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Abstract

Wire Arc Additive Manufacturing (WAAM) has made great strides in recent years

however, there remain numerous persistent challenges still hindering more widespread

adoption. Defects in the parts produced degrade their mechanical performance.

Inconsistency in the geometry of the weld beads or undesirable anomalies such as

waviness, or humps can lead to loss of geometric accuracy and in extreme cases,

when anomalies propagate to subsequent layers, build failure. Such defects can

be mitigated by a controls framework, which would require a model that maps

undesirable outcomes to information about the process that can be obtained in real

time. This thesis explores the development of a multi-sensor framework for real time

data acquisition and several approaches for arriving at such a model, employing well

known machine learning methodologies including Random Forests, Artificial Neural

Networks and Long Short Term Memory. The merits and drawbacks of these methods

is discussed, and a physics based approach intended to mitigate some of the drawbacks

is explored. The models are trained first on data obtained on a single build layer,

and subsequently on a multi-layer wall.
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Chapter 1

Introduction

Additive manufacturing continues to grow apace, with the value of the industry

projected to grow from $16 billion this year to $44 billion by 2027 — an average

annual growth rate of 21% [1]. As the technology continues its rapid development,

the range of capabilities continues to expand. The first commercially available systems

only printed polymers and were only considered suitable for prototyping, hence the

moniker rapid prototyping. Currently, systems capable of producing end-use parts

in a diverse range of materials, including metals, composites, ceramics and organic

material are commonplace. Metal additive manufacturing in particular is achieved by

focusing an energy source to melt the feedstock material (typically powder or wire)

in a path determined by slicing software. The standard commercially available metal

additive process is powder based. Typically, powder based processes employ a highly

focused laser or electron beam as the energy source. The most common powder based

process is a powder bed process in which the beam scans the surface of a powder bed

in the shape of a cross section of a CAD model and fuses the metal onto the previous

layer. Then, the entire powder bed is shifted down by a constant offset and new

powder is raked across the surface for the next layer.

Laser powder bed processes are a well developed and maturing class of additive

manufacturing. It enables the fabrication of very complex parts with good mechanical

1



properties. However, there are significant drawbacks. The process requires either

a vacuum chamber for an electron beam, or an inert environment in the case of

a laser beam. Both cases necessitate that the build take place inside a chamber,

which severely limits the size of the parts that can be printed. Furthermore, material

deposition rates are sluggish, with deposition rates ranging from 60-180 cm3/hr [2].

The capital and operation costs are also very high and typically number in the millions

of dollars.

These limitations are overcome by Wire Arc Additive Manufacturing (WAAM).

WAAM, a relative newcomer to the metal additive field, employs a different deposition

mechanism from powder based processes. The energy source that melts the metal is

a Gas Metal Arc Welding (GMAW) torch instead of a laser or electron beam, while

the feedstock is wire instead of powder. GMAW is a standard, and prevalent welding

process that employs an electric arc to melt metallic wire that is fed through a torch.

An inert environment is required, as in powder based processes, however, it only needs

to be maintained locally, in the vicinity of the deposition. This can be achieved by

blowing inert gas, known as the shielding gas, into the deposition zone, as shown in

Figure 1. In WAAM, the GMAW torch is generally attached to a robotic manipulator,

which is programmed to deposit material in a path corresponding to cross sectional

layers of a CAD model.

By eliminating the need for an inert chamber, WAAM greatly expands the size

of parts that can be built. In principle, the only limit is the reach of the robotic

manipulator, though even this can be mitigated by adding more robotic manipulators.

This opens the door to truly Large Area Additive Manufacturing (LAAM), which

involves the manufacture of large scale parts that can be used for the automotive,

aerospace, construction industries, among many others. An example of a large scale

part fabricated by WAAM, an excavator arm produced at Oak Ridge National Labs,

is shown in Figure 1.2. Such a part can be produced far quicker than powder based

processes. The arm required 5 days of nonstop printing. Though lengthy, this is a

huge improvement over powder bed printing [3].

2



Figure 1.1: Diagram of GMAW process
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While its potential is great, WAAM continues to held back by a number of

significant drawbacks. These drawbacks can be categorized into two broad types:

geometric inaccuracy, and mechanical defects. Geometric inaccuracy occurs in

WAAM because it is characterized by high deposition rates and low resolution, which

make it difficult to precisely control the geometry of finished parts. The shape of the

individual deposition paths, known as beads, then becomes a limiting factor in the

geometric accuracy of finished parts. Beads in WAAM are relatively large compared

to powder based processes, which contributes to the high deposition rate, but on the

flip side also causes low resolution. Furthermore, welding is a complex multi-physics

process and as such is vulnerable to instabilities, which manifest as irregularities in

the shape of the beads. WAAM beads commonly exhibit a number of irregularities

such as humping, waviness, and uneven dimensions. These irregularities contribute

to the low resolution of the process and loss of tolerance, and in some cases they can

propagate to subsequent layers, become magnified, and lead to part failure.

The mechanical defects typically found in WAAM are porosity, lack of fusion,

residual stress, and cracking. Porosity is the formation of regularly shaped spherical

gas pores that are caused by material contamination or process instability. Voids in

the part can also be classified as lack of fusion, which is irregularly shaped and results

from insufficient melting between adjacent layers or deposition paths. Both porosity

and lack of fusion can significantly reduce mechanical strength. These thermal cycles

induce thermal expansion and contraction, which creates internal stresses inside

the bulk geometry, known as residual stress. Residual stress leads to deformation,

and in cases where it locally exceeds the tensile strength of the material, creates

cracks. Cracks become weak points in the part which can expand and propagate

when loaded, ultimately resulting in fracture. Collectively, these mechanical defects

result in parts with mechanical properties inferior to conventional manufacturing, and

exacerbate the geometric inaccuracy problem. This presents a formidable obstacle to

the development of WAAM.

4



Figure 1.2: Large scale excavator arm manufactured by WAAM process
[3]
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Mitigating or even eliminating these defects requires three fundamental steps:

sensing, prediction/detection and control. Sensing is the acquisition of relevant

information that describes the present state of the process. As noted, WAAM is

a complex, multi-scale, multiphysics process. Furthermore, most of the assortment of

sub-processes involved e.g. arc ignition, droplet detachment, melt pool solidification,

heating cycles, etc are thought to make significant contributions to the shape and

mechanical properties of the finished part. Fully describing the state of the process

at any given time requires knowledge of a multitude of physical quantities. This

can only be accomplished by employing a variety of sensors designed to acquire

information on corresponding physical sub-processes. The choice of sensors is of

course informed by an fundamental understanding of the physics involved. Monitoring

the arc necessitates voltage and current sensors, monitoring the thermal evolution of

the whole part and the melt pool itself requires infrared imaging, and so on. Since

the foundation of the process is welding, the experience of expert welders should be

taken into account. Expert welders rely on sensory cues such as sound to inform their

movements. This suggests that sensing modalities such as acoustic monitoring could

provide valuable information on the stability of the process, and by extension the

quality and consistency of material deposition.

The information obtained in the first step must then be mapped to the undesirable

outcomes that one seeks to prevent, which is the prediction/detection step. This

necessitates the development of a model capable of converting inputs extracted from

the raw data into quantitative outputs representing the presence or lack thereof of

the undesirable outcomes. Implicit in this step is the necessity of a data processing

procedure. The amount of raw data generated by a comprehensive multi-sensor

framework should be expected to be enormous. This large collection of data must be

reduced by a procedure that extracts features from the data expected to be predictive.

The model itself can be produced in multiple ways. One approach is physics based

modeling which employs the fundamental physical laws that describe the process to

generate computational models. This approach has serious drawbacks. Due to the

6



complexity involved, an accurate model is not guaranteed, and producing an accurate

model is very computationally intensive, which precludes deployment in real time

control applications. A common alternative is machine learning, which is a powerful

category of methods that has proven its worth in a wide variety of applications.

Machine learning models, which while often computationally expensive on the front

end, once trained can be deployed to production extremely fast, enabling real time

prediction

Finally, if the state of the process is sufficiently well known and an accurate model

mapping said state to the desired outcome has been developed, a controls framework

can be developed. This would involve using the difference between the actual outcome

and the desired outcome as an actuation signal for real time interventions. Such

frameworks have been attempted for additive manufacturing processes, and WAAM

in particular. Developing such a framework is beyond the scope of this work, however,

an example of what can be accomplished with such a framework can be seen in Penney

(2022) [4].

This work seeks to develop an approach for accomplishing the first two steps of that

process: sensing and prediction. The first step is accomplished by developing a multi-

sensor process monitoring framework that synchronously collects process relevant

information while minimizing human intervention. The second step is accomplished

by developing a data processing procedure that extracts useful information from

the large trove of raw data. Features, or descriptive quantities are derived from

computations performed on the raw data. These features are then mapped to

outcomes of interest by employing different machine learning methodologies. This

work will focus on modeling shape irregularites and porosity. The performance of the

different machine learning methodologies will be assessed and compared. This was

accomplished in two stages. The first is limited to bead on plate experiments, which

were used to develop a framework and methodology for accomplishing the task. The

lessons thus learned were then applied to a full build: a thick wall with infill pattern.
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Chapter 2

Background

2.1 Wire Arc Additive Manufacturing

2.1.1 Retrospective

The concept that would become WAAM was first proposed in a 1925 patent filed by

Ralph Baker. The patent described a method for forming decorative and ornamental

objects by superimposing layers of metal deposited by a fusible metal electrode

connected to a welding circuit. Baker highlighted the suitability of the method

for mechanical control, which could be employed to create parts of predetermined,

uniform shape [5]. This thread would be picked up by subsequent engineers to form

the basis for WAAM.

Beginning in the 1980s, German manufacturing companies sought to find alterna-

tives to forging for manufacturing large shafts, rotors, and turbines. They developed

a solution known as shape welding (SW) which involves building large objects with

arc welding deposition. Blohm+Voss Industries GmbH was able to manufacture a 79

ton cylinder in 6 weeks. Thyssen AG constructed a facility that employed multiple

tandem weld heads to manufacture large cylindrical shells up to 11m long and 5.8

m in diameter [6]. Schmidt (1990) noted that for simple geometries, SW could not

be seen as a serious alternative to forging unless a very high material deposition rate
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could be achieved. There was a clearer advantage in more complex geometries, where

the impact of material deposition rate is diminished [7].

At this early stage, the need for a robust process monitoring and control framework

was already recognized. One of the applications of SW was in the nuclear industry

which is subject to strict standards necessitating reliable fabrication of parts with

consistent mechanical properties. Kußmaul et. al (1983) described efforts to

implement process sensing and control at the SW facility constructed by Thyssen-

Krupp for manufacturing pressure vessels. The welding current, and arc power were

continuously monitored, and a height sensing control was implemented to control the

Contact To Workpiece Distance (CTWD) [6].

Research conducted at the Welding Engineering Research Centre (WERC) in

Cranfield University produced a system with most of the components now considered

key elements of WAAM: a robotic welding system, a CAD model slicing routine,

and trajectory generation [8]. While this research was intended to develop a rapid

prototyping system, process control, something not explored in their work, enables

the same setup to build end use parts.

2.1.2 Gas Metal Arc Welding

GMAW is central to WAAM. In GMAW, a wire is continuously fed through a torch

at a rate called the wire feed speed. Electrical current is passed through the wire

while it is being fed through the torch which creates an electric arc between the wire

and the work-piece. The electric arc heats up the tip of the wire up to its melting

point at which point a droplet of molten metal begins to form. The droplet grows

until the force of gravity overcomes the surface tension attaching it to the wire, at

which point it is deposited onto the plate forming a small pool of molten metal called

the melt pool. There are three primary mechanisms for transferring the droplet to

the plate. The three main transfer modes are globular, spray and short circuit. It is

the energy input that primarily determines which mode occurs.
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Spray transfer requires the most energy. During spray transfer, high energy heats

the droplet well past its melting point, which reduces the surface tension and makes

it detach from the wire quickly. This results in small droplets being transferred to

the work-piece surface at a high frequency. The next step down in energy is globular

transfer, which follows a similar mechanism to spray transfer except that the lower

energy means droplets grow bigger and detach at a slower rate. Thus, a single large

droplet often with irregular shape forms on the electrode, and is pulled down by the

force of gravity. The final transfer mode with the lowest energy requirement is short

circuit. Short circuit is similar to globular in that droplets grow slowly but the energy

input is so low that the droplet doesn’t fall and instead bridges the gap between the

electrode and the work-piece. The droplet contacting the work-piece results in a short

circuit and an associated spike in current that finally causes the droplet to detach.

Short circuit transfer is considered ideal for WAAM due to the low heat input [9].

A further improvement on short circuit transfer mode is to retract the wire during

the short circuit, which suppresses the spike in current lowering the heat input still

further.This is known as Cold Metal Transfer (CMT) which was developed by Fronius

in 2004[10]. The effect of this mechanical intervention on the voltage and current

waveforms of the arc is shown in Figure 2.1. The cycle has three distinct stages: peak

current phase, background current phase and short circuit phase. During the peak

current phase, the arc voltage is constant and a high current pulse heats the electrode

to create a droplet. During background current phase, the current is decreased to

prevent globular transfer. During the short circuit phase, the voltage is brought down

to zero, and the wire feeder retracts the wire. This process has attracted keen interest

for WAAM because of the lower heat input.

2.1.3 Process Physics

The physics underlying WAAM are highly complex, as they exhibit non-linear

behavior, span multiple scales and draw upon multiple types of physics. Most
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of the mechanisms dominant in WAAM are the same as those behind GMAW.

Fully describing that process requires coupling continuity equations of mass, charge,

momentum, energy, Maxwell’s equations and the generalized Ohm’s Law in three

dimensions [11]. These equations are all non-linear and can only be solved by

computationally intensive numerical methods. WAAM further complicates the

process because the shape of the beads and the microstructure of the deposited

material are of paramount importance. The shape and mechanical characteristics

of the deposited weld bead are affected by a number of forces such as gravity, surface

tension and, electromagnetic force, arc pressure, and convective flow [12, 13].

Furthermore, previously deposited layers become the substrate for newer layers,

which exerts a strong influence on their shape and material properties. A disturbance

in one layer can create an uneven surface for the next layer, which can propagate and

magnify the disturbance, leading to process instability and in extreme cases part

failure [14]. Conversely, new layers exert an influence on previous ones because the

bulk build volume is reheated every time new material is melted on top of it. This

leads to thermal accumulation throughout the part which has detrimental effects such

as waviness, increasing layer width, and modification of metal transfer mechanism.

The repeated cycles of heating and cooling also have detrimental effects on the

microstructure and lead to geometric changes on the part [15].

2.2 Process Monitoring

Process monitoring has been identified as a key to the success of metal additive

manufacturing, and WAAM in particular. Because of WAAM’s novelty there has been

little work done documenting the range of available process monitoring techniques

until relatively recently. However, GMAW has existed for decades and certain process

monitoring techniques for that process are regarded as mature. Other methods are

more novel both in GMAW and WAAM, as shown in Figure 2.2 [16].
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Arc welding current and voltage have long been employed to measure arc stability

and abnormal welding conditions such as contamination and low shielding gas[17].

More recently, arc signals have been employed to detect porosity in single pass weld

beads. Thekkuden et. al correlated fluctuations in the arc current and voltage to

instability from porosity using probability density functions and control charts [18].

Changes in the arc signature such as a broadening of the arc cycle have been tied

to unstable deposition in WAAM, which is reflected in crooked deposition paths and

waviness along the build direction [19].

Acoustic monitoring is a promising avenue because it is a low cost, non-contact

method. It has primarily been explored to monitor the quality of welds in GMAW.

Grad et. al used characteristics of the sound signal such as the signal kurtosis and the

shape of the peak in the power spectral density function corresponding to the droplet

detachment frequency to detect arc instability [20]. Pal et. al correlated kurtosis and

sound pressure to metal transfer mode [21]. Research on application in WAAM is

scant but its potential has been recognized by multiple researchers [16, 22].

Thermography has been in use for laser DED processes for some time now.

Thermography has been used to monitor solidification and process deviations in SLM

[23]. Mireles et. al used an infrared camera to observe purposefully seeded pores

in LPBF process. They were able to successfully identify defects larger than 600µm

[24]. In WAAM, Baier et. al used a thermographic line sensor to obtain temporally

and spatially dependent temperature profiles which enabled them to detect geometric

irregularities [25].
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Figure 2.1: Voltage and current waveforms in CMT process [10]

Figure 2.2: Types of process monitoring in WAAM [16]
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2.3 Modeling

The central importance taken by identifying defects and irregularities in WAAM

has prompted the development of models capable of mapping sensing data to these

outcomes. The approaches taken fall into one of two camps: computational models

and machine learning models. Interest in both approaches for WAAM is relatively

recent so at times the literature must be supplemented with models developed for

GMAW.

Ou (2020) developed a complete heat transfer and fluid flow model for multi-

track deposition. By coupling equations of momentum, mass, and energy in three-

dimensions they were able to model the evolution of deposit geometry [12]. Cadiou et.

al (2020) developed a electromagnetic, heat transfer and fluid flow model specifically

for WAAM with a CMT process. While they accomplished the task of solving the

equations to model the dynamics at the melt pool label, their findings underscore the

limits of the approach – the model took 15 days to simulate 6 seconds [26].

Machine learning models have also been explored. Wang et. al (2020) developed

a model using analysis of variance (ANOVA) for predicting bead geometry in terms

of height, width and depth of penetration based on process settings such as wire

feed speed, substrate temperature and travel speed [27]. An Artificial Neural

Network (ANN) model was employed in a similar approach to predict dimensions

and contact angle in a CMT based process [28]. Panda et. al employ a genetic

programming approach to map peak current, wire feed and travel speed to bead

geometry [29]. These studies all construct a model by mapping process settings to

geometric outcomes measured as averages which has the disadvantage of excluding

real time process fluctuations from the model. Tang et. al. (2022) takes a process

monitoring oriented approach by employing sensing data such as voltage, current,

melt pool temperature and wire feed speed to construct a deep learning model for

predicting the width and height of weld beads [30]. Penney (2022) utilizes arc voltage

and arc current and a SVM model to predict contact to workpiece distance (CTWD),
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and by extension, layer height in WAAM. This model then formed the basis for a

layer height control framework [4].

The aforementioned publications deal with models for bead geometry. Models

that predict mechanical defects in WAAM are rarer, but some work has been

performed in this sphere. Li et al (2022) employed a YOLOv3 algorithm, a variant

of (Convolutional Neural Networks) CNNs that allows for localized object detection,

to identify lack of fusion voids immediately after a layer has been deposited [31].

He et al (2021) used magneto-optical imaging to train a CNN to recognize cracks,

lack of fusion and depressions in the deposition [32]. Jamnikar et al (2022) trained

a CNN to predict microstructural characteristics such as alpha lath thickness and

beta grain size based on visual, thermal, positional chemical and acoustic data

[33]. It’s also worth noting some of the approaches developed for LBPF systems,

which have potential for application in WAAM. Smoqi et al (2022) developed several

physics informed machine learning models including (K-means Nearest Neighbor)

KNN, Support Vector Machine (SVM), Linear Regression (LR) and CNN to predict

porosity based on physically relevant parameters that were obtained from melt pool

signatures. This work is also notable for its experimental methodology, which used

one large part with process conditions that vary along the build height. In this way,

a large data set was obtained from a single build [34].
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Chapter 3

Experimental Methods

3.1 WAAM System

The Wire-Arc Additive System employed in this work consists of a 6-axis KUKA

KR-6 robotic manipulator fitted with a Fronius CMT capable weld torch. The torch

is powered by a Fronius TransPuls Synergyic 5000 CMT Advanced power supply.

The power supply can be toggled between different modes including Standard, CMT,

and Pulsed, of which only the former two are investigated in this work. A mixture

of 98% Ar and 2% CO2 was used for shielding gas. The welding torch is cooled by

a 50/50 mixture of water and ethylene glycol. The feedstock is 0.035” AWS ER70S-

3 Mild Carbon Steel welding wire made by Hobart. Material is deposited onto a

6”x12”x0.5” low carbon steel substrate which is secured to a worktable by clamps.

The welding system is shown in Figure 3.1. For single pass weld studies, the tool

path was programmed by jogging the robot to the desired positions and manually

teaching the points. This is done for one bead, and all further beads are programmed

by transforming the initial template. Multi-layer parts are made by resolving the

CAD model into points, slicing the points into layers, and importing the result into

Octopuz, an offline robot programming software.
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Figure 3.1: University of Tennessee’s WAAM Development Cell
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3.2 Multi-sensor Framework

A multi-sensor framework for online monitoring was developed for the University

of Tennessee’s WAAM development cell. The objective was to capture as much

physically meaningful information about the process as possible. Arc sound, arc

voltage and current, melt pool temperature, temperature distribution, wire feed

speed, robot position and velocity were all monitored by various sensors. A diagram

of the multi-sensor set-up and of the data streams collected by each respective sensor

is shown in Figure 3.2. This suite of sensors generated an enormous amount of data.

This data was subsequently converted into features by methods described in Chapter

4. After the pre-processing and feature extraction stages are completed, the data

ultimately provided the inputs to the predictive models for bead shape and porosity.

3.2.1 Acoustics

The sound emitted by the weld arc is captured by a PCB 378B02 pre-polarized

free-field omni-directional microphone. The raw analog signal is digitized by a PCB

485B39 digital ICP-USB signal conditioner. The audio recording system is shown in

Figure 3.3. Sound is sampled at 48kHz, which is considered standard in the recording

industry. This allows frequencies up to 24kHz to be captured, as per the Nyquist

Sampling theorem – above the limit of human hearing.

3.2.2 Arc Measurements

The voltage and current waveforms of the welding arc were recorded by a Miller LEM

Box, shown in Figure 3.4. To measure current, a lead was installed in series with the

hot cable on the welding power source, while the other lead was connected to ground.

Voltage was measured by connecting a pair of leads in parallel to the hot and ground

cables on the power source. The waveforms were sampled at 20kHz, which is sufficient

to capture the cycles corresponding to droplet formation and detachment.
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Figure 3.2: Multi-sensor framework
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Figure 3.4: LEM Box
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(a) Digital ICP-USB Signal Conditioner

(b) Omni-directional free field condenser microphone

Figure 3.3: Audio monitoring system
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3.2.3 Thermography

The importance of thermal cycles to the quality of WAAM parts has been well

documented [13,15]. Therefore, two infrared cameras were installed on the system

to monitor the thermal behavior of the process. The FLIR A50, shown in Figure

3.5a, can detect temperatures from -20°C to 1000°C, and has an image resolution

of 463 x 348 pixels. This temperature range does not allow for any meaningful

information to be obtained in the vicinity of the arc, including the melt pool, therefore

the primary use for this camera was to measure bulk temperature, the temperature

of the substrate, and inter-layer cooling rates.

Steel melts at 1300°, so monitoring required a camera with a higher temperature

range. That role was served by the XIRIS XIR-1800 Short Wave Infrared camera,

shown in Figure 3.5b, which can capture temperatures from 350°C to 1800°C. Its

image resolution is 640 x 512 pixels. Initially, the camera was stationary as it was

mounted on the worktable, however, that mounting configuration proved undesirable

because the camera provides low quality images of objects farther away than its

working distance of 300 mm. Instead, the camera was mounted fixed relative to the

weld torch, enabling to image the melt pool during robot motion. The arm that the

camera attaches is adjustable on its azimuthal angle, which was utilized to provide

different viewing angles. This torch tracking mounting configuration is shown in

Figure 3.6.

After trial and error, it was determined that a slightly overhead view of the melt

pool provided the optimal perspective. Since the camera is stationary relative to the

torch tip position, the travel direction of the robot impacts how much of the melt pool

region can be seen by the camera. When the robot is moving towards the camera, the

camera faces the front of the melt pool at all times, which provides excellent visibility.

Whereas when the robot moves away from the camera, the camera lags behind the

melt pool by several inches, and can only see the back portion. When the robot

travels in a direction perpendicular to the direction the camera points in, the side
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(a) FLIR A50

(b) XIRIS XIR-1800

Figure 3.5: Infrared Sensors
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profile of the melt pool can be seen, which also provides excellent visibility. The side

angle provides the added advantage of showing how far the melt pool drags behind the

torch, which has been repeatedly shown to be predictive of shape irregularities such

as humping [35]. Unfortunately, a singular viewing angle could not be guaranteed in

more complex builds, so the camera was adjusted to look down at the melt pool from

slightly above, so that even when the robot travels away from the camera, the back

as well as a substantial portion of the front of the melt pool could be visible. Figure

3.7 shows the resulting viewing angle, which enables for crisp, detailed images of the

melt pool region to be obtained.

3.2.4 Robot Data

Useful process information could also be obtained from the robot. The x, y and z

components of the end effector position in the base frame were each sampled at 60 Hz.

The primary use for this data was to compute the robot travel speed by computing

the derivatives of each position component to obtain the travel velocity vector, then

finding its magnitude. The position data later proved useful during the thick wall

study, which is comprised by layers with an in-fill pattern, and therefore a range of

different robot travel directions. The wire feed speed is monitored internally by the

Fronius controller, but gets routed through the robot and packaged into the same

message as the position data. The robot can also send boolean signals that indicate

when the torch is live. This process active signal was employed to synchronize the

acquisition of the disparate data streams, which is discussed in the following section.

3.3 Data Acquisition

The multitude of sensors employed in this work required an accompanying multitude

of data acquisition tools. Most of the sensors employed included accompanying

proprietary data acquisition software, or at least software recommended by the
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(a) Mounting Configuration for XIR-1800

(b) XIR-1800 viewing angle as it tracks the deposition path

Figure 3.6: XIRIS Mounting Configuration and Resulting Viewing Angle
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manufacturer. Managing this multiplicity of different software tools was deemed to

be unwieldy. Rather than contending with half a dozen different computer programs

during operation, a streamlined data acquisition framework was developed by placing

as much data acquisition under a a unified software architecture and user interface.

This entailed developing a platform that could communicate with a multitude of

sensors, read the data generated by said sensors, display it in a visual interface, and

store it. LabVIEW, the system design and visual programming platform developed

by National Instruments was chosen for this task.

3.3.1 LabVIEW Interface

Since its release in 1987, LabVIEW has been widely employed by engineers for data

acquisition, instrument control and automation. One of the primary advantages

conferred by LabVIEW is its ability to communicate with a wide array of devices from

a diverse range of manufacturers. National Instruments data acquisition devices can

communicate with almost any type of sensor. However, those devices are often very

expensive and have long lead times. Luckily, most manufacturers provide LabVIEW

development kits for their devices free of charge. This enables us to import modules

that communicate and read from our different sensors into the same workspace.

Programming logic can then be built around those modules to control the timing

and manner in which data is obtained. This capability was employed to unify and

streamline most of the various sensors into a single interface, which is shown in the

Appendix.

Acoustic data from the microphone, arc data from the LEM Box, and welding

power supply data were all integrated into the data acquisition interface. Sensor

settings such as sample rates, sensor sensitivity, bits per sample, etc can all be

adjusted by the user before or during operation. Since all of the interesting

information occurs while the arc is active and depositing material, an automated

recording system that initiates data acquisition simultaneously with the ignition of
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the welding arc was desirable. This is true whether the sample in question is a single

pass weld or a multi-layer build. This was accomplished by basing the timing of

recording on a boolean variable corresponding to the welding torch being inactive or

active. The moment the welding torch becomes active, recording begins and continues

until the moment that the torch shuts off, at which point recording stops, the current

data files are closed, and new ones are opened for the subsequent layer. In this way,

a set of data files is generated for every continuous deposition path made by the

robot. Furthermore, all sensors integrated into the LabVIEW interface record data

synchronously, which significantly simplifies data analysis since one can be certain

that the different time series cover an identical time span.

Data storage was also subjected to the same streamlining directive. Generating a

multitude of different files for each time series was deemed undesirable from a data

management perspective. The LabVIEW platform provides a ready made solution

to this problem in the form of the Technical Data Management Streaming (TDMS)

format. The TDMS file format allows for a variety of different data streams, as well as

metadata to be stored in the same file. The different data streams can be organized

by user defined groups. This functionality was employed to organize the data by

sensor. Arc data and welding power supply were organized into their own groups and

stored as TDMS files. Acoustic data was not included in the TDMS files because

subsequent analysis required that it be formatted as a wave file.

3.3.2 Robot Communication

Communication with the KR-6 robot plays a critical role in the multi-sensor

framework because it not only provides some of the data employed in the study, it

also provides the trigger that controls the flow of logic for the entire data acquisition

interface. The link between the robot and the computer was established by utilizing

KUKA’s Robot Sensor Interface (RSI) technology package. Data is transmitted via

the Ethernet UDP/IP protocol, which is a network protocol based on the exchange of
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data packets. No connection needs to be established prior to sending or receiving data,

only a destination needs to be defined. The robot controller initiates the exchange by

transmitting a data packet, and subsequently continues to send data packets at the

sensor cycle rate, which is 12 ms. The data packets are received by LabVIEW, which

has a built in UDP communication module. The data is received by the module in

the form of a formatted string, which is scanned to extract the relevant data.

3.3.3 Infrared Data

The infrared cameras were more difficult to integrate into the LabVIEW interface.

Lack of standardization among IR camera manufacturers complicates communication

with the devices, which lack the availability of ready made drivers for LabVIEW. Due

to this limitation, the cameras were not integrated into the multi-sensor LabVIEW

interface. Instead, the proprietary software developed by FLIR and XIRIS was used

to read and store data from the IR Cameras: FLIR Research Studio for the FLIR

A-50 and WeldStudio Pro for the XIRIS XR-1800.

FLIR Research Studio and WeldStudio Pro both provide a range of analysis

tools for making sense of the data. Both allow for Regions of Interest (ROI) to be

highlighted which can take the shape of lines, rectangles, and circles. The temperature

distributions inside these ROIs can be analyzed by computing statistics such as the

minimum, maximum, mean, and standard deviation, and plots showing the temporal

evolution of these metrics can be generated. Spatial plots of the distribution in a single

frame can also be generated. WeldstudioPro further provides additional features such

as blob detection, which allows for regions which temperature readings in between an

upper and lower threshold to be outlined, as shown in Figure 3.9. This feature was

employed to monitor the melt pool region.

There are significant drawbacks to using the manufacturer’s proprietary software.

Chief among them is the limited ability to interact with the raw data, which is

especially true of FLIR Research Studio. While the software does provide analysis
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tools, their capabilities are limited. For example users can highlight a ROI and

generate plots showing the distribution of temperature within that region. However,

this can only be done for a single frame, which precludes the possibility of easily

generating data that shows the temporal evolution of the temperature. Given that

most of this work is predicated on time series analysis, this posed a significant

hurdle. Reading the data from the saved files with external software or programming

languages such as python is not trivial either. The software suites only store data

in proprietary file types that are not easily accessed by third party software. FLIR

Research Studio stores data as sequence flies (.seq) while XIRIS stores data in the .xir

format. These file types proved difficult to work with, which forced reliance on the

analysis tools provided by the manufacturer software suites. While there are Software

Development Kits (SDK) available for the infrared cameras that would enable one

to communicate the devices and access the raw data using custom programming

solutions, pursuing that route was not feasible in the time allotted for this thesis.

3.4 Sample Characterization

The primary objective of this work is to develop models that enable real-time

prediction of bead shape and porosity. This requires that reliable metrics for those

characteristics be established and measured in every sample. These measurements

must be easily related back to the sensing data that was obtained in the same location

in space as the measurement. The approach taken in this project involves splitting

up both sensing and characterization data into overlapping windows and correlating

the windowed sensing data with corresponding windows in the characterization data.
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Figure 3.7: Blob detection feature in XIRIS software
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3.4.1 Keyence

Measurements of the geometry and surface quality of the single pass beads were

performed by a Keyence VR-5000 Optical Profiler, shown in Figure 3.9. The VR-

5000 is a wide area 3D optical profiling measurement system. It works by emitting

structured light through multiple double telecentric lenses. When the light bands

bounce off the sample they are distorted, which allows the system to infer height via

triangulation. This generates a 3D point cloud of height values, which can resolved

back into a 3D model of the sample, or analyzed using the tools provided by Keyence’s

analyzer software.

The average height and average width of the beads are obtained by extracting

multiple profiles along the length of the bead, as shown in Figure 3.10, and taking

their average. A cross-section diagram of a single bead demonstrating how the beads

are measured is shown in Figure 3.11. There were few available tools for characterizing

the amount of waviness and humping present in the beads, so a complete height profile

at the peak along the length of the bead was also obtained. The height profile and the

cross section it was taken from is shown in Figure 3.12. No analogous profile could be

generated for the width, so alternative methods for generating one had to be found.

The solution was to pass the height data provided by the VR-5000 through an edge

detection algorithm to generate a digitized copy of the bead footprint. This method

is discussed at length in Chapter 4.

3.5 Experimental Design

This work is divided into two primary phases. The first involves predictive models

trained on data acquired from single pass beads. A model developed from data

acquired from a 30 layer in-filled thick wall comprises the second stage. The methods

described in this thesis were first developed and refined on the single pass bead data

because it greatly simplifies analysis and data processing.
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Figure 3.8: Keyence VR-5000
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Figure 3.9: Image of bead cross sections used to compute average width and height
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Figure 3.10: Diagram of bead cross section showing height and width measurements

Figure 3.11: Sample bead profile
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A single pass is simply a straight line, which therefore means all of the input data

and output metrics can be readily mapped to each other as long as start and stop

points are synchronized. The experience gained, and the methodology devised for

the single pass bead studies were then applied to an infilled wall, which considerably

increases complexity since not only does it contain multiple layers, but each layer is

itself comprised of multiple paths, which are not continuous with each other.

3.5.1 Substrate preparation

The steel plates arrive from the manufacturer covered in impurities such as grease,

so they must be cleaned prior to use. First the surface of each build plate must be

ground down until the shiny metal surface is revealed. Once the layer of impurities

has been removed, a shop towel soaked in acetone is used to clean the surface. This

step ensures the removal of grease, oil, oxidants, etc which can create instability in

the arc and thus reduce the quality of the welds.

3.5.2 Single Pass Beads

The single pass beads were made by programming the robot to move in a 100 mm

long straight line. During the first few runs of these experiments, the travel direction

of the robot is defined to be in the x direction, or parallel with the short side of the

plate, as shown in Figure 3.15. However, when these samples were scanned by the

Keyence optical profiler, a substantial amount of data drop off was noticed. This

problem was solved by rotating the travel direction by 90 degrees to make the robot

travel in the y direction, or parallel to the long side of the plate. This eliminated the

data drop off problem, giving us scans that mapped the entire geometry. The effect

that sample configuration had on the completeness of the scans is outlined in Figure

3.16. The samples were spaced 17 mm apart, a number that was arrived at by trial

and error in an attempt to strike a balance between isolating each sample from the

effects of the arc on subsequent runs, and minimizing material utilization.
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(a) Beads arranged parallel with short side of plate

(b) Beads arranged parallel with long side of plate

Figure 3.12: Bead on plate configurations
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(a) Data drop-off observed in the configuration from Fig. 3.13a

(b) Data drop-off eliminated after switching to the configuration from Fig. 3.14b

Figure 3.13: Data drop-off dependency on bead configuration
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Three distinct data sets were generated. In each data set, the effects of a different

set of process settings and process type are studied. Data Set 1 was created using

a standard MIG process while Data Sets 2 and 3 were created by using CMT. In

each data set, three main process settings are varied to create a range of outcomes

for each individual sample. In Data sets 1 and 2 those process settings are wire feed

speed, travel speed and arc correction. In Data set 3, arc correction is maintained

constant and the contact to work piece distance (CTWD) was varied instead. Wire

feed speed refers to the speed at which wire is fed to the welding torch, and travel

speed refers to the velocity of the robot tool tip while it welds on the programmed

path; both have units of in/min. Wire feed speed and travel speed are two of the

most common settings most commonly adjusted by professional welders and are also

extensively studied in the literature. Arc correction, defined on the Fronius controller

as a percentage, is parameter that adjusts the arc length. Arc length, as discussed

in Chapter 2 is defined as the distance between the electrode and the work piece.

On Standard mode, the arc correction is highly correlated to the voltage, and can be

considered approximately equivalent to varying the voltage. This is generally true of

CMT as well but the relationship between the two is obfuscated in a CMT process

due to the fact that the wire feed speed varies throughout the duration of the weld

according to a control law.

Multiple levels for each setting were chosen, and a full factorial combination was

generated. This ensures that the entirety of the process space is represented in

the data set. Four levels were chosen for wire feed speed and travel speed while

three were chosen for arc correction and CTWD. Wire feed speed levels range from

100-200 in/min and vary in 50 in/min increments.Travel speed levels range from

6-12 in/min and vary in 2 in/min increments. Arc correction levels range from -

15%-15% and vary in 15% increments. Table 1 shows the process settings, the

levels for each process settings and the process type of all 3 data sets. Three

settings, with 4 levels on two settings and 3 levels on the remaining one generate

48 experiments using the full factorial method; however, some of these samples were
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deemed unsuitable for additive manufacturing due to excessive energy input that

produces very flat beads. The nominal energy input for each of the combinations of

settings was computed, and experiments where the energy input exceeded 1500 J/mm

were discarded. Additionally, Data Set 3 involved increasing the CTWD, which in

some instances caused arc ignition failure, which prevented certain combinations of

settings from being implemented. After discarding unsuitable parameter sets, Data

Set 1 consists of 46 beads, Data set 2 consists of 45 beads and Data set 3 consists of

43 beads, as shown in Table 2.

3.5.3 Infilled Wall

The initial design for the thick wall was made in Solidworks and is shown Figure 3.14.

The design is a rectangular wall with dimensions 1in wide, 4.5in long and 3.75in tall.

This design was sliced in the hyperMILL ADDITIVE software, which also generates a

tool path and infill strategy. The infill strategy for each layer is composed of concentric

rectangles and three lines placed inside the inner rectangle, as shown in Figure 3.15.

The tool path data generated by hyperMILL is then imported to Octopuz, which

translates the data into a path plan for the KR-6 robot. A digital model of the cell

including the robot, the worktable and workpiece is created in Octopuz, which allows

for the exact spatial configuration of the components to be defined. Base and tool

frames that match those programmed on the robot itself are defined in the software.

The base frame for this build required closer consideration. The time series data

obtained from the multi-sensor framework will only be meaningful if it can be matched

with the material deposited at time t in the time series. Since the robot position as

a function of time p(t) is known, the x and y coordinates of the deposition path are

automatically known. Matching the z coordinate requires more work, because the tool

tip hovers over the material at a distance equal to the CTWD, however being able

to pin point two of the three coordinates makes the robot positional data an effective

tool in this task. By tracking the time steps of p(t) one can determine the time t that
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the torch was at (x, y, z) which therefore enables one to determine the arc current,

arc voltage, audio amplitude, etc corresponding to the material that was deposited

at point (x, y, z −CTWD). This, however, is only possible if the coordinate systems

of the robot matches the coordinate system of the CT scan spatial data. Fortunately,

there is some freedom to decide where the origin of the coordinate systems should

be placed. The robot coordinate system can be placed arbitrarily, but the CT scan

spatial data coordinate system requires a feature such as a corner or notch. The corner

of the build plate might be an obvious place for the origin if not for the fact that

the plate undergoes significant warping due to the heat accumulation which is most

severe at the corners. This means that when the origin is defined in the CT scan

software, it will be offset from the robot base frame origin. Instead, the midpoint

of the long edge was chosen due to repeated observations of the plate undergoing

minimal warping there.
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Figure 3.14: Thick Wall CAD model

Figure 3.15: Infill strategy for each layer of the thick wall
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Table 3.1: Process Conditions for Dataset 1 (Standard)

Bead Wire Feed Speed Travel Speed Arc Correction

1 100 6 -30
2 100 6 -8
3 100 6 15
4 100 8 -30
5 100 8 -8
6 100 8 15
7 100 10 -30
8 100 10 -8
9 100 10 15
10 100 12 -30
11 100 12 -8
12 100 12 15
13 150 6 -30
14 150 6 -8
15 150 6 15
16 150 8 -30
17 150 8 -8
18 150 8 15
19 150 10 -30
20 150 10 -8
21 150 10 15
22 150 12 -30
23 150 12 -8
24 150 12 15
25 200 6 -30
26 200 6 -8
27 200 6 15
28 200 8 -30
29 200 8 -8
30 200 8 15
31 200 10 -30
32 200 10 -8
33 200 10 15
34 200 12 -30
35 200 12 -8
36 200 12 15
37 250 6 -30
38 250 8 -30
39 250 8 -8
40 250 8 15
41 250 10 -30
42 250 10 -8
43 250 10 15
44 250 12 -30
45 250 12 -8
46 250 12 15
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Table 3.2: Process Conditions for Dataset 2 (CMT)

Bead Wire Feed Speed Travel Speed Arc Correction

1 100 6 0
2 100 8 0
3 100 10 0
4 100 12 0
5 150 6 0
6 150 8 0
7 150 10 0
8 150 12 0
9 200 6 0
10 200 8 0
11 200 10 0
12 200 12 0
13 250 6 0
14 250 8 0
15 250 10 0
16 250 12 0
17 100 6 -15
18 100 8 -15
19 100 10 -15
20 100 12 -15
21 150 6 -15
22 150 8 -15
23 150 10 -15
24 150 12 -15
25 200 6 -15
26 200 8 -15
27 200 10 -15
28 200 12 -15
29 250 8 -15
30 250 10 -15
31 250 12 -15
32 100 6 15
33 100 8 15
34 100 10 15
35 100 12 15
36 150 6 15
37 150 8 15
38 150 10 15
39 150 12 15
40 200 8 15
41 200 10 15
42 200 12 15
43 250 8 15
44 250 10 15
45 250 12 15
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Table 3.3: Process Conditions for Dataset 3 (CMT)

Bead Wire Feed Speed Travel Speed CTWD

1 100 6 12
2 100 8 12
3 100 10 12
4 100 12 12
5 150 6 12
6 150 8 12
7 150 10 12
8 150 12 12
9 200 6 12
10 200 8 12
11 200 10 12
12 200 12 12
13 250 6 12
14 250 8 12
15 250 10 12
16 250 12 12
17 100 6 24
18 100 8 24
19 100 10 24
20 100 12 24
21 150 6 -15
22 150 8 -15
23 150 10 -15
24 150 12 -15
25 200 6 -15
26 250 8 -15
27 250 10 -15
28 250 12 -15
29 100 6 15
30 100 8 15
31 100 10 15
32 100 12 15
33 150 6 15
34 150 8 15
35 150 10 15
36 150 12 15
37 200 6 15
38 200 8 15
39 200 10 15
40 200 12 15
41 250 8 15
42 250 10 15
43 250 12 15

44



Chapter 4

Model Development

4.1 Machine Learning

Physics-based modeling involves making priori assumptions about the underlying

mechanisms of a studied phenomenon, or about the nature of the relationship between

the variables that influence it. Machine learning differs by assuming nothing about the

nature of the process, instead employing algorithms to uncover patterns in the data,

which has been compared to the way that humans learn [35]. A robust physics based

model is preferable when the physics equations accurately describe the behavior of a

system, and when the computational time required for the simulation is acceptable

for the application. WAAM fails to meet both criteria. The underlying physics are

highly complex and multifaceted. The existing models, discussed in Chapter 2, are

far from complete and often complex. Increasing the complexity of computational

models increases the computational resources needed to solve the physics equations,

and therefore also the computational time. This is not suitable for real-time defect

prediction, which requires the output to be generated on a time scale equal to or faster

than the underlying physics. Machine learning models are an attractive alternative

because they do not require one to have complete knowledge of the physical laws

governing the process. While the computational demands for training the model can
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be on par with physics based models, once trained, a machine learning model is very

computationally cheap to implement.

Machine learning problems can be classified into two broad types: supervised and

unsupervised. Supervised learning problems are those where outcomes are assigned a

known label, and every labeled outcome has a corresponding quantitative observation,

xi. The entire set of observations is the input vector x

xi =
[
x1 x2 · · · xn

]
(4.1)

If there are multiple different types of observations, which are called features,

the input is a matrix X whose columns correspond to features e.g. average voltage,

with its rows being individual observations for each feature. Output labels can be

categorical as in classification problems, or they can be continuous as in regression

problems. The other type is unsupervised learning, where the outcomes have no

labels. This type is optimal for discovering hidden patterns. For WAAM defect

prediction, we are interested in predicting labeled outcomes such as surface waviness,

porosity, bead straightness, etc, which makes it a supervised learning problem. These

outcomes are all labeled by metrics devised to quantitatively describe them e.g.

porosity density for voids or peak to valley ratio for surface waviness. The objective

then is to find a model f(X) = Y that maps the feature vectors X to the output

metric vector Y .

However, it is also possible to re-frame this regression problem as a binary

classification problem by defining a threshold on the output metric. Instead of directly

predicting the peak to valley metric for surface waviness, one could define a threshold

based on the distribution of data below which we consider surface waviness to be

negligible, and above which we consider it to be significant.
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4.1.1 Sequences

A common approach for developing machine learning based predictive models

in additive manufacturing is to generate numerous small parts and measure a

characterization metric such as porosity averaged across the entire part. Sensing data,

then, is too averaged for the entire part, This approach can be effective at predicting

overall characteristics of a part, however additive manufacturing can exhibit stochastic

behavior, and as such fluctuations in the process cause defects and irregularities to

arise locally. In other words, there is no guarantee that a defect will always arise

in the same place. A local defect such as a tendril like lack of fusion void can still

become the nucleus for a larger crack, and therefore is of great interest. Furthermore,

when sensing data is averaged over large time scales, a wealth of information is lost.

The welding current waveform, for example, exhibits cyclical fluctuations that occur

on a microsecond timescale. Changes in the pattern of the arc cycles have been

demonstrated to correlate to defects in the weld [19]. If the objective is real-time

prediction, then a model should have the ability to predict defects locally.

The classical machine learning problem is one where observations are sampled

independently from the same underlying probability distribution P (X) where X is a

vector of observations. However there are many problems that do not adhere to this

assumption because each observation depends on the others. Such data is referred

to as sequential. Time series are a type of sequence since observations at one time

step are not independent from those at previous time steps. Additive manufacturing

can be thought of as a sequential problem. Sensing data is often obtained as a time

series, which is certainly sequential. Material deposition itself along with its shape and

mechanical characteristics can also be thought of as sequential. Additive deposition

after all is a function of time, and furthermore highly dependent on the properties of

deposition that came before.

A common approach to solving sequential models is the sliding window method.

The sliding window method involves re-framing the sequential model as a traditional
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supervised learning problem by splitting the input sequence(s) up into N overlapping

windows, xi, each of which map to an output value yi. This creates a supervised

learning problem with N examples, (Xi, yi). If the output y is itself a sequence

or collection of sequences then the predictions yi can be concatenated together to

reform the sequence. Here, the output y refers to chosen metrics that describe bead

shape or defects. The advantage of this method is that it enables us to use any

traditional machine learning method that works on supervised learning problems [36]

Three widely used methods will be explored for WAAM defect prediction.

4.1.2 Neural Networks

One of the most powerful and widely used methods is neural networks. Neural

networks are networks of connected nodes, called neurons. Neurons are aggregated

into layers. The simplest formulation consists of an input layer, one or more hidden

layers and an output layer, shown in Figure 4.1. Each neuron stores a data value

xi, and outputs a signal to connected neurons in subsequent layers. The output of a

neuron is the data scaled by a weight wi and offset by a bias bi such that its output

is given by

yn, i = wixn, i+ bi (4.2)

The neuron output is then passed through an activation function which is often

non-linear to enable modeling of complex problems. Common activation functions

include sigmoid, tanh, and linear. The weights and biases contain the information

”learned” by the network during training. A forward pass through the network

computes an output which is compared to a loss function. The gradients of the

weights and biases with respect to the loss are then computed which provides the

direction in which they should be adjusted for the next iteration. The magnitude

that they should be adjusted by is a tunable parameter called the learning rate.
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4.1.3 Random Forests

A random forest is an ensemble of decision trees. Decision trees are a machine learning

method where the objective is to predict target data by splitting the input data

through a series of questions. The simplest formulation of this process is to ask yes

or no questions, forming a binary split e.g. ”is the voltage greater than 10V?” Each

of those questions is contained in a node, while the answers point to child nodes,

in this way, forming a hierarchical branching pattern. A prediction is arrived at

by answering the questions at each node starting from the root node, all the way

through the child nodes until a node without children is reached [37]. The stop

criteria is based on node impurity, or the homogeneity of the labels at the node. An

example decision tree is shown in Figure 4.2. Splits are determined by examining the

relationship between each feature and the output to identify which binary split would

result in a prediction that reduces the loss function the most. This process continues

until all nodes encompass a satisfactory number of output observations. A random

forest combines the predictions from a collection of randomized trees by averaging

the predictions for regression, or majority vote for classification. This method was

been proven to be robust and overcomes the tendency of lone decision trees to overfit.

4.1.4 Long Short Term Memory

When dealing with sequential data, one drawback of simple neural networks is that

the influence that outputs have on subsequent outputs in the series is ignored. This

weakness is addressed by Recurrent Neural Networks, which are trained in a sequential

manner, i.e. one time step after another, and use the output from the previous steps as

inputs for subsequent steps. The influence that events in the past has on the present is

therefore preserved. The most robust version of a Recurrent Neural Network is Long

Short Term Memory (LSTM) which in addition to incorporating previous outputs

as inputs, can store select information for many time steps, thus giving it a sort of

long term memory that simple Recurrent Neural Networks lack. Additionally, LSTM
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Figure 4.1: Neural Network

Figure 4.2: Example decision tree. Nodes are labeled with parameters studied
in this work. V is voltage, I is current, WFS is wire feed speed and fpeak is peak
frequency. This does not correspond to an actual decision tree.
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includes a mechanism by which to determine which pieces of information should be

remembered and for how long, allowing some information to be ”forgotten” when it

proves advantageous to the model. The sort of sequential time series data obtained

throughout this work is well suited to such a model architecture, and it makes physical

sense to include a mechanism for remembering previous measurements of height,

width or shape consistency since the bead shape in the past naturally influences the

bead shape in the present and future.

4.2 Output Metrics

The objective at hand is to predict shape irregularities and porosity, which informs

the choice of output metric Y . Modeling bead shape could be accomplished in one

of two ways: by predicting the dimensions of the bead themselves, or by predicting a

metric intended to describe the consistency of the deposition shape. Both approaches

will be explored. Modeling porosity on the other hand only requires a metric that

describes the amount of porosity contained in a given voxel of the part.

4.2.1 Shape

The raw characterization data for bead shape obtained from the Keyence Optical

Profiler comes in two forms. One is a one dimensional height profile that corresponds

to the outline of a cross section produced by a bisecting a weld bead along its center

line, as shown in Figure 3.l2. The other is a pictorial representation of the height

variation that uses color to represent the variation in height throughout a 2D grid,

where each pixel represents a step size in x and y. This raw data is utilized to

characterize the shape of the beads. The height profile can be directly employed as

an output metric, where the objective becomes modeling the height of the bead.

Modeling the occurrence of shape irregularities such as humping, waviness or

crookedness requires a modified approach. One way to measure the amount of
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waviness is the peak to valley difference, which has been used to measure wall waviness

and bead waviness in AM [38]. The peak to valley difference is simply the difference

between a peak and a valley in a given segment, as shown in Figure 4.3.

Another way to measure irregularity is the standard deviation. A bead with a

flat, consistent profile will have a low standard deviation while a bead with a lot of

variation in the geometry, especially larger irregularities such as humps will have a

high standard deviation.

4.2.2 Edge Detection

The heat maps obtained from the optical profiler are utilized to develop another set

of shape metrics. Since the profiler software did not offer a way to measure how

the width of a bead evolves along the length of the path, one had to be developed.

The proposed solution follows a procedure inspired by Choudhury et. al (2021) [19].

First an outline of the bead footprint is obtained by passing an image of the top view

through an edge detection algorithm. Then a center line is computed by implementing

a skeletonization algorithm. The center line is utilized to compute an estimate of the

bead width at every length step. Choudhury et. al also describe how the shape of the

center line, namely, how much it deviates from an ideal straight line path can itself

be an indication of process stability, so the deviation of the center line from an ideal

straight line path was converted into an output metric for use in the model.

Edge detection provided an attractive option because imaging of the beads was

readily available, and implementation of such an algorithm is relatively simple. Canny

edge detection was chosen from a lineup of possible candidates for its robustness.

Canny edge detection is a multi-stage edge detection algorithm first described in

Canny (1986) [39].
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Figure 4.3: Definition of Peak-to-Valley Difference
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first, the image is converted to grayscale. Then, a Gaussian blur is applied to the

image in order to reduce noise. which makes it less likely that irrelevant noisy features

in the image will be detected as an edge. Edges in the image correspond to changes

in the intensity of the pixels. Thus the next step is to compute the intensity gradient

matrix of the image. This is accomplished by convolving the image with Sobel filters

for the vertical Ky and horizontal direction Kx

Kx =


−1 0 1

−2 0 2

−1 0 1

 , Ky =


1 0 1

0 0 0

−1 −2 −1

 , (4.3)

This yields the intensity derivatives Ix and Iy. The magnitude G and the slope θ

of the gradient are found by

∥G∥ =
√
I2

x + I2
yθ = arctan Iy

Ix

(4.4)

To ensure that edges returned aren’t fuzzy, a non-maximum suppression algorithm is

implemented. The algorithm checks every point in the intensity matrix and identifies

the pixel in the edge direction, obtained from the θ matrix, with the maximum

intensity. Next, a double threshold is imposed to separate the pixels into strong,

weak and non-relevant. The upper threshold identifies strong pixels that definitely

contribute to the edge, the lower threshold identifies irrelevant pictures that do not

contribute and those pixels with intensities in between the threshold are called weak

pixels which may or may not contribute. These thresholds are tunable parameters.

Weak pixels are converted to strong ones if they are bordered by another strong pixels

– this is called hysteresis.

The Canny Edge Detection algorithm is applied to the heat maps obtained from

the Keyence, which yields a bitmap of the bead outline where edge pixels are 1 and

the background is 0, as shown in Figure 4.4a. Each pixel corresponds to a step change

in the vertical and horizontal directions. The size of that step change is obtained from
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(a) Bead outline bitmap

(b) Digitized bead outline

Figure 4.4: Canny edge detection algorithm results
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the optical profiler. The bitmap of the bead outline is converted into a Cartesian

plot by finding all of the row and column indexes that correspond to a value of 1

(i.e. part of the edge) and multiplying them by the distance per pixel obtained from

the Keyenece. The row indexes then become the x coordinates while the column

indexes become the y coordinates. The plot of the bead outline obtained by this

transformation is shown in Figure 4.4b.

The coordiantes for the center line of the bead are then obtained by utilizing

the Hamilton-Jacobi skeletonization algorithm described by Siddiqi [40, 41]. The

algorithm works by computing the average outward flux of the position vector field

gradient q = (x, y). The shape is then thinned by sequentially removing points until

a threshold is reached. The algorithm results in the center line shown in Figure 4.5a.

The shape of the center line corresponds with process stability; a crooked zig zagging

center line suggests instability while a straight line points to a stable process. This

observed relationship with process stability can be quantified by plotting an ideal

straight center line on top of the actual center line, and comparing the two, as shown

in Figure 4.5b. The standard deviation of the difference between the actual and ideal

center line is employed as one of the output metrics for the predictive models.

The bead center line was used to obtain the bead width. For every point on the

center line, the vertical distance to the top side of the outline and the vertical distance

to the bottom side of the center line are computed. The width is the difference between

the distance to the top and the distance to the bottom. Some of the beads are at an

angle because of how they were positioned in the scanner. Before this measurement

can be made, the bead must be in the horizontal position. Some of the bead images

are angled because of how they were positioned in the scanner. This angle is corrected

by applying a transformation matrix with an angle equal to the angle of the ideal

center line. The width measurement methodology is shown in Figure 4.6.
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(a) Bead outline with center line

(b) Actual bead center line vs ideal center line

Figure 4.5: Acquisition of bead center line

(a) Diagram of vertical measurements made to obtain bead width

(b) Bead width as a function of length

Figure 4.6: Acquisition of bead center line
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4.3 Pre-processing

The raw time series are not suitable for use in predictive models. Most of the disparate

time series are sampled at different rates, which means the time series vectors can have

vastly different sizes. Waveform data contains significant noise. Additionally, despite

efforts to synchronize data acquisition with the start and end of the process, the time

series still do not align with the shape profiles. Furthermore, the bead geometry

data covers the entire bead, not merely the stretch corresponding to the robot travel.

These challenges call for a pre-processing procedure that trims, and cleans up the

data to ensure that the disparate time series data matches up as precisely as possible

with each other and with the geometric data.

4.3.1 Wavelet Based Denoising

High resolution signals typically contain noise from a variety of sources. Electric

signals are affected by electromagnetic interference, current drawn from other devices

in the circuit, power main hum, among many others. The noise problem is particularly

severe for the acoustic data because the microphone picks up environmental noise

produced by equipment in the workcell. Hums and whirring of motors, pumps and

worst of all the ventilation system which is quite loud. This makes the audio signal

highly noisy, making it difficult to work with. The noise could be somewhat reduced

by strategically placing the microphone as close as possible to the torch, but even then

the noise remains. Mitigating this problem further requires a method for denoising

the acquired signal.

One denoising method is wavelet based denoising. A wavelet is a small wave

with its energy concentrated in time. An example wavelet is shown in Figure 4.4a.

Wavelets can be used to decompose a signal into component parts, much like a

Fourier transform, except the basis functions are wavelets instead of sines and cosines

[42]. Much like a Fourier transform, a wavelet transform can be used to eliminate

certain frequency terms by imposing thresholds on their coefficients. However, Fourier
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transforms are created by a one dimensional sequence of coefficients, whereas wavelets

expansion map the signal to a two dimensional array of coefficients, which allows

for efficient localization in both the time and frequency domains. This allows for

the separation of components that overlap in both the time and frequency domains.

Once a wavelet expansion is found, thresholds are then imposed on the coefficients

for the wavelet functions to reduce or eliminate the magnitude of noisy terms [43].

The wavelet based denoising procedure was applied to both the audio and arc voltage

and current waveforms. The effect of denoising on an audio signal is shown in Figure

4.8

4.3.2 Synchronization

A successful machine learning model requires that all observations xi are paired with

the correct outputs yi. For the sensor time series data, this means that time series

observations synchronized so that all observations correspond to the same ti, and all

time series observations x(ti) should be aligned with the shape profile section that was

deposited at time ti. As noted, this is not the case for the raw time series data due to

the fact that the computer receives a process active signal before the torch actually

starts moving and it continues to receive it a short time after it stops moving. This

triggers data acquisition slightly early and pauses it slightly late, thus adding a small

interval of time to the sensor time series corresponding to the torch being stationary

i.e. while no deposition is occurring. Figure 4.9 shows this effect. The cause is that

RSI sends a process active signal during the pre-and post flow time despite the fact

that the arc has not yet struck. Pre-flow and post-flow time are a small interval of

time programmed into the robot path, typically less than 1 second before arc ignition

or after arc stop, where the torch hovers over the programmed path start and blows

shielding gas over the location where the arc will strike, thus ensuring that there is

enough shielding gas where the melt pool is going to land. This interval of time needs

to be trimmed from the time series data.
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Figure 4.7: Wavelet

Figure 4.8: Effect of wavelet based denoising on audio signal
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Since the characterization data is obtained post-process, correlating positions

along the deposition profile to moments in time is difficult. There is no time series for

shape that provides information about which parts of a shape profile were deposited

when. However, there are some known facts about the deposition which can facilitate

such an alignment. Firstly, the the position of the torch with respect to time is

known. Since the beads only differ from this position by a distance equal to the

CTWD, the robot position data provides a reasonable way to correlate positions

along the characterization data to moments in time.

For bead studies, this process is further simplified by the fact that the travel path

is one dimensional. Shape metrics are likewise obtained in the form of 1-D profiles.

Deposition is assumed to only occur while the torch is moving. Then, the only

remaining task is to identify the locations on the weld bead that correspond to the

start and end of deposition. This can be accomplished by identifying distinguishing

features on the bead. It was observed that a small crater always forms on the bead

at approximately the same location where the torch stops moving. Furthermore, this

feature can be readily identified on the optical profiler. Keyence’s software enables

us to locate the position of this feature on the height profile, as shown in Figure 4.10.

Since the travel distance is programmed to be 100 mm, the start position can be

found by subtracting 100 mm from the position of the end point.

The start and end points of a weld bead correspond to transient process regimes

that are very different from the conditions during continuous deposition. This

difference is reflected in the shape of the bead at the end caps. The end cap at

the start of the arc tends to be bulgier and rounder than the rest of the bead, while

the at the opposite end, where the arc shuts off, the bead exhibits a downward slope.

Trimming the shape profiles to the start and end positions does not automatically

resolve this issue. The start/end slopes still show up in the profile, so more trimming

is required. The start of the bead is trimmed to the peak of the bulge, while the end

of the bead is trimmed to the start of the downward slope, as shown in Figure 4.11a.

The resulting trimmed bead profile is shown in Figure 4.11b.
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Figure 4.9: Sensor data continues after robot travel stops
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(a) Position of crater on the bead

(b) Resulting trimmed profile

Figure 4.10: Horizontal measurement from zero position to crater
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4.3.3 Windowing

In order to implement the approach proposed in Section 4.1.2, all sensor time series

and output data are partitioned into overlapping windows, as shown in Figure 4.11.

Each overlapping window is defined by a window size nw in number of samples, a hop

length h, which is the number of samples that each window xx,w,i advances by to arrive

at the subsequent window xw,(i+1). For the windows to be overlapping h > nw. The

amount of overlap between windows can be characterized by a percentage p where no

is the number of overlapping samples.

p = no

nw

(4.5)

It is critical for windows from one time series to align with the windows from

the other time series as well as the windows from the output data. The time series

windows must all correspond to the same time range while all the time series windows

must correspond to the concurrently deposited segments of material. While this could

be easily accomplished if all of the data was sampled at the same rate, the multi-sensor

approach taken precluded that possibility. Ideally, all sensors would produce data at

an identical sample rate, which would make windowing trivial. However, acquiring

sensors that could measure all of the disparate physical phenomena of interest at

an identical sample rate proved to be impractical. Consequently, the windowing

procedure had to account for the differing sample rates between time series.

The efforts taken to synchronize the start and stop points of the weld undertaken

in the previous section go a long way towards resolving this issue. Having ensured that

all the sequences start and end at the same moment in time and the same position

in space, matching windows can be obtained by dividing all of the sequences into

N equally sized windows. This was accomplished by establishing a relation between

the number of windows, the window size, and the percent overlap. The number of

windows and percent overlap are arbitrary parameters from which the window size

and hop length are computed. The relationship between these parameters is given by
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(a) Height profile plot showing the bulge near the start and the slope near the end that are
trimmed from the profile

(b) Resulting trimmed profile

Figure 4.11: Trimming the bead height profile
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Figure 4.12: Diagram of signal showing how overlapping windows are defined.
Window length is the number of samples in a window, hop length is the number
of samples skipped to get to the next window and overlap is the overlap between
windows
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N = floor(nx − nw

h
) + 1 (4.6)

where nx is the length of the entire series. This equation is solved for nw, using the

fact that h = nx − nxp to obtain

nw = nx

N − pnw + p
(4.7)

Thus, N and p are arbitrary parameters that are used to compute the window

length nw. N windows per bead means that N * number of samples will be available

for the model. It should be noted that increasing the number of windows per bead

will not necessarily improve the model performance. The performance may improve

at first but will eventually decline because the nw in the lowest sample rate time

series becomes very small. In this study, the limiting factors were infrared data

and shape characterization data, both of which were sampled at much lower rates

than the audio and arc current/voltage. The the audio and current/voltage signals

had several hundred thousand samples, while the melt pool temperature time series

obtained from the XIRIS typically had upwards of 4000 samples. The height and

width profiles obtained from Keyence data similarly had upwards of 3000 samples.

Additionally, some samples are truncated from those siglas as described in preceding

sections, decreasing the number of samples available for analysis still further. This

imposes a limitation on the number of windows. Trial and error suggested that N

= 10 windows would be an optimal number of windows for this particular data set.

With 10 windows, a height profile or melt pool temperature time series with about

3000 samples, would have a window size of about 300. Increasing the number of

windows beyond that, and therefore reducing the window size, did not prove to be

advantageous.
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4.4 Feature Extraction

After each 1D time series is reframed into a collection of overlapping windows,

represented as a matrix where the number of rows is N and the number of columns

is nw. The windowed data is utilized to compute data features. For each feature,

each window yields one observation. Each bead then yields N observations for each

feature. The total number of samples in the data set is equal to N * number of beads.

4.4.1 Welding Process Data

Wire feed speed and travel speed, both welding process settings, are used as features.

The travel speed in bead studies is always constant, therefore there is no need to

subject travel speed data to a windowing procedure. The same travel speed is simply

repeated N times. The same is true of the wire feed speed in Data set 1, which uses

standard mode, since it is always constant. However, for Data sets 2 and 3 where

the wire retraction causes significant fluctuations in wire feed speed, it is useful to

compute sliding metrics other than the mean.

4.4.2 Waveform Data

Waveform data, such as acoustics and electrical signals, can be analyzed in either

the time domain or the frequency domain. Time domain features are obtained by

performing calculations on the windowed time series. One way to characterize a wave

form in the time domain is by computing statistical metrics. The mean is the most

obvious one but higher order statistics such as the standard deviation and kurtosis can

also yield valuable information. For audio waveforms, only the kurtosis is computed

because a number of authors have identified it as a predictive factor for arc stability

[20, 21]. Kurtosis is also computed for voltage and current. The mean voltage and

current are also obtained due to its central role in determining the heat input.
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Over the course of experimentation, it was observed that the loudness of the

arc varied significantly depending on process conditions. A way to measure that is

to employ the root mean square (RMS). RMS is often used in signals with negative

fluctuations, since these would reduce the mean (the average of a sinusoid for example

is 0). In audio processing, the RMS can be thought of as the effective amplitude or

effective loudness. The RMS of a discretized signal is found by

RMS =

√√√√ 1
K

N∑
k=0

x(k)2 (4.8)

Another time domain metric is the zero crossing rate. The zero crossing rate is

often used in audio processing to measure the smoothness of a signal, which useful

for determining the pitch and timbre of sounds.

ZC = 1
2

N∑
k=0

|sgn(S(k)) − sgn(S(k + 1))| (4.9)

Frequency domain analysis requires the signal to be transformed to the frequency

domain which is achieved by applying a Fast Fourier Transform (FFT)

X(f) =
∫ ∞

−∞
x(t)e−j2πft dt (4.10)

When dealing with discretized data, such as the data sampled from sensors, a

Discrete Fourier Transform (DFT) is used instead.

X(k) =
N−1∑
n=0

x(t)exp
(

−j 2πkn
N

)
(4.11)

where k is a frequency bin, and N is the number of samples. The problem with the

traditional Fourier series is that it removes the time dimension, which prevents one

from studying the evolution of the frequency domain features over time. A solution

to this problem is to apply the DFT to windowed segments of the time series, which

is exactly the premise behind the Short Time Fourier Transform (STFT). STFT is an
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efficient algorithm for computing the Fourier Transform of a windowed signal. This

can be described by the equation

X(f) =
∫ ∞

−∞
x(t)w(t− τ)e−j2πft dt (4.12)

where w(t − τ) is a windowing function which can be rectangular, Hann,

Gaussian, among others. This work will employ a rectangular window. A diagram

demonstrating how the STFT works is shown in Figure 4.13. The STFT yields

a matrix where each row or column corresponds to the frequency spectrum for a

window of the time series. These spectral windows can be used to derive frequency

domain features. These are mostly chosen based on intuition and information from

the literature. A spectral centroid is the frequency that corresponds to the center of

energy, analogous to the concept of a center of mass. It is calculated by the formula

fc =
∑N

k=0 S(k)f(k)
S(k) (4.13)

where S(k) is the amplitude of the frequency spectrum at frequency bin k and

f(k) is the frequency at bin k. Once the spectral centroid is known, one can compute

a measure for the spectral range surrounding the spectral centroid. This is known as

the spectral bandwidth, which is a weighted mean of the distances of the frequency

bands from the spectral centroids. The spectral bandwidth is found by the equation

fb =
(

N∑
k=0

S(k) (f(k) − fc)p

)
(4.14)
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Figure 4.13: Diagram of working principle behind Short Time Fourier Transform.
Frequency spectrums are computed for each overlapping window.
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Finally, the concept of onset envelope is imported from signal processing literature.

Onset is the occurrence of distinct and perceptible events in an audio signal such as a

beat, or musical note. These events correspond to transient behavior in the signal such

as a sudden shift in spectral energy. Though this concept was initially developed for

musical processing, the concept of onsets is broadly applicable, as there many other

contexts where one might be interested in detecting distinct events in an audio signal.

Acoustic weld monitoring is such an application because the sound of welding always

has discernible features such as pops, crackling, and sizzling. It is very likely that

these types of sounds correspond to measurable shifts in the spectral energy of the

signal, so that the methods developed for onset detection in music [44, 45] should

have value in this application.

4.4.3 Thermography

The literature makes it clear that the thermal characteristics of the melt pool and

of the inter-layer temperature both have a strong influence on defect formation and

bead shape. Infrared data will be utilized to derive features that measure both of

these traits. Bead on plate studies do not have inter-layer temperatures per se,

since material is deposited directly on the substrate for a single pass. However,

the temperature of the build plate itself should affect the wetting and wetting

solidification behavior much as a layer would. It is also variable during experiments,

since other welds on the plate increase its temperature. Therefore the base plate

temperature directly under the travel path is used as a stand in for inter-layer

temperature. The blob detection feature discussed in Section 3.3.3 can be used to

measure the temperature of the melt pool. That data is directly obtained from the

analysis software.

The type of time series data that could be obtained from the FLIR was very

limited, as discussed in Section 3.3.3. Only statistics of the temperature such as the

maximum, mean, or standard deviation could be exported as time series. This did not
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prove helpful in the bead on plate studies because the recording encompasses the time

during which the arc was on. The arc is much hotter than the maximum temperature

the camera can record, so clipping occurs. However, the average temperature of the

base plate prior to material deposition could still be obtained. This temperature was

measured by creating a linear ROI that is co-linear with the travel axis on the plate.

With the line in place, a snapshot of the moment before arc ignition is taken. At that

snapshot, a spatial profile of the temperature variation within that line is obtained,

as shown in Figure 4.14. The average of the temperature profile was computed to

obtain the base plate temperature.

4.4.4 Summary

The five independent sensor time series in addition to the spatial temperature line

profile are analysed by the procedures described in the preceding subsections. This

feature extraction procedure results in a set of 18 features, as shown in Table

5.1. These features, with the exception of Travel Speed and Base Temperature are

computed on a per windowed segment basis. Every overlapping window of a bead

shape profile is associated with these 18 features, by way of the windowing procedure

and feature extraction procedure applied to the corresponding windows of the time

series data. The input to the model, therefore, is a matrix with the number of rows

equal to the number of segments per bead * number of beads and the number of

columns equal to the number of features.
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Figure 4.14: Snapshot of FLIR thermal imaging immediately prior to arc ignition.
Line is placed on the spot where the bead is going to be
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Table 4.1: Features Derived from Multi-Sensor Framework

Feature Raw Data Source

Welding Voltage Mean Welding Voltage
Welding Voltage Std Welding Voltage

Welding Voltage Kurt Welding Voltage
Peak Frequency Welding Current

Welding Current Mean Welding Current
Welding Current Std Welding Current

Welding Current Kurt Welding Current
Wire Feed Speed Mean Wire Feed Speed
Wire Feed Speed Std Wire Feed Speed

Melt Pool Temperature Melt Pool Temperature
Audio Kurtosis Audio

Spectral Centroids Audio
Spectral Bandwidth Audio
Root Mean Squared Audio
Zero Crossing Rate Audio

Onset Strength Audio
Travel Speed Robot Position

Base Temperature Temperature Line Profile
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4.5 Model training

4.5.1 Feature Pruning

Reducing the dimensionality of the input space prior to training is desirable due to

the so called curse of dimensionality, which postulates that adding dimensions to the

input space rapidly increases the number of observations needed to fully describe it.

Consequently, for most machine learning problems adding dimensions only improves

a model’s performance up to a certain point, after which it begins to degrade. One

method for rejecting features prior to training is to identify features that are highly

correlated. The correlations between each of the input features can be visualized

using a correlation matrix, as shown in Figure 4.15. If there are two or more features

that are more than 95% then all but one features in that set are considered redundant

and all but one of the correlated features are rejected. Out of the features shown in

Table 4.1, only Welding Current Mean and Wire Feed Speed Mean were correlated

at 95% or higher. Wire Feed Speed Mean was then rejected.

4.5.2 Standardization

A common problem in machine learning is input features have significantly different

scales. The data obtained in this work provides an example. The various types

of frequency domain features discussed in the previous section have values ranging

in the thousands. Meanwhile, average welding voltage ranges from 0 to 20 V. The

difference in scale is multiple orders of magnitude. In some algorithms this difference

in scales severely handicaps the models because the features with values on a higher

scale impact the model more, giving a false impression that they are more important

to the outcome than other features. To address this problem, the values of each

feature must be re-scaled so that they all share a common scale, without altering the

overall distribution of the values. There are two common strategies for addressing

this problem: normalization and standardization. Normalization means re-scaling
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the values to fit between 0 and 1. Standardization means re-scaling the data to

make it have a mean of 0 and a standard deviation of 1. Standardization is useful

in situations where the data is normally distributed, or the model assumes such a

distribution. None of the data features were normally distributed, thus normalization

was used.

4.6 Model validation

4.6.1 Validation Techniques

Once a model is trained, it must be tested on data it hasn’t yet seen. This is usually

done by setting some of the data aside during training, training the model on a subset

of the data and then using the model to predict the unseen data. The drawback of this

approach is that it does not guarantee a well performing model. Even if the model

performs well on the test set, it could be because the output observations in the test

set were easier. This problem can be mitigated by training the model on multiple

different subsets of the data so that model sees the entire data set. This approach

is called cross-validation. K-fold cross validation is a type of cross validation where

the data is split into subsets called folds. During training, the model is reinitialized

and trained on multiple iterations, where for each iteration a different subset is set

aside to be the test set. The number of iterations will be equal to the number of

folds. Once every fold has been the test set once, the loop is completed. A diagram

of K-fold cross validation is shown in Figure 4.16.

4.6.2 Feature Selection

Another way to combat the curse of dimensionality is to implement feature selection.

This differs from feature pruning in that it is only done after a model is trained

rather than before. The model itself is utilized to obtain a feature ranking based on

the impact of each feature to the model. Once such a ranking is obtained, the least
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impactful features can then be eliminated, and the model can be retrained with the

new reduced feature set. Not all machine learning methods lend themselves to feature

selection. Some methods such as Random Forests have a built in feature importance

ranking mechanism. Random Forests can produce a estimate of a feature’s importance

based on the mean decrease in node impurity. In other words, it’s a measure of how

much splitting on that feature gets the model closer to a final prediction, averaged

across all trees. It is possible to estimate feature importance for other model types,

however. One method is computing the decrease in accuracy when that feature is

removed from the model.

SHAP (SHapley Additive exPlanations) Values have emerged as one of the best

methods for improving machine learning interpretability, and they can be employed

in a wide array of machine learning methods, in particular neural networks such as

the ones developed in this study. SHAP Values are a concept imported from game

theory where they are used to show the contribution of individual players to the

outcome of a game. In machine learning, they are used to quantitatively describe

the contribution of individual features to the outcome of a model. This is achieved

by finding subsets of the feature set called coalitions, where the set of all features is

known as the grand coalition. For each possible coalition, the difference in the model

score is computed before and after feature i is removed. This parameter is computed

and averaged across all non-repeating permutation of possible coalitions in the entire

feature set,
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Figure 4.15: Correlation Matrix. Legend is the color bar on the right. Scale is
unitless and consists of Pearson correlation coefficients.
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Figure 4.16: 5 Fold K-Fold cross validation
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Chapter 5

Single Layer Model

5.1 Experimental Results

Between the three data sets, 134 beads were deposited. These beads exhibited

a diverse array of shapes and dimensions. Visual inspection reveals that shape

irregularities such as waviness and crookedness discussed in Chapter 2 of this work

are well represented. Figure 5.1 shows a summary of the type of irregularities found

in the bead samples. Predictive models are developed and trained on data belonging

to one of these data sets at a time. The results of the models developed from the

three data sets will be compared and the differences in model performance will be

discussed.

The attempt to purposefully generate porosity on the bead surface by increasing

the CTWD was only partially successful. As Figure 5.2 shows, porosity did indeed

appear on some of the beads with a CTWD of 18 mm and 24 mm. However, this

porosity was only visible on the bulge that forms immediately after arc ignition. This

result is not useful for the objective of developing a model that maps time series

sensor data to a porosity metric. The portion of the end-cap where porosity formed

in all the beads is outside of the robot travel path, so there is no time span in the
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(a) Beads from Data Set 1, produced by a Standard process

(b) Beads from Data Set 2 and 3

Figure 5.1: Examples of irregularities and defects found on single pass beads
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sensor data that corresponds to visible surface porosity. Consequently, developing a

predictive model for porosity from bead studies was abandoned as an objective.

Shape irregularities on the other hand were abundant. The shape properties of

the beads from all three data sets is shown in Table 5.1. In order to summarize the

shape properties of entire data sets, the shape metrics computed for every windowed

segment of every bead in the data set were averaged and are reported as a single

value. On average, the beads from Data Set 1, which were produced by a Standard

process, were wider and shorter than those from the CMT data sets. Data Set 1

beads also exhibited significantly lower straightness than the other data sets, with

the center line deviation being more than double that of Data Set 2, and 65% higher

than Data Set 3. Coupled with the observation that the arc sound during the most

crooked Data Set 1 beads was more akin to a fast popping sound rather than the fast

sizzle/crackling usually associated with stable welds, suggests a greater prevalence of

process instability during the Standard process. The rough surface of most of these

welds, such as the one shown in Figure 5.3 likely also resulted from that fact. On

the other hand, Data Sets 2 and 3 had greater shape variation in terms of Height

Standard Deviation. This likely reflects the prevalence of wavy beads, such as the

one shown in Figure 5.4, in that data set. The same is not entirely true for Height

Peak-to-Valley Difference (HPVD), where Data Set 3 did have a larger HPVD than

Data Set 1, but Data Set 2 did not.

The shape metrics were plotted against length to obtain the profile. Since these

measurements are all for sliding length segments of the shape profiles, the length had

to be windowed as well. The sliding shape metrics are therefore plotted against the

sliding mean of the length. Confidence that these metrics are reliable descriptors

of shape irregularity was established by comparing them to images of the beads

themselves, as shown in Figure 5.5. Both beads shown are among the waviest beads

in the entire study, which is reflected in the well above average values for the HPVD

and Height Standard Deviation found along the length of these beads. Consistent

bead profiles on the other hand had very low values for both of those metrics.
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Figure 5.2: Porosity developed on the end cap of some beads in Data Set 3

Table 5.1: Features Derived from Multi-Sensor Framework

Dataset Height
(mm)

Width
(mm)

Peak-to-
Valley
(mm)

Height St.
Dev. (mm)

Center
Line
Deviation
(µm)

Dataset 1 2.232 7.618 161.8 65.72 145.7
Dataset 2 3.388 7.18 153.9 68.48 72.83
Dataset 3 3.740 7.329 165.4 75.89 85.24
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Figure 5.3: Rough bead surface (Bead 32) from Data Set 1

Figure 5.4: Example of wavy bead (Bead 2) from Data Set 2
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Figure 5.5: Actual bead (Bead 37) from Data Set 2 compared to its height profile
and peak to valley profile
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5.2 Model Performance

Five shape metrics, three machine learning models and three data sets yields a total

of 45 different shape prediction models. This sprawling array of models can be

summarized by comparing the model scores, in this case reported as mean absolute

error (MAE). The differences in model performance between each data set and

machine learning model for each shape metric are shown in Figure 5.6. The simple

neural network (NN) performed the best across the board, regardless of metric or data

set. Overall, random forests (RF) performed the worst. When predicting width or

height RF performance was very close to NNs and LSTM, even competitive as in the

case of Data Set 2. When predicting profile consistency, however, RF was consistently

the worst, and often by large margins. The reason for RF under-performance is not

clear but is likely related to the discontinuous nature of RF predictions. The LSTM

models performed favorably compared to RF and NN, however, no improvement

over simple NNs was observed. This failure could be explained in two ways. One

is that this is a non-traditional application for LSTMs, since LSTMs are typically

used for applications where there the input data is not processed into features.

Secondly, training and hyper-parameter tuning and training is more difficult for

LSTMs; moreover, LSTMs introduce more hyper-parameters into the picture such

as lock back period. Thus it could simply be that the optimal hyper-parameters for

these models have not been found.

To better visualize the model performance, the measurements can be plotted

against the model predictions. This is done for every model in the study.

These comparison plots demonstrate the close agreement between measurement and

prediction of Height and Width for NN and LSTM, as shown in Figure 5.7. This close

agreement exists in neural network models from all data sets. On the other hand,

the RF models were able to predict height and width, but with significantly greater

dispersion, as shown in Figure 5.8.
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The predictions for metrics measuring shape consistency exhibit significantly

more error compared to predicting width and height. The relative errors for shape

consistency were approximately 7x higher than those for height and width. This is

hardly surprising considering shape consistency is a higher order property, making

it harder to predict. Nevertheless, NN and LSTM performed relatively well for all

data sets, as shown in Figure 5.9. RF, however, performed very poorly for all shape

consistency metrics, as shown in Figure 5.10. The RF models exhibit the greatest

error toward the higher end of the measured shape metrics, which renders such models

unworkable for real time prediction. The objective is to predict shape irregularities,

which in this context translates to above average values for shape consistency metrics.

This requires a model that can predict the upper ranges of the shape metrics with

greater accuracy.

Another way to visualize model performance is to reconstruct the shape profiles,

as seen in Figure 5.11. The actual bead profile with respect to length is compared

to the predicted bead profile. The predicted height profile is compared to the actual

height profile for two beads in data set 3. The bead profile from Figure 5.11a shows

a very close agreement between measurements and predictions, except for the first

measurement. Figure 5.11b shows more spotty agreement, but the first measurement

error still stands out. This observation was repeated for nearly all beads in all three

data sets. This persistent failure to predict the first measurement in the profile

suggests that this region corresponds to a transient where the model is incomplete

or inaccurate. Its physical manifestation is a bulge found at the front end of all the

beads, which despite best efforts was not sufficiently trimmed off. Indeed, many of

the trimmed height profiles still have a sizeable slope at the start of the profile.

Shape profiles for shape consistency metrics were also reconstructed. Figure 5.12

demonstrates that for some beads, shape consistency model predictions also exhibit

close agreement with observation. The first windowed measurement (i.e. closest to

length = 0) is sometimes the worst, similar to the Width and Height profiles, though
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(a) Model performance summary for
Bead Height

(b) Model performance summary for
Bead Width

(c) Model performance summary for
Peak to Valley Difference

(d) Model performance summary for
Bead Height Standard Deviation

(e) Model performance summary for
Center Line Deviation

Figure 5.6: Model performance summaries for all runs
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(a) Performance of NN model for
predicting Bead Height for Data Set 2.

(b) Performance of LSTM model for
predicting Bead Width on Data Set 2

Figure 5.7: Neural net based models predict height and width very well. The
individual scatter points represent a measured value, shown on the horizontal axis
and its corresponding prediction, shown on the vertical axis. The solid line represents
a 1 to 1 ratio between measurements and predictions so points along that line represent
perfect predictions.

(a) Performance of RF model for
predicting Height on Data Set 3

(b) Performance of RF model for
predicting Width on Data Set 3

Figure 5.8: Performance of RF models for predicting Height and Width
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(a) Performance of NN model when
predicting Center Line Deviation on Data
Set 1

(b) Performance of LSTM model when
predicting Height Standard Deviation on
Data Set 13

Figure 5.9: NNs and LSTMs displayed moderate performance when predicting bead
shape consistency metrics

(a) Performance of RF model when
predicting Center Line Deviation on Data
Set 3

(b) Performance of LSTM model when
predicting Center Line Deviation on Data
Set 3

Figure 5.10: Comparison of model performance between RF and LSTM for the
same output metric and data set. RF performance is vastly inferior
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this is not nearly as prevalent compared to the universality of that phenomenon in

the width and height models.

5.3 Feature Importance

A feature importance ranking for each model was obtained by employing SHAP Values

for NN and permutation feature importance in RF. To streamline the process, no

feature importance was obtained for LSTM. The feature importance rankings for Peak

to Valley Difference in Data Set 3 are shown for both RF and NN in Figure 5.13.

Interestingly, there is some degree of overlap between the two, despite the difference in

the methods that generated them. A handful of features such as Spectral Centroids,

Onset Strength and Welding Voltage Standard Deviation all rank near the top in

both lists while features such as Root Mean Squared and Melt Pool Temperature

rank near the bottom of both.

There was also a noticeable difference in the features found near the top of the

ranking between Height and Width models and shape consistency models. Figure 5.14

shows a comparison between the feature importance ranking for the Height model and

the Height Standard Deviation model for the same data set. Audio features could

consistently be found in the top 5 features of most shape consistency models. On the

other hand, almost all the top 5 features of width and height models were features

derived from process variables such as travel speed, arc current/voltage and wire feed

speed. In fact, travel speed was by far the most predictive feature in nearly all height

and width NN models, with the average impact on model being double or more that of

the next most important feature. However, this does not mean that travel speed alone

can predict all the outcomes since the travel speed was constant throughout the entire

path of a single bead (though it did vary between beads, hence its predictive power),

which means it cannot account for the variations in bead dimensions throughout the

bead.
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(a) Reconstructed bead height profile compared to actual bead height profile for Bead 33
from Data Set 3

(b) Reconstructed bead height profile compared to actual bead height for Bead 15 from
Data Set 3

Figure 5.11: Reconstructing the bead height profiles using model predictions yields
reasonably close agreement with the measured profile. Note the large error for the
first measurement
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(a) Reconstructed peak to valley difference profile compared to actual peak to valley
difference profile for Bead 37 from Data Set 2

(b) Reconstructed center line deviation profile compared to actual center line deviation for
Bead 42 from Data Set 1

Figure 5.12: In terms of bead shape consistency metrics, models also yielded very
close agreement with measured values for many beads
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(a) Permutation Feature Importance for Random
Forest

(b) SHAP Value Feature Importance for Neural
Network

Figure 5.13: Feature importance ranking for Data Set 3 Peak to Valley in RF and
NN
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An attempt was made to utilize the feature importance rankings to improve

the model performance by eliminating poorly performing features. This was first

attempted with SHAP values on NN models. The bottom 2 features for the Peak to

Valley Difference model in Data Set 2 were removed and the model was retrained. In

this model, the least importance features were found to be Root Mean Square and

Melt Pool Temperature, so those features are removed from the set and the model

is retrained. Unfortunately, no improvement in model performance was observed.

In fact, the performance slightly decreased. The comparison plot before and after

is shown in Figure 5.15. The difference between the two is barely perceptible.

Alternatively, features can be eliminated one feature at a time, with the model being

retrained after a feature is discarded. This process is known as Recursive Feature

Elimination (RFF). This process was tested on a RF model for bead height. The

best results were obtained after 10 features were eliminated, leaving 7 features in the

model. RFF minimally improved the RF model as shown in Figure 5.16.
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(a) Reconstructed peak to valley difference profile
compared to actual peak to valley difference profile
for Bead 37 from Data Set 2

(b) Reconstructed center line deviation profile
compared to actual center line deviation for Bead
42 from Data Set 1

Figure 5.14: In terms of bead shape consistency metrics, models also yielded very
close agreement with measured values for many beads
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(a) Model performance of Data Set 2
Peak to Valley Model Before Feature
Elimination. MAE = 0.058 mm

(b) Model performance of Data Set
2 Peak to Valley Model After Feature
Elimination. MAE = 0.070 mm

Figure 5.15: No improvement in model performance observed after eliminating two
features

(a) Random Forest model performance
of Data Set 2 Bead Height Model Before
Recursive Feature Elimination. MAE =
0.08204 mm

(b) Random Forest model performance
of Data Set 2 Bead Height Model After
Recursive Feature Elimination. MAE =
0.07888 mm

Figure 5.16: No improvement in model performance observed after eliminating two
features
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Overall, the approach developed in this work was largely successful at predicting

bead shape and bead shape consistency. Models for predicting height and width

performed very well across every data set and machine learning method. Models for

predicting shape consistency as described by Height Peak to Valley Difference, Height

Standard Deviation, and Center Line Deviation yielded promising results, but still

show room for improvement. The difference in model performance between the two

categories is hardly surprising given that predicting the change in the bead shape

as opposed to the bead shape itself makes it a higher order problem. Nevertheless,

the neural network based models, both simple and recurrent, were still able to give

reasonable approximations for bead shape consistency. Random Forests on the other

hand performed very poorly in this domain and as such likely does not have a place

in predicting bead shape consistency. A simple neural network was consistently the

best performing model regardless of outcome metric or data set. This contradicts the

expectation that the mechanism for incorporating past events that underlies LSTM

would improve predictions. However, this expectation frequently does not pan out

for a number of reasons. Hyper-parameters are more difficult to tune in LSTMs and
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there are more of them that need to be tuned. It is highly likely that all 15 LSTM

models in this study were not optimally tuned. Furthermore, all of the sequences fed

to the LSTM models were rather short, each only containing 10 time steps (windows)

which likely did not provide enough time steps for the long term memory mechanism

to be impactful.

Feature importance analysis yielded some interesting findings. The fact that shape

consistency metrics had audio features well represented near the top of the rankings,

while Height and Width models primarily had welding process variables near the

top demonstrates the validity of the multi-sensor approach. Clearly, depending on

the outcome of interest, data from disparate sources can be highly predictive. The

comparatively poor performance of thermal data should be taken with a grain of salt.

For one, in several of the models, Base Temperature and Melt Pool Temperature were

at least in the middle of the pack in terms of feature importance. Secondly, there were

a couple problems with this data. The Base Temperature data was not a function

of time, it was only a spatial profile in the snapshot immediately before arc ignition.

Therefore, on some segments of the bead, the actual Base Temperature was probably

very different at the time when it was actually deposited. Obtaining the necessary

spatio-temporally varying data from the radiometric files is possible but proved to

be too unwieldy a task for this project. Secondly, matching the start and end points

of the melt pool temperature data was challenging since this data was not recorded

synchronously with the rest. Melt pool imaging performed on a different software

package, and recording had to be activated separately from the other time series.

6.2 Future Work

6.2.1 Model Improvements

It is not likely that the performance of bead shape consistency models is sufficient for

deployment to a real time prediction framework. However, the author recommends
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several measures that could be immediately implemented to improve the model

performance, which could not be implemented within the time frame allotted to this

project. The first is to make the beads longer. The deleterious effect of including the

beginning and end portions of the bead on the model performance was noted, and

attempts were made to address it by trimming them off. However, because only 100

mm of bead were available, a balance had to be struck between trimming off sections

and preserving enough data to prevent the data sets from becoming too sparse. This

dilemma would be eliminated by increasing the bead length enough to allow large

sections from the beginning and end to be trimmed off while still leaving enough data

to train a machine learning model. This would ensure that the region of interest in

the bead corresponds to a truly steady state process which is easier to work with than

the transient behavior found near the start and stop positions.

Another improvement on this work would be to find a better way to precisely

locate the start and end positions of the torch on the weld beads. While locating the

end crater on the bead is a reasonable way to locate the end position of the torch, it

is hardly precise and can be off by as much as 1 mm. That represents 1% of the total

travel distance which is enough to degrade the model performance. A better method

for locating the start and end points of the travel path would be to perform a cold

run of the welding program, and make some kind of physical mark on the plate itself

that corresponds to the start and end positions of the torch. Such a physical mark

can be detected by metrology equipment such as the Keyence microscope, making

it relatively easy to compute its coordinates. Related to this problem is the lack

of synchronization between the IR cameras and the rest of the data. This would

be solved by integrating the IR cameras into the data acquisition control code for

the audio, robot and arc measurements. This can either be done with LabVIEW if

possible, or if not, by developing a custom interface using the IR cameras’ SDKs.

Finally, improving the sampling rate for the IR cameras, the welding data obtained

from the robot, and the shape profiles would be a significant boost to the model

performance. The low sampling rate from those sensors severely limited the amount
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of windowed segments that could be extracted from one set of profiles and time series.

Only 10 segments per bead could be obtained, which leaves much to be desired.

Significantly increasing the number of segments would both increase the number of

samples available to the machine learning models, it would also decrease the time

scale for each of the data features, enabling events that occur on a very small time

scale to be considered by the models.

6.2.2 Thick Wall Model

The model development approach developed in this work can easily be extended to

multi-layer builds. In a multi-layer build, time series data is obtained for each layer,

as shown in Figure 6.1. Much of the same data preparation and feature extraction

procedure described in Chapter 4 is applicable here. Each sensor time series can

be windowed like the bead time series were, and features can be computed for each

window. Since each layer time series is divided to into N windowed segments, if there

are M layers, then the build will have NM segments, corresponding to NM time

steps.

A multi-layer build can be characterized in terms of shape and defects. Ongoing

work at the University of Tennessee’s WAAM Development Cell, in partnership with

ZEISS is investigating characterization of porosity and lack of fusion defects obtained

by CT Scan. The CT scans produce a 3D image of voids and pores inside the bulk

build volume which can be converted into boundary surfaces of the void shapes.

Coordinates of these void boundaries can be obtained, enabling spatial analysis of

the void defects that develop during deposition. A 3D map of the void locations in

cartesian rectangular coordinates can then obtained. The time series windows should

be matched with overlapping spatial windows in this 3D map. That is to say, time

series data obtained at time range ti − ti+1 should be matched with the material that

was deposited from ti − ti+1.
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Matching these overlapping windows requires knowledge of the exact location in

space where material deposited at time t resides. Obtaining this information is the

most difficult challenge involved in model development for larger builds because of the

variability of the bead shape. The robot position data provides most of the answer,

since it reliably gives the x and y positions of the torch during deposition. Determining

the z coordinates of the bead only requires that the CTWD be subtracted from the z

coordinates of the robot position data. The CTWD can be obtained from the voltage

and current wave forms relatively easily [4]. This yields a line at the center of the

bead. A voxel can then be created around this line by defining ranges of the x, y, and

z coordinates that can fully encompass any size bead. These overlapping voxels can

be directly correlated to time series windows that occurred at the same time when

material in that voxel was deposited. All that remains is to assign an output metric

to these voxels such as porosity density. This continuation of the project described

in this work is currently underway.
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Figure 6.1: Layer time series data
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Appendix A

LabVIEW Code

Figure A.1: LabVIEW Data Acquisition VI

112



Appendix B

Python Code

Main Code
1

2 import numpy as np

3 import matplotlib . pyplot as plt

4 import pandas as pd

5 import seaborn as sns

6 import os

7

8 import plotting

9

10 import random_forests as rf

11 import data_processing as dp

12 import segmentation as seg

13 import neural_network as nn

14

15 from tkinter import filedialog

16

17

18 def get_shape (NumPts ,path , attribute ):

19 hfilename = " Height Profile Bead "

20 wfilename = " Width Profile .csv"

21 BeadShapes = []

22 for i in range (1, NumPts + 1):

23 tempBead = dp. BeadShape (i)

24 if attribute == ’Height ’:

25 dataHeight = pd. read_csv (path + ’\\ Height Profiles \\ ’ + hfilename + str(i) + ’.csv ’)

26 X = dataHeight ["X(mm)"]. tolist ()

27 Z = dataHeight ["Z(mm)"]. tolist ()

28 tempBead . add_height (X, Z)

29 tempBead . profile_trim (path , i)

30 del dataHeight , X, Z

31 elif attribute == ’Width ’:

32 dataWidth = pd. read_csv (path + ’\\ Width and Centerline \\ Bead ’ + str(i) + wfilename )

33 L = dataWidth [’Length ’]. tolist ()

34 Width = dataWidth [’Width ’]. tolist ()

35 CenterLineDeviation = dataWidth [’CenterLineDeviation ’]

36 tempBead . add_width (L, Width , CenterLineDeviation )
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37 del dataWidth , L, Width , CenterLineDeviation

38

39 BeadShapes . append ( tempBead )

40

41 return BeadShapes

42

43 #Main Program

44

45 # Enter main problem parameters

46 path = filedialog . askdirectory ()

47 outputMainPath = os.path.join(path , ’Output ’)

48

49

50 attribute = ’Height ’

51 metric = ’Std ’

52 heightMetrics = [’Mean ’,’Std ’,’Peak to Valley ’]

53 widthMetrics = [’Mean ’,’CenterLine ’]

54

55

56 NumPts = 43

57

58 num_windows = 10

59 percent_overlap = 0.15

60

61

62 # #############################################

63 #Get Bead Shape Profiles

64 # ##########################################

65

66 BeadShapes = get_shape (NumPts , path , attribute )

67

68 # #################################################################

69 # Extract from TDMS

70 # #################################################################

71

72 # Extract settings from csv file

73 Settings = pd. read_csv (path + ’\\ Settings .csv ’)

74 # Extract time series data from tdms file

75 Beads = dp. extract_labview (path , NumPts )

76 # Extract IR data from csv files

77 Beads = dp. extract_IR_data (path ,Beads , NumPts )

78 # Extract feature units

79 units = pd. read_csv (path + ’\\ feature units .csv ’)

80

81 # ################################

82 # Denoise Waveforms

83 # #####################################

84

85 for bead in Beads :

86 #bead. denoise (’ lemData ’,’Welding Voltage ’)

87 #bead. denoise (’ lemData ’, ’Welding Current ’)

88 bead. denoise (’audio ’, ’Audio ’)

89

90 #Plot bead profiles prior to pre - processing

91 for beadshape in BeadShapes :

92 plotting . plot_profile (beadshape ,’Height Profile ’,outputMainPath )

93

94

95 # ###########################################################
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96 #Pre - processing

97 # ##########################################################

98

99 for bead in Beads :

100 i = bead. number

101 print (i)

102

103 bead. add_settings ( Settings .iloc[i -1 ,:])

104 bead. remove_prepost_time ()

105

106 if attribute == ’Height ’:

107 xtrim , xendtrim = BeadShapes [i - 1]. trim_slopes (’Height ’, ’x’)

108 bead. trim_profile_time (xtrim , xendtrim )

109

110

111 # ########################################

112 # Plotting

113 # ########################################

114

115 #Plot bead profiles after trimming

116 for beadshape in BeadShapes :

117 plotting . plot_profile (beadshape ,’Trimmed Height Profile ’,outputMainPath )

118

119 for bead in Beads :

120 plotting . plot_spectrograms (bead , outputMainPath , percent_overlap , num_windows , sr = 22050 , group = ’audio ’,

waveform = ’Audio ’)

121 plotting . plot_spectrograms (bead , outputMainPath , percent_overlap , num_windows , sr =20000 , group =’lemData ’,

waveform =’Welding Voltage ’)

122 plotting . plot_spectrograms (bead , outputMainPath , percent_overlap , num_windows , sr =20000 , group =’lemData ’,

waveform =’Welding Current ’)

123

124

125 for bead in Beads :

126 plotting . plot_timeseries (bead , outputMainPath ,’weldData ’,’lemData ’,’audio ’,’meltTemps ’)

127

128 # ############################################

129 # # Create data frame and output dictionary

130 # ##########################################

131

132 outputName = attribute + ’ ’ + metric

133

134 try:

135 outputPath = os.path.join( outputMainPath , outputName )

136 os. mkdir ( outputPath )

137 except :

138 pass

139

140 X,Y, Segments = seg. segment_assemble (Beads , BeadShapes , num_windows , percent_overlap , attribute = attribute ,

metric = metric )

141 X = X.drop(’Wire Feed Speed Kurt ’,axis = 1)

142

143 #Plot feature correlations with respect to output

144 for ( columnName , columnData ) in X. iteritems ():

145 plotting . plot_segmentXY (X, Y, columnName , outputName , outputPath , units )

146

147 # Obtain basic stats about output metric

148 Y = np. array (Y)

149 Y_stats = pd. DataFrame ( columns = [’Mean ’,’Range ’,’Max ’,’Min ’])

150 Y_stats [’Mean ’] = [np.mean(Y)]
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151 Y_stats [’Range ’] = [max(Y) - min(Y)]

152 Y_stats [’Max ’] = [max(Y)]

153 Y_stats [’Min ’] = [min(Y)]

154 Y_stats . to_csv ( outputPath + ’\\ output_stats .csv ’)

155

156 #Plot Feature Distributions

157 for ( columnName , columnData ) in X. iteritems ():

158

159 try:

160 dist_path = os.path.join( outputMainPath , ’Feature Distributions ’)

161 os. mkdir ( dist_path )

162 except :

163 pass

164 plotting . plot_histogram ( columnData , columnName , dist_path )

165

166 print (’Output %s ranges from %.6f to %.6f. The range is %.6f’ % ( outputName ,min(Y), max(Y), (max(Y)-min(Y))))

167

168

169 # # ######################################

170 # # # Eliminate Highly Correlated Features

171 # # #######################################

172

173 # Compute correlation matrix

174 corr = X.corr ()

175 plt. rcParams . update ({ ’font.size ’: 27})

176 fig_corr = plt. figure ( figsize = [35 ,35])

177 ax = fig_corr . add_subplot ()

178 sns. heatmap (corr , ax = ax)

179 fig_corr . figure . savefig ( outputMainPath +’\\ Correlation_Matrix .png ’)

180

181 columns = np.full (( corr. shape [0] ,) , True , dtype =bool)

182 cols = X. columns . tolist ()

183

184

185 # Remove one of every pair of columns that are 95% correlated

186 print (" Dropping data points that are 95% correlated to existing data:")

187 for i in range (corr. shape [0]):

188 if i > 0 :

189 for j in range (i+1, corr. shape [0]):

190 if corr.iloc[i,j] >= 0.95:

191 if columns [i] and columns [j]:

192 print (str(cols[j]) + " " + str(j) + ": (95%+ correlated to " + str(cols[i]) + " " + str(i) +

")")

193 X = X.drop(str(cols[j]) , axis = 1)

194 columns [j] = False

195 elif columns [j]:

196 columns [j] = True

197

198 # ############################

199 # ## Machine Learning Model ###

200 # ############################

201 n,bins = plotting . plot_histogram (Y, outputName , outputPath )

202

203 del Beads

204

205 #Run model

206

207 modelType = ’LSTM ’

208 nn_epochs = 1600
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209 classify_epochs = 50

210 lstm_epochs = 10

211

212

213 if modelType == ’LSTM ’:

214 segsPerBead = 10

215 numBeads = NumPts

216 else:

217 segsPerBead = None

218 numBeads = None

219 print (’Model Initializing ’)

220

221

222 try:

223 ml_outputPath = os.path.join( outputPath , modelType )

224 os. mkdir ( ml_outputPath )

225 except :

226 pass

227

228 if modelType == ’RF ’:

229 Y_pred = rf. regression_RFE (X, Y, ml_outputPath , outputName )

230 else:

231 Y_pred = nn. neuralNetworkMain (X, Y, ml_outputPath , modelType =modelType , epochs =nn_epochs , lr =1e-4,

232 foldSplits = 25, numBeads = numBeads , segsPerBead = segsPerBead )

233

234 BeadShapes = seg. prediction_assignment (Segments , BeadShapes , Y_pred )

235

236 for beadshape in BeadShapes :

237 plotting . plot_output (beadshape , ml_outputPath ,attribute , metric )

Data Preparation Functions
1

2 from nptdms import TdmsFile

3 import numpy as np

4 import pandas as pd

5 import math

6 from math import floor

7 import segmentation as seg

8 import librosa

9

10 from skimage . restoration import denoise_wavelet

11

12 import audio_features as af

13

14

15 class BeadShape :

16

17 def __init__ (self , beadNum ):

18 self. beadNum = beadNum

19 self.x = None

20 self. Height = None

21 self.L = None

22 self. Width = None

23 self. CenterLine = None

24 self. peaktoval = None

25 self.Std = None

26 self. numWindows = None

27 self. overlap = None
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28 self. xtrim = None

29 self. predictions = []

30

31 def add_height (self ,X, Height ):

32 self.x= np. array (X)

33 self. Height = np. array ( Height )

34

35 def add_width (self ,L,Width , CenterLine ):

36 self.L = np. array (L)

37 self. Width = np. array ( Width )

38 self. CenterLine = CenterLine

39

40 def profile_trim (self ,path ,beadNum , attributeX = ’x’,attributeProfile = ’Height ’):

41

42 x = getattr (self , attributeX )

43 z = getattr (self , attributeProfile )

44

45 startEndPts = pd. read_csv (path + ’\\ Start end points .csv ’)

46 start = startEndPts [’Start ’][ beadNum - 1]

47 end = startEndPts [’End ’][ beadNum - 1]

48

49 filter_idx = np. where (np. logical_and (x >= start , x <= end))

50

51 z = z[ filter_idx ]

52 x = x[ filter_idx ]

53

54 x = x - min(x)

55

56 setattr (self , attributeX ,x)

57 setattr (self , attributeProfile ,z)

58

59 def segment (self ,overlap , num_windows , attribute = ’Height ’,metric = ’Mean ’):

60

61 outputName = attribute + metric

62

63 if metric == ’CenterLine ’:

64 temp = getattr (self , metric )

65 attribute = metric

66 else:

67 temp = getattr (self , attribute )

68

69 temp = temp[np. isfinite (temp)]

70 L = temp.size

71 lw = seg. calculate_winlength (L, overlap , num_windows )

72 windowedProfile = seg. segment_axis (temp , lw , percent_overlap =overlap , end="cut")

73

74 setattr (self , attribute + ’ Windows ’,windowedProfile )

75

76 if metric == ’Mean ’:

77 y = np.mean( windowedProfile , axis =1)

78 setattr (self , outputName ,y)

79

80 elif metric == ’Std ’:

81 y = self. local_stdev ( attribute + ’ Windows ’)

82 setattr (self , outputName ,y)

83

84 elif metric == ’Peak to Valley ’:

85

86 y = self. peak_to_valley ( attribute + ’ Windows ’)
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87 setattr (self , outputName ,y)

88

89 elif metric == ’CenterLine ’:

90

91 y = self. local_stdev ( metric + ’ Windows ’)

92 setattr (self , outputName ,y)

93

94 delattr (self , attribute )

95

96 return y

97

98 def local_stdev (self , attribute ):

99

100 measureWindows = getattr (self , attribute )

101 avg = measureWindows .mean ()

102

103 stdev = []

104

105 for x in measureWindows :

106 sum = 0

107 for xi in x:

108 sum = sum + (xi - avg) ** 2

109

110 stdev . append (math.sqrt(sum / x.size))

111

112 stdev = np. array ( stdev )

113 return stdev

114

115 def peak_to_valley (self , attribute ):

116

117 windowedProfile = getattr (self , attribute )

118 windowedProfile = windowedProfile

119 peak2valley = []

120

121 for window in windowedProfile :

122 peak = max( window )

123 valley = min( window )

124 peak2valley . append (peak - valley )

125

126 self. peaktoval = peak2valley

127

128 return peak2valley

129

130 def trim_slopes (self ,attribute , attributeX ):

131 X = getattr (self , attributeX )

132 profile = getattr (self , attribute )

133

134 peak = max( profile [0: floor (( profile .size)/2) ])

135

136

137 peakIdx = np. where ( profile == peak) [0][0]

138

139 xtrim = X[ peakIdx ]

140

141 newXtrim = xtrim + 7

142 diff = abs(X - newXtrim )

143 startIdx = np. where (diff == min(diff)) [0][0]

144 xtrim = X[ startIdx ]

145
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146 for i in range (-1, -profile .size , -1):

147 if ( profile [i] > profile [i - 1]) & ( profile [i] > 0.82* np.mean( profile )):

148 endIdx = i

149 break

150 elif profile [i] < 0.82 * np.mean( profile ):

151 continue

152

153 xendtrim = X[ endIdx ]

154

155 profile = profile [ startIdx : endIdx ]

156 X = X[ startIdx : endIdx ]

157

158 setattr (self , attribute , profile )

159 setattr (self , attributeX , X)

160

161 return xtrim , xendtrim

162

163

164 class Bead:

165

166 allBaseTemp = []

167 alltravelSpeed = []

168 allwfs = []

169 allArc = []

170 allctwd = []

171

172 def __init__ (self , number , lemData ,weldData ,robData , audio ):

173 self. number = number

174 self. lemData = lemData

175 self. weldData = weldData

176 self. robData = robData

177 self. audio = audio

178

179 self. meltTemps = None

180 self. lineProfile = None

181 self. baseTemp = None

182

183 self. travelSpeed = None

184 self.wfs = None

185 self. arcCorrection = None

186 self.ctwd = None

187 self. arcCorrection = None

188

189

190 self. predictions = []

191 self. segments = []

192

193 self. audioFrames = {}

194 self. allBeadStats = None

195 self. lemDataStats = {}

196 self. weldDataStats = {}

197 self. meltTempStats = {}

198

199 def add_settings (self , settings ):

200 self. travelSpeed = settings [’Travel ’]

201 self.wfs = settings [’WFS ’]

202

203 keysList = list( settings .keys ())

204
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205 if keysList [2] == ’Arc Correction ’:

206 self. arcCorrection = settings [’Arc Correction ’]

207 Bead. allArcCorrection . append (self. arcCorrection )

208 elif keysList [2] == ’Arc Correction ’:

209 self.ctwd = settings [’CTWD ’]

210 Bead. allctwd . append (self.ctwd)

211

212 def add_infrared (self , meltPoolVals , lineProfile ):

213 meltTemps = {}

214 self. lineProfile = lineProfile

215 self. baseTemp = np.mean( lineProfile )

216 Bead. allBaseTemp . append (self. baseTemp )

217

218 numSamples = meltPoolVals .size

219 time = self. robData [’Time ’]

220 startTime = time [0]

221 endTime = time [ -1]

222 del time

223 meltTime = np. linspace (startTime ,endTime , numSamples )

224 meltTemps [’Melt Pool Temperature ’] = np. array ( meltPoolVals )

225 meltTemps [’Time ’] = np. array ( meltTime )

226

227 self. meltTemps = meltTemps

228

229 def add_line_profile (self , lineProfile ):

230 self. lineProfile = lineProfile

231 self. baseTemp = np.mean( lineProfile )

232 Bead. allBaseTemp . append (self. baseTemp )

233

234 def segment (self ,overlap , numWindows ):

235 lemData = self. lemData

236 weldData = self. weldData

237 robData = self. robData

238

239 lemData = seg. data_split_stats (lemData ,overlap , numWindows )

240 weldData = seg. data_split_stats (weldData , overlap , numWindows )

241 robData = seg. data_split_stats (robData , overlap , numWindows )

242

243 self. lemData = lemData

244 self. weldData = weldData

245 self. robData = robData

246

247 def remove_prepost_time (self):

248

249 robotY = self. robData [’Robot Y’]

250 robotX = self. robData [’Robot X’]

251 robotZ = self. robData [’Robot Z’]

252 time = self. robData [’Time ’]

253

254 travelDirection = robotY

255 print (len( travelDirection ))

256 for i in range (0, len( travelDirection )):

257 if travelDirection [i] != travelDirection [i + 1]:

258 startIdx = i

259 break

260 for i in range (-1, -len( travelDirection ), -1):

261 if travelDirection [i] != travelDirection [i - 1]:

262 endIdx = i

263 break
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264

265 travelDirection = travelDirection [ startIdx : endIdx ]

266 travelDirection = travelDirection - min( travelDirection )

267

268 robotY = travelDirection

269

270 self. robData [’Robot Y’] = robotY

271 self. robData [’Robot X’] = robotX [ startIdx : endIdx ]

272 self. robData [’Robot Z’] = robotZ [ startIdx : endIdx ]

273

274 del robotX ,robotY , robotZ

275

276 startTime = time[ startIdx ]

277 endTime = time[ endIdx ]

278 self. robData [’Time ’] = time[ startIdx : endIdx ]

279

280 del time

281

282 timeAudio = af. add_time (self. audio [’Audio ’], endTime + 0.5)

283 self. audio [’Time ’] = np. array ( timeAudio )

284 del timeAudio

285

286 try:

287 N_melt = self. meltTemps [’Melt Pool Temperature ’]. size

288 meltTime = np. linspace (startTime , endTime + 0.5 , N_melt )

289 self. meltTemps [’Time ’] = np. array ( meltTime )

290 del meltTime

291 self. meltTemps = trim_times (startTime , endTime , self. meltTemps )

292

293 except :

294 pass

295

296 self. weldData = trim_times (startTime , endTime , self. weldData )

297 self. lemData = trim_times (startTime , endTime , self. lemData )

298 self. audio = trim_times ( startTime , endTime , self. audio )

299

300 def trim_profile_time (self ,xtrim , xendtrim ):

301

302 robotY = self. robData [’Robot Y’]

303 time = self. robData [’Time ’]

304 diffStart = abs( robotY - xtrim )

305

306 print (xtrim , xendtrim )

307 print ( robotY [ -1])

308 idxStart = np. where ( diffStart == min( diffStart )) [0][0]

309

310 diffEnd = abs( robotY - xendtrim )

311 idxEnd = np. where ( diffEnd == min( diffEnd )) [0][0]

312

313 startTime = time[ idxStart ]

314 endTime = time[ idxEnd ]

315

316 try:

317 self. meltTemps = trim_times (startTime , endTime , self. meltTemps )

318 except :

319 pass

320

321

322 self. weldData = trim_times (startTime , endTime , self. weldData )
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323 self. lemData = trim_times (startTime , endTime , self. lemData )

324 self. audio = trim_times ( startTime , endTime , self. audio )

325

326

327 def filter_blips (self):

328

329 xtemp = self. robData [’Robot X’]

330 filter_idx = np. where ( xtemp > 500)

331

332 if filter_idx .size == 0:

333 return 0

334 else:

335 self. robData [’Robot X’] = np. delete (xtemp , filter_idx )

336 del xtemp

337 self. robData [’Robot Y’] = np. delete (self. robData [’Robot Y’], filter_idx )

338 self. robData [’Robot Z’] = np. delete (self. robData [’Robot Z’], filter_idx )

339 self. robData [’Time ’] = np. delete (self. robData [’Time ’], filter_idx )

340

341 self. weldData [’Wire Feed Speed ’] = np. delete (self. weldData [’Wire Feed Speed ’], filter_idx )

342 self. weldData [’Time ’] = np. delete (self. weldData [’Time ’], filter_idx )

343

344 def delete_item (self ,attribute ,* itemKeys ):

345

346 attributeDict = getattr (self , attribute )

347 for arg in itemKeys :

348 attributeDict .pop(arg)

349

350 setattr (self ,attribute , attributeDict )

351

352 def merge_data (self ,* attributes ):

353

354 for arg in attributes :

355 try:

356 dataStats = getattr (self , arg)

357 self. allBeadStats = self. allBeadStats | dataStats

358 except :

359 allBeadStats = {}

360 dataStats = getattr (self , arg)

361 allBeadStats = allBeadStats | dataStats

362 self. allBeadStats = allBeadStats

363

364 def segment (self , percent_overlap , num_windows ):

365 # Window audio data

366 audio_size = self. audio [’Audio ’]. size

367 lw_audio = seg. calculate_winlength ( audio_size , percent_overlap , num_windows )

368 hop = floor ( lw_audio - lw_audio * percent_overlap )

369 # Store windowed audio features back in object

370 self. audioFrames = af. extract_basic_features (self. audio [’Audio ’], 22050 , hop , lw_audio )

371

372

373 # Delete unwanted items from bead object

374 self. delete_item (’weldData ’, ’Time ’)

375 self. delete_item (’lemData ’, ’Time ’)

376

377 try:

378 meltTempStats = {}

379 self. delete_item (’meltTemps ’, ’Time ’)

380 meltTempWindows = \
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381 seg. segment_axis (self. meltTemps [’Melt Pool Temperature ’], num_windows , percent_overlap =

percent_overlap ,

382 end="cut")[0]

383 meltTempStats [’Melt Pool Temperature ’] = meltTempWindows

384 self. meltTempStats = meltTempStats

385 self. meltTempStats

386 except :

387 pass

388

389

390 # Window the rest of data and store back into object

391 self. lemDataStats = seg. arc_features (self.lemData , percent_overlap , num_windows )

392 self. weldDataStats = seg. data_split_stats (self.weldData , percent_overlap , num_windows )

393

394

395 try:

396 self. merge_data (’lemDataStats ’,’weldDataStats ’,’meltTempStats ’)

397 except :

398 self. merge_data (’lemDataStats ’, ’weldDataStats ’)

399

400 del self.audio , self.lemData , self. weldData

401

402 def denoise (self , group , waveform ):

403

404 wavedict = getattr (self , group )

405 X_denoise = denoise_wavelet ( wavedict [ waveform ], method =’VisuShrink ’, mode=’soft ’, wavelet_levels =3,

406 wavelet =’sym8 ’, rescale_sigma =’True ’)

407 wavedict [ waveform ] = X_denoise

408 setattr (self ,group , wavedict )

409

410

411 def beadNumber (i):

412 if i < 10:

413 beadnumstr = "0" + str(i)

414 else:

415 beadnumstr = str(i)

416

417 return beadnumstr

418

419

420 def get_LEMtime (data):

421 time = []

422 sample_rate = 20000

423 n_samples = len(data[’Welding Voltage ’])

424 dt = 1/ sample_rate

425

426 for i in range (1, n_samples +1):

427 time. append (dt*i)

428

429 return time

430

431

432 def extract_IR_data (path ,beads ,num):

433 try:

434 pathBlob = path + ’\\ IR Data \\ Blob Detection \\ ’

435 pathLine = path + ’\\ IR Data \\ Line Profiles \\ ’

436 for i in range (1, num + 1):

437 beadnumstr = beadNumber (i)

438
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439 filenameLine = ’Bead ’ + beadnumstr + ’_basetemp ’

440 filenameBlob = ’Bead ’ + beadnumstr + ’_BlobDetection ’

441

442 temp_dfLine = pd. read_csv ( pathLine + filenameLine + ’.csv ’)

443 temp_dfBlob = pd. read_csv ( pathBlob + filenameBlob + ’.csv ’)

444

445 blobTemps = temp_dfBlob [’TemperatureMean ’]. values

446 lineTemps = temp_dfLine [’Bead ’ + beadnumstr + ’.seq:Line 1 [C]: mean:vert ’]. values

447

448 beads [i - 1]. add_infrared (blobTemps , lineTemps )

449 except :

450 pathLine = path + ’\\ IR Data \\ Line Profiles \\ ’

451 for i in range (1, num + 1):

452 beadnumstr = beadNumber (i)

453 filenameLine = ’Bead ’ + beadnumstr + ’_basetemp ’

454 temp_dfLine = pd. read_csv ( pathLine + filenameLine + ’.csv ’)

455 lineTemps = temp_dfLine [’Bead ’ + beadnumstr + ’.seq:Line 1 [C]: mean:vert ’]. values

456 beads [i - 1]. add_line_profile ( lineTemps )

457

458 return beads

459

460

461 def normalize_data (X):

462

463 for ( columnName , columnData ) in X. iteritems ():

464 featureVector = columnData . values

465 featureMax = featureVector .max ()

466 featureMin = featureVector .min ()

467 normFeature = ( featureVector - featureMin )/( featureMax - featureMin )

468 X[ columnName ] = normFeature

469

470 return X

471

472

473 def trim_times (startTime ,endTime ,data):

474

475 time = data[’Time ’]

476

477 idx = np. where (np. logical_and (time >= startTime , time <= endTime ))[0]

478

479 for key in data:

480 series = data[key]

481 data[key] = series [idx]

482 return data

483

484

485 def extract_labview (path , NumPts ):

486

487 beads = []

488

489 for i in range (1, NumPts +1):

490

491 TempRobData = {}

492 TempWeldData = {}

493 TempLEMData = {}

494 Audio = {}

495

496 beadnumstr = beadNumber (i)

497 beadPath = path+’\\ LabVIEW \\ Bead ’ + beadnumstr
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498

499 temp_file = TdmsFile .read( beadPath + ’\\ Bead01 .tdms ’)

500

501 RobGroup = temp_file [" Robot Data"]

502 WeldGroup = temp_file [" Welding Data"]

503 LEMGroup = temp_file [’LEM Box ’]

504

505 for channel in RobGroup . channels ():

506 TempRobData [ channel .name] = channel [:]

507

508 for channel in LEMGroup . channels ():

509 TempLEMData [ channel .name] = np. array ( channel [:])

510

511 for channel in WeldGroup . channels ():

512 TempWeldData [ channel .name] = np. array ( channel [:])

513

514 LEMtime = get_LEMtime ( TempLEMData )

515 TempLEMData [’Time ’] = np. array ( LEMtime )

516 del TempWeldData [’Motor Current ’]

517 #Get Audio

518 tempAudio , SR = none = librosa .load( beadPath + ’\\ Bead01 .wav ’)

519 tempAudio = af. clipEndAudio ( tempAudio )

520

521 Audio [’Audio ’] = tempAudio

522 beads . append (Bead(i, TempLEMData , TempWeldData , TempRobData , Audio ))

523 del tempAudio

524

525 return beads

Machine Learning Functions
1 import tensorflow as tf

2 import pandas as pd

3 import numpy as np

4 import matplotlib . pyplot as plt

5 from tensorflow import keras

6 import os

7

8 from tensorflow . python . keras . models import Sequential

9 from tensorflow . python . keras . layers import Dense , Dropout , LSTM

10 from tensorflow . python . keras . optimizer_v2 .adam import Adam

11 from tensorflow . python . keras . constraints import MaxNorm

12

13 from sklearn . model_selection import KFold , TimeSeriesSplit , LeaveOneOut , StratifiedKFold

14 from sklearn . preprocessing import MinMaxScaler

15 from sklearn . ensemble import RandomForestRegressor

16 from sklearn . ensemble import RandomForestClassifier

17 from sklearn . model_selection import LeaveOneOut , KFold

18 from sklearn . model_selection import cross_val_score

19 from sklearn . model_selection import cross_val_predict

20 from sklearn . metrics import mean_absolute_error

21 from sklearn . metrics import mean_squared_error

22 from sklearn . metrics import accuracy_score

23 from sklearn . inspection import permutation_importance

24

25 import shap

26

27

28 def neuralNetwork ( x_shape ):
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29 model = Sequential ([

30 Dense ( units = x_shape [1] , input_shape =( x_shape [1] ,) , kernel_constraint = MaxNorm (8) , kernel_initializer =’

normal ’,

31 activation =’relu ’),

32 Dense ( units =12 , kernel_constraint = MaxNorm (8) , kernel_initializer =’normal ’, activation =’relu ’),

33 Dropout (0.2) ,

34 Dense ( units =1, activation =’linear ’)

35 ])

36

37 return model

38

39

40 def neuralNetworkClassify ( x_shape ):

41 model = Sequential ([

42 Dense ( units = x_shape [1] , input_shape =( x_shape [1] ,) , kernel_constraint = MaxNorm (5) , activation =’relu ’),

43 Dense ( units =10 , kernel_constraint = MaxNorm (5) , activation =’relu ’),

44 Dropout (0.8) ,

45 Dense ( units =1, activation =’sigmoid ’)

46 ])

47

48 return model

49

50

51 def recurrentNeuralNetwork ( segsPerBead , x_shape ):

52 model = Sequential ()

53 model .add(LSTM (20 , input_shape =[ segsPerBead , x_shape [1]] , stateful =False , return_sequences =True))

54 model .add( Dropout (0.2) )

55 model .add( Dense ( units =1, activation =’linear ’, kernel_initializer =’normal ’))

56

57 return model

58

59

60 def plot_NN (Y_true ,Y_pred , outputPath ):

61 plt. rcParams . update ({ ’font.size ’: 16})

62 compPlot = plt. figure ()

63 line = np. linspace (min( Y_true ), max( Y_true ), 100)

64 plt.plot(line , line)

65 plt. scatter (Y_true , Y_pred )

66 plt. xlabel (’Measured (mm)’)

67 plt. ylabel (’Predicted (mm)’)

68 compPlot . savefig ( outputPath + ’\\ ComparisonPlot .png ’)

69 plt.show ()

70

71

72 def compute_shap (model ,X_train , X_test ):

73

74 randsamples = X_train [np. random . choice ( X_train . shape [0] , 150 , replace = False )]

75 explain = shap. DeepExplainer (model , randsamples )

76 shap_vals = explain . shap_values ( X_test [0:15])

77

78 return shap_vals [0]

79

80

81 def neuralNetworkMain (X, Y, outputPath , modelType = ’NN ’, epochs = 700 ,lr = 1e-4, foldSplits = 25, numBeads =

None , segsPerBead = None):

82

83 # Get feature names and current number of features

84 X_features = X. columns

85 number_of_features = len( X_features )
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86

87 scaler = MinMaxScaler ( feature_range =(0 , 1))

88 X = X. to_numpy ()

89 X = scaler . fit_transform (X)

90

91 x_shape = X. shape

92 cvscores = []

93 Y_pred = []

94 Y_true = []

95

96 if modelType == ’NN ’:

97 modelInit = neuralNetwork ( x_shape )

98 kfolds = KFold ( n_splits = foldSplits )

99 elif modelType == ’NN Classify ’:

100 kfolds = StratifiedKFold ( n_splits = foldSplits )

101 modelInit = neuralNetworkClassify ( x_shape )

102 elif modelType == ’LSTM ’:

103 kfolds = KFold ( n_splits = foldSplits )

104 X = X. reshape (numBeads , segsPerBead , x_shape [1])

105 Y = Y. reshape (numBeads , segsPerBead )

106 modelInit = recurrentNeuralNetwork ( segsPerBead , x_shape )

107

108 shap_vals_folds = np. zeros ([15 , x_shape [1]])

109

110 for trainIdx , testIdx in kfolds . split (X,Y):

111 print (’Test Indexes :’)

112 print ( testIdx )

113

114 X_train = X[ trainIdx ]

115 X_test = X[ testIdx ]

116

117 model = modelInit

118

119 model . compile (

120 optimizer =Adam( learning_rate =lr),

121 loss=" mean_squared_error ",

122 metrics ="mse")

123

124 model .fit(X[ trainIdx ], Y[ trainIdx ],

125 epochs =epochs ,

126 verbose =0,

127 shuffle =True)

128

129 train_scores = model . evaluate (X[ trainIdx ],Y[ trainIdx ], verbose = 1)

130 scores = model . evaluate (X[ testIdx ],Y[ testIdx ], verbose = 1)

131 print ( scores )

132 yFoldPred = model . predict (X[ testIdx ])

133

134 if modelType == ’LSTM ’:

135 yFoldPred = yFoldPred . reshape (1, segsPerBead *len( testIdx ))[0]

136 yFoldTrue = Y[ testIdx ]. reshape (1, segsPerBead *len( testIdx ))[0]

137 else:

138 shap_vals = compute_shap (model ,X_train , X_test )

139 shap_vals_folds = np.add( shap_vals_folds , shap_vals )

140 yFoldTrue = Y[ testIdx ]

141

142 Y_pred . extend ( yFoldPred . tolist ())

143 Y_true . extend ( yFoldTrue . tolist ())

144
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145 cvscores . append ( scores [1])

146 print (’Current split iteration training score : %.6f’ % ( train_scores [1]))

147 print (’Current split iteration validation : %.6f’ % ( scores [1]))

148 print (’Model overall validation score : %.6f’ % (np.mean( cvscores )))

149

150

151 finalScore = np.mean( cvscores )

152

153 if modelType == ’NN ’:

154 # Compute average shap values across all folds

155 shap_vals_avg = shap_vals_folds / foldSplits

156 shap_avg = np.mean( shap_vals_avg , axis =0)

157 sorted_idx = shap_avg . argsort ()

158 plt. figure ()

159 shap. summary_plot ( shap_vals_avg , features =X_train , feature_names = X_features , plot_type ="bar", max_display

=30)

160 plt. savefig ( outputPath + ’\\ Shap Values .png ’)

161 print ( shap_avg )

162

163 least_valuable_feature = X_features [ sorted_idx [0]]

164 print (’The least valuable feature is: %s’ % ( least_valuable_feature ))

165

166 modelSummary = pd. DataFrame ()

167

168 modelSummary [’Epochs ’] = [ epochs ]

169 modelSummary [’Learning Rate ’] = [lr]

170 modelSummary [’Cross Val Score ’] = [ finalScore ]

171 modelSummary . to_csv ( outputPath + ’\\ ModelSummary .csv ’,index = 0)

172 print ( modelSummary )

173

174 print (’Final MSE score : %.5f’ % (np.mean( cvscores )))

175 print ( cvscores )

176

177 config = model . get_config ()

178 print ( config )

179

180 plot_NN (Y_true , Y_pred , outputPath )

181

182 return Y_pred

183

184 def regression_RFE (X,Y, outputPath , metric ):

185 X_new = X

186

187 kfolds = KFold ( n_splits = 23)

188 kfolds . get_n_splits ( X_new )

189 print (’Leave -One -Out Splits Acquired ’)

190

191 counter = 1

192

193 X_new = X

194

195 X_features = X_new . columns . to_numpy ()

196 number_of_features = len( X_features )

197

198 summary_df = pd. DataFrame ( columns =[ ’Number of Features ’, ’MAE ’, ’Least Important Feature ’])

199 all_num_features , all_mae , all_least_import = list () , list () , list ()

200

201 try:

202 new_path = os.path.join( outputPath , ’Feature Importance ’)
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203 os. mkdir ( new_path )

204 except :

205 pass

206

207 while number_of_features >= 7:

208 print (’RFE Loop Iteration : %d’ % counter )

209

210 y_pred , y_true = list () ,list ()

211

212 print (’Training loop begins ’)

213 for train_index , test_index in kfolds . split ( X_new ):

214 X_train , X_test = X_new .iloc[ train_index ], X_new .iloc[ test_index ]

215 Y_train , Y_test = Y[ train_index ], Y[ test_index ]

216

217 regressor = RandomForestRegressor ( n_estimators =300 , min_samples_leaf =3)

218

219 regressor .fit(X_train , Y_train )

220 y_hat = regressor . predict ( X_test ). tolist ()

221 y_pred . extend ( y_hat )

222 y_true . extend ( Y_test )

223

224 print (’Training loop ends ’)

225 feat_imp = permutation_importance (regressor , X_train , Y_train )

226 combined_feature_importance = feat_imp . importances_mean

227 sorted_idx = combined_feature_importance . argsort ()

228

229 curr_score = mean_squared_error (y_true , y_pred )

230

231 file_suffix = metric + ’_’ + str( number_of_features ) + " features "

232 print (len( y_pred ))

233 line = np. linspace (min( y_true ), max( y_true ), 30)

234 comp_plot = plt. figure ()

235 plt. scatter (y_true , y_pred )

236 plt.plot(line , line)

237 plt. xlabel (’Measured (mm)’)

238 plt. ylabel (’Predicted (mm)’)

239 comp_plot . savefig ( new_path + ’\\ CompPlot_ ’ + file_suffix + ’.png ’)

240

241 importances_df = pd. DataFrame ( columns =[ ’Feature ’, ’Importance ’])

242 importances_df [’Feature ’] = X_features

243 importances_df [’Importance ’] = combined_feature_importance

244 importances_df . to_csv ( new_path + ’\\ Importances_ ’ + file_suffix + ’.csv ’)

245

246 least_valuable_feature = X_features [ sorted_idx [0]]

247 X_new = X_new .drop( least_valuable_feature , axis =1)

248

249 all_num_features . append ( number_of_features )

250 all_mae . append ( curr_score )

251 all_least_import . append ( least_valuable_feature )

252

253 new_score = mean_squared_error (y_true , y_pred )

254 print (’Iteration %d ...... Current score : %.5f’ % (counter , curr_score ))

255 print (" Current Number of features %d" % number_of_features )

256 X_features = X_new . columns . to_numpy ()

257 number_of_features = len( X_features )

258 print (’Least valuable feature : %s .... MSE: %.5f ’ % ( least_valuable_feature , new_score ))

259 print ("New number of features %d" % number_of_features )

260

261 counter = counter + 1
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262

263 summary_df [’Number of Features ’] = all_num_features

264 summary_df [’MAE ’] = all_mae

265 summary_df [’Least Important Feature ’] = all_least_import

266 summary_df . to_csv ( new_path + ’\\ Summary_ ’ + file_suffix + ’.csv ’)

267

268 return y_pred
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