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ABSTRACT 

A divisor d of n is said to be a unitary divisor if d 
-·-

and n/d are relatively prime. Let c-"(n) be the sum of the unitary 

divisors of n, and let ~(n) be the sum of all the divisors of n. 

Some of the topics of classical number theory which involve CJ(n) are 
"k 

investigated with the function u replaced by () 

-'-

An integer n is said to be unitary perfect if J"'" (n) = 2n ; 

some new results concerning such numbers are presented in Chapter II. 

Two integers n and m are unitary amicable if they satisfy 

n + m = er~\ n) = c/\m) Several theorems concerning unitary amicable 

numbers are proved in Chapter II, and an appendix lists 610 pairs of 

unitary amicable numbers. 

Let D{X} be the asymptotic density of the set X of integers. 

It is known that the density function 

A(x) = D { n : c/(n) } -- >x n ,, 

exists and is continuous for all values of the real variable x. 

Let be Dedekind's function, 

-1 (1 + p ) 

with the product over primes p which divide n . In Chapter III 

the existence and continuity of the density functions 

iii 



B(x) = D { n 

and 

C(x) = D { n : 

4,1( n) } 
n X 

cr\n) } ~x n 

iv 

is proved. In addition, upper and lower bounds are obtained for the 

functions B(x) and C(x) and, as a result, for A(x) . 
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CHAPTER I 

INTRODUCTION 

I. BACKGROUND MATERIAL 

An arithmetic function has as its domain the set of positive 

integers. We say that a non-zero arithmetic function f is multi-

plicative if f(mn) = f(m) f(n) whenever (m,n) = 1 , i.e., for all 

relatively prime m and n 

Let t'(n) and ~(n) denote the number and sum, respectively, 

of the positive divisors of n It is a standard result (see for 

example [7), Chapter XVI) that r and are multiplicative, so if 

is the canonical factorization of n, then 

and 

Let ;(s) be the Riemann zeta function, 

1 



00 

= 
n=l 

-s n 

2 

which converges for Res> 1 . It will be convenient to use Euler's 

product for f(s) , 

(1.1) fCs) = n Cl - p-s)-1 , 
p 

where the infinite product is taken over all primes p . 

If f is an arithmetic function we say that F(s) is its 

generating Dirichlet series if 

00 

F(s) = I: 
n=l 

f(n) -s n 

It is well known (see for example [7], Chapter XVII) that if f is 

multiplicative, then 

(1. 2) F(s) + f(p) p + f(p) p + .... -s 2 -2s } 

It is a standard result [7] that the generating Dirichlet series 

for r is 2 f (s) , and 

00 

(1. 3) I: <r(n) 
n=l 

-s n = '{Cs) ~(s-1) . 
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II. UNITARY DIVISORS 

A divisor d of an integer n is said to be a unitary divisor 

if (d,n/d) = 1 ; in this case we also say that n is a unitary 

multiple of d 

Suppose that 

is the canonical factorization of n. If d is any divisor of n, 

then 

al a 
d r = pl •• ·Pr 

bl b 
n/d r = P1 •• ·pr 

where 0 ~a.~ e. and a. + b. = e. for i = 1, 2, ... , r . If d 
1. 1. 1. 1. 1. 

is a unitary divisor of n ' then each a. is either e. or 0 . 
1. 1. 

.,. 
It is clear then that if r" (n) is the number of unitary divisors of 

n, then 

and r is a multiplicative function. 

We define 



·k 

a-;', (n) = L d 
din 

(d,n/d) = 1 

Then a- (n) is the sum of the unitary divisors of n. 

Theorem 1. The a- function is multiplicative, and 

(1.4) 

4 

where the are distinct primes. In particular, is odd if 

and only if n is~ power of 2 

Proof. Clearly >', e e 
(J (p ) = 1 + p for all primes p and all 

positive exponents e. Thus we need only prove either half of the 

theorem. Suppose r 2 we write e n = p n' where (p,n') = 1 . 

From the behavior of -i', n has twice as many unitary divisors as 

n' does. If d is a unitary divisor of n' , then both d and 

ped are unitary divisors of n . We may thus account for all the 

unitary divisors of n, so that 

from which the theorem follows by an easy induction argument. 

If ~(n) denotes the number of distinct prime divisors of n, 

we have already seen that 



It is 

'(-:, ( n) W(n) 
= 2 . 

known [7], then, that 

c,O 

I: ·/' (n) -s 12(s)/ r (2s) n = 
n=l 

By ( 1. 2) we have 

-s n = n {1 + (J'\p) p -s + ;\p2) p -2s + 
p 

= n 
p 

-(2s-1) 1 -

Then by Euler's product (1.1) we have 

GO 

(1.5) [ (J-:, en) 
n=l 

III. DEDEKIND'S ljJ FUNCTION 

5 

We shall have several occasions here to make use of Dedekind's 

function, which is defined by 



(1. 6) -1 
(1 + p ) ' 

where the product is taken over all primes p which divide n. 

Identity (1.6) should be compared with 

TT -1 ~(n) = n / \ (1 - p ) , 
pin 

where f denotes, as usual, Euler's totient. 

Now, is a multiplicative function, and by (i.6), 

e e e-1 y.>(p ) = p + p 

Theorem 2. K£!_ all integers n, 

(1. 7) 

with either equality in both positions 2!. strict inequality f.!!. both 

positions, Equality occurs if and only if n is squarefree. 

Proof. Since 

e e-1 e e-1 e 1 + p p + p 1 + p + ... + p + p. 

for all e 1 , the theorem is true for all prime powers. As the 

three functions are all multiplicative, the theorem holds for all 

integers. 

6 



(1.8) 

As before, we use (1.2) to conclude that 

00 

L \JJ<n) 
n=l 

-s n = ~(s) f (s-1)/ f (2s) . 

The similarities among the generating Dirichlet series for o-, rr 

and lJ) should be noted. 

We shall later be examining the ratio \.j)(n)/n 

result will be useful. 

the following 

7 

Theorem 3. If n and m are squarefree and ~(n)/n = 'J/(m)/m, 

then n = m. 

Proof. If n = 1 , then clearly m = n . Either m = n for 

all integers n and m satisfying the hypotheses, or else there is 

a pair n and m which provides a counter-example. If the latter is 

the case, we may take n and m to be minimal in the sense that they 

are relatively prime. We write n = p ··•p with 1 k and 

m = with Then if 

= = = . . . . . 
n m 

we have 



Now, pkln and (n,m) = 1 , so 

As pk exceeds each term except possibly 1 + pk-l and 1 +pk, 

and (pk,l+pk) = 1 , we must have pk\(1 + pk_ 1) . Hence, because 

1 + Pk-1 pk we must have • pk = l + pk-1 . Therefore, k = 2 ' 
pl = 2 and P2 = 3 A similar argument shows that j = 2 ql ' 
and q2 = 3 Hence (n,m) = 6 contradicting the relative pri-' 
mality of n and m 

8 

= 2 

Corollary. If n and m are squarefree and o-(n)/n = ~(m)/m 

or a-'\n)/n = rr-'\m)/m , then n = m . 

Lemma. If q is the largest prime dividing m ' then ---
<r(m) < q r/" (m) for all m > 1 ' ----

Proof. It is known PJ that o-(m)/m < m/ g?(m) for all m > 1 

Since /" (m) > m for ·all m > 1 ' we have 

~cm) ~(m) m ----"- = -- • ---
r/'< (m) ' • • m /' (m) 

«(m) m <--<--· m <p(m) 

But 

' 

. 



2 3 !+ 
- 6 - • - • 

1 2 3 

and the lemma is proved, 

Theorem 4. all integers n 

( 1. 9) 

_ _E_. 
p-1 

_ _g__ = 
q-1 q , 

Proof, We clearly have equality if n is squarefree. 

If n is a prime power, say n 

verify that 

so (L9) holds. 

e = p then it is easy to 

9 

Suppose the theorem is false, and let n be the least integer 

for which (1.9) fails to hold. By the minimality of n and the 

multiplicative nature of the three functions, no prime divides n 

only once. We may take c.)(n) 2 since we have already eliminated 

the case in which n is a prime power. Let p be the largest prime 

dividing n and write a n =pm with (m,p) = 1 

largest prime dividing m 

character of n 

Then clearly q < p 

and let q ]:>e the 

By the minimal 



and 

Since a~ 2, a a-1 tj)(p) = p lJl(p ) , so we may multiply the first 

inequality by p to obtain, from the second, 

Now, * a-1 a * a p (j' (p ) = p + p = (j' (p) + p - 1 and a-1 p er'( p ) = 

a if(p) - 1 , so it follows that 

_,_ 
~(m) > (p - 1) ~"(m) 

Thus by the lemma above, 

-·-
p < 1 + er'( m) / (jn ( m) < 1 + q p , 

an obvious contradiction, 

Thus (1.9) holds for all n . 

IV. STATEMENT OF OBJECTIVES 

There are several topics in classical number theory that may 

be formulated in terms of the sum of divisors function ~. For 

example, the Greeks called an integer n perfect if it equals the 

10 

sum of its proper divisors, a condition equivalent to ~(n) = 2n . 

Two integers n and m are said to be amicable if each is equal to 
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the sum of the proper divisors of the other, i.e., if 

G(n) = ~(m) = n + m. 

Behrend [2) and Davenport [4], among others, investigated the function 

A(x) - D { n : <r~n) x} , 

where D{x} is the asymptotic density of the set X of integers. 

What we shall do in this dissertation is examine these topics 

with the function replaced by 

Subbarao and Warren [11) have defined and discussed unitary 

perfect numbers. In Chapter II we shall present some new results and 

alternate proofs which augment their discussion. 

Also in Chapter II we define unitary amicable numbers in a 

natural way, and we present in an appendix a rather extensive list of 

such numbers. 
·k 

It will be seen later that the functions and have 

markedly different behavior. Dedekind's (/I function is included here 

as a matter of convenience to indicate the behavior of a function that 
--k 

lies between the two extremes and 

In Chapter III we define, and prove the existence and conti-

nuity of, the functions 

B(x) \JI( n) 
n 
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and 
_,, 

a-" ( n) 
n 

It is easy to see by Theorem 2 that 

C(x) B(x) A(x) . 

It will be seen later that lower bounds are relatively easy to.obtain 

for each of the three density functions A(x) , B(x) and C(x) . 

Originally, the goal of the research presented in the latter part of 

Chapter III was to obtain upper bounds for B(x) and use these esti-

mates to obtain upper bounds for C(x) It happens, however, that 

of the three density functions, B(x) is the easiest to bound. As a 

result, we use Theorem 4 and the upper bounds for B(x) to obtain 

meaningful upper bounds for A(x) . 



CHAPTER II 

PERFECT, ABUNDANT AND AMICABLE NUMBERS 

I. BACKGROUND AND DEFINITIONS 

Euclid defined an integer n to be perfect if it equals the 

sum of its proper divisors, a requirement equivalent to ~(n) = 2n. 

In terms of the function, we say that an integer n is abundant 

if ~(n) > 2n, and deficient if ~(n) < 2n 

Let f be a- , i.µ , or a-

if f(n) <. 2n 

if f(n) = 2n 

if f(n) > 2n 

We say that 

n is f-deficient; 

n is f-perfect; 

n is f-abundant. 

We shall also from time to time use unitary perfect and unitary 
... ,.. .., ... 

abundant instead of ~·-perfect and i'-abundant, respectively. 

More generally, we say that n is (x,f)-abundant whenever 

f(n) > xn, and define (x,f)-perfect and (x,f)-deficient numbers in a 

similar fashion. An (x,f)-nondeficient number is one which is either 

(x,f)-perfect or (x,f)-abundant; (x,f)-nonabundant numbers are defined 

analogously. We shall, if convenient, revert to the more restricted 

names in the case x = 2 . 

13 
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II'. PROPERTIES OF MULTIPLES 

In this section we develop some properties of multiples of 
' ' I (x,f)-ahundant numbers. These properties will later he the basis for 

the definition of primitives. 

Theorem 1. If n divides m, then ~(m)/m ~(n)/n. 

Proof. 

increases as e 

We note:that for p a prime, the ratio e e o-(p )/p 

increases. 
a 

We write n = TT p P 
b 

and m = TT p P 

Since n divides m, a b for all p. 
p p 

Corollary. Any'multiple ~f (x,~)-nondeficient number is 

itself (x,~)-nondeficient. 

We have already defined W(n) as the number of distinct primes 

that divide n We say, that a multiple m of n is an c.0-multiple 

of n if c,.)(m) = c,.)(n) . If m is an ~-multiple of n, then it is 

clear that any prime that divides m also divides n. 

Because of identity (1.6) the ratio W(n)/n depends not upon 

the value n, but only upon the,set of primes dividing n. If m 

is an w-mul tiple of .n then the respective sets of dividing primes 

are identical. If m is any multiple of n, then the set of primes 

that divide n is contained in the corresponding set for m. Hence 

we have proved the following results: 
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Theorem 2. If m is an w-multiple of n , then lJ,l(m) /m = 

1/J(n)/n. 

Theorem 3. If n divides m, then ~(m)/m W(n)/n. 

Corollary. Any multiple of an (x,~)-nondeficient number is 

itself (x,~)-nondeficient. 

In the o- case the properties of multiples are not quite as 

nice as the ones above. The extreme cases are given in the following 

theorem. 

Theorem 4. Suppose m is a unitary multiple of n , and that 

k is an w-multiple of n Then 

Proof. If m = nd with (d,n) = 1 then since /'" ( d) 3 d , 
..,~ .,. 

cr\d)/nd 
., . 

o- (m) /m = i' (n) (S"'" ( n) /n If k is an Gv-multiple of 

a b 
n = TT P P we write k = TT P p with b a for all p Hence , . 

p p 

-b -a 
TT c 1 + P P) TT c1 + P P) = 

.,. 
Corollary. Any unitary multiple of an (x,u")-nondeficient 

.,. 
number is itself (x, o-" )-nondeficient. 
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III. PERFECT NUMBERS 

Euclid showed that n = is o--perfect if 

is a prime. Indeed, it was in this connection that Euclid introduced 

the concept of prime numbers. Euler proved a partial converse to 

Euclid's theorem: if an even integer is ~-perfect, then it must be 

of Euclid's form. The search for even ~-perfect numbers, then, 

becomes the search for Mersenne primes, those of the form p 2 - 1 . 

This has been the stimulus for much research in number theory; for 

example, Lucas's Test is a major result in testing for primality 

numbers of the form zP - 1 . One occasionally sees numbers cited as 

being the largest known prime: these are nearly always Mersenne 

primes. 

There are no known odd ~-perfect numbers, and there are some 

reasons to suspect that there are none. Most research on the question 

of the possible existence of odd ~-perfect numbers has been in' the 

direction of describing the number and type of prime divisors. of such 

integers, if any exist. Another unanswered question about ~-perfect 

numbers deals with their possible infinitude. 

In contrast with the situation with ~-perfect numbers, we can 

completely characterize the ~-perfect numbers. We note that the 

largest squarefree divisor of an integer n is the product of the 

first powers 6f the primes dividing n and is the smallest divisor 

m such that n is an £A>-multiple of m 
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Theorem 5. An integer n is ljJ-perfect if and only if 

n = 28 3b with a and b positive integers. In particular, then, 

there~ infinitely many ~-perfect numbers, each of which is~ 

and has 6 its largest squarefree divisor. 

Proof. Since \V(6) = 12 , any (,)-multiple of 6 is lj)-perfect 

by Theorem 2. On the other hand, if n is ~-perfect and m is the 

largest squarefree divisor of n, then tCn)/n = ~(m)/m = \J'(6)/6 

and hence m = 6 by Theorem 3 of Chapter I, so n is an l<:l-multiple 

of 6 . 

Subbarao and Warren [11] investigated unitary perfect numbers 

and reported that the first four are 6 , 60, 90 and 87,360 

They proved there are no odd unitary perfect numbers; we shall offer 

an alternate proof of this fact in connection with unitary amicable 

numbers. Because of Euclid's theorem and Euler's partial converse, 

coupled with the fact that there are several relatively small Mersenne 

primes, there is some support for the conjecture that there is an 

infinite number of ~-perfect numbers. However, unitary perfect num-

bers are much more complicated, and Subbarao and Warren conjectured 

that there are only finitely many. 

This author, in attempting to understand the difficulty in 

forming unitary perfect numbers, discovered that the integer 
18 4 2 3·5 7·11·13·19·37·79·109·157·313 is unitary perfect. 
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In the theory of numbers, conjecturing that there are only 

finitely many of a type of objects is at best hazardous. On most 

questions of possible infinitude., the bulk of evidence rejects the 

finiteness position. It is the author's opinion that such will be the 

case with unitary perfect numbers; while these numbers are admittedly 

very scarce, it is felt that there is probably an infinitude of them. 

IV. ABUNDANT NUMBERS AND PRIMITIVES 

Because of the corollaries to Theorems 1, 3, and 4 of this 

chapter, we may define an integer n to be 

(a) (x,a-)-primitive if n is (x,~)-nondeficient and every 

proper divisor of n is (x,O"')-deficient; 

(b) (x,1/J)-primitive if n is (x,~)-nondeficient and every 

proper divisor of n is (x,\)J)-deficient; 

(c) 
,,. 

(x, /')-nondeficient (x,<r")-primitive if n is and every 

proper unitary divisor of n is (x,a2~)-deficient. 

Let f be <, , llJ , or 0- We immediately notice that if x f 1 , 

then 1 is the only (x,f)-primitive. Also, it is clear that any 

(x,~)-primitive must be squarefree by Theorem 2, and by Theorem 2 of 

Chapter I, any (x,t)-primitive is an (x,f)-primitive, Thus to demon-

strate the infinitude of the (x,f)-primitives, and hence that there 

are infinitely many (x,f)-abundant numbers, we need only examine the 

(x,\jJ)-primitives. 



Another question that arises concerning the (x,f)-primitives 

deals with divisibility. Are all (x,f)-primitives divisible by at 

19 

lea$t one member of some finite set of primes? We shall answer this 

question in the negative in the next theorem. First, however, we 

pause to prove a known result. 

Lemma. The product TT(l + p-l) , taken~ all primes p, 

diverges to infinity. 

Proof. Since each term in the product exceeds unity, if the 

product diverges, it diverges to infinity. Suppose the product 

converges. Then by Euler's product we have 

n 
p 

-1 (1 + p ) = ll 
p 

1 -2 
_-__,_P_ = 

1 -1 - p 
= 6 f (l)h/ , 

which implies the convergence of the harmonic series, an obvious 

contradiction. 

Theorem 6. For any x > 1 and any integer N 1 there is 

an infinite sequence of (x,~)-primitives which are relatively prime 

to N and relatively prime in pairs. 

Proof, If p is a prime, then \JJ(p)/p = 1 + p-l Because 

any terminal subproduct of the infinite product TT(l + p-1) , taken 

over the primes, must diverge to infinity, it is clear that we may 

construct an infinite sequence of pairwise relatively prime (x,f)-
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primitives by starting with an arbitrary term in the infinite product 

and multiplying by consecutive terms until we have a finite subproduct 

which exceeds x this finite subproduct is then an (x,lj.J)-primitive; 

the procedure is reiterated to obtain an infinite sequence of primi-

tives. We may insure relative primality to N by starting with any 

term 1 -1 + p in the product beyond the term corresponding to the 

largest prime dividing N . 

V. UNITARY AMICABLE NUMBERS 

Two integers n and m are said to be amicable if each is 

equal to the sum of the proper divisors of the other, a condition 

clearly equivalent to (J(n) = ~(m) = n + m 

We define integers n and m to be unitary amicable if 

n+m. 

Clearly any unitary perfect number is unitary amicable with itself. 

Also, if n and m are unitary amicable and n < m, then 

2n < (J;', (n) = -·-n + m = er' (m) <. 2m , 

so that n is unitary abundant and m is unitary deficient" 

In this section we shall discuss some of the properties of 

unitary amicable numbers. Some of these properties will be of 

interest in the area of amicable numbers, since there are pairs of 
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squarefree integers which are both amicable and unitary amicable. In 

addition, we present in an appendix a list of 610 pairs of unitary 

amicable numbers. 

There are no known amicable pairs in which one member is odd 

and the other is even, and it has be.en conjectured that no such pairs 

exist. One naturally wonders what the situation is with unitary 

amicable numbers. By Theorem 1 of Chapter I, r:r-''' (n) is odd if and 

only if n is some power of 2 Suppose n and m are unitary 

amicable. If n + m were odd, then both n and m would be powers 

of 2, contradicting that their sum is odd. Thus we have proved the 

following theorem. 

Theorem 7. The~ numbers of a unitary amicable pair are 

either both odd or both even. 

Corollary. If there is~ pair of amicable numbers having 

opposite parity, then at least~ of the~ numbers contains a 

nontrivial squared factor. 

Current lists [l; 3; 5; 6; 9; 10] of amicable numbers support 

this author's conjecture that if two odd integers are amicable, then 

they are incongruent modulo 4 . We prove a similar result for uni-· 

tary amicable numbers: 

Theorem 8. If n and m odd and unitary amicable, then 
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n and rn are incongruent modulo 4 . 

Proof. Suppose n and rn are odd and unitary amicable with. 

n ==. rn (mod 4) Then n + m = 2 (mod 4) , so n and rn are each 

prime powers, and by unique factorization must be equal. But then 

e n = rn = p and 

* e e « (n) = 1 + p < 2p = n + rn, 

a contradiction. 

Corollary, There~ E£ odd unitary perfect numbers. 

In the appendix we list 610 unitary amicable pairs. Most of 

these pairs are obtained from amicable pairs. Let N = dn and 

M = drn be amicable, where (d,n) (d,rn) = 1 , and n and rn have 

no common unitary divisor greater than unity. If N and M are both 

squarefree, then we immediately have a unitary amicable pair. In most 

other cases, i.e., except for the miscellaneous pairs under Escott's • 

classification [5), n and rn are both squarefree; we seek numbers 

U such that (n,U) = (m,U) = 1 and Un and Urn are unitary 

amicable, i.e., 

CJ(d)/d 

The search for such U is greatly simplified by the interchanges 

listed in Table I. 



TABLE I 

SELECTED VALUES OF d AND U 

SATISFYING tr(d)/d = ~\u)/U 

d u 

33 i337 

335 2·337 

ls 2·3252 

3213 2·33 , 22335 , 2•3441 

5231 527•13 

is231 2-3 2527 

ii13•19 2 2·3 5·7 , 2-3·7 

7219 s-i 
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It should be noted. that the interchanges in Table I may only be used 

when conditions of relative primality allow, Since six of the eight 

substitutions above go from odd numbers to even numbers, one might 

correctly conclude .. that most of the examples of unitary amicable num-

bers are obtained from odd amicable pairs. 
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In addition to the interchanges of Table I, it should be noted 

that the following are interchangeable as unitary divisors of U 

whenever conditions of relative primality permit: 

(a) 2 , 225 , 233 , 243•17 , 253•11 ; 

(b) 3 325 23337, 22335372 , 25337•11 

(c) 33 , i41 

(d) 7 , 527213, 325372 . 

Several other groups of integers could be added to the ones above, 

but we have listed the more useful ones. 

Escott [5] classified amicable numbers by forms, grouping 

together all amicable numbers 

where (n,m) = E, the pi and 

n = Ep • • ·p 1 a 
q, 

J 
are distinct primes, and a 

and b are fixed. Our classification is a modification of Escott's: 

a typical entry 

in the listing in the appendix represents the unitary amicable numbers 

n = Up ' .. p 1 a and m = Uq ···q , where 1 b u is the greatest common 

unitary divisor of n and m the and are prime powers, 

and n is unitary abundant. Allowing prime powers in the place of 

primes is justified since >'< e e (; (p ) = 1 + p for e = 1, 2, that 
·k 

is, primes and prime powers have the same type image under the a-

function, while such is not the case with the a- function, Within 
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each form, the middle entries of the triples are arranged in lexico-

graphical order. 

With the five known unitary perfect pairs, we have 615 known 

pairs of unitary amicable numbers. A study of these examples raises 

several questions, In the following, suppose N = dn and M = dm 

are unitary amicable, where (d,n) = (d,m) = 1 n m, and d is 

the greatest common unitary divisor of N and M. 

Question_!,. Given n and m, are there infinitely many 

choices for d ? 

We cannot answer Question 1 fully; however, as an approach to 

a negative answer, we have the following theorem and its corollaries. 

We remark that Subbarao and Warren [11] proved that for m a fixed 

positive integer, there are only finitely many unitary perfect numbers 

that are unitary multiples of m 2 ; the following theorem represents 

an extension of their result to unitary amicable numbers. 

Theorem 9. Let a and A be fixed positive integers, and let 

B be fixed. There~ only finitely manz pairs of unitary amicable 

numbers N and M such that 2A )\ (N + M) and 

MIN= B 

Proof, Suppose the theorem is false; then there is an infinite 

subset of integers N of the form N = 2aCD. with C 
1. 

an odd con-
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stant, (C,D.) = 1 and w(D.) A . We may then select an infinite 
l. ' 1. 

subset such that each D, is 
1. 

composed of the same number of distinct 

primes. Then we may take the prime powers in D. to be increasing, 
l. 

-·· so that lim. a-"(n.)/D. = 1 . 
l. l. 1. 

If C = 1 then 

N + M 2N 

Hence o-
0

\D.) /D. 2a+l / (1 + 28
) -~ 4/3 , a contradiction. 

l. 1. 

If C > 1 , we note that (N + M)/N is constant, so 

··k ;', a cr''' ( 2aC) N + M (j (N) c, (2 CD.) 
1. = = 

N N 28 CD. 
i-t> 0:, 28 C 

1. 

Hence Thus 

But for each i ' ' so and hence 

2A+lj ,-,-'''(N) --v N + M, a contradiction. 

Corollary. For fixed A, there~ only finitely many pairs 

of unitary amicable numbers N and 

M/N is constant. 

Corollary. For fixed A , there only finitely many pairs 

of unitary amicable numbers N 

and 2A+l ,r (N + M) , 

and M such that M/N is constant 
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Question~- Are there any unitary amicable numbers which are 

unitary multiples of different powers of 2? That is, is there a 

counter-example .E_£ the claim that n and m are always both odd? 

We have no known counter-examples. A tedious investigation of 

special cases shows that if there is a counter-example pair, then each 

of the numbers is divisible by 

ceeds six million. 

8 2 , and the smaller of the two ex-

Question l· Assuming a negative answer to Question~' is it 

always~ that either n = m or n¢ m (mod 4) ? 

Again, we have neither counter-examples nor a proof. One 

should note, however, the similarity of this question to Theorem 7. 

Question~- Are there any pairs of unitary amicable numbers 

which share no non-trivial common unitary divisor? That is,~~ 

have d = 1? 

Question 5. What is the smallest power of 2 which is a 

unitary divisor of the~ of~ odd unitary amicable numbers? 

One may show, by considering special cases, that 

odd unitary abundant number k such that 28{0-*(k) . 

there is no 

However, the 

eight known pairs of odd unitary amicable pairs are all such that 

their sums are divisible by 212 One would like to know if the 



exponent 12 can be improved downward. 

Question 6. Are there only finitely many choices of N and 

M N + M is a unitary multiple of a given power of 2? 

This is an extremely difficult problem. The two simplest 

cases, however, are easily solved: one can show that there are no 

unitary amicable pairs whose sum is a unitary multiple of 2, and 

if 22 1/ (N + M) , then N = M and their common value is either 6 

or 90 . 

Question l· Are there any pairs of integers which~ both 

amicable and unitary amicable which~ not both squarefree? 

Finally we shall mention briefly a generalization of perfect 

numbers and amicable pairs. We say that integers n1 , n2 , ... , nr 

form a cycle of length r if 

(i = 1, 2, ... , r-1) , 

Then it is easily seen that a unitary perfect number is a cycle of 

length one, and unitary amicable pairs form cycles of length two. 

Clearly, at least one of the n. 
1 

of a cycle must be unitary 
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abundant if r 2 The 6nly cycles, other than unitary perfect and 



unitary amicable pairs, which are known to the author are the 

following: 

30, 42 , 54 (length 3) 

1482 , 1878 , 1890, 2142, 2178 (length 5) 

2418 , 2958, 3522, 3534, 4146, 4158, 3906, 3774, 

4434 , 4446 , 3954 , 3966, 3978 , 3582 (length 14) 

Every other cycle of length not less than three is such that each 

unitary abundant element of the cycle exceeds 1500 . 

29 



CHAPTER III 

DENSITY FUNCTIONS 

I. BACKGROUND 

Let S be a set of integers and let S(n) be the number of 

elements of S among the first n integers. We define the density 

of the set s by lim S(n) /n n provided the limit in 

question exists. In this chapter we shall be investigating the three 

density functions associated with the. (x,f)-abundant numbers, where 
·k 

as in the previous chapter f is a-, l.}J or a-

Behrend [2) let A(x,n) be the number of integers m n for 

which <Y'(m) xm , and set 

A(x) = lim A(x,n)/n 
n~oo 

Davenport [4] proved that A(x) exists and is continuous for all x. 

It is easily seen, then, that the function A(x) measures the density 

of the (x,o-)-nondeficient numbers. 

More generally, Behrend denoted by A(x,j,k,n) the number of 

integers of the form mj n with (m,k) = 1 and ~(mj) xmj We 

remark that we may as well take k to be squarefree, since if n is 

the largest squarefree divisor of N then (m,N) = 1 if and only 

30 
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if (m,n) = 1 . Clearly A(x,1,1,n) = A(x,n) . As before, we define 

A(x,j,k) = lim A(x,j,k,n)/n 

provided the limit exists. When it is convenient we shall use A(x) 

instead of A(x,1,1) . 

By considering 1./1 instead of <r in the above, we may define 

B(x,j,k,n) , B(x,j,k) and B(x) ; we substitute * for <r and 

define C(x,j,k,n) , C(x,j,k) and C(x) . The definitions of the 

density functions are only provisional at this point as they depend 

upon the as yet unproved existence of several limits. In the next 

two sections we shall establish the existence and continuity of the 

functions B(x,j,k) and C(x,j,k) . The remainder of the chapter 

will deal with estimates for the three main density functions. 

II. EXISTENCE AND CONTINUITY OF B(x) AND C(x) 

We shall denote by fog the Dirichlet product of arithmetic 

functions f and g . That is, 

(fog)(n) = L f(d) g(n/d) . 
din 

It is well known that if f and g are multiplicative, then fog 

is also multiplicative. Let Yk be the multiplicative function 

k 
defined by Yk(n) = n 
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Let )A- be the Mobius function, _fl(l) = 1 , )"-(n) = (-l)r if 

n is a product of r distinct primes, and r(n) = 0 if n is not 

squarefree, The famed Mobius inversion theorem, a proof of which may 

be found in any elementary number theory text, states that 

if and only if g = f 0)-l, 

f = g oV, 
0 

Essential to the work of all this chapter is the mean M{f} 

of an arithmetic function f, defined by 

N 
= lim ! L f(n) 

N n=l 

provided the limit exists. We remark that the density, if existent, 

of a set of integers is the mean of the characteristic function of 

that set. 

Let f be an arithmetic function, and set g = f . It is 

known that if MtfJ exists and the series I7 g(n)/n converges, 

then the two are equal. However, Wintner [12) has shown that the 

convergence of L~ g(n)/n is neither necessary nor sufficient for 

the existence of M{f} , Our procedure for dealing with means is as 

follows: if [x] denotes the integral part of x, we write 

1 N 
N L f(n) 

n=l 

1 N 
= N L L g(d) 

n=l din 

N 
= ; L g(d) rnJ 

d=l 



00 

= L g(d)/d -
d==l 
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co l N 
L g(d)/d - N L g(d) 

d=N+l d=l 

Then if we can show that L~ g(d)/d converges and that the last two 

terms above each approach zero as N increases, we will have 

co 

= L g(d)/d . 
d=l 

We shall now apply this technique to the functions 

z 

>'< z 
(o- (n) /n) and 

Ct(n)/n) for complex values of z , 

numbers z , and 

1 £...:...! ( -k z} - + L pk+l 1 + p ) 
p k=l 

moreover, the~ is continuous at z = 0 . 

Proof. Let 

= L, (cr~'<(d)/d)z;-i-(m/d) . 
djm 

·k 
Then f z is multiplicative as f"- and o- are, and 

( ) ( ) ( -l)z 
z 1 = 1 , z p = 1 + p - 1 ', 

(e i 2) . 



Now, if u and v are real, then 

z u z 
- V 

z-1 z t dt , 

so if max (u,v) 2, and z = x + iy then 

Hence if e >- 2 , 

(3.1) 

Also, 

l 1 I x-1 -1 I x-1 -1/2 /P) zl 2 p \z 2 p 

so, since ~z is multiplicative, we have 

-1/2 n 

where C depends only on z . But 

so we have 

34 

for every E- > 0 , uniformly in z for I z I bounded. In particular, 
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(3.2) 

By the Mobius inversion theorem we have 

so that if [t] denotes the integral part of t , then' 

½ [ (cr"\n)/n) 2 = l [ p (n) [N/n] 
n=l N n=l \ z 

CX) co 

= I: ezcn)ln 
n=l 

L p /n)/n 
n=N+l 

But 

[o (n)/!_![!i]) [ lp(n)I !(!i-[!i]) 
n=l ~z \ n N n n=l \Z N n n 

and 



Hence 

1 N 
N L n=l 

so that 

00 
>', z , -1/3 

(~ (n)/n) = L., ~z(n)/n + O(N ) 
n=l 

M{((/''(n)/n)z} -1 n 

and the series is absolutely convergent by (3.2). 

Since ez is multiplicative, by (1.2) we have 

(X} 

I: f/n) 
-1 Tl {1 + f/P) 

-1 
+ \/l) -2 n = p p 

n=l p 

cl;) 

+ .. -} 

= TT {1 l L .e..:.l ( ·kc k)/ k)z} 
P + k+l p p 

k=l p p 

00 

= n {1 l+ L .e..:_!_ (1 + p-k)z} 
p p k=l pk+l 

This completes the proof of Theorem 1. 

numbers z , and 

36 



moreover, the~ is continuous at z = 0 . 

Proof. The proof of this theorem parallels that of the pre-

ceding, with the exception that the upper bound of (3.1) may be 

1 d b • • , Ii( e) / e , Ii( e+ 1) / e+ 1 rep ace y zero since y p p = '-f' p p for e 1 . We 

obtain 

Mt~n))z} ry {1 

c,:) 

(~;kk)n = I. + I: E...:....!. 
p k+l k=l p 

z co 
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Q{i- (1 p p-k 1} Q ~1 -
1 1 + 

P) k~l 
1 1 -1 z} = -+- = -+- (l + P ) ' p p p p p 

as asserted. 

We recall that a distribution function is a non-decreasing 

left-continuous function f with f(-oo) = 0 and f(oo) = 1 . One 

version of the continu'ity theorem for Fourier-Stiel tjes transforms 

states that if tfn(w)} is a sequence of distribution functions 

such that 

'c(y) = lim 

exists for all real y and is continuous for y = 0, then there is 

a unique distribution function f(w) such that 
co 

c(y) = f eiyw df(w) 
-CO 
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and f(w) = lim f (w) for every w at which f(w) is continuous. n n 

According to Kac [8], Wiener showed that 

lim ½ ST \c(y)\ 2 dy 
0 

is the sum of the squares of the jumps of f(w) As a result, if 

this limit is zero, then f is continuous. 

We shall describe our approach to establishing the existence 

and continuity of B(x) ; a similar approach will be used for C(x) 

Let FN(w) be the number of integers n N such that 

and set 

and 

a:) 

J e iyw 

so that 

df/w) = 

lim 
N~oo 

log < w , n 

Then is a distribution function, 

[exp (iy log t)J~l)) + ... +exp (iy log W~N))]/N 

00 

J e iyw dfN(w) = 
-00 

Then by Theorem 2 and the continuity theorem for Fourier-Stieltjes 

transforms, there is a distribution function f(w) = limN fN(w) at 
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the points of continuity of f, and 

f(w) = D { n log ~} <W • n 

But B(x) = 1 - f(log x) for x > 0 . Thus if f exists and is 

continuous, then B(x) exists and is continuous. To establish the 

continuity of f, because of Wiener's result we need only show that 

Lemma. ll >- 1 , ~ 2 , ... , \k !!.!::. real numbers linearly 

independent~ the rational field, and 

for j = 1 , ... , k, then 

1 ST k 
lim T TT (a.+ b. 

0 j=l J J 

Proof. We first note that if o( 

T . • 

[: (3.3) 1 . 1s io(yd = 1.m T e y 
0 

for if o< i= 0 ' then 

l IT io<. y d 
i o< T e 

e Y = 
T 0 o( T 

a. and b. are constants 
J J 

is real, then 

if o< = 0 

if o< f:: 0 

- 1 2 
lo(I T 
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Let m be any positive integer, and let o(1 , . . . , o(m be 

real. Then 

cos c( y • • • cos o{ y 
1 m 

i o< y 
(e m 

= 2 -m I: exp i re 1 o( 1 ..... . . . + em o(m J y , 

where the summation is over all possible choices of E. = ± 1 
J 

for 

If the o{1 , . . . , o(m are now assumed to be linearly 

independent over the rationals, then no exponent can be zero, and by 

(3.3) we have 

T 
lim ½ s cos o<1 y • • • cos o< y dy = 0 . 

0 m 

We write 

k 
TT 
j=l 

(a.+ b. cos A. y) 
J J J 

as a sum of terms, each of which is a product of some (or none) of 

the a. and some (or none) of the cosine terms. We may distribute 
J 

the integral over this finite sum and take limits individually. The 

only nonzero limit will correspond to the summand a1a 2 ···ak, that 

is, to the only term in the sum that contains no cosines, Then 



lim ½ f TT (a. + b. 
T7oa O j=l J J 

and the lemma is proved, 

cos A. y) dy 
J 
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It is known that the numbers log p;l with p prime, are 

linearly independent over the rational field. There are several 

proofs of this fact; one proof may be obtained by a slight modifi-

cation of the proof of Theorem 3 of Chapter I. 

Theorem 3. The function B(x) exists and is continuous for 

all real x . 

Proof. As noted above, we need only show that 

From Theorem 2 we have 

Now, 



(3.4) 

= 1 2 -1 2 -2 2 _P - 1 1 p + 1 - p + p + cosy og 2 p 
p 

For a later purpose, we remark that 

(3.5) ! + p + '-, 1 I 1) iy 1 
p p \ p 

1 . 

By the lemma above, 

(3.6) 1 T I 1 1 1 im 1 J n 1 - - + -
T70o O p ::- pk p p 

2 -+ p 

42 

) • 2 • 
p 

S l.• nc e '\ ( p- l - p-2) h d h b f L., diverges, t e pro uct in the rig t mem er o 

(3.6) diverges to zero as k increases without bound. 

Theorem 4. The function C(x) exists and is continuous for 

all real x . 

Proof. As before, we need only show that 

From Theorem 1 we have 
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Now, 

= _ .!. + .!. ( L±.1-.) iy + _2 -e { (a-''' (pe+2)) iy _ (;""(pe+l)) iy} 1 p p p P L 0 P e+2 e+l 
e= P P 

Hence by (3.4) and (3.5) we have 



44 

£..:..l. p + 1 + 2 2 cosy log 
p p 

Then by the preceding lemma, we have 

n -1 -2 I \ c 1 - 2p + 6p 
p ,:;_ pk 

and as before the product diverges to zero as k increases without 

bound. 

III. THE FUNCTIONS B(x,j,k) AND C(x,j,k) 

In this section we shall prove the existence and continuity of 

B(x,j,k) and C(x,j,k) . We shall first obtain this result for the 

special case in which every prime that divides j also divides k 

The general case for all j and k will follow from the special 

case. 

We define the character function Xk(n) by 

and remark that for each k ' X 
k 

if 

if 

(n,k) = 1 

(n,k) > 1 

is completely multiplicative; that 



is, Xk(n)Xk(m) =Xk(nm) for all integers n and m, whether 

relatively prime or noto 
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Theorem 5o Let j and k be integers such that every prime 

divisor of j also divides k 

and let g = f o)-l O Set 

Let f be~ multiplicative function 

= L g(n) n-s = ]l G(p,s) . 
n=l p 

Suppose that M{f} exists, that for all primes p, G(p,l) # 0 and 

that Lg(n)/n convergeso Suppose also that 

and that 

N L )g(n)I = o(N) 
n=l 

<X) 

L \g(n)/nl = o(l) o 
n=N+l 

= f(j) . q>(k) 
j k 

Proofo We shall first prove the result for j = 1 o Let [x] 
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denote the integral part of x. Then 

N N L f(n)Xk(n) = 
n=l 

LXk(n) L g(d) 
n=l din 

N 
= d~l g(d) {Xk(d) +Xk(2d) + ... +Xk(d[N/d])J 

by the complete multiplicativity of the Xk function. Now, the term 

Xk(l) + ... +Xk([N/d]) inside the summation is the number of integers 

not exceeding [N/d) which are relatively prime to k This number 

is [N/d) f(k)/k + 0(1) Thus 

Hence 



But 

and 

so that 

cO 

L 
d=N+l 

00 g(d)X k (d)} 
- L d + o(l) 

d=N+l 

N 
L \g(d)Xk(d)i = o(N) 

d=l 

\g(d)/d\ = o(l) , 

OO g(d)X (d) 
Mlfx } = L k = .'.£ill n G(p,l) 

l k k d=l d k p}k 

= 3/~l<) n G(p, 1)/ n G(p, 1) = PC:) . _M_l_f}_ 
p pjk Rk G(p,1) 

Now, since every prime that divides j also divides k, 

either Xk(n) = 0 or (n,j) = 1 . Since f is multiplicative, we 

have 
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= lim ½ L f(nj)Xk(n) 
nj::;: N 

= lim .!. L f ( j ) f ( n) X k ( n) 
N nj N 

= 1· f(j) 1 \ f( )X ( ) 1m -. - • N / . l.., n k n 
N?co J J n .!SN/ j 

f(j) . fllil 
j k 
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Corollary. For all j and· k such that every prime divisor 

of j also divides k, the functions B(x,j,k) and C(x,j,k) 

exist and are continuous for all x. 

Proof. One can verify that Theorem 1 and Theorem 2 may be 

obtained from Theorem 5 by considering the appropriate functions and 

setting j = k = 1 . Furthermore, one can carry through the proof of 

Theorem 3 for M{(~(nj)/nj)iyXk(n)} and the proof of Theorem 4 for 

M{(~*(nj)/nj)iyXk(n)} with essentially no change, and obtain the 

corollary. 

Let f be any multiplicative function with f(n) 1 for all 

choices of n For example, f(n) might be ~(n)/n, \J)(n)/n or 
.,. 

cr-" (n) /n As before, we define the density function F(x,j,k) , if 

existent, of f, and we write F(x,1,1) = F(x) . We define the 

inverse image set 

F (x,J,k) = n -1 • { jjn, (n/j,k) = 1 and f(n) x} 
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If F(x,j,k) exists, then clearly 

Suppose, as in the previous remarks, that F(x,j,k) exists if 

every prime that divides j also divides k We now wish to show 

that this result is sufficient to obtain the existence of F(x,j,k) 

for all j and k . 

Suppose that p is a prime which divides neither j nor k 

Since any multiple of p is a unitary multiple of some power of p, 

we have 

-1 m . F (x,p j,k) 
00 

= u -1 i F (x,p j,pk) 
i=m 

and we remark that the union is over pairwise disjoint sets. Since 

density distributes over disjoint unions, we have 

(3.7) 
00 

F(x,pmj,k) = L F(x,pij,pk) 
i=m 

We remark that it is easy to prove the convergence of the series (3.7}. 

It is clear that we could repeat the procedure above and 

express any F(x,j,k) as a series of terms F(x,j' jk') where each 

j 1 is an (,)-multiple of j , and k' is the largest squarefree 

divisor of jk . But then any prime that divides such a j' also 



divides k' and we know, by the corollary to Theorem 5, that 

F(x,j' ,k') exists. Thus we have the following result. 

Theorem 6. For all integers j and k, the functions 

B(x,j,k) and C(x,j,k) exist and are continuous for all X • 

If X is a set of integers and m is an integer we define 

mX = {m}X = {mx 

If D{X} exists, then it is easy to show that 

= l D (X} . 
m 

Using this observation it is easy to prove the following result. 
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Theorem 7. If every prime that divides m also divides k, 

and (m,j) = 1 , then 

so that 

and in particular 

-1 -1 m F (x,j,k) = F (xf(m),mj,k) , 

F(x,mj,k) 

F(x,m,k) = 

= l F(x/f(m),j,k) 
m 

1 F(x/f(m),l,k) . 
m 
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Throughout the remainder of this chapter let pl , p2 , ... 

be the primes in order. We define p = p 
m 1 as the product of 

the first m primes with P0 = 1 . Then 

-1 -1 -1 F (x,1,1) = F (x,2,1) u F (x,1,2) 

As the sets 

-1 -1 -1 
= F (x,2,1) u F (x,3,2) u F (x,1,6) 

-1 -1 -1 -1 ) = F (x,2,1) u F (x,3,2) u F (x,5,6) VF (x,1,30 

-1 m -1 
= F (x,l,P) v U F (x,p.,P. 1 ) = = 

-1 
F (x,p.,P. 1) 

1 1-

m i=l 1 1-

are pairwise disjoint and, for 

each is disjoint from -1 F (x,l,P) , we have 
m 

F(x) = F(x,1,1) = F(x,2,1) + F(x,1,2) 

; F(x,2,1) + F(x,3,2) + F(x,1,6) 

= F(x,2,1) + F(x,3,2) + F(x,5,6) + F(x,1,30) 

m 
= F(x,l,P) + L F(x,p.,P. 1 ) = 

m i=l 1 1-

If we allow m to increase without bound, we obtain 



Since 

oO 

F(x) = L F(x,p.,P. 1). 
i=l 1. 1.-

F(x,p.,P. 1 ) 
l. 1.-

co 

= L 
j=l 

by Theorem 7, we have 

Hence 

F(x,p.,P. 1) 
l. 1.-

00 
\ -j / j = L P1.· F(x f(p.),l,P.) 

l. l. j=l 

m oo 

F(x) = F(x,l,Pm) + L L p~j F(x/f(p{),l,Pi) 
i=l j=l 

for m = 1, 2, ... , and 

00 00 

F(x) \ \ -j j = L L pi. F(x/f(p.),l,P.) 
l. l. 

i=l j=l 

Finally, we note that because of (1.7) and (1.9) we clearly 

have 
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so that 

(3.8) C(x,j,k) B(x,j,k) A(x,j,k) B(x;1 ,j,k) 

IV. ESTIMATION PROCEDURE 

The following three sections are devoted to obtaining upper 

and lower bounds for the three density functions A(x) , B(x) and 

C(x) at selected values of x between 1 and 3 . For B(x) and 

C(x) , we compute bounds at intervals of 0.005 for x between 1 

and 1.1 , 0.01 for x between 1.1 and 2 , 0.02 for x between 

2 and 

A(x) 

2.1 , and 0.05 for x between 

is bounded at the same points for 

0.01 for x between 1 and 1.1 . 

2.1 and 3 The function 

X 1.1 and at intervals of 

Our purpose is not to obtain upper and lower bounds that are 

so close together that the functional values will be pinpointed, but 

rather to obtain estimates that will indicate, in some intuitional 

way, the behavior of the functions. 

It should be noted that one may obtain lower bounds for the 

three functions by making use of primitives. The procedure amounts 

to computing the density of the integers that are divisible by one 

or more of a finite number of integers. However, more sophisticated 

techniques are needed to obtain upper bounds. 

Let f be a multiplicative function with f(n) 1 for all 



-·· 
n. As before, f(n) could be ~(n)/n, ~(n)/n or ri'(n)/n 

Suppose that k is a squarefree number and that j is an integer 

such that each prime that divides j also divides k . 

We denote by F(x,j,k,n) the number of integers of the form 

mj n with (m,k) = 1 for which f(mj) x. We let G(x,j,k,n) 

be the number of such integers mj n for which f(mj) x Let 

F(x,j,k) = lim F(x,j,k,n)/n. We remark that if (m,k) = 1 then n 

(m,j) = 1 , so that if f(j) x, the mj are all such that 

f(mj) x and hence F(x,j,k) = f(k)/jk . 

Suppose now that f(j) < x. Then either f(mj) x or 

f(j) f(mj) < x. Hence 

Since 

we have 

L f(mj)Xk(m) X F(x,j,k,n) + f(j) G(x,j,k,n) o 

mj !Sn 

F( • k ) G( • k ) = n l~k) + 0(1) x,J, ,n + x,J, ,n 

~-1 .,......,...(-nl _L X - f(j) 
mJ n 

Then by Theorem 5 we have 
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F(x,j,k) -x---\-(J-·) (M(f(mj)Xk(m)} - f(j);!(k)l 

1 . f(j) I ) 
= X - f(j) j tM{fXk} - cp(k)/k 

f(j) 1 
= x - f(j). j M 

Finally, for x close to f(j) we will find it convenient to 

use the trivial estimate 

F(x,j,k) p(k)/jk 

These two inequalities involving F(x,j,k) will provide our upper 

bounds. 

where 

V. ESTIMATES FOR B(x) 

From the previous section we have 

4J(j)/j 
B(x,j,k) x _ ¼J(j)/j 

M 
j ' 

M = ( lJ_ n _p_2 -2 - 1) . 
k r,2 Pl k 1 + p 



Let k be squarefree and let j be a divisor of k, say 

with the qi distinct primes. Then if tJ)(j)/j < x 

m dJ e1 
S. - L L B(x,ql 

J i=l e =l 

M tp( j) / j 
X - lj-JC j) I j 

1 
q - 1 1 

i 

1 = t!J( j) I j M 
~-1 x-f(j)/j.<p(j) 
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We obtain upper bounds for B(x) by summing the estimates Sj above 

over all j dividing k for which ~(j)/j < x, and adding this sum 

to a bound for those divisors j of k for which l/J(j)/j x. 

To obtain the bounds presented in this section, we use the 

value k = P = 2•3•5•7·11•13•17 . 
7 

Then M < 0 .00237672 , There are 

64 odd divisors j of k; the corresponding s. 
J 

were bounded as 

above. The upper bounds were computed to six decimal places, summed 

and truncated to four decimal places. This led to upper bounds for 

B(x,1,2) 

identity 

After refinement, described· below, of these bounds, the 

B(x,2,1) 

obtained from Theorem 7, was used to obtain the upper bounds which 

are presented, truncated to three decimal places, in the latter part 

of this section. Except as noted below for x = 2 , the value 

k = P8 = 2·3·5·7·11·13·17·19 was used to compute the lower bounds. 
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To obtain more precisely the density of the ~-abundant numbers 

we revise upward our lower bound for B(2) The following even 

numbers are ~-nondeficient: 2·3 , 2·5·7 , 2·7·11·13 , 2·5·17·19 , 

2·5•llp (13 p 53) , 2·5·13p (17 p 31) . A routine computation 

based on these primitives yields 

B(2,2,l) > 0.17985 . 

The following odd numbers are ~-abundant: 3·5·7·11p (13 p 383) , 

3·5·7•13p (17 p 61) . Using these primitives we conclude that 

B(2,l,2) > 0.00058 . 

Hence 

B(2) > 0.17985 + 0.00058 > 0.1804 . 

Preliminary investigation showed that the behavior of B(x) 

for x close to 1 is crucial to the behavior at other points. We 

pause now to describe our procedure for estimating B(x) for x 

close to 1 . 

Suppose 

Hence 

We set 

0 < X < 1/p . n Then if (m,P) > 1 , ~(m)/m 1 + x. n 

B(l + x) 1 - m(p )/P . r n n 



n 
M = n 

i=l 1 

Then as before we have 

1 - m(p )/P B(l + x) 1 - o/(P )/P + M/x 
' n n n n 

if O < x 1/p . This procedure was used to obtain upper bounds n 
for 17 p 67 . Use was also made of the fact that the upper n 
bound curves, obtained as above, are concave upward. These refine-

ments were incorporated into the upper bounds for B(x,1,2) 

Our upper and lower bounds for B(x) are given in Table II. 
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Because of the behavior of B(x) , the spread between upper and lower 

bounds is not always an accurate indicator of how accurate are our 

estimates: the wider spreads between upper and lower bounds generally 

occur when both bounds are dropping sharply, The bounds in Table II 

are illustrated in Figure I. 
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TABLE II 

UPPER AND LOWER BOUNDS FOR B(x) 

B (x) B(x) 
Lower Upper 

X Bound Bound 

1.00 1.000 1.000 
1.005 0.870 0.940 
1.01 0.870 0.906 
1.015 0.868 0.894 
1.02 0.861 0.888 
1.025 0.851 0.884 
1.03 0.847 0.880 
1.035 0.836 0.876 
1.04 0.836 0.872 
1.045 0.828 0.869 
1.05 0.828 0.865 
1.055 0.819 0.863 
1.06 0.808 0.860 
1.065 0.808 0.860 
1.07 0.808 0.860 
1.075 0.808 0.860 
1.08 0.794 0.850 
1.085 0.794 0.850 
1.09 0.794 0.850 
1.095 o. 777 0.848 
1.10 0. 777 0.831 
l.ll 0. 777 0.820 
1.12 o. 776 0.812 
1.13 0. 776 0.807 
1.14 0. 776 0.803 
1.15 0. 745 0.800 
1.16 0.744 0.794 
1.17 0.744 0.783 
1.18 0. 743 0. 776 
1.19 0.743 0. 772 



X 

1.20 
1,21 
1.22 
l,23 
L24 
1.25 
1.26 
L27 
L28 
L29 
L30 
L31 
1.32 
1.33 
1.34 
1,35 
L36 
1.37 
L38 
L39 
1.40 
L41 
L42 
L43 
L44 
1.45 
L46 
1.47 
L48 
L49 
1.50 
1,)1 
1.52 
L53 
L54 

TABLE II (continued) 

B(x) 
Low<,r 
Bound 

0.743 
0. 717 
0. 711 
0. 696 
0.694 
0,69l 
0 -- 691 
0,689 
0,686 
0,686 
0.682 
0.679 
0,679 
0 679 
OJ134 
0,592 
0.592 
0.591 
0, 58!+ 
0.584 
0.584 
0.578 
0.573 
0.573 
0.570 
0,565 
0.561 
0.561 
0.556 
0.556 
0.555 
0,425 
0.425 
0,408 
0., 390 

B(x) 
Upper 
Bound 

0.769 
0.769 
0.758 
0, 745 
0.737 
0 ., 731 
0, 727 
0, 723 
0,720 
0, 718 
0. 715 
0. 709 
0.106 
0. 704 
0,701 
0.686 
0.667 
0. 6!,9 
0.639 
0,628 
0.622 
0.618 
0.614 
0.611 
0,607 
0.604 
0.600 
0,597 
0.592 
0.590 
0.585 
0 515 
O,L.79 
OJ-1-68 
0.461 

60 
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TABLE II (continued) 

B(x) B(x) 
Lower Upper 

X Bound Bound 

1.55 0.381 0.450 
1.56 0.375 0.441 
1.57 0.367 0.434 
1.58 0.357 0.427 
1.59 0 .347 0.422 
1.60 0. 347 0.421 
1.61 0.335 0.420 
1.62 0.317 0.409 
1.63 0.309 0.401 
1.64 0.292 0.396 
1.65 0.291 0.373 
1.66 0.291 0.371 
L67 0.289 0.358 
1. 68 0.289 0.348 
L69 0.288 0.347 
1. 70 0.285 0.340 
1.71 0.285 0.335 
L72 0.255 0 .334 
1. 73 0.252 0.330 
1.74 0.252 0.323 
1. 75 0.250 0.322 
1. 76 0.248 0.310 
L77 0.248 0.302 
L 78 0,248 0.301 
1. 79 0.248 0.296 
1.80 0.248 0.291 
1.81 0.222 0.291 
1.82 0.216 0.290 
1.83 0.214 0.279 
1.84 0.200 0.279 
L85 0.196 0.265 
1.86 0.196 0.256 
1.87 0.193 0.255 
1.88 0.193 0.248 
1.89 0.190 0.240 
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TABLE II (continued) 

B(x) B( x) 
Lower Upper 

X Bound Bound 

L90 0.190 0.239 
L91 0.187 0.239 
L92 0.187 0.235 
L93 0.187 0.235 
L94 0.183 0.232 
1.95 0.183 0.229 
L96 0. 180 0.229 
L97 0.180 0.222 
L98 0.180 0.219 
L99 0.180 0.219 
2.00 0,180 0.216 
2.02 0.092 0.213 
2.04 0.092 0.178 
2,06 0.084 0.160 
2.08 0.084 0.149 
2.10 0.084 0.132 
2.15 0.070 0.120 
2.20 0.061 0.109 
2.25 0.055 0.094 
2.30 0.039 0.088 
2.35 0.038 0.077 
2.40 0.038 0.068 
2.1+5 0,015 0.058 
2.50 0.012 0.047 
2.55 0.009 0.040 
2,60 0.007 0.036 
2.65 0.005 0.033 
2.70 0,005 0.029 
2,75 0,003 0.027 
2.80 0"001 0.024 
2,85 0.001 0.021 
2,90 0,000 0.020 
2.95 0,000 0,019 
3.00 0.000 0.018 
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It would appear from Table II and Figure I that 

1 l im ---,,----,- - 0 
1 - B(l + x) - • 

x-o+ 

We prove a weaker statement, namely that B(l + x),:::. 1 - x for x 

small and positive. Even this weaker result, however, will imply 

that B(x) cannot possess a derivative at x = 1 . As a result, we 

may use Theorem 7 to conclude that B(x) does not possess a deriva-

tive at any point x for which there is an integer n such that 

x = (jJ(n)/n . 

Theorem 8. For 0 <. X 0. 28 ' B(l + x) <. 1 - X . 

Proof. We claim that if p 13 , then n 

15 n 2 n -2 p = (1 + p ) < 1 + 2/3p 
rr2 2 n 

p <Pn 1 + p p~pn 

f 13 h 20 (x _ 2 ) 3 
I X ' t en 11 2 X Also, exp x 1 + llx/10 if 

0 x 1 / 7 . Now 1 et p n = 2m + 1 .;?: 13 . Then 

log ( 1 + p - 2) L 
p ~p n p pn 

0Q 00 

-2 p 

1 
' (2i + 1)-2 ,:::. J (2t - 1)-2 dt = --

1-- = L 2(2m - 1) 
i=m m 

2(p - 2) • 
n 



Hence 

ll 
p >, p 

11 1 
l + 10·2(p - 2) l + 3p /2 

n n 
n 

since p 13, and the claim is proved. 
n 

Now, if n 7 , then 

Hence if p 17 , i.e., if n 7 , then 
n 

2 

(1 
-~-~.1.l. . Pn-1)> 

2 4 6 10 ••• p - 1 
2 15 n pi 

-->-n----1. 
3Pn+l rr2 i=l 1 2 

n 

Suppose Then 

= 1 

pn-1 
P - 1 n 

+ pi 
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Thus B(l + x) 1 - x if O < x < 1/17 . From our previously 

obtained estimates we may extend this result to O x 0.28 . 

Using 

VI. ESTIMATES FOR C(x) 

k = P = 2·3·5·7·11·13 6 we compute upper and lower 

bounds for C(x,l,30) , utilizing previous techniques and 

M = {~ Tl P
2 

+ p - 1} < 0.00309579 
k f(3) pjk p2 + p + 1 

66 

This was done by visualizing an infinite cube of lattice points with 

the correspondence 

a b c (a, b,c) ..,__. 7 11 13 . 

The ratios ~*(n)/n were computed to two decimal places for all 

n = 7allbl3c ( b 0) a, , C ;;,c The inequality 

C(x,1,30) B(x,1,30) 

improved the upper bounds in most cases. 

Because 

C(x,1,6) = C(x,5,6) + C(x,1,30) 

1 5 1 25 1 125 = C(x,l,30) + S C( 6 x,l,30) + 25 C( 26 x,1,30) + 125 C( 126 x,l,30) + ... 
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and because C(x,j,k) is monotone, we have 

5 25 
1.01 C(x,1,30) + 0.2 C( 6 x,l,30) + 0.04 C( 26 x,1,30) 

~C(x,1,6) 

5 25 
C(x,1,30) + 0.2 c( 6 x,l,30) + 0.04 C( 26 x,1,30) 

125 
+ 0.01 C( 126 x,1,30) 

These inequalities were used to obtain bounds for C(x,1,6) 

for C(x,1,2) were achieved in much the same way, using 

Bounds 

163 1 3 1 9 
162 C(x,1,6) + 3 C( 4 x,1,6) + 9 c( 10 x,1,6) 

1 ( 27 6) 1 ( 81 , ) 
+27c 28x,1, +81c 82x;l,6 

C(x, 1, 2) 

1 3 1 9 1 27 
C(x,1,6) + 3 C( 4X,l,6) + 9 c(1ox,l,6) + 27 C(28x,1,6) 

The function C(x,2,1) was bounded by making use of 

2 4 8 16 
32 C( 3 x,l,2) + 16 c( 5 x,l,2) + 8 c( 9 x,l,2) + 4 c( 17 x,l,2) 

32 64 
+ 2 C( 33 x,1,2) + c( 65 x,l,2) + C(x,1,2) 

f 64 C(x,2,1) 
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All bounds to this point were computed to four decimal places. 

Finally, we use 

C(x) = C(x,1,2) + C(x,2,1) 

and truncate the bounds to three decimal places to obtain the bounds 

given in Table III. These bounds are illustrated by Figure II. 

We remark that, in particular, the density of the unitary 

abundant numbers is between 0.0674 and 0.1055 , exclusive. 
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TABLE III 

UPPER AND LOWER BOUNDS FOR C(x) 

C (x) C(x) 
Lower Upper 

X Bound Bound 

1.00 1.000 1.000 
1.005 0.817 0.940 
1.01 0.815 0.905 
1.015 0.812 0.892 
1.02 0.810 0.881 
1.025 0.809 0.879 
1.03 0.809 0.874 
1.035 0.804 0.869 
1.04 0.797 0.864 
1.045 0.790 0.856 
1.05 0.790 0.849 
1.055 0.780 0.844 
1.06 0.769 0.836 
1.065 0.757 0.835 
1.07 0.757 0.822 
1.075 0.756 0.819 
1.08 0.742 0.812 
1.085 o. 741 0.811 
1.09 o. 741 0.805 
1.095 o. 721 0.804 
1.10 o. 720 0.797 
1.11 o. 719 o. 785 
1.12 0.698 0.766 
1.13 0.673 0.750 
1.14 0.671 0.730 
1.15 0.641 o. 724 
1.16 0.638 0.720 
1.17 0.636 0.705 
1.18 0.630 0.693 
1.19 0.627 0.685 



70 

TABLE III (continued) 

C (x) C(x) 
Lower Upper 

X Bound Bound 

1. 20 0.624 0.679 
1.21 0.583 0.661 
1. 22 0.578 0.647 
1.23 0.575 0.640 
1.24 0.569 0,634 
1. 25 0.564 0.626 
1.26 0.519 0.603 
1.27 0.514 0.586 
1.28 0.508 0.578 
1.29 0.504 0.571 
1.30 0.499 0.564 
1.31 0.496 0.558 
1.32 0.487 0.552 
1. 33 0.487 0.547 
1.34 0.421 0.520 
1.35 0.417 0.501 
1.36 0.410 0.491 
1.37 0.397 0.483 
1.38 0.394 0.475 
1.39 0.391 0.469 
1.40 0.386 0.459 
1.41 0.379 0.454 
1.42 0.373 0.444 
1.43 0.365 0.436 
1.44 0.360 0.430 
1.45 0.359 0.428 
1.46 0.353 0.425 
1.47 0.352 0.417 
1.48 0,350 0.409 
1.49 0.349 0.407 
1.50 0.348 0.401 
1.51 0.240 0.364 
1.52 0.237 0.337 
1.53 0.227 0.320 
1.54 0,225 0.317 
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TABLE III (continued) 

C(x) C(x) 
Lower Upper 

X Bound Bound 

1.55 0.225 0.312 
1.56 0.221 0.303 
1.57 0.219 0.298 
1. 58 0.209 0.289 
1.59 0.203 0.280 
1.60 0.203 0.276 
1.61 0.189 0.266 
1.62 0.180 0.260 
1.63 0.180 0,255 
1. 64 0.169 0.250 
1.65 0.167 0.244 
1.66 0.166 0,242 
1.67 0.140 0.234 
1.68 0.140 0.218 
1.69 0.139 0.213 
1. 70 0.137 0,202 
1.71 0.135 0.196 
1.72 0.119 o. 194 
1.73 0.117 0.192 
L 74 0.117 ! 0.188 
1.75 0.115 0.187 
1. 76 0.112 0, 179 
1. 77 0.112 0.172 
1.78 0.111 0.170 
1. 79 0.109 0.165 
1.80 0.109 0,162 
1.81 0,088 0.160 
1.82 0,085 0.151 
1.83 0.083 0.143 
1.84 .0.083 0,141 
1.85 0,080 0.137 
1.86 0.080 0.135 
1.87 0.079 0.134 
1.88 0.079 0.129 
1.89 0.079 0,126 
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TABLE III (continued) 

C(x) C( x) 
Lower Upper 

X Bound Bound 

1.90 00077 Ool24 
1.91 00072 00122 
1.92 00072 Oo 119 
1.93 00072 Oo 118 
1.94 00071 Oo 116 
1.95 00071 Ool13 
1.96 00070 Oo 112 
1.97 00069 Oo 111 
1.98 00069 00108 
1.99 00068 0,107 
2,00 0,067 00106 
2,02 00032 0,093 
2o04 00032 0,078 
2o06 00028 00075 
2o08 00026 0,072 
2, 10 00026 00068 
2,15 0,020 0,059 
2,20 00016 0,055 
2,25 0,016 00047 
2,30 00010 0,043 
2,35 00010 0.038 
2o40 0,010 0,034 
2o45 0,003 00029 
2,50 0,003 00027 
2,55 0,002 00024 
2,60 0,001 0,022 
2,65 0,001 0.021 
2o70 0,001 0,019 
2,75 0,000 0,018 
2o80 0,000 00017 
2,85 00000 Oo0l6 
2o90 00000 00015 
2o95 0,000 0,014 
3,00 0,000 0,014 
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VII. ESTIMATES FOR A(x) 

As in the previous section, we use k = P6 = 2·3·5·7·11·13 to 

obtain upper and lower bounds for A(x,1,30) In this case we have 

The inequality 

B( 1 30) A( 1 30) ~- B(x+2
1,l,30) x, , f x, , 

was used to improve the bounds in a few cases. 

As before, we obtain bounds for A(x,1,2) by successive use 

of the inequalities 

5 25 A(x,1,30) + 0.2 A( 6x,l,30) + 0.04 A( 31 x,l,30) 

125 + 0. 01 A( 15 6 x, 1, 30) 

A(x,1,6) 

5 25 A(x,1,30) + 0.2 A( 6 x,l,30) + 0.04 A( 31 x,l,30) 

4 + 0.01 A( 5 x,l,30) 

and 
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1 3 1 9 1 27 
A(x,1,6) + 3 A( 4x,1,6) + 9 A( l3 x,1,6) + 27 A( 40 x,1,6) 

1 81 1 243 
+ 81 A( 121 x,l, 6) + 162 A( 364 x,l, 6) 

A(x,1,2) 

1 3 1 9 1 27 
f: A ( X, 1 ' 6) + 3 A ( 4 X' 1 ' 6) + 9 A ( 13 X' 1 , 6) + 27 A( 40 X' 1, 6) 

1 81 1 2 
+ 81 A( mx,1,6) + l62 A( 3x,l,6) 

The function A(x,2,1) was bounded by use of the inequality 

16 32 64 
+ 4 A( 31 x,1,2) + 2 A( 63 x,l,2) + 2 A( 127 x,1,2) 

{. 64 A ( x, 2, 1) 

As in the previous section, all bounds to this point were com-

puted to four decimal places, 

We improve the lower bound for A(2) by considering the 

following primitives: 2·3, 225, 2·5·7 , 2·5·llp (13 p ( 41) , 

2·5·13p (17 p 31) , 2·5·17·19 , 2·7·11·13, 227 , 2211-13, 

2211·17 , 2211·19 , 2311 , 2313 , 2311p (19 p 41) , 2
3

19p (23 p 

41) , 2323p (29 p 41) , 2329•31 , 24p (17 p 31) , 2537 , 
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2541 , 2•5 211 and 2•5 213 . Hence A(2,2,l) > 0.2433, so that 

0.244 A(2) 0.301 . 

This represents a slight improvement over the bounds which Behrend [2] 

gave, namely 0.241 and 0.314 . 

Finally, we use the identity 

A(x) = A(x,1,2) + A(x,2,1) 

and truncate the bounds to three decimal places to obtain the bounds 

given in Table IV. These bounds are illustrated by Figure III. 

The author has been unable to find in the literature any pre-

vious upper bounds for the function A(x) other than those given by 

Behrend [2] for x = 6/5 , 4/3, 3/2 , 2 , 3, 4, 5, 6, 7, 8, 10 

and 20 In particular, it seems that in the past no attention has 

been paid to the behavior of A(x) for values of x close to 1 . 

We shall see later that, as was the case with B(x) , the behavior of 

A(x) close to x = 1 is repeated close to any value of x that is 

actually assumed by one of the ratios ~(n)/n. Thus at least the 

first four points at which Behrend obtained estimates are, in a sense, 

atypical. To be fair, however, we should not confuse Behrend's goals 

with our own: he was primarily concerned with estimating A(2) ; the 

other estimates he gave should be regarded as parenthetical comments, 

not as indications of the general behavior of A(x) . 
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TABLE IV 

UPPER AND LOWER BOUNDS FOR A(x) 

A(x) A(x) 
Lower Upper 

X Bound Bound 

1.00 1.000 1.000 
1.01 0.870 0.934 
1.02 0.861 0.906 
1.03 0.847 0.894 
1.04 0.836 0.888 
1.05 0.828 0.873 
1.06 0.808 0.862 
1.07 0.808 0.860 
1.08 0.794 0.850 
1.09 0.794 0.850 
1.10 0. 777 0.839 
l.ll o. 777 0.832 
1.12 0. 776 0.825 
1.13 0. 776 0.816 
1.14 0. 776 0.810 
1.15 0. 745 0.807 
1.16 o. 745 0.803 
1.17 0.744 0.799 
1.18 o. 743 0.789 
1.19 0.743 0.783 
1.20 0.743 o. 777 
1.21 o. 717 o. 773 
1.22 O. 7ll 0.758 
1.23 0.708 0.746 
1.24 0.704 0.744 
1.25 0.693 0.741 
1.26 0.692 0.734 
1.27 0.689 0.730 
1.28 0.687 o. 725 
1. 29 0.686 o. 721 
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TABLE IV (continued) 

A(x) A(x) 
Lower Upper 

X Bound Bound 

1.30 0.684 0.720 
1. 31 0.679 o. 716 
1.32 0.679 o. 713 
1.33 0.679 o. 712 
1.34 0.656 0.710 
1. 35 0.632 0.686 
1.36 0.631 0.673 
1.37 0.620 0.672 
1.38 0.616 0.666 
1.39 0.614 0.664 
1.40 0.613 0.657 
1.41 0.606 0.655 
1.42 0.605 0.649 
1.43 0.600 0.645 
1.44 0.600 0.641 
1.45 0.585 o. 641 
1.46 0.578 0,630 
1.47 0.578 0.627 
1.48 0.576 0.620 
1.49 0.570 0.619 
1.50 0.567 0.613 
1.51 0.500 0.609 
1.52 0.497 0.569 
1.53 0.482 0.553 
1.54 0.474 0.550 
1.55 0.467 0.541 
1.56 0.466 0.535 
1.57 0.462 0.535 
1.58 0.451 0.522 
1.59 0.449 0.513 
1.60 0.448 0.511 
1.61 0.432 0.506 
1.62 0.430 0.500 
1.63 0.429 0.495 
1.64 0.421 0.487 
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TABLE IV (continued) 

A(x) A(x) 
Lower Upper 

X Bound Bound 

1.65 0.416 0.483 
1.66 0.412 0.482 
1.67 0.411 0.476 
1.68 0.411 0.470 
1.69 0.408 0.469 
1.70 0.408 0.463 
1.71 0.406 0.457 
1.72 0.391 0.454 
1.73 0.391 0.452 
1. 74 0.386 0.449 
1. 75 0.385 0.447 
1. 76 0.352 0.444 
1. 77 0.349 0.420 
1. 78 0.348 0.417 
1. 79 0.344 0.406 
1.80 0.342 0.402 
1.81 0.325 0.399 
1.82 0.321 0.393 
1.83 0.318 0.384 
1.84 0.311 0.379 
1.85 0.309 0.372 
1.86 0.309 0.368 
1.87 0.303 0.367 
1.88 0.282 0.362 
1.89 0.282 0.357 
1. 90 0.278 o. 347 
1.91 0.274 0.343 
1.92 0.272 0.336 
1. 93 0.270 0.334 
1. 94 0.260 0.331 
1.95 0.260 0.326 
1.96 0.256 0.320 
1.97 0.248 0.316 
1.98 0.247 0.309 
1.99 0.244 0.305 
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TABLE IV (continued) 

A(x) A(x) 
Lower Upper 

X Bound Bound 

2.00 0.244 0.301 
2.02 0.207 0.295 
2.04 0.204 0.272 
2.06 0.193 0.267 
2.08 0.191 0.259 
2.10 0.189 0.248 
2.15 0.168 0.232 
2.20 0.152 0.216 
2.25 0.141 0.198 
2.30 0.127 0.184 
2.35 0.109 0.174 
2.40 0.100 0.153 
2.45 0.091 0.141 
2.50 0.079 0.133 
2.55 0.068 0.120 
2.60 0.058 0.110 
2.65 0.051 0.100 
2.70 0.044 0.089 
2.75 0.038 0.083 
2.80 0.033 0.075 
2.85 0.026 0.069 
2.90 0.022 0.063 
2.95 0.019 0.057 
3.00 0.017 0.052 
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Our work with density functions allows us to conclude an 

apparently new result on the possible existence of odd ~-perfect 

numbers. By (3.8) we have 

A(x,j,k) B(x;l,j,k) . 

Combining this result with Theorem 8, we see that 

A(l + x) 1 - x/2 , 
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so that A(x) is not differentiable at x = 1 It follows from the 

series expansions of Section III that if there exists an integer n 

with ~(n)/n = x, then the derivative A'(x) does not exist. One 

may extend this notion to the functions A(x,l,k) to conclude that 

if there is an integer n with ~(n)/n = x and (n,k) = 1 , then 

A'(x,l,k) does not exist. Thus we obtain the following result. 

Theorem 9. The existence of A'(2,l,2) is a sufficient 

condition for the nonexistence of~ ~-perfect numbers. 

VIII. WHEN IS AN ABUNDANT NUMBER UNITARY ABUNDANT? 

We want to know under what conditions an abundant number is 

unitary abundant. Since any unitary abundant number is abundant, 

what we are in fact trying to do is to characterize all the unitary 

abundant numbers, which is at best a highly improbable task. However, 
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we do know that an integer which is both abundant and squarefree is 

unitary abundant, and this fact might provide a convenient starting 

point for an attack on the question that concerns us here. In terms 

of density, what portion of the unitary abundant numbers are square-

free? Can we say anything about unitary abundant numbers that are 

not squarefree? In this section we present some answers to these 

questions. 

If n is not squarefree we may associate with n the real 

number x defined by n 

X n 

By (1.7) and (1.9) we know that 0.5 (.. X ,< 1 , n ..__ for all 

is abundant, we may define the real number yn by 

= l/J(n) - 2n 
cy-( n) - 2n 

n . If n 

If positive, the number yn compares, in a sense, the extent to 

which n is ~-abundant with the extent to which n is ~-abundant. 

The following result provides a connection between X n and y . n 

Theorem 10. Let n be! ~-abundant number. Then n is 

unitary abundant if and only if~ of the following two conditions 

holds: 



(3.9) 

(a) 

(b) 

n is squarefree; £E_ 

n is not squarefree and 

··-VJC n) - 2n \f/(n) - (r, (n) 
~(n) - 2n > 

er( n) - i' ( n) 

Proof. If n is squarefree, <f'( n) = <:/' ( n) and part ( a) is 

trivial. 

If n is not squarefree, then ;'(n) < \j)(n) < cr(n) by 

Theorem 2 of Chapter I, and (3.9) holds if and only if 

'";': ... ,. 
VJ(n) Cr'(n) - 2n cr(n) - \)J(n) (n) + 2n <r" (n) 

= [~(n) - 2n][~(n) 

> [ip(n) - c/cn))[<r'(n) - 2n) 

= '}J(n) o-(n) - 2n \J)(n) - <r'< (n) cr(n) + 2n ;,, (n) , 

which is equivalent to 

/' (n) [o-(n) - 4J(n)] > 2n [O'(n) - 4'(n) J , 

.,. 
i.e. , ir" ( n) > 2n . 
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In order to determine, in terms of density, how many of the 

unitary abundant numbers are squarefree, we shall need a preliminary 

result. 
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Theorem 11. The density of those numbers which~ squarefree 

and divisible .£Y, given squarefree integer k is 

~n 
r?- plk P + 1 

1 

Proof. We shall first set up the necessary machinery to use 

Theorem 5. 

Let f(n) = lr<n)I and g = fJt . Then 

a) L f(n) n-s = f<s)/ {(2s) , 
n=l 

and 

ao I g(n) 
n=l 

-s 'f n = 1/ ? (2s) 

One checks that g(n) IO if and only if n is the square of a 

squarefree integer, and that lg(n)I is either O or 1 for all n. 

Then 

N I: jg(n)I 
n=l 

By Theorem 5 we have 

= 6
2 

,/N + 0(-yN) = o(N) . 
11 



2 
== _§_ n E....:_]_ . _p - == __§_ n p 

7T2 Plk p p2 - 1 ~2 plk p + 1 ' 

and the theorem follows immediately. 

Using Theorem 11 and the primitives 2·3, 2·5·7, 2·5·11·13 

2·5·11·17, 2·5·11·19, 2·5·13·17 , 2·5~13·19 , 2·5·17·19 and 

2·7·11·13, we obtain 0.0544 as a lower bound for the density of 

the squarefree abundant (and hence unitary abundant) integers. The 

estimates obtained earlier showed that 0.0674 < C(2) < 0.1055. 

Hence in terms of density, at least half of all unitary abundant 

numbers are squarefree. 
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APPENDIX 

We recall from Chapter II that two integers n and m are 

said to be unitary amicable if 

n+m. 

Any unitary perfect number is unitary amicable with itself; we list 

here 610 pairs of non-perfect unitary amicable numbers. 

Escott [5] classified amicable numbers by forms, grouping 

together all amicable numbers n = Ep • ''p 1 a 

where (n,m) = E , the pi and qj are distinct primes, and a and 

b are fixed. Our classification is a modification of Escott's: a 

typical entry 

in the listing here represents the pair of unitary amicable numbers 

n = Up '' 'p 1 a and m == Uq • "q 1 b ' where u is the greatest common 

unitary divisor of n and m ' the pi and qj are prime powers, 

and n is unitary abundant. Allowing prime powers in the place of 

primes is justified since 

,., e e 
rr (p) = 1 + p 

90 



for e = 1, 2, ... ; that is, primes and prime powers have the same 

type image under the function, while such is not the case with 

the er function. Within each form, the middle entries of the 

triples are arranged in lexicographical order. 
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For the sake of brevity the abbreviations below are used; each 

subscript indicates, for accounting purposes, the number of values 

that the abbreviation represents. 

A2 = 33 or 3441 

B2 = 2 or 233 

c2 = 11 or 2211231 • 61 

D2 = 2 or 22s 

E2 = 3 or ls 
A3 = is213 335 or is-41 

B3 = 2 233 or 243•17 

c3 = 2 233 or 253 • 11 

2·3·7 2·3·527213 2 2 
A4 = 2·3 5.7 or 2 3·5·7 

' ' 
B4 = 2 233 243-17 or 253•11 , ' 

2-33s 2il3 , 2-337 2. 33s 2i13 .41 4 
A6 = 2·3 7·41 ' ' 

z2335. 7 or z2345 .7.41 

2-33527213, 2·337 2-33527213-41 
4-

A7 = 2·3 7·41 ' ' 
22335·7 ' z2345 ·7·41 or 22is21-13 

B7 = 2-is3l 2·7 z25 .7 , 233-7, 23325-7 ' 
4 2 3·7·17 or 
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Because the abbreviations tend to obscure the actual values, each of 

the eight pairs of odd unitary amicable numbers in the following list 

is indicated by an asterisk. 

FORM U, pq, r ................................ , 35 PAIRS 

2·7·A 5·17 107 2 ' ' 

2·A3 , 11·19 , 239 

7·13·1013·A D 2 2 ' ll • 4051 , 48623 

2 ll • 13523 , 162287 5·7 23·B ' 3 

7·79·U, 17 • 7109 127979 u = 2-i53 , 5213•C 3 ' 

2·19·A 3 ' 29·569, 17099 

29•A4 , 41 • 173 ' 7307 

2•32527 > 53·1889, 102059 

7·23·U, 83·1931 162287 u = 2-i5 3·D 
' ' 2 
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2 2·5 7·13•A2 , 149·449 , 67499 

5·11·61•B3 , 239·161039 , 38649599 

FORM U,pq,rs 121 PAlRS 

2·7·37 A2 , 5·14207 , 191·443 

5·3l•B4 , 7·30689, 59·4091 

5·107·1069·2137·25643·C3 , 7·5538887 , 17·2461727 

2·A3 , 11·199, 29·79 

A4 , 11·10499, 89·1399 

6 2 3·5·11·13, 17·263, 43·107 

2·79•157•A3 , 17·5023, 23·3767 



2·A 19·47 29·31 
3 ' ' 

ll·A6 , 23·659 , 79·197 

19·37·73•A7 , 23·6569 , 107•1459 

ll·A6 , 23·7523, 53·3343 

2·19·A3 , 29·44687, 1063·1259 

2•19·A3 , 31•184337 , 263·22343 

2·19•A3 , 37·1583, 227•263 

2·79·A3 , 37·22751 , 11·72047 

5·11·229·B3 , 43·494639 , 197•109919 

2 
U, 47•65519, 1663·1889 ; U = 7 A5 , 7•B4 , 5·7·V, 

5•ll·B3 , 53·1759, 59·1583 

17·31·6l•A7 , 67,4391 , 101·2927 
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17·19•A7 , 79·3229 , 199·1291 

263•5·11·13·23, 131•36988691 , 3041·1605031 

2 2•5 7·13•A2 , 191·589049, 271·415799 

* 3.5.7,c 233·1019479, 1091·218459 
2 

* 3·5·7·C 293•5279 , 1231•1259 
2 

* 3·5•7·C2 , 347·23099, 449-17863 

* 3·5•7•C2 , 503·1319 , 769·863 

FORM U, pqr, s ........................ • .". . . . . . . . 7 PAIRS 

5•929•B3 , 7•11•5573 , 535103 

A4 , 11·79·2029 , 1948799 

FORM U, pq, rst ............................... 18 PAIRS 

5-B4 , 7·21599, 19-47•179 

5•B4 , 7•60659, 23·29•673 
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2·A3
, 11•258299 , 29·59·1721 

19·61•853•U, 11•3889679, 17·37·68239 ; U = 7·B2 , 

FORM U, pqr, st . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 PAIRS 

2·7•A2 , 5·17·1187, 131·971 

2·11·17·373•A2 , 5·47•2237, 71·8951 

7•17•C3 , 5·47·173501 , 1223·40823 

7•17•C 3 , 5•47·33195287 , 1181·8088191 

7•17,c3 , 5•101·797, 113·4283 

2·7·3l·A 5·4493·6287 23·7064567 
2 ' ' 

2 2 2·3 5 , 7-11·29 , 31·89 

5•B3 , 7•11·11369, 757·1439 

5•B4 , 7•19·107 , 47·359 

2·A3 , 7·1949·12239 , 127·2983499 

5·B 11·13·809 19·6803 
3 ' ' 
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13·U, 11·17·1039 , 53·4159 

23·A6 , 11•19 ·367, 79·1103 

2·A3 , 11•19·1409 , 449·751 

2·A3 , 11·23·239, 179•383 

5·79•B2 , 11·23•7109 , 17•113759 

5•19•B3 , 11•41·34154399 , 9629·1787519 

2·A3 , 11•47·59, 71·479 

5·19•B3 , 11•47·27739 , 359·44383 

5·19·B3 , 11·59·15199, 151•71999 

5·19•B3 , 11•61·538649 , 139•2862539 

A4 , 11·83·5711, 2351·2447 

A4 , 11·83·38821 , 1061·36847 

A4 , 11·83·63439, 1039·61487 

A4 , 11•83•83591 , 1031·81647 

5·17·B2 , 11·89·227629, 1699•144611 
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5·17•B2 , 11•101·1889, 1427·1619 

A4 , 11·359·9463, 107•378559 

7·13·A2D2 , 11·467·33569, 10529·17903 

7·13·A2D2 , 11·467·488239 , 5743·477359 

ll•B7 , 13·19·10889 , 83·36299 

5•17•c3 , 13•41·23459, 3331·4139 

5•17•c 3 , 13·47•2549 , 359•4759 

ll•B7 , 13•71·241 , 23·10163 

7•11•43•U, 13·131·1289 , 139·17027 U = D2 , V•E2 , 

* 3·5·7·23, 13·137-149, 139·2069 



A4 , 17•23·1335949 , 3079·187379 

6 2 3·5·11·13, 17•29·16631 , 263•34019 

* 3·5·7·23, 17·41•229, 107·1609 

2·307·U, 17·41·613 , 107•4297 

2•A3 , 17·43·149 , 19·5939 

83·A4 , 17·149·829, 107·20749 

5•13•C 
3 ' 17·179•5381 ' 2339·7451 

5•13•C 3 ' 17·197·2339 ' 1619·5147 

11 • A6 , 17·197·21059 , 7019·10691 

ll•A6 , 17•197·49139 , 4211· 41579 

ll•A6 , 17•197·135089, 3761·127979 

ll•A6 , 17·197·1379069 , 3581·1372139 

7•13·18l•U, 17·229·1447 , 11·499599 ; U = n2 , 23E2 

6 2 3·5·13 ·23·53 , 17·2437-5179 , 11·18943259 
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7·U, 19·59·599, 79·8999 

5·13•B4 , 19·83·129011 , 5039·43003 

5·13•B4 , 19·89·70979 , 1039·122849 

ll•A6 , 19·89·910909, 38219·42899 

ll·A6 , 19•89·1205819 , 26729·81199 

ll·A6 , 19·89·1590467, 24097•118799 

2·A3 , 23·29·97 , 19·3527 

2 2 3 2·41•U, 23·29•3361 , 71•33619 ; U = 3 5 13, 3 5 

2 2 3 
7•U 29•41·59 179•419 • U = 5 13·C 2·3 5 

' ' ' 3 ' ' 

243-5213·17 

5·19·37•B 29·73·491 179•6067 
4 ' ' 

2·19·A3 , 29·569·113021 , 28349·68171 

2·19·A3 , 29·569·117779, 27179•74099 

2•19·A3 , 29·569·125113, 25849·82763 

2·19·A3 , 29•569·152459, 23099·112859 



2·19•A3 , 29·569·289381 , 19531·253349 

2•19·A3 , 37•113•28499, 7219•17099 

2·19·A3 , 37·113·255587, 4483·246923 

2·19•A3 , 37·113·1165187, 4363·1156643 

6 2 3·5·13·19·37, 41·1109·11369, 11·44172449 

2•32527, 53·1889·886463, 139967·646379 

2•32527, 53·1889·1411829, 121013·1190699 

2•32527 , 53·1931·198769, 81971·252979 

2•3 2527, 59·419·170741 , 40949·105071 

2-32527, 59·419•233279, 33599·174959 
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2•32527 , 59·419•636473, 27449·584303 

2•3 25 27, 59·419•1274249, 26249·1223279 

2•32527 , 59•419•2011129 , 25849·1960559 

2•32527 , 59·419·5316959 , 25439·5266799 

2•32527, 59·461·9337, 8819•29347 

2•32527 , 83·139•78539 , 19403•47599 

2•32527 , 83•139•93683, 16879·65267 

2•3 2527, 83•139·108863 , 15679•81647 

2•32527 , 83·139·5742623, 11807·5719279 

2•32527 , 83·149•5807, 2879•25409 

2•3 2527, 83·149·42767, 1889·285119 

2•32527, 97·113•25849, 12539·23029 

2·527·13·A2 , 139·569·6594659 , 287279·1831849 

2·527·13·A2 , 149·449·395039 , 148139·179999 

2•527•13·A2 , 149·449•438899, 115499·256499 

2·527·13·A2 , 149·449·521399 , 98999·355499 
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2 2·5 7•13·A2 , 149·449·603899 , 91499•445499 

2·527•13·A2 , 149·449•1076399, 77999•931499 

2·527•13·A2 , 149·449·1558619 , 74219·1417499 

2 2·5 7·13•A2 , 149•449•1707947 , 73547·1567499 

2•5 27·13·A2 , 149·449·2366099, 71699·2227499 

2•52 7•13•A2 , 149·449·6203411 , 69011·6067499 

2·527•13•A2 , 149·461•291857 , 14699•1375901 

FORM U,pqrs,t 

* 3·5•7 , 11•13·37•3779 , 24131519 

2•A3 , 11·19·211·14699 , 747935999 

2·A3 , 11•23•79·1051, 24238079 

7 PAIRS 

FORM U, pqr, stu .............................. 62 PAIRS 

·k 3•5•C 7·17·439 23·43·59 2 ' ' 

2•3252 
' 

7·19·2663 ' ll·73·479 

5·B 4 ' 7·19·7127 ' 
71·79·197 

5•B 4 ' 7·89·359 ' 23·59·179 

103 



104 

5·C3 , 7•107•719, 17•179·191 

5·B4 , 7·131·2339 , 19·53·2287 

5•B4 , 7•163·449, 19·59·491 

5•B4 , 7·863·2579, 23·29·24767 

5·B2 , 11•19·115877 , 17·61•24919 

5·B2 , 11·41·239 , 17·29·223 

2•A3 , 11·59·644999 , 29·719·21499 

5·17·B2 , 11·101·3659 , 17·719·6221 

ll·B 13•43•13499 , 29•359•769 
7 ' 

ll·U, 17·149•3079, 19•53·7699 

6 2 3·5·11·13, 17·107•1038311 , 37·4751·11177 

6 2 3·5·11·13, 19·1259·2969 , 29·149·16631 
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FORM U,pqrs,tu 11 PAIRS 

7·C3 , 5·13·17·293 , 71·6173 

5·B 3 ' 7 ·11· 929 ·953 ' 2879·29573 

5·B 3 ' 7·11·929•1019 ' 244 7 • 37199 

5·B 2 ' 11·17·19·47 ' 239·863 

FORM U, pqrs, tuv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 PAIRS 

7•B3 , 5·11·97•26212247, 23·6803·1132627 

2 2 2·3 5 , 7·19·23•71 , 31·79•107 

B 11·13•29·47 19•23•503 
7 ' ' 

6 2 3·5·13, 11·17·19·47, 31·71·89 

5•B3 , 11•19•41·103 , 31•179•181 

5•B2 , 11•19·89•383, 17•359·1279 

5•B2 , 11•23·79•7109 , 17•79·113759 

5•B3 , 13·23•139·63737 , 11•5879•42491 

5·B2 , 17·19·71•90149 , 11•647•300499 
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6 2 3·5·13·19 , 17·97·773·7789 , 11·113·7774829 

263·5•13·19, 23·37·569•121469 , 11·151·34618949 

FORM U, pqrs, tuvw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 PAIRS 

17·B2 , 5·23·1223·72901 , 7•11·67·1968353 
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