
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-1999

Algorithms for solving linear integer progamming problems Algorithms for solving linear integer progamming problems

Lisa Catherine Watkins

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Watkins, Lisa Catherine, "Algorithms for solving linear integer progamming problems. " Master's Thesis,
University of Tennessee, 1999.
https://trace.tennessee.edu/utk_gradthes/10042

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F10042&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Lisa Catherine Watkins entitled "Algorithms for

solving linear integer progamming problems." I have examined the final electronic copy of this

thesis for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Master of Science, with a major in Mathematics.

Yueh-er Kuo, Major Professor

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Lisa Catherine Watkins
entitled "Algorithms For Solving Linear Integer Programming Problems."
I have examined the final copy of this thesis for form and content and
recommend that it be accepted in partial fulfillment of the requirements
for the degree of Master of Science, with a major in Mathematics.

Yueh-er Kuo, Major Professor

We have read this thesis

and recommend its acceptance:

kJBlty-eUL^

Accepted for the Council:

Associate Vice Chancellor and

Dean of The Graduate School

ALGORITHMS FOR SOLVING LINEAR

INTEGER PROGRAMMING PROBLEMS

A Thesis

Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Lisa Catherine Watkins

December 1999

11

DEDICATION

This thesis is dedicated to my Dad,

Mr. Frank Moore Watkins

(1927 - 1993)

Ill

ACKNOWLEDGMENTS

The author is grateful to Dr. Yueh-er Kuo for her help and advice

in the preparation of this thesis. Appreciation is also extended to

committee members Dr. William Wade and Dr. Charles Collins for the

time in reading this thesis.

The author would also like to thank her family for their love and

support.

IV

ABSTRACT

This thesis discusses several methods used to solve linear integer

programming problems. Chapters 1-3 give the necessary linear

programming background. Chapter 4 introduces integer programming

and describes, in general, the two classes of solution methods -

enumeration and cutting planes. Chapter 5 details two specific cutting

plane methods, one all-integer approach and one fractional approach.

Chapter 6 describes the branch-and-bound method, one of the

enumeration methods. In Chapter 7 the additive algorithm for 0-1

programming problems is discussed. Chapter 8 describes the branch-

and-cut method, a combination of the cutting plane and branch-and-

bound approaches. Chapter 9 presents the plant location problem as an

example of the integer programming problem. Examples of each method

are included in the thesis.

TABLE OF CONTENTS

SECTION I: THEORY

CHAPTER page

1 LINEAR PROGRAMMING 1

1.1 Introduction 1

1.2 Standard Form of the LP Problem 4

1.3 Properties of a Solution to the LP Problem 6

2 THE SIMPLEX METHOD 10

2.1 Basic Method 10

2.2 Addition of Slack Variables 15

2.3 Artificial Basis Technique 17

3 DUAL SIMPLEX METHOD 23

3.1 Introduction 23

3.2 The Dual Simplex Method 25

4 INTEGER PROGRAMMING 31

4.1 Introduction. 31

4.2 Summary of Solution Methods 32

VI

SECTION II: METHODS

CHAPTER PAGE

5 CUTTING PLANES 38

5.1 Introduction 38

5.2 Gomoiy All-Integer Method 39

5.3 Gomoiy Mixed-Integer Method 50

6 BRANCH-AND-BOUND 61

6.1 Introduction 61

6.2 Method Using LP Relaxation 65

6.3 Branching 71

6.4 Node Selection ; 73

6.5 Preprocessing 75

7 ADDITIVE ALGORITHM 79

7.1 Introduction 79

7.2 Negative Coefficients in the Objective Function 84

7.3 Balas' Additive Algorithm 85

7.4 General Branching 95

8 BRANCH-AND-CUT 100

8.1 Introduction 100

Vll

CHAPTER PAGE

8.2 Branch-and-Cut Algorithm 102

8.3 Cut Management 109

SECTION III: APPLICATION

9 PLANT LOCATION PROBLEM 113

9.1 Fixed-Charge Problem 113

9.2 Plant Location Problem 116

BIBLIOGRAPHY 123

APPENDIX 127

VITA 141

Vlll

LIST OF TABLEAUS

TABLEAU PAGE

2-1 Initial step of simplex method 10

2-2 Initial step of Example 2.1 14

2-3 Vector P2 replaces vector P3 15

2-4 Initial tableau of Example 2.2 16

2-5 Vector P3 replaces vector Pe 16

2-6 Initial tableau for artificial basis technique 19

2-7 Initial step of Example 2.3 21

2-8 Vector Pa replaces vector P7 21

3-1 Initial step of Example 3.1 29

3-2 Vector Pi replaces vector P4 30

5-1 Initial tableau with constraint row and

column added 41

5-2 Initial tableau for Example 5.1 46

5-3 Second step of Example 5.1 47

5-4 Simplified tableau form 48

5-5 Third step 48

5-6 Fourth step 49

5-7 Optimal solution 49

ix

TABLEAU PAGE

5-8 Initial tableau for Example 5.2 59

5-9 Optimal LP solution 59

5-10 Constraint added to tableau 60

5-11 Optimal mixed-integer solution 60

8-1 Optimal LP solution for Example 8.1 104

8-2 Optimal LP solution for Node 1 104

8-3 Optimal integer solution for Node 1 105

8-4 Optimal LP solution for Node 2 105

8-5 LP solution after first cutting plane added 107

8-6 Optimal integer solution for Node 3 107

LIST OF FIGURES

FIGURE PAGE

4-1 Feasible region for Example 4.1 33

4-2 Graphical example of cutting plane method 36

4-3 Graphical example of branch-and-bound method 37

6-1 Tree of solutions for 0-1 programming problem 64

6-2 Tree of solutions for initial branch on xi 70

6-3 Tree of solutions for initial branch on X2 .71

7-1 Network of solutions for a 4 variable 0-1 problem 87

7-2 Network of solutions in which X4 = 1 are eliminated 88

7-3 Example of a binary search tree 92

7-4 Search tree for Example 7.1 94

7-5 Flowchart for additive algorithm with general

branching 97

8-1 Branch-and-cut tree before cutting 108

8-2 Branch-and-cut tree after cutting 108

9-1 Shipping costs from city i to region j 118

9-2 Sununaiy of demand and capacity 120

XI

FIGURE PAGE

A-1 UNDO Model Window 129

A-2 UNDO Solver Status Window 130

A-3 UNDO Reports Window 132

A-4 Model window for plant location problem 134

A-5 Reports window for plant location problem 135

A-6 What's Best model 137

A-7 Solver dialog box 139

A-8 Solver Results dialog box 139

A-9 Answer Report spreadsheet 140

SECTION I: THEORY

CHAPTER 1

LINEAR PROGRAMMING

1.1 Introduction

Linear Programming (LP) should not be confused with computer

programming. The term programming in LP is used in the general sense

of devising a plan or strategy. LP is a mathematical technique and does

not necessarily involve computers. In practice, however, problems are

usually solved on a computer due to the number of calculations required

to solve even small LP models. The mathematical technique for solving

LP problems was developed by George Dantzig in 1947 to solve planning

problems in the U.S. Air Force [5]. LP is now used in many fields,

including economics, engineering, agriculture, business, transport, and

manufacturing.

A linear programming problem is an optimization problem

consisting of three parts:

1. A linear function (the objective function) of decision variables

(say, xi, X2, ..., Xn) that is to be maximized or minimized. The

2

decision variables are activities for which the decision-maker

wants to select the values. The coefficients of the decision

variables in the objective function will be called the cost

coefficients and will be denoted by cj, where j= 1, 2, n.

Although, in general, an LP problem may have multiple

objective functions, the problems we will work with have a

single objective function. The objective may be to maximize

profit, minimize costs, or minimize distance traveled, to name a

few.

2. A set of restrictions or constraints (each of which must be a

linear equality or linear inequality) that restrict the values that

may be assumed by the decision variables. We will call the

coefficients of these restrictions the constraint coefficients and

wiU denote them by ay, where i = 1, 2, ..., m and j = 1, 2, ..., ru

The range of constraints that can be represented in an LP model

may include

❖ limits on the availability of resources such as land, labor, or

finance

❖ technical constraints representing, for example, machineiy

work rates, and

❖ logical constraints such as specifying that the amount of a

product sold must not exceed the amount produced.

3. The sign restrictions, which specify for each decision variable xj

either (1) variable xj must be nonnegative - xj > 0; or (2) variable

Xj may be positive, negative, or zero - xyis unrestricted in sign.

Linearity in the objective function and in the constraints has two

implications:

1. Proportionality Assumption of LP. The contribution to the

objective function from each decision variable is proportional to

the value of the decision variable. Similarly, the contribution of

each variable to the left-hand side of each constraint is

proportional to the value of the variable.

2. Additivity Assumption of LP. The contribution to the objective

function and to the left-hand side of each constraint is

independent of the values of the other decision variables. This

implies that the value of the objective function the left-hand

side of each constraint is the sum of the contributions from

each decision variable.

A third assumption of LP problems is the Divisibility Assumption,

which requires that each decision variable be allowed to assume

fractional values. If some or all of the variables in an LP problem must

be nonnegative integers, then the problem is an integer programming

problem. These problems will be discussed in Chapter 4 of this section.

1.2 Standard Form of the LP Problem

Written mathematically, the standard form of the general LP

problem is to find a vector (xi, xa, Xn) which minimizes the linear form

(i.e., the objective function)

ClX: + C2X2 + ••• + CjXj+ ••■ + CnXn (1.1)

subject to the linear constraints

aiixi + - + ai>x_/ + - + ainXn = bi
■ • • •

• • • •

UilXl + ••• + + ainXn ~ br (1*2)
• • • •

• • • •

UmlXi + ■■■ + Qjnpij Q-mtC^n ~ bm

and

Xy>0, y= 1, 2, ..., n (1.3)

where the ay, hi, and c/ are constants and m< n. We will always assume

that Equations (1.2) have been multiplied by -1 where necessary to make

all hi > 0. The general LP problem can be stated in many forms due to

the variety of notation in use. A few of the more common forms that will

be used in this thesis are:

a. Minimize

n

j = l

subject to

n

^a.ijKj = hi, i= 1, 2, ..., m

J = 1

and

xj>0, 7= 1, 2, ..., n

b. Minimize

cX

subject to

AX = b

and

X>0

where c = (ci, Cn) is a row vector, X = (xi, Xn) is a column vector, A

= (ay), b = (bi, ..., bm) is a column vector, and O is an n-dimensional

column vector of zeroes.

c. Minimize

cX

subject to

XiPi + X2P2 + - + X,Pn = Po

and

X>0

where Pj for j = 1, 2, ..., n is the column of the matrix A and Po = b.

1.3 Properties of a Solution to the LP Problem

In this section we will state a number of standard definitions and

theorems relating to the solution to the general LP problem. Proofs of

theorems will be omitted here but can be found in linear programming

texts such as Dantzig [4] and Gass [6].

Definition 1.1. A feasible solution to the LP problem is a vector X = (xi,

X2, Xn) which satisfies the constraints (1,2) and the nonnegativity

conditions (1.3),

Definition 1.2a. A basic solution to (1.2) is a solution obtained by setting

n-m variables equal to zero and solving for the remaining m variables,

provided that the determinant of the coefficients of these m variables is

nonzero. The m variables are called basic variables.

Definition 1.2b. A basic feasible solution is a basic solution which also

satisfies the nonnegativity conditions(1.3).

Definition 1.3. A nondegenerate basic feasible solution is a basic feasible

solution with exactly m positive Xi, that is, all basic variables are positive.

Definition 1.4. A minimum feasible solution is a feasible solution which

also minimizes(1.1).

Definition 1.5. An optimal basic feasible solution is a basic solution that

satisfies (1.1), (1.2), and(1.3).

Unless otherwise stated, when we refer to a solution, we will mean

any feasible solution.

7

Theorem 1.1. The set of all feasible solutions (also called the feasible

region) to the LP problem is a convex set. We will denote this convex set

by C.

By Theorem 1.1, if a problem has more than one solution, it has an

infinite number of solutions. Our task is to determine the one solution

which minimizes the corresponding objective function. The amount of

work needed to find this solution is somewhat simplified by Theorem 1.2.

Theorem 1.2. The objective function (1.1) assumes its minimum at an

extreme point of the convex set C generated by the set of feasible

solutions to the LP problem. If it assumes its minimum at more than

one extreme point, then it takes on the same value for every convex

combination of those particular points.

Recall that a feasible solution is a vector X = (xi, X2, ..., Xn) with all

Xi > 0 such that

XiPi + X2P2 + - + XnPn = Po

Assume we have found a set of k vectors that is linearly

independent and that there exists a nonnegative combination of these

vectors that is equal to Po. Let this set of vectors be Pi, P2, ..., Pic. Then

we have Theorem 1.3.

Theorem 1.3. If a set of fc < m vectors Pi, P2, ..., Pfccan be found that is

linearly independent and such that

XlPl + X2P2 + - + XnPn = Po

8

and all Xi> 0, then the point X = (xi, X2, x^, 0, 0) is an extreme

point solution of the convex set C of feasible solutions. Here X is an n-

dimensional vector whose last n-k elements are zero.

Theorem 1.4. If X = (xi, xa, ..., Xn) is an extreme point of C, then the

vectors associated with positive Xi form a linearly independent set. From

this it follows that, at most, m of the Xi are positive.

Corollary 1.1. Associated with every extreme point of C is a set of m

linearly independent vectors from the given set Pi, Fa, ..., Pn.

Theorem 1.5. X = (xi, xa, ..., Xn) is an extreme point of C if and only if

the positive xj are coefficients of the linearly independent vectors Pj in

n

XxjPj = Po
j = l

As a result of the theorems in this section we have:

1. There is an extreme point of C at which the objective function takes

on its minimum.

2. Every basic feasible solution corresponds to an extreme point of C.

3. Every extreme point of C has m linearly independent vectors of the

given set of n associated with it.

From the above we can conclude that we need only investigate

extreme point solutions and hence only those feasible solutions

generated by m linearly independent vectors. Since there are at most

fn^

9

sets of m linearly independent vectors from the given set of n, the

value is an upper bound to the number of possible solutions to the

problem. For large n and m it would be impossible to evaluate all the

possible solutions and select one that minimizes the objective function.

What is required is a computational scheme that selects, in an orderly

fashion, a small subset of the possible solutions which converges to a

minimum solution.

The simplex procedure, devised by Dantzig [5], is such a scheme.

This procedure finds an extreme point and determines whether it is the

minimum. If it is not, the procedure finds an adjacent extreme point

whose corresponding value of the objective function is less than or equal

to the preceding value. In a finite number of such steps (usually between

m and 3m), a minimum feasible solution is found. The simplex method

makes it possible to discover whether the problem has no finite

minimum solutions or no feasible solutions.

10

CHAPTER 2

THE SIMPLEX METHOD

2.1 Basic Method

To begin the simplex procedure, we arrange the problem matrix as

shown in Tableau 2-1. There are many variations of the table. We have

chosen to use the form as in [6].

n

From the original equations of the problem given by X = t)i,

J = 1

/■ = 1, 2, ..., m, we have let Xio = hi and Xij = a.ij. The zj for j = 0, 1, ..., n

are obtained by taking the inner product of the vector with the column

vector labeled c, that is,

m

Zo= X CK'O
1=1

(2.1)

Tableau 2-1. Initial step of simplex method,
Ci C2 Cl Cm C/at-l Ck Cn

P

Xln

X2n

Xln

Xinn

Zn ~ Cn

I

1
2

Basis
Pi
Pa

m

771+1

c

Cl

02

Cl

Cm

Po
XlO

X20

XK>

XmO

Zo

Pi
1
0

0

0
0

Pa
0
1

0

0
0

Pi
0
0

1

0
0

P m
0
0

0

1
0

P/rH-l
Xl,m+1
X2,m+1

Xljjjtt-i

Xm,m+1
Zmt- 1-Cm+1

Pj
xy
X27

Xlj

Xmj
Zj- CJ

Pk
Xifc

X2fc

Xlk

Xmk

Zk~ Ck

11

m

2/ = , j = 0, 1, n (2.2)
1 = 1

The elements zo and zj- cj are entered in the (m + 1)®^ row of their

respective columns. The zj- cj for those vectors in the basis will always

equal zero. If all the numbers zj- cj< 0 for j = 0, 1, ..., n, then the

solution Xo = (xio, X20, Xmo) = (bi, ba, ..., bm) is a minimum feasible

solution, and the corresponding value of the objective function is zo. We

will assume at least one zj -Cj>0 and compute a new feasible solution

whose basis contains m- 1 vectors of the original basis Pi, ..., Pm. In

searching for a new vector to enter the basis, we select the one which

corresponds to the

max(zj - cj)

If there are ties, we will select the vector with the lowest index j.

In our example, let

maxfzic - Cfc) = Zfc - Cfc > 0
k ̂ '

The vector P/c is to be introduced into the basis. We next compute

f\ —' XiO f. _0 = mm — for Xifc > 0
i Xik

If all Xffc < 0, we can find a feasible solution whose value of the objective

function can be made arbitrarily small. The computation is then

complete. However, assume some Xifc > 0 and

12

_ . XiO XIO
0 = mm — = —

i Xik XBc

Vector Pi will be the one removed from the basis. In order to obtain the

new solution X'o, the new vectors Xj, and the corresponding zj - cj, all

elements in Tableau 2-1 for rows /= 1, 2, m.+ l and columns j =0, 1,

n are transformed by the formulas

x'ij = Xij-—Xik (2.3)
Xlfc

xij = — (2.4)
Xlk

where

zo~ Xm+1,0 and zj— cj — Xm+ij

These general formulas (2.3) and (2.4) apply to all elements of the tableau

including the Po column and the (m+l)st row. The transformation defined

by (2.3) and (2.4) is equivalent to the complete elimination formulas

when the pivot element is xhc.

Once an initial tableau has been constructed, the simplex method

calls for the iteration of:

1. The testing of the zj - cj elements to determine whether zj - Cj < 0

for all j.

2. The selection of the vector to be introduced into the basis if

some Zj - Cj > 0, i.e., the selection of the vector with maximum

13

Zj - Cj. The column associated with vector Py is referred to as the

pivot column.

3. The selection of the vector to be removed from the basis to

ensure feasibility of the new solution, i.e., the vector with

min — for those Xtfc > 0, where k corresponds to the vector
i Xik

selected in Step 2. The row is referred to as the pivot row. If

all Xifc < 0, then the solution is unbounded.

4. The transformation of the tableau by elementary row operations

to obtain the new solution and associated elements.

Each such iteration produces a new basic feasible solution, and we

eventually obtain a minimum solution or determine an unbounded

solution. If ties occur in Steps 2 or 3, we use the lowest-index rule

discussed earlier.

Example 2.1: As an example, we will solve the following LP

problem by means of the simplex method:

minimize z = xi - X2

St 3xi + 2x2 + X3 =10

3xi + 4x2 + X4 =20

Xi + X5 = 3

Xj >0J= 1, ..., 5

14

We begin by forming the initial tableau (Tableau 2-2). The initial

basis consists of P3, P4, Ps, and the corresponding solution is X = (xs, X4,

xs) = (10, 20, 3). Since cs = C4 = cs = 0, the corresponding value of the

objective function, z, equals zero. P2 is selected to enter the basis, since

m^(z7 -cj) = Z2 - C2 = 1 > 0

When we compute 0 we have a tie in the 1=^^ and 2*^^ rows. By the lowest-

index rule, we choose row 1. Thus

o . XlO _0 = mm—= 5
X12

and so P3 is removed from the basis. The pivot element, 2, is denoted in

Tableau 2-2 in bold. We transform the initial tableau to obtain Tableau

2-3 with a new solution X' = (x2, X4, xs) = (5, 0, 3) and new objective

function value of -5. Since max^z j - cjj = 0, this solution is a minimum

feasible solution.

Tableau 2-2. Initial Step of Example 2.1.
1 -1 0 0 0

i Basis c Po Pi P2 Ps P4 Ps 0
1 Ps 0 10 3 2 1 0 0 5
2 P4 0 20 3 4 0 1 0 5
3 Ps 0 3 1 0 0 0 1 -

4 —

- 0 -1 1 0 0 0

15

Tableau 2-3. Vector P2 replaces vector P3,
i Basis c Po Pi P2 Ps P4 Ps
1 P2 -1 5 3/

72
1 K 0 0

2 P4 0 0 -3 0 -2 1 0

3 Ps 0 3 1 0 0 0 1

4 - -5 -5/
72

0 -1/
72

0 0

2.2 Addition of Slack Variables

The previous problem is an example of the simplest LP problem;

that is, a problem in which the constraints are written as equalities. If,

however, the problem had been written in the form AX < b, we would

need to add additional variables, called slack variables, in order to have

an initial basis. These slack variables represent the amount of unused
\

resource and have associated cost coefficients set equal to zero.

Example 2.2: Consider the problem;

minimize z = xi + X2 - 2x3

St -xi - 2x3 < 5

2xi - 3x2 + X3 < 3

2xi + 5x2 + 6x3 < 5

Xj> 0 j = 1, 2, 3

By adding the slack variables X4, xs, and xe, the problem becomes

minimize z = xi + X2 - 2x3

St -Xi - 2X3 + X4 =5

2xi — 3x2 + X3 + Xs =3

16

2xi + 5x2 + 6x3 + X6 = 5

Xj>0 j= 1, ...,6

The constraint equations now contain a starting basis of the slack

vectors (P4, Ps, Pe) with the associated first feasible solution of xi = X2 =

xs = 0, X4 = 5, xs = 3, xe = 5. The corresponding value of the objective

function is zero since all cost coefficients for the slack variables are zero.

Now we are able to continue the simplex method (Tableaus 2-4 and

2-5). We see that in Tableau 2-5 that the max(z7 - cj) = 0; i.e., that the

minimum feasible solution has been reached. The solution is X' = (X4, xs,

7 and the objective function value is .

Tableau 2-4. In:■tial tableau of Example 2.2.
1 1 -2 0 0 0

i Basis c Po Pi Pa Ps P4 Ps Pe e
1 P4 0 5 -1 0 -2 1 0 0 -

2 Ps 0 3 2 -3 1 0 1 0 3
3 Pe 0 5 2 5 6 0 0 1 5/

76
4 —

- 0 -1 -1 2 0 0 0

Tableau 2-5. Vector P3 replaces vector Pe.
1 P4 0 2% K 5/

73
0 1 0)4

2 Ps 0 7 -23/
/6

0 0 1 -/e
3 Ps -2 % 1 0 0 X
4 - "K -7 -K 0 0 0 -K

17

2.3 Artificial Basis Technique

Other problems have constraints written in the form AX > b. For

these problems, the artificial basis technique is used to start the simplex

method. This procedure also determines whether or not the problem has

any feasible solutions. This technique is also referred to as the Big-M

Method (Winston [18]),

For the artificial basis technique we augment the general LP

system (Equations (1.1) - (1.3)) as follows:

nunimizc cixi "* CnXn "i" w/Xti+i W/X71+2 z/zx^+wi

St ailXi + ••• + ainXn + Xn+1 = bi

aaiXi + - + azriKn + Xn+2 = b2

UmlXi + + ajnnXn "'"Xm+Ti ~ bm

Xj>0 for j= 1, ..., n, n.+ l, ..., n+m

The quantity w is taken to be an unspecified large positive

number. The vectors Pn+i, Pn+2, ..., Pn+m form an artificial basis for the

augmented system. If there is at least one feasible solution to the

original problem, then this solution is also a feasible solution for the

augmented system. The simplex method will then obtain the minimum

solution, in which it is impossible for one of the artificial variables, Xn+i,

to appear with a positive value. If the minimum feasible solution for the

18

augmented system contains at least one Xn+i > 0, then the original

problem is not feasible.

Each zj- cy will have a w coefficient and a non - w coefficient

which are independent of each other. The associated computational

procedure is set up as Tableau 2-6. For each j, the non - w component

and the w component of zj - cj have been placed in the (m+ l)®t and

{m+2)^^ rows, respectively, of that column.

This tableau is treated like the original simplex tableau (Tableau 2-

1) except that the vector introduced into the basis is associated with the

largest positive element in the (m+2)n<i row. For the first iteration, the

n

vector corresponding to max Zxy is introduced into the basis. The
t = l

elements in the (7n+2)"*^ row are also transformed by the usual

elimination procedure. Once an artificial vector is removed from the

basis, it is never selected to reenter the basis. Hence we do not have to

transform the last m columns of the tableau. Even if there are artificial

vectors in the basis, the iteration may not remove one of them. At least

m iterations are required to exchange them with the columns of the given

problem when a full artificial basis is used.

19

Tableau 2-6. Initial tableau for artificial basis technique.
Ci C2 Ck Cn W W W

I

1

2

m

m+1

771+2

Basis

Pn+l

P n+2

P n+i

Pn+m

c

w

w

u>

w

Po

Xn+ljO

X7i+2,0

Xn+1,0

Xn+m,0

0

Pi
Xii

X21

Xzi

Xml

-Cl

P2
Xl2

X22

Xl2

X7712

-C2

Pk

Xifc

X27c

X«c

Xmk

-Ck

^Xik

Pn

Xin

X2n

Pn+l
1

0

Xln 0

Xmn

"Cn

0

0

0

Pn+l
0

0

0

0

0

n+m

0

0

0

1

0

0

We continue to select a vector to be introduced into the basis using

the element in the (771+2)""^ row as criterion, until either (1) all the

artificial vectors are removed from the basis or (2) no positive (77i+2)'^<^

element exists. The first alternative implies that all the elements in the

(77i+2)'^<^ row equal zero and the corresponding basis is a feasible basis for

the original problem. We then apply the regular simplex method to

determine the minimum feasible solution. In the second alternative, if

the (771+2, 0) element, i.e., the artificial part of the corresponding value of

the objective function, is greater than zero, then the original problem is

not feasible. If the (771+2, 0) element is equal to zero, then we have a

degenerate feasible solution to the original problem which contains at

least one artificial vector. The artificial variables have values of zero.

However, the minimum feasible solution has not been reached. We

continue the iterations by introducing a vector that corresponds to the

maximum positive element in the (771+1)®^ row which is above a zero

20

element in the (m.+2)"'i row. This criterion is used until there are no more

positive (m+ljst elements over a zero in the {m+2)^'^ row. The final

solution may or may not contain artificial variables with values equal to

zero. For both alternatives (1) and (2), all the {m+2,j) elements are less

than or equal to zero, with the possible exception of the (7n+2, 0) element.

The latter element is always nonnegative, and its value is nonincreasing.

Whenever the original problem contains some unit vectors, these

vectors along with the necessary artificial ones should be used for the

initial basis. Doing this will decrease the total number of iterations.
I

Ercample 2.3; Consider the problem:

minimize z = 4xi + 4x2 + xs

St Xi + X2 + X3 < 2

2xi + X2 <3

2xi + X2 + 3x3 ̂ 3

xj> 0 for j= 1, 2, 3

We add slack variables X4 and xs to constraints 1 and 2,

respectively, and subtract slack variable xe from constraint 3 to make

each of the constraints equalities. In order to obtain a basis we must

add artificial variable x? to constraint 3. We must also add wxy to the

objective function. The problem becomes

21

minimize z = 4xi + 4x2 + xs + wkv

St Xi + X2 + X3 + X4 =2

2xi + X2 + Xs =3

2xi + X2 + 3X3 - X6 + X7 = 3

xj> 0 for j= 1, 7

The initial tableau for Example 2.3 is recorded in Tableau 2-7.

The P3 column has the largest positive element in its {7n+2)"<^ row, so

vector P3 is chosen to enter the basis. Calculating 0 tells us that vector

P? is removed from the basis. The results of performing the simplex

elimination calculations are recorded in Tableau 2-8.

Tableau 2-7. Initial Step of Example 2.3.
4 4 1 0 0 0 w

i Basis c Po Pi P2 Pa P4 Ps Ps P7 0

1 P4 0 2 1 1 1 1 0 0 0 2

2 Ps 0 3 2 1 0 0 1 0 0 -

3 P7 w 3 2 1 3 0 0 -1 1 1

4 —

- 0 -4 -4 -1 0 0 0 0

5 —

- 3 2 1 3 0 0 -1 0

Tableau 2-8. Vector P3 replaces vector P7.
1 P4 0 1 K % 0 1 0

2 Ps 0 3 2 1 0 0 1 0

3 Pa 1 1 % K 1 0 0 -1/
73

4 1 -10/
/3 -'K 0 0 0 -1/

73

5 0 0 0 0 0 0 0

22

The (m+2)»<^ row consists of all zeroes and all elements in the

(m+l)st row are less than or equal to zero, so we have reached the optimal

solution of z =1, xi = X2 = 0, X3 = 1.

23

CHAPTERS

DUAL SIMPLEX METHOD

3.1 Introduction

Associated with every LP problem as defined in Chapter 1 is a

corresponding problem called the dual problem. The original problem is

called the primal An interesting historical note is the introduction of the

term primal around 1954 by George Dantzig. He had been told he

needed a word to stand for "the original problem of which this is the

dual." He asked his father, Tobias Dantzig, mathematician and author,

well-known for his books popularizing the history of mathematics. His

father knew both Latin and Greek and suggested primal as the antonym

since both primal and dual derive from the Latin. That was his father's

one and only contribution to linear programming [5].

The optimal solution of either problem reveals information about

the optimal solution of the other. If the initial simplex tableau for the

primal problem contains an mxm unit matrix, then the solution of either

problem by the simplex procedure yields an explicit solution to the other.

Because we considered the standard LP problem to be a minimization

problem, we will now designate the minimization problem to be the

primal problem.

24

Recall that in the primal problem we want to find a column vector

X = (xi X2, Xn) which minimizes the linear functional

f(X) = cX (3.1)

subject to the conditions

AX = b (3.2)

and

X>0 (3.3)

The dual problem is to find a row vector W = (wi, W2, Wm) which

maximizes the linear functional

g(W) = Wb (3.4)

subject to the conditions

WA < c (3.5)

In the dual problem, the variables Wf are not restricted to be

nonnegative. Multiplying the Ixm row vector W by the wx w matrix A, we

have the following explicit representation of (3.5):

aiiWi + ai2W2 + ••• + amlWm < Cl

ai2Wi + a22W2 + - + a7n2Wm ̂ C2

ainWi + a2nW2 + •" + a;nnWm ̂ Cn

The matrix of coefficients for the above inequalities is given by A^, the

transpose of the matrix A. Note that there is a dual variable for each

equation of (3.2).

25

Associated with the primal and dual problems is the following

theorem:

Theorem 3.1; The Duality Theorem. If either the primal or the dual

problem has a finite optimal solution, then the other problem has a finite

optimal solution and min f{X) = max g(W). If either problem has an

unbounded optimal solution, then the other problem has no feasible

solutions. [Note that for the dual problem, a solution is feasible if it

satisfies (3,5). The variables are not required to be nonnegative.]

Dantzig [4] states Theorem 3.1 in a slightly different form.

Theorem 3. la. If feasible solutions to both the primal and dual systems

exist, there is an optimal solution to both systems and min f(X) = max

g(W).

3.2 The Dual Simplex Method

The dual simplex algorithm is the work of C. E. Lemke. It

apparently originated in the course of appl3dng the primal simplex

method to the dual of an LP problem. While doing this, Lemke realized

that an algorithm that was different in the sense of feasible points

leading to optimality could be devised, and that it could be applied to

either primal or dual problems (Cooper and Steinberg [3]).

26

To begin the dual simplex procedure we will assume that we have

selected a basis B = (PiPa-.-Pm) such that at least one element of B-^b is

negative and cj for all where c° = (ci, C2, Cm) is a row vector.

A solution to the dual constraints is given by W® = c°B-^ with its

corresponding value of the objective function being cOB-^b.

We need a computational procedure for the dual which will yield a

maximizing solution, and hence, by the duality theorem, a minimizing

solution to the primal. This procedure must then determine a new basis

for which

1. The dual inequalities will still be satisfied.

2. The value of the dual objective function will increase (or remain

the same if the dual solution is degenerate) until the maximum

or unbounded solution is reached.

Proceeding in this way will always preserve optimalily of the primal, and

in a finite number of steps, determine a feasible and optimal solution to

the primal.

We will denote the rows of B-^ by Bu The m components of the

nonfeasible solution of the primal are given by xo = Bib for z = 1,2, ..., m.

Let Xio = Bib = min Bib < 0. The vector Pi will be the one removed from
i

the basis. For those vectors not in the basis, i.e., for those having WPj <

Cj, compute Xy = BiPj. We will assume that at least one xz, < 0. For the

27

set of xij < 0 form the ratios ———. Let
Xlj

\

Q — ~ Zk — Ck ^ I'y tz\0 = mm = >0 (3.6)
Xlj<0 Xlj Xlk

The vector Pk is selected to replace Pi, and the new basis will yield

a solution to the dual constraints. The new basis is B =

(Pi...P^fcPj+i...Pm) and B-i is obtained by application of the following

formulas on B-^:

Let btj denote the element in the row and column of B-i and

let by be the corresponding element of B-L Then by are given by

hy = by-—Xifc forz;^ I
Xlk

by =
Xlk

The new solution to the dual constraints is

W = VP -GBi (3.7)

and the corresponding value of the objective function is

Wb = VPb - 0X10 (3.8)

The new solution to the primal constraints can be computed by the

usual elimination formulas or directly from X = B-^ b. If all X> 0, then

we have determined an optimal feasible solution to the primal. If not,

then we know we have made at least x io= Bb > 0. For this situation, we

repeat the above dual simplex process of selecting the vector to be

28

removed and then the vector to be introduced into the basis, until we

find a basis that solves the dual and is also an admissible basis for the

primal or until we have determined that the dual has an unbounded

solution and hence that there are no feasible solutions to the primal.

The latter case occurs when, in computing the Ky = ByVj, all Ky >0. If

this is true, we have from (3.6) and (3.7) that we can construct a solution

to the dual constraints for any 0 > 0, since

WPj - GBz Pj = WoPj - Gxz/ < WoPj < cj

From (3.8) the corresponding value of the objective function can be

made as large as possible, since xro < 0. The dual simplex procedure can

be employed as a variation of the original simplex procedure since it uses

the information contained in its tableau.

Example 3.1: Consider the problem:

minimize z = 2xi + X2 + 3x3

St -Xi + 2X2 - Xs + X4 = -4

2xi + X2 + xa + Xs =8

-Xl + X3 + X6 = 0

7Lj >0,j= 1, ..., 6

The dual of this problem is to

29

maximize z = -4wi + 8w2

St -Wi + 2W2 - W3 < 2

2Wi + W2 + < 1

-W1 + W2 + W3 < 3

Wi

W2

< 0

<0

An initial basis B = (P4P5P6) =
1 0 0

0 1 0

0 0 1

. Setting up the primal in

the usual simplex tableau, we have Tableau 3-1.

Since all zj - cj elements are nonpositive, the basis B is a feasible

solution for the dual, i.e., optimal but not feasible for the primal. The

dual solution is

wo = cOB-i = (0 0 0)
^1 0 0^

0 1 0

,0 0 1,
= (0 0 0)

Applying the dual algorithm, we see that P4 is to be eliminated (xz

X4 = -4), and vector Pi is to be introduced into the basis because

Tableau 3-1. Initial Step of Example 3.1.
2 1 3 0 0 0

i Basis c Po Pi P2 P3 P4 Ps Pe
1 P4 0 -4 -1 2 -1 1 0 0

2 Ps 0 8 2 1 1 0 1 0

3 Pe 0 0 -1 0 1 0 0 1

4 —

- 0 -2 -1 -3 0 0 0

30

Tableau 3-2. Vector Pi replaces vector P4.
i Basis c Po Pi P2 Ps P4 Ps Ps

1 Pi 2 4 1 -2 1 -1 0 0
2 P5 0 0 0 5 -1 2 1 0
3 Pe 0 4 0 -2 2 -1 0 1

4 —
- 8 0 -5 -1 -2 0 0

0 = ̂L_Si = 2
Z41

The new tableau is as in Tableau 3-2.

Since all Xi > 0 and since zj - cj < 0, we have determined the optimal

feasible solution. The primal optimal solution is xi = 4, X2 = xs = 0, and

that for the dual is wi = -2, wa = 0, with a common optimal value of the

objective function of 8.

31

CHAPTER 4

INTEGER PROGRAMMING

4.1 Introduction

Recall from Chapter 1 that a linear programming problem in which

some or all of the variables must be nonnegative integers is called an

iMegerprogramming problem (IP). An IP in which all variables are

required to be integers is called a pure IP problem. An IP in which only

some of the variables are required to be integers is called a mixed IP

problem. An IP in which all the variables must equal zero or one is called

a 0-1JP problem or a 0-1 programming problem. The standard form of

the IP is similar to that of an LP:

minimize cixi + C2X2 + ••• + CjXj+ ••• + CnXn

St anxi + - + 2iijXj + ••• + ainXn = hi

* • • •

3.ilXl 4" ••• 4- QiyKj 4- ••• 4" — bj

• • • •

U/nlXi "t" + amnXn ~ bm

Xj > 0

Xp integer

Xg = 0 or 1

32

where Xp and represent those variables that are required to be integer

or 0-1 variables, respectively.

4.2 Summaiy of Solution Methods

Since the feasible region for any IP is contained in the feasible

region for the corresponding LP relaxation (the LP obtained by omitting

all integer or 0-1 constraints), one might initially assume that an optimal

solution for an IP can be obtained by first solving the LP relaxation and

then rounding off (to the nearest integer) each variable that is required to

be an integer and that assumes a fractional value in the optimal solution

to the LP relaxation. To see that this method is false, consider the

following example:

Example 4.1: maximize z = 21xi + 1 Ixa

St 7xi + 4x2 < 13 (4.1)

Xi, X2 >0

xi, X2 integer

Applying the above method, we first find the optimal solution to the

LP relaxation: xi = , xa = 0. Rounding this solution yields the solution

xi = 2, xa = 0 as a possible optimal solution to (4.1). We can see in

Figure 4-1 that xi = 2, xa = 0 is infeasible for (4.1) so it cannot possibly

be the optimal solution to (4.1). Even if we round xi downward ()delding

> = point in feasible region

7X1 + 4X3 =13

.5 1 1.5 2 2.5

Figure 4-1. Feasible region for Example 4.1.

the candidate solution xi = 1, xa = 0), we do not obtain the optimal

solution (xi = 0, X2 = 3) [18].

Since rounding does not yield the optimal integer solution in most

cases, other solution methods are needed. The procedures for solving IP

problems that will be discussed in Section II can be grouped into two

computational categories: cutting plane and enumeration. The basic

idea of the cutting plane method is as follows: Given an IP problem, solve

the corresponding LP problem. If the optimal solution contains only

integer-valued variables, then this optimal solution is also optimal for the

IP. If, however, some variables in the optimal LP solution are not integer-

valued, then a new constraint is added to the problem, and the new LP

problem is solved. Again, the optimal solution to the new LP problem is

34

checked to see if it meets the integer requirements. If so, it is the optimal

solution to the original IP problem. If the integer requirements have not

been met then another new constraint is added, and the process

continues until one of the corresponding LP problems has an all integer

optimal solution.

Enumerative methods, used to solve both pure and mixed-integer

problems, include additive algorithms and branch-and-bound methods.

Additive algorithms are designed to solve 0-1 programming problems

with n binary variables and 2'' possible solutions. The procedure does

not use simplex techniques but substitutes new 0-1 solutions based on

systematic rules for improving a solution which rely on information

implied by the original problem constraints. It is an additive procedure

in that only additions and subtractions are used in the computation.

Branch-and-bound methods use information obtained from successive

solutions to related continuous problems to generate new problems with

bounds on selected variables and the objective function in such a way as

to restrict the total number of continuous problems which need to be

solved [6].

To illustrate the differences in approach to solving an IP problem,

consider the following example;

35

Example 4.2: max z = 8xi + Sxa

St Xi + X2 < 6

9xi + 5x2 < 45

xi, X2 > 0 and integer

Figure 4-2 shows the feasible region for the LP relaxation of

Example 4,2. Included in the figure is a cutting constraint, 3xi + 2x2 =

15. Notice that this constraint "cuts off the portion of the feasible region

which contained the optimal LP solution. It is possible that more cutting

planes would need to be added in order to find the optimal IP solution.

Figure 4-3 illustrates the branch-and-bound method with its

"divide and conquer" approach. In this figure, the feasible region has

been divided into three subregions by the constraints xi = 3 and xi = 4.

The two regions that will continue to be searched have been labeled

Subproblem 2 and Subproblem 1. The regions of these subproblems

may need to be further subdivided until the optimal IP solution is found.

Figure 4-2. Graphical example of cutting plane method.

9x1 + 5x2 = 45

• = feasible point for original IP

n ABC = feasible region for subproblem 1

E3DBFG = feasible region for subproblem 2

I +x2=6

xl =3

IS

ubproblem 2

xl = 3.75, x2 = 2.25
Optimal IP solution to subproblem 0

Subproblem 1

1 2 3 4 5 6

Figure 4-3. Graphical example of branch-and-bound method.

38

SECTION II: METHODS

CHAPTERS

CUTTING PLANE METHOD

5.1 Introduction

Cutting plane algorithms have been used to solve many different IP

problems, including the traveling salesman problem (TSP), the linear

ordering problem, maximum cut problems, and packing problems. They

have been proven to be useful computationally in the last few years,

especially when combined with a branch-and-bound algorithm in a

branch-and-cut framework. The branch-and-bound algorithm will be

discussed in the next chapter and the branch-and-cut method in

Chapter 8.
\

Some useful families of general inequalities have been developed

for general problems. These include Gomoiy cutting planes, cuts based

on knapsack problems, lift and project cutting planes, and Fenchel

cutting planes. These inequalities, which are added to the problem, are

called cutting planes because they are hyperplanes that cut off a portion

of the convex set of feasible solutions for the related LP problem. Bard

39

[3] calls these cutting planes "violated cuts." We will concentrate on the

Gomoiy cuts, which will be used again in Chapter 8.

The new constraints added at each step must have the following

properties in order that the method to be valid:

1. Every feasible integer solution to the original problem must also

be a feasible solution to the new problem after the addition of

the constraint. In other words, addition of the new constraint

does not eliminate any of the integer solutions from the set of

feasible solutions. This ensures that the optimal integer

solution will not be made infeasible.

2. The optimal solution to the LP problem solved at each step

must become infeasible after the new constraint is added.

Without this property, the optimal LP solution would also be

optimal for the new LP problem, and nothing would have been

gained by adding the constraint [3].

5.2 Gomoiy All-Integer Method

An early approach to the application of the cutting plane method

required solving the LP relaxation by the basic simplex algorithm. If the

optimal solution is not integer, then a cutting plane is introduced which

preserves the optimality state of the primal problem but not the

feasibility conditions. A single application of the dual algorithm restores

40

feasibility and yields an optimal answer to the reduced problem. If this

solution is integer-valued, the process stops. If not, a new constraint is

introduced and the algorithm is repeated until an integer solution is

found or until an indication is given that no integer solution exists for

the original problem. This method has been superceded by a more

efficient procedure, in which the problem, assumed to be given in

integers, is transformed by a modified simplex algorithm that preserves

the integer-valued characteristic of the complete tableau for all iterations

[6].

We assume for starting conditions that the simplex tableau is all-

integer-valued and that we start with a feasible solution for the dual

simplex algorithm but not for the primal. Letting Pi, ..., Pm form a

feasible basis for the dual problem, the initial Tableau 5-1 is given for the

minimization problem.

In Tableau 5-1 xoo is the value of the objective function; some xc <

0 for z > 1 (solution is not primal feasible); xo/ = zj- Cj< 0 for j> 1

(solution is dual feasible); and an additional set of n-m constraints, xj - xj

= 0 for j = 771+1, ..., n with x'j > 0 and c'j = cj, has been added to the

tableau. With this set of constraints, we are now forced to determine a

basic feasible solution that contains n nonnegative variables instead of

the usual m; hence we are given the means by which an interior point of

the original convex set can be expressed. However, we still lack the

41

means to force us into the interior and toward the optimal integer-valued

point. This is accomplished by a proper selection of cutting planes.

We wish to introduce new variables into the solution in a way that

will enable us to preserve the integer characteristic of the tableau and to

move toward the optimal integer solution that is in the convex set defined

by the equations of Tableau 5-1. This will be accomplished by

determining cutting hyperplanes defined as equalities in terms of the

nonbasic variables and a new slack variable. Eliminating the new slack

variable from the basis with a pivot element of -1 will preserve the integer

tableau and move the solution point closer to the optimal integer point.

Tableau 5-1. Initial tableau witb constraint row and column added.

Ci C2
•
cz

•
Cm Crn^l

•
Cn Cmfl

•
Cn

i Basis C Po Pi P2
n
Pz

•
Pm P nH-1

•
Pn Pm-M

•
Pn Pn+s

0 - xoo 0 0
•
0

•
0 Xo,m+l

•
Xon 0

•
0

1 Pi Ci xio 1 0
•
0

•
0 Xi,m+1

•
Xin 0

•
0

I Pz Ci XZO 0 0
•
1

•
0 Xz,nH-l

•
XZn 0

•
0

m Pm Cm XmO 0 0
•
0

•
1 X7n,m+1

•
Xmn 0

•
0

m+1 Pm+1 CnH-1 0 0 0
•
0

•
0 -1

•
0 1

•
0

n P'n Cn 0 0 0
•
0

•
0 0

•
-1 0

•
1

n+1

42

A finite number of applications of these new constraints leads us to

the optimal integer solution.

To determine the form of the cutting constraint, consider any

equation from Tableau 5-1 that has a corresponding Xio < 0, for example,

the equation:

XZO = Xi + Xtm+lXm+1 + - + XlrXn (5.1)

where Xm+i, ..., Xn are nonbasic variables.

We next rewrite each coefficient of (5.1) as a multiple of an integer

and a remainder, i.e., in the form hijX + nj, where hij is an integer, nj is a

remainder, and is an unspecified positive number to be determined.

The coefficients can then be expressed as

xij = hijX + Tij = A + Tij for all j

1 = yl + r (5.2)

0 < Tij <X 0 <r < X 0 <X

where [xj indicates "greatest integer < x." If — < 0, then XJj

X
= hij < 0

such that hijX + nj = xij. Note that for X> 1, we have = 0.

Substituting (5.2) into (5.1) and gathering appropriate terms, we

have

43

no + Ai
xzo Xhm + 1 Xbi 1

— Xm + l-... Xn-

- ̂ . . ̂ . A.
XI (5.3)

= n,ntHXm+l + - + rinXn + TXl

Note that any nonnegative integer values of the variables that satisfy

Equation (5.1) will also satisfy (5.3). Such a substitution will make the

right-hand side of (5.3) a nonnegative number.

The terms in braces can be rewritten as

xio
XI (5.4)

Note that the expression (5.4) must be a nonnegative integer.

For 1 > 1, the last term of (5.4) is zero and by (5.2) and the above

discussion we can rewrite (5.3) as

bzo - ̂ hijxj>0 (5.4a)
jeB

Thus (5.4a) is a cutting plane in terms of the current nonbasic variables,

and the left-hand side of (5.4a) is a nonnegative integer. We transform

(5.4a) into an equation by subtracting out the nonnegative slack

variables Xn+s, i.e.,

b® - ̂ htjxj - xn+s = 0 (5.5)
jfsB

or b® = b/,nr*-lXm+l + b/,m+2Xm+2 + - + hlnXn + Xn+s

Variable Xn+s is also an integer variable, as it is equal to the left-

hand side of (5.4a). For any %> 1, (5.5) is a constraint that must be

44

satisfied by any integer solution to the original LP problem. The

nonnegative integer variable Xn+s is introduced as a new variable into the

problem. For the present solution, since all the nonbasic variables XrrtH =

••• = Xn = 0, Ekiuation (5.5) is infeasible as bzo < 0. Thus, after a suitable

selection of X > 1, i.e., a value of X which makes some element hij {j js B)

of (5.5) equal to -1. Ekjuation (5.5) can be used as a cutting constraint.

We note that bro < 0 since it was assumed that xro < 0. Also, since

we are applying the dual simplex method, some xij for j not in the basis

must be negative or the problem is not feasible. By selecting X large

Xlj
enough f, all or Xlj < 0 yields a bz/ = -1; hence a pivot element of -1 is

available and the integer tableau is preserved. However, on the basis of

the dual simplex transformations [Equations (3.6) - (3.8)], we note that a

small X will cause a larger improvement in the objective function that a

larger X since the change is a direct function of bio =

the new value of the objective function is given by

xoo + xofcbzo = xoo + (zfc - Cfc)
XIO

xio
< 0. That is.

where Pfc, the pivot column, must be the one such that

n _ XOj Zk-Ck
w - mm —- = ;—

Xlj <0~^

{Azk-Ck =0 indicates degeneracy in the dual problem).

45

Since A, must be chosen such that hik =
Xlk

T

Equation (3.6)

= -1, we have from

Zk-Ck _Zk — Ck ̂ Zk — Ck Zj - Cj
XJk -1 xij hij

Zk-Ck ̂ Zj — CJ
or <

-1 -1

Let mj be the largest integer for which

Zk-Ck ̂ Zj - Cj

-1 -my

Then

-hij = - < my for xij < 0 (5.6)

Hence, for each j, the smallest X that satisfies (5.6) and allows Pjc to

be the pivot column, i.e., yields a pivot element of bjfc = -1, is given by Xj =

. As the minirnum permissible X must be at least as great as the

largest Xj, we have A,mm = max Xj. X is not restricted to be an integer, and
xij < 0

for Pfc we have m^ = 1,5^,^ = -xik, Xmin > Xk; hence b»c = Xlk

tmm

= -1 [6].

46

Example 5.1: min z = 2xi + X2

St Xi + X2 + X3 =4

- Xi - X2 + X4 = -4

-2xi + X2 + xs = -3

Xj ̂ 0 and xi, X2 integer

The set of equations x'l = xi, x'2 = X2 and the conditions c'j = cj have

been added in Tableau 5-2, and row 6 has been added for the cutting

constraint and column Pe for the new variable.

The second equation of the system is used to generate the cutting

constraint. We have

Zk-Ck . Zj - Cj Z2 - C2 ,
= mm = = 1

-1 X2,<0 -1 -1

Hence column P2 is to be the pivot column. To determine the m^, we

have

l<— 1< —
mi m2

Tableau 5-2. Initial tableau for Example 5.1
2 1 0 0 0 2 1

i Basis c Po Pi P2 Ps P4 Ps Pi P*2 Pe

0 - 0 -2 -1 0 0 0 0 0 0

1 Ps 0 4 1 1 1 0 0 0 0 0

2 P4 0 -4 -1 -1 0 1 0 0 0 0

3 Ps 0 -3 -2 1 0 0 1 0 0 0

4 P'l 2 0 -1 0 0 0 0 1 0 0

5 F2 1 0 0 -1 0 0 0 0 1 0

6 Pe 0 -2 -1 -1 0 0 0 0 0 1

47

or mi = 2, m2 = 1. The Xj = —^are then
m/

;ii = - X2=- = l
2 1

and since X = max Xj= 1, we choose X = 2.

The new constraint is then given by

-4 -1
XI+

-1

L 2 J L 2 J L 2 J
X2 + X6

-2 = -XI - X2 + X6

This equation is shown added to Tableau 5-2. By applying the

elimination transformation with the pivot element as shown, Tableau 5-3

is obtained. Since all elements of column P2 have been reduced to zeros,

it can be eliminated from the tableau and column Pe substituted in its

place. In fact, since vectors P3, P4, Ps, P i, P2 will not change under the

all-integer algorithm transformation, the tableau can be made concise as

in Tableau 5-4. Note that x'2 = X2 is still in the basis and now has a value

Tableau 5-3. Second step of Eatample 5.1.
2 1 0 0 0 2 1

i Basis C Po Pi P2 P3 P4 Ps Pi p'2 Pe

0 —
- 2 -1 0 0 0 0 0 0 -1

1 P3 0 2 0 0 1 0 0 0 0 1

2 P4 0 -2 0 0 0 1 0 0 0 -1

3 Ps 0 -5 -3 0 0 0 1 0 0 1

4 Pi 2 0 -1 0 0 0 0 1 0 0

5 P'2 1 2 1 0 0 0 0 0 1 -1

6

48

Tableau 5-4. Simplified tableau form.
i Basis Po Pi Pe Py

0 — 2 -1 -1

1 Ps 2 0 1

2 P4 -2 0 -1

3 Ps -5 -3 1

4 P'l 0 -1 0

5 F2 2 1 -1

6 Py -2 -1 0 1

Tableau 5-5. Third step.
i Basis Po Py Ps Ps

0 — 4 -1 -1

1 Ps 2 0 1

2 P4 -2 0 -1

3 Ps 1 -3 1

4 Pi 2 -1 0

5 P2 0 1 -1

6 Ps -2 0 -1 1

of 2. We still have more than one row with a negative constant term, and

we choose row 3. The pivot colunm is Pi and A, = 3. The new constraint

is -2 = -XI + X7. The new solution is shown in Tableau 5-5.

Selecting row 2 as the row to generate the cutting constraint, we

have Pe as the pivot column and X= 1, so again we choose X = 2. The

new constraint is -2 = -xe + xs. The new solution is given by Tableau 5-

6. With row 3 as the generating row, we have P? as the pivot column and

A = 3. The new constraint is -1 = -x? + X9. This yields Tableau 5-7.

There are no negative constant terms, therefore we have reached the

optimal all-integer solution.

49

Tableau 5-6. Fourth sitep.
I Basis Po Pr Ps Pg

0 ___ 6 -1 -1

1 Ps 0 0 1

2 P4 0 0 -1

3 Ps -1 -3 1

4 Pi 2 -1 0

5 P'2 2 1 -1

6 Ps -1 -1 0 1

Tableau 5-7. Optimal solution
i Basis Po Pg Ps

0 — 7 -1 -1

1 Ps 0 0 1

2 P4 0 0 -1

3 Ps 2 -3 1

4 Pi 3 -1 0

5 F2 1 1 -1

The above procedure can be summarized by the following steps:

1. Assume that a dual feasible solution with an all-integer tableau

can be determined.

2. From the rows containing a negative constant term, select a row

to be used to generate the cutting constraint (the row). If no

such rows exist, an optimal all-integer solution has been found.

3. The pivot column corresponds to the Pfc whose

-(zfc-Cfc) = min -(zj-cj) forj>l.
x>j<0 \ / •<

If no such TLij < 0 exists, then the problem is not feasible.

4. For each j having a xij < 0, determine the largest integer

50

-{Zk - Ck) < —
mj

5. Define Xj = ~j fo'" 0-

6. Determine Xmin = max Xj. If max Xj= 1, set Xmin > 1.

7. Develop the corresponding cutting constraint (5.5) and add it to

Tableau 5-1, with the new equation being the [n + Ij^t row and

the new basic variable Xn+s corresponding to column Pn+s (where

s is the index of the iteration).

8. Apply the simplex transformations to the new tableau using buz

= -1 as the pivot element. This causes Xn+s to be a nonbasic

variable, and because the pivot element was -1, the tableau

remains in integers. The new row is then dropped from further

consideration and the process repeated [6].

5.3 Gomoiy Mixed-Integer Method

In the previous method we assumed that all elements of the

simplex tableau are integers. Gomory developed another other cutting

plane methods in which the elements of the simplex tableau are not

required to be integers. The method to be discussed is applicable to

either pure or mixed integer progr^s.

Again we consider the general IP problem

51

min z = cx

St Ax = b

X > 0

Xj integer, j e I

where the set I consists of the subscripts corresponding to those

variables required to be integer.

Suppose that we have solved the LP relaxation, the basic

variable is not an integer, but is required to be an integer. Then we can

write

xi = SLio - (5.7)
jeR

where R = {j\xjis nonbasic}. In the current solution, all xj, j e R, are

zero, and so a® is not an integer. We will express a® as the sum of its

integer part and its fractional part. Let [ajoJ be the greatest integer less

than or equal to a® and let fo be the remaining fractional part. Thus

a® = l_azoJ + fo (5.8)

[a/oj > 0 (5.9)

0<fo<l (5.10)

Substituting (5.8) into (5.7) and rearranging gives

fo - ̂ a.ijxj =xi- [awj = integer (5.11)
jeR

52

R is now divided into the nonnegative entries of the simplex

tableau (r"^) and the negative entries of the simplex tableau (R") as

follows:

R"- = {j| aij>0,jG R}

R" = {-/I < 0, je R}

Then (5.11) becomes

fo- - 2]ajxi = integer (5.12)
JeR* jeR"

Consider the two cases:

1. ^a/jXj > 0
jeR

2. ^ajiX; < 0
jeR

Case 1: ̂ aijKj > 0
76R

By (5.12), '^aijKj = fo + P, where P = 0, 1, ... (i.e., some nonnegative
J€N

integer). Hence any feasible solution to the IP problem must satisfy

^aijKj > fo
JeR

Moreover, since ^a/jx/ < 0, for any feasible solution, then any feasible
7eR"

solution to the IP problem also must satisfy

2;a6X,>fo (5.13)
jeR"

53

Case 2: ̂ QajKj < 0
jeR

From (5.11) it must be true that = fo - N, where N = 1, 2, ...
jeR

(i.e., some strictly positive integer). Then any feasible solution to the

original problem must satisfy

^a/jXj < fo - 1
jeR

since fo - 1 is the largest possible value for ̂ a/jXj. This can be rewritten
jeR

as

2]a/jXj + 2]a/)!Xj <fo- 1 (5.14)
jeR* jeR-

r

Now multiply (5.14) by the strictly negative number —^, and
fo -1

obtain

f 0
Since -—- is a strictly negative number and snj < 0, for all j, then

10 — 1

f 0 fapplying the negative sign from each ajj to —— makes it —^. This
fo-1 1-fo

makes each suj > 0 and is the reason for the notation |aij| in (5.15).

Finally, combine the two inequalities (5.13) and (5.15) obtained for

Cases 1 and 2, respectively, as follows:

54

^aijKj + > fo (5.16)

Inequality (5.16) must be satisfied by any feasible solution to the

original problem, regardless of whether Case 1 or Case 2 holds. This is

true since the left-hand side is always positive and one or both of the two

terms on the left-hand side are greater than or equal to fo. Also,

inequality (5.16) is not satisfied by the current optimal solution to the LP

relaxation since all xj, j e r"^ or j e r~ are currently zero, and fo > 0 by

definition. Thus (5.16) can be used as the cutting plane constraint.

However, in deriving (5.16) we did not take into account that some

of the nonbasic variables may also be required to be integers. If we

include this additional information the cutting plane may be even better

than (5.16), i.e., the constraint will further restrict the feasible values of

the nonbasic variables. The smaller the coefficient of a variable xj in a
J

particular constraint, the more the range for that variable is restricted,

and the better the constraint is, with respect to that variable.

We now develop a cutting plane constraint in which the coefficient

of each variable is as small as possible. First define

Ri = R n 1 = { Xj is nonbasic and required to be an integer}

R2 = R\Ri = {j\ Xj is nonbasic and not required to be an integer}

= R+ n Ra = {j\ aij> 0 and j e R2}

R5 = R" n R2 = {j\ aij < 0 and j e Ra}

55

As we did for a©, we let saj = [a&J + fj, where [a&J is an integer and

0 < 1. Then, Equation (5.11) becomes

fo- ^fjKj - 2][a/,Jxj - ^am = integer
jeRi jeRj jeRj

Since ̂ [a^Jx/ must be an integer in any feasible solution to the original
jeRi

problem,

fo - ^fjKj - ^aijKj = integer (5.17)
jeRj jeRj

Applying the same arguments to (5.17) which were used to obtain

(5.16), we will obtain the following constraint:

^ Jo ^J^fjKj+ J^aijXj + 2 :r-irHx7 >fo (5.18)
1-fo.jeRi jeRj jeRj

We can obtain another cutting constraint by letting ["aij] be the

smallest integer greater then ay, so that ay - f) + 1 = [a&]. Then Equation

(5.11) becomes

fo - 2 (fa&] + fj - l)xj - 21 a/jX; = integer
jeRi JeR2

or

fo- = integer (5.19)
jeRi jeRz

56

since must be an integer in any feasible solution to the original
JsRi

problem. Note that 2(i/-l)xj < 0. Apply the same arguments to (5.18)
JsRi

that were applied to (5.17) to obtain the constraint

fo
Z ̂aijKj+ 2 T-rHxi>fo (5.20)
jeRiV 7gR„ ,GRtVl"l0yJ6R2 JsR2

fo

Comparing the coefficients of (5.18) and (5.20) we see that, forj e

Ri, we can choose either fj or ^ as the coefficient of xj, j g Ri,

Since the goal is to make the coefficient of each xj as small as possible,

we can choose the smallest of these two quantities.

Note that if > fj then fo - fofj < f/ - f)fo => fo < f)
(1-fo)

Hence fj is the smaller of the two if ̂- > fo. Therefore, we can obtain an

even better cutting plane constraint by combining the above, and

choosing the following constraint [3]:

(5.21)
jeR

where

57

dij =

a/j.

U-foJ

j SRI

a&L jsRa

fj.

fo(l-f,)
(1-fo) '

j e Ri if f- s fo

j e Rj if fj > fo

(5.22)

Suppose all the nonbasic variables in a current optimal simplex

tableau are integer constrained. Then the sets and R^ would be

empty, and the mixed-integer Gomoiy cut for that tableau reduces to

(5.23)M

JeRl jeR^ ^"j

where Rj = {j\j e Ri and fj < fo} and rJ" = {j\j e Ri and f) > fo}. Since the

Xj, j= 1, 2, ..., are integer constrained we could use the classical integer

cut

x^ = -fo + 2^fjXj > 0
j=i

(5.24)

in place of (5.23). However, inequality (5.23) is usually stronger than

(5.24).

Theorem 5.1. Suppose that the xj, j = 1, 2, ..., n are integer

variables and rJ in (5.23) is not empty. Then > 0 is a stronger

inequality than ^ 0.

58

Proof: Since the union of the sets Rj and rJ" contains all the

indices j= 1, 2, n, we have

= -fo + > 0
jeRl jeR*

Also

x"=-fo+
jeRl jsR*

Now, ifjsRj", fj> fo; or

fof;^— < fo < £,• since < 1.
^1-foy 1-fo

Thus, is a stronger inequality than because it has smaller

coefficients of xj when j e r^ . That is, for jeRt, the hyperplane x" = 0

intersects the coordinate axis xj at a distance farther from the origin than

the corresponding intersection with the hyperplane x^ = 0. For j e Ri,

the coefficients are the same and hence the hyperplanes intersect each of

the Xj-axis at the same point (Salkin[15]). ♦

Example 5.2: min z = -5xi + 6x2 + 9x3

St 9xi + 10x2 + 6x3 + X4 =50

6x1 + 3x2 + 19x3 + X5 = 35

Xi, X2, X3 > 0

xi, X2 integer

59

To begin, we set up initial Tableau 5-8. We then solve the LP

relaxation and obtain the optimal LP solution, as shown in Tableau 5-9.

Since xi must be an integer, we choose row 1 to generate the cut and

o - 50 .^5 _ 5
aio —— = 5 + — => fo= —

9 9 9

thus

5

fo _ 9 _ 5
1-fo 1-5 4

9

Using (5.22) we obtain the cutting plane constraint

Tableau 5-8. In:■tial tableau for Example 5.2.
-5 6 9 0 0

i Basis c Po Pi P2 Ps P4 Ps
0 —

- 0 5 -6 -9 0 0
1 P4 0 50 9 10 6 1 0
2 Ps 0 35 6 3 19 0 1

Tableau 5-9. Optimal LP solution
i Basis c Po Pi P2 Ps P4 Ps
0 —

- _25q/ 0 -104/ -37/ - 5/ 0
79 /9 /3 /9

1 Pi -5 so/ 1 10/ 2/ 1/ 0
/9 /9 /3 /9

2 Ps 0 5/ 0 _ll/ 15 2/ 1
/s /3 /3

60

1 2 1 5
— X2 + —X3H X4> —
9 3 9 9

or

X2 + 6X3 + X4 > 5

X4 is a slack variable, so we substitute and get

X2 + 6x3 + (50 - 9xi - 10x2 - 6x3) > 5

=> Xi + X2 < 5

=>Xi + X2+X6 = 5

We add this to the optimal LP tableau (and subtract row 1 from row 3 to

have a full basis) to obtain Tableau 5-10. Performing one dual simplex

iteration gives the optimal mixed-integer solution shown in Tableau 5-11.

Tableau 5-10. Constraint added to tableau.

i Basis c Po Pi Pa Pa P4 Ps Pe

0 —

- _250/
/9

0 -104/
/9

_37/
73

-5/
79

0 0

1 Pi -5 50/
79

1 10/
/9

2/
73

1/
79

0 0

2 Ps 0 5/
73

0 _ll/
/a

15 2/
73

1 0

3 Pe 0 - 5/
79

0 _ 1/
79

- 2/
73

_ 1/
79

0 1

Tableau 5-11. Optimal mixed-integer solution.
i Basis c Po Pi Pa Ps P4 Ps Pe

0 - -25 0 -11 -9 0 0 -5

1 Pi -5 5 1 1 0 0 0 1

2 Ps 0 5 0 -1 19 0 1 -6

3 P4 0 5 0 1 6 1 0 -9

61

CHAPTER 6

BRANCH-AND-BOUND

6.1 Introduction

The idea of using a branch-and-bound algorithm for integer

programming using LP relaxations was proposed by Land and Doig

during the 1960's and was later modified by Dakin. However, the term

branch-and-bound was coined by Little et al in their study of such an

algorithm to solve the traveling salesman problem (Linderoth and

Savelsbergh [10]).

Branch-and-bound has two appealing qualities. First, it can be

applied to the mixed and pure IPs in essentially the same way, so a

single algorithm works for both. Second, the branch-and-bound typically

yields a succession of feasible integer solutions (as opposed to traditional

cutting plane approaches in which feasibility is not obtained until the

problem is solved), so that if the computations are terminated due to

time or memory restrictions, the current best solution becomes a

candidate for the optimum [Ij.

The effectiveness of the branch-and-bound procedure for solving

mixed IPs using LP relaxation is well documented. After the introduction

of this procedure in the 1960's, researchers in the 1970's examined

62

strategies for searching the branch-and-bound tree in an efficient

manner. With a few exceptions, research in the past decades has

strayed from developing and examining effective search strategies and

instead focused on improving the bound obtained by the LP relaxation

[10]. In fact, the main use of the LP relaxation in solving a mixed IP is

that the optimal value of the LP relaxation provides a lower bound (for

the minimization problem) on the optimal value of the corresponding

mixed IP (Johnson et al [9]).

For pure and mixed IPs many of the most effective branch-and-

bound procedures are based on the use of the simplex method. Simplex

based methods begin by solving the LP relaxation of the problem. If an

integer solution is not obtained, one of the integer variables that is

fractional in the LP solution, denoted by Xk, where k is the variable index,

is selected and two descendants of the original problem are created. This

operation is called bramMng. Thus the original problem has been

replaced by two IPs that now must be solved [Ij.

More formally, let z* denote the objective function value of the best

integer solution found thus far (the incumbent) and zlp the objective

function value of the corresponding LP relaxation. Then, whenever a

current IP minimization problem is solved as an LP, one of the following

occurs:

63

1.) The LP has no feasible solution (in which case the current IP

also has no feasible solution).

2.) The LP has an optimal solution zlp > z* (in which case the

current IP optimum zip > zlp > z* and therefore cannot provide

an improvement over the incumbent).

The optimal solution to the LP is integer and feasible, and

3delds Zlp < z* (in which case the solution is optimal for the

current IP and provides an improved incumbent for the original

IP. Therefore, z* is reset to zlp).

None of the above occurs; i.e., the optimal LP solution exists,

satisfies zlp < z*, but is not integer and hence not feasible to the

3.)

4.)

current IP.

In each of the first three cases, the current IP (the current node) is

said to he fathomed or implicitly enumerated. A node can be fathomed by

infeasibility (case 1), bound (case 2), or optimality (case 3). A problem

fathomed as a result of (3) 5delds useful information because it allows the

incumbent to be updated. If the problem is not fathomed and hence

winds up in (4), further exploration or branching is required. A node

that is not fathomed and whose corresponding constraint set has not

been divided is said to be live or active. If there are no active nodes

remaining the enumeration is complete [1].

64

A tree of solutions, as shown in Figure 6-1, may describe the set of

all solutions to a problem solved in this way. This figure shows the case

of a 0-1 problem.

In the figure, the numbered circles are called nodes or

subproblems, and the lines connecting the nodes are called branches or

edges. Node 0, the root node, represents the set of all solutions. A

sequence of nodes and branches from node 0 to any other node k is

called a path to node k and will be denoted by P^. Along each branch one

constraint is imposed on the variables, so that node k represents the set

of all solutions which satisfy the original constraints plus the constraints

imposed by each of the branches in the path from node 0 to node k. For

example, node 4 of Figure 6-1 represents the set of all solutions for

which xi = 0, X2 = 1, in addition to the original constraints. A node

further down a given path represents a subset of solutions of any node

above it on the same path [3].

Figure 6-1. Tree of solutions for 0-1 programming problem.

65

6.2 Method Using LP Relaxation

We will denote the feasible region for the IP by S = {x: Ax = b, x > 0

and integer}. The feasible region for the corresponding LP relaxation will

be denoted by T = {x: Ax = b, x > 0}, where S c T. For a path Pk in the

tree connecting node 0 to node k, let be the intersection of S with the

set of points satisfying the constraints given by the edges of Pk. Note that

Sk c S. '

Suppose that the enumeration is at node i in the tree. The

problem at node i is

zip = min {cx: x g S^} (6.1)

A lower bound z^< zip may be calculated by considering the relaxation

(LP) of (6.1):

= zLp = min {cx: x g T^ □ 8^} (6.2)

Note that a lower bound at node is valid for any of its successors; i.e., if

node k is a successor of node i, then T □ 3 S^.

Suppose that the LP (6.2) is solved at node i and the solution x' is

not all-integer. In particular, some basic variable Xk = [xkj + fk, 0 < fk < 1.

Then a partition of S* is
f

{s' o {x:xk < [xkJ},S' n {x:xk > fxk]}| (6.3)

66

where [xkj denotes the largest integer less than or equal to Xk, and fxk]

denotes the smallest integer greater than or equal to Xk.

Assume that an upper bound uy is known for each variable xj, j= 1,

n • • ̂ Tt, L/€t

S' = {x: Ax = b,0 < a) < xj < ySj. < Uj,Xj integer, j = (6.4)

at node i, where a} and yffj. are integers determined from (6.3), and a°= 0

and Uj.

The LPs resulting from the partition (6.3) are manageable since the

added constraints are lower and upper bounds on the individual

variables. These problems are solved using either relaxation or the dual

simplex algorithm (Wolsey [19]). We will use relaxation.

The algorithm is as follows:

Step 1 (Initialization): Begin at node i = 0, where 8° is given in (6.4),

-00 and z° = 00. Go to Step 2.

Step 2 (Branching): If no active nodes exist, go to Step 7; otherwise,

select an active node i. If the LP (6.2) has been solved, go to Step 3;

otherwise, go to Step 4.

Step 3 (Partitioning): Choose a variable Xk with fk > 0 and partition S^ as

in (6.3). Go to Step 2.

67

Step 4 (Solving LP): Solve the LP relaxation (6.2). If the LP is not

feasible, fathom node i and go to Step 2. If the LP has an optimal

solution let ̂ and go to Step 5. (Note that can be rounded

up because every integer solution jdelds an integer objective function

value, assuming that the cost coefficients are integers, as is done here.)

Step 5 (Fathoming by optimalily): If x' is not all-integer, go to Step 6;

otherwise, let z' = z^ and fathom node i. Let z° = min|z°, z^| and go to

Step 6.

Step 6 (Fathoming by bounds): Fathom any node i such that ̂ > z° and

go to Step 2.

Step 7 (Termination): Terminate. If Z° = 00, there is no feasible solution.

If z° < 00, the feasible solution that yielded z° is optimal. [1]

The algorithm generates a tree of solutions similar to that in Figure

6-1. Each non-terminal node has two branches, corresponding to the

two constraints Xk< [xkjand Xk> fxk]. However, unlike Figure 6-1, the

same variable Xk may be constrained by more than one pair of branches.
I

Example 6.1: The use of the algorithm is illustrated in the

example below:

68

min z = xi + 8x2

St 2xi + 3x2 > 6

-3xi + X2 < 1

Xi + X2 < 7

X1 - 3x2 < 1

Xj > 0 and xi, X2 integer

To begin, the only active node is node 0 so we go to Step 4 and

solve the corresponding LP. The optimal LP solution is zlp = , so we

can set ̂ = 6. The decision vector jtP = (J/^, which is not all-

integer. Following the logic, we go to Step 3 and choose xi for

partitioning. Two new nodes are created as a result. The first, node 1, is

associated with xi < 2 and the second, node 2, with xi > 3.

Solving the augmented LP at node 2 gives ZlP~ ̂ ^2 and x2 = (3,

) which does not provide an improvement in the objective function

lower bound because z! = |"zlp] = 9. We now choose X2 for partitioning

and create node 3 and node 4 defined by the constraints X2 ̂ 0 and X2 >

1, respectively. Solving the LP at node 4 gives an all-integer solution =

(3, 1) with Zlp = 11. We can set z° = 11 at Step 5 and fathom the node.

Nodes 1 and 3 remain active. We branch to node 3, the most

recently created of the two. The LP is infeasible, so we fathom node 3.

69

Now only node 1 remains active. We go to Step 4. Solving the LP yields

^LP = and decision vector = (2, ̂). We branch on X2, the only

fractional variable, and create nodes 5 and 6.

Choosing node 5 results in an infeasible solution, and so, node 5 is

fathomed. Following the logic takes us to Step 4. Solving the LP

relaxation of node 6, we obtain zip = and x^ = (^, l). Branching on

xi creates new nodes 7 and 8 corresponding to xi < 1 and xi > 2,

respectively.

We solve node 7 jfirst. Solving the LP gives zjp = with x^ = (1,

^) which is fractional. However, ̂ = |"zlp] = 12, so at Step 6 we see

that ̂ > z° indicating that node 7 is fathomed. Branching on the >

constraint and solving the LP gives an all-integer solution a? = (2,1) with

Zlp = z® = 10. At Step 5, the upper bound is updated to give

= min{l 1, 10} = 10 and node 8 is fathomed. No active nodes remain,

so the optimal solution is z* = 10 and x* = (2, 1).

The full search tree is shown in Figure 6-2. If we had branched off

of variable X2 instead of xi at node 0, we would have obtained the optimal

solution much more quickly, as shown in Figure 6-3.

70

Node 0

z = 53/9

X1 = 7/3

X2 = 4/9

Node 1

z = 22/3

X1 = 2

X2 = 2/3

Node 5

No

feasible

solution

Node?

z = 35/3

X1 = 1

X2 = 4/3

Infeasible

Node 6

z = 19/2

X1 = 3/2

X2 = 1

Node 8

z = 10

XI = 2

X2 = 1

Candidate

Solution

h.

Node 3

No

feasibie

solution

Node 2

z = 25/3

X1 = 3

X2 = 2/3

Node 4

z = 11

X1 = 3

X2 = 1
Candidate

Solution

Figure 6-2. Tree of solutions for initial branch on xi.

71

4^.

Node1

No

feasible

solution

NodeO

z = 53r9

X1 = 7/3

x2 = 4/9

Node 2

z = 1S^2

X1 = 3^2

X2= 1

\ / v>.
i/

Nodes Node 4

No z = 10

feasible X1 = 2

solution X2= 1

Figure 6-3. Tree of solutions for initial branch on X2.

6.3 Branching

As can be seen from Figures 6-2 and 6-3, variable choice can be

critical in keeping the tree size small. A simple rule is to branch on the

variable whose fractional value is closest to ̂ , i.e., with the maximum

integer infeasibility. We can also assign priorities to the integer variables

such that we branch on the most important variable first. The

importance of an integer variable may be based on one or more of the

following criteria:

v It represents an important decision in the model

v Its cost or profit coefficient in the objective function is very large

compared to the others

72

v Its value is critical to the model based on the experience of the

user (Ravindran[14])

Other rules, used by many commercial solvers, try to choose a

variable that causes the LP objective function to increase quickly (for a

minimization problem) in order to make the LP values at the child nodes

as large as possible. This is done in an attempt to prune (fathom) one or

both of the child nodes using the fact that a node can be pruned if its LP

value is greater than or equal to the best known IP solution. Early

branching on variables that cause big changes can be critical in keeping

the tree small.

However, it would be too expensive to compute the actual objective

function changes for all candidate variables every time that branching

was required. Instead, estimates of the rate of objective function change

on both the down and up branches, called pseudocosts, are used. The

pseudocosts can be obtained frona dual information at the node, or be

based on actual changes from previous branchings involving the

variable.

Instead of using an estimate of the change, we can also perform

explicitly one or more dual simplex iterations to obtain a lower bound on

the change, and use the lower bound to choose among variables. A

recent variation of this idea has become known as strong branching. In

strong branching, a fairly large number of dual simplex iterations are

73

carried out, but only for a small number of candidate branching

variables. Strong branching has been shown to be very effective for large

set partitioning problems and large traveling salesman problems [9].

6.4 Node Selection

Another question that must be answered is, given a list L of active

subproblems or equivalently, a partial tree of unfathomed or live nodes,

which node should be examined next? Node choice rules are partially

motivated by the desire to find good feasible solutions early in the

search. This is important for two reasons: if time runs out a good

answer may be all one gets, and a good upper bound inhibits the growth

of the tree [9]. The available options can be divided into two categories:

(1) a priori rules that determine in advance the order in which the tree

will be developed; and (2) adaptive rules that select a node using

information such as bounds or function values associated with the live

nodes.

The most commonly used a priori type rule is depth-first search

plus backtracking, which is also known as last-in, first-out (LIFO). In this

approach, if the current node is not fathomed, the next node considered

is one of its two children. Backtracking means that when a node is

fathomed we go back on the path from this node toward the root until we

74

come to the first unfathomed node which has a child node that is still

active.

A second (basically) a priori rule is known as breadth-first search

which is the opposite of depth-first search. The level of a node in an

enumeration tree is the number of edges in the unique path between it

and the root. In breadth-first search, all nodes at a given level are

considered before any nodes at the next level. If tight lower and upper

bounds are available early on, this approach can be veiy effective

because it may significantly reduce the size of the overall tree. The

number of new nodes potentially doubles with each successive level.

This method of searching is also known as best-first or best-bound search

[!]•

Both methods have advantages and disadvantages. Best-first

search tends to minimize the number of nodes evaluated and at any

point during the search attempts to improve the global lower bound on

the problem. Best-first search concentrates on proving that no solution

better than the current one exists. Searching in this way may be

restricted by memory requirements if good upper bounds are not found

early, leading to relatively little pruning of the tree. In addition, since the

tree is explored in a breadth-first fashion, with one LP having little

relation to the next, computation times are higher.

75

Depth-first search overcomes the problems of breadth-first search.

Searching in this way tends to minimize memoiy requirements, and

changes in the LP from one node to the next are minimal - usually

changing only one variable's bound. Another advantage is in finding

feasible solutions since feasible solutions tend to be found deep in the

search tree. Depth-first search was the method proposed by Dakin in

1965 and Little et al in 1963, primarily due to the small memoiy

capabilities of computers at that time. Although this method of

searching has its strengths, it can lead to lead search trees. The large

trees are due to the fact that we may examine many nodes that would

have been fathomed had a better upper bound z° been known [10].

6.5 Preprocessing

Preprocessing applies simple logic to reformulate the problem and

tighten the LP relaxation. In the process, preprocessing may also reduce

the size of the problem by fixing variables and eliminating constraints.

Sometimes preprocessing may detect infeasibility.

The simplest logical testing is on bounds. Let U be any lower

bound on the value of the i^i^ row A'x subject only to 1 < x < u and let Ui be

any upper bound on the value of the i^ row A^x subject only to 1 < x < u.

A constraint A^x < bi is redundant if Ui < bi and is infeasible if Li > bi. A

bound on a variable may be tightened by recognizing that a constraint

76

becomes infeasible if the variable is set at that bound. In the case of 0-1

variables, the initial lower and upper bounds on the variable are 0 and 1

respectively. If these bounds are improved, then the variable can be

fixed. For example, if the upper bound of a 0-1 variable is less than 1,

then it can be fixed to 0. Of course, if the lower bound is positive and the

upper bound is less than 1, then the problem is integer infeasible. In

summary, considering how one row together with upper and lower

bounds may lead to dropping the row if it is redundant, declaring the

problem infeasible if that row is infeasible, or to tighten bounds on the

variables.

These logical testing methods can become powerful when

combined with probing. Probing means setting temporarily a 0-1 variable

to 0 or 1 and then redoing the logical testing. If the logical testing shows

that the problem has become infeasible, then the variable on which we

probe can be fixed to its other bound. For example, 6xi - 4x2 < 5

becomes infeasible when X2 is set to 0. We conclude that X2 must be 1 in

every feasible solution. If the logical testing results in another 0-1

variable being fixed, then a logical implication has been found. Consider

6xi + 5x2 + 2x3 < 9. If xi is set to 1, then subsequent bound reduction

will fix X2 to 0. Thus, we have found the logical implication xi = 1 implies

X2 = 0, which can be represented by the inequality xi + X2 < 1. Adding

77

this inequalily tightens the LP relaxation since (1, 0) is feasible for

the original inequality, but infeasible for the implication inequalily. If the

logical testing shows that a constraint has become redundant, then it

can be tightened by what is called coejjident reduction or coefficient

improvement. For example, 2xi + X2 + xs > 1 becomes redundant when xi

is set to 1. Whenever a variable being set to 1 leads to a strictly

redundant > constraint, then the coefficient of the variable can be

reduced by the amount that the constraint becomes redundant.

Therefore, 2xi + X2 + xs > 1 can be tightened to xi + X2 + xs > 1. Note that

(^, 0, 0) is no longer feasible to the LP relaxation of the tightened

constraint. Less obvious coefficient improvements can also be found

during probing. For example, if there are inequalities

xi < X2, xi < X3, and X2 + xs > 1 (6.4)

then setting xi to 1 leads to a strictly redundant inequalily X2 + xs > 1,

and the coefficient of xi, namely 0, can be lowered to -1. Clearly, (6.4)

and

xi < X2, xi < X3, and -xi + X2 + xs > 1

have the same set of 0-1 solutions. However, the fractional solution

[y^, ̂ is allowed by the first set of inequalities, but not by the

strengthened second set. One important aspect of probing and

78

coefficient improvement is that it applies to the mixed 0-1 case and not

just to pure 0-1 problems.

To give some idea of the relative computational difficulty of the

various preprocessing techniques, any of the techniques applied to only

one row is not likely to take much time and will almost always be worth

doing. This remark applies to fixing, identifying redundant rows, bound

reduction, coefficient improvement, and finding implication inequalities.

Full probing on the matrix is the most time consuming part of

preprocessing. Probing may be restricted to probing on variables that

are fractional in the current LP solution. Despite efficient

implementations probing remains a possibly effective but sometimes too

time consuming preprocessing technique that requires care in practice.

In summary, preprocessing may identify infeasibilily, may identify

redundant constraints, may improve bounds, and may fix variables.

Coefficient improvement leads to simply replacing an inequality by a

stronger one. Thus, it can be done in a preprocessing phase independent

of solving the linear program [9].

79

CHAPTER?

ADDITIVE ALGORITHM

7.1 Introduction

Before discussing the additive algorithm, we show how any pure IP

may be expressed as a 0-1 IP: Simply express each variable in the

original IP as the sum of powers of 2. For example, suppose that the

variable xt is required to be an integer. Let n be the smallest integer such

that we can be sure that Xi < Then Xi may be (uniquely) expressed

as the sum of 2°, 2^ ..., 2"-i, 2", and

Xi = Un2"+ Un-i2"-l + ••• + U222 + 2Ul + Uo (7.1)

where Ui = 0 or 1, z = 0, 1, ..., n.

To convert the original IP to a 0-1 IP, replace each occurrence of Xi

by the right-hand side of (7.1). For example, suppose we know that Xi <

50. Then Xi < 2^+1 = 64, and (7.1) 3rields

Xi = 32u5 + 16u4 + 8u3 + 4u2 + 2ui + uo (7.2)

where Ui = 0 or 1, i = 1, ..., 5. Then replace each occurrence of Xi by the

right-hand side of (7.2).

How can we find the values of the u's corresponding to a given

value of Xi? Suppose Xi = 43. Then us will be the largest multiple of 2^ =

32 that is contained in 43. This 3delds us = 1; then the rest of the right

80

side of (7.2) must equal 43 - 32 = 11. Then U4 will be the largest

multiple of 24 = 16 contained in 11. This jdelds U4 = 0. Then us will be

the largest multiple of 2^ = 8 contained in 11. This yields us = 1.

Continuing in this way, we obtain U2 = 0, Ui = 1, and uo = 1. Thus 43 =

25 + 23 + 21 + 20.

Since 0-1 IPs are generally easier to solve than other pure IPs, one

may ask why we don't transform eveiy pure IP into a 0-1 IP. The answer

is simply that the transformation from a pure IP into a 0-1 IP greatly

increases the number of variables. However, problems such as lockbox

and knapsack problems naturally yield 0-1 problems. Thus, it is

worthwhile to leam how to solve 0-1 IPs [18].

The (mixed or pure) 0-1 linear problem has an important property

characterized by the following theorem from Taha [17]:

Theorem 7.1. In a linear 0-1 problem, mixed or pure, assume that

the integer constraint is replaced by the continuous range 0 <Xj< 1; then

(i) the resulting continuous solution space contains no feasible

points (i.e. no points satisfying the integer conditions) in its interior, and

(ii) the optimum feasible solution of the integer problem occurs at

an extreme point of the (continuous) convex space.

Proof: Part (i) follows from the fact that a feasible point must satisfy

the restriction xj = 0 or Xj= 1. Since these are boundary planes of the

81

continuous solution space, it is impossible, by definition, that any such

point can be an interior point.

Part (ii) is obvious for the pure 0-1 problem. In the mixed case,

suppose Xj = x/, where x/ = 0 or 1, j e I (I is the set of subscripts of those

variables required to be integer valued), are the optimal feasible integer

values. By fixing these values, the resulting 0-1 problem becomes a

regular LP in the remaining continuous variables. Thus, by LP theory,

the optimum solution to the original 0-1 problem must occur at an

extreme point of the (continuous) convex solution space, specifically

because xj = x/ are boundary planes of the convex set. ¤

0-1 programming problems could be solved by using either the

cutting plane method or the branch and bound method. The desire for

greater efficiency and the simplicity of 0-1 problems led to the

development of another method. The fact that each variable in a 0-1

problem can take on only one of two values means that small 0-1

problems can sometimes be solved by inspection. Consider the problem

min z = 3xi + 5x2 + 4x3

St xi, X2, xa = 0 or 1

Clearly to minimize z we would make each variable as small as

possible yielding the solution xi = X2 = xa = 0.

Not all problems can be solved by inspection so easily. However, in

a large problem it is possible that solution values for several of the

82

variables can be found by simple inspection of the constraints. Once

values are known for some variables, these variables are eliminated and

the problem shrinks in size. Consider the problem

Example 7.1: min z = 5xi + 7x2 +10x3 + 3x4 + xs

St Xl - 3X2 + 5X3 + X4 - 4X5 > 2

2xi - 6x2 + 3x3 + 2x4 - 2x5 < 0

- X2 + 2X3 - X4 - X5 > 1

We want to identify those variables that cannot be 0 because of

one or more constraints, and raise them to 1. Hopefully, one or another

of the constraints enables us to identify one or more variables that must

be 1 rather than 0. We construct from each constraint a bound on eveiy

variable that is a part of that constraint. Then we identify for each

bound of the > type a minimum lower bound by giving the variables on

the right side of the inequality a value of 1 if the coefficient is negative

and 0 if the coefficient is positive. For each bound of the < type a

maximum upper bound is identified by assigning a value of 1 to variables

with positive coefficients and 0 otherwise.

Following this procedure we obtain the bounds shown below.

Constraint 1

(a) Xl > 2 + 3x2 - 5x3 - X4 + 4x5; min LB = -4

(b) X2 < + j^xi+ ̂ X3 + /3X4 - %^X5; maxUB = ̂

83

(c) X3 > ̂ + y^X2- y^X4+ y^s; mm LB = 0

(d) X4 > 2 - xi + 3x2 - 5x3 - X4 + 4x5; min LB = -5

(e) x5<-y + yxi - yx2 + ̂ xs + yx4; max UB = y

Thus we do not leam anything we did not already know from

Constraint 1.

Constraint 2

(a) xi < 3x2 - yx3-X4 + X5; max UB = 4

(b) X2 > yxi + yx3+y^- y^^ nun LB=- y

(c) xa < -^xi + 2x2 - y^ + y^s; max UB = y

(d) X4 < -xi + 3x2 - yx3 + xs; max UB = 4

(e) X5 > xi - 3x2 + yx3 + X4; min LB = -3

Thus we leam nothing of value from Constraint 2.

Constraint 3

(a) X2 < -1 + 2x3 - X4 - Xs; max UB = 1

(b) X3 > ̂ + yx2+ y^-^y xs; mm LB = ̂

(c) X4 < -1 - X2 + 2x3 - Xs; max UB = 1

(d) Xs < -1 - X2 + 2x3 - X4; max UB = 1

84

From (b), we leam that xs = 1. Now by eliminating xs and repeating the

process, we could find final solution values for other variables and

eventually solve the problem (McMillan [11]).

Clearly this becomes a tedious process. If we are to solve larger

problems with many variables and many constraints we will need a

superior search procedure. Balas' algorithm is such a procedure. Before

examining Balas' algorithm we will discuss how to modify the 0-1

problem so that all coefficients in the objective function are positive.

7.2 Negative Coefficients in the Objective Function

The previous example was the simplest case of all positive integer

coefficients in the objective function. We will assume that in all 0-1

problems negative coefficients will be replaced as illustrated in the

following example:
/

Example 7.2: min z = lOxi - 5x2 + xs

St xi + 2x2 - X3 > 2

2xi + X2 + Xs < 3

Xi = 0 or 1, X = 1, 2, 3

To eliminate the negative coefficient of X2 in the objective function,

we define a new variable:

y2 = 1 - X2 or X2 = 1 - y2

and the objective function becomes

85

lOxi - 5(1 -ya) + Sxs

= lOxi + 5y2 + 3x3 - 5

Hence, the new problem is

min z = lOxi + 5y2 + 8x3

St xi - 2y2 - X3 > 0

2x1 - y2 + X3 < 2

From the value of y2, we can find the solution value of X2.

7.3 Balas' Additive Algorithm

Egon Balas' procedure for solving 0-1 problems was first presented

in 1965. His algorithm, like branch and bound, enumerates all solutions

either explicitly or implicitly.

Given a 0-1 problem in two or three variables, we can quickly

enumerate the solutions (feasible and nonfeasible) as shown below:

2 variables 3 variables

(0, 0) (0, 0, 0) (0, 1, 1)

(0, 1) (0,0, 1) (1, 0, 1)

(1, 0) (0, 1, 0) (1, 1, 0)

(1,1) (1,0,0) (1,1,1)

When four or more variables are involved, the procedure to be used

in calculating the possible solutions becomes more complex. An orderly

86

procedure for enumerating the solutions, given any number of variables,

is suggested by the network for four variables in Figure 7-1.

Each node in the network of Figure 7-1 specifies a solutibn. The

numbers associated with a node represent the subscripts of variables

that have values of 1 in that solution. To construct the network one

draws, from each node, one line for each variable that does not have a

value of 1 at the origin node. Each line "adds," for the variable it
I

represents, a value of 1 at the node at which it terminates. Thus, from

the node numbered 2, representing the solution (0, 1, 0, 0), lines labeled

1,3, and 4 are drawn. The line labeled 1 terminates at a node in whose

solution xi = 1; etc.

The importance of implicit enumeration is apparent if one imagines

a four variable 0-1 problem in which X4 =1 is infeasible. Solving by

enumeration, we could now ignore all solutions in which X4 = 1; i.e., the

solutions associated with nodes eliminated from the network, as shown

in Figure 7-2.

Similarly, suppose we find that the solution X2 = 1, xa = 1, all other

variables = 0, is infeasible (but not necessarily optimal). We could now

ignore all solutions represented by nodes connected from below to node

2,3. All nodes connected from below node 2,3 represent solutions in

which additional variables other than X2 and xs have been given values of

1. Since all coefficients in the objective function are positive, these

87

1,2 1,3 1,4 2,3 2,4

jl,2,3 (jl,2,4 (jl,3,4r)2,3,4

3\ 12 /\

1,2,3,4

Figure 7-1. Network of solutions for a 4 variable 0-1 problem.

88

o1.2 1.3 1.4 2,3

I

(^1,2,3 (^1,2,4 (^1,3,4(^2,3,4

1,2,3,4

Figure 7-2. Network with solutions in which X4 = 1 are eliminated.

89

solutions are less attractive. We can say they have been enumerated

implicitly, and we can ignore them [11].

Before giving the procedure of the algorithm, we introduce some

new terms and notation. Given a path Pa: from node 0 to node k, the

partition at node k is determined by choosing a free variable xj and

introducing

o{x:xj = 0},S'' r\ {x:xj = 1}| (7.3)

The path Pk corresponds to an assignment of binaiy variables to a subset

of the variables. Such an assignment is called a partial solution. We

denote the index set of assigned variables by Wkc N and let

Sit = [j-j e Wfc and xj = 1}

Sfc = [fJ € Wfc and xj = 0]

S^ = {j:jiWk]

A completion of Wk is an assignment of binaiy variables to the free

variables specified by the index set Sk •

Bounds

The problem considered at node k is

min f(x) = "Zcsxj +
jesO J6S+

Xatjxj^bf- = ^ = •••> (7.4)
jeso

90

Xj=0 or 1, j GSk

Let = {x: xj = 0 or 1, j e s?}. Because cj > 0, the relaxed solution is

obtained by setting xj =0, j es°. Thus ̂ . Also, if s = (si, Sm)

> 0, then x^ is feasible to (7.4) and z'^ = z?p = Hq n
jes^

Fathoming

Node k can be fathomed if

a) ̂ = ?

b)

using the bounds derived above. Note that (a) occurs when x^ is feasible

to (7.4). A sufficient condition for (b) to hold can be easily evaluated.

Suppose that for some i

ti= ^min {0, ay}>sj
jeso

In this case, no completion of Wk can satisfy constraint t so ̂ = qo , and

node k is fathomed. For example, consider the constraint

XaiXj= -5x1 + 4x2 + 2x3 - 3x4 < -11 = Si
jeso

The computations give ti = -8 > Si = -11 so node k is fathomed.

91

Partitioning and Branching

We would like to identify the subset of free variables at node k of

which at least one must be equal to 1 in a feasible completion of Wk. Let

Q/c = {i: Si < 0}. If Qfc = 0, then node k is fathomed since is feasible. If

Qk ̂ 0, let

^k= {f. j ̂Sk and ay < 0 for some i e Q^}

At least one variable whose index is an element of Ra: must equal 1 in any

feasible completion of Wit. We can partition on some xj, j e Ric, and then

branch to the successor node corresponding to Xj= 1. The following rule

chooses such a j e Rjc in an attempt to move toward feasibility. Define

m

lk= ̂ max {0,-sx} = -^si
i=l feQic

to be the infeasibility of (7.4). By choosing xj, the infeasibility at the

successor node is

m

IfcC/) = ̂ max {Oj-si + ay}
i=l

and Xp is selected such that

^ MJ)

For example, if the constraints at node k are

-6x1 - 2x2 + 2x3 < -3

-3xi - 4X2 + xa < -2

92

7xi + 5x2 - 5x3 < 4

then Rk = {1,2}, Ifc(l) = 3, and 1^(2) = 2 so X2 is chosen as the partitioning

variable.

It is possible to represent Pjc concisely in vector form. In Figure 7-

3, Pg is represented by the vector (3, 1,4), where the order of the

components indicates the level in the tree. Indices appear in the P^

vector if they are in Wk. They appear underlined if they are in Sk • When

branching to Xp = 1 from node k, we simply change Pk to (Pa:, p). In

Figure 7-3, branching to X2 = 1 from node 9 yields (3, 1, 4, 2). In

backtracking, we underline the rightmost nonunderlined entry and erase

all entries to its right. In the figure, to backtrack from node 9 to node 7,

the vector is transformed from (3, 1, 4) to (3, 1). When all entries in Pk

are underlined and node k is fathomed, every element in Wk has been

evaluated at 0 and 1, so the enumeration is complete.

X3 = 0

XI = 1 xi = 0

X4 =

©
Figure 7-3. Example of a binary search tree.

93

Now we give the Balas additive algorithm which implements these

ideas.

Stepl (Initialization) At node 0, So = •••> "}» ̂ = -00 and = 00. Go to

Step 2.

Step 2 (Calculating bounds) At node k, let ̂ ^ <5. If Si > 0 for all i,
jes^

let = zfp = ̂ and let 2° = min |^, • Go to Step 3.

Step 3 (Fathoming) If U > Si, for any i, or if ̂ = z*", or if ̂ > z°, fathom

node k and go to Step 4. If node k is active, go to Step 5.

Step 4 (Backtracking) If no active node exists, go to Step 6. Otherwise,

branch to the newest active node and go to Step 2.

Step 5 (Partitioning and branching) Partition on Xp as in (7.3), where

Ifc(p) = min Ifc(j). Branch in the direction of Xp = 1. Go to Step 2.
JeRk

Step 6 (Termination) If z° = 00, there is no feasible solution. If z° < 00,

the feasible solution that jdelded z° is optimal [1].

To illustrate the algorithm, we will look again at Example 7.1.

Example 7.1; min z = 5xi + 7x2 +IOX3 + 3x4 + xs

St Xi - 3x2 + 5x3 + X4 - 4X5 > 2

2xi - 6x2 + 3x8 + 2x4 - 2x5 < 0

- X2 + 2X3 - X4 - X5 > 1

94

At Step 1, we have s8 = {1, 5}, So = = 0, ̂ , s

= (-2, 0, -1), lo = 3, and Ro = {1, 3, 4}. Because all variables are free, we

go to Step 5 and evaluate Io(l) = 4, lo(3) = 3, and Io(4) = 5. The minimum

is associated with p = 3, so we select xs for partitioning and branch in the

direction of xs = 1. The tree is shown if Figure 7-4.

At node 1, Pi = (3), ̂ = -10, s = (3, -3, 1), Ri = {2, 5}, Ii(2) = 0, and

Ii(5) = 2, so we choose xa for partitioning. No feasible solution is

available yet so = <» • At node 2, Pa = (3, 2), ̂ = 17, and s = (0, 3, 0) so

2^ = 17. We now put = 17 and fathom node 2. At Step 4, we

backtrack to node 3.

The computations continue at node 3, with Ps = (3, 2), s = (3, -3,

1), and Rs = {5}. But ta = -2 > sa = -3 so node 3 is fathomed, and we

X3=i/ = o

X2 = 1 X2 = 0

Figure 7-4. Search tree for Example 7.1.

95

backtrack to node 4. At node 4, P4 = (3), s = (-2, 0, -1) and R4 = {1, 4}.

But ts = 0 > S3 = -1 so node 4 is fathomed. At this point there are no

active nodes so we go to Step 6 and terminate. The optimal solution is

z,p= 17,x* = (0, 1, 1,0,0).

Among the advantages of Balas' algorithm are the following:

v addition is the only arithmetic operation required (no systems of

linear equations need be solved), thus eliminating roundoff

problems;

v a feasible solution is usually in store if the calculations are

stopped prior to natural termination by exhaustion;

v it is easy to monitor the rate of implicit enumeration as the

calculations proceed, which enables informed stopping rules

and opportunistic implementation;

v only minor modifications are necessary to handle a variety of

nonlinear objective functions (Geoffrion [7]).

7.4 General Branching

The branching rules in the additive algorithm can easily be

modified to make it more general. For example, the requirement of

branching on Xp = 1 in Step 5 can be relaxed by altering the vector

representation of P^. If branching to Xp = 0 prior to considering the node

96

where Xp = 1 is desired, the bookkeeping scheme has to be extended. In

particular, if j e Wk, let it appear in as

j if j eSk and Xj = 0 has not been considered

j if j eSk and Xj = 0 has been considered
•«

-j if j esic and Xj = 1 has not been considered

-j if j eSk and Xj = 1 has been considered

The vector Pk is updated as before except that in backtracking,

after erasing the underlined entries on the right, the rightmost remaining

entiy is underlined and its sign is changed. For example, if the order of

nodes considered in Figure 7-4 had been node 1, node 3, node 2, node 4,

the sequence of vectors would have been (3), (3, -2), (3, -2), (-3) [1].

A flowchart for the algorithm using general branching is given in

Figure 7-5 [7].

Theorem 7.2. The procedure of Figure 7-5 leads to a

nonredundant sequence of partial trial solutions which terminates only

when all 2" solutions have been (implicitly) enumerated.

Remark 1: By "nonredundant," we mean that no completion of a

partial solution in the sequence ever duplicates a completion of a

previous partial solution that was fathomed.

Remark 2: The proof below involves induction on the sequence

<Pk> of partial solutions.

97

Put P = <|).

Put P equal to j
or-j, for any j

III

No Attempt to fathom P.
Is the attempt
successful?

Yes

Attempt to fathom P.
Is the attempt successful?

Yes

No

Augment P on the right by j or -j,
where xj is any free variabie.

3b

Replace the rightmost
element of P by its underlined
complement.

3d

Replace the rightmost
nonunderllned element of P by its
underlined complement and drop
all elements to its right.

Terminate

Is the best feasible completion of
P has been found and it is better
than the incumbent solution, store
it as the new incumbent.

3a

No
Rightmost element of P

underlined?

3c

Yes

No
All elements of P

underli ned?

Yes

Terminate

Figure 7-5. Flowchart for additive algorithm with general branching.

98

Proof: If Po = 0 can be fathomed, the theorem is obviously true.

Hence, we may assume that Po = 0 cannot be fathomed.

To show that P^ is nonredundant, we will show that, if Pi, ..., P^

are nonredundant, then P^fi cannot be nonredundant; i.e., that P^fi

must include the complement of at least one element from each of the

partial solutions fathomed prior to P^n. There are three pathways by

which Pfcfi can be determined from P^; they are labeled I, II, III in Figure

7-5. If pathway I is taken, the desired conclusion follows from P^ c P^+i.

If pathway II is taken, the desired conclusion follows from the fact that Pk

must have been determined by Pk-i by pathway I and hence P^.i c P^fi.

To establish the desired conclusion for pathway III, we observe from

Figure 7-5 that (i.) the element complemented in Step 3d was contained

in every partial solution since it was originally introduced (and hence in

every fathomed partial solution since that time), and that (ii.) Ptf i less its

last element is not redundant with respect to the partial solution (if any)

fathomed up to the time that the deleted element was introduced simply

because P^^i less its last element coincides with the actual partial

solution at that time.

It remains to show that <Pa:> terminates only when all 2*^ solutions

have been (implicitly) enumerated. Clearly <Pfc> terminates only if a

partial solution consisting of all underlined elements is fathomed. Our

proof would be complete if we could show that every partial solution has

99

the following property: each underlined element implies that all

completions of that portion up to and including the complement of the

underlined element has been enumerated. Now underlined elements have

two possible origins: Steps 3b and 3d. Any underlined element created

at Step 3b obviously has the asserted properly. To see that the same is

true of underlined elements created at Step 3d, consider the first time

Step 3d is encountered. Then all underlined elements of the

corresponding partial solution P must have been created at Step 3b;

since P was just fathomed, therefore, by "telescoping" it follows that all

completions of P less its rightmost consecutive underlined elements have

been enumerated, i.e., this deleted partial solution has been fathomed.

Thus, the new partial solution generated at the first execution of Step 3d

has the desired property. A similar argument holds for each subsequent

execution of 3d. The proof is now complete. ¤

100

CHAPTERS

BRANCH-AND-CUT

8.1 Introduction

Recall that a valid inequality for a mixed IP is an inequality that is

satisfied by all feasible solutions. Here we are interested in valid

inequalities, called cuts, that are not part of the current formulation and

are not satisfied by all feasible points to the LP relaxation. A violated cut

is a cut that is not satisfied by the given optimal solution to the LP

relaxation. We know from Chapter 5 that if we have a violated cut, we

can add it to the LP relaxation and tighten it. By doing so, we modify the

current formulation in such a way that the LP feasible region becomes

smaller but the mixed IP feasible region does not change. Then we can

resolve the LP and repeat the process, if necessary, so long as we can

continue to find violated cuts [1].

The branch-and-cut method generalizes both pure cutting plane

algorithms as well as branch-and-bound. Generally, at each node of the

branch-and-bound tree, the LP relaxation is solved, violated cuts are

found, these cuts are added to the relaxation, and the process is

repeated. The goal is not only to reduce the number of nodes in the tree

significantly by using cuts and improved formulations, but also by trying

101

anything else that may be useful, such as preprocessing, at each node

[19].

In practice there is a trade-off. If many cuts are added at each

node, reoptimization may be slower than before. First, there is the

additional time spent on tiying to generate violated cuts, and this time is

spent regardless of whether any violated cuts are found. Secondly, if one

or more violated cuts are found, they are added to the active linear

program which is then resolved. Therefore, we may be solving several

linear programs per node. The linear programs become larger and are

typically harder to solve. Consequently, we have to be careful and make

sure that the extra time spent on evaluating nodes of the search tree

does result in a smaller search tree and, more importantly, does result in

a smaller overall solution time [Ij. Thirdly, keeping all the information in

the search tree is much more difficult. In branch-and-bound the

problem to be solved at each node is obtained just by adding bounds. In

branch-and-cut a cut pool is used in which all the cuts are stored. In

addition to keeping the bounds and a good basis in the node list, it is

also necessaiy to indicate which constraints are needed to reconstruct

the formulation at the given node, so pointers to the appropriate

constraints in the cut pool are kept [19].

102

8.2 Branch and Cut Algorithm

A branch-and-cut algorithm is outlined below. In the algorithm, L

is the set of active nodes in the branch-and-cut tree. As in Chapter 6,

the value of the incumbent solution is denoted by z* and the value of the

corresponding LP relaxation is denoted by zlp. Also, zip is the value of the

current IP optimum solution and z' is the lower bound on the optimal

value of the current subproblem under consideration.

Step 1 (Initialization): Denote the initial IP problem by IP® and set the

active nodes to be L = {IP®}. Set the upper bound to be z = +oo. Set z' = -

00 for the one problem i s L.

Step 2 (Termination): If then the solution x* which yielded the

incumbent objective value z* is optimal. If no such x* exists, i.e., if z =

+00, then the IP is infeasible.

Step 3 (Problem selection): Select and delete a problem IP' from L.

Step 4 (Relaxation): Solve the LP relaxation of IP'. If the relaxation is

infeasible, set z' = +oo and go to Step 6. Let z' denote the optimal

objective value of the relaxation if it is feasible, and let x' be an optimal

solution. Otherwise, set z' = -oo.

Step 5 (Add cutting planes): If desired, search for cutting planes that are

violated by x'. If any are found, add them to the relaxation and return to

Step 4.

103

Step 6 (Fathoming and Pruning):

a) If 7} > Zip, go to Step 2.

b) If z' < Zip and is integral feasible, update zip = z\ delete

from L all problems with z' > zip, and go to Step 2.

Step 7 (Partitioning): Choose a variable x?c with fractional part f^ > 0 and

partition S* as in (6.3). Go to Step 2.

The relaxations can be solved using any method for LP problems.

Typically, the initial relaxation is solved using the simplex method.

Subsequent relaxations are solved using the dual simplex method since

the dual solution for the relaxation of the parent subproblem is still

feasible in the relaxation of the child subproblem. Also, when cutting

planes are added in Step 5, the current iterate is still dual feasible, so

the modified relaxation can be solved using the dual simplex method

(Mitchell [13]).

Example 8.1: We will solve the following problem using the

branch and cut method:

min z = -2xi - Sxa

St 2xi - X2 + X3 =9

2xi + 8x2 + X4 = 31

Xj>0,j= 1, ..., 4

xi, X2 integer

104

To begin, the only active node is node 0 so we go to Step 4 and

solve the corresponding LP. The optimal solution for the LP relaxation is

shown in Tableau 8-1. Following the logic, we go to Step 7 and choose n

X2 for partitioning. Nodes 1 and 2 are created and are defined by the

constraints X2 < 2 and X2 > 3, respectively. We first solve the relaxation

for Node 1 and obtain the optimal LP solution shown in Tableau 8-2.

We now go to Step 5. Since xi must be an integer, we choose row

1 to generate the cut and

1 1 1
—X3 + —X5 >— or X3 + Xs>l
2 2 2

We now substitute for slack variables X3 and xs to obtain

Tableau 8-1. Optimal LP solution for E^tample 8.1
i Basis c Po Pi Pa Ps P4

0 -- ~ -'X 0 0 -1/
/a

-2/
/a

1 Pi -2 103/
/18

1 0 4/
/9

1/
/18

2 Pa -5 0 1 -1/
/9

1/
/9

Tableau 8-2. Optimal LP solution for Node 1.
i Basis c Po Pi Pa Ps P4 Ps

0 — — -21 0 0 -1 0 -6

1 Pi -2 11/ 1 0 1/ 0 1/
/2 72 72

2 P4 0 4 0 0 -1 1 -9

3 Pa -5 2 0 1 0 0 1

105

9 - 2xi + X2 + 2 - X2 > 1

or

xi < 5 => xi + X6 = 6

We add this cutting plane constraint to the optimal LP tableau for Node

1, perform one dual simplex iteration, and obtain an optimal integer

solution shown in Tableau 8-3.

We now backtrack and solve the LP relaxation for Node 2. The

optimal LP solution is given in Tableau 8-4.

We need xi to be an integer, so we choose row 2 to generate the cut

and

1 . 1 o ,— X4 + 4X5 > — or X4 + 8X5 > 1
A ̂

Tableau 8-3. Optimal integer solution for Node 1.
i Basis C Po Pi P2 Ps P4 Ps Pe
0 — ~ -20 0 0 0 0 -5 -2
1 Pi -2 5 1 0 0 0 0 1

2 P4 0 5 0 0 0 1 -8 -2

3 P2 -5 2 0 1 0 0 1 0
4 Ps 0 1 0 0 1 0 1 -2

Tableau 8-4. Optimal LP solution for Node 2.
i Basis c Po Pi P2 Ps P4 Ps
0 — ~ -22 0 0 0 -1 -3

1 Ps -2 5 0 0 1 -1 -9

2 Pi 0 7/ 1 0 0 1/ 4
/2 /2

3 P2 -5 3 0 1 0 0 -1

106

Substituting for the slack variables X4 and xs gives

31 - 2xi - 8x2 + 8x2 - 24 > I

or

xi < 3 => xi + X7 = 3

This cut is added to the relaxation for Node 2 and is solved using

the dual simplex algorithm. The resulting solution is given in Tableau 8-

5.

We now need X2 to be an integer, so we choose row 3 of Tableau 8-

5 to generate another cutting plane and

1 1 1 ^ ^ «—X4 + —X7 > — or 9X4 + 2X7 > 9
8 36 8

We substitute for slack variables X4 and X7 as before and obtain

- 20xi - 72x2 > -276

or

5xi + 18x2 < 69 5xi + 18x2 + xs = 69

We add this cut to the tableau of the previous LP solution and

solve using the dual simplex algorithm. The resulting solution is given

by Tableau 8-6. The objective function value for Tableau 8-6, -21, is less

than that of Tableau 8-3. Thus, Tableau 8-6 gives the optimal integer

solution.

Figures 8-1 and 8-2 show the branch and cut tree before and after,

respectively, cutting planes have been added. Notice in Figure 8-1 that

107

further branching would be required if we were using a branch and

bound method. This problem illustrates that using the branch and cut

method can reduce the size of the search tree.

Tableau 8-5. LP solution after first cutting plane added.
i Basis c Po^ Pi Pa Pa P4 Ps P7

0 — — _173/
/8

0 0 0 -5/
/8

0 -3/
/4

1 Ps 0 49/
/8

0 0 1 1/
78

0 -9/
/4

2 Pi -2 3 1 0 0 0 0 1

3 P2 -5 25/
/8

0 1 0 1/
/8

0 - V
A

4 Ps 0 1/
/8

0 0 0 % 1 - V
A

Tableau 8-6. Optimal integer solution for Node 2.
z Basis c Po Pi Pa Ps P4 p? Ps

0 — — -21 0 0 0 0 -% -5/
/18

1 Ps 0 6 0 0 1 0 -% 1/
/18

2 Pi -2 3 1 0 0 0 1 0

3 Pa -5 3 0 1 0 0

1

00

00

4 P4 0 1 0 ' 0 0 1 2/
/9

-4/
/9

108

4^

No<feO

z= -71/3
XI = 103/18
X2= 22/9

Node 1

-21z =

XI = 11/2
X2 =

No<fe2

z= -22

XI = 7/2
x2= 3

Figure 8-1: Branch-and-cut tree before cutting.

NodbO

z= -71/3
XI = 103/18
X2 = 22/9

No^ 1

z=-20

xl= 5

x2= 2

No<fe2

z = -21

xl= 6

X2 = 3

Figure 8-2: Branch-and-cut tree after cutting.

109

8.3 Cut Management

Cut management refers to strategies embedded in branch-and-cut

algorithms to ensure effective and efficient use of cuts in an LP-based

branch-and-bound algorithm. These strategies decide when to generate

cuts, which of the generated cuts (if any) to add to the active linear

program, and when to delete the previously generated cuts from the

active linear program.

Several strategies have been investigated that try to decrease the

time spent on generating cuts without reducing the effectiveness of the

branch and cut algorithm. This can be done in two ways: (1) by limiting

the number of times cuts are generated during the evaluation of a node,

or (2) by not generating cuts at every node of the search tree.

The number of times violated cuts are generated during the

evaluation of a node is often referred to as the rounds of cut generation.

A popular strategy is to limit the rounds of cut generation to ki in the

root node and ka in all other nodes with ki > ka. Limiting the number of

times violated cuts are generated during the evaluation of a node is not

only important to reduce the time spent on cut generation, it also

prevents tailing-off. Tailing-off refers to the phenomenon observed

frequently that after several rounds of cut generation the objective

function value hardly changes, i.e., even though violated cuts are

identified and added to the active linear program, their addition does not

110

lead to a substantial bound improvement. When tailing-off occurs, it

may be beneficial to branch rather than generate cuts, since we may be

spending significant amounts of time on cut generation without

producing stronger bounds and thus without decreasing the size to the

search tree.

Several strategies have been developed that generate violated cuts

at only a subset of the nodes of the search tree. The simplest such

strategy is to generate violated cuts at only the root node. The resulting

branch-and-cut algorithm is called a cut-and-branch. algorithm [1].

Usually an implementation of such a method will expend a great deal of

effort on generating cutting planes, requiring much more time than just

solving the relaxation at the root. The benefits of cut-and-branch include

v all generated cuts are valid throughout the tree since they are

generated at the root;

v bookkeeping is reduced, since the relaxations are identical at

each node;

v no time is spent generating cutting planes at other nodes

Cut-and-branch is an excellent technique for many general IP problems,

but it lacks the power of branch-and-cut for some hard problems

(Mitchell [12]).

A variant of this strategy generates cuts only in the top part of the

search tree; i.e., at all nodes with depth less than or equal to some

Ill

parameter t. The rationale behind these strategies is that generating

cuts in the top part of the search tree is more important since it affects

all nodes in the search tree. Another strategy is to generate violated cuts

at eveiy node. The rationale behind this strategy is that after

evaluating t nodes we have hopefully entered a different part of the

search space and we will be able to generate violated cuts relevant for it.

As indicated above, another reason for the increase in time to

evaluate nodes is that the addition of cuts leads to larger and more

complex linear programs. To minimize the effects of these larger and

more complex linear programs, a strategy is required that controls the

size of the active linear program. The basic idea behind most control

strategies is to have only a limited number of all available cuts in the

active linear program. Since most of the cuts will not be binding in an

optimal solution an3rway, this seems reasonable. The cuts that are not

part of the active linear program are kept in a so-called cut pool [1]. The

pool of cuts makes it possible to reconstruct the parent node more

efficiently, partly because difficulties with tailing-off are reduced [12].

Combining all the above ideas, we obtain the following basic cut

management scheme:

1. Solve the active linear program.

2. Identify inactive cuts. If successful, delete them from the active

linear program and move them to the cut pool.

112

3. Search cut pool for violated cuts. If successful, select a subset

of them, add them to the active linear program, and go to 1.

4. Generate violated cuts. If successful, add them to the cut pool

and go to 3.

Many implementation issues need to be addressed relating to the

above scheme. First, we want to minimize the administrative overhead

as much as possible. For example, we do not want to move cuts back

and forth between the active linear program and the cut pool all the time.

Secondly, we want to minimize the time it takes to search the cut pool for

violated cuts. Therefore a cut pool typically has a fixed size. A small cut

pool size obviously results in faster search times [1].

113

SECTION III: APPLICATION

CHAPTER 9

PLANT LOCATION PROBLEM

9.1 Fixed-Charge Problem

In a fixed-charge problem, there is a cost associated with

performing an activity at a nonzero level. Problems in which a decision-

maker must choose where to locate facilities are often fixed-charge

problems. The decision-maker must choose where to locate various

facilities (such as plants, warehouses, or business offices), and a fixed

charge is often associated with building or operating a facility [18].

The fixed-charge problem defined as the mixed-integer problem

n

min z = 2^ (cjxj + ky,) (9.1)
7=1

n

St ^ aiXi = b., z = 1,..., m (9.2)
7=1

Xj>0, j= I, n (9.3)

[0 ifxj = 0
^'"jl ifxj >0 ' ""

involves the minimization of a concave objective function z over a convex

polyhedron Q = {x| ZaiX, < b., z = 1, ..., m, Xj>OJ= 1, ..., n}.

114

Constraints (9.2) and (9.3) are nothing more than the region defined in a

linear programming problem [17]. To prove that the objective function is

concave, we have the following theorem from Cooper and Drebes [2]:

Theorem 9.1. fj{xj) = c/xj + kjyj, yj = ~ ̂
[1 ifxj >0

is a concave function for Xj>0.

Proof: By definition, a function f(x) is concave if

f[?lXi + (1-X)X2] > ?lf(xi) + (l-X)f(X2), 0 < A, < 1.

Let xj3 = Axji + (1-A)x/2. Then

f[Axji + (1-A)Xj2] = fj{xj3) = cjXfi + kjyjs,

, fO if XJ3 = 0
where y/3 = <

\l ifxjs >0

Similarly: f/xji) = cjxji + kj^ji

fj{xj2) = CjXfi + kjyj2

Therefore, we need to show that

fiXjs) > X fjfXji) + (1-A) fj(Xj2).

Substituting we have

Cj{Axji + (l-A)x^] + kjy-jB > Xcjxji + Akjy/i + (l-A)c>Xj2 + (1-A)kjyj2

^ Ac>Xji + (l-A)cjx/j + kjyj3 > Xcjxji + (1-A)c>x^ + Xkjyji + (1-A)kjyj2

which reduces to

y/3 > Xyji + {1-X)yj2.

We now prove this is always true.

115

Case 1: Suppose yj3 = 0. This implies that

+ (i-^)yj2 = 0 Xji = xj2 = 0.

This implies that y,i = y/a = 0, and therefore, yp = Xyji +

Case 2: Suppose y/s = 1. This implies that

Xyji + (1-X)yj2 > 0.

This implies that either (a.) xji > 0, > 0

(b.) xji > 0,xp = 0

(C.) Xji = 0,Xj2>0

(a.) Xji > 0, Xj2 > 0 ̂ yji = y/a = 1

=> y/3 = y^yji + (l->.)yja = l for O < X < l.

(b.) xji >0,Xj2 = 0=> yji = 1, yja = 0

=> y/3 > Xyji + (1-A,)yja for 0 < A, < 1.

(c.) Xji = 0, x^ > 0 ̂ y,i = 0, y/a = 1

=>yj3> Xyji + (l-X)yja for 0 < X, < 1. ¤

An important property of this type of problem, proven by Hirsch

and Dantzig [8], is that the optimum solution must occur at an extreme

point of the feasible space, that is, it must be associated with a feasible

basic solution of Q. This result is not surprising since removing the fixed

charge kjy,- from the objective function reduces the problem to a linear

programming problem.

116

9.2 Plant Location Problem

Plant location problems are a variation of the fixed-charge problem.

In the simplest case, m sources (or facility locations) produce a single

commodity for n customers each with a demand for dj units {j= 1,..., n).

If a particular source i is operating (or facility is built), it has a fixed cost

fi > 0 and a production capacity Mi > 0 associated with it. There is also a

positive cost aj for shipping a unit from source i to customer j. The

problem is to determine the location of the operating sources so that

capacities are not exceeded and demands are met, all at a minimal total

cost. All data are assumed to be integral.

To model this problem, we let Xij be the amount shipped from

source i to customer j and define yi to be 1 if source i is operating and 0 if

it is not. Then the IP model is

min Z = 2] 2 cm- + 2 fy.' (9.5)
i=l7=l i=l

m

St Sxy = dj, j= 1, ..., n (9.6)
i=l

2]xy < Miyj, I = 1, ..., m (9.7)
j=i

Xf, >0, alH,j (9.8)

yi= 0 or 1 (9.9)

117

The objective function (9.5) is the total shipping cost

X. CijKv plus the total fixed cost T. fyi. Note that U contributes to the
MmmJ

sum only when yi = 1, or source i is operating. Constraints (9.6)

guarantee that each customer's demand is met. Inequality (9.7) ensures

that we do not ship from a source which is not operating (Mi is the upper

bound on the amount that may be shipped from source i) and it also

restricts production from exceeding capacity. Problems of this form are

referred to as capacitated plant location problems (CPLP) [15].

The model can be further complicated by assuming that the term

^.^^.CiXijin the objective function is replaced by some nonlinear

function (mostly concave). It can also be further simplified by relaxing

the capacity restriction on the sources [17]. When the plants are

uncapacitated, the problem is often referred to as a simple plant location

problem {SPLP) [15].

As an example, we will consider the following problem from

Winston [18]:

Example 9.1; A company is considering opening warehouses in

four cities: New York, Los Angeles, Chicago, and Atlanta. Each

warehouse can ship 100 units per week. The weekly fixed cost of

keeping each warehouse open is $400 for New York, $500 for Los

Angeles, $300 for Chicago, and $150 for Atlanta. Region 1 of the country

118

requires 80 units per week, region 2 requires 70 units per week, and

region 3 requires 40 units per week. The costs (including production and

shipping costs) of sending one unit from a plant to a region are shown in

Figure 9-1. We want to meet weekly demands at minimum cost, subject

to the preceding information and the following restrictions:

1) If the New York warehouse is opened, then the Los Angeles

warehouse must be opened.

2) At most two warehouses can be opened.

3) Either the Atlanta or the Los Angeles warehouse must be

opened.

Solution: The company faces two decisions. First, the

company must decide which plants to operate. We define for i = 1, 2, 3,

4,

[1 if warehouse opened in cily i
[O otherwise

where i = 1 represents NY, i = 2 represents LA, i = 3 represents Chicago,

and i = 4 represents Atlanta.

To

From Region 1 Region 2 Region 3
New York $20 $40 $50

Los Angeles 48 15 26

Chicago 26 35 18
Atlanta 24 50 35

Figure 9-1. Shipping costs from city i to region J.

119

The company must also decide which warehouses ship to which

regions. We define X(/, for i = 1, 2, 3, 4 and j = 1, 2, 3, to be the amount

shipped from warehouse i to region j. This value must be greater than or

equal to zero.

The company wants to minimize the weekly costs of meeting

demand = cost of shipping + cost of operating warehouses. The variable

cost of shipping from warehouse i to region j is incurred only if Xy > 0.

Therefore, the company's weekly costs of shipping are

20x11 + 40x12 + 50x13 + 48x21 + 15x22 + 26x23 + 26x31 + 35x32

+ 18x33 + 24x41 + 50x42 + 35X43.

The cost of operating warehouse i is incurred if and only if yi = 1, so the

weekly fixed cost is

400yi + 500y2 + 300y3 + 150y4.

Thus, the company's objective function may be written as

min z = 20x11 + 40xi2 + 50xi3 + 48x21 + 15x22

+ 26X23 + 26X31 + 35X32 + 18X33 + 24X41 + 50X42 (9.10)

+ 35x43 +400yi + 500y2 + 300y3 + 150y4.

From Figure 9-2 we can obtain the constraints needed in order to

meet the demand without exceeding the capacity.

120

Region 1 Region 2 Region 3 Capacity
New York Xn Xl2 Xi3 lOOyi

Los Angeles X21 X22 X23 100y2
Chicago X31 X32 X33 lOOvs
Atlanta X41 X42 X43

o
o

Demand 80 70 40
Figure 9-2. Summary of demand and capacity.

The weekly demand can be modeled by the following constraints:

Xn + X21 + X31 + X41 = 80 (9.11)

Xl2 + X22 + X32 + X42 = 70 (9.12)

Xl3 + X23 + X33 + X43 = 40 (9.13)

The warehouse capacities can be modeled by these inequalities:

xii + xi2 + xi3 < lOOyi (9.14)

X21 + X22 + X23 < 100y2 (9.15)

X31 + X32 + X33 < 100y3 (9.16)

X41 + X42 + X43 ̂ 100y4 (9.17)

The company faces three types of constraints:

Type 1 constraint: If the NY warehouse is opened, then the LA warehouse

must also be opened.

Type 2 constraint: At most two warehouses can be opened.

Type 3 constraint: Either the Atlanta or the LA warehouse must be

opened.

The type 1 constraint states that yi = 1 y2 = 1. We can

accomplish this by including

121

yi ̂ ya

oryi-y2<0 (9.18)

The type 2 constraint says that at most two of yi, yg, ys, y4 can

equal 1 and the others equal 0. To accomplish this we add

yi + y2 + y3 + y4<2 (9.19)

The type 3 constraint states that ya = 1 or y4 = 1. We accomplish

this by adding the constraints

y2>p =>y2-p>0 (9.20)

y4>l-p =>y4 + p>l (9.21)

p = 0 or 1 (9.22)

To show that the last constraints are the ones we want:

p = 0^y2 = 0orl=5>y4= 1

p = 1 => y2 = 1 => y4 = 0 or 1.

Then the problem the company needs to solve is:

min z = 20xii + 40xi2 + SOxis + 48x21 + 15x22 + 26x23 + 26x31

+ 35x32 + 18x33 + 24x41 + 50x42 + 35x43 +400yi + 500y2 + 300y3 + 150y4

St XII + X21 + X31 + X41 = 80

Xl2 + X22 + X32 + X42 = 70

Xl3 + X23 + X33 + X43 = 40

xii + X12 + xi3 < lOOyi

X21 + X22 + X23 ̂ 100y2

X31 + X32 + X33 < 100y3

122

X41 + X42 + X43 < 100y4

yi - y2 < 0

yi + y2 + ys + y4 < 2

y2 - p > 0

y4 + p > 1

p = 0 or 1

Xi/>0 , i= 1, 2, 3, 4;j= 1, 2, 3

yi= 0 or 1, i= 1, 2, 3, 4

To solve this problem we will use the UNDO software. The UNDO

problem and solution windows for this problem and more information

about UNDO can be found in the Appendix.) The solution obtained by

UNDO tells us that the min z = $4750. The company should open

warehouses in Los Angeles, which ships to regions 2 and 3, and in

Atlanta, which ships to regions 1 and 3.

123

BIBLIOGRAPHY

124

BIBLIOGRAPHY

[1] Jonathan F. Bard, Practical Bilevel Optimization: Algorithms

and Applications, Kluwer Academic Publishers, (1998).

[2] L. Cooper and C. Drebes, "An Approximate Solution Method

for the Fixed Charge Problem", Naval Research Logistics

Quarterly, Vol 14 (1967), 178 - 190.

[3] L. Cooper and S. Steinberg, Methods and Applications of Linear

Programming, Saunders, (1974).

[4] George B. Dantzig, Linear Programming and Extensions,

Springer-Verlag, (1963).

[5] ^ "Reminiscences About the Origins of

Linear Programming", Proceedings of the International

Congress on Mathematical Programming, Rio de-Janeiro, Brazil,

April 6-8, 1981, North - HoUand (1984), 105 - 112.

[6] Saul Gass, Linear Programming: Methods and Applications,

Boyd and Frasier Publishing, (1985).

[7] Arthur M. Geoffrion, "Integer Programming by Implicit

Enumeration and Balas' Method", SIAM Review, Vol 9, Issue

2, (1967), 178- 190.

125

[8] Warren Hirsch and George Dantzig, The Fixed Charge

Problem", Naval Research Logistics Quarterly, Vol 15, Issue 3,

(1968), 413-424.

[9] Ellis Johnson, George Nemhauser, and Martin Savelsbergh,

"Progress in Linear Programming Based Branch-and-Bound

Algorithms: An Exposition", (1997). Submitted to INFORMS

Journal on Computing, http://akula.isye.gatech.edu/-mwps/

[10] J. Linderoth, M.W.P. Savelsbergh, "A Computational Study of

Search Strategies for Mixed Integer Programming", INFORMS

Journal on Computing, Spring, (1999).

[11] Claude McMillan, Jr., Mathernatical Programming: An

Introduction to the Design and Application of Optimal Decision

Machines, Wiley, (1970).

[12] John E. Mitchell, "Branch-and-Cut Algorithms for

Combinatorial Optimization Problems". To appear in the

Handbook of Applied Optimization, Oxford University Press,

(2000). http://www.math.rpi.edu/-mitchj

[13] , "Branch-and-Cut Algorithms for Integer

Programming", (1998). To appear in Encyclopedia of

Optimization, http://www.math.rpi.edu/~mitchj7chrono.html

[14] A. Ravindran, Don Phillips, and James Solberg, Operations

Research: Principles and Practice, Wiley, (1987).

126

[15] Harvey M. Salkin and Kamlesh Mathur, Foundations of

Integer Programming, North-Holland, (1989).

[16] Linus Schrage, Optimization Modeling luith UNDO, Duxbuiy

Press, (1997).

[17] Hamdy A. Taha, Integer Programming: Theory, Applications,

and Computations, Academic Press, (1975).

[18] Wa5me L. Winston, Operations Research: Applications and

Algorithm, Duxbuiy Press, (1994).

[19] Laurence A. Wolsey, Integer Programming, Wiley, (1998).

127

APPENDIX

128

APPENDIX

SOLVING IP PROBLEMS

WITH LINDO AND WHAT'S BEST

A.1 LINDO

LINDO (Linear Interactive and Discrete Optimizer) was developed

by Linus Schrage. It is a user-friendly computer package that can be

used to solve linear, integer, and quadratic programming problems [18].

The main purpose of LINDO is to allow a user to quickly input a

formulation, solve it, assess the correctness or appropriateness of the

formulation based on the solution, and then quickly make minor

modifications to the formulation and repeat the process.

A LINDO model has a minimum requirement of three things. It

needs an objective, variables, and constraints. The objective function

must always be at the start of the model and is initiated with either a

MAX (for maximize) or MIN (for minimize). The end of the objective

function and the beginning of the constraints is signified with any of the

following:

subject to

such that

St

129

The end of the constraints is signified with the word END. The strict

inequalities "<" and ">" are interpreted by LINDO as the loose inequalities

"<" and

Variables that are restricted to the values 0 or 1 are identified with

the INTEGER or INT specification. General integers are identified in

similar fashion by using GIN instead of INT. These variable

specifications are entered after the END statement

To illustrate, the problem

max 3x1 + X2

st 5x1 + 2x2 ̂ 10

4x1 + X2 < 7

XI, X2 ̂ 0

X2 integer

will appear in the model window as in Figure A-1.

4"^' < unti(lod>

■ax 3x1
St 5x1

<»x1
x1

end
GIN x2

x2
2x2 < IS

x2 < 7
> 0

x2 > 8

Jj

Figure A-1. LINDO model window.

130

The model is ready to solve. Click on the solve button, |^| , or

use the Solve command from the Solve menu. UNDO will begin by trying

to compile the model. This means LINDO will determine whether the

model makes mathematical sense and whether it conforms to syntactical

requirements. If there are no formulation errors during the compilation

phase, LINDO will begin to actually solve the model.

While solving, LINDO will show the Solver Status Window on your

screen that looks like Figure A-2. This status window shows information

about the model and the solution process. Below is a description of the

various fields and controls within the Status window.

LINDO Solvei Status

Optiinizer Status

Status:

iteiations:

Infeasibilitf:

Obiective:

Best IP:

IP Bound:

Branches:

Elapsed Tine:

Optimal

8

0

5.6

5.6

5.5

1

00:00:00

Update Interval: |1

m

Interrupt SoKe? |

Figure A-2. LINDO Solver Status Window.

131

Field/Control Description

Status Gives status of current solution. Possible values

include: Optimal, Feasible, Infeasible, Unboimded.

Iterations Number of solver iterations.

Infeasibility Amoimt by which constraints are violated.

Objective Current value of the objective function.

Best IP Objective value of the best integer solution found.

Only relevant in IP models.

IP Bound Theoretical boxmd on the objective for IP models.

Branches Number of integer variables "branched" on by

LINDO's IP solver.

Elapsed Time Elapsed time since the Solver was invoked.

Update Interval Frequency (in seconds) that the Status Window is

updated. You can set this to any nonnegative

value desired. Setting the interval to zero will tend

to increase solution times.

Interrupt Solver Interrupts the solver at any point. Returns the

current best solution foimd.

Close Closes the Status Window. Optimization

continues. To reopen Status Window select the

Status Window command from the Window menu.

132

At this point, LINDO will ask whether we wish to do sensitivity or

range analysis. For our purposes here we answer "No" to this question.

Then click on the "Close" button to close the Solver Status Window.

There will now be a new window titled "Reports Window." The

Reports Window is where LINDO sends all text-based reporting output.

This window contains the solution to our model and should resemble

Figure A-3 [16].

In addition to the optimal solution, the LINDO output for an IP

gives shadow prices and reduced costs. Unfortunately, the shadow

prices and reduced costs refer to the subproblems generated during the

:i'i'Repoits Window

LP OPTIHUH FOUND AT STEP 2

OBJECTIUE UALUE - 5.66666651

SET X2 TO >- 2 AT 1, BHD- 5.600 TWIN- 5.500 7

NEW INTEGER SOLUTION OF 5.59999990 AT BRANCH 1 PIUOT 7

BOUND OH OPTIHUH: 5.600000

DELETE X2 AT LEUEL 1

ENUHERATION CONPLETE. BRANCHES- 1 PIUOTS- 7

LAST INTEGER SOLUTION IS THE BEST FOUND

RE-INSTALLING BEST SOLUTION...

OBJECTIUE FUNCTION UALUE

ii

1) 5.600000

UARIABLE UALUE REDUCED COST

X2 2.000000 0.200000

X1 1.200000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 0.600000

3) 0.200000 0.000000

*) 1.200000 0.000000

5) 2.000000 0.000000

NO. ITERATIONS- 8

BRANCHES- 1 DETERN.- I.OOOE 0

Figure A-3. LINDO Reports Window.

133

branch-and-boiind solution - not to the IP. Associated with each

vanable in any solution is a quantity known as the reduced cost. The

REDUCED COST portion of the LINDO output gives information about

how changing the objective function coefficient for a nonbasic variable

will change the optimal solution of the LP.

We define the shndow price for the constraint to be the amount

by which the optimal z-value is improved - decreased in a min problem

and increased in a max problem - if the right-hand side of the

constraint is increased by 1. This definition applies only if the change in

the right-hand side of constraint i leaves the current basis optimal. If,

after a change in a constraint's right-hand side, the current basis is no

longer optimal, the shadow prices of all constraints may change. The

shadow prices for each constraint is foimd in the DUAL PRICES section

of the LINDO output [18].

LINDO uses the convention that a positive dual price means that

increasing the right-hand side in question will improve the objective

function value. Similarly, a negative dual price means increasing the

right-hand side will cause the objective function value to decrease. A

zero dual price means that changing the right-hand side by a Rmgll

amount will have no effect in the solution value. Therefore, under this

convention, < constraints will have nonnegative dual prices, > constraints

134

will have nonpositive dual prices, and = constraints can have dual prices

of any sign [16].

To show that LINDO can solve more complicated problems, we will

use it to solve the plant location problem from Chapter 9. The model

window for this problem is given in Figure A-4. The Reports Window

showing the optimal solution and the Reduced Costs is given in Figure A-

5.

'CATHESIS\LOCATION LTX

Hln 2tx11 * I»tx12 « 5«x13 * %Sx21 « 15x22 « 26x23 « 26x31 4^ 35x32 .d
* 18x33 * 211X41 * 58x42 * 35x43 * 48^1 * 5»mf2 * S88y3 + 158^4 □

St x11 ♦ x21 + x31 ♦
Xl2 ♦ X22 ♦ X32 ♦
x13 * x23 * x33 *
x11 * x12 + x13 -
X21 + X22 + X23 -
X31 + X32 ♦ X33 -
x41 ♦ x42 ♦ x43 -
y1 - y2 < 8
y1 ♦ y2 ♦ y3 ♦ y4
y2 - p > i
y4 + p > 1

end
gin 12
int y1
int y2
int y3
int y4
lint p

x41 - 88
x42 - 78
x43 - 48
108y1 < 8
18ily2 < 8
ieBy3 < 8
ieBy4 < 8

<2

Figure A-4. Model window for plant location problem.

135

A -Hopofts Window

OBJECTIUE FUNCTION UALUE

1) 1750.BOB

UARIABLE UALUE REDUCED COST

X11 B.BBBBBB 20.BBBBBB

X12 B.BBBBBB l|B. BBBBBB
X13 B.BBBBBB SB.BBBBBB

X21 B.BBBBBB 48.BBBBBB

X22 7B.BBBBB6 15.BBBBBB

X23 3B.BBBBBB 26.BBBBBB

X31 B.BBBBBB 26.BBBBBB
X32 B.BBBBBB 35.BBBBBB

X33 B.BBBBBB 18.BBBBBB

XH BO.BBBBBB 24.BBBBBB

XH2 B.BBBBBB 5B.BBBBBB

X43 1B.BBBBBB 35.BBBBBB

V1 B.BBBBBB 4BB.BBBBBB

V2 1.BBBBB6 5BB.BBBBBB

V3 B.BBBBBB 38B.BBBBBB

V* 1.BBBBBB 15B.BBBBBB

P 1.BBBBBB B.BBBBBB

Figure A-5. Reports window for plant location problem.

A.2 What's Best

What's Best is an add-in that can be used to solve linear (and

nonlinear) programming problems within a spreadsheet.

The key to solving an LP on a spreadsheet is to set up a

spreadsheet that tracks everjrthing of interest (costs or profits, resource

usage, etc.). Then identify the cells in the spreadsheet that can be varied

(these are called adjustable cells in What's Best). What's Best assumes

(unless told otherwise) that all adjustable cells must be nonnegative.

After defining the adjustable cells, identify the cell that contains the

objective function (the best cell) and the constraint (the constraint cells).

Then, select the Solve option to tell What's Best to solve the problem.

136

IPs can also be solved witJiin a spreadsheet using What's Best. To

define a range of variables as 0-1 variables, use the Binary option after

defining the variables with the Adjust option. To define a range of

variables to be general nonnegative integers, use the Integer option after

defining the variables with the Adjust option [18].

To illustrate, we will look again at the example from the LINDO

section, except that we will set xi = x and X2 = y:

max 3x + y

St 5x + 2y < 10

4x + y < 7

X, y>0

y integer

The associated spreadsheet looks like Figure A-6 after typing in the

problem data. There are only a few formulas in the spreadsheet. The

name xj has been defined as D5..E5. The name cj has been defined as

D6..E6. The objective function value is in F1 and the formula is

=SUMPRODUCT (cj,xj). The cells D11..E12 are just the numbers

corresponding to those in the formulation. The formula in F11 is

=SUMPR0DUCT(D11..E11,xj), and this formula can be copied to cell F12.

This sum counts the amount of the resource used. The cells H11 ..H12

are the right-hand side constants from the problem formulation.

137

1 Book4

1 Objective:
B I C G 1 H. It

max

3_
4

5 Variables: i _ 0
Jj " T' 3'
7_
8^
9 I Constraints:
11
11 Resource 1 5^

Resource 2 4

13
AittwwR»portl XSh—tl X Sfc««<3 /

^■i

Used
2 10 <=
1 6.8 <=

"ill---

Limit
10
7

iid

Figure A-6. What's Best model.

We are now ready to run the solver and find the optimal solution.

Run the Solver option from the Tools menu, and you will see a dialog

box. The Set Cell points to the cell that contains the objective function

(F1 in this case). Click Max or Min as is appropriate to the problem (Max

in this case). The window for By Changing Cells contains a list of the

variable cells. Ours are named in a range window and we can just t5rpe

the name xj.

To add constraints, click on the Add button and another dialog box

appears. First we want to make sure x and y are positive, so under Cell

Reference we type the range name, xj, select ^ from the menu of

operators and enter 0 in the Constraint box. Then click Add. To make y

an integer, type the variable name, y, and select int from the menu of

operators. The other two constraints are both < so we can do them

138

simultaneously. In the Cell Reference box we type the cells with the

constraint SUMPRODUCT formulas, F11..F12 (we could also use the

mouse to highlight these cells). Select < and set the Constraint box to

the right-hand side constants H11 ..H12. Click Add. Then click Cancel to

dismiss this dialog box. Both constraints will show up in the main solver

dialog box iinder Subject to the Constraints. To modify these

constraints, highlight and click Change; to remove a constraint, highlight

and click Delete.

Finally, we want to look at one more dialog box that contains the

Options for the solver. This dialog box contains information to control

the method the solver should use for the problem. For our purposes,

make sure that Assume Linear Model is checked. Otherwise, the solver

may terminate with a solution that is not optimal. Click OK. The Solver

dialog box should now look like Figure A-7. Click Solve and a dialog box

(Figure A-8) will appear. Make siire the Keep Solver Solution option is

checked to have the spreadsheet report the answer the solver found. A

box containing additional Reports appears on the right. Hi^light

Answer (Sensitivity and Limits do not apply for integer problems) and

then click OK.

Solver Parameters

Target Cdl:

EqualTo: (5" r Mq Ttalueof! F
"By changing Cafe:

|xj

-Subject to the Constraints: -

guess

E5 - integer

xj>-0

Add

Figure A-7. Solver dialog box.

Solver Results

Solver Found a solution. Al constraints and optknalty
condKions are satisfied.

flwnge

Qelete

geports

<• |(eep ̂ ver Sc^on j
Restore Original Values

Answer

Sensitivity
Limits

DES

Solve

Close

Options

Reset Al

Help

ir

d

OK J CarKel j 5eve Scenario... { Qslp |

Figure A-8. Solver Results dialog box.

139

The original spreadsheet will now show the optimal solution. In

this case it shows that we should set x = 1.2 and y = 2 in order to

maximize the objective function at a value of 5.6. Additionally, the

Answer Report spreadsheet (Figure A-9) is created.

The Answer Report lists the objective function value, the decision

variables, and the constraints. The reason the report shows Original

140

3 Book4 n -l°|x[
A| B j C D E F G l-S

1 Target Cell (Max)
2 Cell Name Original Value Final Value i

3 $FJ1 max G 5.B

4

5 Adjustable Cells

6 Cell Name Original Value Final Value

7 $D(5 Variables: x 0 1.2

8 $E(5 Variables: y 0 2

9

10 Constraints

11 Cell Name Cell Value Formula Statue Slack

12 $F|11 Resource 1 Used

X

II

V

.u

o Binding 0

13 $FS12 Resource 2 Used G.8 F12<=H12 Not Binding 0.2

14 SD$5 Variables: x 1.2 JD55>=0 Not Binding 1.2

15 $ES5 Variables: y 2 E5>=0 Not Binding 2

IB $ES5 Variables: y 2 E5=integer Binding 0
—A. TL-

. _..J
^:

> \ H\ Ansirwr Report 1 X Sheetl A / Sheet3 / J.t 1 _ jtiTZ

Figure A-9. Answer Report spreadsheet.

Value and the Final Value for the target cell is because if the solver is

working on a nonlinear model, it will stop when time runs out or an

improvement cannot be made. This is not necessarily optimal, so having

the two values lets you see what improvements have been made.

For the Adjustable Cells and Constraints, Elxcel creates the Name

fields by searching left of the cell for the first label, then up from the cell

for the first label, then concatenates the two. By choosing those labels

appropriately, the report can be made veiy descriptive. The labels can

also be changed in the usual way since the report is just another

spreadsheet. For each constraint, the report shows the formula that

represents the constraint, whether it is binding (tight) or not binding

(slack), and the amoxint of slack in that constraint.

141

VITA

Lisa Catherine Watkins was bom in Greenville, South Carolina on

July 13, 1971. She graduated from Shannon Forest Christian School in

June, 1989. She then graduated from the University of South Carolina

at Spartanburg in the Spring of 1998 with a Bachelor of Science in

Mathematics and a Bachelor of Science in Secondary Education

(Mathematics). While a student at USCS, Lisa was president of the

Mathematics Club and was an active member of the Undergraduate

Mathematics Research Group. She presented a paper at the

Southeastern Section of the Mathematical Association of America

meeting in Spring of 1997 and also presented at the Fourth Carolinas

Mathematics Conference in the Fall of 1997. In April, 1997 she was

inducted a member of the Kappa Delta Pi Honor Society in Education.

She was inducted into the Gamma Beta Phi and the Omnicron Delta

Kappa Societies in Spring of 1998. After accepting a Graduate Teaching

Assistantship at The University of Tennessee, Knoxville, she entered the

Graduate School there in August, 1998 in order to pursue the Master of

Science degree in Mathematics. She graduated from The University of

Tennessee in December of 1999 with a Master of Science in Mathematics

with a concentration in Applied Mathematics.

	Algorithms for solving linear integer progamming problems
	Recommended Citation

	Thesis99.W39
	Thesis99.W39_61_62_63_64
	Thesis99.W39

