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Abstract

Sensor placement for 3-D modeling is a growing area of computer vision and

robotics. The objective of a sensor placement system is to make task-directed

decisions for optimal pose selection.

This thesis proposes a Next Best View (NBV) solution to the sensor placement

problem. Our algorithm computes the next best view by optimizing an objective

function that measures the quantity of unknown information in each of a group of

potential viewpoints. The potential views are either placed uniformly around the

object or are calculated from the surface normals of the occupancy grid model. For

each iteration, the optimal pose from the objective function calculation is selected

to initiate the collection of new data. The model is incrementally updated from the

information acquired in each new view. This process terminates when the number

of recovered voxels ceases to increase, yielding the final model.

We tested two different algorithms on 8 objects of various complexity, including

objects with simple concave, simple hole, and complex hole self-occlusions. The

first algorithm chooses new views optimally but is slow to compute. The second

algorithm is fast but not as effective as the first algorithm. The two NBV algorithms

successfully model all 8 of the tested objects. The models compare well visually

with the original objects within the constraints of occupancy grid resolution.

Objects of complexity greater than mentioned above were not tested due to the

time required for modeling. A mathematical comparison was not made between

the objects and their corresponding models since we are concerned only with the

acquisition of complete models, not the accuracy of the models.
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1  Introduction

To create a model of a 3-D object, we must acquire 2|-D information from several

locations around the object. The question is, how do we choose these locations?

One way is to uniformly place enough viewpoints around the object to acquire a

complete model. This method, however, is inefficient and may be ineffective when

dealing with many different complex objects. It would be better to use an algorithm

that makes task-directed decisions about where to place new viewpoints. Such an

algorithm greatly decreases the number of views needed to model an object. A

decrease in the number of viewpoints shortens the total modeling time and also

saves data storage space.

A task-directed algorithm used to make view placement decisions is called a

Next Best View algorithm. The Next Best View (NBV) is a new sensor position

that reveals an optimal amount of unknown information about the object being

modeled. We want to determine sensor poses (viewpoints, views, or sensor/view

positions) that provide the next best view in a 3-D object modeling task. The goal

of a NBV modeling system is to model an object using the smallest number of

views. Our NBV system acquires range data from the object of interest and creates

a volumetric model. An objective function uses the information in the volumetric

model to calculate the best place to position a new viewpoint. Additional range data

is then acquired from the pose of the new view. The volumetric model is updated

with the new range information, and a new view is calculated. This process repeats

until the model is complete.

3-D object modeling and the NBV have many applications. 3-D modeling is

used in various areas including manufacturing inspection, prototyping, and virtual

reality. We found examples of next best view planning in 3-D Object Modeling,

Object Recognition and Localization, Feature Detectability, and Gaze Control (see



Chapter 2).

1.1 Overview

The NBV system consists of three parts: the Range Scanner, the Model Builder,

and the NBV Decision Maker. The Range Scanner simulates the acquisition of

range data from a computer object (see Section 3.3). For testing purposes, we

chose to simulate a range scanner instead of using a real range scanner. However,

the output of the Range Scanner is the same as the output of a real range scanner.

In fact, the NBV system could be used with range information acquired from a real

object as long as the range images were pre-registered. We do not actively register

our range data because we use a viewsphere. The viewsphere is a spherical shell that

encloses the computer object and limits the number of possible camera locations

(see Section 3.1.2). The acquired range images are used by the Model Builder to

create a volumetric model (see Section 3.4). The volumetric model is an occupancy

grid that contains all current information about the object being modeled and is

composed of known and unknown data. Since each viewpoint reveals only object

surface information or known data, we also want to infer something about what

we cannot see. Therefore, we extract unknown data from each surface point that

represents the hidden information behind the surface data. The NBV Decision

Maker examines the unknown information in the volumetric model and uses an

objective function to determine the best place to position a new viewpoint (see

Section 4). We have tested two different objective functions, the Optimal Method

and the Surface Normal Method (see Section 4.1). We have also tested the Adaptive

Method, a combination of the Optimal and Surface Normal methods. The pose of

the new viewpoint is used to acquire more range data. The Model Builder updates

the volumetric model with the new range information, and the NBV Decision Maker



calculates the next best view. This process repeats until the model is complete.

We use the experimental results of the Optimal Method to set benchmarks that

can be used to assess the performance of other NBV algorithms. Benchmarks of

this kind are sorely needed. The Adaptive Method is used for real-time implemen

tation. Our system is robust enough to handle objects of any complexity within

the constraints of system setup. In particular, the system can model objects with

self-occlusions. Self-occlusions are areas of an object that are occluded or blocked

from particular viewpoints by other areas of the same object. For example, the

inside of a coffee mug is self-occluded from viewpoints that do not point directly

into the mouth of the mug.

1.2 Thesis Outline

In Chapter 2 we look at the work of others in the area of sensor planning to find

the impetus for our work. Chapter 3 discusses the elements of the NBV system and

the formulation of our problem. Chapter 4 gives the details of our NBV finding

algorithm. Chapter 5 contains experimental results and Chapter 6 discusses the

findings of our research and the possibilities for future work.



2 Review of Related Work in Sensor Planning

Sensor planning is the task-directed process of understanding and quantifying the

relationship between objects and the sensors that view them [1]. Sensor parameters

such as field of view, focus, and pose (sensor position and orientation) are adjusted

to satisfy the task at hand. Sensor planning has applications in four main areas: 3-D

object or scene modeling, object recognition and localization, feature detectability,

and gaze control.

The following sections review work previously done in the area of sensor plan

ning. The focus of our research lies in object modeling, and Section 2.1 covers this

area in depth. Section 2.2 examines other topics in sensor planning that relate to

the NBV problem.

2.1 3-D Object Modeling

In building a 3-D model of an object, a single 2|-D view of an object is insufficient

to create the model. Therefore,, 3-D object modeling is performed by integrating

the data found in several 2|-D views. Sensor planning is used to minimize the

number of views required to construct a complete 3-D model.

There are two principal methods used to solve the NBV problem: search based

and occlusion based methods. Search based methods use optimization criteria to

search a group of potential viewpoints for the best view. Work on search based

methods can be found in [2], [3], [4], [5], [6], and [7]. Our approach is a search

based method. Occlusion based methods use the occlusion boundaries in the 2|-

D image of the current view to choose the next view. Work on occlusion based

methods can be found in [8], [9], [10], [11], [12], [13], and [14]. Other work on the



NBV problem can be found in [15], [16], [17], [18], [19], and [20].

2.1.1 Search Based Methods

The work of Connolly [2] is some of the earliest done on the next best view prob

lem. Connolly starts with a partial octree model of a scene, and the octree root

is initialized to an Unseen state. The Unseen state indicates which volumes have

not yet been seen by any view. He presents two algorithms, the planetarium algo

rithm and the normal algorithm. The planetarium algorithm finds, on a uniformly

sampled sphere, the largest Unseen area and uses this point to define the next best

view vector. The normal algorithm measures the visibility of Unseen nodes. For

each Unseen node face, the number of adjacent Empty nodes is counted. A node is

Empty if it contains information not on the object's surface. The next best view

vector intersects the vertex whose three adjoining cube faces have the highest count

values.

Connolly's planetarium algorithm provides good results; the algorithm usually

completes modeling within a small number of views (4 or 5 for simple polyhedral

objects). It is not apparent, however, if this algorithm can handle objects of any

complexity.

Marchand and Chaumette [3] use sensor planning to model a scene of polyhedral

objects and cylinders. An initial view of a scene is acquired, and all the primitives in

the image are estimated. Local exploration is performed to fully recover primitives

that are partially outside the field of view. Global exploration is then used to

explore unknown areas and to find new viewpoints. The global strategy is based on

the minimization of an objective function. The function reflects the quality of the

new viewpoint; the gain of information associated with the new position is weighed

against the cost of moving the camera. Additional constraints are incorporated



into the objective function to avoid choosing viewpoints that are unreachable by

the robot or near the robot joint limits.

Marchand and Chaumette's algorithm is robust and formulated for practical

use, but it does not ensure completion of the model (especially in occluded areas).

Because the algorithm explores locally as well as globally, many camera moves are

required during the modeling process. The example given in the paper uses 30

camera moves to model a scene of five simple objects (planes and cylinders).

Milroy et al. [4] use view planning to automate the laser scanning of objects

during rapid prototyping. Orthogonal Cross Section (OCS) is the modeling method

used in this work. The OCS model is a surface mesh that traces an object's contours

with closed curves that run in the x, y, and z directions only. The first scan is

taken from the top view of the object. Air points are calculated for the occlusion

boundaries found in this view. An air point occurs when a contour curve meets the

unseen volume of the OCS model. In other words, an air point is the endpoint of

an open contour curve (a complete OCS model will have only closed contour curves

and no air points). The outermost air point defines five possible new viewpoints.

The air points within a window defined by each viewpoint are assigned visibility

values. A visibility value reflects the likelihood that the neighboring unseen volume

will be imaged in the new view. The viewpoint with the highest total visibility is

chosen as the next view.

The method of Milroy et al. can handle complex objects. The model, however,

is not always complete because the scanner used is unable to reach certain areas.

Because the algorithm uses a surface growing approach, the number of required

scans is a little high for the complexity of objects used. For example, a telephone

handset required 20 scans.

Sequeira et al. [5] use active sensing for the modeling of 3-D environments. A

range image is acquired from an arbitrary initial viewpoint. The areas of occlusion

6



are detected using jump edges in the range data and the projection of the jump

edges. For each occluded area, a set of view directions is found from which the area

of occlusion is completely visible. The intersection of the sets of views defines a

global viewing volume from which the maximum number of detected occlusions can

be imaged. The view from the global viewing volume which maximizes an objective

function is chosen as the next best view. The objective function rates the quality

of a view according to its contribution to the measurement accuracy of the laser

range finder used in image acquisition.

The results of this work are not clear from the report. Only results for the

corner of a room are given, and it is unclear how complete the model actually is.

Zha et al. [7] use sensor planning in the modeling of 3-D curved objects. Pos

sible new viewpoints are limited to the surface positions on a tessellated sphere

enclosing the object to be modeled. The viewpoints near the current viewpoint are

also ignored. The resulting set of potential viewpoints is evaluated using a rating

function. The viewpoint which maximizes the rating function is chosen as the next

best view. The rating function measures three heuristics: the distance of the new

view from previous views, the amount of overlapping information between a new

view and the current view, and the smoothness of the overlap between a new view

and the current view. The last two heuristics help to improve the accuracy of range

image registration.

Zha et al. give no examples of complete models. The objects modeled did not

contain any holes or difficult self-occlusions, but all results contain areas that have

not been sensed. Required run time for modeling was also not given.
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2.1.2 Occlusion Based Methods

Maver and Bajcsy [12] use sensor planning during scene modeling. An initial image

is acquired from an arbitrary direction. The occluded areas in this image {range

shadows) are determined and approximated as polygons. Each contour of the range

shadows is segmented into a series of straight lines. The breakpoints of the contour

segmentation are used to divide the occluding polygons into areas. Then, viewing

angles for every pixel in the occluding polygons are calculated. A viewing angle is

the sector containing all scanning directions from which a pixel is visible. For each

area of the occluding polygons, the histogram of viewing angles is calculated. The

histogram shows how many pixels can be seen from a certain direction. Histogram

decomposition is then performed to find the next scanning direction; the next view

direction is selected from the intervals defined by the maxima in the final histogram.

Maver and Bajcsy test their algorithm only on scenes of simple objects. A small

number of views is needed for modeling: 3 views for a scene comprised of polyhedra

and 5 views for a more complex scene comprised of a polyhedron, a half cylinder, a

telephone receiver, and a wedge. However, this method does not always work with

occlusions such as holes.

Kutulakos [10] (or see [11] for an abbreviated version) uses purposive vision to

recover the global description of arbitrary curved objects. In this work, Kutulakos

studies the relationship between the geometry of an object's occluding contour and

the way the occluding contour deforms when the viev.^point changes. To solve the

modeling problem, the motion of the viewpoint is controlled in a continuous fash

ion to constrain the deformation of the occluding contour. Modeling is divided into

three tasks. Local surface modeling recovers shape for a region around a selected

point of the occluding contour. Incremental surface modeling grows the regions

found by the local method, and global surface modeling adds rules to the first two



strategies.

Kutulakos' approach is not to optimize the modeling process. Instead, he guar

antees global modeling. The objects to be modeled must be smooth but may be

arbitrarily shaped.

Abidi [21], [8] uses active sensing for the autonomous volumetric modeling of

objects. From the first acquired image, the contour of the object is calculated. An

entropy-based objective functional that incorporates shape and contrast is used to

measure the information content of the object contour. The contour is separated

into segments and the objective functional value for each segment is calculated.

The segment with the minimum entropy is used to determine the next best view.

The results of Abidi's system are as expected; the number of images needed

for modeling increases with object complexity, and the accuracy of the models is

higher for objects with simpler shapes. The system can also handle objects with

hole-like concavities. However, if an object contains concavities that do not pierce

the object all the way through, the resulting models are entirely convex and, thus,

inaccurate. This limitation of the system is caused by the use of intensity sensors

for information gathering.

Banta et al. [9], [15] uses sensor planning to volumetrically model objects. The

surface normal and curvature at each point in the initial image are calculated. The

surface normal is used to calculate view positions for the three points with greatest

curvature. Ray tracing techniques are then used to the determine the amount of

hidden information which may be revealed by each of the three candidate view

points. The view which reveals the most hidden information is chosen as the next

best view.

Our research is based on Banta's thesis work. We use a similar occupancy

grid framework and his concept of a viewsphere (see Chapter 3). The results in

Banta's thesis, however, are not optimal, and the methodology is based on heuris-



tics. Banta uses different NBV algorithms throughout the modeling process instead

of implementing a single objective function.

2.2 Other Related Topics in Sensor Planning

The following sections review work in sensor planning that relates to the NBV

problem. Section 2.2.1 contains research in which a sensor is placed to aid in the

recognition of an object. Section 2.2.2 reviews literature in which a sensor is placed

to satisfy certain constraints. Section 2.2.3 discusses work in the placement of

sensors to gather information.

2.2.1 Object Recognition and Localization

In the area of object recognition/localization, model-based sensor planning is used

to disambiguate between the interpretations of an object or to determine its pose.

Consider the situation in which a machine has a set of objects that it can recognize.

A single view of an object may match multiple objects in the set, but an additional

view or sequence of views can be used to distinguish the target object from the

others. In such a situation, sensor planning is used to choose a sensor pose that

will most quickly lead to the recognition of an object. Work on sensor planning

for object recognition or localization can be found in [22], [23], [24], [25], [26], [27],

[28], [29], [30], [31], and [32].

Crimson [25] performs object recognition on polyhedral objects. In this work,

the initial set of possible interpretations is already given. The distinguishability

of each pair of interpretations is determined. Two interpretations are well distin

guishable if their geometrical features are significantly different. The next sensing

position, which best disambiguates the possible interpretations, is chosen to maxi-

10



mize distinguishability.

The work of Hutchinson and Kak [26] applies sensor planned object recogni

tion to polyhedral objects. An arbitrary view of the object is first acquired and

hypotheses are made about the identity of the object. The objective is to select a

viewpoint which uniquely identifies the object. To rate the ambiguity of a possible

new viewpoint, they predict the set of features which would be observed from this

viewpoint for each hypothesis. Then, they determine the hypothesis corresponding

to each set of features and calculate the ambiguity. The viewpoint that minimizes

the ambiguity is chosen as the next best view.

Lee and Hahn [28] perform recognition and localization on natural quadric ob

jects. An initial view is first acquired and the features obtained from this operation

are used to construct a multiple interpretation image representing all possible inter

pretations of the object under scrutinization. The next view is limited by system

constraints and is chosen according to a measure of discrimination power, i.e. the

number of interpretations that can be eliminated by a view.

2.2.2 Feature Detectability

Sensor planning is used in this area to place views according to feature detectability

constraints such as resolution, focus, and field-of-view. Also, if an object is in a

cluttered workspace, a sensor must be positioned such that the feature of interest

is in clear view (unoccluded).

The methods for feature detectability generally take either a generate-and-test

or a synthesis approach [1]. In generate-and-test techniques, sensor configurations

are generated and then evaluated according to task requirements. Work using the

generate-and-test approach can be found in [33], [34], [35], [36], [37], [38]. In the

11



synthesis approach, task constraints are characterized analytically and then used to

restrict sensor parameters. Work using synthesis techniques can be found in [39],

[40], [41], [42], [43], [44], [45], [46], [47],

Sakane et al. [35] use a depth buffering algorithm to locate regions in a scene

that do not occlude the object of interest. They center a triangular meshed geodesic

dome around the target object to limit the number of possible views. The radius

of the dome is large enough to encompass the workspace. A possible viewpoint is

centered on a facet of the dome. If a ray from the viewpoint to the target point

is intersected by an object in the workspace, the distance from the target point to

the intersecting object is measured. If this distance is smaller than the radius of

the dome, the facet corresponding to the viewpoint in question belongs to an area

of occlusion.

Cowan [41] introduced the set of feature detectability constraints that is used

in most of the literature. His requirements for feature detectability are resolu

tion, focus, field-of-view, and visibility. The resolution requirement constrains the

maximum distance between a viewpoint and the feature of interest, while the focus

requirement constrains the minimum distance between a viewpoint and the feature.

To satisfy the field of view requirement, the feature of interest must lie completely

within the camera field of view, and to satisfy the visibility requirement, the feature

of interest must be unoccluded.

In [44], Tarabanis et al. use the feature detectability constraints of resolution,

focus, and field-of-view defined in [41] and characterize them more analytically.

These constraints are integrated by optimizing a function that is the weighted sum

of the constraint criteria. The end product of the integration is the MVP model-

based vision sensor planning system^ a system used to automatically locate camera

views for a robotic vision system.

12



Tarabanis et al. [46] compute occlusion-free viewpoints in a polyhedral world.

In this work, a viewpoint has a viewing cone associated with it. The viewing

cone is the set of rays that connect the viewpoint to all points on an object or

feature. A view is unoccluded if its viewing cone does not intersect anything in

the environment. The intersection of these unoccluded viewing cones are used to

calculate the boundaries of a total visibility region.

2.2.3 Gaze Control

Sensor planning is also used to control gaze. Sensors are placed to maximize the

information content in a view or to shift the focus of attention to salient features.

Because of the general nature of this work, applications for it fall within the other

areas of sensor planning. Work in sensor planning for gaze control can be found in

[48], [49],[50], [51], [52], [53], [54] [55], [56], and [57].

Hager and Mintz [51] use model-based sensor planning to maximize the infor

mation content of a view. Their approach uses decision theoretic techniques to

weigh the performance of a view against the cost of implementing that view.

Maver et al. [54] maximize the amount of new information captured in a view.

An initial view of a group of objects is captured arbitrarily. The 3-D coordinates of

the interesting object silhouette points are calculated. The next view is the point

of interest from which the largest number of object vertices can be determined.

Westelius [57] uses sensor planning to focus the attention of a robotic vision

system. By methodology similar to a human's shift in attention, the system locates

an object by focusing on areas of high complexity and scans the located object

by tracking its linear structures. Applications for this work include automatic

recognition, inspection, or surveillance of objects in a scene.

13



2.3 The Impetus for our Work

After reviewing the literature in sensor planning for 3-D object modeling, it is

apparent that this topic requires continued research. Most of the reviewed methods

cannot handle objects with holes or self-occlusions. The reviewed literature is

also lacking in a standard by which to assess performance. There are no optimal

methodologies that can provide a comparison; no one is truly able to judge how

well their algorithms operate.

Our work provides experimental results that can be used as a benchmark to

assess the performance of other NBV algorithms. Our system can also handle

objects of any complexity within the constraints of the system setup.
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3  The NBV System

Section 3.1 introduces the general 3-D modeling problem. Section 3.2 discusses the

software created to test our NBV algorithms. Sections 3.3 and 3.4 give the details

of the Range Scanner and the Model Builder respectively. Section 3.5 summarizes

the contents of this chapter.

3.1 Problem Formulation

Section 3.1.1 provides a general framework for the NBV problem as applied to 3-D

object modeling, and Section 3.1.2 discusses the assumptions made to simplify the

general problem.

3.1.1 The General 3-D Modeling Problem

Creating a 3-D model of an unknown object involves acquiring data from the ob

ject at different viewpoints, registering the data, and then integrating all acquired

information into a single model. Even though our main concern is finding the next

best view, we must also construct a system to implement the 3-D modeling prob

lem. The implementation of the general modeling problem can be complex. There

are data acquisition and registration issues to consider. There are costs related to

moving the sensor or camera to a new position. There may also be constraints on

the time allowed to perform each step of modeling.

The first thing to consider is the quality of any acquired view. An image must

be readable in order to extract viable information from it. Factors that effect view

quality are resolution, focus, and field of view. For adequate resolution, the distance

from the camera to the object must not exceed some maximum. For proper focus.

15



the distance from the camera to the object must not go below some minimum. Field

of view constraints require that the desired object appears within che camera's view.

This includes restricting the NBV search to viewpoints that are reachable by the

camera. For instance, if the object to be modeled is sitting on a surface, the next

view chosen cannot not lie beneath the surface.

Another factor to consider is the registration of all acquired views. To provide

coherency of information, each view must be integrated into a world model. There

fore, an image obtained from a particular viewpoint must contain information that

has already been acquired. This usually demands some measure of overlap between

each image acquired.

When implementing a NBV algorithm, the cost of acquiring the next view should

also be considered. One factor that contributes to this cost is the distance that the

camera must be moved from its present position to reach the next view position.

Another factor is the time required to make such a move. An additional time

consideration is time to compute the next best view; a view that reveals the largest

amount of unknown information may take too long to find.

3.1.2 Assumptions Made to Simplify the General Problem

To simplify the general problem discussed in Section 3.1.1, we want to make a

few assumptions about the object to be modeled. We assume that the size of the

object is roughly known and that the approximate object center is also known.

Assumptions of this kind are not really limiting because the general object size is

usually a known parameter. These assumptions allow us to use a viewsphere (see

Figure 1). The viewsphere is a shell that encloses the object to be modeled and

limits the number of possible camera locations. Our viewsphere is spherical but

could be any desired shape. Each new view intersects the viewsphere and points
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Figure 1; The viewsphere simplifies the general 3-D modeling problem.
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toward the center of the viewsphere.

The viewsphere simplifies the general modeling problem in several ways. View

quality is predefined because the minimum and maximum distances from the camera

to the object are already set by the viewsphere. The object is always positioned

properly in the camera's field of view because the camera points toward the center

of the object. Since the pose of each view is known and the viewsphere remains in

a constant position throughout modeling, no overlapping between views is required

for registration purposes. For this work, we would like to be able to place the

camera anywhere around the object. Therefore, we do not currently consider the

costs of moving the camera.

3.2 The NBV System Software

The NBV system software consists of three parts (see Figure 2): the Range Scanner,

the Model Builder, and the NBV Decision Maker. The Range Scanner simulates

the acquisition of range data from the archetype, the object being modeled. The

first range image is acquired from an arbitrary position and is used by the Model

Builder to create a volumetric model. The NBV Decision Maker then examines the

information in the volumetric model and uses an objective function to determine the

best place to position a new viewpoint. The pose of the new view is used to acquire

more range data. The Model Builder then updates the volumetric model with the

new range information, and the NBV Decision Maker calculates the next best view.

This process repeats until the model is complete. Sometimes it is not possible to

complete the model. Therefore, the NBV system will stop if new information is no

longer acquired. After the final model is constructed, it is converted into a surface

mesh for better comparison to the original archetype object.
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All parts of the system are written in C++, and we use the command line

or a graphical user interface to change all system parameters (see the Appendix).

The archetype objects are in Inventor format, the volumetric model is output for

viewing in Inventor format, and a surface representation of the model is created

from the Inventor model file.

3.2.1 The NBV System Parameters

There are several NBV parameters that determine the setup of the system. A

change in these parameters can also effect the results of the NBV program. Varia

tions in workspace size, occupancy grid resolution, range image resolution, field of

view, viewsphere radius, and pose of the initial viewpoint contribute to changes in

the NBV system results.

The workspace is a cube that is the approximate size of the archetype object.

The workspace dictates how far the unknown area extends back from the surface of

the first view; the larger the workspace the larger the unknown area. Therefore, the

size of the workspace may effect the performance of the NBV program; an increase

in the workspace size increases the size of the unknown area.

The occupancy grid is always the same size as the workspace. The size of each

voxel in the occupancy grid is determined by the occupancy grid resolution; in-

crecising the occupancy grid resolution decreases the size of each voxel. An increase

in the occupancy grid resolution normally causes an small increase in the number

of views required to model complex objects. A change in resolution also has an ef

fect on the run time of the NBV system. Increasing the occupancy grid resolution

usually requires an increase in the resolution of the range image. Therefore, the

time needed to acquire range data and create the volumetric model also increases.

The objective function also takes longer to calculate because of the increase in the
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number of voxels to consider. The NBV program speed is similarly effected by

changes in the workspace size and the view sphere radius.

In order to update each voxel properly, range image resolution must correspond

correctly to voxel size. The relationship between the resolution of the range image

and the resolution of the occupancy grid has the greatest effect on the results of

the NBV system (see Section 3.4).

The field of view determines how much of the workspace can be imaged by the

camera. If the field of view is too small, not all of the object is captured in a single

view. As the field of view increases, the range image resolution must also increase.

If the field of view is too large, the range image will be filled with empty space.

Altering the size of the viewsphere radius changes the number of views required

to model an object. Because the range data are acquired with a perspective pro

jection camera, the amount of data gathered in a particular view changes as the

distance from the camera to the object changes; a camera positioned very close

to the archetype does not acquire as much information as one that is twice as far

away.

The pose of the initial viewpoint is chosen arbitrarily but is usually aligned with

an axis. Since the information in each possible view is different, a change in the

initial viewpoint may alter the final results.

3.3 The Range Scanner

To build a 3-D model of an object we must capture 2|-D data from several locations

around the object (see Figure 3). The Range Scanner (see Figure 4) simulates the

acquisition of 2|-D range data from the archetypes, 3-D Inventor computer objects.
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Figure 3: The Range Scanner acquires 2^-D data from several locations around the

archetype object.
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We use a perspective projection camera model that always points toward the center

of the viewsphere (see Section 3.1.2). Using the Inventor class SoRayPickAction,

rays are projected forward from the camera to the archetype object to acquire

range data points. The direction of each range data ray is calculated in spherical

coordinates according to the field of view angle and the resolution of the range image

(see Figure 4). The field of view determines how much of the object can be imaged

by the camera. The range image resolution corresponds to the number of pixels in

the range image. Even though the Range Scanner acquires range information from

synthetic objects, the captured range images are the same as real range images.

3.4 The Model Builder

The first range image captured by the Range Scanner is used by the Model Builder

to create a volumetric model. The volumetric model is a cubic 3-D array of voxels

called an occupancy grid. The occupancy grid is a discretization of the workspace.

Figure 5 shows an example of a 2-D occupancy grid. A 3-D occupancy grid is

simply a 2-D grid with an added dimension.

Each 3-D pixel or voxel in a 3-D occupancy grid represents a part of the object

volume. Our occupancy grid contains all current information about the archetype

object and is composed of known and unknown data. Known data (the gray area in

Figure 6) is the object surface information. Range information from one view of an

object provides only known data. Since each viewpoint reveals only known data, we

also want to infer something about what we cannot see. Therefore, we extract un

known data from each surface point that represents the hidden information behind

the known data (the black area in Figure 6). After a new viewpoint is acquired, the

known and unknown information associated with the view is integrated with the

data acquired from all previous views; the model is updated after each new view
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Figure 6: The occupancy grid model is composed of known and unknown data.

The known data is grey and the unknown data is black. The arrow represents the

camera position of the acquired view.



to reflect what is currently known about the archetype (see Figure 7). A model

is actually represented in software by a known occupancy grid and an unknown

occupancy grid. The two grids are combined for visualization of the entire model.

The Model Builder creates the known occupancy grid by taking a point from

the range image, calculating its position in the occupancy grid, and updating the

corresponding voxel. If the range image resolution is too small compared to the

occupancy grid resolution, some voxels will not be updated (see Figure 8). Even

a range image resolution that is sufficient for one view may not update all voxels

for every view. All results of the NBV system reflect this correspondence problem.

To demonstrate the effects of the correspondence problem, however, we have gen

erated one set of results that do not exhibit the correspondence problem. In this

case, the Model Builder starts with a voxel, calculates its position in the archetype

object space, and then calls the Range Scanner to acquire range data at the cal

culated point. With this methodology, every voxel is updated properly. These

results, therefore, do not exhibit the correspondence problem but are impossible to

implement with real range data.

The unknown grid is the combination of two grids created in two different ways.

Two grid-filling techniques are needed because each technique was found to have

drawbacks. The first implemented technique was to initially empty the grid. Each

voxel from the known grid is projected away from the camera (back-projected) in the

direction of the current view to the extent of the workspace. All voxels in the back-

projection path are filled (see Figure 9(a)). This back-projecting technique fills

the voxels behind the edges of the known grid (the unknown edge voxels) well but

leaves holes inside the grid. Therefore, a second technique was implemented. In this

second technique, the grid is initially full. The voxels that are in the background

of the range image are emptied (see Figure 9(b)). This carving technique creates a

solid grid but does not fill the unknown edge voxels properly. If the unknown edge
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Figure 7; The model is updated after each new view to reflect what is currently

known about the archetype. The volumetric model (a) before the acquisition of the

first view. The volumetric model (b) after the acquisition of the first view. The

volumetric model (c) after the acquisition of the second view. The known data is

grey and the unknown data is black. The arrow represents the camera position of

the acciuired view.
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to the correspondence problem. The dotted lines represent the rays cast to acquire

range data.
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voxels are not filled correctly, there will be empty spaces between the known and

unknown grids in the final model. Because of the imperfections of each technique,

both techniques are implemented and the resulting two grids are ORed to form the

unknown occupancy grid for the current view (see Figure 9(c)). The unknown grid

of the current view is then ANDed with the unknown grid constructed for all views

thus far. Figure 10 shows how voxels are ANDed and ORed.

To visually compare the volumetric models to the corresponding archetype ob

jects, we use a marching cubes technique (see [58]) to create surface representations

of the final occupancy grid models (see Figure 11). The marching cubes algorithm

fits a surface to the individual voxel data points.

3.5 Summary of the NBV System

We have discussed the general 3-D modeling problem and the assumptions made

to simplify the general problem. The most important assumption is that of the

viewsphere. The viewsphere controls view quality and restricts the placement of

each viewpoint so that registration does not have to be manually performed.

We also described the NBV system software. The NBV system consists of a

Range Scanner, a volumetric Model Builder, and a NBV Decision Maker. The

Range Scanner acquires range data from the archetype object. The Model Builder

creates and updates the volumetric model, and the NBV Decision Maker determines

the best place to acquire more range data. The NBV Decision Maker is described

in the next section.
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Figure 10: ANDing and ORing voxels. The voxel ANDing operation is demon
strated on the left. The voxel ORing operation is shown on the right.
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4 The Next Best View Decision Maker

The following sections describe the NBV Decision Maker. The NBV Decision Maker

examines the volumetric model created by the Model Builder (see Section 3.4) and

uses an objective function to determine the best place to position a new viewpoint.

The objective function used to make NBV decisions is given in Section 4.1. Section

4.2 summarizes the contents of this chapter.

4.1 The Objective Function

The objective function uses the unknown information in the current volumetric

model to calculate the next sensor pose. The next best view is defined as the view

from which the largest number of unknown voxels can be seen. Before disclosing

the equation of the objective function, we must first define some terms.

The pose of the next best viewpoint, P, is the position and orientation vector

of the best view from which to acquire new data. All new viewpoints point toward

the center of the viewsphere (see Section 3.1.2). The current occupancy grid, OG,

contains the updated volumetric model. The next best view is chosen from the set

of potential viewpoints. Pi. The potential viewpoints are defined in two ways to

give two different objective functions.

The visibility state. V. of a voxel, n, is the visibility of a voxel from the current

viewpoint. To calculate the visibility state of a voxel, it must be determined whether

or not the voxel is visible from the current potential viewpoint. If a voxel is occluded

on all sides by other known or unknown voxels (see Figure 12), it is not considered

further. The voxels that have unoccluded faces are tested for their visibility from

every potential viewpoint. A candidate voxel is projected towards the current
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Figure 12: An example of occluded voxels. The occluded voxels are gray. The

unoccluded voxel faces are outlined in black.



potential viewpoint. If any other voxels occlude the projection path, the voxel is

not visible from the potential view, and the value of V is 0. If the projection path

is free of obstructions, the voxel is visible from the current viewpoint, and the value

of V is 1. The voxel projection direction, Projn, is calculated by subtracting the

voxel vector, n, from the current potential view direction, Pf

Projn = Pi-n (1)

See Figure 13 for a graphical representation of Equation 1.

The objective function is an optimization of the visibility state for all unknown

voxels in the current model. The optimization is performed for all potential view

points, and the viewpoint that maximizes the objective function is used to acquire

new range data. In other words, the next best view is defined- as the view from

which the largest number of unknown voxels can be seen:

OG{n)\Pi

P — maxi ^ V{n, unknown) (2)

We have tested three different objective functions: the Optimal Method, the Surface

Normal Method, and the Adaptive Method. The results of the Optimal Method are

used to create a benchmarking standard. The Surface Normal Method is fast but

often cannot complete the model. The Adaptive Method, a combination of the

Optimal and Surface Normal Methods, is not optimal but is fast and performs well.

4.1.1 The Optimal Method

One way to calculate the potential viewpoints is simply to place a number of view

points uniformly around the viewsphere. This method chooses each new view opti-
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Figure 13: Calculation of the projection vector to gauge the visibility of a voxel.
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mally if the viewpoints are dense enough; there must be enough potential views to

sufficiently cover the surface of the viewsphere. The only drawback to this method

is the lengthy calculation time required to process so many potential viewpoints

(see Section 5.1). Since we use this method to create a benchmarking standard

to assess the performance of other NBV finding algorithms, the run time for this

method is not a serious concern. The same potential views are considered for each

next best view calculation:

Pi = {PoiOo, <l>o),Pi{eu PiiOi, (3)

where

■  (4)div * 2

,  180 .(5)

i = {2* div) * {div + 1) — 2 * (2 * div — 1). (6)

The parameter div defines the number of potential viewpoints (see Figure 14).

4.1.2 The Surface Normal Method

Due to the lengthy time required to consider hundreds of potential viewpoints using

the Optimal Method, another method of choosing potential views was devised. This

method involves summing the surface normals of the visible unknown voxel faces

that point in each axis direction. The six calculated surface normal values are used

to define eight viewpoints that give an estimation of poses from which to acquire
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Figure 14: The parameter div defines the number of potential viewpoints. A cross-

section of the viewsphere is shown for different values of div. The arrows represent

potential viewpoints.
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unknown information. New potential views are calculated for each next best view

decision:

Pi = {±x-n:^) + {±y-ny) + {±z-n^), (7)

where Ux, Uy, and are the number of visible unknown voxel faces pointing in

each axis direction. This method was developed because it is optimal for a single

voxel. Figure 15 shows the surface normals for a voxel. Using equation 7 for a

single voxel occupancy grid, the eight potential potential viewpoints are: (1,1,1),

(1,1,-1), (1,-1,1), (1,-1,-1), (-1,1,1), (-1,1,-1), (-1,-1,1), (-1,-1,-1). In other words, the

Surface Normal Method chooses the eight corners of a single voxel occupancy grid

as the potential views, and a viewpoint centered on the corner of a voxel captures

the most data. Figure 16 shows a more complex example of the Surface Normal

Method potential view calculation.

There is one drawback to this method. For objects that contain self-occluded

areas, the Surface Normal NBV calculation will often return viewpoints from which

the unknown patches being targeted are occluded by the object itself. Objects

such as the frame and mug, which contain many self-occluded areas, cannot be

completely modeled (see Figure 17). Therefore, we devised the Adaptive Method.

4.1.3 The Adaptive Method

The Adaptive Method is a combination of the Optimal and Surface Normal Meth

ods. This method defaults to the Surface Normal Method unless it returns a view

point that is occluded from the target area. When this occurs, the Optimal Method

is used to choose another view. This method is fast and can model objects of any

complexity within the constraints of system setup.
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Figure 16: An example of the Surface Normal Method potential view calculation.

The surface normals for each axis direction are shown separately. A surface normal

is represented by an arrow and its corresponding axis direction. Using Equation 7

for the three-voxel occupancy grid above, the surface normals pointing in each axis

direction give the viewpoints (2,2,3), (2,-2,3), (2,-2,3), (2,-2,-3), (-2,2,3), (-2,-2,3),

(-2,-2,3), and (-2,-2,-3).



Figure 17; The Surface Xorinal Method cannot completely model all objects. The

frame and mug models cannot be completed by the Surface Normal Method be

cause viewpoints are selected from which the unknown patches being targeted are

occluded by the object itself.



4.2 Summary of the Next Best View Decision Maker

The unknown information in the current volumetric model is used to calculate the

next best view. The next best view is defined as the view from which the largest

number of unknown voxels can be seen. Three methods were developed to calcu

late new potential views: the Optimal Method, the Surface Normal Method, and

the Adaptive Method. The Optimal Method selects potential views by uniformly

placing viewpoints around the viewsphere and is used as a benchmark to assess the

performance of other NBV finding algorithms. The Surface Normal Method uses

the surface normals of the current volumetric model to choose new potential views.

The Surface Normal Method is fast but does not always complete the model. The

Adaptive Method is a combination of the Optimal and Surface Normal Methods.
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5  Experimental Results

The Inventor objects used for testing are shown in Figure 18. The cube and sphere

are important objects to test because of their simplicity. The martini and the

mug contain simple concave self-occlusions. Self-occlusions are areas of an object

that are occluded or blocked from particular viewpoints by other areas of the same

object. For example, the inside of the mug is self-occluded from viewpoints that do

not point directly into the mouth of the mug. The frame and torus both contain

simple hole self-occlusions, and the lattice and the logo contain complex hole self-

occlusions.

The occupancy grid resolution used for testing all objects is 64 x 64 x 64 which

requires a range image resolution of 256 x 256. The viewsphere radius is three times

the size of the occupancy grid. The NBV program was run on a 195 MHz Silicon

Graphics Octane workstation with a MIPS RIOOOO processor and 128 MB of RAM.

5.1 Optimal Method Results

The Optimal Method places a number of new potential viewpoints uniformly around

the viewsphere. This method chooses each new view optimally if there are enough

potential views to sufficiently cover the surface of the viewsphere. The Optimal

Method can be lengthy to calculate, but this is of little concern since we use the

method to create a benchmarking standard.

Figure 19 demonstrates how the Optimal Method progresses. The volumetric

models after the acquisition of each view are shown. Each model is oriented in the

direction of the view to be acquired next. Notice that the unknown areas (shown in

black) decrease in size throughout the modeling process. Since no unknown voxels
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Figure 19: The Optimal Method volumetric models after the acquisition of each

view (from left to right and top to bottom). Each model is oriented in the direction

of the view to he acquired next.



remain after the sixth view, the modeling process ends. The absence of unknown

voxels also means that the entire object surface has been scanned.

Before reviewing some of the more complicated objects, it is important to look

at the Optimal results for simple objects. Modeling an object such as the cube

gives an indication of how the NBV system performs. The cube was modeled in

three views, and this indicates that the NBV system is optimal for the cube; a cube

can only be modeled in less than three views only if the orientation of the cube

is known a priori. Figure 20 indicates the sensor poses used to model the cube.

Figure 21 shows the volumetric models constructed by the NBV system with the

Optimal Method.

To visually compare the volumetric models to the corresponding archetypes, we

use a marching cubes technique (see Section 3.4) to create surface meshes of each

occupancy grid model. Figure 22 shows a comparison between the surface meshes

and the archetypes. A visual comparison is adequate since we are concerned only

with the acquisition of a complete model, not the accuracy of the model. The

models match well with the archetypes but are slightly larger. This occurs because

each range data point acquired from the archetype corresponds to a voxel in the

model. Therefore, the models are 'fatter' than the archetypes. The surfaces of the

models are not smooth because of the aliasing that occurs in binary representations

and because of the limitations of the marching cubes algorithm used. The only

problem with the models are in areas of great detail. For example, the contours

of the martini stem are not truly represented in the model. This discrepancy is

due to the low occupancy grid resolution that we chose to use for these results. A

higher resolution could be used to recover more detail in the models but this would

drastically increase the system run time.

Table 1 shows the Optimal Method experimental data. The information in this
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Figure 20: The three views chosen to model the cube using the Optimal Method.

The arrows represent the viewpoints from which range data was acquired.
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Figure 21: The Optimal Method volumetric models (from left to right and top to

bottom) of the cube, frame, lattice, logo, martini, mug. sphere, and torus.
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Table 1: Experimental Results for the Optimal Method.

-CP CP

Object # Views # Views Max Time (s)

cube 3 3 107

frame 5 7 175

lattice 11 11 192

logo 13 13 149

martini 6 6 120

mug 6 10 118

sphere 5 5 118

torus 5 6 97
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table is used for the benchmarking standard. 114 potential viewpoints were used for

these results. Results under the heading CP exhibit the correspondence problem.

Results under the heading -CP do not exhibit the correspondence problem. These

results are shown for comparison purposes only (see Section 3.4) and will not be

discussed further. # Views refers to the number of viewpoints required to scan

the complete object surface. Max Time is the time it takes for the system to

decide on the NBV after the initial viewpoint is acquired. The Optimal objective

function calculations increase in speed as modeling progresses because the number

of unknown voxels decreases after each view (see Figure 23 for an example).

5.2 Adaptive Method Results

Due to the the lengthy time required to consider hundreds of potential viewpoints

using the Optimal Method, another method of choosing potential views was devised.

The Adaptive Method finds potential viewpoints by summing the surface normals

of the visible unknown voxeh faces that point in each axis direction. This technique

is fast and optimal for voxels. When the next best view is occluded from the target

area, the Optimal Method is called to select a new view.

Figure 24 demonstrates how the Adaptive Method progresses. The Adaptive

Method is obviously not as effective in choosing views as the Optimal Method, but

it is not meant to be. Figure 25 demonstrates how the Adaptive Method chooses

different sensor poses than the Optimal Method to model the cube. Figure 26

shows the volumetric models constructed by the NBV system with the Adaptive

Method. Figure 27 compares the surface meshes with the original objects. Table 2

shows the Adaptive Method experimental results. The Adaptive objective function

calculations increase in speed as modeling progresses but there will be spikes where

the Optimal Method is employed to complete the model (see Figure 28 for an
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Figure 23: The speed of the Optimal objective function for each view of the logo.
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Figure 24: The Adaptive Method volumetric models after the acquisition of each

view (from left to right and top to bottom). Each model is oriented in the direction

of the view to be acquired next.
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Figure 25: The four views chosen to model the cube using the Surface Normal

Method. The arrows represent the viewpoints from which range data was acquired.
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Figure 26: The Adaptive volumetric models (from left to right and top to bottom)

of the cube, frame, lattice, logo, martini, mug. sphere, and torus.
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Figure 27: A visual comparison of the Adaptive surface meshes and their corre

sponding archetype objects.



Table 2: Experimental Results for the Adaptive Method.

-CP CP

Object # Views # Views Max Time (s)

cube 4 4 9

frame 11 12*CP 17

lattice 11 19 14

logo 11 15 9

martini 6 7 10

mug 8 12 11

sphere 5 5 11

torus 6 8 8

*CP shape of the model is complete but a few visible unknown voxel faces remain

due to the correspondence problem (see Section 3.4).
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Figure 28: The speed of the Adaptive objective function for each view of the logo.
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example). Since the Optimal Method is never used in the early stages of modeling,

the objective function calculation is not slowed down drastically.

Table 3 shows a comparison of results for the Optimal and Adaptive Methods.

The Adaptive Method is much faster than the Optimal Method but normally re

quires more views to model an object. To rate the performance of the Adaptive

Method, we can look at the state of the Adaptive models when the Optimal Method

models are complete. Table 4 shows the percentage of the Surface Normal model

volume that is unknown when the Optimal model is complete. A percentage of

zero means that the model is complete. High percentages (e.g. the percentages for

the mug or the lattice) mean that the number of visible unknown voxels is high

compared to the total object volume. Table 5 shows the number of views beyond

the Optimal Method needed to complete the Adaptive models. Figure 29 compares

the surface meshes for the Optimal and Adaptive Methods.

5.3 Conclusions of Experimental Results

The Optimal Method results given in this chapter and especially in Table 1 will

be used as a benchmarking standard. The Optimal Method chooses new views

optimally and can handle objects of any complexity within the constraints of system

setup. With this method. The NBV system is optimal for a cube but not necessarily

optimal in general. The final surface meshes produced by the Optimal Method

compare well visually to the archetypes. The Adaptive Method is fast and can

handle objects of any complexity within the constraints of system setup. The

final surface meshes also compare well visually with the archetype objects. Visual

comparisons are adequate since we are concerned only with the acquisition of a

complete model, not the accuracy of the model.
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Table 3: Experimental Results for the Optimal and Adaptive Methods.

Optimal Adaptive

Object ^ Views Max Time (s) 9^ Views Max Time (s)

cube 3 107 4 9

frame 7 175 12*cp 17

lattice 11 192 19 14

logo 13 149 15 9

martini 6 120 7 10

mug 10 118 12 11

sphere 5 118 5 11

torus 6 97 8 8

*CP shape of the model is complete but a few visible unknown voxel faces remain

due to the correspondence problem (see Section 3.4).
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Table 4: The percentage of the Adaptive model volume that is unknown when the

Optimal model is complete.

Object % Unknown

cube 0.0069

frame 0.37

lattice 0.35

logo 0.026

martini 0.095

mug 0.021

sphere 0

torus 0.066
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Table 5: The number of views beyond the Optimal Method needed to complete the

Adaptive model.

Object More Views

cube 1

frame 5

lattice 8

logo 2

martini 1

mug 2

sphere 0

torus 2
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Figure 29: A visual comparison of surface meshes for the Optimal and Adaptive

Methods.



6  Conclusions and Future Work

The goal of a Next Best View modeling system is to completely model an object

using the smallest number of views. A NBV algorithm determines new sensor

positions that reveal optimal amounts of unknown information about the object of

interest. Our NBV algorithms calculate potential viewpoints and choose the one

from which the largest number of visible unknown voxels can be seen. The first

method places a number of potential views uniformly around the viewsphere. The

second method is a summation of surface normals of the visible unknown voxel

faces that point in each axis direction.

The NBV system consists of three parts: the Range Scanner, the Model Builder,

and the NBV Decision Maker. The Range Scanner simulates the acquisition of range

data from a computer object. The acquired range images are used by the Model

Builder to create and update the volumetric model. The NBV Decision Maker

examines the unknown information in the volumetric model and uses an objective

function to determine the best place to position a new viewpoint.

The Optimal Method chooses new views optimally. With this method, the NBV

system is optimal for a cube but not necessarily optimal in general. This method,

however, requires too much time to calculate the objective function in the early

stages of modeling. The Adaptive Method is not optimal but drastically reduces

the NBV system run time. The models tested for both methods are complete except

when effected by the correspondence problem.

Because of the difficulty in rating the performance of a NBV algorithm, the

Optimal results presented in this paper will be used as a benchmark to judge the

performance of future objective functions. The next step in the continuation of this

work is to add parameters to the objective function so that the system is applicable
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in the real world; we will consider the overlap of sequential views for registration

purposes and the restriction of view placement. We will also use non-synthetic

range data of objects for further testing.

We would eventually like to apply this work to the exploration of hazardous

environments. In this setting, an autonomous mobile robot must explore a space

that has been contaminated with hazardous waste. The robot maneuvers inside

the contaminated area by acquiring data from its surroundings. Since there may

be a limited amount of time to explore, the NBV would be ideal in choosing the

positions from which to acquire data. The NBV system, however, would need to be

adjusted to handle scenes instead of objects. Since a viewsphere would no longer

be useful in such a situation, all acquired range images would have to be registered.

The set of potential viewpoints must also be limited to account for the walls and

the floor of the contaminated space.
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Appendix

Here is a bit about how to run the Next Best View system software. The code

requires the SGI Open Inventor Toolkits. Run time information is sent to standard

out.

There are several scripts that will build the executables and run the programs with

all command line options set properly:

o_opt Optimal method

o_ada Adaptive method

o_cp_opt Optimal method without the correspondence problem

o_cp_ada Adaptive method without the correspondence problem

o_all all methods

To build the executables, type make and the desired executable name:

nbv_opt Optimal method

nbv_ada Surface Normal method

nbv_cp_opt Optimal method without the correspondence problem

nbv_cp_ada Adaptive method without the correspondence problem

To run the executables, set these command line options:

-model [model name]

-method [opt, ada, cp.opt, or cp_ada]

-numviews [number of views to acquire]

-og [resolution of one side of the cubic occupancy grid (OG)]
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-wksp [size of one side of the cubic workspace in Inventor space]

the Inventor object must fit inside the workspace

-rad [multiple of OG size to determine view sphere radius]

should always be greater than 1

-res [resolution of the range images]
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