
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-1999

Development of a TIM-compliant TMS320C6x DSP module Development of a TIM-compliant TMS320C6x DSP module

Jeffrey Claude Patterson

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation Recommended Citation
Patterson, Jeffrey Claude, "Development of a TIM-compliant TMS320C6x DSP module. " Master's Thesis,
University of Tennessee, 1999.
https://trace.tennessee.edu/utk_gradthes/9994

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F9994&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Jeffrey Claude Patterson entitled "Development of a

TIM-compliant TMS320C6x DSP module." I have examined the final electronic copy of this

thesis for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Master of Science, with a major in Electrical Engineering.

Bruce Bomar, Major Professor

We have read this thesis and recommend its acceptance:

Roy S. Joseph, L. Montgomery Smith

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Jeffrey Claude Patterson, entitled
"Development of a TIM-Compliant TMS320C6x DSP Module." I have examined the final
copy of this thesis for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Master of Science, with a major in
Electrical. Engineering.

Dr. Bruce Bomar, Major Professor

We have read this thesis

and recommend its acceptance:

L f

Accepted for the Council:

Associate Vice Chancellor and

Dean of the Graduate School

Development of a TIM-Compliant
TMS320C6X DSP Module

A Thesis

Presented for the

. ' Master of Science •

; Degree
The University of Tennessee, Knoxville

Jeffrey Claude Patterson
May 1999

ACKNOWLEDGEMENTS

1 must thank my family for their undyihg love and support which has been a

constant in my life. I must also pay tribute to my father Joe Patterson, and Bruce

Shenwood. I will strive to approach their example.

I gratefully acknowledge the encouragement and suggestions I received from Dr.

Bruce Bomar, which were invaluable to the success of this project. I would also like to

thank Dr. Roy Joseph and Dr. L. Montgomery Smith for their contributions as

instructors, and committee members for my thesis.

This research was supported in part by Sverdrup Technology, Inc., under

contracts A-96B-08-98^09 .arid A-96B^08-99-d6 with The ,University of Tennessee Space

Institute (UTSI).

Essayons!

ABSTRACT

The development of a Texas instruments Module (TIM) compliant Digital Signal

Processor (DSP) module, using the Texas Instruments TMS320C6201 (C6201) DSP, is

presented. Currently, DSP modules based on the Texas Instruments TMS320C4x

(C4x) family of DSPs are widely used for message passing multiprocessing DSP

applications such as real-time processing of data and image processing. The

interconnection of the TIM-compliant C4x DSP modules is accomplished using

motherboards based on standard bus types, such as VME or PCI, and communication

ports (comm ports) built into the C4x DSP. The purpose of the work described in this

thesis was to provide a TIM-compliant DSP module with the improved computational

performance of the C6x family of DSPs, which would also be compatible with the

existing VME or PCI bus motherboards.

One drawback to using the C6201 DSPs in this application is the lack of C4x

type communication ports (comm ports) in these new DSPs. In order for the C6201 TIM

to be compatible with the existing rhotherboards, it must provide C4x- compatible comm

port functionality. An FPGA was used to convert the C6x host port into multiple C4x-

compatible communication ports and to provide the potential for future co-processing

hardware.

The major effort of this develojament was the designing, building and testing of

the C6x module hardware and the C4x-compatible comm port interface implemented in

the FPGA. The first phase of this design involved the hardware architecture; this

consisted of the selection of components needed to fulfill the design constraints, and the

design of the module printed circuit board (PCB). The major components of this DSP

module consist of the,C6201 DSP.^he externai memory devices, and an Altera

EPF10K10pA Field Programmable Gate Array (FPGA). The memory devices include 4

MB of SDRAM. 256kB of SBSRAM, and a 512kB Flash ROM for storing boot code. The

second phase of this design dealt with the host port to comm port conversion hardware

implemented in the FPGA. The C6x host port was used to exchange data and control

information with the FPGA. This hardware was developed in the VHDL hardware

description language and graphic design files using Altera MAX+PLUS II software.

The C6201 DSP module has been built and tested. The board successfully

executed both read and write transfers with another motherboard using the C4x-

compatible communication port interface. The data exchange was across a 2.5' ribbon

cable at an average read transfer data rate of 7.18 Mbytes/S and an average write

transfer data rate of 5.15 Mbytes/S.

IV

TABLE OF CONTENTS

CHAPTER PAGE

1. Introduction , 1

1.1 Module Specifications 3

1.2 Thesis Outline... 3

2. Background 5

2.1 Texas Instruments TMS320C6X Digital Signal
Processors 5

2.2 Microprogrammed Controller... 12

2.3 Altera FLEXi OK Field Programmable Gate Array Family 14

2.4 Texas Instruments TMS320C4X - Compatible
Data Communications.... 18

2.5 TIM - 40 Specification...... 18

3. Detailed Design Description..... 21

3.1 Major Component Selection...... 21

3.2 Memory Map 24

3.3 Printed Circuit Board Design 26

3.4 Configuration and Boot Modes 29

. 3.5 Texas Instruments TMS320C4X - Compatible
Comm Port Interface 31

4. Tests and Results 50

4.1 Test Methods 50

4.2 Results 53
f

5. Conclusions, Expansion, and Future Work 58

5.1 Conclusions 58

5.2 Expansion to Four Comm Ports 59

5.3 Future Work 60

List of References 62

Vita 65

VI

LIST OF FIGURES

FIGURE PAGE

2-1 TMS320C6X - Arrangement of Functional Units 6

2-2 Host Port! nterface Read Access Bus Timing 10

2-3 General Microprogrammed Controller 13

2-4 Altera FLEX1 OK Logic Element 16

2-5 Altera FLEX1 OK Architecture 17

2-6 Diagram of a Typical TIM Processor Module 20

3-1 06201/06701 DSP Module 25

3-2 Memory Map Diagram 27

3-3 06x DSP Module Printed Circuit Board Layer Stack 28

3-4 06x DSP Module Layout 30

3-5 04x Oomm Port Interface With Four Oomm Ports , 32

3-6 Oomm Port Counter Diagrarn 34

3-7 Control Word Memory Locations, and Contents 36

3-8 Control Signal Diagrarti 37 .

3-9 Idle Loop Flowchart 41

3-10 C4x-Compatible Comm Port Interface Organization ,43

3-11 Host Port Group Block Diagram 44

3-12 Controller Group Block Diagram 46

3-13 Microprogrammed Controller 47

4-1 Read Transfer Test Logic Analyzer Output 54

4-2 Write Transfer Test Logic Analyzer Output 56

vii

Chapter 1

Introduction

The Texas Instruments TMS320C6201 (C6201) and the Texas Instruments

TMS320C6701 (C6701) represent the next generation of high performance digital signal

processors (DSPs). The C6201 fixed-point DSP is capable of executing 1600 million

instructions per second (MIPS) in peak performance. The C6701 floating-point DSP is

capable of 1 billion floating-point operations per second (GFLOP) in peak performance.

Fortunately, these two new DSPs are pin compatible, so based on the application, the

same printed circuit board design can be used for either the C6701 or the less

expensive fixed-point C6201. The C6201 fixed-point DSP is used in applications such

as data processing, digital broadcast equipment, ADSL modems, and networking

systems. The C6701 floating-point DSP is used in high-precision applications, such as

medical imaging, beam-forming, speech recognition, 3-D graphics, and scientific

visualization.

Earlier DSPs such as the Texas Instruments TMS320C4x (C4x) family of DSPs

are capable of 60 MFLOP peak performance. This is far less than the 1 GFLOP

performance of a C6701 and will no longer suffice for the more computationally

intensive applications now being pursued. However, an important strength of the C4x

DSP.family.is the built-in, bi-directional communication ports (comm ports). These

comrn ports ailow multiple C4x DSPs to be readily interconnected in a wide range of

multiprocessor topologies. Unfprtunateiy, the C6201/C6701 processors do not include

these comm ports and it is this shortcoming that was addressed by the work presented

in this thesis.

The Texas Instruments Module (TIM) standard was developed, which defined a

module specification for C4x DSPs. These modules, commonly called TIMs, are

daughter boards that can be interconnected by means of TIM standard compliant

mother boards using the C4x comm ports. TIM standard mother boards are based on

several common bus types such as VME, PCI, or ISA. The modular approach of the

TIM standard allows flexibility and scalability. One may interconnect different types of

TIM modules in many ways. Additional TIM modules can be interconnected by using

multiple mother boards. In this way, the type, number, and interconnection topology of

TIMs can be readily scaled based on the application.

This thesis describes the development of a TIM compliant C6x DSP module. To

accomplish this, the lack of comm ports in the C6201/C6701 was addressed by

including comrh port functionality in a field programmable gate array (FPGA). Initially,

one C4x compatible comm port was implemented for functional and performance

testing. The comm port interface was designed such that it is readily scalable to four

comm ports. The simulation and testing data for one comm port is described in detail.

Expansion to four comm ports per C6x TIM is also discussed. The presentation

describes the design of the TIM memory hierarchy and the layout, building, testing, and

evaluation of the TIM. The C6x TIM developed in this thesis provides computational

performance far superior to the C4x TIMs while retaining the flexible and cost-effective

TIM interconnection architecture. C6x TIM modules make use of motherboards already

in use. , =

1.1 Module Specificatipns

The C6x DSP TIM was developed to satisfy the following requirements:

1) The same printed circuit board (RGB) will be used for assembly of either a 06201

fixed-point DSP module or a C6701 floating-point DSP module;

2) Conforms to the TIM-40 physicaf specifications for a "single module" including board

size, component heights, and primary mother board connectors;

3) One C4x compatible comm port will be provided and the design will be readily

scaleable to four comm ports; . ; .

4) The FPGA will be of sufficient capacity to provide the logic needed for both the

comm port interface, and future co-pfpcessing functions: :

1.2 Thesis Outline

Chapter 2 provides background information on the C6x DSPs, the Altera FLEX

lOK FPGA used for implementing comrh ports and future co-processing functions, the

TIM standard, and C4x cornpatible data communications. Chapter 3 describes the

desigri in more detail. This description first covers the components selected^ the PCS

design phases, and finally, a detailed description of the C4x compatible comm port

interface implemented in the FPGA.

In Chapter 4, various module tests are described and the results are

summarized. Chapter 5 contains a discussion of the thesis conclusions, and

suggestions for future work with respect to the C6x DSP and the C6x TIM.

Chapter 2

Background

2.1 Texas Instruments TMS320C6x Digital Signal Processors

Texas Instruments TMS320C6201 DSPs feature eight functional units and 32

general-purpose, 32-bit registers [1]. This DSP family is a load/store architecture type.

This means that all instructions operate on data in registers, rather than data in memory.

The CPU can supply, at most, all eight functional units with a 32-bit instruction every

clock cycle.. This is accomplished by fetching 256- bit wide, very long instruction words

(VLIW). At a clock rate of 200MHz, the TMS320C6201 (06201) DSP is capable of a

peak execution rate of 1600 million instructions per second (MIPS).

The CPU Is organized into two sides; each including four functional units and a

register file of 16, 32-bit registers [2]. The four types of functional units (.L, .S, .M, and

.D) are arranged as shownjn Figure 2-1. The functional units on one side of the CPU

have .full use of the registers.on the same side. Each side also has a bus connected to

the registers on the opposite side. This allows up to one read and one write per clock

cycle for functional units accessing the register file on the opposite side of the CPU.

Two of the functional units, .D1 and .D2, conduct all transfers between the

register files and the memory.

Data Path A: Data Path B:

Reg File A

A0-A15

n n

Reg File B

B0-B15

< ►

.LI .SI .M1 .D1

t t t {

Control

Registers

J

Data Memory

b or 2M.
2S.
2L.

Figure 2-1. TMS320C6x - Arrangement of Functional Units [2]

Functional units .M1 and .M2 are solely multipliers. Arithmetic (add/subtract), logical,

and branch instructions are executed by the .S and .L functional units.

TMS320C6701,(G6701) floating-point DSPs have the same overall architecture,

and are pin-cpmpatible with the C6201, fixed-point DSP. C6701 DSPs execute all of the

C6201 fixed-point instructions, in addition to a superset of floating-point instructions [3].

These floating-point instructions are executed in the .L, .M, and .D functional units.

C6701 DSPs operate at a maximum clock rate of 167 MHz. They can execute up to six

floating-point operations per clock cycle and so are capable of a peak performance rate

of 1 billion floating-point operations per second (1 GFLOPS) [3].

In order to understand how the C6201/C6701 DSPs (C6x) were incorporated into

this design, an overview of the DSP peripherals is needed. The C6x DSPs have the

following peripherals:

• Host port interface (HPI)

• External memory interface (EMIF)

• Multichannel buffered serial ports (McBSPs)

• Direct memory access (DMA) controller

• Interrupt selector

• 2 - 32-bit timers

All of the peripherals are controlled with various internal control registers [4]. These

control registers can be accessed by the GPU, or through the HPI, Because they are

central to the function of this design, the HPI and the EMIF will be described in detail in

this section.

2.1.1 Host Port

The HPI is a 16-bit parallel port which allows an external host processor or

controller (called the host) to access the DSP's memory by DMA transfer [4]. This

access Includes both the Internal and external memory, as well as the DSP's memory-

mapped peripherals. All exchanges across the 16-blt HPI data bus are two successive

half words, where the word length Is 32 bits. The host, but not the CPU, can access the

host port address register (HPIA) and the host port data register (HPID). With these two

registers, the HPI Is connected to the CPU's memory space via DMA. A third register,

the host port control register (HPIC), Is accessible by both the host and the CPU. The

host accesses these registers with various control signals, as described In Table 2-1.

The nHlNT signal Is controlled by setting a certain bit In the HPIC register. This signal

has no effect on data transfers. Use of the nHlNT signal In this design Is described

later, The function of the HCNTL[1:0] bits Is shown In Table 2-2. Host accesses start by

setting the proper bits In the HPIC, followed by loading the HPlA. The address loaded

Into the HPlA determines the address at which the HPID access takes place. After that,

reading data from, or writing data to the HPID can begin. Host reads or writes to the

HPID can be conducted with an auto-Incremented address In the HPlA. This allows

, rapid sequential accesses by the host.

All HPI bus accesses begin when the values of HCNTRL[1;0], HR/nW, and

HHWIL are latched In upon the falling edge of nHCS.

Table 2-1. Host Port Interface Signals

Signal
Name

Signal Type Description

HD[15:0] input/Output Data bus

HCNTL[1:0] Input Selects which internal register is accessed
(HPIA, HPID, orHPIC)

HHWIL Input Indicates if the present half word is the first
or second of a transfer

HR/nW Input Host ReadAA/rite select

nhCS Input Data strobe

nHRDY Output Asynchronous ready status of the current
access

nHINT Output Interrupt signal to the host device

Table 2-2. Functions of HCNTL[1-0] [4]

HCNTL[1] HCNTL[0] Description

0 0 Host reads or writes HPI control register (HPIC)
0 1 Host reads or writes HPI address register

(HPIA)

1 0 Host reads or writes HPI data register (HPID),
HPIA postincremented by a word address

1 1 Host reads or writes HPI data register (HPID),
HPIA is not changed

HPI bus timing for a read access is shown in Figure 2-21 On the first haif word access,

HHWIL is latched in low on the failing edge of nHCS. During HPID accesses, following

the first falling edge of nHCS, nHRDY goes high after a maximum delay of 12nS and

remains high untii the requested word has been fetched from DSP memory. nHRDY

isn't affected by HPIC or HPIA accesses. For a read access, the data is transferred into,

the HPID from the DMA channel, and then latched in upon the failing edge of nHRDY ;

and held valid untii nHCS goes high. For a write access, the data placed on Hp[15:0] by

the host must be valid at the rising edge of nHCS. This process is repeated for the

second half word access. During the second half word of a read access, it isn't

necessary to wait on the nHRDY line to go low because the 32-bit word has already

been fetched from DSP memory.

HCNTL[1:0]

HR/nW

HHWIL

nHCS y

HD[15:0]

nHRDY

r'Half Word / 2'^ Half Word—

Figure 2-2. Host Port Interface Read Access Bus Timing

10

2.1.2 External Memory Interface

The external memory Interface (EMIF) provides a direct interface to external

devices such as synchronous burst SRAM (SBSRAM), synchronous DRAM (SDRAM),

and asynchronous devices like ROMs, FIFOs, etc. Like the other peripherals, the EMIF

is controlled by a set of memory-mapped registers [4], These registers have to be

loaded properly in order to use any external memory devices. There are three 16Mb

memory blocks, and one 4MB memory block available in the C6x memory map for

external memories. Each of these blocks are associated with one of four chip enable

(CE) output pins.

One of the EMIF control registers, called the EMIF global control register, sets

parameters for all the CE spaces. Some of these parameters include enabling the

various clock lines, and determining the memory map mode for the DSP. There is also

an EMIF CE space control register for each of the four CE spaces. The type of memory

used at each respective CE is configured using these registers. Also, if an

asynchronous memory type is selected, timing parameters are loaded into these

registers. The other two EMIF registers are used to control SDRAM settings for any CE

space where this type of memory is selected. The EMIF SDRAM control register is the

first of these two registers. This is where the width of the memory device is selected,

along with three common SDRAM timing parameters. The second of these two

registers is the EMIF SDRAM timing register. This register stores the refresh period of

the SDRAM.

11

2.2 Microprogrammed Controller

One method of controller design is the finite state machine approach. A finite

state machine steps through states on successive clock edges in a pattern determined

by the current state and the condition of the inputs. The next state is determined with

combinational logic.

The microprogrammed approach to controller design is an alternative to the finite

state machine approach. Microprogrammed design is based on the concept of

considering the states of a controller as instructions (called microinstructions) that are

executed on successive clock edges [5]. In this approach a set of microinstructions

forms a microprogram, which is simply a set of bits in a memory array [6].

Microinstructions have bit fields that are the outputs of the controller, and other bit fields

that are used to determine the next microinstruction (memory) address. A

microprogrammed controller is organized as shown in Figure 2-3. The next address

logic, called a sequencer, decodes the next address based on condition inputs and the

next address bit fields in the microinstruction. Common microinstruction next address

bit fields perform such functions as selecting which condition input to observe, the

branch address, and the sequencer instruction. Sequencer instructions include

operations such as: continue, branch on condition input equal to zero, branch on

condition input equal to one, and unconditional branches.

12

Sequencer

Condition Inputs

instruction,
Branch Address,
Condition Input

Select, etc.

>
clock

ADDRESS

MEMORY

clock
>

T
Outputs

Figure 2-3. General Microprogrammed Controller

13

Notice that using the microprogrammed approach, memory is used where logic

gates were used in the state machine approach. Therefore, control algorithm changes

involve changing only the bit pattern in memory. This means that the timing

characteristics of a given microprogrammed controller remain the same independent of

the control algorithm (i.e. for any combination of microcode bits). This means that

changes can be made to the microcode and the maximum clock rate of the controller

will stay the same. However, in a state machine design, the output and next state logic

delays vary with the combinational logic configuration. So changes in the control

algorithm will affect the maximum clock rate. Also, unlike typical state machine designs,

microprogrammed controller performance does not degrade with increasing numbers of

states or output bits. In this design a microprogrammed controller was used as the host

controller for the DSP HPl.

2.3 Altera FLEX1 OK Field Programmabie Gate Array Family

The Altera FLEX10K FPGA family was used in this thesis. These reconfigurable

devices are based on CMOS SRAM elements which are configured upon power-up [7].

Configuration can be conducted serially or with an 8-bit parallel data stream [8]. One

common method of serial configuration is through the use of serial EPROMs. FLEX10K

devices can also be configured serially or in parallel with a microprocessor using data

stored in system RAM or ROM. Other methods of configuration are the Altera BitBlaster

serial download cable or the ByteBlaster parallel port download cable connected to a PC

serial port of parallel port.

14

Altera FLEX10K devices can also be programmed through their boundary-scan

test (BST) circuitry with the BitBlaster.serial download cable [9]. This is a dual use of

the BST circuitry which is normally used for diagnostic purposes. The BST circuitry

includes flip-flops at each input and output pin that can either force signals onto pins, or

store data from the pin [10]. The stored data from the pins can be serially shifted out of

the device and observed. The BST data may then be checked against expected values

to ensure that the devices and their interconnections are working properly. The BST

hardware in a FLEX10K device is compliant with the IEEE Standard Test Access Port

and Boundary-Scan Architecture (IEEE Stdl 149.1-1990). The Joint Test Action Group

(JTAG) developed the groundwork that led to this standard, so BST hardware is often

referred to informally as JTAG hardware.

FLEX10K devices have both a logic array and an embedded memory array [7].

The Altera FLEX1 OK devices are available with densities of up to 250,000 usable gates.

The logic array is used to implement general purpose logic functions. It is composed of

logic array blocks (LABs) which contain about 96 usable logic gates [7]. Multiple l_ABs

can be combined.to implement larger logic functions. Each LAB consists primarily of 8

logic elements (LEs), and the LAB local interconnection network. An LE contains a four-

input look-up table (LUT), a programmable flip-flop, connections to the LAB

interconnect, connections to the chip-wide interconnect network, and other

interconnects and control logic as shown in Figure 2-4. The flip-flop In each LE can be

bypassed to implement purely combinational logic.

15

Carry-In . Cascade-In

, DATAl

' ■- DATA2 :■
DATA3'

, ' DATA4

LookrUp •. i •
T»hl« iTable
,(LUT) : Chain

UBCTRL1
LABCTRL2

Chlp-Wida ■
"Reset.

Clear/ >
Preset

■ Logic

Clock
Select' '

LABCTRL3

UBCTRL4

Cascade
. Ctiain

Register Bypass

/

PRN
D Q

>
ENA

CLRN

Carry-Out Cascade-Out

Figure 2-4. Altera FLEX10K Logic Element [7]

Programmable
Register

^ to F^tTrack
I ^ Interconnect

*1 toLABLccal^ ̂ Interconnect.

The embedded memory array is diyided into embedded array blocks (EABs) of

2,048 bits each. There is one EAB for each row in the device. , EABs can be used to

implement I^M, ROM, or large LUT logic functions. EABs can also be combined to

form larger memory blocks. ;

LABs and EABs are connected together with row and column interconnects as

shown in Figure 2-5. The row and column interconnects are fast buses that run across

the length and width of the device. At the end of each row and column interconnect, I/O

elements connect the I/O pips to the row and column interconnect network, . .

16

Logic Elemm (LE)

Local Interconnect

lOE loe loe lOE ioe ioe ioe ioe ioe ioe

Embedded Array

Figure 2-5. Altera FLEX1 OK Architecture [7]

2.4 Texas Instrumente TMS320C4x - Compatible Data Communications

. C4x DSPs have built-in comm ports, which provide the means of communicating

data between TIM daughter boards. These comm ports are bidirectional (one way at a

time), byte wide, and support throughput rates up to 20 megabytes per second. A C4x

comm port consists of eight data, lines and four control lines. Ail twelve lines are bi

directional. Two of the lines are data handshake lines. The other two control lines are

used to control the direction of the 8-bit data bus. A port sending data is said to "own

the bus token" [11]. When the bus direction is changed, it is referred to as a "token

transfer".

2.5 TIM - 40 Specification

The Texas Instruments Module (TIM) - 40 specification, often referred to as the

TIM standard, is a rhoduie standard format originally based on the Texas Instruments

TMS320C4X (C4x) DSP [12]. The purpose of the TIM standard was to provide a flexible

and cost effective architecture for multiprocessor DSP systems. A TIM is a daughter

board which meets certain physical and electrical specifications. This allows different

modules to be arranged into a system which meets the requirements of a particular

application. The TIM standard is an open specification. Though it was originally

intended for the C4x processors, other processors or hardware can be used if the

specifications for dimensions, pin-out, etc., are met.

18

The TIM standard physical specifications include: dimensions of the module,

maximum component height on the top;and bottom of the module, maximum component

height on the motherboard under a module,, etc. The physical specifications also include

the type and placement of the connectors, arid connector pin-out.

TIM daughter boards (TIMs) can be mounted on a wide range of mother board

types. The TIM mother boards can be of any bus standard^ as long as the module sites

meet the TIM standard. Many types are available, for example: VME, PCI, PC/ISA, etc.

A TIM is connected to a motherboard with two primary connectors. The connectors are

Hirose brand, FX-4 series, 80-pin connectors that must meet the TIM standard

regarding placement and pin-put. Each of the two primary connectors carry power (+5

V and + 12 V DC), ground, control signals, and communication ports (comm ports).

Shown in Figure 2-6, is a diagram of a typical TIM processor module.

The TIM standard provides a means for building multiprocessing systems that

can be assembled to meet the needed performance standards for different applications

in a cost effective way. The flexibility of this standard allows a system to be configured

quickly with any number or type of modules and motherboards.

19

J1 Primary Connector J2 Primary Connector

^ Control Bus ^
^Timer, Interrupts^
^ Comm Ports ^

Processor

I

Comm Ports
< ►

DRAM, SRAM, FLASH^ A/D, D/A, etc.

4.2"

Figure 2-6. Diagram of a Typical TiM Processor Module

20

Chapter 3

Detailed Design Description

3.1 Major Component Selection

, The first step In this design was selection of the major components. This design

was built around the C6x DSP available in a 352-pin ball-grid array (BGA) package.

Since the C6x DSP doesn't have the C4x-compatible comm ports needed for

compatibility with the TIM standard motherbpards, an interface was needed. This

interface was implemented in a Field Programmable Gate Array (FPGA).

The FPGA was required to meet the following criterion:

• 3.3 Volt logic that can also tolerate 5 Volt inputs

• >120 available I/O pins

• sufficient capacity of available logic to implement the C4x-compatible comm

port interface and future coprocessing functions

• must fit on TIM module along with the other required components

In addition, the embedded memory architecture of the Altera FLEX10K devices is

preferable for applications with look-up tables and microprogrammed controller

implementations.

21

It was determined that the Altera FLEX 10KA device was the best choice for this

design. This 3.3V part is available in three package types. One of those was much too

large for this design. That left two packages that met the criteria, a 240-pin plastic quad

flat pack (PQFP) and a 356-pin ball-grid array (BGA). The 356-pin BGA was selected

for several reasons. First, the BGA package is not prone to lead damage, like the PQFP.

Second, the BGA has shorter leads than the PQFP, which means that the BGA has

lower lead inductance as well. Lower lead inductance results in reducing ground

bounce [13]. Third, the BGA has almost twice as many ground pins as the 240-pin

PQFP, and this also reduces ground bounce by reducing the device's inductance to

ground [13].

In order for this design to perform well, it was necessary to pay attention to the

design of the processor's memory architecture. A typical hierarchy approach was used

to determine what type of memories to select. This hierarchy consists of two elements:

a fast but relatively small capacity static random access memory (SRAM)

complemented by a slower but much larger dynamic random access memory (DRAM)

[14]. Aisp, a nonvolatile rnemory was included to store the DSP's boot code and the

configuration data for the FPGA.

A surface mounted, 512k X 8-bit, 3.3 V, flash programmable and erasable read

only memory (PEROM) was selected as the nonvolatile memory] This device,

commonly referred to as a flash mernpry, is in-system programmable at the 3.3V logic

level provided by the DSP's EMIF. This device can be programmed, a 256 Byte sector

at a time, by writing a specified control sequence to it, followed by the data to be loaded.

• -.'22 '

Next, a synchronous burst SRAM (SBSRAM) with the highest density and clock

speed available was selected. This was a Micron 64k X 32 SBSRAM with a maximum

clock rate of 100 MHz. The C6x EMIF supports SBSRAM operating at either half or full

CPU clock speed [4]. Since the CPU is running at 160 MHz, the SBSRAM must operate

at half the CPU clock rate.

SBSRAM has several performance advantages over conventional, asynchronous

SRAM. Since the SBSRAM clocks all signals on the rising clock edge, the device can

have data available on every clock cycle. Since the selected SBSRAM is pipelined, for

the first access, there is a latency of two clock cycles after the address is clocked in

[15]. For the next three data words, a word is available on every clock edge. This

device has a clock to data time of only 5 nS, compared to a 15 nS access time for a high

speed asynchronous SRAM [16]. 128k X 32 SBSRAM devices rated for a 166 MHz

clock will be available by the second quarter of 1999. This design will accept these

newer memories when they are available. This higher density device will also operate at

the full CPU clock rate, thereby doubling its access rate.

For the module main memory, two 16M X 16-bit synchronous DRAMs (SDRAM),

with a maximum clock speed of 100 MHz, were installed on each module. Again, the

most dense and fastest clock speed devices commonly available were selected. The

C6x EMIF also supports SDRAM and their high performance data burst functions.

SDRAMs provide performance advantages over asynchronous DRAMs much like the

comparison of SBSRAM with asynchronous SRAM. For example, a high performance

early data out (EDO) DRAM may have an access time around 50 nS. So, if the EDO

23

DRAM was read in its page mode, it could provide the first data word in 50 nS, followed

by words in the same page every 20 nS. The SDRAM device that was picked for this

design has a read latency of three clock cycles for the first word accessed. After that, it

can provide any data word in the same page every clock cycle. Therefore, if this

SDRAM operates at 100 MHz, during a burst it provides the first data word in 30 nS,

followed by a word in the same page every 10 nS.

Only a few components in this design operate at the 5 V supply voltage provided

by the motherboard. All of the other devices operate at 3.3 V, with the exception of the

C6201 DSP, which requires both 3.3 V and 2.5 V. To provide these two voltages, a

fixed 3.3 V linear regulator, and an adjustable linear regulator were selected. The

adjustable regulator is set at 2.5 V with two resistors.

After the major components were selected and it was determined that there was

adequate space on the board for all of them, the architecture of the board was defined.

The resulting C6x TIM architecture is shown in Figure 3-1.

3.2 Memot7 Map

External memories are assigned spaces in the memory map of the C6x DSP by

connecting them to one of the four chip enable (CE) lines [4]. The 8-bit FLASH was

24

Memory
Bus

1Mx32

SDRAM

64kx32

SBSRAM

512Kx8

PEROM

EMIF

tMS320C6x
(32kx32)

HPI

Host Bus

Comm Port

Comm Port

EPF10K100A

FPGA

(4992 LEs)
(3kx8)

Comm Port

Comm Port

Figure 3-1. C6201/C6701 DSP Module

25

assigned CE1 because it Is the only CE space that provides automatic packing and

unpacking of 32-bit words. The SBSF^M was assigned to CEO and the SDRAM was

assigned to CE2. The resuitirig tfiempfy map is shown in Figure 3-2.

3.3 Printed Circuit Board beisign:

The C6x Tliyi printed circuit board (RGB) was designed using the HIWIRE II CAD

software package. The design schematic and the RGB were drawn using this software.

After the schematic was thoroughly checked, the schematic and the RGB layout were

cross-checked using a HIWIRE II utility. Fpiiowing that, the RGB drawings were,sent to

a contractor to fabricate the RGBs; When the bare boards arrived, they were sent, with

all of the parts, to another contriactof to assemble the parts onto the RGBs.

The completed RGB design was 10 layers thick. The layers consisted of five

signal layers, three ground layers,, a 3.3 V power layer, and a split 2.3 V/5 V layer. The

RGB layer stack 16 shown in Figure 3-3. Due to the high density of this board, many

signal traces had to run parailel to other traces on adjacent layers. In addition, many of

these signals operate at high rates and short rise times (e.g. 80MHz dock lines to the

SDRAM and SBSRAM). So, to.cpntrol crosstalk between signal traces, the intervening

ground layers were needed [13].

26

0000 OOOOh

0000 FFFFh

Internal Program RAM

0040 OOOOh

0043 FFFFh

CEO - SBSRAM

0140 OOOOh

0147 FFFFh

CE1 - FLASH

0200 OOOOh

023F FFFFh

CE2- SDRAM

8000 OOOOh

8000 FFFFh

Internal Data RAM

Figure 3-2. Memory Map Diagram

Signal Component Layer (TOP)

Ground

Signal

Ground

Signal

3.3V

Signal

Ground

2.5V/5V

Signal Solder Layer (Bottom)

Figure 3-3. C6x DSP Module Printed Circuit Board Layer Stack

28

3.4 Configuration and Boot Modes

This section describes the configuration and booting procedures for the C6x TIM

which provide the DSP with its initial code and the FPGA with, its configuration data.

Two DSP boot modes are supported in this design. These modes are the host boot

mode and the flash boot mode. The boot mode is selected by placing the proper jumper

before power-up. The location of the jumpers and other key features is shown in Figure

3-4. . ■ ' , ^ -

During a host boot, the host device (the FPGA) can write to any location in the

DSP's internal memory map [4]. Typically the various control registers would be

configured and other code would be loaded into the DSP's internal memory at that time.

While booting in this mode, the DSP is in a reset condition until a one is written into the

DSPINT bit in the HPIC [4]. At that point, the DSP will exit from the reset condition, and

begin executing code starting from address 0. This mode is used primarily during

development work. This allows the FPGA to be configured directly and then it can load

the DSP through the HPI. This initial FPGA configuration can be loaded via the FPGA

JTAG interface.

Flash boot mode is the other method. In this mode, an automatic transfer of the

first 16k, 32-bit words from the flash memory to the DSP internal program rriemory is

conducted. This data is loaded into the DSP beginning at address 0. When this transfer

is complete, the DSP exits from the reset state and begins executing code at address 0.

29

J1 Primary Connector
(Back Side)

J2 Primary Connector
(Back Side)

TMS320C6X

DSP

EPF10K100A

FPGA

SBSRAM
SDRAM

Boot Mode Jumper Header JTAG Header

TOP VIEW

NOT TO SCALE

Figure 3-4. C6x DSP Moduie Layout

30

This code, in turn, reads data beyond the first 16k, 32-bit words in flash memory and

uses that data to configure the FPGA. Once all development and testing of the

module is complete, all of the DSP boot code and the FPGA configuration data can be

programmed into the flash memory.

3.5 Texas Instruments TMS320C4x - Compatible Comm Port Interface

3.5.1 Overview

Since the C6x DSP has a single, 16-bit host port interface (HPI) instead of C4x-

compatible comm ports, an interface was needed for compliance with the TIM

specification. This interface is implemented in an Altera FLEX10K100A FPGA using

VHDL and graphic design files. The interface architecture with four comm ports is

shown in Figure 3-5.

The C6x TIM is designed to have sole control over its own address space on the

module. Recall that any memory location in the DSP's memory map can be read or

written via the HPI. Also note that the memory address to be accessed is first loaded

into the HPIA by the host device (the FPGA) through the HPI. Therefore, a means of

setting up read and write transfers with the HPI is needed so that the DSP can maintain

control of its memory. To that end, the DSP first allocates a block of memory, either for

a write transfer or a read transfer to one of the comm ports. This block of memory is

31

DSP In FPGA

16 Host Bus

Host

Group

Comm PortComm PortComm Port

Group
Comm Port

GroupGroupGroup

irs12"s
T T T T

Comm Port Comm Port Comm Port Comm Port

Figure 3-5. C4x Comm Port interface With Four Comm Ports

32

defined by a starting address and its length,in 32-bit words. Once the memory is

allocated, the transfer is enabled. ;

In order to assign a block of. memory to a comm port, the starting address and

word count values are transferred to a set of counters in the FPGA. These counters are

,used to keep track of the status of the assigned memory blocks. Each of the four comm

ports has a set of counters as shown in Figure 3-6. So, each comm port has a pair of

counters used to set up input (write) transfers, and another pair of counters to set up

output (read) transfers. The address counters keep up with the current address in the

assigned memory block, and the word counters rhonitpr the number of words that have

not beeri accessed in the, assigned memory block. After each word access, through the

HPI, the address counter is incremented by a wprd address (four), and the word counter

is decremented by one. If a word counter has not decremented to zero, the comm port

is still enabled for transfers. When a word counter decrements to zero, its respective

done ilag,flip-flop is set, indicating that the pair of counters are no longer set up for

transfers. ,

In order for a setup to occur, control signals are needed between the FPGA and

the DSP. One of these signals is the nHINT line, which is used as a flag to the FPGA

indicating that the DSP needs to set up one of the coitim ports for a read or write

transfer. After the nHINT line goes low, the host group begins the process of setting up

one of the comm ports for a transfer. The first information that the host group needs is

which comm port to set up, and if the setup is for a read or a write transfer. This

information is retrieved from a reserved DSP memory location via the HPI. This word,

33

Input Address
Counter

Output Address
Counter

Input Word
Counter

Output Word
Counter

Input Done
Flag

Output Done
Flag

Figure 3-6. Comm Port Counter Diagram

34

albng with the word counter value and the address counter value are located In three

consecutive DSP memory locations, as shown in Figure 3-7. The other control signal

between the DSP and the FPGA is the EXT_INT_4 line, which is one of the DSP's

interrupt inputs. This signal is asserted by the host group to notify the DSP that the

condition of one of the comm port done flags has changed (i.e. one of the flags went

high, indicating that a pair of counters are no longer set up for a transfer). Before the

EXTJNT_4 signal is asserted by the host group, all of the comm port done flag bits are

written to a reserved memory location in the DSP, as shown in Figure 3-7. When the

DSP receives the interrupt, it checks the status of the done flags at the memory

location. At that point the DSP can determine if any of the comm ports need to be set

up again.

For the remainder of this chapter, a C4x-compatible comm port interface with

only one comm port is considered. The extension to multiple comm ports is

straightforward and is discussed later. However, to simplify the checkout and

delDugging, only one comm port was actually implemented and tested for this thesis.

The comm port group handles the data communication over an 8-bit, bi

directional C4x comm port. This comm port group is a macro function previously

designed by others. The comrn port group has a 32-bit data input register, and a 32-bit

data output register. To control data exchanges between the comm port group and the

host group, there are four control lihes(LOADACK, LOAD, DAV, and DATACK), as

shown in Figure 3-8.

.35

8000 OOOOh:

32 1 0

SETUPCOM[3-Ol IN/nOUT

8000 0004h:

32

Setup Value

Word Counter Value

8000 0008h:

32

Address Counter Value

8000 OOOOh;

32

7 6 5 4

C0MM3 INPUT

FLAG

C0MM3 OUTPUT

FLAG

C0MM2 INPUT

FLAG

C0MM2 OUTPUT

FLAG

3 2 1 0

C0MM1 INPUT

FLAG

C0MM1 OUTPUT

FLAG

COMMO INPUT

FLAG

COMMO OUTPUT

FLAG

Status Value

Figure 3-7. Control Word Memory Locations and Contents

FPGA

DSP

Host Bus > V

nHINT

EXT INT 4 Host

Group

LOAD

^ LOADACK

OUTDAT[31:0]

DAV

DATACK

_ INDAT[31:0]

Comm

Port

Group

12 \

CoJpor.

Figure 3-8. Control Signal Diagram

37

For output transfers (to the conim port group through 0UTDAT[31:0]) the LOAD

and LOADACK lines are used. When the LOADACK signal is high, the output register in

the comm port group is empty, and data can be loaded. This means that a data word

can be placed on the bUTDAT[31:0] lines by the host group and the LOAD line can be

strobed to load the data word into the 32-bit output register.

For an input transfer, the comm port group loads the four bytes it has received

via the comm port into, its 32-bit input register. Once a valid data word is on the

INDATA[31:0] lines, the DAV (data available) line will go high. When DAV is high, the

host group can receive the data word. After the host group has latched in this data

word, it will strobe the DATACK line. This allows the comm port group to proceed with

loading another word into the data input register.

3.5.2 Input Transfers

Before an input transfer can start, the comm port must be set up. First, the DSP

places the appropriate data in the control word memory locations, as shown in Figure 3-

7. This data includes: which comm port to set up, that the transfer direction being set up

is input, the word counter value, and the address counter value. After the control words

are in place, the DSP asserts the nHINT line. The host group will retrieve these three

control words through the HPI, followed by loading the input word counter and the input

address counter. At that point, the comm port is set up for an input transfer. The input

transfer starts when the comm port group receives data, places it on the INDAT[31:0]

lines, and sets the DAV line high. When the host group detects the DAV line is high and

38

the comm port group is set up for an input transfer, the host group will latch in the data

word from INDAT[31:0]. Before the first word is written to the DSP, the current address

in the input address counter is written into the HPIA register. Then, the first data word is

written into the HPiO register. If data keeps arriving at the comm port, and the comm

port is still set up, the input transfers will continue, repeating this process. As long as no

other HPl address is accessed, the HPl is used in its autoincrement mode so the

address does not have to be loaded for every transfer. Once the input word counter has

reached zero, the input transfer is stopped, and the controller will write the done flag bits

to the DSP memory at address 8000 OOOCh, as shown in Figure 3-7. After that, the

controller will strobe the EXTjNT_4 pin, which alerts the DSP that the comm port setup

status has changed.

3.5.3 Output Transfers

The comm port setup procedure for an output transfer is the same as the input

transfer except for the transfer direction. Once the comm port is set up for an output

transfer, and the LOADACK line is high (indicating that the comm port is ready to accept

a 32-bit word) the output can start. If this is the first word of this output transfer, the

address in the, output address register is written to the HPIA register. Then the data can

be read out of the HPID starting at that address. .

Next, the data word is placed on OUTDAT[31;0] by the host group. Then the

host group strobes the LOAD line high, loading the word into the 32-bit register in the

comm port group. LOADACK will go low, then high again when the comm port is ready

• n . 39 n

for another word. Transfers can continue as long as the data arrives and the comm port

is set up. Once the output word counter reaches zero, the transfer stops, and the

controller writes the done flag bits to the control word location In DSP memory at

address 8000 OOOCh. Then EXTJNT_4 Is strobed high, and the DSP checks the done

flag bits In memory.

3.5.4 Bi-directional Transfers

The previous two sections described only one-way data transfers. Realistically,

a comm port could be set up for both Input and output transfers at the same time. Since

the host bus can only go In one direction at a time, It must be exchanged between Input

and output transfers. In that case, the controller must ensure fairness with the access to

the host bus to prevent a deadlock.

To Implement the fairness scheme, a loop procedure was used, called the Idle

loop, and Is shown In Figure 3-9. Note that both the read and write transfers are single

word operations. That Is to say, these transfers only read or write one word before

branching back to the Idle loop. This Is done to provide equal sharing of the host port

between transfer directions. Also, notice that each type of operation re-enters the Idle

loop In a different place. This Is how the fairness scheme Is Implemented In the

controller.

40

YESFrom Read nHINT

=0?Transfer

NO

YESFrom Transfer Set Up for Write
AND

X DAV=1? /
Setup

NO

From Write

Transfer

NO

■-Transfer Setup

Write Transfer

Up ReadN^ YES ^
AND

LDACK=1?.

Figure 3-9. Idle Loop Flowchart

41

3.5.5 Implementation of the Host Group Hardware

The hardware implemented in the FPGA is organized into groups as shown in

Figure 3-10. Notice that the "host group" considered in the previous sections has been

split into two separate groups called the host port group, and the controller group.

These groups are separated in this discussion to separate the data path hardware from

the controller hardware.

The host port group consists of the hardware that fornris the data path between

the DSP and the comm port group. The host port group consists of two data paths, one

for incohiing data and one for data going out of the DSP. The host port group hardware

is shown in Figure 3-11. The outgoing data path, is the 32-bit register, called hiloreg.

This register's 16-bit input is connected to the HPI data bus (HD[15-0]). Its 32-bit output

is connected to the comm port group's 32-bit register, and the two word counters and

the two address counters. This register loads the data on the HD[15-0] lines into its

upper 16 bits when LDOUTHI is asserted. Likewise, it loads its lower 16 bits when

LDOUTLO is asserted. This register essentially reassembles the 32-bit data word from

two consecutive 16-bit reads of the HPI data bus.

The incoming data path, also shown in Figure 3-11, consists of a 32-bit register

(called inreg), followed by three multiplexers. The 32-bit register latches in an incoming

data word from the comm port group. The first multiplexer selects either the output of

the register, or the output of one of the two address counters. The second

42

DSP

HostBlis

/
16

Host Port

Group

INDATA[31;
\ \0
:or\ \

OUTDATA[31:0]

Comm Port

Group

^

12> Comm Port

In FPGA

16

Controller

Group

Control Lines

Figure 3-10. C4x-Compatlble Comm Port Interface Organization

43

To Control

Group

i

HD[15:0]

4

From Control

Group

Ai ^i ft16 32

inreg

7^ 7^

32

7^

Input Address
Counter

32

7^LD

INCR

Output Address
Counter

INDATA[31:0]

From Comm

Port Group

LDINREG

32

7^LD

INCR

hiloreg
16

7^
LDOUTHi

LDOUTLO

32

7^
OUTDATA[31:0]

Output Word Counter

LD ZERO

DEC

To Comm Port

Group

Input Word Counter

—►
D

LD ZERO

DEC

Figure 3-11. Host Port Group Block Diagram

44

multiplexer simply selects which half word is seen on the HPl data bus. The iast

multiplexer selects which group (either the host port group or the control group) is

connected to the host data bus.

The central component of the hardware is the controller. The controller group

consists of a microprogrammed controller, a 5-bit register, and a multiplexer. The

controller group hardware is shown in Figure 3-12. The five bit register (called regS) is

used to store control bits retrieved from DSP memoir at address 8000 OOOOh, as shown

in Figure 3-7. The multiplexer selects between a 16-bit field from the microprogrammed

controller, and the comm port status bits. The 16-bit field from the microprogrammed

controller is used to generate the addresses for retrieving the three control words from

DSP memory. It also generates the address for writing the comm port status bits into

DSP memory at the reserved address.

The core hardware of the controller group is the microprogrammed controller,

shown in Figure 3-13. In this design the memory array is 64,bits wide. 16 of these bits

are for control of the next address hardware, while 48 bits are output bits for controlling

the rest of the interface hardware and the DSP. The microprogram is stored in

embedded array blocks in the FPGA. The memory array is implemented in an

LPM_ROM in the FPGA. This is a macro function from the Altera MAX+PLUSll

software that interconnects the embedded memory blocks in the FPGA to the desired

configuration. The microinstructions have bit fields that determine the instruction to

execute, condition input select, and the branch address. Four instructions are

45

Inputs

Microprogrammed
Controller Other Control Outputs

HostDataOutput[15:0]

8 (LSBs)

8

16

7^

8 (MSBs)

Comm Port ~

Status Bits

LD

SETUPCOM[3:0], IN/nOUT 5

n ̂r-/-

1 regS

To Host

Port Group

From Host

Port Group

^—
5 (LSBs)

Figure 3-12. Controller Group Block Diagram

46

Branch Address

Control
inputs Sequencer

Instruction

clock
>

ADDRESS

LPM ROM

clock
>

T
Outputs

Figure 3-13. Microprogrammed Controller

47

avairabler continue/branch on condition code equal to. zero, branch on condition code

equal to one-and-:unconditional t»ranch.,

3.j5.6 Controller Performance

Since the microprogrammed controller executes a microinstruction every clock

cycle, the maximum data rate that the controller can attain is defined by how many .

microinstructions it takes to accorhplish the transfer and by the clock period. Since the

microprogrammed controller operates at the board clock rate of 40 MHz, each

microinstruction takes 25 nS to execute.

For a read transfer, after the controller has strobed LOAD to load a word into the

comm port group, it takes 8 clock cycles until the LOADACK signal is checked again.

This means that if LOADACK is IbwTor less than 200 nS after the LOAD line is strobed

high, the controller will exit the Idle loop at the first opportunity and start the next read

access. That is, it will branch back to the read loop in 6 clock cycles after entering the

Idle loop. This results in the maxifnUm read transfer rate, Assuming an auto-

incrementing access, the fastest read transfer possible takes 19 clock cycles, which is

the shortest path through the read loop and the Idle loop. This is 475 hS per 32-bit word

or 119 nS per byte and corresponds to a maximum read rate of 8.42 MB/S.

For a write transfer, after the controller has strobed DATACK to latch the word

into the host port group, it takes 10 clock cycles until the DAV signal is checked in the

48

Idle loop. This means that If pAV is low for less than 250 nS after the DATACK line has

gone high, the controller will branch out of the Idle loop at the first opportunity, and

conduct writes at its maximum rate. Assuming an auto-incrementing access,.the fastest

write transfer takes 18 clock cycles. This corresponds to a theoretical maximum write

rate of 8.88 MB/S.

49

Chapter 4

Tests and Results

4.1 Test Methods

The checkout of this design began with tests to ensure that the major

components on the board functioned.. The first test was simply checking for short

circuits on the board. This was done.with a multimeter. No shorts were detected. The

board was checked for shorts on several signal traces on each layer, and between the

power layers and ground. This was done both before and after having components

installed on the board.

The following tests were accomplished by configuring the FPGA through the

JTAG header using an Aitera BitBlaster download cable. A simple state machine

controller was designed to load code into the DSP via its host port (HPi). Part of the

memory in the FPGA was used to store a data file containing the DSP machine code,

and any data that needed to be loaded for a test. To start this test the FPGA was

programmed and when this was complete, the system implemented in the FPGA would

start working. The DSP, which was in host boot mode, received data and code from the

FPGA. When the FPGA was finished, it wrote to the host port control register to make

the DSP exit reset. When the DSP exited reset, it immediately started executing code,

beginning at address 0. The Texas Instruments C6201 Code Generation Tools package

was used to develop the assembly language code and to provide the resulting machine

50

code listings. During this developrhent work, this was the method used to configure the

FPGA and to load code and data into the DSP.

The purpose of the second test was to load code into the DSP which would

simply start one of the DSP timers. This test was conducted using the method

described above. In other words, when the DSP came out of reset, one of the timers

would pulse at the frequency defined in the code. The timerO output of the DSP was

observed with an oscilloscope. This test yielded the proper timer output waveform, so it

was successful. This test proved the following: the FPGA was being programmed

successfuily, the process used to communicate through the HPI worked, the host boot

mode functioned as expected, and the DSP functioned at least in a limited manner.

The next tests involved the entire design, including the C4x-compatible comm

port interface implemented in the FPGA. During these tests, a C6201 DSP module was

installed on a TIM-compliant, VME motherboard. A PCI, TIM-compliant motherboard

with a 044 DSP TIM was installed into a PC nearby. The two motherboards were

connected with a 2.5' (76.2 cm) ribbon cable. This long ribbon cable produced the worst

case delays that might be observed in a practical system. With this configuration, the

design could be tested by conducting reads and writes between the C44 DSP TIM and

the C6201 DSP TIM over a C4x-compatible comm port. An emulator was used to load

and execute test code in the C44 DSP. This C44 test code was used to execute writes

to the C6201 board and collect data from reads of the C6201 board. For the read and

write tests, the microprogrammed controller was used to load machine code and data

into the C6201 DSP, as well as controlling the comm port hardware.

51

The third test consisted of transferring data to the C44 from the C6201 (i.e. a

read transfer). First, the C44 code was executed so that the C44 and PCI board would

be ready to receive the data. Following that, the FPGA was programmed and the test

commenced. The C6201 had a table of 16 32-bit words in memory to transfer. The

code loaded into the 06201 would first start a setup procedure for a read transfer. After

the comm port was set up for a read, and the bus was ready, the transfer would

commence. An emulator was used to monitor the transferred words for review. Since

the data was known, it was a simple matter to compare corresponding words to ensure

that the system was working properly. Since the comm port being used on the 06201

, board is a default input port, this test also proved that the interface would properly

conduct a token transfer. The read transfer was also observed with a logic analyzer.

The fourth test was a data transfer into the C6201 board (i.e. a write transfer). In

this test the FPGA was programmed first so that the C6201 would be ready for the data

being written into it. Once the C6201 was. running, it would set up the comm port for a

write. Next, the 044 code was executed, which started the write transfer. The 044

would send a block of 16 32-bit words. For this test, the same 16 data words were

already loaded in the O6201 in different memory locations than the presently written

data. The O6201 code would start a timer at a given frequency if the two sets of data

were equal. However, if the data written was not correct, the timer would run at a

different frequency. This test was also observed with a logic analyzer.

52

4.2 Results

4.2.1 Read Transfer Results

, The read transfer resulted in the correct data values appearing on the monitor.

Therefore, the read transfer, along with a token transfer, was successfully executed.

The average data rate was calculated using data from the logic analyzer output, which is

shown in Figure 4-1. The time measured for a 16-word read transfer was 8.92 uS,

which corresponds to an average data rate for a read transfers of 7.18 Mbytes/S. The

theoretical maximum rate of the controller is 8.42 Mbytes/S.

The logiQ analyzer output shows that the read transfer progressed as expected.

Each LOAD strobe represents a data word that was successfully read out of the C6201

TIM. The time the LOADACK line remained low (i.e. the comm port is not ready for

another word) ranged from 100 nS to 290nS. Recall that if LOADACK is low for less

than 200nS after the LOAD strobe, the controller operates at its maximum speed during

an auto-incrementing read. Therefore, the difference in the measured data rate and the

maximum rate was due to hardware outside of the C6201 TIM introducing delays

between read transfers. When the LOADACK line was low for less than 200 nS, the

time between the current and next LOAD strobes was approximately 480 nS. That

corresponds to 19 clock cycles, which is the minimum possible number of clock cycles in

which the controller can conduct a read transfer. When LOADACK was low for greater

than 200 nS, the time between the two nearest LOAD strobes was 650 nS. One cycle

53

POD-A-Lyzer - CRD1 eC4X.BCE]

¥

LICFn 100 MHz (10ns)

Name

mmi'

T 10.24U3

yrmx
i# * M .. ■; ?

■ ^r. -4 ^ V- I ^

Figure 4-1. Read Transfer Test Logic Analyzer Output

through the Idle loop takes 7, clock cycles or 175 nS. This means that the LOADACK

line was low until after it completed one cycle through the Idle loop for those slower

reads. The variation in LOAD stfobe intervals in discrete steps of approximately 175 nS

was caused by the LOADACK line being detected high, either at the first or second Idle

loop. ; - n ' , ^ n

4.2.2 Write Transfer Results

The write transfer, test also yielded successful transfers. The words were written

into the C6201, and the test was observed using the logic analyzer. The logic analyzer

output is shown in Figure 4-2. Each DATACK pulse represents a data word that was

successfully written to the 06201 TIM. The write transfer time measured with the iogic

analyzer for 16, 32-bit words was 12;40 uS. This corresponds to an average data write

rate of 5.15 Mbytes/S. The theoretical maximum write rate for the controller is 8.88

Mbytes/S. ^ n ;

The write transfer tests yielded a much lower data rate than the read transfers

because the DAV |ow period was, much longer than the average LDACK low period

measured in the read tranisfer tests. This means that the, data rate was lower because

hardware other than the C6201 TIM introduced longer delays between write transfers

than were introduced during the read transfers.

The write transfers resulted in very uniform high and low periods with respect to

the DAV line. The DAV iow period ranged from 490 nS to 500 nS. This was much

n n • ^ n '-55 n - , , n . -

, Pod-A-Lyzeh - [WR1 6C4X.BCE]

rrn
NdtTi^ Eh

DATACK

C0M3IND0N

CURROPWR

DAV

nHINT

EXT 1NT4

^wsiSi:;3iw

Figure 4-2. Write Transfer Test Logic Analyzer Output

higher than 250 nS, which is the maximum DAV low period such that the controller

would operate at its maximum write transfer rate. The interval measured between

DATACK strobes was 800 nS. This means that the controller conducted the write

transfer, which requires 18 clock cycles (450 nS), and then the C6201 TIM waited in the

Idle loop for 14 clock cycles (350 nS) for the other hardware to provide the next data

word. Since one cycle through the Idle loop takes 7 clock cycles, the C6201 TIM had to

wait for two Idle loops before the next word would arrive. If the external delays were a

little less it is probable that only one idle loop would be executed. This would result in

write transfer rates comparable to the measured read transfer rates.

57

Chapters

Conclusions, Expansion, and Future Work

5.1 Conclusions

The CSx DSP TIM developed in this thesis was built and tested, it can be used

in a message passing, multiple processing system. The ability to conduct read and

write data transfers through a C4x-cprnpatible comm port was demonstrated.

The rhicroprpgrammed contrPiier implemented in the FPGA was an effective

means of cpritroiiing the cornm port interface, which required nearly 100 instructions and

46 controller output bits; The embedded memory array in the Altera FLEX10K FPGA

was, of sufficient size to allow the micrPprogram to be loaded with more than 60% of the

memory to spare. ,The access time of the memory array was sufficiently fast to meet the

required clock rate of 40 MHz for the controller. The design with one comm port used

only 11 % of the logic resources in the FPGA. Additional comm ports will use the same

controller, and so will require much less than 11% more per comm port. Therefore,

ample IPgic resources and rriemory are free for use in future applications.

Given the complicated means needed for transferring data between the 16-bit

C6x host port and a C4x-compatible comm port, the maximum data rates are relatively

high. The maximurh read transfer data rate is 8.42 Mbytes/S, and the maximum write

transfer data rate is 8;88 Mbytes/S.. Measured data transfer rates through a long (2.5')

58

ribbon cable yielded an average rate of 7.18 Mbytes/S for read transfers and an average

rate of 5.15 Mbytes/S for write transfers. The measured read transfer data rate of 7.18

Mbytes/S is good for such a long ribbon cable. If a shorter cable were used, the read

data rate should reach the maximum rate of the controller. The lower write transfer data

rate obtained in the tests were due to influences other than the C6201 TIM. Therefore,

with some changes in the test configuration, higher data rates should be achieved.

5.2 Expanision to Four Comm Ports.

The C4x - compatible comm port interface can easily be expanded to include

four comm ports. The majority of the hardware needed is three additional comm port

group modules, which can simply be copied, the control lines and data busses for the

comm ports can be selected with Various multiplexers. One multiplexer for example,

would select which comm port's control signals would be observed by the controller.

Another multiplexer would be needed to select which comm port to drive the host port

data bus. The controller outputs would also need to be selected with a multiplexer so

that the controller code would require very little modification. This approach will also use

far less memory in the FPGA than having a set of controller output bits in the memory

array for each comm port.

In the controller group, a two-bit counter could be used to keep track of the

active comm port. This counter would be incremented on each pass through the Idle

loop. The counter output would feed all of the multiplexers, thus selecting the active

59

comm port. This would require a single bit to be added to the microinstruction, which

would be an increment enable line for the two-bit counter. The Idle loop microinstruction

sequence would only have to be modified to include enabling this counter once at the

end of the loop.

Adding more comm ports will increase the number of possible network paths

between processors, thereby increasing the potential bisection bandwidth of a system of

TIMs. However, traversing the Idle loop several times between each access during a

block transfer will degrade individual comm port data rates.

5.3 Future Work

This board is also capable of supporting the C6701 floating-point DSP. The

C6701 requires a 1.8 V source for its processor core, instead of the 2.5 V source

required by the C6201. Providing a 1.8 V source is accomplished by simply changing

the values of four resistors on the board. Several TIMs will be built with the C6701

when these DSPs are available. Benchmark testing of the C6701 DSP will also be

needed. Benchmark testing needs to be conducted on the C6201 TIM as well, with

regard to both computational performance and the memory architecture.

The TIM developed in this thesis will accept a 128k X 32 SBSRAM capable of

operating at clock rates of 166 MHz in place of the existing 64k X32 SBSRAM. This

would allow the SBSRAM to be operated at the full CPU clock rate of 160 MHz, and it

60

would have twice the capacity of the SBSRAM currently used on the C6x TIM. When

these memory devices become available, it would be cost effective to install them on

any new C6x TIMs to be built later.

After the final comm port configuration is determined, the DSP boot code and the

FPGA configuration data should be loaded into the flash memory. This will allow

effortless booting from the flash instead of loading code through the JTAG header.

Also, a scheme for booting the DSP from the flash, then receiving additional code

through one of the comm ports would be useful.

Methods of increasing the performance of the comm port interface should be

explored. This will be especially important if four comm ports are used. One method

would be increasing the controller clock rate. This would require that the microcoded
1

controller used in this thesis be modified since its maximum clock rate is currently 44

MHz. The minimum signal pulse widths required for the HPI, both for high and low

pulses, is 12.5 nS for the 160 MHz processor clock rate in this design. This means that

controller clock speeds of up to 80 MHz will work with respect to the HPI timing

requirements. However, a controller would need to be developed that can attain that

clock rate.

61

REFERENCES

62

REFERENCES

[1] "TMX320C6201 Digital Signal Processor," Advance Information Data Sheet,

Texas Instruments Corporation, Houston, TX, March 1998.

[2] "TMS320C62XX CPU and Instruction Set Reference Guide," Texas Instruments

Corporation, July 1997.

[3] "TMX320C6701 Floating-Point Digital Signal Processor," Advance Information

Data Sheet, Texas Instruments Corporation, Houston, TX, May 1998.

[4] "TMS320C6201/C6701 Peripherals Reference Guide," Texas Instruments

Corporation, Houston, TX, March 1998.

[5] B. Wilkinson, Diaital Svstem Design. Engiewood Cliffs, NJ: Prentice Hall, 1987.

[6] P.P. Prosser and D.E. Winkel, The Art of Digital Design. Engiewood Cliffs, NJ:

Prentice Hail, 1987.

[7] "FLEX 10K Embedded Programmable Logic Family," Data Sheet, v3, Altera

Corporation, San Jose, CA, January 1998.

[8] "Configuring FLEX 10K Devices," Application Note 59, v1, Altera

Corporation, San Jose, CA, December 1995.

[9] "BitBiaster Serial Download Cable," Data Sheet, v4.01, Altera Corporation,

San Jose, CA, February 1998.

[10] "IEEE 1149.1 (JTAG) Boundary Scan Testing in Altera Devices," Application

Note 39, v4.02, Altera Corporation, San Jose, CA, November 1998.

[11] "TMS320C4X User's Guide," Texas Instruments

Corporation, Houston, TX, May 1991.

63

t- n • ' .

[12] "TIM-40 ; TMX320C4x Module Specification," v1.00, Texas Instruments

Corporation, Houston, TX, 1992.

[13] H. W. Johnson and M. Graham. Hiah-Soeed Digital Design : A Handbook of

Black Magic. Upper Saddle River, NJ: Prentice Hall. 1993.

[14] b. A. Patterson and J. L. Hennessey, Computer Organization & Design :

The Hardware / Software Interface. San Francisco. CA: Morgan Kaufmann

Publishers, 1994.

[15] "MT58LC64K32/36D8 64K x 32/36 SYNCBURST SRAM," Data Sheet, Micron

Technology, Inc., Nampa, ID, January 1997.

[16] "SyncBurst Features and Options," [Online Document], Micron

Semiconductor Products, Inc:, Narfipa, ID, 10 December 1998, Available HTTP:

http://vy\ww.micron.com/mti/msp/html/syncfeat.htmr

64

VITA

Jeffrey Patterson was born in Winchester, Tennessee on April 8, 1969. He

attended elementary and secondary school in Franklin Countyj Tennessee. In 1993, he

graduated from Tennessee Technological University with a Bachelor of Science degree

in Electrical Engineering. While attending TTU, he was inducted into the Eta Kappa Nu

Honor Society. Upon graduation at TTU, he was commissioned in United States Army

Reserve. In October 1993, he graduated from the United States Army Engineer

Officer's Basic Course.

Following graduation, he worked four years for the Army Corps of Engineers -

Nashville District, as an Electrical Design Engineer. In 1997, he graduated from the

Army Engineer Officer's Advanced Course. In the same year Mr. Patterson received a .

Graduate Research Assistantship at The University of Tennessee Space Institute. He

received a Master of Science degree, in Electrical Engineering in May 1999. He is

currently employed with Raytheon Systems Company in Tucson, Arizona.

65

	Development of a TIM-compliant TMS320C6x DSP module
	Recommended Citation

	Development of a TIM-compliant TMS320C6x DSP module

