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ABSTRACT

This thesis discusses the construction and use of a real-valued Genetic Algorithm

to optimize weekly scheduling for TVA's Raccoon Mountain Pumped Storage facility.

Pumped storage systems are primarily employed to meet peak load conditions and to

replace power plants during scheduled maintenance outages. Scheduling for this facility

involves determining when to pump water into an elevated reservoir and when to release

the water for generation. Using a historical weekly load, a Genetic Algorithm was

constructed and used to search for schedules that maximize monetary return. The

algorithm proves to be capable of finding schedules that optimize usage and

simultaneously reduce peak system loads.



PREFACE

This work was done during my time as a Research Assistant for the Artificial

Intelligence Group in the Nuclear Engineering Department at the University of

Tennessee. To retain compatibility with other work being done by the group, the

program described herein was written in MATLAB. Though interpreted languages are

not ideal for Genetic Algorithms, MATLAB provides a rich set of tools and is widely

used for scientific and engineering programs. Fully commented source code appears in

the Appendix. Language specific implementation details will only be discussed in the

text when deemed truly insightful. The remainder of this section provides organization

notes for the thesis.

Chapter One serves as an introduction to the physical characteristics of pumped

storage schemes and the Raccoon Mountain facility. A brief definition of Genetic

Algorithms is given to prepare the reader for a more in-depth treatment later. A concise

statement of the problem to be solved concludes the chapter.

Chapter Two details the theory of Genetic Algorithms. Different selection

schemes are reviewed and compared. Operators for performing crossover and mutation

are then examined. The chapter concludes with a review of some of the real-world

problems to which Genetic Algorithms have been successfully applied.

Chapter Three deals with the design and implementation of a MATLAB toolbox

for Genetic and Evolutionary Algorithms. This is intended to be a general purpose GA,
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which will be applicable to many future problems. The application of the toolbox to the

Raccoon Mountain facility is then detailed.

Chapter Four presents and discusses the results of this application. The profit of

operation, the weekly water levels and the system load impact are used to judge

performance. A comparison of GA runs with varied parameter settings is also performed

in order to find the settings that provide the best results in the least time.

Chapter Five provides a summary of the work, and contains concluding remarks

as well as recommendations for future research.
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1. INTRODUCTION

Pumped Storage Schemes and Raccoon Mountain

Pumped storage systems are primarily employed to meet peak load conditions and

to replace power plants during scheduled maintenance outages. The use of pumped

storage can also reduce peak region-wide loads, helping to minimize the ill effects

associated with frequently starting and stopping electrical generation equipment.

The main components of a pumped storage system are: two cormected water

reservoirs at different elevations, pumps for moving water up, and turbines for generating

electricity when the water moves down. The lower reservoir, or tail pond, is generally a

river or a lake, though artificial reservoirs and even the sea have been used. The upper

reservoir, or head pond, is typically an artificial reservoir or a lake. Combination pump-

turbines are normally used to provide both pumping and generating. Figure 1 below

shows a conceptual drawing of such a system.

Upper
Reservoir

Lower

Reservoir

Pump-Turbines

Figure 1- Pumped Storage Conceptual Model



The Second Law of Thennodynamics dictates that more energy is needed to pump

a given amount of water to a higher elevation than can be regained from that amount

retumed during generation. What makes these schemes attractive however, is that the

price of electricity fluctuates based upon the total system-wide demand. When the

demand is low it can be met most economically, when "sunk" capital costs are not

considered, by using low cost nuclear, coal and hydroelectric plants. As demand

increases though, more expensive and less replaceable oil and gas fuels must be used, or

the electricity must be purchased from other electricity generators. Thus, for a pumped

storage system by itself to operate without a financial loss, pumping must be done when

the cost of electricity is lower than the cost when generating. Figure 2 shows a

hypothetical weekly region-wide demand, starting from 8:00 Monday morning.

1  ■
•g H

Hair

Figure 2 - Demand Curve



Pumped storage schemes are generally part of a larger power generation system.

This allows electricity needed for pumping to be taken from the power grid and the

electricity generated to be returned to the grid. By scheduling the periods of generation

to coincide with periods of high demand, higher cost plants can be kept offline and the

use of expensive purchased electricity can be avoided.

The Tennessee Valley Authority (TVA) operates the Raccoon Mountain pumped

storage facility near Chattanooga Tennessee and is the nations largest producer of public

power. This facility is located on the Tennessee River at mile 444.6,- between the

Chickamauga Dam upstream and the Nickajack Dam downstream. This river serves as

the lower reservoir, and an artificial upper reservoir has been created in the mountain

above. The two reservoirs are connected by a series of tunnels that contain four 382.5

MW pump-turbines, for a total capacity of 1530MW. Figure 3 depicts the physical

layout of the Raccoon Mountain facility.

The upper reservoir can be filled by 27 hours of pumping, and emptied in 20

hours of generating. However, the system operates under the restriction that the tail

pond, the Nickajack Reservoir, must remain between 632 and 634 feet to maintain

navigability. Water discharged from the Chickamauga Dam upstream takes two hours to

reach the Raccoon Mountain site. Since the Nickajack Dam and the Raccoon Mountain

site are both remotely controlled from the Chickamauga Dam, the combined oversight

necessary to ensure proper water depth is available. For the purposes of this study, the

navigability requirements will not be considered since adjusting the flow through the

Chickamauga Dam can control the lower reservoir water level.
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Figure 3 - Raccoon Mountain Facility Diagram

Source: TVA Web Site, www.tva.gov/powcr/pumpstorart.htm

Electricity demand follows a weekly cycle in the TVA region, with the highest

peak demands occurring in the summer and winter months. By examining historical data

and trends and taking weather predictions into account, it is possible to make some

prediction of the demand or load on the system for an upcoming week. Given this

prediction, some technique must be used to determine the weekly schedule for pumping

and generating that results in the most profitable operation. This is further complicated

due to the amount of electrical input and output of the pump-turbines being a function of

the water level of the head pond.

The head pond water level can vary from 1530 to 1672 feet above sea level, and

the pump-turbines are located 1167 feet below the full pool level. The input power

required when pumping and the output power produced when generating are shown



plotted against the head pond water level in Figure 4 below. The breaks in the curves are

due to manipulation of intake valves to maintain efficiency, and the differing discharge

rates.

Ou^ PowK-Produced

nput Paw te»ifed

15<® 1560 isa) 160D 1620 im> 1030

Head Pond Baeter® ' ̂

Figure 4 - Pump-Turbine Curves

Since solving directly for the optimal schedule would be prohibitively time

consuming due to the non-linearity of the system, a faster method is needed. The most

profitable schedule of operation based on a given weekly demand prediction can be

determined by searching the space of all possible weekly schedules for the one that offers

the highest return. One hour is taken as the minimum unit of time in the schedule. If we

have a predicted demand for electricity, it is possible to completely describe a weekly

schedule by specifying for each hour how many, if any, of the pump-turbines are running

and in which direction. Thus, a weekly schedule could be represented as a string of 168



whole numbers on [-4,4], where negative indicates pumping and positive indicates

generation. This leads to 9*^^, or about 2.05 X 10^^°, possible schedules. For

comparison, the universe is estimated to be 10 seconds old and to contain around 10^®

particles. This implies that an exhaustive search of the space would not be feasible. This

thesis describes the implementation and use of an alternate search strategy, the Genetic

Algorithm.

Introduction to Genetic Algorithms

John Holland originally introduced Genetic Algorithms in 1975 as a method for

modeling and explaining adaptation in natural systems [9]. Genetic algorithms, or GA's,

typically involve operations such as crossover, mutation and selection, which are based

on their chromosomal counterparts in genetics. Since their introduction. Genetic

Algorithms have been reexamined as a method for the optimization of mathematical

functions. By searching the space of all possible inputs to a given function, Genetic

Algorithms can be used to find the inputs that maximize or minimize that function. GAs

can also be used to optimize physical systems by creating a function that models the

operation of the system.

Genetic Algorithms represent a single input to the function as an array of digits,

commonly called a chromosome. A small random collection of such chromosomes

constitutes an initial population. Each member of the population is then used as an input



to the function, and a numerical output value is calculated. The function that guides the

optimization process is referred to as the fitness function, and the output for a specific

input is the fimess score. By selecting pairs of chromosomes based upon fitness scores, a

new population is generated from the current one by the operations of crossover and

mutation. Crossover involves creating child chromosomes by using different parts of the

chromosome of each parent. Mutation generally involves a random change in a single

digit of the child chromosome. Often, the best chromosome from each generation is

intentionally passed through to the next unchanged. This ensures that the algorithm does

not abandon a good solution until a better one is found, and is referred to as elitism.

By repeating this process through a number of iterations, or generations, it is

possible to optimize a wide variety of classes of problems. This amounts to a "greedy"

parallel hill-climbing approach. Many researchers have worked to develop different

types of selection schemes, crossover operators and mutation operators, which will be

further explored in the next chapter.

Problem Statement

A relatively quick and automatic method is desired that will provide pumping and

generating schedules for the Raccoon Mountain pumped storage facility. The method

should be able to accept a prediction of a weekly region-wide load, and return the

schedule that provides the maximum profit. A Genetic Algorithm has been chosen as the

method to search for the best schedule.



2. THEORY AND LITERATURE REVIEW

Genetic Algorithms Basics

Though Genetic Algorithms were originally created to simulate adaptation in

natural systems, current research focuses on ways OAs can use evolution to perform

function optimization. The Genetic Algorithm conducts a search of the space of inputs to

the function being optimized by relying on the principals of Darwinian natural selection.

Genetic Algorithms have been successfully applied to many different types of

problems, though several factors limit the success of a GA on a specific function.

Problems that require a good, but not optimal, solution are ideal for GAs. The manner in

which points on the search space are represented is an important consideration. An

acceptable performance measure or fitness value must be available. It must also be

feasible to test many potential solutions.

Points on the search space are typically encoded as binary strings, though real-

valued representations are also widely used. Individual strings are referred to as

chromosomes, and a set of chromosomes is termed the population. A set of randomly

chosen points on the search space provides an initial population. Each iteration of the

algorithm is called a generation, and involves creating a new population by reproduction

between chromosomes of the current population.

Each generation consists of four steps: evaluation, selection, crossover, and

mutation. During evaluation each member of the population is used as an input to the

function being optimized, and a numerical fitness score is determined. Chromosomes are



then selected, based on fitness, to be parents for the next generation. The selected parents

are paired together, and produce pairs of offspring. The crossover operation determines

how the genetic material of the parents will be passed on to the children. Mutation

involves changes to individual positions on the chromosomes, and allows new

information to enter the population.

Many different selection schemes exist, as well as several types of crossover and

mutation operators. Choosing the proper selection scheme and reproduction operators for

a given problem can influence the success of the search. The next sections will further

explore how selection, crossover, and mutation work.

Selection Schemes

Selection of parents is based on fitness scores, though several different schemes

exist. Four specific schemes. Roulette Wheel, Universal Stochastic Sampling, Ranking,

and Tournament will be individually explored.

Roulette Wheel selection chooses parents for the next generation proportional to

their fitness scores. The fitness of each individual in the population is summed, and a

wheel is simulated with this as the circumference. Each chromosome is then assigned to

a portion of the wheel equal to its percent of the fitness of the total population. Random

numbers indicating points on the circumference are generated to simulate spins of the

wheel. The chromosome corresponding to the section of the wheel indicated by the



random number is then selected as a parent for the next generation. This process

continues until the desired number of parents has been selected.

Roulette Wheel selection generally offers fast convergence properties, but

premature convergence to local maxima or minima is sometimes encoimtered. If "super"

chromosomes exist in the population, with fitness scores many times those of the other

chromosomes, problems can arise leading to loss of genetic information from the

population and premature convergence. Roulette Wheel selection is also highly sensitive

to the fitness function. Care must be taken to insure that the function provides a suitable

range of output values.

The Stochastic Universal Sampling method is quite similar to Roulette Wheel, but

only one random spin of the wheel is made. The location of the spin denotes the first

parent, and from there the wheel is marked at even intervals around the entire

circumference to identify successive parents. When the wheel circumference is

normalized, the interval between two indicated selections is the inverse of the population

size.

This selection method is more efficiently implemented than standard Roulette

Wheel, and also helps solve the problem of premature convergence. Since spins are

equally distributed around the wheel, a single individual is less likely to be multiply

selected. The sensitivity to the fitness function has not been removed though, and can

still result in problems.

Ranking selection provides a way to reduce sensitivity to the fitness function, and

also helps to control premature convergence. Instead of choosing parents based

10



proportionally on fitness, only the relative position within the population is considered.

A ranking function is constructed, which maps a chromosome's relative position to a

numerical score. This function can be linear or non-linear, depending on the selection

pressure desired. A linear version of the ranking function might assign the chromosome

with the worst fitness score a value of one, the second worst a value of two, and so on

through the best, which would have a value equal to the population size. Using these new

values as fitness scores, proportional selection is then performed.

By scaling fitness according to rank, premature convergence due to "super"

individuals becomes less of a problem. There is also less sensitivity to the output range

of the fitness function. These improvements, however, generally come at the price of

somewhat slower convergence.

Tournament selection also provides an alternative to proportional selection. In

this scheme, a randomly selected subset of chromosomes from the population is chosen,

and the one with the highest fitness is selected as a parent. The number of chromosomes

selected to compete in each tournament is referred to as the tournament size. The

tournament process is repeated until all parent positions have been filled. Sometimes

referred to as local competition, this method can also be used on distributed systems. The

population subset might then consist of neighboring chromosomes.

Tournament selection normally shows slow, steady convergence. This scheme

also has a low sensitivity to the fitness function, and is unaffected by "super" individuals.

The choice of tournament size directly influences the selection pressure. With a small

tournament size, the odds of a chromosome with a low fitness score being selected as a

11



parent increase. Larger tournaments are more likely to contain chromosomes having high

fitness, thus reducing the chances of the information in a low scoring chromosome being

passed on to the next generation.

Each selection scheme has advantages and disadvantages, and some trial and error

testing is necessary to determine the scheme that works best for a specific problem.

Construction of a good ranking function and the determination of a good tournament size

are crucial to successful application. The fitness function must also be carefully

constructed when Roulette Wheel or Universal Stochastic Sampling is used.

Crossover Operators

After completion of the selection process, the chromosomes chosen to be parents

for the next generation are recombined to form children. This recombination can take

many forms, and the specific crossover operators used can greatly effect the results of the

search. Two of the most widely used crossover operators are Discrete and N-point. Both

operators work on pairs of parent chromosomes, though extension to three or more

parents is possible.

Discrete crossover, sometimes referred to as Uniform crossover, can be used in

both binary and real-valued chromosome representations. Two chromosomes that have

been chosen to be parents are used to create two child chromosomes. For each location

on the child chromosomes an equal probability random selection is made to determine

which parent contributes the genetic material.

12



The following example demonstrates the Discrete crossover operator in action.

Two parent chromosomes are'shown below, each having a length of four.

Parent 1: 1 1 1 1 Parent 2: 0 0 0 0

Two random vectors are generated, and indicate the parent to be used at each position.

Vector 1: 2 1 12 Vector 2: 12 1 1

The offspring created contain information from both parents, and are shown below.

Child 1: 0 1 10 Child 2: 10 1 1

Information in the population can be lost using Discrete crossover, since both

children may contain the genetic material of the same parent at a given location. This is

seen in the example above at position three in the chromosome, where the information

from parent two has been lost. If this occurs too often, it is possible that the GA will not

find the global maximum due to insufficient information in the population.

N-point crossover is normally used when chromosomes are represented using a

binary encoding, though it has also been employed with real-valued chromosomes. This

operator mimics the crossover process that is found in animal DNA. A total of N

locations on the parent chromosomes are selected, and the genetic material of the parents

is exchanged about these points.

An example of N-point crossover for N equal to three is given below. Two

chromosomes selected to be parents are shown, each having six positions.



Parent 1: 1 1 1 1 1 1 Parent 2: 0 0 0 0 0 0

Three crossover points are then chosen uniformly at random, and are located after the

position indicated by the random number.

Crossover Locations: 13 5

The two children created are shown below, with the vertical bar indicating crossover

location.

Child 1: 1 I 0 0 I 1 1 | 0- Child 2: 0 | 1 1 | 0 0 | 1

The N-point crossover operator passes on all information contained in the parents

to the next generation. Since corresponding locations on the child chromosomes never

come from the same parent, no information is lost. The one restriction on this operator is

that the number of crossover points must be at least one less than the length of the

chromosome.

Both the Discrete and N-point crossover operators typically contain a parameter,

the crossover rate, which determines how often the operator is applied. The crossover

rate ranges between zero and one, with zero indicating the operator is never applied, and

one indicating that the operator is always applied. For each pair of parents a random

number is generated on [0, 1]. If this random number is greater than the crossover rate,

the operator is not applied to that pair of parents. If the operator is not applied, the

children produced are identical to the parents.

14



Mutation Operators

Crossover operators can only recombine genetic information that already exists in

the population. The optimal solution to the given problem, however, may not be

reachable with only the information that was supplied by the random initial population.

Mutation forms the second half of the reproduction process, and serves to introduce hew

information into the population. Many types of mutation operators exist, and problem

specific-operators can often be created to incorporate domain knowledge into the Genetic

Algorithm. Three basic mutation operators. Bit Flip, Random Replacement, and Small

, Shift will be discussed further.

The Bit Flip operator is only used with a binary chromosome representation. This

operator causes the value of a particular point on the chromosome to change to its

opposite. An example of a Bit Flip mutation is shown below.

Before Mutation: 1 1 1 1 After Mutation: 1 10 1

Here the third location in the chromosome has been selected to undergo the mutation.

The process by which the locations for mutation are chosen will be discussed later.

The Random Replacement operator can be used with both binary and real-valued

chromosome representations. In this operator the value of a position on the chromosome

is changed to a value selected uniformly at random from all allowable values for that

position. In a binary representation this reduces to a Bit Flip operator that only operates

half as often, since roughly half of the time the bit chosen will be replaced by the same

value. In real-valued representations, the chance of replacing the initial value with the

same number varies with the size of the set of allowable values.

15



The Small Shift operator is only defined for non-binary representations. Here, a

small random number is added to the current value at the position being mutated. The

random number may be chosen from a uniform or normal distribution, and may be

negative. Normally distributed random numbers tend to keep the mutated value close to

the original, while uniformly distributed random numbers do not. The new value must be

checked to insure that it is still within the allowable range for that position. If not, some

correction must be made to produce an allowable value. Some correction methods

include rounding, random replacement, and setting the position to the nearest legal value.

Mutation operators also contain a parameter that determines how often they are

applied. This is known as the mutation rate, and lies on [0,1]. While the crossover rate

is only checked once for each pair of parents, the mutation rate must be checked for each

position on each chromosome. If a randomly generated number is greater than the

mutation rate,u mutation occurs at that position. This can cause slow program execution

due to the large number of comparisons that must be made each generation. The use of

pre-created mutation masks can alleviate this concern in binary representations, though

are generally not as effective with real-valued representations.

Genetic Algorithm Applications

Genetic Algorithms are increasingly being used to optimize and control physical

systems. A fitness fimction that models the system can often be created, and a GA can

16



then be used to find the best inputs to the function. Genetic Algorithms also form the

basis for Learning Classifier Systems, which can be used for system control.

Genetic Algorithms have been successfully applied to a large number of real-

world problems. One of the first such applications was a gas pipeline control system

created by David Goldberg [5], a student of John Holland. Greffenstette [7] mentions

several GA applications including message routing, scheduling, and automated design.

Entire conferences, have been devoted to applications of Genetic Algorithms and

evolutionary techniques to specific disciplines, such as Image Analysis, Signal

Processing and Telecommunications [13]. GAs have also found application in such

varied domains as physics [14], condition monitoring [1], robot control [3,4], game

playing [16], and ecology [20].

Genetic Algorithms can also be used in conjunction with other techniques. By

adding a hill climbing post-processor, for example, it may be possible to reach a global

maximum from a nearly optimal solution obtained by using a GA. Hybrid artificial

intelligence techniques involving Genetic Algorithms, Neural Networks, and Fuzzy

Logic.are becoming increasingly common. Lee and Takagi [10] describe a fuzzy control

system, operating on GA parameters such as mutation rate and population size, which

attempts to combat premature convergence. The use of GAs to evolve fuzzy rule bases

has also been explored. GAs have been used with Neural Networks to optimize neuron

connections and weights [12], as well as for automated architecture selection [18], and

optimal selection of inputs [8].
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3. METHODS

Design of Genetic Algorithm Toolbox

The MATLAB programming environment provides a wide array of tools and

featm-es designed to simplify numerical programming. The MATLAB language is

functionally, a C interpreter with no pointers and only one data type, the matrix. Though

interpreted languages are not ideal for Genetic Algorithms due to speed considerations,

the built-in math functions and graphics tools yield a very versatile programming

environment.

Since Genetic Algorithms can be used on a wide variety of problems, the Toolbox

was designed to be a general purpose GA framework. This framework provides access to

the selection schemes, crossover operators, and mutation operators, which are common to

all GA implementations. Ideally, only one Genetic Algorithm should need to be

constructed in a given programming language. Isolating all of the parts of the program

that change from problem to problem allows the GA to be tailored to a specific problem

with minimal reprogramming.

The Toolbox consists of seven main function files: GASearch, Select,

Crossover, Mutate, Evaluate, GAgui, and the Objective Function. In addition, a

driver function named GA is included for setting program parameters, and another

function, RMplot, is used to control graphical output. The Objective Function and the

driver function contain all of the problem specific information, and are the only files

18



changed when applying the GA to another problem. Figure 5 shows the relations

between these files.

GAgui.m
User Intedace

GA.m

Parameter Settings

GASearch.m

Mam Program Loop

Select.m

Selection Schemes

Crossover.m

Crossover Operators
Mutate.m

Mutation Operators
Evaluate.m j

Assigns Fitness Scores
RMplot.m

Controls Graphics

ObjFun.m
Function To Be Optimized I

Figure 5 - Toolbox Organization

The Toolbox is to be used to conduct a search for the set of numerical parameters

to the Objective Function that cause it to retum the highest value. By writing an

Objective Function that models a physical system to be optimized, many combinations

of system parameter values can be evaluated in an automatic manner.

The main body of the algorithm is the GASearch function. The function first

allocates space for an initial population and initializes them to uniformly distributed

random numbers. The function then begins a loop that iterates the algorithm through

successive generations. Every generation, the Select function is called to choose

members of the population based on the value they retum as parameters to the Objective

Function. The individuals chosen are then recombined to form a new set of potential

solutions using the Crossover function. This new set is then subjected to the Mutation

function, which allows new information to enter the population. Every member of the

new population is then used as a parameter to the Objective Function and assigned a
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fitness score by the Evaluate function. If the fitness goal has not been met and the

maximum number of generation has not elapsed then the G ASearch function begins

another iteration of the loop. Each function will be discussed in detail later in this

chapter.

The GASearch program requires eight matrices as inputs that are used to define

the GA parameters. The input arguments are: maximum number of generations, the

fitness goal, population size, crossover rate, mutation rate, maximum and minimum value

ranges, and a flag for the Evaluate function. Though each of these parameters is a

matrix, all have only one row.

The maximum number of generations and the fitness goal have one column, and

together provide bounds to the loop outlined above. The population size matrix has three

columns; the first is the true population size, the second specifies the type of selection

scheme to be used, and the third gives a tournament size for tournament selection. Since

a two-parent - two-child reproduction scheme is being used, the true population size must

be even, and will be made so if entered incorrectly. The crossover size and mutation rate

matrices each have two columns. Both list the true appropriate rate as a number on [0.0,

1.0] in the first column, and specify a particular operator to be used in the second. The

population maximum and population minimum matrices fix the chromosome length

implicitly, and together form a range over which the search may proceed. The flag for

the Evaluate function determines whether or not the program should compile a list of all

solutions that have been evaluated. If such a list is used, it is possible to save time by not

re-evaluating previously seen solutions. However, this is only practical when ample
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memory is available and the evaluation of the Objective Function takes substantially

more time than searching the list.

The Select, Crossover and Mutate functions all share a similar style of

implementation in terms of how a scheme or operator is chosen. Each use the second

column of the appropriate GASearch input matrix to specify between the available

methods. Each of these functions can also be expanded should, a need for new methods

be experienced. This allows domain knowledge to be used to create problem specific

operators that can better solve the given problem.

The Select function offers four basic selection schemes: Roulette Wheel,

Stochastic Universal Sampling, Linear Ranking, and Tournament selection. Each method

is used to create a list of parents for the next generation. Roulette Wheel assigns each

solution a portion of a one-unit circumference wheel proportional to its fitness value.

Random numbers are then generated on [0, 1] to simulate spins of the wheel. The

solution assigned to the portion of the wheel that contains the random number is selected

to be a parent. Stochastic Universal Sampling is similar, except that only one random

number is generated on [0,1/population size]. The first parent is chosen by where the

random number falls, and the rest are found by successively adding one over the

population size to the initial random number. Linear Ranking assigns the worst solution

a new fitness of 1 and the best solution a new fitness equal to the population size, with all

others linearly in between. The next generation parents are then determined by roulette

wheel selection with the new fitness scores. Tournament selection uses the third column

of the population size GASearch parameter to specify a number of individuals to be
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chosen from the population. The individual with the highest fitness of those chosen is

then put on the list of parents for the next generation. This is repeated until the list is

complete. The completed list is returned to the GASearch function, which in turn passes

it to the Crossover flmction.

The Selection function is also used to insure that the algorithm passes a copy of

the best solution yet formd to the next generation. This is done so that the search will

maintain a good position on the search space until a better on is located. This is knovvm

as elitism, and in this implementation a pristine copy and a copy to be mutated are

perpetuated from one generation to the next. A side effect of this is that the algorithm

will always provide a solution equal to or better than the one it begins with.

The Crossover function uses the second column of the crossover size GASearch

input parameter to determine which crossover operator should be used. If the value of the

parameter is zero. Discrete crossover is performed. This operator selects the first two

individuals on the parent list, and creates two children by selecting for each position on

each child chromosome which parent contributes the genetic material. This is then

repeated for each pair of parents on the list to create the next generation. If the value of

the operator type parameter is not zero, then an N-point operator is used, where N is the

value of the parameter. This operator randomly selects a crossover position on the parent

chromosomes and creates two temporary children. One of these temporary children has

the genetic material of the first parent up to the crossover point and that of the second

parent beyond that point. The second temporary child has the material of parent two first

and then parent one. This process repeats N times on the temporary children for each set
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of parents until the new population is obtained. In both the Discrete and N-point

operators the first column of the crossover size matrix is used as the crossover rate. For

each pair of parents, a random number is generated on [0, 1]. If the number is above the

crossover rate no crossover occurs, and the children are exact copies of the parents.

The first two parents on the list are both the same member of the population due

to the elitism in the Selection function. Since neither the Discrete nor the N-point

crossover operators perform any useful function when the two parents are the same, two

pristine copies of the best individual in the last generation will carry through to the new

population. The new population is returned to the GASeareh function, which transfers it

to the Mutation function.

The Mutation function offers the options of a small normally distributed Small

Shift operator, a viral Neighbor Invasion operator and a uniformly distributed Random

Replacement operator. The second column of the mutation rate matrix specifies which of

these operators should be used. The normal Small Shift operator generates a uniform

random number on [0, 1] and compares this to the first column of the mutation rate

matrix, the true mutation rate. If the value of this random number is less than the

mutation rate a small normally distributed random number is generated, and added to the

first position on the chromosome. This process is repeated at every location on the

chromosome. The Neighbor Invasion operator generates a uniform random number for

comparison with the mutation rate to determine if the operator is to be applied. If the

operator is to be used, another uniform random number is generated. Forty five percent

of the time the value of the position on the chromosome is changed to match that of its
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left neighbor and forty five percent of the time the value is changed to match the right

neighbor. The remaining ten percent corresponds to a random replacement from the

allowable value range at that position. This operator is also applied at every position on

the chromosome. The uniformly distributed Random Replacement operator mimics the

random replacement operation previously mentioned without the neighbor invasion.

The specified mutation operator is applied to all members of the new population

except the first. Since the first and second are both the most fit individual from the last

generation, this completes the elitism implementation by providing one pristine copy of

the best and one mutated copy. The new population has now been obtained from the

previous, and is passed back to the GASearch fimction.

GASearch then calls the Evaluate function with the new population and the table

flag as arguments. For each member of the population, this fimction calls the Objective

Function with the chromosome as its input parameters. If the table flag is set then each

chromosome is checked against the table before being evaluated. The output of the

Objective Function for each member of the population is recorded on a list, which will

be passed back to GASearch and used by the Select function in the next iteration.

Once the search has terminated, the GASearch function returns the best set of

parameters and a list of all the fitness values achieved. A sorted list of fitness values is

also provided, along with an index matrix to transform between the two. The GA and

GAgui functions are used to handle the construction of the GASearch input matrices,

and to construct meaningful interpretations of the progress and results.
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The GAgui file defines a graphical user interface to the program. This interface

can be used to set all of the parameter values to the GA, and also laimches the search and

displays the progress. The interface was constructed using the MATLAB GUI design

tools, and was a fairly automatic process. This interface allows the program to be used

with minimal direct manipulation of the underlying source code

The Objective Function must be written to model the problem to be solved.

Indeed, the Objective Function is the only connection between the GA and the system

being optimized. The use of a separate function such as this allows great latitude in the

types of models that can be made. Individual positions on the chromosome can

correspond to different parameters within the modeled system, each having separate

allowable ranges. These parameters could represent such things as the coefficients of a

function, loop bounds and array values, strategies for playing tic-tac-toe, even variables

to be selected for training an Autoassociative Neural Network. The use of MATLAB

makes applications like these easily realizable. The next section details the application of

the Toolbox to the Raccoon Mountain Pumped Storage scheduling problem.

Application To Raccoon Mountain

Several factors must be accounted for to accurately model the Raccoon Mountain

Facility. First, the value of energy as a function of demand needs to be represented.

Second, since the input and output power of the pump-turbines depends upon the water

level this relationship must be characterized. Finally, the schedules should not cause the
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water level in the upper reservoir to drop below 1530 feet or to rise above 1672 feet, and

the pool must be returned to the full level by the last hour of the week.

The value of energy based on demand was obtained from a curve fit for three

points: 0.008 $/kWh at 8000 MW, 0.012 $/kWh at 14000 MW, and 0.024 $/kWh at

20000 MW. This fit results in an equation for the cost of energy as a function of the

region-wide demand. This equation is

y= 1.511 -0.1777X + 0.01111 x2 ,

where y is the cost in cents per kilowatt hour and x is the demand in gigawatts. Figure 6

shows this relation.
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Figure 6 - Incremental Cost of Energy

The input power required for pumping and the output power acquired when

generating were modeled from the pump curves provided by TVA. These curves are



shown in Figure 7. The breaks in the two curves are due to intake vane manipulation

done to retain efficiency, and the differing discharge rates.
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Figure 7 - Pump-Turbine Power Requirements

By declaring two single row matrices and initializing them based upon the

equations, simulations of the power value and input-output curves were created. A range

of demands from 5000 MW to 28282 MW was used, and a range of head pond levels

from 1530 ft . to 1672 ft . It is then easy to determine the costs and effects associated with

operating the facility, when provided with the upper reservoir pool level and the region-

wide demand, by indexing into these matrices. There is a simplifying assumption being

made here; namely that the discharge rates from the pump-turbines remain constant.

Though this is not accurate, it allows for much less complicated calculations. Dividing

the 142 feet of head variation by the 27 hours of pumping that is needed to fi ll the pool

yields an average pumping rate of 1.32407 feet per hour per pump. Likewise, the



turbines were each found to empty 1.7875 per hour, based on 20 hours to empty the entire

reservoir. This eliminates the need to deal directly with the efficiencies of the pump-

turbines.

To insure that the schedules conform to the operating limitations of the facility,

matrices for the hourly allowable minimum and maximum water levels were created.

The maximum level is 1672 feet. The minimum pool level is 1530 feet from hours 1 to

140 and then climbs linearly to 1672 by hour 168, since a maximum of 27 hours of

pumping are needed to fill the pool. The correction of schedules that do not meet these

criteria will be discussed later.

The weekly schedule was fixed to start on Monday moming at 8AM with a full

upper reservoir. By interpreting the value of a location on the chromosome as the

number of pumps or turbines in action during a given hour, it is possible to simulate the

operation of the Raccoon Mountain facility and to calculate the financial profit or loss of

a proposed schedule. This profit or loss figure is then used as the fitness score for the

schedule being evaluated.

Beginning at the first position on the chromosome, the Objective Function

calculates the amount of power needed or produced by the action specified at the present

head level. This value is then added or subtracted from the predicted demand level for

that point in the week. This new value for demand represents the additional load on the

region-wide system when running the pumps, or the reduced amount of load that needs to

be otherwise met when running the turbines. The cost of this action is then determined

28



by indexing into the value of energy matrix at the new demand level and converting to

dollars per Megawatt hour.

The change in water level associated with the action specified is next determined.

The new water level at the end of the hour's operation is then compared to the minimum

and maximum allowable pool levels. If a particular hourly action would cause the water

level to exceed the maximum or drop below the minimum level for that hour, the value of

the chromosome is replaced by the nearest legal value. For example, if the use of four

pumps would cause the water level at the next hour to be 1673 feet, the schedule will be

corrected so that only three pumps are used and the constraint is met. This correction

method allows any schedule to be transformed into a viable one during evaluation.

Once the cost of the action is computed and its effect on the water level is known

the procedure is repeated using the action specified in the next position on the

chromosome. This continues until the entire weekly schedule has been evaluated. The

cost of each hourly action is summed, and this represents the weekly operating return for

the proposed schedule. This is then used as the fitness score, and has units of thousands

of dollars.

The energy value curve and the input-output curves, as well as the predicted

demand and the head level constraints, are declared and constructed as global variables in

the GA driver function associated with the application. The parameter matrices used as

inputs to GASearch are also constructed in this driver. When the search terminates^

either by reaching the fitness goal or the maximum number of generations, the GA file
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saves the contents of the workspace and displays the best solution produced by the

search.

The GASearch function was also modified to call a function that provides a real

time progress display. The function, RMplot, is used to create three plots. 'Rie first plot

shows the improvements in fitness by monitoring the retum of the best schedule of each

generation. The second plot displays the upper reservoir's hourly water level using the

current best schedule. The final plot uses the same schedule to depict the impact of the

Raccoon Mountain facility on the region-wide demand. A sample of the display is shown

in Figure 8.
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4. RESULTS

Parameter Settings

A large amount of trial and error testing was done in order to decide what

combinations of selection scheme, crossover operator, and mutation operator produced

the best results in the least time. By examining the Progress by Generation indicator on

the output display it is possible to see the effects of different combinations. Almost all of

the combinations showed a rapid evolution from the random initial population, followed

by a leveling off when the population converged. Progress up to the convergence point

appears to be guided primarily by the crossover operation, and beyond that point all

further gains are generally the result of mutation. The slope of the progress curve up to

the convergence point shows wide variation when different combinations are employed,

and is used as the basis for comparison. All combinations were tested using the sample

weekly load curve shown in Figure 2.

A typical fitness for the best random schedule in the initial population is on the

order of-$300,000 per week, which illustrates the potential losses that could be incurred

without proper scheduling. All of the combinations explored were eventually able to

evolve schedules that produced a profit. However, the number of generations a particular

combination of settings needed to reach this point varied greatly.

Tournament selection appears to offer the quickest and most steady progress,

regardless of the crossover and mutation operators used. Some improvement in the

fitness is made every generation until the convergence point. Roulette Wheel, Universal
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Stochastic Sampling, and Linear Ranking all experienced generations where no

improvement was made. This often happened as early as two or three generations into

the nm. All three of these schemes showed slower progress than Tournament selection,

and generally had final profit results that were significantly lower. The tournament size

producing the best results was typically a little over half of the population size.

The N-point and Discrete crossover operators displayed very little difference in

their effects on-the progress of the search. N-point was chosen as the default operator

since Discrete crossover can cause information in the population to be lost. A range of

values for N was tested to determine the impact of multiple crossover points. When less

than about six crossover points are used, progress tends to be slow. However, when the

value of N is between six and about thirty, progress is much more rapid.. Increasing the

number of crossover points above thirty does not significantly improve the results, but

does increase processing time.

The use of the Neighbor Invasion mutation operator appears to have a significant

impact on the progress of the search. Schedules produced using this operator also

conform more closely to what human schedulers would produce. Specifically there are

few periods where pumps or turbines are turned on and off rapidly. An example of this

would be a gradual progression from one pump to four pumps occurring over four hours,

instead of going directly from one pump in hour one, to four pumps in hours two and

three, and then back to one pump in hour four. The Random Replacement operator

produced the opposite results. The smoothing effects that the Neighbor Invasion operator

has on the schedule are lost. This not only causes problems with the pump-turbines at
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Raccoon Mountain, but would also have an adverse effect on the other power generation

facilities in the TVA system. The Random Replacement operator was also not able to

reach as high of a fitness level as the Neighbor Invasion operator for the same number of

generations.

The population size and the crossover and mutation rates also directly affected the

speed at which the search progressed. If the population size was very small, convergence

typically occurred before a highly profitable schedule could.be found. Trial and error

indicated that a population size of about one hundred was sufficient to prevent premature

convergence due to lack of information in the initial population. The GA relies on

crossover to exploit existing information and mutation to incorporate new information

into the population. Since the main work of the search is done by the crossover

operation, a high crossover rate is generally preferred. A fairly low mutation rate enables

the search to gain new information without abandoning information that already exists.

The default parameter settings for crossover and mutation were chosen as 0.8 and 0.4

respectively.

The best settings identified for selection, crossover, mutation, and the population

size were incorporated into the GAgui file as the default selections, and are shown in

Table 1 below. Historical data about typical weekly demand curves for each season was

provided by TVA, and these default parameters "were used to conduct searches for the

best schedule for each demand curve. The results of the searches will be examined in the

next section.
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Table 1- Default Parameter Settings

Parameter Name Parameter Setting

Population Size 100

Selection Scheme Tournament

Tournament Size 55

Crossover Operator N-point

Crossover Points 6

Crossover Rate 0.8

Mutation Operator Neighbor Invasion

Mutation Rate 0.4

Seasonal Loads

The highest demand for electricity in the TVA region is in the summer and winter

months. Typical hourly demand in the winter ranges from 15,000 to 25,000 MW during

this time, and peaks twice daily. Since spring weather in the region is fairly mild, less

electricity is used for heating than in the winter months. This results in hourly demands

ranging from 10,000 to 18,000 MW, and also shows a double daily peak. Summers in the

region tend to be quite warm, and the hourly demand for electricity ranges from 14,000 to

25,000 MW. The demand curve for the summer months, however, peaks only once per

day. Fall weather is similar to the spring, and results in hourly demands from 11,000 to

17,000 MW. Figures 9 through 12 show representative demand loads for each season.
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Ten thousand random schedules were generated for each seasonal curve to

provide a comparison between the Genetic Algorithm and Random Search. The results

of the Random Search are shown in Table 2. Four runs of the Genetic Algorithm were

then conducted for each of the seasonal demand curves. All runs used the default settings

listed in the last section, and each run lasted one hundred generations. The results of each

run are tabulated in Table 3, where the fitness score corresponds to weekly profit in

thousands of dollars. For an equal number of schedule evaluations the Genetic Algorithm

outperforms the simple Random Search in every case.

The GA performed extremely well on the summer demand cmre, most likely due

to the large variation between minimum and maximum demand. The demand is also high

enough in the summer to push the TVA system into the steep portion of the incremental

cost curve. While the winter demand curve also has a large range, the daily variations do

not appear to be great enough to cause the schedules to assume a more or less daily

pattern as is observed with the summer curve.

Table 2 - Random Search Results

Season Best Fitness

(lOOO's of Dollars)

Winter -261.8886

Spring -172.1430

Fall -166.9189

Summer -114.4241

38



Table 3 - Genetic Algorithm Results

Season Run Number Best Fitness

nOOO's of Dollars)

Winter 1 244.3848

Winter 2 214.9610

Winter 3 271.7147

Winter 4 250.2554

Spring 1 72.6647

Spring 2 64.6047

Spring 3 65.9362

Spring 4 66.6481

Summer 1 801.6419

Summer 2 756.2335

Summer 3 753.3519

Summer 4 736.1586

Fall 1 60.2173

Fall 2 55.3109

Fall 3 51.2546

Fall 4 53.0878
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The spring and fall demand curves both show a fair amormt of daily variation, but

both are on the less steeply sloping part of the incremental cost curve than the summer

and winter demands. However, the GA finds weekly cycles in both cases that result in a

modest profit. Since the profitability of the pumped storage system relies heavily on

fluctuations in the price of energy, less return will be generated by the system when there

is little variation in daily and weekly demand.

For all four seasonal demand curves the Genetic Algorithm also succeeds in

shaving peak region-wide loads. This is an emergent property of the GA, and is

consistent with the current operation of Raccoon Mountain. Figures 13 through 16 show

the graphical output generated by the Rmplot fionction for the fourth run for each season.

The rate of progress of the GA for each run was fairly consistent, and in each case the

population converged before the end of the hundred generations. This implies that by the

end of the search the GA was mainly relying on mutation. Thus it appears that increasing

the population size or extending the number of generations might produce more

profitable schedules.
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5. CONCLUDING REMARKS AND RECOMMENDATIONS

FOR FUTURE RESEARCH

The Genetic Algorithm approach to schedule optimization has generated highly

profitable schedules in a relatively short time. A typical run with a population size of one

hundred evolving through one hundred generations involves only ten thousand schedule

evaluations, which is less than 5'^^^ percent of the total search space. A Random Search

of the space with the same amount of schedule evaluations can not generally produce a

schedule that shows a profit, and an Exhaustive Search of the space is not possible.

The Genetic Algorithm also provides two improvements over the current

scheduling algorithm used by TVA. The current method utilizes Dynamic Programming,

and requires a substantial amount of time to run. Ten thousand schedule evaluations can

be conducted by the GA in less than eight minutes on a Pentium III 500Mhz personal

computer. Converting the GA software from MATLAB to C or C++ would reduce

computing time by two or three orders of magnitude.

The scheduling program in use now also requires that the program be completely

rerun every time new demand prediction information becomes available. The GA,

however, can use the results of a previous search as part of the initial population for a

new search when updated demand predictions are received. This can greatly reduce

computation time necessary to produce a profitable schedule.

The current TVA scheduling program includes some operating considerations that

the Genetic Algorithm does not. Inter-region buying and selling of electricity, scheduled
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maintenance outages, and proper pump-turbine discharge rates are all incorporated into

the current Dynamic Programming algorithm. Inclusion of these factors into the Genetic

Algorithm could improve performance and provide a more accurate model of the system.

Two of the most frequently encoimtered problems with Genetic Algorithms are.

the selection of proper parameter settings and premature convergence. Both of these

problems could be addressed by the inclusion of a Fuzzy Logic control system as

described by Lee and Takagi [10]. This would create a Dynamic Parametric Genetic

Algorithm, which uses fuzzy rules to adjust parameters during a run based on the

progress of the search. This eliminates the need for trial and error testing to determine

good operating parameters, and makes the GA more robust to premature convergence.
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FOR

MATLAB GA TOOLBOX
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Source Code for GAgui.m

%GAgui
% Graphical User Interface to Genetic Algorithm Toolbox
% Constructed using MATLAB Guide
%

% Ryan Thomas
% Copyright 1999

load def_params
load GAgui

hO = figure('Color',[0.8 0.8 0.8],...
'Colormap',matO,...
TileNameVCAMATLABRl l\bin\testgui.fig', ...
'HandleVisibilityVcallback',...
'PaperPosition',[18 180 576 432],...
'PaperUnitsVpoints',...
•Position',[163 358 554 199],...
•Tag','Figl',...
'ToolBar','none');

hi = uicontrol('Parent',hO,...
'Units','points', ...
'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588],
'Callback','GA(popsize,maxgens,xrate,murate);',...
'ListboxTop',0,...
'Position',[250.5 82.5 80.25 50.25],...
'String','RUN',...
'Tag','Parameter List');

hi = uicontrol('Parent',hO,...
'Units','points',...
'BackgroundColor',[l 1 1],...
'Callback',matl,...
'Position',[32.25 69 84 63],...
'String',mat2, ...
'Style','listbox', ...
'Tag','Parameter List', ...
'Value',1);

hi = uicontrol('Parent',hO,...
'Units','points', ...
'BackgroundColor',[l 1 1],...
'ListboxTop',0,...
'Position',[32.25 36 84 15],...
'String','100', ...
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'StyleVedit',...
'Tag','Value Box',...
'Value',2);

hi = uicontrol('Parent',hO,...
'Units','points', ...
'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588],
'Callback',mat3,...
'ListboxTop',0,...
'Position',[150 117 65.25 15],...
'Strmg',mat4,...
'Style','popupmenu',...
'Tag','PopupMenuT,...
'Value',4);

bl = uicontrol('Parent',bO,...
'Units','points',...
'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588],
'Callback',mat5,...
'ListboxTop',0,...
'Position',[150 36 45 15],...
'String','Set Value',...
'Tag','Pusbbutton T);

bl = uicontrol('Parent',bO,...
'Units','points', ...
'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588],
'Callback',niat6,...
'ListboxTop',0,...
'Position',[150 90 65.25 15],...
'String',mat7, ...
'Style','popupmenu',...
'Tag','PopupMenu2',...
'Value',2);

bl = uicontrol('Parent',bO,...
'Units','points', ...
'Callback',mat8,...
'ListboxTop',0,...
'Position',[150 63 65.25 15],...
'String',mat9,...
'Style','popupmenu',...
'Tag','PopupMenu3',...
'Value',2);

bl == uicontrol('Parent',bO,...
'Units','points', ...
'BackgroundColor',[0.752941176470588 0.752941176470588 0.752941176470588],
'ListboxTop',0,...
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'Position',[265.5 46.5 55.5 15.75],...
'Style','text', ...
'Tag','Progress Display');

54



Source Code for GA.m

function GA(popsize,maxgens,xrate,murate)
% Controls Creation of GA Parameters and Raccoon Mountain curves

%

% Ryan Thomas
% Copyright 1999

home

global allpumps %whether to allow pumps to be used individually
allpumps=4; %1=[-1,1] 4=[-4,4]

%default parameters, loaded in GAgui
%maxgens=500;popsize=[100,4,55];
%xrate=[.8,3 0] ;murate=[.4,2];

%choose operating parameters
pumpcurve=l ;loads=5;costcurve=2; n
usetable=0;goal=500;

if allpumps=4
popmax=4*ones(l, 168);
popmin=-4*ones(l, 168);

elseif allpumps=l
popmax= 1 * ones( 1,168);
popmin=-1 * ones( 1,16 8);

end

global t
t=0:.0416;7; %daily sine time
global Icurve
lcurve=zeros(l ,size(t,2));
ifloads==0

load myload
elseif loads=l

lcurve=14500+3500*sin(2*pi*(t-.0416)); %even daily sine wave
elseif loads=2 | loads ==4

lcurve=[15500,16375,17250,18125,19000,19000,19000,19000,19000,19000,19000,
17833,16667,15501,14335,13169,12000,12000,12000,12000,12000,13000,
14000,15000,16000,17000,18000,19000,20000,20000,20000,20000,20000,20000,20000,
%6pm tuesday

18834,17668,16502,15336,14170,13000,13000,13000,13000,13000,14000,15000,
16000,17000,18000,19000,20000,21000,21000,21000,21000,21000,21000,21000,
%6pm wed
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19667,18334,17000,15668,14335,13000,13000,13000,13000,13000,14000,15000,16000,
17000,18000,19000,20000,21000,21000,21000,21000,21000,21000,21000,
%6pm thurs
19667,18334,17000,15668,14335,13000,13000,13000,13000,13000,14000,15000,16000,
17000,18000,19000,20000,21000,21000,21000,21000,21000,21000,21000,
%6pm fri
19667,18334,17000,15668,14335,13000,13000,13000,13000,13000,13625,14250,14875,
15500,16125,16750,17375,18000,18000,18000,18000,18000,18000,18000,
%6pm sat
16834,15668,14502,13336,12170,11000,11000,11000,11000,11000,11500,12000,12500,
13000,13500,14000,14500,15000,15000,15000,15000,15000,15000,15000,
%6pm sun
14500,14000,13500,13000,12500,12000,12000,12000,12000,12000,12875,13750,14625]
9

elseif loads==3

lcurve=[ 14000.00,15000.00,16000.00,17000.00,18000.00,18000.00,18000.00,18000.00,
18000.00,18000.00,

18000.00,17000.00,16000.00,15000.00,14000.00,13000.00,12000.00,12000.00,12000.00,
12000.00,12000.00,12500.00,13000.00,13500.00,14000.00,14500.00,15000.00,15500.00,
16000.00,16000.00,16000.00,16000.00,16000.00,16000.00,16000.00,15000.00,14000.00,
13000.00,12000.00,11000.00,10000.00,10000.00,10000.00,10000.00,10000.00,11000.00,
12000.00,13000.00,14000.00,15000.00,16000.00,17000.00,18000.00,18000.00,18000.00,
18000.00,18000.00,18000.00,18000.00,16666.50,15333.00,14000.00,12667.00,11333.50,
10000.00,10000.00,10000.00,10000.00,10000.00,11125.00,12250.00,13375.00,14500.00,
15625.00,16750.00,17875.00,19000.00,19000.00,19000.00,19000.00,19000.00,19000.00,
19000.00,17833.50,16667.00,15500.00,14333.00,13166.50,12000.00,12000.00,12000.00,
12000.00,12000.00,12875.00,13750.00,14625.00,15500.00,16375.00,17250.00,18125.00,
19000.00,19000.00,19000.00,19000.00,19000.00,19000.00,19000.00,17500.00,16000.00,
14500.00,13000.00,11500.00,10000.00,10000.00,10000.00,10000.00,10000.00,10500.00,
11000.00,11500.00,12000.00,12500.00,13000.00,13500.00,14000.00,14000.00,14000.00,
14000.00,14000.00,14000.00,14000.00,12833.50,11667.00,10500.00,9333.00,8416.50,
7500.00,7500.00,7500.00,7500.00,7500.00,8000.00,8500.00,9250.00,10000.00,10750.00,
11500.00,12250.00,13000.00,13000.00,13000.00,13000.00,13000.00,13000.00,13000.00,
12500.00,12000.00,11500.00,11000.00,10500.00,10000.00,10000.00,10000.00,10000.00,
10000.00,11000.00,12000.00,13000.00 ];
elseif loads==5

hand=figure(3);
plot([0])
for 1=1:168

xlim([.9 i+(i-.9)])
ylim([8000 25500])
grid on
hold on

plot( [ 1 :i-1 ] ,lcurve( 1,1 :i-1))
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[dummy,lcurve( 1 ,i)]=ginput( 1);
hold off

end

clf reset

plot(lcurve)
xlim([l 167])
ylim([8000 30000])
title('New Load - Press any key')
pause

cl6se(hand)
end

ifloads==4 % with 5% random "noise"

lcurve=lcurve+(lcurve* .05. *randn( 1,168));
end

global capacity
capacity^SOOO: 1:28282; %MW
global cost
if costcurve=l

cost=.132 + 42e-6* capacity + 4.667e-9*(capacity.^2);
elseif costcurve==2

cost=l .511 1777*(capacity./l 000)+.01111 * ((capacity ./1000).'^2);
end

global minhead
minhead=zeros( 1,169);
for i=l:142, minhead(i)=1530;end
for i=169:-l:143, minhead(i)=1672-(169-I)*5.296;end
global output
global input
output=zeros( 1,143);
input=zeros( 1,143);

if pumpcurve==l %from conceptual study
for i=l:76,
output(i)=1340+(180/76)*i; •

end

for i=77:143,
output(i)=1520;

end

for i==l:91,
input(i)=l 500+(-75/90)*i;

end

for i=92:143,
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input(i)=1425+(-135/50)*(i-92);
end

end % if pumpcurve=l

if pumpcurve==2 %jfrom engineering judgement
for i=l:76,
output(i)=l 000+(300/76)*i;

end

forH77:143,
output(i)=1300+(200/65)*(i-76);

end

fori-l:76,
input(i)=l 500+(200/76)*i;

end

for i=77:143,
input(i)=1700+(300/65)*(i-76);

end

end%if pumpcurve=2;

if pumpcurve==3 %from energy in storage chart
head=l 530:1:1672;
depth=head-1529;

eg=0.084507*depth+.00019837*(depth.^2)+.000005588*(depth.^3);
ep=41-.077465*depth-.00029756*(depth.^2)-.0000083820*(depth.^3);
egp=.084507+.00039674*depth+.000016764*(depth.^2);
epp=-.077465-.00059512*depth-.000025146*(depth.'^2);
input=-epp* 1000*5.259;
output=egp* 1000*7.1;

end %if pumpcurve==3;

[table,sorted_table,SI,best] =
GAsearch(maxgens,popsize,xrate,murate,popmax,popmin,usetable,goal);
%display results and settings

best

popsize=popsize
xrate=xrate

murate=murate

pumpcurve^pumpcurve

loads=loads

costcurve=costcurve

%save all active variables to a file

%to recall, use "load optimal"
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save optimal
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Source Code for GASearch.m

function [table,sorted_table,SI,best] =
GASearch(niaxgens,popsize,xrate,murate,popmax,popmin,usetable,goal);
% [table,sorted_table,SI] =
GASearch(niaxgens,popsize,xrate,niurate,popniax,popmin,usetable,goal)
% GASearch attempts to maximize ObjFun.m with respect to its parameters.
%

% Input Parameters:
% maxgens( 1x1) = maximum number of generations to compute
% popsize(lx2) = [population size ,selection type]
% xrate (1x2) = [crossover rate (<1.0) ,crossover type]
% murate (1x2) = [mutation rate («1.0) ,mutation type]
% popmax (Ixr) = the maximum acceptable parameter string
% popmin (Ixr) = the minimum acceptable parameter string
%  where: r is the number ofparameters to ObjFun.m
% usetable(lxl)= 1 to check against repeat table, 0 to evaluate all
% goal (1x1) = fitness goal
% Output:
% table(Kxr+l) = evaluation ordered table of all evaluated parameter combinations
% where: the column r+1 contains the fitness

% sorted_table = the same table sorted by increasing fitness
% SI = reordering matrix such that sorted_table=table(SI,:)
%

% Ryan Thomas
% Copyright 1999

global Icurve;
global input;
global output;
global allpumps;
global tableindex;
tableindex=l;

if rem(popsize( 1,1 ),2)~=0
popsize( 1,1 )=popsize( 1,1)+1;

end

%normal random starting pop
pop=rand(popsize( 1,1 ),size(popmin,2));
a=(popmax);
for i=l:popsize(l,l)
pop(i,:)=a.*pop(i,:);

end
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pop=ceil(pop);
for i=l:popsize(l,l)
for j=l :size(pop,2);
k=rand;
ifk<.5

pop(i,j)=-pop(i,j);
end

end

end

tablesize=popsize( 1,1 )*maxgens;
if usetable==l

table=zeros(tablesize,size(popmax,2)+1);
else

table=zeros(tablesize, 1);
end

hl=gcf;
h2=figure(2);
[fitness,table,pop]=evaluate(pop,table,usetable);
1=1;
progress=zeros(l ,maxgens+l);
best_initial_fitness=max(fitness)
progress( 1,1 )=best_initial_fitness;
while max(fitness)<goal
gen=i %only used to diplay progress to console
nextgenind=select(fitness,popsize);
newpop=crossover(pop,nextgenind,xrate);
pop=mutate(newpop,murate,popmax,popmin);

[fitness,table,pop]=evaluate(pop,table,usetable);
best_fitness=max(fitness)
progress( 1 ,i+1 )=best_fitness;
ProgressHandle=findobj(hl ,TagVProgress Display');
set(ProgressHandle,'String',best_fitness);
if i>5

if progress( 1 ,i+1 )==progress( 1 ,i-1)
disp('convergence correction');
tableindex=tableindex-popsize( 1,1);
w_ind=find(fitness==min(fitness));
tenip=floor(( 1 +popmax). *rand( 1,168));
for newi=l;168

newk=rand;
if newk<.5

temp( 1 ,newi)=-temp( 1 ,newi);
end
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end

pop(w_ind(l ,l),:)=temp;
fitness(w_ind)=max(fitness)-.01 *abs(max(fitness));

end

end

rmplot(progress,fitness,pop,i,maxgens)
i=i+l;
if i>maxgens
break

end

end

if usetable==l

best=sorted_table(size(sorted_table, 1), [ 1: size(table,2)-1 ]);
else

top=max(fitness);
bestind==find(fitness==top);
best=pop(bestind(l),:); %only one of best

end

[sorted_table,SI]=sortrows(table,size(table,2));
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Source Code for Select.m

function nextgenind=select(fitness,popsize);
% nextgenind=select(fitness,popsize)
% SELECT chooses population members for reproduction based on fitness
%

% Inputs:
% fitness (N X 1) = fitness of each population member
% popsize(lx2) = [population size ,selection type]
% Outputs:
% nextgenind (N/2 x 2) = indices of parents
%

% selection types: 1 = roulette wheel selection
%  2 == stochastic universal sampling
%  3 = linear ranking
%  4 = toumament selection
%

%

% Ryan Thomas
% Copyright 1999

N=popsize(l,l);

if popsize( 1,2)== 1 %roulette wheel
best=max(fitness);
best=fmd(fitness==best);
nextgenind=[best(l,l),best(l,l)]; %elistist
f2=fitness/sum(fitness);
wheel=zeros(popsize(l, 1), 1);
wheel(l)=f2(l);
for 1=2: sizeffitness, 1)
wheel (i)=wheel(i-1 )+f2(i);

end

spins=rand(popsize(l, 1 )-2,1);
nextgenind=[best( 1,1 ),best( 1,1)];
for i=l :2:size(spins,l)
ind 1 =fmd(wheel>=spins(i));
ind2=find(wheel>=spins(i+1));
nextgenind=[nextgenind;ind 1(1,1 ),ind2( 1,1)];

end

end

if popsize(l,2)==2 %stochastic universal sampling
best=max(fitness);
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best=find(fitness==best);
nextgenind=[best( 1,1 ),best( 1,1)]; %elistist
f2=fitness/suin(fitness);
wheel=zeros(popsize( 1,1), 1);
wheel(l)=f2(l);
for i=2:size(fitness,l)
wheel(i)=wheel(i-1 )+f2(i);

end

spins=zeros(popsize( 1,1 )-2,1);
dist= 1 / (popsize( 1,1 )-2);
spins( 1 )=dist*rand( 1,1);
for i=2: (popsize( 1,1 )-2)

spins(i)=spins(i-1 )+dist;
end

nextgenind=[best( 1,1 ),best( 1,1)];
for i=l :2:size(spins,l)
ind 1 =find(wheel>=spins(i));
ind2=find(wheel>=spins(i+l));
nextgenind=[nextgenind;indl (1,1 ),ind2( 1,1)];

end

end

if popsize( 1,2)=3 % linear ranking
best=max(fitness);
best=find(fitness==best);
nextgenind=[best( 1,1 ),best( 1,1)]; %elistist
oIdfitness=fitness;
[f2,ind]=sortrows(fitness);
for i=l:(popsize(l,l))
fitness(ind(i))=popsize( 1,1)+1 -i;

end

f2=fitness/sum(fitness);
wheel=zeros(popsize( 1,1), 1);
wheel(l)=f2(l);
for i=2:size(fitness,l)
wheel(i)=wheel(i-1 )+f2(i);

end

spins=rand(popsize( 1,1 )-2,1);
nextgenind=[best( 1,1 ),best( 1,1)];
for i=l :2:size(spins, 1)
ind 1 =find(wheel>=spins(i));
ind2=find(wheel>=spins(i+1));
nextgenind=[nextgenind;ind 1(1,1 ),ind2( 1,1)];

end
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fitness=oldfitness;
end

ifpopsize(l,2)=4 %toumament
best=max(fitness);
best=find(fitness=best);
nextgenind=[best( 1,1 ),best( 1,1)]; %elistist
a=popsize( 1,3); %number of combatants
for i=l:2:(N-2)
%select combatants

tnext=[];
for k=l:2

temp=-1 Oe 1 O*ones(popsize( 1,1), 1);
for j=l:a
b=ceil(popsize(l, 1 )*rand( 1,1));
temp(b)=fitness(b);

end

%select best

t2=max(temp);
ind=find(temp==t2);
tnext=[tnext,md( 1,1)];

end

nextgenind=[nextgenind;tnext];
end

end
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Source Code for Crossover.m

function newpop=crossover(pop,nextgenind,xrate)
% newpop=crossover(pop,nextgenind,xrate)
% CROSSOVER begins the reproduction process
% Inputs:
% pop (Nxr) = current population
% nextgenind (N/2 x 2) = parents selected for reproduction
% xrate (1x2) = [crossover rate (<1.0),crossover type]
% Outputs;
% newpop (Nxr) = intermediate population
%

% Crossover types: 0 == discrete
%  n == n point
%

% Ryan Thomas
% Copyright 1999

[N,n]-size(pop);

if xrate( 1,2)==0 %discrete
a=0;
for i=l:2:(N-l)
a=a+l;

d=nextgenind(a, 1);
e=nextgenind(a,2);
g=rand;
ifg<xrate(l,l);
k=round(rand( 1,168));
m=round(rand( 1,168));
kl=fmd(k==l);
k0=find(k==0);
ml=fmd(m==l);
m0=find(rn==0);
newpop(i,k 1 )=pop(d,k 1);
newpop(i,kO)=pop(e,kO);
newpop(i+1 ,m 1 )=pop(d,m 1);
newpop(i+l ,mO)=pop(e,mO);

else

newpop(i,:)=pop(d,:);
newpop(i+l,:)=pop(e,:);

end

end
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end

if xrate( 1,2)>= 1 % n point
a=0;
for i=l :2:(N-1) %thru pop
tpopl=zeros(l,168);
tpop2=zeros( 1,168);
flag=0;
a=a+l;
g=rand;
d=nextgenind(a, 1);
e=nextgenind(a,2);
k=ceil((n-1) * rand);
ifg<=xrate(l,l)
tpopl=[pop(d,l :k),pop(e,k+l :n)];
tpop2=[pop(e,l :k),pop(d,k+l :n)];

else

newpop(i,:)=pop(d,:);
newpop(i+l,:)=pop(e,:);
flag=l;

end

if flag=0
for points=2 :xrate( 1,2) %number of xover points
k=ceil((n-l)*rand);
tpop3=[tpopl(l,l :k),tpop2(l,k+l :n)];
tpop4=[tpop2( 1,1 :k),tpop 1 (1 ,k+1 :n)];
tpopl=tpop3;
tpop2=tpop4;

end

newpop(i,:)=tpopl(l,:);
newpop(i+l,:)=tpop2(l,:);

end

end

end
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Source Code for Mutate.m

function pop=mutate(newpop,murate,popmax,popmin)
% pop=mutate(newpop,murate,popmax,popmin)
%. MUTATE completes reproduction
%

% Inputs:
% newpop (Nxr) = intermediate population
% murate (1x2) = [mutation rate («1.0) ,mutation type]
% popmax (1 xr) = the maximum acceptable parameter string
% popmin (Ixr) = the minimum acceptable parameter string
% Outputs:
% pop (Nxr) = next generation population
%

% mutation types: 1 = small randn
%  2 = invade neighbor w/10% random replace
%  «allpumps must be defined»
%  3 = random replace «must manually change range»
%  4 = randperm(8) only one spot «for 8 queens»
%  5 == randperm(8) all «for 8 queens»
%

%

% Ryan Thomas
% Copyright 1999

global allpumps

[N,n]=size(nevvpop);
if murate(l ,2)~1 %small normal(+/- < ~5) integer movement
for i=l:N

for j=l:n
k=rand;
if ((k < murate(l,l)) & (i>l))%skips 1 copy of best
a=ne'wpop(i,j )+(floor(3 *randn));
if a>popmax(l,j)
a=popmax(lj);

end

if a<popmin(l,j)
-a=popmin(lj);
end

pop(i,j)=a;
else

pop(i,j)=newpop(i,j);
end
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end

end

end

if murate( 1,2)=2 %neighbor replacement w/10% random replace
fori=l:N

forj=i:n
k=rand;
if ((k < murate(l,l)) & (i>l))%skips 1 copy of best
if((j—l)&a~=n))
k=rand;
ifk<.45

pop(iJ)=newpop(iJ-l);
else if k>.55

pop(i,j)=newpop(ij+l);
else

if allpumps=4
pop(iJ)=floor(9*rand);
if pop(iJ)>=5;
pop(ij)=4-pop(i,j);

end

if pop(i,j)=-5
pop(ij)=-4;

end

elseif allpumps=l
pop(i,j)=fIoor(3 *rand);
if iop(i,j)==2 I pop(i,j)==3)
pop(i,j)=-l;

end

end

end '
end

else

ifj==l
pop(iJ)=newpop(i,2);

else

pop(iJ)=newpop(i,n-l);
end .

end

else

pop(i,j)=newpop(iJ);
end

end

end
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end

if murate( 1,2)=3 %random selection from [-4,4]
fori=l:N

forj=l:n
k=rand;

if ((k < nmrate(l,l)) & (i>l))%skips 1 copy of best
pop(i,j)=floor(9*rand);
ifpop(iJ)>=5;
pop(iJ)=4-pop(i,j);

end

else

pop(iJ)=newpop(i,j);
end

end

end

end

if murate( 1,2)=4 %generate randperm(8) and replace cor. j
fori=l:N

forj=l:n
k=rand;

if ((k < murate(l,l)) & (i>l))%skips 1 copy of best
t=^andperm(8);
pop(i,jH(j);

else

pop(ij)=newpop(i,j);
end

end

end

end

if murate( 1,2)=-5 %generate randperm(8)
for i=l:N

k=rand;
if ((k ̂  miirate(l,l)) & (i>l))%skips 1 copy of best
pop(i,:)=randpemi(8);

else

pop(i,:)=newpop(i,:);
end

end

end
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Source Code for Evaluate.m

function [fitness,table,pop]=evaIuate(pop,table,usetable)
% [fitness,table]=evaluate(pop,table)
% EVALUATE calls ObjFun.m for each member of the pop that
% has not previously been evaluated.
%

% Inputs:
% pop (Nxr) = population
% table(Kxr+l) = list of all results for repeat checking
% Outputs:
% fitness(Nxl) = fitnesses of the population members
% table = the updated table
%

%

% Ryan Thomas
% Copyright 1999

global tableindex;
[N,n]=size(pop);
fitness=zeros(N, 1);

fori=l:N

[tr,tc]=size(table);
if usetable ~=0

for tind=l :tr

a=table(tind,[l :(tc-l)]);
b=pop(i,:);
if a==b

fitness(i, 1 )=table(tind,tc);
found=l;
break;

else

found=0;
end

end

if found == 0

[fitness(i,l),pop(i,:)]=ObjFun(pop(i,:));
table(tableindex,:)=[pop(i,:),fitness(i,l)];
tableindex=tableindex+l;

end

else

[fitness(i,l),pop(i,:)]=ObjFun(pop(i,:));
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table(tableindex, :)=fitness(i, 1);
tableindex=tableindex+l;

end

end
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Source Code for ObjFun.m

function [score,solution]=ObjFun(solution)
% Raccoon Mountain Pumped Storage System Model
% Accepts solution = weekly generating schedule, 168 integers on [-1,1] or [-4,4]
% Returns score = weekly operating income
%

% Ryan Thomas-
% copyright 1999

global Icurve;
global capacity;
global cost;
global minhead;
global output;
global input;
global allpumps;

hp=1672;
bank=0;
d=zeros(l,168);
for n=l :size(solution,2),
if solution(n)<0
g=1.32407* solution(n)* (5 -allpumps);

else

g=1.7875 * solution(n) * (5 -allpumps);
end

a=lcurve(n);
if solution(n)<0
c=solution(n) * input(round(hp)-1529)/allpumps;

else

c=solution(n)*output(round(hp)-1529)/allpumps;
end

d(n)=a-c;
nhp=hp-g;

while ((hp-g)<mirLhead(n+l))
solution(n)=solution(n)-l;
if solution(n)<-4

disp('error')
end

if solution(n)<0
g==1.32407*solution(n)*(5-allpumps);
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else

g=1.7875 * solution(n) * (5-allpumps);
end

if solution(n)<0
c=solution(n) * input(round(hp)-1529)/allpumps;

else

c=solution(n)* output(round(hp)-1529)/allpumps;
end

d(n)=a-c;
nhp=hp-g;
p=p+l;

end

p=i;
while ((hp-g)> 1672 )
solution(n)=solution(n)+1;
if solution(n)<0
g=1.32407* solution(n)* (5 -allpumps);

else

g=1.7875* solution(n) * (5 -allpumps);
end

if solution(n)<0
c=solution(n)*input(round(hp)-1529)/allpumps;

else

c=solution(n)*output(round(hp)-1529)/allpumps;
end

d(n)=a-c;
nhp=hp-g;
p=p+l;

end

if(round(d(n)-capacity( 1 ))<=0)
disp('error')
a,c,solution(l ,n),d(n),nhp

end

e=cost(round(d(n)-capacity(l))); % to GW
f=c* 1000*e; %from cents/kwhr to cents/MWhr
hp=hp-g;
bank=bank+f; '

end

total_bank=bank/l GO; % to dollars

score=total_bank/l 000; % to thousands of dollars
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Source Code for Rmplot.m

function RMplot(progress,fitness,pop,i,maxgensj;
% Controls Progress Display for Raccoon Mountain Fitness Function
%

% Ryan Thomas
% Copyright 1999

global allpumps;
global input;
global output;
global Icurve;
subplot(3,1,1), plot([0:i],progress( 1, [ 1 :i+1 ]));

title('Genetic Algorithm Progress by Generation')
ylabel('Best Weekly Profit')
xlim([0 maxgens]);
best_ind=find(fitness=max(fitness));
best=pop(best_ind,:);
tt=size(best,2)+l;

headlevel=zeros( 1 ,tt);
headlevel(l)=1672;

for ii=2:tt,
if best(ii-l)<0
g=best(ii-l)* 1.32407*(5-allpumps);

else

g=best(ii-1)*1.7875*(5-allpumps);
end

headlevel(ii)=headlevel(ii-1 )-g;
end

subplot(3,1,2),plot(headlevel);
xlim([l 169]);
ylim([1527 1675]);
title('Raccoon Mountain Utilization by Hour')
ylabel('Upper Reservoir Water Level')
d=zeros(l,168);
hp=1672;
for n=l :size(best,2),
a=lcurve(n);
ifbest(n)<0
c=best(n)*input(round(hp)-1529)/allpumps;

else

c=best(n)*output(round(hp)-1529)/allpumps;
end
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d(n)=a-c;
end

subplot(3,1,3),plot(d)
hold on

plot(lcurve,'-.')
xiim([l 169]);
ylim([8000 30000]);
title('Effects of Raccoon Mountain Operation by Hour')
ylabel('Demand (MW)')
%xlabel('Hour of the Week')

hold off

drawnow
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