartition.UpdateO

Begin

If _TARGETLN o NULL then

Set TARGET.Enabled = True;

End;

End;

Write Driver-Weekdays To Partition Network

Event WriteDay.ClickO

Begin

For each graphic shape do

Begin

Get its featurelD in _TARGETLN attribute table;

Get weekday from its object tag;

Set field "Day" with weekday;

End;

End;

End;

152

Driver-Weekday Reference On(Of!0

Event DayReference.ClickO

Begin

Set legends for _BASENETWORK by field "DayO";

End;

End;

153

Build Subnetworks

Event BuildSubnetworksO

Begin

If _TARGETLN attribute field "Driver" or "Day" is empty then

Can not make subnetworks and return;

End;

Set all _TARGETLN attribute fields invisible except "Fnode#",

"Tnode#", "Length", "tpID", "Froinlong", "Fromlat", "Tolong", "Tolat", "Two-

way", "Demand", "Driver", and "Day";

Adjust field order as above;

Set all _TARGETPT attribute fields invisible except "nodelD"

For each driver do

For each weekday do

Export _TARGETLN attribute table to an ASCII

comma delimitated file for the driver on a weekday;

End;

End;

Generate an ASCII file with sorted imique node ID from

_TARGETPT;

Generate forward star network data structure for 20 subnetworks;

Set all fields in _TARGETLN and _TARGETPT visible;

End;

154

Interface Functions for Generating a Seed Node Set

Add Garaga/LandfiU/Depot

Event NodeAdd.ClickO

Begin

Select a tool with a tag "ADDNODE";

End;

Event NodeAdd. ApplyO

Begin

Get a user point p by clicking;

If p is not at a node location of _TARGETPT then

Return;

End;

If is at a node location with more than one _TARGETPT node then

Display a tpID list to select one node to be used;

End;

If p already exists in the seed node set then

Display a message "add another seed node at this location?";

If answer is no then

Retum;

End;

End;

Display "Adding Garage/Lanfill/Depot" dialog box with a tpID which has

already shown;

155

(continued)

Click "Ok" of the dialog box, tisedID increment 1, a stop node appearing on

the interface and a new node record added to the attribute table;

End;

Edit Stop Attributes

Event NodeEdit-ClickO

Begin

Select a tool with tag "IDNODE";

End;

Event NodeEdit.ApplyO

Begin

Get a user point /?;

If p does not exists as a seed node then

Return;

End;

If /7 is at a location with more than one seed node then

Display a IpID list to select one seed node for editing;

End;

Display "Edit Depot Attributes" Dislog Box and modified attributes are

written to the seed node attribute table;

End;
156

Delete Stops

Event NodeDelete.ClickQ

Begin

Select a tool with tag "DELNODE"

End;

Event NodeDelete.ApplyO

Begin

Get a user point p'.

If p is not a seed node then

Return;

End;

If p exists at a location with more than one seed node then

Display a tpID list to select one for deletion;

End;

Delete that node from the interface and its attribute record from the

attribute table;

End;

157

Move Depots

Event NodeMoveQ

Begin

Select a tool with tag "MOVENODE";

End;

Event NodeMoveApplyO

Begin

Get a user point /« as a from node;

Check its seed node existence and multiple selection;

Get another user point« as a to node;

Check its seed node existence and multiple selection;

Swap attribute records for the two nodes;

End;

158

Interface Functions for Route Generating and Reporting

Build New Routes

Event CreateGraphicTour.ClickO

Begin

Display a dialog box to collect information for route configuration;

If no seed nodes existing for a selected driver then

Return;

End;

If no seed nodes existing for all selected driver and his weekdays then

Return;

End;

For each existing driver-weekday do

Generating routes;

Generating shortest paths;

End;

End;

159

Show/Hide New Routes

Event ShowGraphicTour.ClickO

Begin

Go to route directory and make a list of all route files and its associated

shortest path files;

Display a multiple selection list box with the list;

Delete all route themes in the inteface;

For each route selection do

Open the shortest path file and add a new record from a link on a

shortest path to a new shape file. The shape file keeps all the information used

for a route object;

Open the route file and append new records fi*om each link in a

route to the same shape file;

For each newly generated shape file do

Add route shape files to the interface;

Display the tour and shortest paths with specific graphic

shapes and attach these graphic shape with route object tags;

End;

End;

160

Report Current Routes

Event Routelnfo.ClickQ

Begin

Select a tool with tag "ROUTEINFO";

End;

Event RouteInfo.ApplyO

Begin

Select a graphic shape

If g is on the shortest path or on a link with no trash then

Remove all graphic shapes from the interface;

Return;

End;

Get the object tag for g;

Display a notepad report and a graphic report only for one route and its

related shortest path where the trash linked to g is collected;

End;

161

APPENDIX D - C Source Codes for Solving Capacitated Arc Routing
Problems

/* — —=*/

/♦ */
/* TITLE: */
/* netlib.h */

!* */
/* */
/* DESCRIPTION: ♦/
/* A network utility header file */
/* */

/♦ */
/* ORIGIN: ♦/
/* Programmer: Xiaohong Xin */
/* Date: 20 February 1998 */
/* Platform: Windows 95 */
/* Compiler: Borland C++ 5.0 ♦/
/* */
/*=======================================■====-======-============-=-==========*/
#ifndef _NETLIB_H
#define _NETLIB_H

typedef struct header_t

int max;
int size;
int num;
void **v;

) header_t;

extern FILE* Open_File (char*, char*);
extern header_t* Init_Header (int);
extern void* New_Element (int);
extern void Append_Eleraent (header_t*, void*);
extern void Free_Data(header_t *);

#endif

162

TITLE:

network.h

DESCRIPTION:

A network header file

ORIGIN:

Progranuner: Xiaohong Xin
Date:

Platform:

Compiler:

20 February 1998
Windows 95

Borland C++ 5.0

ttifndef

tfdefine

NETWORK_H
'network H

#define SIZEOFBUFFER 1024

enum passFLag {PASS^-O, NOPASS, PSEUDO, BLOSSOM);

typedef struct location
(

long int Ion;
long int lat;

) location_t, *ptr_location_t;

typedef struct fstar

int* anode;
int* bnode;

int* cnode;
) fstar_t, *ptr_fstar_t;

typedef struct NODE
{

location_t
int

int

int

int

aLocation;

outLinks;

inLinks;

undirectedLinks;
nodelD;

) node_t, *ptr_node_t;

typedef struct NODES

int

int

int

node_t**
) nodes_t, *ptr_nodes_t;

typedef struct LINK

max;

size;
num;

int anode;
int bnode;
int arc_id;
int indexID;
int legFlag;
int uniqueFlag;
float trashamount;
int startTime;
int endTime;
float distance;
float time;
short int two_way; /*two_way=2, one_way=l */
int passFlag;
location_t org_node;
location t dst node;

) link_t, *ptr_link_t;

typedef struct LINKS
f

int

int

int

link t*

max;

si ze ;

num;

v;

163

} links_t, ♦ptr_links_t;

typedef struct NET
(

nodes_t*
links_t*
fstar_t*

) net_t, *ptr_net_t;

typedef struct load
(

int
int
int
double
float
location_t
location_t
short int
int

fnode;
tnode;
arc_id;
distance;
time;
org; /*
dst; /

nodes;
links;
fstar;

origin location */
destination location */

two_way; /*two_way=2, one_way=l */
trashamount;

) load_t, *ptr_load_t;

typedef struct loads
(

int
int
int
load t

max;

size;
num;

**v;
} loads_t, *ptr_loads t;

extern
extern

float)
extern
extern

extern
extern
extern

extern
extern
extern
extern
extern

extern
extern
#endif

void NetBuild(char *, char *, char *);
load_t* New_Load (int/ int, float, int, long int, long int,long int, long int, short int,

node_t* New_Node (int);
ptr_loads_t Get_Loads (FILE *);
void ~ Build_Nodes (ptr_net_t, FILE*);
ptr_link_t CopyLlnk(ptr_link_t)7
ptr_link_t ReverseLink(ptr_net_t, ptr_link_t);
int Coinpare_Links (const void *, const void *);
int Compare_Nodes (const void *, const void *);
void Build_Forward_Star (ptr_net_t);
void Add_To_Net (ptr_loads_t, ptr_net_t);
void Write_To_Net (ptr_net_t, FILE*);
ptr_net_t Init_Network (void);
int Even Odd(int);

164

TITLE:

path.h

DESCRIPTION:

A path header file

ORIGIN:

Programmer: Xiaohong Xin
Date: 20 February 1998
Platform: Windows 95

Compiler: Borland C++ 5.0

Itifndef PATH H

#define _PATH_H

#define TRUE 1

((define FALSE 0

((define INVALID -10

#define FIXED -20

#define TRAVERSED -30

((define UNIQUE 100

#define END -40

#define INFINITY 9.99E+8

typedef struct PATHNODE

t

int fornode;

int labels-

int parent;
int arc_id;
int indexID;

float distance;

int dir;

)pathnode_t, *ptr_pathnode_t;

typedef struct PATHNODES

int max;

int size;
int num;

pathnode_t **v;
)pathnodes_t, *ptr_pathnodes_t;

typedef struct ODNODE

int * orig;
int * dest;

)odnodes_t, *ptr_odnodes t;

extern ptr_odnodes_t Init_OD(int);
extern void ReadNet(FILE ¤, ptr_net_t);
extern ptr_odnodes_t ReadOD(FILE *, int);
extern int FindPath(int, int, ptr_net_t, ptr_pathnodes_t) ;
extern void UpdateTree(int, int, ptr_net_t, ptr_pathnodes_t);
extern ptr_pathnodes_t ClearOutTree(int, ptr_net_t);
extern int WritePath(int, int, FILE *, ptr_net_t7 ptr_pathnodes_t);
extern int WriteOutPath(int, int,ptr_net_t, ptr_pathnodes_t);
extern void Free_Shtpath(ptr_net_t, ptr_pathnodes_t, ptr_odnodes_t);

#endif

165

TITLE

queue.h

DESCRIPTION:

A queue header file

ORIGIN:

Programmer: Xiaohong Xin
Date: 20 February 1998
Platform: Windows 95

Compiler: Borland C++ 5.0

#ifndef _QUEUE_H
#define _QUEUE_H

#ifndef _BOOL_
#define _BOOL_

typedef enum {false=0, true) BOOLEANs;
#endif

typedef struct

int head, tail, size;
int *data;

) Queue;

extern void Barf(char *);
extern Queue 'MakeQueue(int);

extern void InitQueue(Queue *);
extern int Dequeue(Queue *);
extern void Enqueue(Queue *, int);
extern int QSize(Queue *);
BOOLEANs QueueEmpty(Queue *);
extern void DestroyQueue(Queue *);

#endif

166

* TITLE:

¤ lld.h

* DESCRIPTION:

* A doubly linked list header file

ORIGIN:

Programmer: Xiaohong Xin
Date: 20 February 1998
Platform: Windows 95

Compiler: Borland C++ 5.0

#ifndef LLD_H
#define LLD_H

#ifndef _BOOL_
#define BOOL

#endif

typedef enum {false=0, true) BOOLEANs;

typedef struct HEAD

ptr_link_t headlink;
int headnode;

float saving_Head_distance;
} head_t, *ptr_head_t;

typedef struct TAIL
{

ptr_link_t taillink;
int tailnode;

float saving_Tail_distance;
) tail_t, *ptr_tail_t;

typedef struct HEAD_TAIL

int NumHeads;

int NumTails;
head_t ** mergeHeadNodes;
tail_t ** mergeTailNodes;

) head_tail_t, *ptr_head_tail_t;

typedef struct _lnode

void * data; /*a current point */
struct _lnode *next;
struct _lnode *prev;

) *lnode;

typedef struct _list

Inode tail, current, head;
float time;

float distance;

float demand;

int numTraversed;
head_tail_t * mergeNodes;
int length;

) *LLD;

extern LLD createLLD(void);

extern void destroyLLD(LLD ¤);
extern void destroyLegs(LLD *);
extern void clearLLD(LLD);
extern LLD copyLegs(LLD);
extern LLD copyLeg(LLD);
extern void setCurrentToFirst(LLD);
extern void setCurrentToLast(LLD);
extern void setCurrentToNext(LLD);
extern void setCurrentToPrev(LLD);
extern void setCurrentToPosition(LLD, void ¤);
extern BOOLEANs isCurrentValid(LLD);
extern void *getOrderData(LLD, int);
extern void *getCurrentData(LLD);
extern LLD getReverseList(ptr_net_t, LLD);

167

extern void setCurrentData(LLD, void *);
extern void insertFirst(LLD, void *);
extern void insertLast(LLD, void *);
extern void insertAfterCurrent(LLD, void *);
extern void *deleteCurrent(LLD);
extern void deleteCurrentList(LLD);
extern LLD merge2LLD(LLD, LLD, void *, void *);
extern LLD Find_Min_Leg(LLD, LLD);
extern LLD Find_Min_Legs(LLD, LLD) ;
extern int sizeLLD(LLD);
extern BOOLEANs isEmptyLLD(LLD);

#endif /* LLD H */

168

TITLE:

netheap.h

DESCRIPTION:

A network heap header file

ORIGIN:

Prograinmer: Xiaohong Xin
Date: 20 February 1998
Platform: Windows 95

Compiler: Borland C-f^- 5.0

#ifndef _heap_h
Sdefine _heap_h

#ifndef BOOL_
#define ~BOOL_

typedef enum {false=0, true) BOOLEANs;
#endif

typedef struct pair
{

int vertex;

float priority;
) pair_t, *ptr_pair_t;

typedef struct heapentry

ptr_pair_t p;
int backpointer;

1 heapentry_t, *ptr_heapentry_t;

typedef struct heap
(

int *dataloc;

heapentry_t *hpairs;
int num;

int max;

int insertNum;

int current;
) minheap_t, *ptr_minheap_t;

extern ptr_minheap_t createHeap(int);
extern void destroyHeap(minheap_t *);
extern void clearHeap(minheap_t *);
extern BOOLEANs isEmptyHeap(minheap_t *);
extern BOOLEANs areInsertionsAllowed(minheap_t *);
extern void * insertHeap(minheap_t *, ptr_pair_t);
extern void * addVertexToHeap(minheap_t *, int, float);
extern ptr_pair_t heapDeleteMin(minheap_t *);
extern void heapDecreaseKey(minheap_t *, int, float);
extern ptr_pair_t firstHeapEntry(minheap_t *);
extern ptr_pair_t nextHeapEntry{minheap_t *);

#endif

169

/* */
/* TITLE: */
/* matching.h */
/* */
/¤ */
/* DESCRIPTION: */
/* A matching header file »/
/* */
/* V
/* ORIGIN: ¤/
/* Programmer: Xiaohong Xin ¤/
/* Date: 20 February 1998 ¤/
/* Platform: Windows 95 */
/* Compiler: Borland C++ 5.0 */
/* +/
/*==_========_*/
#ifndef _MATCHING_H
ttdefine _MATCHING_H

#define MATCHED 220

#define REPORT_BLOSSOMS TRUE

#define if_end_quit(e, net) \
if (e->indexID==net->lin)«s->num-l) brea)<

ttdefine forall_edges(e,net) \
for (e=net->lin)cs->v[0] ;e<net->lin}cs->v[net->lin)ts->num-l] ;adj_succ_edge(e,net))

ttdefine first_adj_edge(e, v, net) \
e = net->lin)cs->v[net->fstar->bnode [v]]

ttdefine adj_succ_edge(e, net) \
e = (e->indexID >= net->lin)cs->num-l) ? \
net->lin]cs->v [net->lin)cs->num-l] : net->lin)cs->v [e->indexID+l]
/*
ttdefine forall_adj_edges(e, v, net) \
for (e=net->lin)cs->v[net->fstar->bnode[v]]; \

e<=net->lin)cs->v[net->fstar->bnode [v+1] -1); \
adj _succ_edge(e, net))

*/
ttdefine last_adj_edge(lastE, v, net) \
lastE = net->lin)cs->v[net->fstar->bnode [v+1]-1]

ttdefine forall_nodes(v, net) \
for(v=0;v<net->nodes->num;v++)

ttdefine source(e, net) \
net->fstar->anode [net->lin)cs->v[e->indexID] ->anode]

ttdefine target(e, net) \
net->fstar->anode [net->lin)cs->v [e->indexID] ->bnode)

ttdefine bridge_edge(x, net, map) \
net->lin)cs->v [map->v(x] ->bridgel

ttdefine add_lin)cs_from_LLD(aSet, lin)cs) \
setCurrentToFirst(aSetT; \
while(aSet->current!=NULL) \
(insertLast(lin)cs, aSet->current->data) ;\
setCurrentToNext(aSet);) \
destroyLLD(SaSet)

enum LABEL [ODD, EVEN, UNREACHED);

typedef struct DISJOINT

int father;
int next;

int size;

} disjoint_t, *ptr_disjoint_t;

typedef struct PSEUDONODE
(

LLD nodes;

LLD lin)cs;

int mu; /*dual variables for blossoms */
) pseudonode_t, ♦ptr_pseudonode_t;

170

typedef struct DUAL
(

Queue * tao;

float alpha;
)dual_t, *ptr_dual_t;

typedef struct MATCHNODE

1
int nodelD;
int label;
int pred;
int mate;

int bridge;
int all_matched;
int pathl;
int path2;
int passFlag;
dual_t aDual;
pseudonode_t aPseudo;
disjoint_t aSet;

} niatchnode_t, *ptr_matchnode_t;

typedef struct MATCHNODES

{
int max;
int size;

int num;

raatchnode_t ** v;
)matchnodes_t, *ptr_matchnodes_t;

extern int Compare_Node_Degree(const void *, const void *);
extern void init_adj_iterator(int, ptr_net_t, ptr_matchnodes_t);
extern ptr_matchnodes_t Init_Matching(ptr_net_t);
extern ptr_matchnode_t PseudoMapNode(int,int, LLD, LLD, int, ptr_matchnodes_t);
extern void ShrinkNet(int, ptr_matchnode_t, ptr_net_t);
extern void UnShrinkNet(int, ptr_matohnodes_t map, ptr_net_t);
extern void min_node_e (ptr_link_t, int, ptr_net_t, ptr_matohnodes_t, ptr_minheap_t);
extern ptr_pair_t min_alpha(int, ptr_net_t);
extern ptr_pair_t min_e(int, int, ptr_net_t, ptr_matchnodes_t);
extern ptr_minheap_t min_even_shrink(int, ptr_net_t, ptr_matchnodes_t);
extern void beta_alpha(Queue *, float, float, ptr_link_t, ptr_net_t, ptr_matchnodes_t);
extern void UpdateEvenDual(int, ptr_matchnodes_t, ptr_net_t);
extern void UpdateShrinkDual(int, ptr_matchnodes_t, ptr_net_t);
extern void UpdateUnshrinkDual(int, ptr_matchnodes_t, ptr_net_t);
extern void DualChange(ptr_matchnodes_t);
extern BOOLEANs e_exist(ptr_link_t, ptr_matohnodes_t, ptr_net t);
extern void Init_Base(ptr_matohnodes_t, ptr_net_t); "
extern int find(int, ptr_matchnodes_t);
extern void union_blocks(int, int, ptr_matchnodes_t);
extern void make_rep(int, ptr_matchnodes_t);
extern int NODEID(int, ptr_net_t);
extern int LINKID(ptr_link_t);
extern LLD NODELINKS(int, int, ptr_net_t);
extern int greedy(ptr_net_t, ptr_matchnodes_t);
extern void heuristic(ptr_net_t, ptr_matchnodes_t, ptr_minheap_t);
extern void find_path(LLD, ptr_matchnodes_t, int, int, ptr_net_t);
extern LLD max_card_raatching(ptr_net_t, int);
extern void Write_Matching(FILE *, LLD) ;

#endif

171

/* ¤/
/¤ TITLE: */
I* matching.c(non bipartite minimum cost perfect matching problem library)*/
/* */
/* DESCRIPTION: */
/* A library of an implementation of Edmonds' and Murty's algorithm */
/* with an application of the disjoint sets descripted by Tarjan */
/* */
/¤ FUNCTION NAMES: */
/* Functions for Implementing Disjoint Sets . ¤/

*/

/* 1. void Init_Base(ptr_matchnodes_t, ptr_net_t) ¤/
/* 2. int Find(int, ptr_matchnodes_t) */
/* 3. void union_bloc}cs(int, int, ptr_matchnodes_t) ¤/
/* 4. void malce_rep(int, ptr_matchnodes_t) */
/* ~ */
/* Functions for Manipulating a Matching Networlc */

/* 5. int NODEID(int, ptr_net t) */
/* 6. int LINKID(ptr_lin)c_t) ~ */
/* 7. LLD NODELINKS(int, int, ptr_net_t) */
/* 8. int Compare_Node_Degree(const void *, const void *) */
/* 9. void init_adj_iterator(int, ptr_net_t, ptr_matchnodes_t) */
/* 10. void min_node_e(ptr_link_t, int, ptr_net_t, ptr_matchnodes_t, ¤/
/* ptr_minheap_t) ~ */
/* 11. ptr_pair_t min_e(int, int, ptr_net_t, ptr_matchnodes_t) */
/* 12. BOOLEANs e_exist(ptr_link_t, ptr_matchnodes_t, ptr_net_t) */
/* 13. void iterate_e (ptr_matchnodes_t, ptr_net_t) */
/* */
/* Functions for primal-dual blossom matching */

/* 14. ptr_matchnodes_t Init_Matching(ptr_net_t) */
/* 15. int greedy(ptr_net_t, ptr_matchnodes_t) */
/* 16. void heuristic(ptr_net_t, ptr_matchnodes_t, ptr_minheap_t) */
/* 17. void find_path(LLD, ptr_matchnodes_t, int, int, ptr_net_t) */
/* 18. LLD max_card_matching(ptr_net_t, int) */
/* 19. ptr_matchnode_t PseudoMapNode(int, int, LLD, LLD, int, */
/* ptr_matchnodes_t) */
/* 20. void ShrinkNet(int, ptr_matchnode_t, ptr_net_t) */
/* 21. void UnShrinkNet(int, ptr_matchnodes_t, ptr_net_t) */
/* 22. ptr_pair_t min_alpha(int, ptr_net_t) */
/* 23. ptr_minheap_t min_even_shrink(int, ptr_net_t, ptr_matchnodes_t) */
/* 24. void beta_alpha(Queue *, float, float, ptr_link_t, ptr_net_t, */
/* ptr_matchnodes_t) */
/* 25. void UpdateEvenDual(int, ptr_matchnodes_t, ptr_net_t) */
/* 26. void UpdateShrinkDual(int, ptr_matchnodes_t, ptr_net_t) */
/* 27. void OpdateUnshrinkDual(int, ptr_matchnodes_t, ptr_net_t) */
/* 28. void DualChange(ptr_matchnodes_t) */
/* 29. void Mrite_Matching(FILE *, LLD) */
/* V
/* REFERENCES: */
/* J. Edmonds: Paths, trees, and flowers */
/* Canad. J. Math., Vol. 17, 1965, 449-467 */
/* */
/* R.E. Tarjan: Data Structures and Network Algorithms, */
/* CBMS-NFS Regional Conference Series in Applied Mathematics, */
/* Vol. 44, 1983 ¤/
/* n */
/* Katta G. Murty: Network Programming */
/* Prentice Hall, Englewood Cliffs, New Jersey 07632 */
/* V
/* RUNNING TIME: */
/* 0(n*n*n) */
/* ¤/
/* ORIGIN: */
/* Programmer: Xiaohong Xin */
/* Date: 20 February 1998 ¤/
/* Platform: Nindows 95 */
/* Compiler: Borland C++ 5.0 ' */
/* */
/*==*/

ttinclude <stdlib.h>

iinclude <stdio.h>

#include <malloc.h>

#include <memory.h>

172

(tinclude "network.h"

#include "netlib.h"

Sinclude "netheap.h"
#include "path.h"
#include "lld.h"

Sinclude "buildtour.h"

iinclude "queue.h"
#lnclude "matching.h"

/* Title: Init_Base */
/* •/
/* Description: */
/* Create new sets containing a single element. */
/¤ */
/* Inputs: */
/* Name Description ¤/
/¤ ./
/* map A dynamic array of nodes in a matching network */
/* net A network with a forward star data structure */
/* */
/* Outputs: ¤/
/■* Name Description ♦/
/*

/* void No return value */

void Init_Base(ptr_matchnodes_t map, ptr_net_t net)
{

int x;

for (x=0; x<net->nodes->num; x++)
{

map->v[x]->aSet.father = -1;'
map->v[x]->aSet.next ^ -1;
map->vtx]->aSet.si2e = 1;

}
}

/* Title: find */
/* •/
/♦ Description: •/
/* Find the root node index for a disjoint set by changing the */
/* structure of a tree and moving closer to the root ♦/
/* */
/* Inputs: */
/* Name Description */
/*

/* y The index for a disjoint set */
/* map A dynamic array of nodes in a matching network */
/* */
/* Outputs: */
/* Name Description ♦/

/* root The root index ♦/

int find(int y, ptr_matchnodes_t map)
(

register int root;
register int x;

X = map->v[y]->aSet.father;
if (X == -1) return y;

root = y;
while (map->v[root]->aSet.father != -1)

root = map->v[root]->aSet.father;
while (x != root)
(

map->v[y)->aSet.father = root;
y = x;
X = map->v[y]->aSet.father;

}
return root;

)

/* Title: union_blocks */
/♦ »/
/♦ Description: ♦/

173

* Form a new set that is the union of the two sets who contains

* elements a and b
*

* Inputs:
* Name Description
* —————————————————

* a one disjoint set element
* b another disjoint set element
* map A dynamic array of nodes in a matching network
*

* Outputs:
* Name Description
* ————————————————

* void No return value

void union_blocks(int a, int b, ptr_matchnodes_t map)
(

a = find_root(a, map);
b = find_root(b, map);

if (a == b)

return;

if (map->v[a]->aSet.size > map->v[b]->aSet.size)
(

map->v[b]->aSet.father = a;
map->v[a]->aSet.size += map->v[b]->aSet.size;

)
else

{
map->v[a]->aSet.father = b;
map->v[b]->aSet.size += map->v[a]->aSet.size;

)

)

/"***
/* Title: make_rep */
/* */
/* Description: ¤/
/* Make a node as a set if its index is equal to another root index. */
/* ¤/
/* Inputs: ¤/
/* Name Description ¤/
/¤

/* base A root index */
/* map A dynamic array of nodes in a matching network */
/* */
/* Outputs: */
/* Name Description */

/* void No return value */

void make_rep(int base, ptr_matchnodes_t map)
f

if (Find_Root(base, map)== base)
map->v[base]->aSet.father = -1;

)

/* Title: Compare_Node_Degree */
/* ./
/* Description: ¤/
/* Compare nodes degrees . */
/¤ ¤/
/* Inputs: */
/* Name Description */
/* */
/* argl Node ID */
/* argl Node ID */
/* */
/* Outputs: */
/* Name Description */

/* int comparison result as an integer */
/***************** **■^******************■11* ****************** ******************** ̂
int Compare_Node_Degree(const void *argl, const void *arg2)
(

node_t *gl;
node_t *g2;

gl = *(node_t ♦*)argl;

174

g2 = ♦(node_t * *)arg2;
return (gl->undirectedLinks - g2->undirectedLinksl;

)

/* Title: init_adj_iterator
/*
/* Description:
/* Initialize a node v's adjacent edges for iteration
/♦
/* Inputs:
/* Name Description
/*
/* V A node index
/* net A network with a forward star data structure
/* map A dynamic array of nodes in a matching network
/*
/* Outputs:
/* Name Description

/* void No return value

void init adj_iterator(int v, ptr_net_t net, ptr matchnodes t map)
(" ~ ~

int i;
ptr_link_t e;

map->v[v]->passFlag = NOPASS;
for(i=net->fstar->bnode[v];i<net->fstar->bnode[v+l];i++)
{

e=net->links->v[i];
e->passFlag = NOPASS;
ReverseLink(net, e)->passFlag = NOPASS;

)
)

/* Title: Init_Matching *
/* ♦
/* Description: *
/* Initialize a matching network. *
/♦
/* Inputs: *
/* Name Description *

/* net A network with a forward star data structure *
/♦
/* Outputs: *
/* Name Description *

/* matchnodes nodes in a matching network *
/**♦**■*******************************
ptr_matchnodes_t Init_Matching(ptr_net_t net)
{

int x;
ptr_pair_t minPair;
Queue * aQ;
matchnode_t * matchnode;
matchnodes_t * matchnodes;

matchnodes = (matchnodes_t *) Init_Header(sizeof(matchnode_t));
for (x=0; x<net->nodes->num; x++) ~
{

matchnode = (matchnode_t *)New_Element(sizeof(matchnode_t));
matchnode->nodeID = net->nodes->v[x]->nodeID;
matchnode->label = INVALID;
matchnode->pred = INVALID;
matchnode->raate = INVALID;
matchnode->bridge = INVALID;
matchnode->all_matched = INVALID;
matchnode->pathl = INVALID;
matchnode->path2 = INVALID
matohnode->passFlag = PASS.
minPair = min_alpha(x, net);

/♦initialize original node prices */
matchnode->aDual.alpha = (minPair->priority)/2;
aQ = MakeQueue(net->links->num);
Enqueue(aQ, minPair->vertex);
matchnode->aDual.tao = aQ; /♦ make a queue to store all */

175

matchnode->aPseudo.mu = 0; /¤ initialize pseudonode prices */
matchnode->aPseudo.nodes = NULL; /* only for pseudo nodes */
matchnode->aPseudo.links «= NULL; /* only for pseudo nodes */
Append_Element((header_t *)matchnodes, (void ♦jmatchnode);

)
return matchnodes;

Pseudo_Map_Node

Description:
Create pseudonode and set its parameters

Inputs:
Name

/*****♦♦♦
/♦ Title:
/*
/*
/*
/♦
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
i*
/♦
/*

m

Outputs

Match
count

nodes
links
BaseNodelndex
map

:
Name

bnode

Description

The number of matching pairs
offset of a new pesudo node index
node list in a blossom
link list in a blossom
pseudonode index
A dynamic array of nodes in a matching network

Description

a pseudonode

ptr_matchnode_t Pseudo_Map_Node(int nMatch,int count, LLD nodes, LLD links, int BaseNodeldx,
ptr_matchnodes_t map)

ptr_matchnode_t bNode;
ptr_matchnode_t BaseNode;
Queue * aQ;

aQ = MakeQueue(map->num);
BaseNode = map->v[BaseNodeldx];
bNode =■ (matchnode_t *)New_Element (sizeof (matchnode_t)) ;
bNode->nodeID = map->v[map->num-l]->nodeID + count;
bNode->label = BaseNode->label;
bNode->pred = BaseNode->pred;
bNode->mate = BaseNode->mate;
bNode->bridge = BaseNode->bridge;
bNode->all_matched = BaseNode->all_matched;
bNode->pathl = BaseNode->pathl;
bNode->path2 = BaseNode->path2;
bNode->passFlag = PSEUDO;
bNode->aPseudo.nodes = nodes;
bNode->aPseudo.links = links;
if (nMatch == (sizeLLD(nodes)-l)/2)

bNode->aPseudo.mu = 1;
else

bNode->aPseudo.mu = 0;
bNode->aDual.alpha = BaseNode->aDual.alpha;
bNode->aDual.tao = BaseNode->aDual.tao;
bNode->aSet.father = BaseNode->aSet.father;
bNode->aSet.next = BaseNode->aSet.father;
bNode->aSet.size = BaseNode->aSet.size;
Append_Element((header_t *)map, (void *)bNode);
return bNode;

/*'
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/♦
/*
/*
/*

Title: ShrinkNet

Description:
A new matching network with a pseudonode

Inputs:
Name

count

pseudonodes
net

Outputs:
Name

Description

offset from the root index
a pseudonode
A network with a forward star data structure

Description

176

/* void No return value */

void ShrinkNet(int count, ptr_matchnode_t pseudonode, ptr_net_t net)
{

node_t * xNode;
ptr_matchnode_t aNode;
ptr_link_t aLink, e, cLink;
int V, xNodeID,i;
LLD nodes;

LLD links;

nodes = pseudonode->aPseudo.nodes;
links = pseudonode->aPseudo.links;

/*make nodes in Blossom unpassed */
setCurrentToFirst(nodes);
while (nodes->current != NULL)

{
aNode = getCurrentData(nodes);
/* printfC'A node in nodes is %d \n", aNode->nodeID); */
aNode->passFlag = BLOSSOM;
setCurrentToNext(nodes);

}

/* make links in Blossom unpassed */
setCurrentToFirst(links);

while (links->current != NULL)
{

aLink = getCurrentData(links);
aLink->passFlag = BLOSSOM;
SetCurrentToNext(links);

)

/*add a pseudonode with the highest node id to net ¤/
xNodelD = net->nodes->v[net->nodes->num-l]->nodeID+oount;
xNode = New_Node(xNodelD);
Append_Element ((header_t ♦)net->nodes, (void *)xNode);

/* add pseudolinks to net */
setCurrentToFirst(nodes);
while(nodes->current != NULL)
(

aNode = getCurrentData(nodes);
V = net->fstar->anode[aNode->nodeID];
for(i=net->fstar->bnode[v];i<net->fstar->bnode[v+l];i++)
{

e = net->links->v[i];
if (e->passFlag != BLOSSOM)
(

oLink = CopyLink(e);
cLink->anode = xNodelD;
cLink->passFlag = PASS;
Append_Element ((header_t *)net->links, (void *)cLink);
cLink = ReverseLink(net, CopyLink(e));
cLink = CopyLink(oLink);
cLink->bnode = xNodelD;
cLink->passFlag = PASS;
Append_Element ((header_t *)net->links, (void *)cLink);

)
)
setCurrentToNext(nodes);

)
free(net->fstar->anode);
free(net->fstar->bnode);
Build Forward Star (net);

'
/* Title: UnSrinkNet */
/* */
/* Description: ♦/
/* Unshrinking from a pseudonode . */
/* V
/* Inputs: ♦/
/* Name Description ■*/

/* V a pseudonode index */
/* map A dynamic array of nodes in a matching network */
/* net A network with a forward star data structure */
'* V

177

/¤ Outputs: */
/* Name Description */
/. */

/* void No return value */

void UnShrinkNet(int v, ptr_matchnodes_t map, ptr_net_t net)
(

int i;

ptr_matchnode_t aNode;
ptr_linlc_t aLinl<, e;
LLD nodes;

LLD linlcs;

nodes = map->v[v]->aPseudo.nodes;
linlcs = map->v[v]->aPseudo. linlcs;

/* Since psidx has already been with PSEUDO passFlag, the edge for it has */
/* to be changed to PSEUDO in case not to be traversed */
for(i=net->fstar->bnode[v];i<net->fstar->bnode[v+l];i++l

e = net->lin)cs->v[i] ;

e->passFlag = PSEUDO;
ReverseLink(net, e)->passFlag = PSEUDO;

setCurrentToFirst(nodes);

while(nodes->current != NULL)

(
aNode = getCurrentData(nodes);
aNode->passFlag = PASS;
setCurrentToNext(nodes);

}

setCurrentToFirst(links);
while(links->current != NULL)

(
aLink = getCurrentData(links);
aLink->passFlag = PASS;
SetCurrentToNext(links);

)

}

/¤ Title: NODEID ¤/
/* ¤/
/* Description: ¤/
/* Get user id for a node . */
/* */
/* Inputs: */
/* Name Description ¤/
/*

/* V a node index */
/* net A network with a forward star data structure */
/* */
/* Outputs: */
/* Name Description */

/* out A node user id */

int NODEID(int v, ptr_net_t net)
{

int out;

out = net->nodes->v[v)->nodeID;
return out;

}

/¤ Title: LINKID */
/* */
/¤ Description: */
/* Get user id for an edge . */
/* */
/* Inputs: */
/* Name Description */

/* e an edge index */
/* ¤/
/* Outputs: */
/* Name Description ¤/

178

out An edge user id

int LINKID(ptr_link t e)

out = e->arc_id;
return out;

**/

*/

*/

*/

*/

*/

*/

*/
*/

*/

*/

*/
*/

¤/

NODELINKS

Description:
Get user id for a node

/¤ Title:
I*
I*

t*

/¤
/*

/*

/*

/*

/¤
/*
/* Outputs:
/* Name

Inputs:

Name

net

Description

a node index

A network with

Description

a forward star data structure

out A node user id/*

LLD NODELINKS(int v, int w, ptr_net_t net)
{

int i;

LLD linkSet;

ptr_link_t e;

linkSet = createLLD();

for(i=net->fstar->bnode[v];i<net->fstar->bnode[v+1];i++)

{
e = net->links->v[i];
if(net->fstar->anode[e->bnode)==w)

(
insertLast(linkSet, e);
insertLast(linkSet, ReverseLink(net,e));

)

)
return linkSet;

min_node_e

Description:
find an unmatched

Inputs:
Name

/********

/* Title:

/*

/*

/¤
/*

/*

/*

/*

/*

/¤
/*

/*

/*
/*

/*

/¤
/*

Output

v

incident edge from a node with minimum length

Description

a node index

A network with a forward star data structure

A dynamic array of nodes in a matching network
A heap for unmatched incident edges

net

map

theHeap

s:
Name Description

oid No return value

»♦/
*/
*/
♦/
*/
*/
*/
*/
♦/
*/
*/
*/
♦/
V
*/
*/

void min_node_e(int v, ptr_net_t net, ptr_matchnodes_t map, ptr_minheap_t theHeap)
1

int i;

clearHeap(theHeap);
for(i=net->fstar->bnode[v];i<net->fstar->bnode[v+l];i++)
(

e = net->links->v[i];
if (map->v[target(e,net)]->raate==INVALID5Se->passFlag==PASS)

addVertexToHeap(theHeap, target (e,net), e->distance);

179

/* Title: min_alpha */
/» ¤/
/* Description: */
/* find an incident edge from a node with minimum length */
/* */
/* Inputs: */
/* Name Description */

/* V a node index */
/* net A network with a forward star data structure */
/* ¤/
/* Outputs: */
/* Name Description ¤/

/* aPair an edge with minimum length */

ptr_pair_t min_alpha(int v, ptr_net_t net)
{

int i;

ptr_pair_t aPair;
ptr_link_t e, rLink;
ptr_minheap_t theHeap;

theHeap = createHeap(lOOO);
for (i=net->fstar->bnode[v];i<net->fstar->bnode[v+l];i++)

e=net->links->v[i];
rLink = ReverseLink(net, e);
addVertexToHeap(theHeap, rLink->indexID, rLink->distance);

)
aPair = heapDeleteMin(theHeap),•
destroyHeap(theHeap);
return aPair;

)

/* Title: min_e */
/* ¤/
/* Description: */
/* find an unmatched incident edge from a node with minimum dual */
/* ¤/
/* Inputs: */
/* Name Description */

/* V a node index */
/* pseudo a pseudo node index ¤/
/* net A network with a forward star data structure */
I* tiap A dynamic array of nodes in a matching network */
/* */
/* Outputs: */
/* Name Description */

/* aPair an edge with minimum dual variable */

min_e(int v, int pseudo, ptr_net_t net, ptr_matchnodes_t map)

int i;

float aDual;

ptr_pair_t aPair;
ptr_link_t e, rLink;
ptr_minheap_t theHeap = createHeap(net->nodes->num);

theHeap = createHeap (net->nodes->num) ,■
for (i=net->fstar->bnode [v];i<net->fstar->bnode[v+1];i++)
(

e = net->links->v[i] ,-
rLink = ReverseLink(net, e);
if (rLink->passFlag == BLOSSOM)

aDual = rLink->distance-(map->v[v]->aDual.alpha+map->v[target(e,net)]->aDual.alpha-map-
>v[pseudo]->aPseudo.mu);

else
aDual = rLink->distance-(map->v[v]->aDual.alpha+map->v[target(e,net)]->aDual.alpha);

addVertexToHeap(theHeap, rLink->indexID, aDual);
)
aPair = heapDeleteMin(theHeap);
destroyHeap(theHeap);
return aPair;

}

180

/¤ Title:
/¤
/* Description:

min even shrink

build a dual heap over even current nodes and blossom nodes

Name Description

net

map

Name

theHeap

a node index

A network with a forward star data structure

A dynamic array of nodes in a matching network

Description

an output heap

/*

/*

/* Inputs:
J*

/*

/*

/*

/*

/*
/* Outputs:
/*

/¤
/*

/¤
ptr_minheap_t min_even_shrink(int v, ptr_net_t net, ptr matchnodes t map)
{

int i;

float aDual;
ptr_link_t e, rLink;
ptr_rainheap_t theHeap;

theHeap = createHeap(net->nodes->num);
for(i=net->fstar->bnode[v];i<net->fstar->bnode[v+1];i++)
{

e = net->links->v[i];
rLink ■= ReverseLink(net, e);
if (rLink->passFlag != BLOSSOM && map->v[net->fstar->anode[rLink->anode]]->label=°EVEN)

aDual = rLink->distance-(map->v[v]->aDual.alpha+map->v[target(e,net)]->aDual.alpha) ;
addVertexToHeap(theHeap, rLink->indexID, aDual);

)
return theHeap;

/*

Description

/* Title: beta_alpha
/*
/* Description:
/* build a dual heap over even current nodes and blossom nodes
/♦
/* Inputs:
/* Name
/*

/* aQ
/* beta
/* f
/* net
/* map
/*
/* Outputs:
/* Name

/* void

A Queue
beta
another beta for comparison
A network with a forward star data stru

Description

No return value

cture
A dynamic array of nodes in a matching network

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
V
'/void beta_alpha(Queue * aQ, float beta, float j, ptr_link_t e, ptr_net_t net, ptr_matchnodes_t map)

int aLink;

if (beta == j)
{

if (IQueueEmpty(aQ))
aLink = Dequeue(aQ);

else
return;

if(aLink != e->indexID)
Enqueue(aQ, e->indexID);

Enqueue(aQ, aLink);
)

if (beta < j)
(

InitQueue(aQ) ;
Enqueue(aQ, e->indexID);
map->v[net->fstar->anode[e->bnode])->aDual.alpha = beta;

181

/*

update_even_dual/* Title:

/*

/* Description:
/* Update when an unlabeled node is labeled as an even node
/*
J* Inputs:
/* Name Description

net

map

/*

/¤
/*

/*

/* Outputs:
/* Name

/*

/* void

a node index

A network with a forward star data structure
A dynamic array of nodes in a matching network

Description

No return value

void update_even_dual(int v, ptr_matchnodes t map, ptr net t net)
{ _ _ _

int k;

float beta, j, i;
ptr_link_t e;
Queue * aQ;

for (k=net->fstar->bnode [v]; k<net->fstar->bnode [v+1]; k++)

e ■= net->links->v[k] ;
aQ = map->v[net->fstar->anode[e->bnode]]->aDual.tao;
i = map->v[v]->aDual.alpha;
j = map->v[net->fstar->anode[e->bnode])->aDual.alpha;
beta = e->distance - (i + j);
beta_alpha(aQ, beta, j, e, net, map);

/♦
/* Title:
/*
/*
/*
/♦
/*
/*

Inputs

/*

update_shrink_dual

Description:
Update when a blossom is shrunken

:
Name Description

pidx
net
map

/♦
/♦
/♦
/*
/* Outputs:
/* Name
/♦

/* void

a pseudonode index
A network with a forward star data structure
A dynamic array of nodes in a matching network

Description

No return value

**/
*/
*/
*/
♦/
*/
*/
♦/
♦/
♦/
♦/
♦/
•/
*/
*/
*/
*/

void update_shrink_dual(int pIdx, ptr_matchnodes_t map, ptr_net t net)
(

int V, i;
Queue 'aQ, * aLinkQ;
ptr_minheap_t aHeap;
ptr_minheap_t theHeap = createHeap(net->links->num);
ptr_minheap_t elseHeap = createHeap(net->links->num);
ptr_pair_t aPair;
ptr_link_t e, oneMinLink;
float d, beta, j;
ptr_matchnode_t aNode;

aLinkQ = MakeQueue(map->num);
theHeap = createHeap(net->links->num);
elseHeap = createHeap(net->links->num);

/* compute min among all the edges of blossom nodes ♦/
LLD nodes = map->v[pIdx]->aPseudo.nodes;
setCurrentToFirst(nodes);
while (nodes->current != NULL)
{

aNode = getCurrentData(nodes);
V = net->fstar->anode[aNode->nodeID];

182

aPair = min_e(v, pidx, net, map);/*find the total min */
addVertexToHeap(theHeap, aPair->vertex, aPair->priority);

aHeap = min_even_shrin)<(v, net, map); /* find the even min */
aPair = heapDeleteMin(aHeap);
d = aPair->priority;
do

(
oneMinLin): = net->lin)cs->v[aPair->vertex) ;
addVertexToHeap(elseHeap, oneMinLin)c->indexID, oneMinLin]c->distance);
aPair = heapDeleteMin(aHeap);

} while (!isEmptyHeap(aHeap)SSd==aPair->priority);

/* ma)ce a queue for lin)cs outside the blossom */
for(i=net->fstar->bnode[v];i<net->fstar->bnode[v+l];i++)

e = net->lin)cs->v[i] ;
if (e->passFlag == BLOSSOM)

continue;

Enqueue (aLin)4Q, e->indexID) ;
)
setCurrentToNext (nodes);

)
beta = heapDeleteMin(theHeap)->priority;

/* compare alpha with beta for every lin)c lin)cing to the blossom */
whi le (! QueueEmpty (aLin)cQ))
(

e = net->lin)cs->v[Dequeue (aLin)cQ)] ;
aQ = map->v[net->fstar->anode[e->anode)]->aDual.tao;
j = map->v[net->fstar->anode[e->anode]]->aDual.alpha;
beta_alpha(aQ, beta, j, e, net, map);

}

/* replace alpha for the pseudo node. elseHeap elements have the same */
/* priority »/
while (!isEmptyHeap(elseHeap))
{

aPair = heapDeleteMin(elseHeap);
Enqueue(map->v[pIdx]->aDual.tao, aPair->vertex) ;

)

map->v[pIdx]->aDual.alpha = aPair->priority;
destroyHeap(aHeap);
destroyHeap(theHeap);
destroyHeap(elseHeap);

* Title: update_unshrin)c dual
*

* Description:
Update when a blossom is unshrun)cen

Inputs:
Name Description

pIdx a pseudonode index
net A networ)c with a forward star data structure

tap A dynamic array of nodes in a matching networ)c

Outputs:
Name Description

void No return value

void update_unshrin)c_dual (int pidex, ptr_matchnodes t map, ptr net t net)
{ _ _ _

ptr_matchnode_t m;
int V, i;
float beta, j;
Queue * aQ;

LLD newLLD;

ptr_minheap_t aHeap;
ptr_lin)c_t e;
ptr_pair_t mPair;
LLD nodes;

newLLD = createLLD();

aHeap = createHeap (map->num) ;

183

nodes = map->v[pldex]->aPseudo.nodes;
setCurrentToFirst(nodes);
while (nodes->current != NULL)
(

m = getCurrentData(nodes);
V = net->fstar->anode tm->nodeID];

for(i=net->fstar->bnode[v];i<net->fstar->bnode[v+1];i++)
(

e = net->lin)cs->v[i] ;
if (e->passFlag != BLOSSOM)

insertLast (newLLD, ReverseLin)c(net,e)) ;
)

if (map->v[v]->label==EVEN)
{

mPair = min_e(v, pidex, net, map);
addVertexToHeap(aHeap, mPair->vertex, mPair->priority);

)
setCurrentToNext(nodes);

)
beta = heapDeleteMin(aHeap)->priority;

setCurrentToFirst(newLLD);
while (newLLD->current !■= NULL)
(

e = getCurrentData(newLLD) ;
V = net->fstar->anode[e->anode];
aQ = map->v[v]->aDual.tao;
j = map->v[v]->aDual.alpha;
beta_alpha(aQ, beta, j, e, net, map);
SetCurrentToNext(newLLD);

)
destroyHeap(aHeap);
destroyLLD(SnewLLD) ;

/* Title: dual_change
/*
/* Description:
/* carry out a dual solution change, mainly compute the alpaha variable
/*
/* Inputs:
/* Name Description

/* roap A dynamic array of nodes in a matching networ)c
/*
/* Outputs:
/* Name Description

/* void No return value

void dual_change(ptr_matchnodes_t map)
(

int i;
float minalpha;
ptr_minheap_t unheap;
ptr_minheap_t evenheap;
ptr_minheap_t pseudoheap;
ptr_minheap_t aheap;

unheap = createHeap(map->num);
evenheap = createHeap(map->num);
pseudoheap = createHeap(map->num/2);
aheap createHeap (map->num) ;

/♦pretty ajcward ways to find the minimum alpha, but it wor)<s! ♦/
for (i = 0; i < map->num; i++)
(

if (map->v(i)->label == INVALID)
(

addVertexToHeap(unheap, i, map->v[i]->aDual.alpha);)
if (map->v[i]->label == EVEN)

addVertexToHeap(evenheap,i, map->v[i]->aDual.alpha);
if (map->v[i]->passFlag == PSEUDO)

addVertexToHeap(pseudoheap, i, map->v[i]->aPseudo.mu);)
)
if (!isEmptyHeap(unheap))

184

addVertexToHeap(aheap, 1, heapDeleteMin(unheap)->priority);
if (!isEmptyHeap(evenheap))

addVertexToHeap(aheap, 2, (heapDeleteMin(evenheap)->priority)/2);
if (!isEmptyHeap(pseudoheap))

addVertexToHeap(aheap, 3, (heapDeleteMin(pseudoheap)->priority)/2) ;
if (!isEmptyHeap(aheap))

minalpha = heapDeleteMin(aheap)->priority;
else

(
printfC'Warn: The dual heap is empty, something is wrong.");
exit(1);

}
if (minalpha > INFINITY)

return;

if (minalpha !- 0.0)

for (i = 0; i < map->num; i++)
(

if (map->v[i]->label == ODD)
map->v[i]->aDual.alpha -= minalpha;

if (map->v[ij->label == EVEN)
map->v[i]->aDual.alpha += minalpha;

if (map->v[i]->passFlag == PSEUDO)
map->v[i]->aPseudo.mu -= 2*minalpha;

)

)
destroyHeap(unheap);
destroyHeap(evenheap) ;
destroyHeap(pseudoheap);
destroyHeap(aheap);
return;

)

I* Title: e_exist ¤/
/* ¤/
/* Description: */
/* Decide an edge with index e belonging to the net or not ¤/
/* */
/* Inputs: */
/* Name Description */
/* ty

/* e an edge index */
/* net A networ): with a forward star data structure */
/* map A dynamic array of nodes in a matching networ)c */
/* */
/* Outputs: */
/* Name Description */

/* BOOLEANs a boolean value ¤/

BOOLEANs e_exist (ptr_lin)c t e, ptr_matchnodes_t map, ptr net t net)
{

int firstLin):, aLin)c;
Queue * aQ;

aQ = map->v[net->fstar->anode[e->anode]]->aDual.tao;
firstLin)c = Dequeue (aQ);
aLin)c = firstLin):;

Enqueue (aQ, firstLin):);
do

{
if (net->lin):s->v[aLin):]->arc_id == e->arc_id)

return true;

aLin): = Dequeue (aQ);
Enqueue (aQ, aLin):) ;

) while (aLin): != firstLin):);

)

return false;

/* Title: iterate_e
/*

/* Description:
/* Iterate the map's dual
/*

/* Inputs:
/* Name Description
/*

185

/* net A network with a forward star data structure
/* map A dynamic array of nodes in a matching network
/*
/* Outputs:
/* Name Description

/* void No return value

void iterate_e(ptr_matchnodes t map, ptr_net t net)
{

int i, aLink;
Queue * aQ;

Queue * cQ;

for (i = 0; i<map->num;i++)
{

Queue ¤ aQ = map->v[i]->aDual.tao;
Queue * cQ = MakeQueue(map->num);
while (IQueueEmpty(aQ))
(

aLink = Dequeue(aQ);
Enqueue(cQ, aLink);

)

map->v[i]->aDual.tao ■= cQ;
DestroyQueue(aQ) ;

)
)

/* Title: greedy *
/*
/* Description: *
/* greedy algorithm ♦
/* ♦
/* Inputs: *
/* Name Description *

/* net A network with a forward star data structure *
/* map A dynamic array of nodes in a matching network *
/* *
/* Outputs: *
/* Name Description *

/* count the number of matching nodes

int greedy(ptr_net_t net, ptr_matchnodes t map)
{

int i, V, w, count;
minheap_t * theHeap;
ptr_pair_t aPair;

count = 0;
if((theHeap=createHeap(net->links->num))==NULL)

{
printf("Error:Can not create new heap.\n");
exit (1);

)

for (i=0;i<net->links->num;i++)
if(arelnsertionsAllowed(theHeap))

addVertexToHeap(theHeap, i, net->links->v[i]->distance);

while (!isEmptyHeap(theHeap))
{

aPair = heapDeleteMin(theHeap);
v=net->fstar->anode[net->links->v[aPair->vertex]->anode];
w=net->fstar->anode[net->links->v[aPair->vertex]->bnode];
if(map->v[v]->mate==INVALIDSSmap->v[w]->mate==INVALID)
(

map->v[v]->mate = w;
map->v[w)->mate = v;
count++;

)
}
destroyHeap(theHeap);
return count;

/* Title: heuristic

186

*/
Description: */

(Markus Paul): */
finds almost all augmenting paths of length <=3 with two passes over */
the adjacency lists , */
("almost": discovery of a blossom (v,w,x,v) leads to a skip of the */
edge (x,v), even if the base v stays unmatched - it's not worth while*/
to fix this problem) */
if all adjacent nodes w of v are matched, try to find an other */
partner for mate, and match v and w on success */

*/
Inputs: */

* Name Description */
*/

* net A network with a forward star data structure */
* map A dynamic array of nodes in a matching network */
* theHeap A heap of incident edges for a node */

*/
* Outputs: ¤ /
* Name Description */

* void No return value */

void heuristic(ptr_net t net, ptr_matchnodes_t map, ptr_minheap_t theHeap)
{

int u, V, w, X, i;
ptr_link_t e = NULL;
ptr_link_t f;
ptr_pair_t aPair;

forall_nodes(V, net)
(

if(map->v[v]->passFlag==NOPASS) continue;
if(map->v[vi->mate==INVALID)
{

min_node_e(e, v, net, map, theHeap);
if(!isEmptyHeap(theHeap))
{

aPair = heapDeleteMin(theHeap);
map->v[v]->mate = aPair->vertex;

map->v[aPair->vertex]->mate = v ;
)
else /* second pass */

map->v[v]->all_matched = MATCHED;
for(i=net->fstar->bnode[v];i<net->fstar->bnode[v+l);i++)
{

e = net->links->v[i];
w = target(e, net);
X = map->v[w]->mate;
if(map->v[x]->all_matched == INVALID)
(

int found = FALSE;

min_node_e(f,x,net,map,theHeap);
while(!isEmptyHeap(theHeap))
(

aPair = heapDeleteMin(theHeap);
u = aPair->vertex;

if(u != V SS map->v[u]->raate==INVALID)
{

found ■= TRUE;
break;

)
)
clearHeap(theHeap);
if(found)
{

map->v[u)->mate = x;
map->v[x]->mate = u;
map->v[v]->mate = w;
map->v[w]->mate = v;
break;

)
else

map->v[xj->all_matched = MATCHED;

187

Title: find_path

Description:
computes an even length alternating path from x to y begining with a
matching edge (Tarjan: Data Structures and Network Algorithms, page 122)
Preconditions:

a) X and y are even or shrinked
b) when x was made part of a blossom for the first time, y was a base

and predecessor of the base of that blossom

Inputs:
Name

L

net

X

y
map

Outputs:
Name

void

Description

A doubly linked list to store x
A network with a forward star data structure

A node index

A node index

A dynamic array of nodes in a matching network

Description

No return value

*/

¤/
*/

¤/
*/

*/

¤/
*/

*/

*/

*/

¤/
*/

*/

*/

*/

*/

*/

*/

*/

*/

V

V

'/

*/
void find_path(LLD L, ptr_matchnodes_t map, int x, int y, ptr net t net)

if (x==y)

insertLast(L, (int *)x);
return;

)

if

(

)

(map->v[xl->label == EVEN)

find_path(L,map,map->v[map->v[x]->mate)->pred,y, net);
insertFirst(L, (int *)(map->v[x]->mate));
insertFirst(L, (int *)x);
return;

if (map->v[x]->label == ODD)
{

int v;

LLD LI = createLLD();
Find_Path(L,map,target(bridge_edge(x, net, map), net),y, net);
Find_Path(Ll,map, source(bridge_edge(x, net, map), net), map->v[x]->mate, net);

setCurrentToFirst(LI);
while (Ll->current != NULL)
(

insertFirst(L, getCurrentData(LI));
setCurrentToNext(LI);

}
insertFirst(L,(int *)x);
return;

/♦'
/♦
/♦
/♦
/*
/*
/*
/*
/*
/*
/*
/*
/♦
/*
/♦
/*

Title: max_card_matching

Description:
Primal_dual Matching algorithm

Inputs:
Name

net
heur

Outputs:
Name

LLD

Description

A network with a forward star data structure
greedy or heuristic

Description

A doubly linked list of matching edges
188

LLD max_carcl_matching (ptr_net_t net, int heur)
(

LLD result;

ptr_matchnodes_t map;
int strue;

BOOLEANs done;

int a, b, v, i;
ptr_link_t e;
minheap_t * theHeap;

strue = 0;

done = false;

if((theHeap=createHeap(net->nodes->num))==NULL)

printf("Error:Can not create new heap.Xn");
exit (1);

)

map " Init_Matching(net);
iterate_e(map, net);
switch (heur)

{
case 1:

(
greedy(net,map);
brealc;

)

case 2:

(
heuristic(net, map, theHeap);
break;

}

)

while (! done) /* main loop */
{

Queue *Q = MakeQueue((net->nodes->num)*2);

int nBlossom = 0, w;
Init_Base(map, net);
done = true;

forall_nodes(v, net)
(

if (map->v[v]->passFlag==NOPASSI lmap->v[vJ->passFlag==BLOSSOM)
continue;

if (map->v[v]->mate =■= INVALID)
(

map->v[v]->label = EVEN;
w = net->nodes->v[v]->nodeID;
Enqueue(Q, w);

)
else map->v[v]->label = UNREACHED;

)

/* search for augmenting path */
while (IQueueEmpty(Q))
(

int w, i;
int V = Dequeue(Q);
ptr_link_t e;

V = net->fstar->anode[v];
if(map->v[v]->passFlag==NOPASSI |map->v[v]->passFlag==BLOSSOM)

continue;
if(map->v[v]->passFlag==PSEUDOSSmap->v[v]->aPseudo.mu==0)

UpdateUnshrinkDual(v, map, net);
for(i=net->fstar->bnode[v];i<net->fstar->bnode[v+1];i++)
(

e = net->links->v[i];
if(e->passFlag==NOPASSI Ie->passFlag==BLOSSOM)
(

if_end_quit(e,net);
continue;

}
w = target(e, net);

if (v == w)
{

189

)

if_end_quit(e, net);
continue; /* ignore self-loops */

if (find(v, map) == find(w, map) I I (map->v[wj->label == ODD \
&& find(w, map) == w))

)

if_end_quit(e, net);
continue; /* do nothing */

/♦scan an outer node*/
if (map->v[w]->label == UNREACHEDSSmap->vtv]->aDual.alpha > 0.0)
{

/♦ no change for labelling an odd node ♦/
map->v[w]->label = ODD;
map->v[w)->pred - v;

/♦update when an unlabelled node as a even node*/
map->v[map->v[w]->mate]->label = EVEN;
UpdateEvenDual(map->v[w]->mate, map, net);
Enqueue(Q, net->nodes->v[map->v(w]->mate)->nodeID);

)
else

int i;
for (i=0;i<map->num;i++)

iterate_e(map, net);
if (e_exist(e, map, net))
(

int hv = find(v, map);
int hw = find(w, map);
strue++;
map->v[hvj->pathl = map->v[hw]->path2 = strue;

while ((map->v[hwl->pathl != strue && \
map->v[hv]->path2!= strue)S£
(map->v[hv]->mate != INVALID \
I I map->v[hw]->mate != INVALID))
(

if (map->v[hv]->mate != INVALID)

hv = find(map->v[map->v[hv]->mate]->pred, map);
map->v[hv)->pathl = strue;

}

if (map->v[hw]->mate != INVALID)
{

hw = find(map->v[map->v[hw]->mate]->pred, map);
map->v[hw]->path2 ■= strue;

}
}

/♦ Shrinic Blossom ♦/
if (map->v[hw]->pathl == strue I I \

map->v[hv]->path2 == strue)
[

int X, y, nMatch"=0;
/♦ Base ♦/
int b = (map->v[hw]->pathl==strue) ? hw : hv;
ptr_matchnode_t pseudo;
LLD aSet;
LLD nodes = createLLD();
LLD linlcs = createLLD () ;

aSet = NodeLlin)cs (net->fstar->anode [e->anode], \
net->fstar->anode[e->bnode], net);

add_lin)cs_from LLD(aSet, lin)cs);
#if defined(REPORT_BLOSSOMS)

printf("SHRINK BLOSSOM\n");
printf("bridge = %d\n", LINKID(e));
printf("base = %d\n", NODEID(b,net));
printf("pathl = ");

#endif

X = find(v, map);
while (x != b)
{

#if defined(REPORT_BLOSSOMS)
190

printf("%d
#endif

NODEID(x,net));

insertLast(nodes, map->v[x));
Union_Sets(x,b, map);
Malce_Replicate (b, map) ;

aSet = NodeLin)cs(map->v[x]->mate, x, net);
add_lin)cs_from_LLD(aSet, linJcs) ;
X = map->vtx]->mate;
nMatc^>++;

#if defined(REPORT_BLOSSOMS)
printf("%d NODEID(x,net));

#endif

y = find{map->v[x]->pred, map);
union_bloclcs(x, b, map);
Ma)ce_Replicate (b, map) ;

if (X != b)

(
insertLast(nodes, map->v[x]);
aSet = NODELINKS(x,map->v[x]->pred, net);
add_lin]cs_from_LLD (aSet, lin)cs) ;

)
Enqueue(Q, net->nodes->v[x]->nodeID);
map->v[x]->bridge = e->indexID;
X = y;

#if defined(REPORT_BLOSSOMS)
printf("%d\n", NODEID(b,net));
printf("path2 = ");

#endif

X = find(w, map);
while (X !=" b)

{

#if defined(REPORT BLOSSOMS)
printf("%d ", NODEID(x,net));

#endif

#if defined(REPORT_BLOSSOMS)
printf("%d ", NODEID(x,net));

Sendif

insertLast(nodes, map->v[x]);
Union_Sets(X, b, map);
Ma)ce_Replicate (b, map) ;

aSet = NodeLin)cs(x,map->v[x]->mate,net) ;
add_lin)<s_from_LLD (aSet, lin)cs) ;
X = map->v[x]->mate;
nMatch++;

y = find(map->v[x]->pred, map);

Union_Sets(x, b, map);
mMa)<e_Replicate(b, map) ;

if (X != b)

{
insertLast(nodes, map->v[x]);

aSet = NODELINKS(x,map->v[x]->pred, net);
add_linlcs_from_LLD(aSet, lin)«s) ;

)
Enqueue(Q, net->nodes->v[x]->nodeID);
map->v[x]->bridge = ReverseLink(net, e)->indexID;
X = y;

} /* while (x != b) */

insertLast(nodes, map->v[b]);

ftif defined (REPORT_BLOSSOMS)
printf("%d \n\n", NODEID(b,net));

#endif

if (map->v[b]->mate != INVALID \
nMatch/2==(sizeLLD(nodes)-I)/2)

nBlossom++;

pseudo = PseudoMapNode(nMatch, nBlossom, nodes,\
links, b, map);

Enqueue(Q, pseudo->nodeID);

191

ShrlnkNet(nBlossom, pseudo, net);
UpdateShrinliDual (net->fstar->anode tpseudo->nodeID), \

map, net);
brea)t;

)

}
else /* augment path */

LLD PO = createLLDO;

LLD PI =. createLLDO;

DualChange(map);
Find_Path{PO,map,v,hv, net);
insertFirst(PO, (int *)w);

Find_Path(Pl,map,w,hw, net);
setCurrentToFirst(PI);
deleteCurrent(PI);

while(! isEmptyLLD(PO))

setCurrentToLast(PO);

a = (int)deleteCurrent(PO);
b = (int)deleteCurrent(PO);

map->v[a]->mate = b;
map->v[b]->mate = a;

}

whileO isEmptyLLD(Pl))

setCurrentToLast(PI);

a = (int)deleteCurrent(PI);
b " (int)deleteCurrent(PI);
map->v[al->mate = b;
map->v[b]->mate = a;

}

/* stop search (while Q not empty) */
InitQueue(Q);

/* continue main loop ¤/
done = false;

brea)c;

}

result = createLLD();

/* Unshrin)< the blossom node */

forall_nodes(v, net)

if(map->v[v]->passFlag == PSEUDO)
UnShrin)cNet(V, map, net);

}

/* The result will not show repeated lin)cs */
forall_edges(e,net)

int V = source(e,net);

int w = target(e,net);
if (V != w && map->v(v]->mate == w && e->passFlag == PASS)

insertLast(result, e);
map->v[v]->mate = v;
map->v[w]->mate = w;

)
if_end_quit(e,net);

)

for (i = 0; i < map->num; i++)
DestroyQueue(map->v[i]->aDual.tao);

Free_Data((header_t *)map);
Free_Data((header_t *)net->nodes);
free(net->fstar->anode);

free(net->fstar->bnode);

free(net);

192

return result;

)

/* Title: Write_Matching
/¤
/* Description:
/* Write out matching result
/*
/* Inputs:
/• Name Description
/*

/* outMatch Output file
/* result A matching list
/*
/* Outputs:
/* Name Description

/* void No return value

void Write Matching(FILE * outMatch, LLD result)
(

ptr_linl<_t e;
float distance =0.0;

setCurrentToFirst(result);

while (result->current != NULL)

{
e = getCurrentData(result);
fprintf(outMatch, "%d %d \n", e->anode, e->bnode);
setCurrentToNext(result);
distance +-e->distance;

}
fprintf(outMatch, "The total distance is %f. \n", distance);
destroyLLD(Sresult);

193

/¤=,

/*

/*

/*
/*■
/♦
/*
/♦
/♦
/*
/*
/■»
/*
/♦
/*
/♦
/*==

TITLE:
buildtour.h

DESCRIPTION:
A tour header file

ORIGIN:
PrograiTuner: Xiaohong Xin
Date:
Platform:
Compiler:

20 February 1998
Windows 95
Borland C++ 5.0

Sifndef
#define

ROUTE_H_
"route H

typedef struct CMROUTE
{

int
float
int depot;
float distance;
int
LLD

) cm_route_t, ♦ptr_cm_route_t;

typedef struct CMROUTES

int max;
int size;
int num;
cm_route_t** v;

) cm_routes_t, *ptr_cm_routes_t;

routelD;
cost;

carrier;

legs;

extern BOOLEANs
extern LLD
extern BOOLEANs
extern LLD

extern float
extern LLD
extern void
extern LLD
extern void
extern int
extern void
extern int
extern int
extern float
extern BOOLEANs
extern int
extern int
extern LLD
extern head tail t *
extern LLD
extern void
extern int
extern void
extern void
extern void
extern void
extern head_tail_t *
extern void
extern void
extern void
extern void
#endif

Depot_Exist(int, ptr_net_t);
Init_Legs (int, ptr_net_t);

Check_Demand_Opbound(ptr_net_t, float);
Generate_Odds(ptr_net_t net);
Chec}c_Lowerbound(ptr_net_t net, float, int) ;
OrderLegs(LLD);

Augment_Legs (LLD);
Label_Clean_Legs(LLD, ptr_net_t, int, int, int, float, int);

Init_Label(LLD, ptr_net_t);
Legs_TraversedNum(LLD);
Chec)cOneLeg_Demand(LLD, LLD, ptr_net_t, int, float);
Leg_Demand(LLD);
Legs_Demand(LLD);
Legs_Distance(LLD);
Demand_Upbound(ptr_net_t, float);
OneLeg_TraversedNum(LLD);
Legs_TraversedNum(LLD);

Merge_Legs (LLD, int, ptr_net_t,
Find_Merge_Node(LLD);

Generate_One_Optimal_Legs(LLD, ptr_net_t,
Write_Route(FILE ♦, ptr_cm_route_t);
AddLin)cToLeg(int, int, LLD, ptr_net_t, ptr_pathnodes_t);

TestLeg(FILE *, LLD);
TestOneLeg(LLD);
Append_Head (head_tail_t
Append_Tail (head_tail_t
Init_Head_Tail(void);
Destroy_Merge_Node(head_tail_t **);

Free_Route(ptr_net_t, ptr_cm_routes_t);
Nodes_File(FILE *, ptr_net_t);
Lin)cs_File (FILE ♦, ptr_net_t) ;

float, int);

float, int);

header, head_t
header, tail t

*);
*);

194

/¤=
/¤
/*

/*

/¤
/¤
/*

/¤
/*

/*

/¤
/*

/¤
/*

/*

/*

/*

/¤
/*

/*

/*

/*
/*

/*

/*
/*

/*

/*

/*

/*

./*

/*

/¤
/*

/*

/¤
/*

/*

/¤
/*

/¤
/*

/¤
/¤
/*

/¤
/¤
/*

/¤
/*

/*

/¤
/*

/*

/*

/*=■■

TITLE;
tour-c
(arc routing problem solution and lower bound calculation)

DESCRIPTION:
A library of an implementation of augment_merge and
Pearn's algorithm

FUNCTION NAMES:

Functions for augment_merge algorithm

1.
2.

3.
4.

5.
6.
7.

8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

BOOLEANs Depot_Exist(int, ptr_net_t);
LLD lnit_Legs (int, ptr_net_t);
BOOLEANs Checlc_Demand_Upbound(ptr_net_t, float);
LLD OrderLegs(LLD);
void Augment_Legs (LLD);
LLD Label_Clean_Legs(LLD, ptr_net_t,int,int, int, float, int)
void Init_Label(LLD, ptr_net_t);
int Legs_TraversedNum(LLD);
void CheclcOneLeg_Demand(LLD, LLD, ptr_net_t, int, float);
int Leg_Demand(LLD); ~
int Legs_Demand(LLD);
float Legs_Distance(LLD) ;
BOOLEANs Demand_Upbound(ptr_net_t, float);
int OneLeg_TraversedNum(LLD);
int Legs_TraversedNum(LLD);
LLD Merge_Legs (LLD, int, ptr_net_t, float, int);
head_tail_t * Find_Merge_Node(LLD);
LLD Generate_One_Optimal_Legs(LLD, ptr_net_t, float, int);
void Write_Route(FILE *, ptr_cm_route_t);
int AddLin)cToLeg(int, int, LLD, ptr_net_t, ptr_pathnodes_t) ;
void TestLeg(FlLE *, LLD);
void TestOneLeg(LLD);
void Append_Head {head_tail_t * header, head_t *);
void Append_Tail (head_tail_t * header, tail_t ♦);
head_tail_t * lnit_Head_Tail(void);
void Destroy_Merge_Node(head_tail_t **);
void Free_Route(ptr_net_t, ptr_cm_routes_t);

Functions for lower bound calculation

28. float Chec)?_Lowerbound(ptr_net_t net,
29. LLD Generate_Odds(ptr_net_t net);
30. void Nodes_File(FILE *, ptr_net_t);
31. void Lin)cs_File (FILE *, ptr_net_t);
32 int Even_Odd(int) "

ORIGIN:
Programmer: Xiaohong Xin
Date: 20 February 1998
Platform: Windows 95
Compiler: Borland C++ 5.0

float, int) ;

,=*/
♦/
*/
*/
*/
*/
*/
*/
*/
*/
♦/
*/
V
*/
*/
V
*/
*/

;*/
♦/
*/
*/
*/
*/
♦/
*/
♦/
*/
*/
*/
*/
*/
♦/
*/
*/
*/
♦/
♦/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
♦/
♦/
*/
*/

=♦/

#include
#include
#include
#include
#include
#include
#include
#include
#include
tinclude
#include

<stdlib.h>
<stdio.h>
<malloc.h>
"networic.h"
"netlib.h"
"netheap.h"
"path.h"
"lld.h"
"buildtour.h"
"queue.h"
"matching.h"

extern int MaxNumLegs = 10000;
extern int MaxNumArcs = 10000;
extern int NumOfCarriers = 4;
extern int StartTime = 800;
extern int EndTime = 1700;
extern float Dis2Time = 45.0/100000.0;
extern int OverlayTime;
extern float FixDiscountRate;
extern void lnit_Label(LLD, ptr_net_t);
extern LLD Reorder_Legs(LLD, int, int);
extern void BreajcOneLeg(LLD, LLD, ptr_lin)c_t, ptr_net_t, int);

195

Depot_Exist
/*♦♦♦****♦*
/* Title:
!*
/* Description:
/♦ Test for the existence of the depot.
/♦
/* Inputs:
/* Name Description

depot
net

/*
/*
/*
/* Outputs:
/* Name

A given node ID as a depot ID
A network with a forward star data structure

Description

BOOLEANs A boolean value/*

BOOLEANs Depot_Exist(int depot, ptr net_t net)

int i, j;

for (i^O; i<net->nodes->num; i++)

j = net->nodes->vti]->nodeID;
if (j == depot)

return true;
)
return false;

*/
*/
*/

. */
*/
♦/
*/
*/
*/
♦/
*/
♦/
♦/

*/

/********
/* Title:
/*
/."
/"
/"
/"
/■"

/"
/'
/*
/"
/«
/"
/"
/"
I*

Inputs

Output

Generate_One_Optimal_Leg

Description:
Generate arc routing problem solution.

:
Name Description

legs
net

VehicleCapacity
LastTime

s:
Name

tmpLegs

A template linked list
A network with a forward star data structure
The vehicle capacity
An iteration number

Description

An output route represented as a linked list

♦*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
♦/
*/
♦/
*/
♦/
*/

LLD Generate_One_Optimal_Leg(LLD legs, ptr_net_t net, float VehicleCapacity, int LastTime)
i

int j ;
LLD cLegs, newLegs, tmpLegs;

tmpLegs = createLLD();
tmpLegs->distanoe ■= INFINITY;

for (j = 0; j < sizeLLD(legs); j++)
i

cLegs = copyLegs(legs);
setCurrentToFirst(cLegs);
newLegs = Merge_Legs(cLegs, j, net, VehicleCapacity, LastTime);
destroyLegs (ScLegs);
tmpLegs = Find_Min_Legs(tmpLegs, newLegs);

)

return (tmpLegs);

/♦ Title:
/*
/
/
/
/
/

Init_Legs

Description:
Initialize routes.

Inputs:
Name Description

196

{

depot The depot id
net A network with a forward star data structure

Outputs:
Name Description

legs An output route represented as a linked list

LD Init_Legs(int depot, ptr_net_t net)

int i;

float distance;
float RouteDistance = 0.0;

static int routeCount = 0;

LLD legs = createLLD();
LLD leg;
ptr_link_t aLink;
ptr_pathnodes_t pathnodes;

setCurrentToFirst(legs);
for (i = 0; i<net->links->num; i++)

{
if (net->links->vti]->trashamount > 0.0&Snet->links->v[i)->uniqueFlag==INVALID)

{
net->links->v[i]->uniqueFlag = UNIQUE;
ReverseLink(net, net->links->v[i])->uniqueFlag = UNIQUE;

leg = createLLD();
distance = 0;

pathnodes = ClearOutTree(net->links->v[i]->bnode, net);
if (FindPath(net->links->v[i]->bnode, depot, net, pathnodes))

{
setCurrentToFirst(leg);

AddLinkToLeg(net->links->v[i]->bnode, depot, leg, net, pathnodes);
distance += pathnodes->v[net->fstar->anode[depot]]->distance;

)

Free_Data((header_t *)pathnodes);
aLink = CopyLink(net->links->v[i]);
insertFirst(leg, aLink);
setCurrentToFirst(leg);
distance += net->links->v[i]->distance;

pathnodes = ClearOutTree(depot, net);
if (FindPath(depot, net->links->v[i]->anode, net, pathnodes))

{
AddLinkToLeg(depot, net->links->v[i]->anode, leg, net, pathnodes);
distance += pathnodes->v[net->fstar->anode[net->links->v[i}->anode]]->distance;

)

Free_Data((header_t *)pathnodes);
leg->distance = distance;
leg->time = distance/Dis2Time;
insertLast(legs, leg);

}

)
return (legs);

}

/* Title: OrderLegs ¤/
/* */
/* Description: */
/* Order routes in a decending order . */
/* */
/* Inputs: ¤/
/* Name Description ¤/
/*

/* raixedLegs A linked list ¤/
/* ¤/
/* Outputs: */
/* Name Description */

/* legs An output route represented as a linked list */

LLD OrderLegs(LLD mixedLegs)
{

LLD legs, damn, tmpLeg, leg;

197

}

legs = createLLD();

setCurrentToFirst(legs);
setCurrentToFirst(mixedLegs);

while (mixedLegs->current != NULL)
(

leg = getCurrentData(mixedLegs);
damn = getCurrentData(legs);

if (damn==NULL)

{
insertFirst(legs, leg);
setCurrentToLast (legs) ;

)
else

if (leg->distance <= damn->distance)
insertAfterCurrent(legs, leg);

else

(
setCurrentToFirst(legs);

damn = getCurrentData(legs);
if (leg->distance >= damn->distance)

insertFirst(legs, leg);
else

(
do (

setCurrentToNext (legs);
tmpLeg = getCurrentData(legs);

}while(leg->distance <= tmpLeg->distance) ;
setCurrentToPrev(legs) ;

insertAfterCurrent(legs, leg);
■)

)
setCurrentToLast(legs);

}
SetCurrentToNext(mixedLegs);

)
return (legs);

/* Title: Augment Legs
/*
/* Description:
/* Augment routes.
/*
/* Inputs:
/* Name Description

/* mixedLegs A lin)ced list
/*
/* Outputs:
/* Name Description

/* void No return value *
It-kit

void Augment_Legs (LLD legs)
(

LLD tmpDatal, tmpData2;
ptr_lin)c_t tmpLin)cl, tmpLin)c2;

setCurrentToFirst(legs);

while (legs->current != NULL)
(

tmpDatal = getCurrentData(legs);
SetCurrentToFirst(tmpDatal);
tmpLin)cl = getCurrentData (tmpDatal) ;
SetCurrentToNext(legs);
while (legs->current != NULL)
(

setCurrentToFirst(tmpDatal);
trapData2 = getCurrentData(legs);
setCurrentToFirst(tmpData2);
tmpLinl{2 = getCurrentData (tmpData2) ;
while (tmpLin)cl->arc_id==tmpLin)<2->arc_id &i tmpDatal->current!=NULL ii tmpData2-

>current!=NULL)
{

SetCurrentToNext(tmpDatal);
if (tmpDatal->current != NULL)

198

}

tmpLinkl = getCurrentData(tmpDatal);
setCurrentToNext(tmpData2);
if (tmpData2->current != NULL)

tmpLinlc2 = getCurrentData (tmpData2);

if (tmpData2->current
I

setCurrentToPosition (legs, tinpData2) ;
deleteCurrentList(legs);
SetCurrentToNext(legs);
continue;

NULL5S (tmpDatal->current != NULL) I tmpDatal->current"NULL))

1

{

if (tmpDatal->current == NULL4StmpData2->current != NULL)

setCurrentToPosition(legs, tmpDatal);
deleteCurrentList(legs);
SetCurrentToNext(legs);
brea]<;

)
setCurrentToNext(legs);

)
setCurrentToPosition(legs, tmpDatal);

SetCurrentToNext(legs);
}

return;

Label_Clean_Legs

Description:
Order routes in a decending order

Inputs:
Name

/*♦*♦♦***
/* Title:
/*
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

Outputs

tmpLegs
net
onelD
two ID

depot
VehicleCapacity
LastTime

structure

:
Name

legs

Description

A lin)ced list
A networ)c with a forward star data
Cardinal number
Cardinal number
The depot id
The vehicle capacity
An iteration number

Description

An output route represented as a lin)ced list

♦»/
*/
♦/
♦/
*/
*/
*/
♦/
♦/
♦/
*/
*/
*/
*/
*/
*/
*/
*/
*/
♦/
*/

LLD Label_Clean_Legs (LLD tmplegs, ptr_net_t net,int oneID,int twoID, int depot,float
VehicleCapacity,int LastTime)

int
float
LLD

ptr_lin)c_t

*way, i, j;
distance_sum = 0.0;
damnLLD, legs;
damnLin)c;

Init_Label (tmplegs, net) ;
legs = tmplegs;
if ((way = (int ♦) malloc (MaxNumLegs * sizeof (int))) == NULL)
(

printf ("Out of Memory in Allocating Memory to Array Way!\n");
exit (1);

)
i = 0;
setCurrentToFirst(legs);
while (legs->current != NULL)
(

damnLLD = getCurrentData(legs);
distance_sum += damnLLD->distance;
setCurrentToFirst(damnLLD);
while (damnLLD->current != NULL)
{

damnLin): = getCurrentData (damnLLD); '
if (net->lin)cs->v[damnLin)c->indexID)->trashamount > 0.0)
{

199

damnLink->legFlag==INVALID)
if (net->links->v[damnLin)<->indexID)->legFlag != TRAVERSED &&

{ s-
for (j=0; j<i; j++)

if (damnLink->arc_id != way[j])
continue;

else

break;

)

if (j == i)

damnLink->legFlag = TRAVERSED;
net->links->v[danmLink->indexID]->legFlag = TRAVERSED;

way[i) = damnLink->arc_id;
i += 1;

}

)
)

setCurrentToNext(legs->current->data);
)

/♦delete the hontraversed legs */
daitinLLD->nuinTraversed = OneLeg_TraversedNum(damnLLD) ;
if (damnLLD->nuniTraversed == 0)
{

distance_suin —= daranLLD->distance;
deleteCurrentList(legs);

)
SetCurrentToNext(legs);
)

setCurrentToFirst(legs);
while (legs->current != NULL)
(

CheckOneLeg_Demand(legs, getCurrentData(legs), net, depot, VehicleCapacity);
setCurrentToNext(legs);

}

setCurrentToFirst(legs);
while (legs->current != NULL)
{

damnLLD = getCurrentData(legs);
if (daiiinLLD->time > LastTime)
(

printf("Error: There are long arcs beyond the time limit! \n You must adjust
the daily working time.\n");

exit(1);
}
SetCurrentToNext(legs);
)

legs->demand = Legs_Demand(legs);
legs->distance = distance_sum;
legs->time = distance_sum/Dis2Time;
legs->numTraversed = Legs_TraversedNum(legs);
free(way);
return (legs);

)

/* Title:

/♦
/* Description:
/♦ label :
/*
/* Inputs:
/* Name
/*
/♦ legs
/* net

/*
/* Outputs:
/* Name

/♦
/* void

Init Label

Description *

A linked list *
A network with a forward star data structure *

■*

*

Description *

No return value *
/**

void Init_Label(LLD legs, ptr_net_t net)

200

LLD damnLLD;

ptr_lin)c_t damnLink;

setCurrentToFirst(legs);
while (legs->current != NULL)
1

damnLLD = getCurrentData(legs);
setCurrentToFirst(damnLLD);

while (damnLLD->current != NULL)

{
damnLink ■= getCurrentData (damnLLD) ;
damnLink->legFlag = INVALID;
net->links->v[damnLink->indexIDJ->legFlag = INVALID;
setCurrentToNext(damnLLD);

)
setCurrentToNext(legs);
)

return;

}

/* Title: Reorder_Legs */
/* */
/* Description: */
/* reorder routes according to two cardinal numbers. ♦/
/* */
/* Inputs: */
/♦ Name Description */
/* ♦/

/* legs A linked list */
/* onelD Cardinal number */
/• twoID Cardinal number */
/* */
/* Outputs: */
/* Name Description */
/♦ ♦/

/* newLegs An output route represented as a linked list */

LLD Reorder_Legs(LLD legs, int onelD, int twoID)
{

LLD newLegs, oneData, twoData, elseData;
newLegs = createLLD();

oneData = getOrderData(legs, onelD);
insertLast(newLegs, oneData);
twoData = getOrderData(legs, twoID);
insertLast(newLegs, twoData);

setCurrentToFirst(legs) ;
while (legs->current != NULL)
{

elseData = getCurrentData(legs);
if (elseData !° oneData elseData != twoData)

insertLast(newLegs, elseData);
SetCurrentToNext(legs);

)

return (newLegs);
)

/* Title: Demand_Upbound */
/* »/
/* Description: */
/* Check for link demand . */
/* */
/* Inputs: */
/* Name Description */
/♦ ./

/* net A network with a forward star data structure */
/* VehicleCapacity The vehicle capacity ♦/
/* */
/♦ Outputs: */
/* Name Description ♦/
/* »/
/* BOOLEANs A boolean output ♦/

BOOLEANs Demand_Upbound(ptr_net_t net, float VehicleCapacity)
(

int i;
int max = INFINITY*(-1);

201

for (i = 0; i <net->links->num; i++)
if (net->links->v[i]->trashamount > max)
max = net->links->v[i]->trashamount;

if (max > VehicleCapacity)
return (false);

else

return (true);

)

/* Title: Nodes_File ¤/
/* */
/¤ Description: ¤/
/* Generate a matching node file . */
/* */
/* Inputs: */
/* Name Description */
/* */

/* Ndfile An output node file */
/* net A network with a forward star data structure */
/* ¤/
/¤ Outputs: n ¤/
/* Name Description ¤/
/¤ ./

/* void No return value */

void Nodes_File(FILE *NdFile, ptr_net_t net)
(

int i;

fprintf(NdFile, "#Knoxroad\n");

for (i=0; i<net->nodes->num; i++)

if (Even_Odd(net->nodes->v[i]->undirectedLinks)== 1)
fprintf(NdFile, "%d\n", net->nodes->v[i]->nodeID);

)
fclose(NdFile);

}

/* Title: Links_File */
/* V
/* Description: */
/* Generate a matching link file . */
/■* */
/* Inputs: */
/* Name Description */

/* Lkfile An output link file */
/* net A network with a forward star data structure */
/♦ */
/♦ Outputs: ♦/
/* Name Description ♦/

/* void No return value ♦/

void Links_File(FILE * LkFile, ptr_net_t net)
{

int *Odd, i, j, k,arcID=0;
ptr_pathnodes_t pathnodes;
ptr_link_t aLink, bLink;

if ((Odd = (int *) malloc ((net->nodes->num)* sizeof (int))) == NULL)
{

printf ("Out of Memory in Allocating Memory to Array Odd!\n");
exit(1);

)

k = 0;
for (i=0; i<net->nodes->num; i++)
{

if (Even_Odd(net->nodes->v[iJ->undirectedLinks)== 1)
Odd[k++] = net->nodes->v[i]->nodeID;

)

■ fprintf(LkFile, "#Fnode_, #Tnode_, ((Length, #Knoxroad_, #Fromlong, #Fromlat, #Tolong, #Tolat,
#Two_way, #Demand\n");

202

for (i=0; i<k; i++)

for (j=0; j<k; j++)
(

if (j > i)

pathnodes = ClearOutTree(Odd[i], net);
if (FindPath(Odd[iJ, Odd[j], net, pathnodes))

aLink=net->links->v[net->fstar->bnode[net->fstar->anode[Odd[i]]]J;
bLink=net->links->v[net->fstar->bnode[net->fstar->anode[Odd[jI]]);
fprintf(LkFile, "%d,%d,»f,%d,%ld,%ld,%ld,%ld,%hd,%f\n",

Odd[i], Odd[j], pathnodes->v[net->fstar->anode[Odd[j)I)->distance,
arcID++, aLink->org_node.lon, aLink->org_node.lat, bLink->dst_node.lon,
bLink->dst_node.lat, aLink->two_way, aLink->trashamount);

Free_Data((header_t *)pathnodes);
)

)
free(Odd);

fclose(LkFile)i

}

/* Title: Even_Odd */
/* */
/* Description: */
/* judge a number as even or odd? . */
/* ¤/
/* Inputs: */
/* Name Description */
/* */

/* number An integer number */
/* */
/* Outputs: ¤/
/* Name Description */

/* k An integer as a booleam number */

int Even_Odd (int number)
(

int k;

k = nim:ber%2;

while (k != 0 4S k != 1)

(
k = k%2;

)
return k;

)

/* Title: Generate_Odds ¤/
/* ¤/
/* Description: */
/* generate odd-degree node set and then do matching for the nodes */
/* */
/* Inputs: */
/* Name Description */
/* ¤/
/* net A network with a forward star data structure */
/* */
/* Outputs: */
/* Name Description */
/* ¤/
/* legs An output route represented as a linked list */

LLD Generate_Odds(ptr_net t net)
(

FILE *NdFile, *LkFile, *netfile, *matchfile;
ptr_net_t oddnet;
LLD matchodds;

/♦generate odd-degree node net */
NdFile = Open_File("mnode.txt", "w");
Nodes_File(NdFile, net); /*read odd-degree nodes in */
LkFile = Open_File("mlink.txt", "w");
Links_File(LkFile, net); /* read the links for the odd nodes */
NetBuild("mnode.txt", "mlink.txt", "oddnet.txt");
netfile = Open_File("oddnet.txt", "r");
oddnet = Init_Network();
ReadNet(netfile, oddnet);

203

/*match odd-degree nodes; */
matchodds = max_card_matching(oddnet, 2);

return matchodds;

)

/* Title: Check_Lowerbound ' ¤/
/* ¤/
/¤ Description: */
/* Lower bound calculation. */

/¤ V
/* Inputs: ¤/
/* Name Description */
/* ¤/
/* net A network with a forward star data structure */
/* VehicleCapacity The vehicle capacity */
/* depot The depot id */
/* */
/* Outputs: */
/* Name Description */

/* IbD lower bound */

float Cheok_Lowerbound (ptr net_t net, float VehicleCapacity, int depot)
{

int i, j, k, I, dest, nL=0;
float totalDistance = 0.0, totalDemand = 0.0, spl = 0.0, distance = 0.0, IbD = 0.0;
ptr_pathnodes_t pathnodes;
ptr_pair_t aPair;
ptr_link_t e;
ptr_minheap_t aheap = createHeap(net->nodes->num);
LLD matchnodes = Generate_Odds(net);

/♦compute the double total distance ♦/
for (i=0; i<net->links->num; i++)
{

totalDemand += net->links->v[i]->trashamount;
if (net->links->v[i]->trashamount > 0.0)
totalDistance += net->links->v[i]->distance;

)

/♦compute I ♦/
I = totalDemand/VehicleCapacity-net->nodes->v[net->fstar->anode[depot]]->outLinks;

for (j=0; j<net->nodes->num; j++)
{

dest = net->nodes->v[j]->nodeID;
if (dest != depot)
{

pathnodes = ClearOiitTree (depot, net);
if(FindPath(depot, dest, net, pathnodes))

addVertexToHeap(aheap, j ,pathnodes->vtj]->distanoe);
Free_Data((header_t ♦)pathnodes);

>
}

/♦deal with odd nodes and their paths relating with spl ♦/
setCurrentToFirst(matchnodes);

while (matchnodes->current != NULL)
{

e = getCurrentData(matchnodes);
pathnodes = ClearOutTree(e->anode, net);
if(FindPath(e->anode, e->bnode, net, pathnodes))
if ((pathnodes->v[net->fstar->anode[depot]]->parent==e->anode) I j

(pathnodes->v[net->fstar->anode[depot]]->parent="e->bnode))
nL -= 2;

setCurrentToNext(matchnodes);
distance +=e->distance;

)
destroyLLD(&matchnodes);

/♦compute the total amount of spl ♦/
while (nL <= I)
{

aPair = heapDeleteMin(aheap);
spl += (aPair->priority)♦(net->nodes->v[aPair->vertex]->undirectedLinks);
nL += net->nodes->v[aPair->vertex]->undirectedLinks;

}

204

destroyHeap(aheap);

/•finally, the ideal lower bound comes as follows */
IbD = totalDistance/2 + distance + spl;

return IbD;

)

/* Title: Chec)cOneLeg_Demand */
/• ¤/
/* Description: */
/* Chec}c demand capacity for one route */
/* ¤/
/¤ Inputs: */
/¤ Name Description ¤/

/* legs all routes as a linlced list */
/* leg one route as a linked list */
/* net A network with a forward star data structure */
/* depot The depot id */
/* VehicleCapacity The vehicle capacity */
/* */
/* Outputs: */
/* Name Description */

/* void No return value */

void CheckOneLeg_Demand(LLD legs, LLD leg, ptr_net_t net, int depot, float VehicleCapacity)
/•assuming no violation of time constraints for one leg •/
{

ptr_link_t aLink;
int tAmount = 0;

setCurrentToFirst(leg);
while (leg->current != NULL)
{

aLink ■= getCurrentData (leg) ;
if (aLink->legFlag == TRAVERSED)
tAmount += aLink->trashamount;
if (tAmount > VehicleCapacity)
(

setCurrentToPrev(leg);
BreakOneLegdegs, leg, getCurrentData (leg), net, depot);

return;

)
setCurrentToNext(leg);
)

if (leg->current == NULL)
leg->demand = tAmount;

return;
)

/• Title: OneLeg_TraversedNum •/
/• */
/* Description: ★/
/* Obtain the number of links traversed */
/• V
/• Inputs: */
/• Name Description •/

/• theLeg one route as a linked list •/
/• V
/• Outputs: •/
/• Name Description */

/• tNum the number of traversed links on one route •/
/******************************* /
int OneLeg_TraversedNum(LLD theLeg)
(

int tNum = 0;
ptr_link_t theLink;

setCurrentToFirst(theLeg) ;
while (theLeg->current != NULL)
(

theLink = getCurrentData(theLeg);
if (theLink->legFlag == TRAVERSED)

205

tNum += 1;

setCurrentToNext(theLeg);
)

return (tNum);

Title: Legs_TraversedNum ¤/
*/

Description: */
Obtain the number of links traversed for all routes */

V
Inputs: */

Name Description */

legs all routes as a linked list ¤/
*/

Outputs: */
Name Description */

tNum the number of traversed links on all routes */

nt Legs_TraversedNum(LLD legs)

int tNum -= 0;

LLD theLeg;

setCurrentToFirst(legs);
while (legs->current != NULL)
(

theLeg = getCurrentData(legs);
tNum +- theLeg->numTraversed;
SetCurrentToNext(legs);
)

return (tNum);

}

/* Title: BreakOneLeg */

/* */
/* Description: */
/* break one leg into two once routes violate capacity limit */
/¤ */
/* Inputs: */
/* Name Description */

/* legs all routes as a linked list */
/* leg one route as a linked list */
/* theLink the working link */
/* net A network with a forward star data structure */
/* depot The depot id */
/* */
/* Outputs: */
/* Name Description ¤/

/* void No return value */
/
void BreakOneLeg(LLD legs, LLD theLeg, ptr_link t theLink, ptr_net t net, int depot)
(

ptr_link_t aLink, bLink, nextLink;
LLD amergeLeg, bmergeLeg, aLeg, bLeg;
ptr_pathnodes_t pathnodes;
int tAmount = 0;

setCurrentToPosition(theLeg, theLink);
if (theLeg->current->next != NULL)

nextLink = theLeg->current->next->data;

setCurrentToPosition(theLeg, theLink);
aLeg = createLLD();
pathnodes = ClearOutTree(theLink->bnode, net);
if (FindPath(theLink->bnode, depot, net, pathnodes))
(

setCurrentToFirst(aLeg);
AddLinkToLeg(theLink->bnode, depot, aLeg, net, pathnodes);
aLeg->distance = pathnodes->v[net->fstar->anode[depot]]->distance;

)

setCurrentToFirst(aLeg);
aLink = getCurrentData(aLeg);

206

amergeLeg = merge2LLD(theLeg, aLeg, theLink, aLink);
bLeg = createLLD();
pathnodes = ClearOutTree(depot, net);
if (FindPath(depot, theLink->bnode, net, pathnodes))
(

setCurrentToFirst(bLeg);
AddLinkToLeg(depot, theLlnk->bnode, bLeg, net, pathnodes);
bLeg->distance = pathnodes->vlnet->fstar->anode[theLink->bnode)]->distance;
>

setCurrentToLast(bLeg);
bLink = getCurrentData(bLeg);

bmergeLeg = merge2LLD(bLeg, theLeg, bLink, nextLink);

insertFirst(legs, bmergeLeg);
insertFirst(legs, amergeLeg);
setCurrentToPositiondegs, theLeg);
deleteCurrentList(legs);
setCurrentToFirst(legs);

)

t*
/* Title: Leg_Demand */
/* */
/* Description: */
/* calculate the demand on one route */
/* */
/* Inputs: */
/* Name Description */

/* aLeg one route as a linked list */
/* */
/* Outputs: */
/* Name Description */

/* legDemand the amount of demand */

int Leg Demand(LLD aLeg)
(

int legDemand = 0;
ptr_link_t aLink;

setCurrentToFirst(aLeg);
while (aLeg->current !- NULL)

{
aLink = getCurrentData(aLeg);
if (aLink->legFlag == TRAVERSED)

legDemand += aLink->trashamount;
setCurrentToNext(aLeg);
)

aLeg->demand = legDemand;
return (aLeg->demand);

)

/* Title: Legs_Distance */
/* */
/* Description: */
/* calculate the distance on all routes */
/* */
/* Inputs: */
/* Name Description */

/* legs all routes as a linked list ¤/
/¤ ./
/* Outputs: */
/* Name Description */

/* legDistance distance */

float Legs_Distance(LLD legs)
(

float legsDistance = 0.0;
LLD aLeg;

setCurrentToFirst(legs) ;
while (legs->current != NULL)

207

aLeg = getCurrentData(legs);
legsDistarice += aLeg->distance;
setCurrentToNext(legs);
)

legs->distance = legsDistance;
return (legs->distance);

Title: Legs_Demand

Description:
calculate the demand on all routes

Inputs:
Name Description

legs

Outputs:
Name

legsDemand

all routes as a lin)ced list

Description

the amount of demand

int Legs_Demand(LLD legs)
{

int legsDemand ■= 0;
LLD aLeg;

setCurrentToFirst(legs);
while (legs->current != NDLL)

aLeg getCurrentData (legs) j
legsDemand aLeg->demand;
setCurrentToNext(legs);

)
legs->demand " legsDemand;

return (legs->demand);

/***♦**********
/♦ Title:
/*
/* Description:
/* merge routes

Merge_Legs

Name
/* Inputs:
/*
/*
/*
/♦
/*
/*
/*
/*
/♦
/* Outputs:
/* Name
/♦
/* minLLDs
/****************

origlegs
legOrder
net

depot
VehicleCapacity
LastTime

Description

all routes as a lin)ced list
cardinal number
A networ)c with a forward star data structure
The depot id
The vehicle capacity
An iteration number

Description

An output routes

LLD Merge_Legs(LLD origlegs, int legOrder, ptr_net t net, float VehicleCapacity, int LastTime)
(

int i
int

j,)c, nTail, f;
cnt = 0;

tmpData;

ptr_head_tail_t ml=NULL, m2=NULL;
LLD legDatal = NULL, legData = NOLL, newLegs, newLLD, minLLD, minLLDs, origData, legs,

ptr_linl«_t damnTailLin)c, damnHeadLin)<, mlLin)c, m2Lin)c;

minLLDs = createLLD();
minLLDs->distance = INFINITY;
origData = getOrderData(origlegs, legOrder);
damnTailLinIc = origData->tail->data;
if (damnTailLinJc->legFlag != TRAVERSED)
{

208

nTail

ml = Fincl_Merge_Node (origData) ;
ml->NumTails;

for (i

1

>taillink;

>heacilink;

= 0; i < nTail; i++)

legs = copyLegs(origlegs);
tmpData = getOrderData(legs, legOrder);
Destroy_Merge_Node(Sml);
ml = FindJMerge_Node(tmpData);
setCurre^tToPosition(legs, tmpData);
setCurrentToNext(legs);
while (legs->current != NULL)
(

minLLD = createLLD();

minLLD->distance = INFINITY;

for ()c=0; k<2;]c++)

{
legData = getCurrentData(legs);
if ()c=-l)

legData = getReverseList(net, legData);
Destroy_Merge_Node(Sm2);
m2 = Find_Merge_Node(legData);
for (j=0;j<m2->NumHeads; j++)
(

if (ml->NumTails!=0SSm2->NumHeads!=0)

(
for (f=0;f<ml->NumTails;f++)

{
mlLin)< - ml->mergeTailNodes [f]-

m2Lin)t = m2->mergeHeadNodes[j]-

>tailnode == m2->mergeHeadNodes[j]->headnode)
if (ml->mergeTailNodes[f]-

{
newLLD =

merge2LLD(tmpData, legData, ml->mergeTailNodes[f]->taillinlc, m2->mergeHeadNodes[j]->headlinJc) ;
if ((newLLD->demand >

VehicleCapacity) I I

LastTime))
(newLLD->time

(SnewLLD);

>

destroyLLD

Find_Min_Leg(minLLD, newLLD);
minLLD

)
)/*for(f=0;f<ml->NumTails;f++) */

)/*if(ml->NumTails!=0SSm2->NuraHeads!=0) */
) /*for (j=0;j<m2->NumHeads; j++) */
if ()c==l)

destroyLLD (alegData);
} /*for ()c=0;)c<2; k++) */

/♦finally a better leg comes */
if (minLLD->distance < INFINITY)
(

deleteCurrentList(legs); /* sizeof(legs) changed ♦/
setCurrentToPositiondegs, tmpData) ;
deleteCurrentList(legs);
insertFirst(legs, minLLD);
setCurrentToFirst(legs);
tmpData = getCurrentData(legs);

Destroy_Merge_Node(Sml);
ml = Find_Merge_Node(tmpData);

setCurrentToFirst(legs);
if (ml->NumTails == 0)
(

setCurrentToPositiondegs, tmpData) ;
tmpData = getReverseList(net, tmpData);
deleteCurrentList(legs);
InsertFirst(legs, tmpData);
Destroy_Merge_Node(Sml);
ml = Find_Merge_Node(tmpData);
if (ml->NumTails == 0)

brea)<;

209

else

setCurrentToFirst(legs);
)/* if (ml->NumTails ==• 0) */

) /* if(minLLD->distance != INFINITY) */
else

destroyLLD (SminLLD);

setCurrentToNext(legs);
) /*while (legs->current != NULL) •/

legs->distance = Legs_Distance(legs);
legs->time = (legs->distance)/Dis2Time;
legs->demand = Legs_Demand(legs);
legs->numTraversed = Legs_TraversedNum(legs);
minLLDs = Find_Min_Legs(minLLDs, legs);
Destroy_Merge_Node (Sm2);

}

) /*for (1=0; i<ml->NuinTails; i++) */
) /*if (damnTailLin)c->legFlag != TRAVERSED) */
Destroy_Merge_Node (Sml);
return (minLLDs);

/* Title: Find_Merge_Node ¤/
/¤ */
/¤ Description: */
/* build merge lists */
/* */
/* Inputs: */
/* Name Description */

/* aLeg one route as a lin)ced list */
/* */
/* Outputs: */
/* Name Description */

/* newHead_Tail A head_tail list */
/**********************************

head_tail_t * Find_Merge_Node(LLD aLeg)
{

float saving_Head_distance = 0.0, saving_Tail_distance = 0.0;
ptr_lin)c_t damnTailLin)c, damnHeadLin)c, damnCurLin)c;
head_t * newHead;
tail_t * newTail;
)iead_tail_t * newHead_Tail ;

newHead_Tail = Init_Head_Tail();
setCurrentToFirst(aLeg);
if (aLeg->current != NULL)
{

damnTailLin)c = aLeg->tail->data;
damnHeadLin]< = aLeg->tail->next->data;

if (damnTailLin){->legFlag == INVALID)

setCurrentToLast(aLeg);
if (aLeg->current != NULL)
damnCurLinjc = getCurrentData (aLeg) ;
saving_Tail_distance = damnCurLin)c->distance;

setCurrentToPrev(aLeg);
if (aLeg->current != NULL)
damnCurLin)c ■= getCurrentData (aLeg) ;
while (damnCurLin)«->legFlag!"TRAVERSED &£ aLeg->current != NULL)

{
newTail = (tail_t *)New_Element(sizeof(tail_t)) ;
newTail->tailnode = damnCurLin]<->bnode;
newTail->taillin)c = damnCurLin)c;
newTail->saving_Tail_distance = saving_Tail_distance;

Append_Tail(newHead_Tail, newTail);
saving_Tail_distance += damnCurLin)c->distanoe;

setCurrentToPrev(aLeg);
damnCurLinJc = getCurrentData (aLeg) ;

)
newTail = (tail_t *)New_Element(sizeof(tail_t));
newTail->tailnode = damnCurLin)c->bnode;
newTail->taillin)c = damnCurLin)c;

210

newTail->saving_Tail_distance = saving_Tail_distance;

Append_Tail {newHead_Tail, newTail) ;
}

if (damnHeadLink->legFlag == INVALID)

setCurrentToFirst(aLeg);
if (aLeg->current != NULL)
damnCurLin)c = getCurrentData (aLeg);
saving_Head_distance = damnCurLin)c->distance;

setCurrentToNext(aLeg);
if (aLeg->current != NULL)
damnCurLin)c = getCurrentData (aLeg) ;
while(dainnCurLin)c->IegFlag == INVALID aLeg->current != NULL)

{

newHead = (head_t *)New_Element(sizeof(head_t));
newHead->headnode = dainnCurLinlc->anode;
newHead->headlin)c = damnCurLin)«;

newHead->saving_Head_distance = saving_Head_distance;

Append_Head(newHead_Tail, newHead);

saving_Head_distance += damnCurLin)c->distance;
setCurrentToNext(aLeg);

daiiinCurLin)c = getCurrentData (aLeg) ;
)

newHead = (head_t *)New_Element(sizeof(head_t));
newHead->headnode = dainnCurLin)c->anode;
newHead->headlinlc = dainnCurLin)c;
newHead->saving_Head_distance = saving_Head distance;

Append_Head(newHead_Tai1, newHead);
}

aLeg->mergeNodes = newHead_Tail;
return (aLeg->mergeNodes);

/* Title: Destry Merge Node *
/* *
/* Description: *
/* free merge lists *
/¤
/* Inputs: *
/* Name Description *

/* m A head tail list *
/* ¤
/* Outputs: *
/* Name Description *

/* void No return value *
/*********

void Destroy_Merge_Node(head tail t *♦ m)
{

int i, j;
if (*m == NULL)

return;
for (i=0; i < (*m)->NiaiiHeads; i++)

free ((*m)->mergeHeadNodes[i]);
free ((*m)->mergeHeadNodes);
for (j = 0; j < (*m)->NumTails; j++)

free((*m)->mergeTailNodes[j]);
free((*m)->mergeTailNodes);
free(*m);
*m = NULL;

)

/* Title: Write_Route
/*
/* Description:
/* write out arc routing solution
/*
/* Inputs:
/* Name Description

211

/.

/* outfile An output file ¤/
/* route An arc routing solution */
/¤ ./
/* Outputs: »/
/* Name Description */

/*' void No return value */

void Write_Route(FILE * outfile, ptr cm route t route)
(

int i, j;
LLD damnLLD;

ptr_lin)c_t damnLin)c;
fprintf(outfile, "%d\n", route->carrier);
fprintf(outfile, "id\n", route->depot);

setCurrentToFirst(route->legs);
for(1=0; i<sizeLLD(route->legs); i++)
(

fprintf(outfile, "%d\n", i);
setCurrentToFirst(route->legs->current->data);
for (j=0; j<si2eLLD(route->legs->current->data); j++)
(

damnLLD = route->legs->current->data;
damnLinJc = damnLLD->current->data;

fprintf (outfile, "%d\n", damnLin)c->indexID) ;
setCurrentToNext(damnLLD);

1
setCurrentToNext(route->legs);

)

/* Title: AddLin)<ToLeg */
/* */
/* Description: */
/* Build one route from paths */
/* */
/* Inputs: ¤/
/* Name Description ¤/

/* start path start index */
/* end path end index ¤/
/* leg a route as a lin)ced list *.

net A networ)« with a forward star data structure ¤/
/* LastPath A path structure */
/¤ */
/* Outputs: «/
/* Name Description */
/* ¤/
/' TRUE7FALSE An integer represented as a boolean */
/♦** ************************** ******* /
int AddLin)cToLeg(int start, int end, LLD leg, ptr_net_t net, ptr_pathnodes_t LastPath)

int cur;
ptr_lin)c_t aLin)c;
cur = end;
if (end == start)

return (TRUE);
else
{

while (cur != start)
{

aLin)c = CopyLin)c (net->lin)cs->v[LastPath->v[net->fstar->anode (cur]] ->indexID]);
aLin)c->legFlag = INVALID;
insertFirst (leg, aLin)c) ;
cur = LastPath->v[net->fstar->anode[cur]]->parent;

>
setCurrentToFirst(leg);
return (TRUE);
)

/
/* Title: Test_Leg */

// Description: */
/* print out attributes on one leg */

212

/*

/¤
/*

/¤
/*

/*

/*

/*

/*

/¤
/*

Inputs:
Name

outfile

legs

Outputs:
Name

void

Description

An output file
All routes

Description

No return value

void TestLeg(FILE * outfile, LLD legs)

LLD damn;

ptr_lin)c_t dam;

fprintf(outfile, "The total distance is %lf\n", legs->distance);
fprintf(outfile, "The total time is %lf\n", legs->time);
fprintf(outfile, "The total demand is %f\n", legs->demand);
fprintf (outfile, "The total traversed linlc number is %d\n", legs->numTraversed) ;

setCurrentToFirst(legs);
while (legs->current != NULL)
(

damn = getCurrentData(legs);
fprintf(outfile, "\nThe leg distance is %lf\n", damn->distance);
fprintf(outfile, "The leg time is %lf\n", damn->time);
fprintf(outfile, "The leg demand is %f\n", damn->demand);
fprintf(outfile, "The leg traversed lin)c number is %d\n", damn->numTraversed);

setCurrentToFirst(damn);
while (damn->curreht != NULL)

{
dam = getCurrentData(damn);

fprintf(outfile, "%d %d %f %d %d %d %lf %lf\n", dam->anode,
dam->indexID, dam->legFlag, dam->arc_id, dam->distance, dam->time);

setCurrentToNext(damn);
}
SetCurrentToNext(legs);
)

dam->bnode, dam->trashamount.

/♦♦♦**••*
/* Title:
/*
/
/
/
/
/
/
/
/
/
/
/
/■

Inputs

TestOneLeg

Description:
print out attributes on one leg

:
Name

aLeg

Outputs:
Name

void

Description

One Route

Description

No return value
/♦

**/
*/
*/
V
*/
♦/
*/
*/
*/
♦/
♦/
*/
*/
*/
*/

**/
void TestOneLeg(LLD aLeg)
{

ptr_lin){_t dam;
int cnt

printf ("BEGIN: TestOneLeg\n");
printf ("aLeg->length = %d\n", aLeg->length);

if (aLeg == NULL)
{

printf ("leg is emptyXn");
return;

)
else

(
printf ("The leg distance is %lf\n", aLeg->distance) ,-
printf("The leg time is ilfin", aLeg->time);
printf("The leg demand is %f \n", aLeg->demand);
printf ("The leg traversed lin)c number is %d \n", aLeg->numTraversed) ;

setCurrentToFirst(aLeg);

213

while (aLeg->current != NULL)
{

dam = getCurrentData(aLeg);
printf("%d %d %d %d %f %d %d %lf %lf\n", cnt++, dam->anode, dam->bnode, dam->legFlag, dam-

>trashamount, dam->indexID, dam->arc_id, dam->distance, dam->time);
setCurrentToNext(aLeg);

)

)

printf ("END: TestOneLegXn");
) >

/* Title: Append_Head ¤/
'* *!
/* Description: */
/* Build a dynamic head_tail array for head nodes */
/* V
/* Inputs: */
/* Name Description ¤/
/* — ¤!
/* header A dynamic array of head_tail nodes */
/* element A dynamic array of head nodes */
'* V
/* Outputs: ¤/
/* Name Description ¤/

/* void No return value »/

void Append Head (head_tail_t * header, head t *element)
{

if (header->NumHeads >= MaxNumArcs)
(

printf ("Increse header size (Append_Head {))\n");
exit (1);

)

header->mergeHeadNodes[header->NumHeads++] = element;
}

/* Title: Append_Tail */
/* */
/* Description: ¤/
/* Build a dynamic head_tail array for tail nodes */
/* */
/* Inputs: */
/* Name Description ¤/

/* header A dynamic array of head_tail nodes •/
/* element A dynamic array of tail nodes */
/* V
/* Outputs: ¤/
/* Name Description ¤/

/* void No return value */
/**/
void Append_Tail (head_tail_t ¤ header, tail t "element)
{

if (header->NumHeads >= MaxNumArcs)
(

printf ("Increse header size (Append_Tail ())\n");
exit (1);

)

header->mergeTailNodes[header->NumTails++] ■= element;
)

/* Title: Init_Head_Tail */
/" V
/• Description: »/
/* initialize a dynamic head tail array ♦/
/♦
/* Inputs: */
/* Name Description */
/*

/* */
/* Outputs: */

214

/

/* Name Description */
/¤ *,

/* header_tail A dynamic array of head tail nodes •/

head_tail_t * Init_Head_Tail ()
{

head_tail_t * head_tail;
if ((head_tail = (head_tail_t *) raalloc (sizeof (head_tail_t))) == NULL)
{

printf ("Error in malloc header (Init_Head_Tail())\n");
exit (1);

)

head_tail->NumHeads = 0;
head_tail->NumTails = 0;
if ((head_tail->mergeHeadNodes = (head_t **) calloc (MaxNumArcs, sizeof (head_t *))) == NULL)
(

)

printf ("Error in malloc header->mergeHeadNodes(Init_Head_Tail())\n");
exit (1);

if ((head tail->mergeTailNodes = (tail_t **) calloc (MaxNumArcs, sizeof (tail_t ¤)))
{

printf ("Error in malloc header->mergeTailNodes(Init_Head_Tail0)\n");
exit (1);

}
return head tail;

NULL)

/* Title: Find_Merge_Node */
/* " ¤/
/* Description: */
/* build merge lists */
/* */
J* Inputs: */
/* Name Description */
/*

/* net A networjc with a forward star data structure */
/* routes An arc route solution */
/* */
/* Outputs: ¤/
/* Name Description */
/*

/* void No return value */
/**♦*"*♦♦****
void Free_Route(ptr_net_t net,ptr_cm_routes_t routes)
(

free(net->fstar->anode);
free(net->fstar->bnode);
free(net->fstar->cnode);
free(net->lin)cs) ;
free(net->nodes);
free(net);
free (routes) ;

)

215

Vita

Xiaohong Xin was bom in Urumqi, a capital city of Xinjing Uygur Autonomous

Region, P. R. China, on November 4,1969. She attended No. 23 Middle School in

Urumqi where she graduated in 1987. She received her Bachelor of Science Degree from

Lanzhou University, Gansu, P. R. China, in 1991, with a major in Economic Geography

and Urban & Regional Planning. She received her Master of Science Degree also from

Lanzhou University, in 1994, with a major in Urban & Regional Planning. After

graduating from Lanzhou University, she became an assistant professor in Lanzhou

University to teach Regional Economic Geography and Urban Economics from 1994

imtil 1995. In 1995, she entered the Department of Geography at the University of

Tennessee, Knoxville (UTK) in pursuit of a Master of Science Degree with an emphasis

in the use of Geographic Information System for Transportation. Upon successful defense

of this thesis, she will continue her Ph.D study in UTK.

216

	A spatial decision support system for designing solid waste collection routes in rural counties
	Recommended Citation

	Thesis99.X5
	Thesis99.X5_iv_vi
	Thesis99.X5
	Thesis99.X5_iv_vi
	Thesis99.X5

